WO2012128415A1 - Digital x-ray image detection device having partition block formed therein, and production method therefor - Google Patents

Digital x-ray image detection device having partition block formed therein, and production method therefor Download PDF

Info

Publication number
WO2012128415A1
WO2012128415A1 PCT/KR2011/002512 KR2011002512W WO2012128415A1 WO 2012128415 A1 WO2012128415 A1 WO 2012128415A1 KR 2011002512 W KR2011002512 W KR 2011002512W WO 2012128415 A1 WO2012128415 A1 WO 2012128415A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoconductive layer
digital
ray image
photoconductive
pixel
Prior art date
Application number
PCT/KR2011/002512
Other languages
French (fr)
Korean (ko)
Inventor
이재동
김규태
김중석
고병훈
문범진
윤정기
Original Assignee
(주)디알텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디알텍 filed Critical (주)디알텍
Publication of WO2012128415A1 publication Critical patent/WO2012128415A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14696The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe

Definitions

  • Digital X-ray image detection apparatuses can be classified into indirect methods and direct methods, and direct detection devices are receiving more attention in terms of image resolution and detection accuracy.
  • the direct type detection device depends on the solid state electronics and the signal processing method of the photoconductive material.
  • the photoconductive material may be a material having an amorphous structure such as amorphous selenium or a material having a crystalline structure such as cadmium telluride (CdTe).
  • amorphous selenium or a material having a crystalline structure such as cadmium telluride (CdTe).
  • CdTe cadmium telluride
  • photoconductive materials having a crystalline structure, particularly cadmium telluride are physically damaged by the crystalline structure.
  • cadmium telluride is a polycrystalline substance, and when a thick film is grown in a large area, cracks may occur and it may lose its function as a device.
  • a large area detection device cannot be manufactured, and a detection device is manufactured by connecting a small area or a tile type. If the detection device is made with a small area and connected like a tile, a gap is generated between the tile and the tile, and if the image blank in this part is large, the reliability of the image is lost.
  • fabrication of the device by small area, connecting each tile, and bump bonding with a semiconductor circuit for processing an image signal requires an additional process.
  • the X-ray detection apparatus composed of a photoresist having a low resistivity may significantly reduce the MTF (modulation transfer function) related to image resolution due to lateral conductance.
  • a device for manufacturing a digital X-ray image and a method of manufacturing the same are proposed.
  • a digital X-ray image detecting apparatus includes an optical conductive layer that converts X-rays into an electrical signal, a partition wall that separates the optical conductive layer by pixels, and an image processor that detects electrical signals converted from the photoconductive layer and generates an X-ray image. It includes.
  • the photoconductive layer may be deposited in a pixel unit separated by a partition wall.
  • the photoconductive layer includes a photoconductive material, and the photoconductive material includes ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd 1-x Zn x Te (CZT), PbO, PbI 2 and HgI 2 having a crystal structure. It can be either.
  • FIG. 1 is a reference diagram for explaining the influence of side conductance in a general X-ray detecting apparatus
  • FIG 3 is a cross-sectional view of an array device of a digital X-ray image detecting apparatus according to an embodiment of the present invention.
  • an array element of the digital X-ray image detecting apparatus 3 is stacked on a glass substrate 30, a thin film transistor (TFT) 31 stacked on the glass substrate 30, and a TFT on the TFT.
  • the photoconductor layer 32, and the top electrode 35 stacked on the photoconductor layer 32 are sequentially deposited.
  • the photoconductive layer 32 is deposited on a pixel unit separated by a partition block 33.
  • the partition 33 surrounds a pixel electrode 34 for each pixel.
  • the method further includes polishing the barrier wall and the photoconductive layer to have a uniform height. An embodiment thereof will be described later with reference to FIG. 9.
  • the method may further include applying an interstitial layer on the pixel electrode to form an ohmic contact between the photoconductive layer surrounded by the partition and the pixel electrode. . An embodiment thereof will be described later with reference to FIG. 10.
  • a large-area digital X-ray image detection device can be easily manufactured. That is, as the photoconductive material is deposited in the pixelated space by using the partition wall, an additional process such as bump bonding or subsequent attaching tiles may be reduced and the additional cost thereof may be simplified, thereby simplifying the process. Furthermore, when the photoconductive material having a crystal structure is deposited in a large area, cracks may be prevented, lateral conductance may be reduced, and MTF may be increased.
  • a pixel array 80 is pixelated in a pixel unit 800 by a partition wall, and a photoconductive layer is deposited on each pixel unit 800.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Medical Informatics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Disclosed are a digital X-ray image detection device having a partition block formed therein, and a production method therefor. According to one embodiment of the present invention, the digital X-ray image detection device comprises: a photoconductive layer for converting X-rays into electrical signals; a partition block for separating the photoconductive layer into pixel units; and an image processing unit for generating X-ray images upon detecting electrical signals obtained by the conversion in the photoconductive layer. Consequently, a photoconductive substance having a crystal structure can be vapour deposited over a large area, and a large-diameter digital X-ray image detecting device can easily be obtained.

