WO2012128369A1 - Fuel-cell system - Google Patents

Fuel-cell system Download PDF

Info

Publication number
WO2012128369A1
WO2012128369A1 PCT/JP2012/057628 JP2012057628W WO2012128369A1 WO 2012128369 A1 WO2012128369 A1 WO 2012128369A1 JP 2012057628 W JP2012057628 W JP 2012057628W WO 2012128369 A1 WO2012128369 A1 WO 2012128369A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydrogen
reformed gas
feed pump
reformer
Prior art date
Application number
PCT/JP2012/057628
Other languages
French (fr)
Japanese (ja)
Inventor
修平 咲間
俊幸 海野
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2013506045A priority Critical patent/JPWO2012128369A1/en
Publication of WO2012128369A1 publication Critical patent/WO2012128369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a reformer that generates reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, and desulfurization of hydrogen-containing fuel supplied to the reformer
  • the thing which comprises the desulfurizer which performs this is known.
  • Such a fuel cell system includes, for example, a supply flow path for supplying a hydrogen-containing fuel to a desulfurizer, and a feed pump (raw fuel compressor) provided in the supply flow path, as described in Patent Document 1.
  • a circulation channel (recycling line) that circulates part of the reformed gas supplied from the reformer to the cell stack to the supply channel.
  • an object of the present invention is to provide a fuel cell system that can reliably circulate the reformed gas at a low cost.
  • a fuel cell system includes a reformer that generates a reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, A desulfurizer that performs desulfurization of the hydrogen-containing fuel supplied to the catalyst, a hydrogen-containing fuel supply passage for supplying the hydrogen-containing fuel to the desulfurizer, and a hydrogen-containing fuel that is provided upstream or downstream of the desulfurizer.
  • the hydrogen-containing fuel supply flow path is provided upstream of the junction with the circulation flow path so that the suction pressure of the feed pump is lower than the pressure of the reformed gas supplied from the reformer to the cell stack. Supplied to the feed pump A first pressure drop section to reduce the pressure of that the hydrogen-containing fuel, and a.
  • the pressure of the hydrogen-containing fuel is reduced at the upstream side of the junction with the circulation passage in the supply passage by the first pressure reduction portion, and the suction pressure of the feed pump is changed from the reformer to the cell stack.
  • the pressure is lower than the pressure of the reformed gas supplied. Therefore, a pressure difference is generated between the pressure on the inlet side and the pressure on the outlet side in the circulation channel so that the reformed gas circulates, and the reformed gas is supplied to the supply channel without providing a feed pump or the like in the circulation channel.
  • it is reliably circulated to the upstream side of the feed pump by self-pressure. Therefore, the reformed gas can be reliably circulated at a low cost.
  • FIG. 1 is a schematic block diagram showing a fuel cell system according to a first embodiment. It is a schematic block diagram which shows the fuel cell system which concerns on 2nd Embodiment. It is a schematic block diagram which shows the fuel cell system which concerns on 3rd Embodiment. It is a schematic block diagram which shows the fuel cell system which concerns on 4th Embodiment.
  • FIG. 1 is a schematic block diagram showing a fuel cell system according to the first embodiment.
  • the fuel cell system 1 includes a desulfurizer 2, a reformer 3, and a cell stack 4.
  • the fuel cell system 1 generates power in the cell stack 4 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 4 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • phosphoric acid phosphoric acid
  • MCFC Molten Carbonate Fuel Cell
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil.
  • methanol and ethanol are mentioned as alcohols.
  • ethers include dimethyl ether.
  • biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air is used as the oxidizing agent.
  • the desulfurizer 2 desulfurizes the hydrogen-containing fuel supplied to the reformer 3.
  • the desulfurizer 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • the desulfurizer 2 employs a hydrodesulfurization method in which a sulfur compound is removed by reacting with hydrogen.
  • an adsorptive desulfurization system that adsorbs and removes sulfur compounds may be used in combination.
  • the desulfurizer 2 supplies the desulfurized hydrogen-containing fuel to the reformer 3.
  • the reformer 3 generates a reformed gas as a hydrogen-rich gas (hydrogen-containing gas) from the supplied hydrogen-containing fuel.
  • the reformer 3 reforms the hydrogen-containing fuel and generates a reformed gas by a reforming reaction using a reforming catalyst.
  • the reforming method in the reformer 3 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the reformer 3 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen-rich gas required for the cell stack 4.
  • the reformer 3 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The reformer 3 supplies the reformed gas to the cell stack 4.
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • the cell stack 4 generates power using the reformed gas and oxidant from the reformer 3.
