WO2012129717A1 - 循环水流渐缩管道动力发电系统 - Google Patents

循环水流渐缩管道动力发电系统 Download PDF

Info

Publication number
WO2012129717A1
WO2012129717A1 PCT/CN2011/000503 CN2011000503W WO2012129717A1 WO 2012129717 A1 WO2012129717 A1 WO 2012129717A1 CN 2011000503 W CN2011000503 W CN 2011000503W WO 2012129717 A1 WO2012129717 A1 WO 2012129717A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tail
nozzle
flow
pipe
Prior art date
Application number
PCT/CN2011/000503
Other languages
English (en)
French (fr)
Inventor
邓庆时
Original Assignee
Teng Ching-Shih
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teng Ching-Shih filed Critical Teng Ching-Shih
Priority to PCT/CN2011/000503 priority Critical patent/WO2012129717A1/zh
Priority to CN2011800450031A priority patent/CN103180604A/zh
Priority to US13/824,937 priority patent/US20140020360A1/en
Publication of WO2012129717A1 publication Critical patent/WO2012129717A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention belongs to the field of hydroelectric power generation, and particularly relates to a circulating water flow tapered pipeline power generation system.
  • hydropower is undoubtedly the most economical of current green energy.
  • the most obvious way to do this is to build dams in the rivers, concentrate the water sources in the natural world, and then use the energy of high and low drops to transform the generators, thus generating a large source of electricity.
  • the inventors devote themselves to research and propose a new hydropower technology, which is not limited to the location, and drives the generator to generate electricity according to the hydrodynamics through the circulating water flow. After a long period of research and implementation, the application of this application is finally completed. Circulating water flow is gradually reduced by the pipeline power generation system.
  • the main object of the present invention is to provide a circulating water flow tapered pipeline power generation system, which uses a small amount of pumps to continuously extract tail water to form a circulating water flow, and converts the water flow in the pipeline into a high speed spray according to fluid mechanics by a reducer. The flow is then used to drive the Pelton turbine generator set to generate electricity, using a small amount of water for circulation for use in large-scale commercial power generation systems.
  • Another object of the present invention is to provide a circulating water flow tapered pipeline power generation system which is not limited to a place, and can be self-contained and continuously circulated for a long time to generate electricity as long as it is filled with a single amount of water, thereby achieving maximum use. benefit.
  • a circulating water flow tapered pipeline power generation system that achieves the aforementioned objectives, uses a small amount of pump power to continuously pump "the tail water that drives the turbine to fall", raises it to the ground and enters a sink and horizontal reducer and nozzle After being pressurized again, the tapered tube converts the water flow in the pipeline into a high-speed jet according to the principle of hydrodynamic continuity, driving the Pelton turbine generator set, which can generate large-scale commercial power generation.
  • the circulating water flow tapered pipeline power generation system mainly comprises: a high-speed jet device, a Pelton turbine generator set, and an upper tail water device, wherein the high-speed jet device comprises a reducer tube having a front end large diameter tube
  • the front end large-diameter pipe can be used to expand the flow rate to form a high-speed jet of the small-diameter nozzle at the rear end, and the jet produced by the high-speed jet device can be driven.
  • a Pelton turbine generator unit generates electricity; and the upper tailing water device uses a pump to pump the tail water below the turbine to the ground while the turbine generator unit is generating electricity, continuously supplying the required fins Hydraulic power; After the pump energy overcomes the resistance of the reducer, the jet power generation is generated, which is a design system that can recycle a small amount of water for power generation.
  • Figure 1 is an external view of the circulating water flow gradually reducing power generation system
  • Figure 2 an internal structural diagram of the nozzle group
  • FIG. 3A an explanatory diagram of the tail pump structure
  • FIG. 3B an explanatory view of the pressurized pump structure
  • Tail pump 2 overflow pipe
  • Temperature control room 8 Town pier
  • drain chamber 12 horizontal large diameter tube
  • the circulating water flow taper power generation system (hereinafter referred to as the system) consists of one to six nozzles and a Pelton wheel generator set.
  • the nozzle of this system is named as a nozzle group, and its structure includes an upper tail water device and a high speed nozzle device.
  • the system generates 130MW ⁇ 180MW, consisting of four nozzle groups 10, 20, 30 and 40 with intermediate turbine 50 and generator set 60, each The elongated nozzle groups 10, 20, 30, and 40 are each 90 apart. It is a large cross type with respect to the genset 60 in the center, and the internal structure 70 of the nozzle group will be described later.
  • the upper tailing water device of the nozzle group of the system consists of 1. underground tail water channel 3, 2. tail water pump 1 and suction pipe, 3. constant pressure water tank 13, 4. tail water pump main switch 31 :
  • the underground tail water channel 3 is a reinforced concrete square covered waterway with a length of 23m, a width of 4m and a depth of 6m.
  • the inner end is connected to the drainage chamber 11 of the Pelton turbine chamber 9, and the outermost end is 9m long. Extend the height of 3m to the ground to form two compartments.
  • One of them is a constant pressure water tank 13, which has a length of 4 m and a width equal to 4 m in width of the tail water channel 3; the other is a mechanical chamber 14 of a high-pressure jet device, which has the same specifications as the constant pressure water tank 13.
  • the distance between the two rooms is lm, and the water in the underground tail water 3 is 2.3m deep.
  • the tail water pump 1 is installed in the 32m water level of the underground tail water channel. When running, 6.8mVs of water is pumped into the constant pressure water tank 13 per second.
  • the four nozzle groups of the whole system are 10, 20, 30 and 40.
  • the Pu 1 is controlled by a tail pump main switch 31.
  • the constant pressure water tank 13 is a reinforced concrete water tank with a height of 3 m and a width of 4 m. There is mainly an inlet pipe (the top outlet of the vertical draft pipe) and a overflow pipe with a large and small funnel type. The height of the water level is 2.46m, and most of the upper tail water is discharged into the high-speed jet device.
  • tail water pumps 1 there are four tail water pumps 1 in the four nozzle groups 10, 20, 30 and 40 in the system, which are controlled by a tail pump main switch 31.
  • the switch has a rotary knob and various power generation scales, heat engine scales, The stop scale, etc., the scale is made according to the production stage test and the power consumption of the two pumps is displayed during the test run. Wait for the instrument 32 to complete.
  • the high-speed jet device of the nozzle group of the system consisting of 1. a mechanical chamber 14, 2. a strip of horizontally large diameter tubes 12, 30 ° reducer 5 and nozzle 6 horizontally connected to the tapered pipeline 3.
  • a temperature control room 7 consists of:
  • the machine room 14 has the same specifications as the rear constant pressure water tank 13, and is a reinforced concrete chamber with a height of 3 m and a length of 4 m. It is separated from the rear constant pressure water tank 13 by lm, and the horizontal large diameter tube 12 of the diameter lm is connected at the head end. The front wall of the water tank 13 is fixed, and then enters the machine room 14 and makes two 45° cambers and then passes out from the front wall of the machine room 14.
  • the machine room 14 mainly houses the off-tube motor, the main shaft, the bearing housing, and the pump electrical line repair tool materials of the pressurized pump 4 (an energy 1800 MW horizontal axial flow pump).
  • the tapered pipe which is a device for manufacturing a high-speed nozzle for generating power, is formed by connecting three pipes of a front horizontal large diameter pipe 12, a middle segment reduction pipe 5, and a rear nozzle 6;