Description

격벽이 형성된 디지털 엑스선 영상 검출장치 및 그 제조방법Digital X-ray image detection device having a partition and a manufacturing method thereof
본 발명의 일 양상은 진단 의료영상 기술에 관한 것으로, 보다 상세하게는 디지털 엑스선 영상 검출기술에 관한 것이다.One aspect of the present invention relates to a diagnostic medical imaging technology, and more particularly to a digital X-ray image detection technology.
디지털 엑스선 영상 검출장치(Digital X-ray image detector)는 인체 또는 물체를 투과한 엑스선(X-ray)과 같은 방사선을 필름 없이 전기적으로 검출하여 영상정보를 획득하는 장치이다. 즉, 방사선을 조사(照射)하여 얻어진 영상정보를 전기적 신호로 변환하고 이를 검출함으로써, 인체의 골격이나 장기의 이상 여부 또는 물체의 균열 등을 확인할 수 있다.A digital X-ray image detector is an apparatus that electrically detects radiation such as X-rays transmitted through a human body or an object without a film and acquires image information. That is, by converting the image information obtained by irradiating radiation into an electrical signal and detecting it, it is possible to check whether there is an abnormality in the skeleton or organ of the human body or an object crack.
디지털 엑스선 영상 검출장치는 간접방식과 직접방식으로 분류될 수 있는데, 직접방식의 검출장치가 영상의 해상도 및 검출 정확도 측면에서 더욱 각광을 받고 있다. 직접방식의 검출장치는 광 도전물질의 물성(solidstate electronics)과 신호처리 방식에 의해 성능이 좌우된다.Digital X-ray image detection apparatuses can be classified into indirect methods and direct methods, and direct detection devices are receiving more attention in terms of image resolution and detection accuracy. The direct type detection device depends on the solid state electronics and the signal processing method of the photoconductive material.
광 도전물질은 비정질 셀레늄(amorphous selenium) 등의 비결정성 구조를 갖는 물질 또는 카드뮴 텔루라이드(CdTe) 등의 결정성 구조를 갖는 물질일 수 있다. 그런데, 결정성 구조를 갖는 광 도전물질, 특히 카드뮴 텔루라이드의 경우 결정성 구조에 의해 물리적으로 손상되기 쉽다. 또한, 카드뮴 텔루라이드는 다결정 물질(polycrystalline substance)로서 대면적으로 후막 성장을 하는 경우 크랙(crack)이 발생하고 소자로서의 기능을 상실할 수도 있다.The photoconductive material may be a material having an amorphous structure such as amorphous selenium or a material having a crystalline structure such as cadmium telluride (CdTe). However, photoconductive materials having a crystalline structure, particularly cadmium telluride, are physically damaged by the crystalline structure. In addition, cadmium telluride is a polycrystalline substance, and when a thick film is grown in a large area, cracks may occur and it may lose its function as a device.
전술한 이유로 넓은 면적의 검출장치를 제작하지 못하고 소면적 또는 타일 형식으로 연결하여 검출장치를 제작하고 있다. 소면적으로 검출소자를 제작하고 타일처럼 연결하는 경우 타일과 타일 사이에 빈 틈이 발생하게 되며, 이 부분의 이미지 공백이 큰 경우 이미지에 대한 신뢰성을 잃게 된다. 또한 소면적으로 소자를 제작하여 각각의 타일을 연결하고 영상신호 처리를 위한 반도체 회로와 범프 결합(bump bonding)을 하는 것은 추가적인 공정이 요구된다. 나아가, 비저항이 낮은 광 도전물질로 구성되는 엑스선 검출장치는 측면 컨덕턴스(lateral conductance)에 의해 영상 해상도와 관련된 MTF(modulation transfer function)가 크게 떨어질 수 있다.For this reason, a large area detection device cannot be manufactured, and a detection device is manufactured by connecting a small area or a tile type. If the detection device is made with a small area and connected like a tile, a gap is generated between the tile and the tile, and if the image blank in this part is large, the reliability of the image is lost. In addition, fabrication of the device by small area, connecting each tile, and bump bonding with a semiconductor circuit for processing an image signal requires an additional process. In addition, the X-ray detection apparatus composed of a photoresist having a low resistivity may significantly reduce the MTF (modulation transfer function) related to image resolution due to lateral conductance.
일 양상에 따라, 대면적화가 용이한 디지털 엑스선 영상 검출장치 및 그 제조방법을 제안한다.According to one aspect, a device for manufacturing a digital X-ray image and a method of manufacturing the same are proposed.
일 양상에 따른 디지털 엑스선 영상 검출장치는, 엑스선을 전기적 신호로 변환하는 광도전층과, 광도전층을 픽셀단위로 분리시키는 격벽과, 광도전층에서 변환된 전기적 신호를 검출하여 엑스선 영상을 생성하는 영상 처리부를 포함한다.According to an aspect of an exemplary embodiment, a digital X-ray image detecting apparatus includes an optical conductive layer that converts X-rays into an electrical signal, a partition wall that separates the optical conductive layer by pixels, and an image processor that detects electrical signals converted from the photoconductive layer and generates an X-ray image. It includes.
광도전층은 격벽으로 분리된 픽셀단위에 증착된 형태일 수 있다. 광 도전층은 광 도전물질을 포함하며, 광 도전물질은 결정구조를 갖는 ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd1-xZnxTe(CZT), PbO, PbI2 및 HgI2 중 어느 하나일 수 있다.The photoconductive layer may be deposited in a pixel unit separated by a partition wall. The photoconductive layer includes a photoconductive material, and the photoconductive material includes ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd 1-x Zn x Te (CZT), PbO, PbI 2 and HgI 2 having a crystal structure. It can be either.
격벽은 광도전층에서 생성된 정공을 끌어들이는 픽셀전극들을 분리시켜 픽셀전극에서 측면 컨덕턴스로 인해 발생하는 노이즈를 제거할 수 있다. 격벽의 높이는 100~200μm이고, 폭은 10~20μm일 수 있다.The barrier ribs may separate pixel electrodes drawing holes generated in the photoconductive layer to remove noise generated by side conductance in the pixel electrode. The partition may have a height of 100-200 μm and a width of 10-20 μm.
다른 양상에 따른 디지털 엑스선 검출장치 제조방법은 픽셀 어레이에 픽셀단위로 격벽이 마련되는 단계와, 격벽으로 분리된 픽셀단위에 광도전층이 증착되는 단계와, 광도전층에 상부전극이 증착되는 단계를 포함한다.According to another aspect of the present invention, a method of fabricating a digital X-ray detecting apparatus includes: forming a partition on a pixel array in a pixel unit, depositing a photoconductive layer on a pixel unit separated by the partition, and depositing an upper electrode on the photoconductive layer. do.