  • the cell stack 4 supplies a reformed gas and an oxidant that have not been used for power generation as off-gas to a subsequent combustion section (not shown).
  • the fuel cell system 1 includes a hydrogen-containing fuel supply channel R1, a reformed gas supply channel R2, a reformed water supply channel R3, and a circulation channel R4.
  • the hydrogen-containing fuel supply flow path R ⁇ b> 1 is a hydrogen-containing fuel supply line for supplying at least a hydrogen-containing fuel to the desulfurizer 2, and is connected to the desulfurizer 2.
  • the hydrogen-containing fuel supply flow path R1 is provided with a feed pump P as pressure feeding means.
  • the feed pump P is provided upstream of a later-described branch portion G1, and adjusts the flow rate of fuel supplied to the cell stack 4.
  • the reformed gas supply flow path R2 is a reformed gas supply line for supplying reformed gas from the reformer 3 to the cell stack 4, and is connected to the reformer 3 and the cell stack 4.
  • the reforming water supply flow path R ⁇ b> 3 is a reforming water line for supplying the reforming water as steam to the reformer 3, and is connected to the reformer 3.
  • the circulation flow path R4 is a recycle line for circulating a part of the reformed gas supplied from the reformer 3 to the cell stack 4 to the upstream side of the feed pump P of the hydrogen-containing fuel supply flow path R1.
  • the circulation channel R4 is connected to the reformed gas supply channel R2 and the hydrogen-containing fuel supply channel R1 upstream of the feed pump P.
  • the circulation flow path R4 is branched from the middle of the reformed gas supply flow path R2 (hereinafter, the branched portion is referred to as a branch portion G1), and upstream of the feed pump P of the hydrogen-containing fuel supply flow path R1.
  • the joined part is referred to as a joining part G2).
  • the reformed gas circulated in the circulation flow path R4 is used, for example, for hydrodesulfurization or for catalyst regeneration of the desulfurizer 2.
  • the heat exchanger 6 for transferring heat from the reformed gas to the reformed water is provided in the reformed water supply channel R3 and the circulation channel R4. Thereby, the retained water of the reformed gas is utilized to heat the reformed water. Further, a drainage drain 7 for collecting and draining water (condensed water) generated from the reformed gas flowing through the circulation channel R4 is provided downstream of the heat exchanger 6 in the circulation channel R4. Thereby, it is possible to prevent the condensed water from flowing into the feed pump P together with the reformed gas flowing through the circulation flow path R4.
  • a first pressure reduction unit 8 such as a capillary that is a capillary for generating a differential pressure is provided on the upstream side of the merging portion G (merging portion G2) with the circulation channel R4 in the hydrogen-containing fuel supply channel R1. It has been.
  • the first pressure reduction unit 8 reduces the pressure of the hydrogen-containing fuel so that the suction pressure of the feed pump P is lower than the pressure of the reformed gas supplied from the reformer 3 to the cell stack 4.
  • the first pressure reduction unit 8 is not limited.
  • a first pressure reduction unit that reduces a predetermined amount of pressure from the inlet pressure of the first pressure reduction unit 8 itself.
  • the amount of pressure that can be reduced from the inlet pressure of the lowering portion 8 itself can be adjusted in multiple stages, and the outlet pressure of the lowering portion 8 can be adjusted in advance regardless of the inlet pressure of the first pressure lowering portion 8 itself.
  • What reduces to a certain fixed pressure value etc. can be selected suitably.
  • an orifice, a check valve, a proportional valve, a pressure reducing valve, a zero governor, or the like can be used.
  • a second pressure reduction unit 9 such as a capillary that is a capillary for generating a differential pressure is provided between the drainage recovery drain 7 and the junction G (junction G2).
  • the second pressure reduction unit 9 reduces the pressure of the reformed gas circulating to the hydrogen-containing fuel supply channel R1 so that the flow rate of the reformed gas becomes a predetermined flow rate. If the pressure drop amount in the circulation flow path R4 is sufficient, the second pressure drop unit 9 can be omitted. However, by providing the second pressure drop unit 9, for example, fluctuations in the power generation amount of the fuel cell system 1 can be achieved. Based on this, even if the discharge pressure of the feed pump P fluctuates, the reformed gas can be circulated more stably.
  • an orifice, a check valve, a proportional valve, a pressure reducing valve, a zero governor, and the like can be used in addition to the capillary.
  • the pressure of the hydrogen-containing fuel flowing at a pressure of 2.5 kPa is reduced by the first pressure reducing unit 8, 1
  • the outlet pressure of the pressure drop unit 8 is a negative pressure (for example, ⁇ 5 kPa).