  • the front section is a horizontal large-diameter tube 12 having a diameter lm and a length of 19 m.
  • the foremost part of the steel pipe is connected to the constant pressure water tank, and the water in the constant pressure water tank 13 is taken out and then passed through the wall into the machine room 14 for two 45°. After horizontal bending, the pipe length is 14m from the front of the machine room 14 to the turbine chamber 9.
  • the rotation of the pump 4 transverse axial pump with an energy of 1800 kW
  • the wing is connected to the bearing housing and the motor outside the rear elbow by a main shaft.
  • the 2m space of the 14m pipe body accommodates the movable wing of the pressurized pump 4, and the rear 12m space is used as the "inlet zone length" to form a "completely developing flow” (
  • the length of the inlet zone must be ten times the diameter, and the system adds 20% to 12 times 12m) to facilitate the smooth transition of the axial flow velocity to high-speed jet flow in the middle 30° reducer.
  • the reducer 5 has a length of 1.375 m, a front end diameter of lm, and a rear end diameter of 0.25 m.
  • the front end is connected to the end of the horizontal large diameter tube 12, and the rear end of the reducer is connected to the straight tube nozzle 6, and the front and rear end diameter ratios (1 1 11:0.25 1 11 ) is 4: 1 .
  • the 30° reduction tube has a coefficient of friction of 0.02 (according to FLUID MECHANIGS by American professor Cengal Cimbala).
  • the nozzle in the rear section is a straight-tube nozzle 6.
  • the internal smooth and straight is not equipped with any valve, and its length is 0.75m and the diameter is 0.25m.
  • a horizontal axial flow pump (motor energy 1800 kW) is installed in the second 45° elbow portion of the large diameter tube 12 (the motor and the bearing housing are outside the curved tube, and the rotating wing is inside the tube, and Spindle phase
  • the water in the tube is pressurized, and the water is supplied with sufficient energy to advance to the 30° reducer at a flow rate of 8.07 M/s and overcome the frictional resistance of the reducer to convert the water flow into a high-speed jet.
  • pressurized pumps 4 there are four pressurized pumps 4 in the four nozzle groups 10, 20, 30 and 40 in the system.
  • the system is controlled by a pressurized pump main switch 32.
  • the switch has a rotary knob and displays various power generation scales and heat engines.
  • Meter 33 for scale, stop scale, etc.
  • Town pier 8 a large diameter pipe 12 of length 14m between the machine room 14 and the turbine room 9, is loaded by four reinforced concrete piers, and the center line (point) of the pipe is 1.5m from the ground.
  • Temperature control room 7 a large diameter pipe 12 of length 14 m between the machine room 14 and the water turbine chamber 9, is maintained by a temperature control room 7 (cold area heating machine) made of a long type of insulated and antifreeze building material
  • the pipeline is in a normal temperature environment.
  • the source of electricity used by the pump (tail pump and pressurized pump) of this system is mainly the power generation of the generator set in the system. However, when the system is started up early, it is not possible to save electricity. It must be powered by other units or small.
  • the generator set provides the power required for pumping (the energy needs to be 10 MW, since the maximum power consumption for all pumps is 8.2 MW).
  • the power generation operation process of this system is divided into: (1) heat engine operation, (2) normal power generation operation, (3) change of power generation operation, and (4) shutdown operation.
  • the engine Before the normal power generation operation, the engine must be operated (WARM-UP). The action is to start the four upper tail pumps first, and turn the shared power switch to the heat engine position for 20 minutes.
  • the tail pump pumps a small amount of tail water (about 50% ⁇ 60%) to the fixed water level tank on the ground and fills it.
  • the three pipes of the tapered pipe take about 30 seconds to start the pressure pump. From the power switch to the "heat engine” position, the water flow can only flow from the nozzle, but not enough to drive the turbine.
  • the power outside the generator set such as the power of other unit storage devices or small generators, is used.
  • the shaft horsepower of the four tail pumps of the whole system is 2880KW.
  • the rising tail water enters the constant pressure water tank on the ground and the connected tapered piping device (from the horizontal large diameter pipe to the nozzle) is filled with tail water, and the nozzle outlet needs to be slow.
  • the water flow out, the overflow hole in the constant pressure water tank is 2.46m high, and the water volume entering the water tank is 6.8m 3 /s, of which 6.33m 3 /s water flows into the tapered pipeline to form a jet flow, and the remaining 0.47 3 /s water volume is from
  • the overflow channel flows back to the tailwater channel, so that the water level in the water tank is permanently maintained at a height of 2.46m, which is higher than the resistance of the two 45° elbows made by the large diameter pipe (in the machine room), so that the constant pressure water tank and the connected large diameter water pipe - --The pressure formed by 0.96m is used to offset the resistance of the two 45° elbows of the large diameter pipe (the part in the machine room), so that there is no pressure between the constant pressure water tank and the large
  • the constant pressure water tank is 0.96 m higher than the horizontal large diameter pipe (center line) to offset the head loss (0.96 m) of the two 45° elbows.
  • the water flow enters the 30° reducer and then overcomes the 30° reducer frictional resistance with 1055 KW energy, so that the 30 ° reducer is 4:1 according to the diameter of its large and small ends (large end lm, small end 0.25 m) and continuity.
  • the energy of the pressurized pump required for this action is calculated as follows:
  • the total power used by the four tail pumps and the four pressurized pumps in the whole system accounts for the percentage of power generation: The power used by the four tail pumps is 2880KW;
  • the power used by the four pressurized pumps is 5320 KW;
  • the total power used for pumping accounts for 4.6% of the generated electricity (180 MW) (theoretical data).
  • the current needle valve nozzle (with a needle valve device that regulates the jet velocity, such as the nozzle used in the Swiss BIEUDRON power plant at the Pelton Turbine Power Plant with the highest jet velocity of 192 m/s in the world)
  • the nozzle used in this system is a straight tube type without any valve inside, and its efficiency is calculated at 0.95 (nozzle loss 5%).
  • the nozzle jet drives the turbine energy.
  • the pressure pumping control switch After the pressure pumping control switch is rotated to the 180MW scale, continue to fine-tune to "180 000 000W” according to the "power generation output power number" displayed on the instrument panel.
  • fine-tuning simultaneously rotate the tail water pump switch pointer to make it with the pressure switch.
  • the pointer points to the same number scale, so that the amount of the last pumping water is maintained at a matching amount with the pressure pumping pressure (the reason is that when the pumping pump drives the high water volume at a high speed, the tail pump must also be pumped. A high amount of tail water is used to match).
  • the power output output is displayed at "180 000 000W"
  • the two pump trimming actions are stopped, so that the two pumps are operated at the scale for a long time until the power generation is required or the shutdown is required.
  • the timer also starts to calculate the power generation running time.
  • the operation is: whether the power generation is increased or decreased.
  • the invention uses a small amount of pumps to continuously extract the tail water to form a circulating water flow, and converts the water flow in the pipeline into a high-speed jet according to the hydrodynamics by the reducer, and then drives the Pelton turbine generator to generate electricity by the high-speed jet.
  • Use a small amount of water for circulation in large-scale commercial power generation systems and it is not limited to the location. As long as it is filled with one-time water, it can self-sufficient and continuous circulating water flow for long-term power generation, thereby achieving maximum use efficiency. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Description