추가 양상에 따르면 격벽과 광도전층의 높이를 일정하게 맞추도록 연마되는 단계를 더 포함한다. 나아가, 격벽에 의해 둘러싸인 광도전층과 픽셀전극 간 옴 접촉을 형성하기 위한 인터스티셜 층이 픽셀전극 상부에 도포되는 단계를 더 포함할 수 있다.According to a further aspect, the method further includes grinding to uniformly adjust the height of the partition wall and the photoconductive layer. Furthermore, the method may further include applying an interstitial layer on the pixel electrode to form an ohmic contact between the photoconductive layer surrounded by the partition and the pixel electrode.
일 실시예에 따르면, 격벽을 이용하여 픽셀화된 공간 안에 광 도전물질이 증착됨에 따라 광 도전물질 중 결정구조를 갖는 물질을 대면적으로 증착하는 경우 크랙(crack)이 발생하는 현상을 방지할 수 있다. 또한, TFT 구조는 대면적화가 용이하기 때문에 대면적의 엑스선 검출장치를 쉽게 구현할 수 있고 응용범위도 넓어질 수 있다. According to an embodiment, as the photoconductive material is deposited in the pixelated space by using the partition wall, cracks may be prevented when the material having the crystal structure among the photoconductive materials is largely deposited. have. In addition, since the TFT structure has a large area, it is easy to implement a large-area X-ray detection device and the application range can be widened.
나아가, 대면적의 엑스선 검출장치를 구현할 때 공정을 간소화하여 범프 결합(bump bonding)이나 타일을 이어서 붙이는 등의 추가적인 공정 및 이에 대한 추가비용을 줄일 수 있다. 나아가, 픽셀단위에 광도전층을 증착함으로써 광도전층을 고립화(isolation)하여 MTF를 효과적으로 높일 수 있다.Furthermore, when implementing a large-area X-ray detection apparatus, it is possible to simplify the process and further reduce the additional process such as bump bonding or tile joining, and the additional cost thereof. Further, by depositing the photoconductive layer on a pixel basis, the MTF can be effectively increased by isolating the photoconductive layer.
도 1은 일반적인 엑스선 검출장치에서의 측면 컨덕턴스 영향을 설명하기 위한 참조도,1 is a reference diagram for explaining the influence of side conductance in a general X-ray detecting apparatus;
도 2는 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치의 구성도,2 is a configuration diagram of a digital X-ray image detecting apparatus according to an embodiment of the present invention;
도 3은 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치의 어레이 소자의 단면도,3 is a cross-sectional view of an array element of a digital x-ray image detecting apparatus according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 TFT 구조를 도시한 참조도,4 is a reference diagram showing a TFT structure according to an embodiment of the present invention;
도 5는 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치의 엑스선 영상 검출원리를 설명하기 위한 참조도,5 is a reference diagram for explaining the principle of X-ray image detection of a digital X-ray image detecting apparatus according to an embodiment of the present invention;
도 6은 본 발명의 디지털 엑스선 영상 검출장치에서의 측면 컨덕턴스 영향을 설명하기 위한 참조도,6 is a reference diagram for explaining the effect of side conductance in the digital X-ray image detecting apparatus of the present invention;
도 7은 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치 제조방법을 도시한 흐름도,7 is a flowchart illustrating a method of manufacturing a digital x-ray image detecting apparatus according to an embodiment of the present invention;
도 8은 본 발명의 일 실시예에 따라 격벽을 이용하여 픽셀화된 공간 안에 광 도전물질이 증착되는 픽셀 어레이를 도시한 참조도,8 is a reference diagram illustrating a pixel array in which a photoconductive material is deposited in a pixelated space using a partition wall according to an embodiment of the present invention;
도 9a 및 도 9b는 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치 제조 프로세스를 도시한 흐름도,9A and 9B are flowcharts illustrating a manufacturing process of a digital X-ray image detecting apparatus according to an embodiment of the present invention;
도 10은 본 발명의 추가 실시예에 따른 디지털 엑스선 영상 검출장치 제조 프로세스를 도시한 흐름도이다.10 is a flowchart illustrating a process of manufacturing a digital x-ray image detecting apparatus according to a further embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In the following description of the present invention, if it is determined that detailed descriptions of related well-known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
도 1은 일반적인 엑스선 검출장치에서의 측면 컨덕턴스 영향을 설명하기 위한 참조도이다.1 is a reference diagram for explaining the influence of side conductance in a general X-ray detecting apparatus.
도 1을 참조하면, 엑스선 검출장치의 상부전극(10)에 고전압(high voltage)이 인가되고 광도전층(photoconductor layer)(14)의 광 도전물질이 엑스선(X-ray)과 반응하면 광전 변환되어 이온화 현상이 일어나 정공과 전자를 생성한다. 광도전층(14)의 전자들은 상부전극(10) 쪽으로 이동하고, 정공들은 픽셀전극(12)으로 밀려나게 된다. 이때, 픽셀전극(12)에서 측면 컨덕턴스(lateral conductance)로 인해 발생하는 노이즈에 의해 전기장(E)과 관계없이 수송 전하(charge carrier)가 좌우로 이동(100,102)하게 되어 전류가 발생한다. 이 경우 영상의 해상도와 관련된 MTF(modulation transfer function)가 크게 떨어지게 된다.Referring to FIG. 1, when a high voltage is applied to the upper electrode 10 of the X-ray detecting apparatus and the photoconductive material of the photoconductor layer 14 reacts with X-rays, photoelectric conversion is performed. Ionization occurs to produce holes and electrons. Electrons of the photoconductive layer 14 move toward the upper electrode 10, and holes are pushed to the pixel electrode 12. At this time, due to noise generated by the lateral conductance in the pixel electrode 12, the charge carriers move to the left and right (100, 102) regardless of the electric field E, thereby generating a current. In this case, the MTF (modulation transfer function) related to the resolution of the image is greatly reduced.
도 2는 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치의 구성도이다.2 is a block diagram of a digital X-ray image detecting apparatus according to an embodiment of the present invention.