循环水流渐縮管道动力发电系统
技术领域
本发明属于水力发电领域, 特别涉及一种循环水流渐缩管道动力发电系 统。
背景技术
现今全球主要的能源损耗主要是靠消耗大量石化能源来提供人类生活所 需, 虽然形成全世界经济文明的繁荣景像, 却也使全球二氧化碳排放量大幅 提升, 使得地球环境不利于生物生存。 而随着文明的脚步加快, 人类对于能 源的需求逐年增加, 使得地球暖化问题日益加剧, 严重影响人类生存。
另一项课题, 由于石化能源总有枯竭的一天, 而人类对于能源的需求却 不断上升, 若石化能源的来源中断, 不仅造成生活上的重大问题, 各国之间 也势必因为争夺能源而产生不断的冲突。
有鉴于此, 要完全解决人类经济成长与环境维护双赢的方法, 就是发展 新式绿色能源, 这也是目前全世界最重视的产业之一, 各国无不把发展绿色 能源当作国家建设的目标, 甚至是作为国家形象的指标。
论述当前的绿色能源, 主要有太阳能、 风能以及水力发电等。 太阳能由 于取得容易, 不受制于他国, 且存量充沛, 故为世界各国主力推展的目标。 然而, 太阳能的主要缺点在于效率太低, 要取得足够使用的太阳能, 必须铺 设大面积的太阳能板, 其资金、 场所并非任何国家都可以完成。 而风能虽然 效率较高, 但风力来源极不稳定, 加上其设备的成本相当高昂, 故只能做为 辅助性的补充电源, 而难以成为电力主要来源。
因此, 水力发电无疑是当前绿色能源中最有经济效益的。 其中最显而易 见的方式, 就是在河流中建立水坝, 将自然界的水源集中, 再以高低落差的 能量转换冲击发电机, 因而产生大量的电力来源。
然而, 并非任何一条河流都可进行水力发电, 对于水资源不足的国家, 其只能求助于其它能源。 而且建构水力发电厂必须有庞大的资金、 技术与时 间, 加上曰后的维修与汰换, 其成本相当可观。 最重要的是, 拦截水流对于 自然环境必有其一定的伤害, 必须慎重的进行, 否则形成的灾难将无人可以 负担。
为此, 发明人潜心进行研究, 提出一种新的水力发电技术, 其不受限于 地点, 通过循环水流依据流体力学驱动发电机发电, 经由长时间的研究与实 作, 终于完成本申请的循环水流渐缩管道动力发电系统。
发明内容
本发明的主要目的在于提供一种循环水流渐缩管道动力发电系统, 其使 用少量泵浦不断抽取尾水而形成循环水流, 并以渐缩管依据流体力学将管道 内的水流转变为高速度喷流, 再以该高速喷流驱动佩尔顿水轮机发电机组发 电, 利用少量水源作循环来使用于大规模的商业性发电系统中。
本发明的另一目的在于提供一种循环水流渐缩管道动力发电系统, 其不 受限于地点, 只要充满一次水量, 即可长时间自给自足不断的循环水流来进 行发电, 进而取得最大的使用效益。
可达成前述目的的循环水流渐缩管道动力发电系统, 使用少量泵浦电力 循环不断的抽吸 "驱动水轮机后落下的尾水", 将其上升到地面并进入一个水 槽及水平渐缩管与喷嘴, 被再次加压后, 由渐缩管依据流体力学连续性原理, 将管道内的水流转变为高速度喷流, 驱动佩尔顿水轮机发电机组, 可产生大 规模的商业性发电。 该循环水流渐缩管道动力发电系统主要包括: 一高速喷 流装置、 一佩尔顿水轮机发电机组、 一上抽尾水装置, 该高速喷流装置包括 一渐缩管, 其具有前端大直径管与后端喷嘴, 依据流体力学中的连续性原理, 可将其前端大直径管水流, 扩充其流速而形成后端小直径喷嘴的高速喷流, 利用该高速喷流装置制造的喷流, 驱动一佩尔顿水轮机发电机组发电; 而该 上抽尾水装置在该水轮机发电机组发电运转的同时, 使用一泵浦将水轮机下 方的尾水上抽到地面上, 持续不断供给渐缩管所需的水力; 再通过泵浦能量 克服渐缩管的阻力后, 产生喷流发电, 是可将少量水源作循环使用于发电的 设计系统。
附图说明
请参阅以下有关本发明一个较佳实施例的详细说明及其附图, 可进一步 了解本发明的技术内容及其目的功效; 有关该实施例的附图为
图 1 , 循环水流渐缩管道发电系统外型图;
图 2, 喷嘴组内部结构说明图;
图 3A, 尾水泵浦结构说明图;
图 3B, 加压泵浦结构说明图;
图 4, 泵浦总操控开关及仪器表图。
【主要组件符号说明】
10、 20、 30、 40: 喷嘴组
50: 水轮机 60: 发电机
70: 喷嘴组内部结构
1 : 尾水泵浦 2: 溢水管
3: 尾水道 4: 加压泵浦
5: 30° 渐缩管 6: 喷嘴
7: 温度控制室 8: 镇墩
9: 水轮机 10: 发电机
11 : 泄水室 12: 水平大直径管
13: 定压水槽 14: 机械室
31: 尾水泵浦总开关 32: 加压泵浦总开关
33: 仪表
具体实施方式
请参阅图 1至图 4所示, 循环水流渐縮管道动力发电系统(以下简称本系 统) 由一个至六个喷嘴与佩尔顿水轮机( Pelton wheel )发电机组组成。 本系 统的喷嘴定名为喷嘴组, 因其结构包括上抽尾水装置与高速喷嘴装置。
为便于说明 "高速喷流" 的产生, 特设计一种规格系统, 系统发电能量 为 130MW~180MW, 由四个喷嘴组 10、 20、 30及 40与中间水轮机 50、 发电机 组 60构成, 每个长条型喷嘴组 10、 20、 30及 40各距离 90。 并相对于正中央的 发电机组 60而呈一个大十字型, 而喷嘴组内部结构 70则如后说明。 一、 循环水流渐缩管道发电系统的结构
(一) 为便于说明水流速度与水量泵浦能量等动力产生的过程, 将设计 为最大发电量 (180MW ) 的运转状况作为范例说明。
(二)本系统喷嘴组的上抽尾水装置, 由 1.地下尾水道 3、 2.尾水泵浦 1 与吸水管、 3.定压水槽 13、 4.尾水泵浦总开关 31构成:
1.地下尾水道 3 , 为一条长 23m、 宽 4m、 深 6m的钢筋水泥方型有盖水道, 其内端连接佩尔顿水轮机室 9的泄水室 11, 最外端 9m长度的管壁向地面上延 展 3m高度, 形成两间房室。 其中一间为定压水槽 13, 其长度 4m, 宽度与尾水 道 3宽度同为 4m; 另一间为高压喷流装置的机械室 14, 其规格与定压水槽 13 相同。 两房室距离 lm, 地下尾水道 3内储水 2.3m深, 运转时部份水量上抽到 地面上后, 仍有约 2m深的水位, 又由于运转时有等量于上抽水量的尾水回落 到尾水道 3, 故 2m水位恒久不变。
2.尾水泵浦 1, 为一具能量为 1000KW立式轴流泵浦, 用于持续地上抽尾 水道 3内的尾水直至上升 6.46m (地面下尾水道水位 2m不计, 剩下的 4m为扬 程), 加上地面上定压水槽 13的 2.46m的水位高度, 故实际扬程为 4m+2.46m=6.46m。 尾水泵浦 1装在地下尾水道 32m水位中, 运转时每秒钟上 抽 6.8mVs的水量进入定压水槽 13 , 全系统四个喷嘴组 10、 20、 30及 40共四个 尾水泵浦 1由一个尾水泵浦总开关 31控制。
3.定压水槽 13, 为一个 3m高, 宽度均 4m的钢筋水泥水槽, 槽内主要有一 支进水管 (垂直尾水管的顶端出水口)及一支上大下小如漏斗型的溢水管 2, 其水位高度为 2.46m的高度, 将上抽 尾水除大部份流入高速喷流装置
(水量 6.33 3 /s ) 外, 少部份尾水 ( 0.47w 3 /s ) 则自溢水管 2溢流回落到尾水 道 3, 故定压水槽 13内水位, 恒久维持在 2.46m的高度, 故定名为定压水槽 13。 定压水槽 13前壁有一条直径为 lm的不锈钢管通连, 将水输送到高速喷流装 置, 由加压泵浦 4喷出。
4.系统内四个喷嘴组 10、 20、 30及 40共有四个尾水泵浦 1 , 统一由一个尾 水泵浦总开关 31操控, 开关有转钮及多种发电量刻度、 热机刻度、 停机刻度 等, 刻度的制作是依据生产阶段检测试车运转中显示两种泵浦的用电量刻制 等的仪表 32来完成。
(三)本系统喷嘴组的高速喷流装置, 由 1.一个机械室 14、 2.—条由水平 大直径管 12、 30° 渐缩管 5与喷嘴 6三种管道水平连接的渐缩管道、 3.—个加 压泵浦 4、 4.四个镇墩 8、 5.—个温度控制室 7所组成:
1.机械室 14, 规格与后方定压水槽 13相同, 为一幢高 3m, 长宽度均 4m钢 筋水泥房室, 与后方定压水槽 13相距 lm, 直径 lm的水平大直径管 12首端连接 定压水槽 13前壁,再进入机械室 14并作两个 45° 弯度再自机械室 14前壁穿出。 机械室 14主要容纳加压泵浦 4(一具能量 1800MW横式轴流泵)的管外电动机、 主轴、 轴承箱, 以及泵浦电气线路维修工具材料等。
2.渐缩管道, 为制造发电动力一高速喷嘴的装置, 由前段水平大直径管 12、 中段渐缩管 5、 后段喷嘴 6等三种管道连接而成:
( 1 )前段为水平大直径管 12, 其直径 lm, 长度 19m, 钢管的最前方与定 压水槽相接, 将定压水槽 13内的水引出再穿墙进入机械室 14作两个 45° 水平 弯管后, 自机械室 14前方延展 14m管长到水轮机室 9, 在第二个 45° 弯管部, 管内设置加压泵浦 4 (能量为 1800KW的横式轴流泵浦) 的转动翼, 以主轴连 接后方弯管外的轴承箱与电动机,其 14m管身之前 2m空间容纳加压泵浦 4的活 动翼, 后 12m空间用作 "入口区长度" 以形成 "完全发展流" (入口区长度须 为直径的十倍,本系统加 20%为 12倍的 12m ), 以便利中段 30° 渐缩管 5顺利将 轴向流速稳定不变水流转变为高速喷流。
( 2 ) 中段 30。 渐缩管 5, 其长度 1.375m, 前端直径 lm, 后端直径 0.25m, 前端连接水平大直径管 12的末端, 渐缩管后端连接直管式喷嘴 6, 其前后端直 径比例( 1111:0.25111 )为4:1。30° 渐缩管摩擦系数为 0.02(依据美国教授 Cengal Cimbala所著 FLUID MECHANIGS )。
( 3 )后段喷嘴 6, 为直管式喷嘴 6, 内部光滑平直未装设任何阀门, 其长 度为 0.75m, 直径为 0.25m。
3.加压泵浦 4:
( 1 ) 为一具横式轴流泵浦 (电动机能量 1800KW )装设在大直径管 12第 二个 45° 弯管部 (电动机及轴承箱在弯部管外, 转动翼在管内, 并以主轴相 连接)运转时, 对管内的水加压, 赋予水流充足的能量以 8.07M/S的流速向 30 ° 渐缩管前进并克服渐缩管摩擦阻力, 使水流转变为高速喷流。