도 2를 참조하면, 피사체를 향해 조사된 엑스선(X-ray)을 전기적 신호로 변환하는 광도전층(photoconductor layer)은 픽셀 어레이(pixel array) 상의 픽셀단위(pixel unit)(21) 별로 분리된다. 본 발명은 광도전층의 픽셀단위(21) 별 분리시 격벽(partition block)을 이용한다. 격벽에 대해서는 도 3에서 후술한다. 광도전층은 각 픽셀단위(21)의 상부에 증착되며, 각 픽셀단위(21)는 박막 트랜지스터(Thin Film Transistor,TFT)(22)와 캐패시터(signal storage capacitor)(24)를 포함한다.Referring to FIG. 2, a photoconductor layer that converts X-rays irradiated toward a subject into an electrical signal is separated for each pixel unit 21 on a pixel array. In the present invention, a partition block is used to separate the pixel units 21 of the photoconductive layer. The partition wall will be described later with reference to FIG. 3. The photoconductive layer is deposited on top of each pixel unit 21, and each pixel unit 21 includes a thin film transistor (TFT) 22 and a capacitor (signal storage capacitor) 24.
영상 처리부(20,26,28)는 광도전층에서 변환된 전기적 신호를 검출하고 이를 디지털 이미지화하여 디지털 엑스선 영상을 생성한다. 구체적으로, 멀티플렉서(multiplexer)(26)는 입력된 신호를 다중화하고, 디지타이저(digitizer)(28)는 입력된 신호를 디지털화하여 이를 컴퓨터에 입력한다. 스캐닝 제어부(scanning controller)(20)는 이미지를 디지털 처리하고 이를 표시 장치(display device)에서 표시하도록 제어한다.The image processor 20, 26, 28 detects the electrical signal converted in the photoconductive layer and digitally generates the digital X-ray image. Specifically, the multiplexer 26 multiplexes the input signal, and the digitizer 28 digitizes the input signal and inputs it to the computer. The scanning controller 20 controls the digital processing of the image and displays it on a display device.
도 3은 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치의 어레이 소자의 단면도이다.3 is a cross-sectional view of an array device of a digital X-ray image detecting apparatus according to an embodiment of the present invention.
도 3을 참조하면, 디지털 엑스선 영상 검출장치(3)의 어레이 소자는 유리기판(glass substrate)(30), 유리기판(30) 상부에 적층되는 박막 트랜지스터(TFT)(31), TFT 상부에 적층되는 광도전층(photoconductor layer)(32), 광도전층(32) 상부에 적층되는 상부전극(top electrode)(35)을 차례로 증착한 형태이다. 그리고, 광도전층(32)은 격벽(partition block)(33)에 의해 분리된 픽셀단위 상에 증착된다. 격벽(33)은 픽셀 별 픽셀전극(pixel electrode)(34)을 둘러싼다.Referring to FIG. 3, an array element of the digital X-ray image detecting apparatus 3 is stacked on a glass substrate 30, a thin film transistor (TFT) 31 stacked on the glass substrate 30, and a TFT on the TFT. The photoconductor layer 32, and the top electrode 35 stacked on the photoconductor layer 32 are sequentially deposited. The photoconductive layer 32 is deposited on a pixel unit separated by a partition block 33. The partition 33 surrounds a pixel electrode 34 for each pixel.
광도전층(32)은 광 도전물질을 포함하는데, 일 실시예에 따른 광 도전물질은 결정구조를 갖는다. 결정구조를 갖는 광 도전물질은 ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd1-xZnxTe(CZT), PbO, PbI2 및 HgI2 중 어느 하나일 수 있으나 이에 한정되지 않는다.The photoconductive layer 32 includes a photoconductive material. The photoconductive material according to the embodiment has a crystal structure. The photoconductive material having a crystal structure may be any one of ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd 1-x Zn x Te (CZT), PbO, PbI 2, and HgI 2 , but is not limited thereto.
본 발명은 격벽(33)을 이용하여 픽셀화된 공간 안에 광 도전물질을 증착한다. 이에 따라 광 도전물질 중 결정구조를 갖는 물질을 대면적으로 증착하는 경우 크랙(crack)이 발생하는 현상을 방지할 수 있다. 또한, TFT 구조는 대면적화가 용이하기 때문에 대면적의 엑스선 검출장치를 쉽게 구현할 수 있고 응용범위도 넓어질 수 있다. 나아가, 대면적의 엑스선 검출장치를 구현할 때 공정을 간소화하여 범프 결합(bump bonding)이나 타일을 이어서 붙이는 등의 추가적인 공정 및 이에 대한 추가비용을 줄일 수 있다. 나아가, 픽셀단위에 광도전층을 증착함으로써 광도전층을 고립화(isolation)하여 측면 컨덕턴스(lateral conductance) 현상을 방지하여 영상의 해상도와 관련된 MTF(modulation transfer function)를 높일 수 있다.In the present invention, the barrier rib 33 is used to deposit a photoconductive material in a pixelated space. Accordingly, when the material having the crystal structure of the photoconductive material is deposited in a large area, cracks may be prevented. In addition, since the TFT structure has a large area, it is easy to implement a large-area X-ray detection device and the application range can be widened. Furthermore, when implementing a large-area X-ray detection apparatus, it is possible to simplify the process and further reduce the additional process such as bump bonding or tile joining, and the additional cost thereof. Furthermore, by depositing the photoconductive layer on a pixel basis, the photoconductive layer is isolated to prevent lateral conductance, thereby increasing the MTF (modulation transfer function) related to the resolution of the image.
도 4는 본 발명의 일 실시예에 따른 TFT 구조를 도시한 참조도이다.4 is a reference diagram illustrating a TFT structure according to an embodiment of the present invention.
도 4를 참조하면, TFT 구조는 픽셀단위 내에 게이트 전극(gate electrode), 소스 전극(source electrode), 드레인 전극(drain electrode), 픽셀전극(pixel electrode), 게이트 절연막(gate insulator), 패시베이션(passivation)을 포함한다. 픽셀단위인 1 픽셀(1 pixel)의 폭은 200μm일 수 있으나 이에 한정되지는 않는다.Referring to FIG. 4, a TFT structure includes a gate electrode, a source electrode, a drain electrode, a pixel electrode, a gate insulator, and passivation in a pixel unit. ). The width of one pixel, which is a pixel unit, may be 200 μm, but is not limited thereto.
이하 TFT 구조 설명에 있어서, 본 발명의 핵심에서 벗어난 일반적인 내용은 생략하고, 본 발명과 연관된 부분에 대해 후술한다. TFT 구조에서 픽셀과 픽셀 사이에 누화(cross talking)를 방지하기 위한 갭(gap)이 존재한다. 누화 방지 갭의 크기는 10~20μm 정도이다. 누화는 회로 또는 회로의 일부분으로부터 원하지 않는 전하 커플링, 유도 커플링, 저항 커플링 등이 생기는 현상이다. 본 발명의 일 실시예에 따르면, 누화 방지 갭 부분에 광도전층을 고립화(isolation)시키기 위하여 픽셀단위 간 폭 10~20μm, 높이 100~200μm(aspect ratio 10:1)를 갖는 격벽을 구성한다.In the following description of the TFT structure, general descriptions deviating from the core of the present invention will be omitted, and portions related to the present invention will be described later. There is a gap in the TFT structure to prevent cross talk between pixels. The size of the crosstalk prevention gap is about 10-20 μm. Crosstalk is a phenomenon in which unwanted charge coupling, inductive coupling, resistance coupling, or the like occurs from a circuit or part of a circuit. According to one embodiment of the present invention, a barrier rib having a width of 10 to 20 μm and a height of 100 to 200 μm (aspect ratio 10: 1) is formed between pixel units in order to isolate the photoconductive layer in the crosstalk preventing gap portion.