( 2 ) 系统内四个喷嘴组 10、 20、 30及 40共有四个加压泵浦 4, 统由一个 加压泵浦总开关 32操控, 开关有转钮及显示多种发电量刻度、 热机刻度、 停 机刻度等的仪表 33。
4.镇墩 8, 在机械室 14与水轮机室 9之间的长度 14m的大直径管道 12, 由四 个钢筋水泥材质镇墩承荷, 管的中心线 (点)距地面 1.5m。
5.温度控制室 7, 在机械室 14与水轮机室 9之间的长度 14m的大直径管道 12, 由一个长条型隔热防冻建材制成的温度控制室 7 (寒冷地区加热力机)维 持管道在正常温度环境中。
(四) 活动式小型发电机:
本系统泵浦 (尾水泵浦及加压泵浦)使用电力的来源, 主要为本系统内 发电机组的发电动力, 但本系统初期启动时, 尚无法储蓄电力, 必须由其它 机组电力或小型发电机组提供泵浦所需的电力 (能量需为 10MW, 因全部泵 浦最大用电量为 8.2MW )。
(五)佩尔顿水轮机发电机组 10:
本系统所使用的佩尔顿水轮机发电机组 10为已知,故技术范围不作详述。 二、 循环水流渐缩管道发电系统的实施
本系统的发电运转过程区分为: (一)热机运转操作、 (二)正常发电运 转操作、 (三) 改换发电量运转操作、 (四)停机操作。
(一) 热机运转操作:
1、 正常发电运转前, 必须先作热机运转 (WARM-UP ), 其动作为先启 动四个上抽尾水泵浦, 将共享的电源开关转钮转到热机位置, 转动二十分钟, 各尾水泵浦以低速转动上抽少量尾水(约 50%~60% ) 到地面上固定水位水槽 并充满, 渐缩管道的三个管道约需时三十秒钟, 开始开启加压泵浦电源开关 到 "热机" 位置, 水流仅能自喷嘴涌出, 但不足驱动水轮机。
2、 此阶段中的二十分钟做全面检查, 如一切状况正常, 始可进入正常发 电运转阶段。
3、 此阶段使用本发电机组以外的电力, 如其它机组储电装置或小型发电 机的电力。
(二) 正常发电运转操作 (以发电 180MW的运转为例):
1、 启动四个喷嘴组内四个尾水泵浦:
(1 )上抽尾水量与泵浦使用电力计算:
A、 数据资料:
(A) 实际扬程: 地下 4m+地上 2.46m=6.46m;
(B)全部管路损失: 25%*6.46=1.62m;
( C) 吸水面与排水面压力与流速均相等;
(D) 总扬程 H=6.46m+1.62m=8.1m;
(E)流量: 喷嘴水量 (6.33m3/s) +溢水量 (0.47m3/s) =6.8 m3/s;
(F)水比重: 依温度 50° , 每/ 水重 1000kg计算;
(G)尾水泵浦效率: η=75%。
Β、 依公式每泵浦所需轴动力 (KW)为:
_ (r * m * H) _ 1000kg/m * 8.1m * 6.8m3/s)―
L = 102 X 77 二 102 X 75% = 720
C、 全系统四个尾水泵浦所用轴马力为 2880KW。
( 2 )尾水泵浦启动后, 上升尾水进入地面上的定压水槽及其所连接的渐 缩管道装置内 (自水平大直径管到喷嘴)均已充满尾水, 喷嘴出口需有缓慢 水流流出, 定压水槽内溢水孔高 2.46m, 进入水槽内水量为 6.8m3 /s, 其中 6.33m3 /s水量流入渐缩管道形成喷流, 所余的 0.47 3 /s水量, 则自溢水孔道流 回尾水道,使水槽内水位永久维持 2.46m高度,其高于大直径管(在机械室内) 所作两个 45° 弯管的阻力,使定压水槽与所连接的大直径水管 ---0.96m所形成 的压力, 是用于抵消大直径管 (在机械室内的部份)所受两个 45° 弯管的阻 力, 使定压水槽与大直径水管之间呈现无压力状态, 相关数据的计算如下: 数据资料:
(A) 两个 45° 弯管摩擦损失的直管相等长度 L=2*16=32m; (B)不锈钢管相对粗糙度 e/D=0.000007/3.281ft=0.0000022;
(C)不锈钢管摩擦系数 fN).009;
(D)流速: 8.07m/s。
依公式: 两个 45° 弯管摩擦水头损失
L V2 32 (8.07m/s)2
hL =f*-*— = 0.009 *— * —^- = 0.96m
L 1 Ό Zg 1 Zg 因此, 定压水槽高于水平大直径管(中心线)的 0.96m来抵销两个 45° 弯 管的水头损失 ( 0.96m )。
2、 启动四个喷嘴组内四个加压泵浦:
( 1 )尾水泵浦启动的同时, 启动四个喷嘴组中的四个加压泵浦, 每个泵 浦各用 1330KW能量对管内尾水加压,使之形成强有力的水流,在大直径管内 进行两项动作:
①第一动作, 水流以 8.07m/s流速流过 14m长的入口区长度, 转变为轴间 速度稳定的完全发展流, 进入 30° 渐缩管, 此项动作所需加压泵浦的能量为 275KW, 计算如下:
数据资料:
( A )流速( ) =8.07m/s;
(B)流量 (Q) =A*V= ( π/4*Όι2)
Figure imgf000010_0001
(C)速度落差 (H) =V2/2g= ( 8.07m/s ) 2/2g=3.319m=3.32m;