도 5는 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치의 엑스선 영상 검출원리를 설명하기 위한 참조도이다.5 is a reference diagram for explaining the principle of X-ray image detection of a digital X-ray image detecting apparatus according to an embodiment of the present invention.
도 5를 참조하면, 상부전극(top electrode)(502)은 전원 공급부(500)로부터 고전압(high voltage)이 인가되면 그 내부에 전계를 형성한다. 이어서 광도전층(photoconductor layer)(506)의 광 도전물질이 엑스선(X-ray)과 반응하면, 광전 변환되어 이온화 현상이 일어나고 정공과 전자를 생성한다. 광도전층(506)은 외부에서 인가되는 엑스선 에너지에 의해 전자·전공쌍을 생성하는 수송전하(electric charge carrier)를 포함한다.Referring to FIG. 5, the top electrode 502 forms an electric field therein when a high voltage is applied from the power supply 500. Subsequently, when the photoconductive material of the photoconductor layer 506 reacts with X-rays, photoelectric conversion occurs to cause ionization and generate holes and electrons. The photoconductive layer 506 includes an electric charge carrier that generates an electron-electron pair by X-ray energy applied from the outside.
상부전극(502)에 인가된 고전압에 의해 전자와 정공이 상하로 분리된다. 이때 분리되는 전자와 정공은 상부전극(502)과 픽셀전극(pixel electrode)(510)의 극성에 의해 끌려간다. 상부전극(502)에 (+) 성분의 전압을 인가하고, 픽셀전극(510)에 (-) 성분의 전압을 인가하면, 전자는 상부전극(502)으로, 정공은 픽셀전극(510)으로 끌려간다. 끌려간 정공들은 픽셀전극(510)을 통해 TFT(514)의 캐패시터(signal storage capacitor)(516)에 충전된다. 이어서 캐패시터(516)에 충전된 전하를 게이트 펄스(gate pulse)에 따라 증폭부(charge amplifier)(512)로 신호를 읽어들임으로써 엑스선 검출 영상을 획득할 수 있다.Electrons and holes are vertically separated by the high voltage applied to the upper electrode 502. In this case, the separated electrons and holes are attracted by the polarities of the upper electrode 502 and the pixel electrode 510. When the voltage of the positive component is applied to the upper electrode 502 and the voltage of the negative component is applied to the pixel electrode 510, electrons are attracted to the upper electrode 502 and holes are attracted to the pixel electrode 510. Goes. The attracted holes are filled in the signal storage capacitor 516 of the TFT 514 through the pixel electrode 510. Subsequently, the X-ray detection image may be acquired by reading a signal of the charge charged in the capacitor 516 to the charge amplifier 512 according to a gate pulse.
도 5에 도시된 바와 같이, 격벽(partition block)(504)은 광도전층(506)을 픽셀단위로 분리시킨다. 격벽(504)은 서로 인접해 있는 픽셀전극(510)에서 측면 컨덕턴스(lateral conductance)로 인해 발생하는 노이즈를 줄여준다. 나아가, 격벽(504)에 의해 광도전층(506)이 각 픽셀단위에 독립적으로 위치함에 따라, 해당되는 픽셀단위 이외의 영역으로부터 영향을 받지 않게 되어 MTF를 높일 수 있다. 또한 격벽(504) 내부에만 광도전층(506)을 위치시킴으로써 개별적인 면적을 최소화하여 외부의 충격으로 크랙이 발생할 확률을 최소화 할 수 있다.As shown in FIG. 5, a partition block 504 separates the photoconductive layer 506 pixel by pixel. The partition wall 504 reduces noise generated by lateral conductance in the pixel electrodes 510 adjacent to each other. Furthermore, as the photoconductive layer 506 is independently positioned in each pixel unit by the partition wall 504, the MTF may be increased by being unaffected by regions other than the corresponding pixel unit. In addition, by placing the photoconductive layer 506 only in the partition 504, it is possible to minimize the individual area to minimize the probability of cracking due to external impact.
추가 양상에 따르면, 본 발명은 격벽(504)에 의해 둘러싸인 광도전층(506)과 픽셀전극(510) 간 옴 접촉(ohmic contact)을 형성하기 위한 인터스티셜 층(interstitial layer)(508)을 더 포함한다. 옴 접촉은 광도전층(506)과 픽셀전극(510)과의 접촉시 전압-전류 특성이 옴의 법칙을 따르는 현상이다. 인터스티셜 층(508)은 픽셀전극(510) 상부에 도포된 형태이다. 인터스티셜 층은 전기적으로 옴 접촉을 도와주는 역할을 하는 것으로, CuxTe, ZnTe일 수 있으나 이에 한정되지 않는다.According to a further aspect, the present invention further provides an interstitial layer 508 for forming an ohmic contact between the photoconductive layer 506 and the pixel electrode 510 surrounded by the partition 504. Include. The ohmic contact is a phenomenon in which the voltage-current characteristics follow the Ohm's law when the photoconductive layer 506 contacts the pixel electrode 510. The interstitial layer 508 is coated on the pixel electrode 510. The interstitial layer serves to help the ohmic contact electrically, and may be Cu x Te or ZnTe, but is not limited thereto.
도 6은 본 발명의 디지털 엑스선 영상 검출장치에서의 측면 컨덕턴스 영향을 설명하기 위한 참조도이다.6 is a reference diagram for explaining the effect of side conductance in the digital X-ray image detecting apparatus of the present invention.
도 6을 참조하면, 상부전극(600)에 고전압(high voltage)이 인가되고 광도전층(620)의 광 도전물질이 엑스선과 반응하면 광전 변환되어 이온화 현상이 일어난다. 광도전층(620)의 전자들은 상부전극(600) 쪽으로 이동하고, 정공들은 픽셀전극(630)으로 밀려나게 된다. 이때, 격벽(610)에 의하여 픽셀전극(630)에서 측면 컨덕턴스로 인해 발생하는 노이즈에 의해 전기장과 관계없이 수송 전하(charge carrier)가 좌우로 이동하여 전류가 발생하는 측면 컨덕턴스(lateral conductance) 현상을 줄일 수 있다. 나아가 MTF를 크게 높일 수 있다.Referring to FIG. 6, when a high voltage is applied to the upper electrode 600 and the photoconductive material of the photoconductive layer 620 reacts with X-rays, photoelectric conversion occurs to cause ionization. Electrons of the photoconductive layer 620 move toward the upper electrode 600, and holes are pushed to the pixel electrode 630. In this case, a side conductance phenomenon in which a charge carrier moves to the left and right regardless of an electric field by noise generated by side conductance in the pixel electrode 630 by the partition wall 610 generates a lateral conductance phenomenon. Can be reduced. Furthermore, the MTF can be greatly increased.
도 7은 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치 제조방법을 도시한 흐름도이다.7 is a flowchart illustrating a method of manufacturing a digital X-ray image detecting apparatus according to an embodiment of the present invention.
도 7을 참조하면, 픽셀 어레이에 픽셀단위로 격벽을 마련한다(700). 이어서 격벽으로 분리된 픽셀단위에 광도전층을 증착한다(710). 광도전층은 결정구조를 갖는 광 도전물질로 구성될 수 있다. 결정구조를 갖는 광 도전물질은 ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd1-xZnxTe(CZT), PbO, PbI2 및 HgI2 중 어느 하나일 수 있으나 이에 한정되지 않는다. 이어서, 광도전층에 상부전극을 증착한다(720). 상부전극은 광도전층에 전압을 인가하는 역할을 한다.Referring to FIG. 7, a partition wall is arranged in a pixel unit in a pixel array (700). Subsequently, the photoconductive layer is deposited on the pixel unit separated by the partition (710). The photoconductive layer may be composed of a photoconductive material having a crystal structure. The photoconductive material having a crystal structure may be any one of ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd 1-x Zn x Te (CZT), PbO, PbI 2 and HgI 2 , but is not limited thereto. Subsequently, an upper electrode is deposited on the photoconductive layer (720). The upper electrode serves to apply a voltage to the photoconductive layer.
본 발명의 추가 양상에 따르면, 격벽과 광도전층의 높이를 일정하게 맞추도록 연마하는 단계를 더 포함한다. 이에 대한 실시예를 도 9에서 후술한다. 본 발명의 추가 양상에 따르면, 격벽에 의해 둘러싸인 광도전층과 픽셀전극 간 옴 접촉(ohmic contact)을 형성하기 위한 인터스티셜 층(interstitial layer)을 픽셀전극 상부에 도포하는 단계를 더 포함할 수 있다. 이에 대한 실시예를 도 10에서 후술한다.According to a further aspect of the present invention, the method further includes polishing the barrier wall and the photoconductive layer to have a uniform height. An embodiment thereof will be described later with reference to FIG. 9. According to a further aspect of the present invention, the method may further include applying an interstitial layer on the pixel electrode to form an ohmic contact between the photoconductive layer surrounded by the partition and the pixel electrode. . An embodiment thereof will be described later with reference to FIG. 10.
전술한 구성 및 제조방법에 따르면, 대면적의 디지털 엑스선 영상 검출장치를 용이하게 제작할 수 있다. 즉, 격벽을 이용하여 픽셀화된 공간 안에 광 도전물질을 증착함에 따라, 범프 결합이나 타일을 이어서 붙이는 등의 추가적인 공정 및 이에 대한 추가비용을 줄일 수 있어 공정을 간소화할 수 있다. 나아가, 결정구조를 갖는 광 도전물질을 대면적으로 증착하는 경우 크랙이 발생하는 현상을 방지하고 측면 컨덕턴스(lateral conductance)를 줄이며 MTF를 높일 수 있다.According to the above-described configuration and manufacturing method, a large-area digital X-ray image detection device can be easily manufactured. That is, as the photoconductive material is deposited in the pixelated space by using the partition wall, an additional process such as bump bonding or subsequent attaching tiles may be reduced and the additional cost thereof may be simplified, thereby simplifying the process. Furthermore, when the photoconductive material having a crystal structure is deposited in a large area, cracks may be prevented, lateral conductance may be reduced, and MTF may be increased.
도 8은 본 발명의 일 실시예에 따라 격벽을 이용하여 픽셀화된 공간 안에 광 도전물질이 증착되는 픽셀 어레이를 도시한 참조도이다.FIG. 8 is a reference diagram illustrating a pixel array in which a photoconductive material is deposited in a pixelated space using partition walls according to an embodiment of the present invention.
도 8을 참조하면, 픽셀 어레이(pixel array)(80)는 격벽에 의해 픽셀단위(800)로 픽셀화되고, 각 픽셀단위(800)에는 광 도전층이 증착된다.Referring to FIG. 8, a pixel array 80 is pixelated in a pixel unit 800 by a partition wall, and a photoconductive layer is deposited on each pixel unit 800.
도 9a 및 도 9b는 본 발명의 일 실시예에 따른 디지털 엑스선 영상 검출장치 제조 프로세스를 도시한 흐름도이다.9A and 9B are flowcharts illustrating a manufacturing process of a digital X-ray image detecting apparatus according to an embodiment of the present invention.
도 9a 및 도 9b를 참조하면, 도 9a에 도시된 바와 같이 TFT(90)의 픽셀전극 영역을 둘러싸도록 격벽(910)을 구성한 후, 도 9b에 도시된 바와 같이 격벽(910) 내부에 광도전층(920)을 증착한다. 격벽의 높이는 100~200μm이고, 폭은 10~20μm일 수 있다. 이어서, 광도전층(920) 상부에 상부전극(top electrode)을 증착한다. 추가 양상에 따르면, 광도전층(920) 상부에 상부전극을 증착하는 단계 이전에 격벽(910)과 광도전층(920)의 높이를 일정하게 맞추도록 연마(polishing)한다.9A and 9B, after the barrier rib 910 is configured to surround the pixel electrode region of the TFT 90 as illustrated in FIG. 9A, the photoconductive layer is formed inside the barrier rib 910 as illustrated in FIG. 9B. 920 is deposited. The partition may have a height of 100-200 μm and a width of 10-20 μm. Subsequently, a top electrode is deposited on the photoconductive layer 920. According to a further aspect, prior to depositing the upper electrode on the photoconductive layer 920, polishing of the barrier rib 910 and the photoconductive layer 920 is made to be uniform.
도 10은 본 발명의 추가 실시예에 따른 디지털 엑스선 영상 검출장치 제조 프로세스를 도시한 흐름도이다.10 is a flowchart illustrating a process of manufacturing a digital x-ray image detecting apparatus according to a further embodiment of the present invention.
도 10을 참조하면, 광도전층(920)와 TFT(90)의 픽셀전극 사이에 옴 접촉(ohmic contact)을 형성하도록 해주는 물질로 이루어진 인터스티셜 층(interstitial layer)을 추가할 수 있다. 인터스티셜 층은 전기적으로 옴 접촉을 도와주는 역할을 하는 것으로, CuxTe, ZnTe일 수 있으나 이에 한정되지는 않는다.Referring to FIG. 10, an interstitial layer made of a material for forming an ohmic contact between the photoconductive layer 920 and the pixel electrode of the TFT 90 may be added. The interstitial layer serves to help the ohmic contact electrically, and may be Cu x Te or ZnTe, but is not limited thereto.
이제까지 본 발명에 대하여 그 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to the embodiments. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (10)