(D)水比重 (V) =1000kg/w 3 (水温度 50° 时);
(E) 泵浦效率 ( η ) =75%。
依公式:
(r * m * H) (lOOOfc^ /m * 6.33m * 3.3Zm^/s)
L =—Tr = n -g0/ = 275KW
102 * η 102 * 75% 四个加压泵浦共享电力 =4*275KW= 1100KW。
②第二动作:
水流进入 30° 渐缩管后再以 1055KW能量克服 30° 渐缩管摩擦阻力,使 30 ° 渐缩管依据其大小端直径 4:1的比例 (大端 lm, 小端 0.25m)及连续性原理 将水流转变为高速喷流, 此项动作所需加压泵浦的能量计算如下:
数据资料:
(A)水平大直径管水流流速(V,) =8.07m/s;
(B) 预定 30° 渐缩管转变为高速喷流
Figure imgf000011_0001
(C) 30°渐缩管摩擦阻力系数 (f) =0.02;
(D) 30°渐缩管摩擦阻力形成的水头损失 hl^f* (V2) 2/2g=17m。
依公式:
Wpumping - M * Q * hL - 6.33
Figure imgf000011_0002
* 9.81m/s7 * 17m - 1054578V - 1055/fW 四个加压泵浦共享电力 =4* 1055KW=4220KW。
(2)四个加压泵浦作两项工作,使水流转变为 129.12m/s高速喷流所用总 电力 4220KW+1100KW=5320KW。
3、 全系统四个尾水泵浦、 四个加压泵浦所用总电力占发电量百分比: 四个尾水泵浦所用电力为 2880KW;
四个加压泵浦所用电力为 5320KW;
泵浦所需总电力:
2880KW+5320KW=8200KW=8.2MW;
泵浦所用总电力占发电量(180MW) 比例为 4.6% ...... (理论数据)。
4、 高速喷流通过直管式喷嘴:
A、 高速喷流进入喷嘴能量计算:
基本数据(V2) 2= ( 129.12m/s) 2=16771.97m/s
M=W/g=6330kg/ (9.81m/s2) =645.2kgf
依动能公式:
KE = -*M* (V2)2 = 5410973(fe5 * f* m/s) = 53828XW
B、 直管式喷嘴效率计算:
现用针阀式喷嘴 (内部装设有调控喷流速度的针阀装置, 如现今世界上 最高喷速 192m/s的佩尔顿水轮机发电厂一瑞士 BIEUDRON电厂使用的喷嘴) 的喷嘴效率依公式 η =Εν2为 0.90至 0.95的范围。本系统所使用喷嘴为内部未装 任何阀门的直管式, 以 0.95计算其效率 (喷嘴损失 5% )。
所以 , 53824KW*0.05=2692KW〜喷嘴损失 5%能量
53824KW-2692KW=51131KW…喷嘴喷流驱动水轮机能量。
5、 发电机组发电量计算:
发电机组综合效率 =88.2% (大型水轮机效率 90%*大型发电机效率 98%=88.2% )。
发电机组发电量 =51131KW*88.2%=45097KW…单一喷嘴发电量。
45097KW*4喷嘴 =180,388KW=180MW…全机组四个喷嘴发电量。
6.精密微调动作
加压泵浦操控开关转动到 180MW刻度后, 继续依据仪表板显示的 "发电 输出功率数字" 微调到 "180 000 000W" 为止, 微调时同时转动尾水泵浦开 关指针, 使其与加压开关指针指到相同数字刻度上, 使上抽尾水量与加压泵 浦压力量维持在相匹配的数量 (其理由是加压泵浦以高转速驱动高水量时, 尾水泵浦也必须抽较高数量尾水来相配合)。 当发电量输出功率显示在 " 180 000 000W" 时, 则停止两种泵浦微调动作, 使两泵浦在该刻度的位置, 作长 时间的运转, 直至需改换发电量或停机时为止。 定时器也开始计算该发电量 运转时间。
(三) 改换发电量运转操作:
自正常发电运转状况改换发电量时, 无论发电量是增加或减少, 操作动 作均为:
1.同时转动加压泵浦与抽尾水泵浦的两个电源开关到新发电量刻度上。
2.立即依据仪表板上发电输出功率显示数字, 作必要的精密微调。
3.精密微调后, 重新将定时器归零始计时。 (上条正常发电运转是以本系 统最大发电量 180MW为例, 已说明水流及能量的计算, 其它较小发电量的水 流及能量计算, 在此不再赘述)。
(四)停机操作:
同时将两个泵浦电源开关转到 "热机" 位置并缓慢转动十分钟后, 再转 到 "0" 位置, 完全停止泵浦运转及发电机组运转, 并记录发电机发电时数。 上述详细说明是针对本发明之一的可行实施例的具体说明, 该实施例并 非用以限制本发明的专利范围, 凡未脱离本发明技技术思想所得到的等效实 施或变更, 均应包含于本案的保护范围中。
工业实用性
本发明使用少量泵浦不断抽取尾水而形成循环水流, 并以渐缩管依据流 体力学将管道内的水流转变为高速度喷流, 再以该高速喷流驱动佩尔顿水轮 机发电机组发电,利用少量水源作循环来使用于大规模的商业性发电系统中, 并且其不受限于地点, 只要充满一次水量, 即可长时间自给自足不断的循环 水流来进行发电, 进而取得最大的使用效益。