  1. 엑스선을 전기적 신호로 변환하는 광도전층;A photoconductive layer for converting X-rays into electrical signals;
    상기 광도전층을 픽셀단위로 분리시키는 격벽; 및Barrier ribs separating the photoconductive layer in units of pixels; And
    상기 변환된 전기적 신호를 검출하여 엑스선 영상을 생성하는 영상 처리부;An image processor configured to detect the converted electrical signal and generate an X-ray image;
    를 포함하는 것을 특징으로 하는 디지털 엑스선 영상 검출장치.Digital x-ray image detection apparatus comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 광도전층은 상기 격벽으로 분리된 픽셀단위에 증착된 형태인 것을 특징으로 하는 디지털 엑스선 영상 검출장치.The photoconductive layer is a digital X-ray image detection device, characterized in that the deposition on the pixel unit separated by the partition.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 광 도전층은 광 도전물질을 포함하며,The photoconductive layer includes a photoconductive material,
    상기 광 도전물질은 결정구조를 갖는 것을 특징으로 하는 디지털 엑스선 영상 검출장치.And the photoconductive material has a crystal structure.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 광 도전물질은 ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd1-xZnxTe(CZT), PbO, PbI2 및 HgI2 중 어느 하나인 것을 특징으로 하는 디지털 엑스선 영상 검출장치.The optical conductive material is any one of ZnTe, GaSe, GaAs, ThBr, TlBr, CdTe, Cd 1-x Zn x Te (CZT), PbO, PbI 2 and HgI 2 characterized in that the digital X-ray image detection device.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 격벽은 상기 광도전층에서 생성된 정공을 끌어들이는 픽셀전극들을 분리시켜 픽셀전극에서 측면 컨덕턴스로 인해 발생하는 노이즈를 제거하는 것을 특징으로 하는 디지털 엑스선 영상 검출장치.And the barrier rib separates pixel electrodes which attract holes generated in the photoconductive layer to remove noise generated by side conductance from the pixel electrode.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 격벽의 높이는 100~200μm이고, 폭은 10~20μm인 것을 특징으로 하는 디지털 엑스선 영상 검출장치.The height of the partition is 100 ~ 200μm, the width of the digital x-ray image detection device, characterized in that 10 ~ 20μm.
  7. 픽셀 어레이에 픽셀단위로 격벽이 마련되는 단계;Providing partition walls in pixel units in the pixel array;
    상기 격벽으로 분리된 픽셀단위에 광도전층이 증착되는 단계; 및Depositing a photoconductive layer on a pixel unit separated by the barrier rib; And
    상기 광도전층에 상부전극이 증착되는 단계;Depositing an upper electrode on the photoconductive layer;
    를 포함하는 것을 특징으로 하는 디지털 엑스선 검출장치 제조방법.Digital x-ray detecting apparatus manufacturing method comprising a.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 격벽과 상기 광도전층의 높이를 일정하게 맞추도록 연마되는 단계;Polishing the partition wall and the photoconductive layer to have a uniform height;
    를 더 포함하는 것을 특징으로 하는 디지털 엑스선 검출장치 제조방법.Digital x-ray detection apparatus manufacturing method comprising a further.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 격벽에 의해 둘러싸인 광도전층과 픽셀전극 간 옴 접촉을 형성하기 위한 인터스티셜 층이 상기 픽셀전극 상부에 도포되는 단계;Applying an interstitial layer on the pixel electrode to form an ohmic contact between the photoconductive layer surrounded by the partition and the pixel electrode;
    를 더 포함하는 것을 특징으로 하는 디지털 엑스선 검출장치 제조방법.Digital x-ray detection apparatus manufacturing method comprising a further.
  10. 제 7 항에 있어서, The method of claim 7, wherein
    상기 광도전층은 결정구조를 갖는 광 도전물질을 포함하는 것을 특징으로 하는 디지털 엑스선 영상 검출장치 제조방법.And the photoconductive layer comprises a photoconductive material having a crystal structure.
PCT/KR2011/002512 2011-03-22 2011-04-11 Digital x-ray image detection device having partition block formed therein, and production method therefor WO2012128415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110025420A KR101242762B1 (en) 2011-03-22 2011-03-22 Digital X-ray image detector with partition block and manufacturing method thereof
KR10-2011-0025420 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012128415A1 true WO2012128415A1 (en) 2012-09-27

Family

ID=46879538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002512 WO2012128415A1 (en) 2011-03-22 2011-04-11 Digital x-ray image detection device having partition block formed therein, and production method therefor

Country Status (2)

Country Link
KR (1) KR101242762B1 (en)
WO (1) WO2012128415A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180947A (en) * 1992-01-07 1993-07-23 Hitachi Metals Ltd Radiation detector
JP2003035777A (en) * 2001-07-19 2003-02-07 Hitachi Medical Corp X-ray detector and x-ray ct equipment using the same
US6534773B1 (en) * 1998-11-09 2003-03-18 Photon Imaging, Inc. Radiation imaging detector and method of fabrication
JP2004138472A (en) * 2002-10-17 2004-05-13 Mitsubishi Heavy Ind Ltd Radiation detecting element, radiation detector, radiation ct device, and radiation inspection device
WO2010052676A2 (en) * 2008-11-10 2010-05-14 Koninklijke Philips Electronics N.V. Converter element for a radiation detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180947A (en) * 1992-01-07 1993-07-23 Hitachi Metals Ltd Radiation detector
US6534773B1 (en) * 1998-11-09 2003-03-18 Photon Imaging, Inc. Radiation imaging detector and method of fabrication
JP2003035777A (en) * 2001-07-19 2003-02-07 Hitachi Medical Corp X-ray detector and x-ray ct equipment using the same
JP2004138472A (en) * 2002-10-17 2004-05-13 Mitsubishi Heavy Ind Ltd Radiation detecting element, radiation detector, radiation ct device, and radiation inspection device
WO2010052676A2 (en) * 2008-11-10 2010-05-14 Koninklijke Philips Electronics N.V. Converter element for a radiation detector

Also Published As

Publication number Publication date
KR101242762B1 (en) 2013-03-13
KR20120107729A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5043373B2 (en) Conversion device, radiation detection device, and radiation detection system
CN101499481B (en) Electromagnetic wave detecting element
US7468531B2 (en) Imaging apparatus and radiation imaging apparatus
US20130264485A1 (en) Method of manufacturing radiation detection apparatus, radiation detection apparatus, and radiation imaging system
JP3597392B2 (en) 2D image detector
US9093341B2 (en) Imaging apparatus, manufacturing method thereof and imaging display system
US7804071B2 (en) Image detection device
US8766202B2 (en) X-ray detectors including diffusion barrier films
CN104396017B (en) Manufacture the method and X-ray flat-panel detector tft array substrate of X-ray flat-panel detector
JP2014508567A5 (en)
KR20110109066A (en) X-ray detector with oxide semiconductor transistor
WO2015084068A1 (en) X-ray detector, x-ray imaging device using same, and driving method therefor
KR20120057422A (en) Array substrate of X Ray Detector and Method for fabricating the same
JP2002217444A (en) Radiation detector
US8481909B2 (en) Detection apparatus and radiation detection system
US8581198B2 (en) Apparatus and method for detecting radiation
WO2012128415A1 (en) Digital x-ray image detection device having partition block formed therein, and production method therefor
CN103972249B (en) Active matrix image sensing panel and active matrix image sensing device
KR101217808B1 (en) Radiation detector and method for detecting radiation
WO2012043906A1 (en) Radiation detector and method for detecting radiation
WO2015005660A1 (en) Image sensor and method for manufacturing same
WO2015005659A1 (en) Image sensor and method for manufacturing same
JP2005033002A (en) Radiation detector and its manufacturing method
WO2012043908A1 (en) Radiation detector and method for detecting radiation
KR101923002B1 (en) Method for fabricating Array substrate of X Ray Detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 28/11/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11861842

Country of ref document: EP

Kind code of ref document: A1