Claims

权 利 要 求
1、 一种循环水流渐缩管道动力发电系统, 其特征在于,
一喷嘴组装置, 包括有一组渐缩管道, 所述渐缩管道由前端大直径管、 中间 30° 渐缩管、 后端小直径喷嘴连接而成; 前端大直径管内装有一横式轴 流泵浦, 所述轴流泵浦转动时提供管内水流足够能量, 克服中间 30° 渐缩管 阻力情形下, 所述渐缩管可依据流体力学中的连续性原理, 扩充前端大直径 管内水流的流速, 形成后端小直径喷嘴的高速喷流;
一佩尔顿水轮机发电机组, 利用前述喷流, 驱动所述佩尔顿水轮机发电 机组发电; 以及
一上抽尾水循环水流装置, 将该水轮机下方的尾水上抽到地面上, 循环 不断供给所述渐缩管道所需的水力。
2、 如权利要求 1所述的循环水流渐缩管道动力发电系统, 其特征在于, 所述上抽尾水循环水流装置, 其所包括的水轮机室地下尾水池为封闭式使尾 水不外流, 其落下的尾水循着与尾水池连接的尾水道分流到各喷嘴组地下下 方, 由一尾水泵浦持续将正确数量的尾水上抽到地面上的渐缩管道内, 循环 不断供给所述渐缩管道制造喷流所需的水力。
PCT/CN2011/000503 2011-03-25 2011-03-25 循环水流渐缩管道动力发电系统 WO2012129717A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/000503 WO2012129717A1 (zh) 2011-03-25 2011-03-25 循环水流渐缩管道动力发电系统
CN2011800450031A CN103180604A (zh) 2011-03-25 2011-03-25 循环水流渐缩管道动力发电系统
US13/824,937 US20140020360A1 (en) 2011-03-25 2011-03-25 Power generation system utilizing circulatory water flow in taper conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000503 WO2012129717A1 (zh) 2011-03-25 2011-03-25 循环水流渐缩管道动力发电系统

Publications (1)

Publication Number Publication Date
WO2012129717A1 true WO2012129717A1 (zh) 2012-10-04

Family

ID=46929276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000503 WO2012129717A1 (zh) 2011-03-25 2011-03-25 循环水流渐缩管道动力发电系统

Country Status (3)

Country Link
US (1) US20140020360A1 (zh)
CN (1) CN103180604A (zh)
WO (1) WO2012129717A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088742A1 (en) * 2013-12-09 2015-06-18 Sims Joel D Electrical generator
CN109502777A (zh) * 2018-12-18 2019-03-22 广东新大禹环境科技股份有限公司 一种高效射流曝气器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240878A (ja) * 1984-05-15 1985-11-29 Haruo Shimura 水力発電装置
JPH04271247A (ja) * 1990-09-22 1992-09-28 Kiyotatsu Fukai 揚水発電所
CA2324667A1 (fr) * 2000-10-23 2002-04-23 Nabil H. Frangie Machine hydroelectrique
CN2492001Y (zh) * 2001-05-16 2002-05-15 崔自力 水力自动增压装置水力磁电机
CN101082321A (zh) * 2006-05-31 2007-12-05 徐圣科 循环水增力发电
WO2007148343A2 (en) * 2006-06-23 2007-12-27 Kedia, Sushil Hydraulic power driven machine and generator
CN201144758Y (zh) * 2008-01-04 2008-11-05 徐王杰 循环水发电机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051892A (en) * 1998-07-13 2000-04-18 Toal, Sr.; Timothy Michael Hydroelectric power system
WO2003062635A1 (fr) * 2002-01-21 2003-07-31 Nabil Frangie Machine hydroelectrique
US20090255244A1 (en) * 2008-04-14 2009-10-15 Saeed Moflihi Continuous fluid circuit electricity generating system
WO2012014232A2 (en) * 2010-07-30 2012-02-02 K R Balasubramanya Non-conventional source for power production using stagnant water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240878A (ja) * 1984-05-15 1985-11-29 Haruo Shimura 水力発電装置
JPH04271247A (ja) * 1990-09-22 1992-09-28 Kiyotatsu Fukai 揚水発電所
CA2324667A1 (fr) * 2000-10-23 2002-04-23 Nabil H. Frangie Machine hydroelectrique
CN2492001Y (zh) * 2001-05-16 2002-05-15 崔自力 水力自动增压装置水力磁电机
CN101082321A (zh) * 2006-05-31 2007-12-05 徐圣科 循环水增力发电
WO2007148343A2 (en) * 2006-06-23 2007-12-27 Kedia, Sushil Hydraulic power driven machine and generator
CN201144758Y (zh) * 2008-01-04 2008-11-05 徐王杰 循环水发电机组

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088742A1 (en) * 2013-12-09 2015-06-18 Sims Joel D Electrical generator
GB2535120A (en) * 2013-12-09 2016-08-10 D Sims Joel Electrical generator
CN109502777A (zh) * 2018-12-18 2019-03-22 广东新大禹环境科技股份有限公司 一种高效射流曝气器
CN109502777B (zh) * 2018-12-18 2021-08-03 广东新大禹环境科技股份有限公司 一种高效射流曝气器

Also Published As

Publication number Publication date
CN103180604A (zh) 2013-06-26
US20140020360A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
CN104100450A (zh) 简易水力发电装置
Morabito et al. Set-up of a pump as turbine use in micro-pumped hydro energy storage: a case of study in Froyennes Belgium
WO2012129717A1 (zh) 循环水流渐缩管道动力发电系统
CN102590480B (zh) 土工离心机试验舱的喷淋水幕式冷却装置
Arifin et al. The Design and Fabrication of Waterwheels with System Floating Pontoon
Lv et al. Performance investigations of a control valve with the function of energy harvesting
Singal Hydraulic Machines: Fluid Machinery
Keisar et al. High pressure vertical axis wind pump
CN106762358A (zh) 利用循环水高效发电的方法
CN206957862U (zh) 一种明轮式水力发电装置
CN103925141A (zh) 无限循环水力发电的方法与设备
CN111396234A (zh) 循环水动力发电
CN105221326B (zh) 一种利用高压气体的水力式发电系统
CN201401267Y (zh) 虹吸式流体动力装置
CN101706181A (zh) 一种地源热泵
CN105179145A (zh) 一种带适航调节装置的竖轴潮流能水轮机组
CN205503349U (zh) 综合水力发电系统
RU2520336C1 (ru) Бесплотинная погружная модульная универсальная береговая гидроэлектростанция и энергетический комплекс, состоящий из нескольких модульных гидроэлектростанций, объединенных общей платформой
CN202391656U (zh) 用于风塔发电站的风道井
CN203097835U (zh) 一种风力抽油系统
CN202811227U (zh) 风力发电用流体增速管道
CN203822393U (zh) 一种空气发电机组
RU2532823C2 (ru) Гидроэнергетическая установка
Chen et al. Experimental and on-site investigation of the in-line vertical axis water turbines for water pipelines
CN101328862A (zh) 一种风、水、气发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13824937

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11862581

Country of ref document: EP

Kind code of ref document: A1