  • the hydrogen-containing fuel is merged with the reformed gas from the circulation flow path R4 via the merging portion G (merging portion G2), and the hydrogen-containing fuel and the reformed gas are downstream at a discharge pressure of, for example, 5 kPa by the feed pump P. Pumped to the side. Thereafter, these hydrogen-containing fuel and reformed gas are supplied to the desulfurizer 2.
  • the numerical value of the pressure illustrated in the above is a gauge pressure (hereinafter the same).
  • the hydrogen-containing fuel is desulfurized by the desulfurizer 2
  • the hydrogen-containing fuel is reformed by the reformer 3 to generate a reformed gas.
  • the pressure of the reformed gas decreases (for example, 0.4 kPa) due to pressure loss in the desulfurizer 2 and the reformer 3.
  • the reformed gas having a pressure of 0.4 kPa for example, is supplied to the cell stack 4 in the reformed gas supply channel R2.
  • an off gas having a pressure of, for example, 0.1 kPa is generated from the cell stack 4.
  • the reformed gas supply flow path R2 a part of the reformed gas supplied from the reformer 3 to the cell stack 4 (here, the reformed gas supplied from the reformer 3 to the cell stack 4). About 5%) flows from the branch part G1 into the circulation channel R4.
  • the reformed gas heats the reformed water in the reformed water supply channel R3 via the heat exchanger 6, and then the water in the reformed gas is recovered by the drainage recovery drain 7.
  • the reformed gas is reduced in pressure by the second pressure reduction unit 9 so that the flow rate becomes a predetermined flow rate, and then, as described above, the hydrogen-containing fuel supply flow path R1 contains hydrogen through the junction G. Joined with fuel.
  • the pressure of the hydrogen-containing fuel supplied to the feed pump P in the hydrogen-containing fuel supply flow path R1 is reduced by the first pressure reduction unit 8, and the feed pump P
  • the suction pressure is set to a negative pressure ( ⁇ 5 kPa) lower than the pressure (0.4 kPa) of the reformed gas supplied from the reformer 3.
  • the suction pressure of the feed pump P is set to a value smaller than a value obtained by subtracting the pressure drop amount in the entire circulation flow path R4 from the pressure of the reformed gas supplied from the reformer 3 to the cell stack 4. .
  • the circulation flow path R4 a pressure difference is generated between the pressure on the inlet side and the pressure on the outlet side, and the reformed gas can be circulated at its own pressure so as to be sucked from the inlet side to the outlet side.
  • the reformed gas is reliably and stably circulated to the hydrogen-containing fuel supply flow path R1 without separately providing a pressure feeding means such as a feed pump in the circulation flow path R4.
  • the first pressure drop unit 8 is arranged in the suction line (upstream) of the feed pump P, and the reformed gas can be supplied to the cell stack 4 after the suction pressure of the feed pump P is set to a negative pressure.
  • the pressure difference between the pressure of the reformed gas from the reformer 3 and the suction pressure of the hydrogen-containing fuel and the reformed gas by the feed pump P is artificially generated by pumping the hydrogen-containing fuel at a feed pump discharge pressure. To produce.
  • the reformed gas can be circulated through the circulation flow path R4 at its own pressure. Therefore, according to the present embodiment, it is possible to reliably circulate the reformed gas at a low cost.
  • a control mode in which the amount of power generation is changed in accordance with a change in power demand.
  • the required hydrogen-containing fuel increases and decreases according to the increase and decrease of the power generation amount. That is, the fuel discharge amount per unit time of the feed pump P increases and decreases, and the reformed gas pressure supplied to the cell stack 4 also varies. In such a case, there may be a delay in response to control of the feed pump P or pressure change.
  • the second pressure drop unit in the circulation flow path R4 it is possible to reduce the transient pressure fluctuation and stably circulate the reformed gas flowing in the circulation flow path R4.
  • the pressure difference between the suction pressure of the feed pump P and the pressure of the reformed gas from the reformer 3 is smaller in the case of the SOFC cell stack 4 than in the case of the PEFC because the pressure loss of the cell stack 4 is small.
  • This embodiment is particularly effective in the case of the SOFC cell stack 4 because the reformed gas is not easily circulated by the self-pressure.
  • the heat exchanger 6 is provided in the reforming water supply channel R3 and the circulation channel R4, and heat is transferred from the reformed gas to the reforming water. This makes it possible to recover the retained heat of the reformed gas circulated in the circulation channel R4 with the reformed water.
  • FIG. 2 is a schematic block diagram showing a fuel cell system according to the second embodiment.
  • the fuel cell system 200 of the second embodiment is mainly different from the first embodiment (see FIG. 1) in that the feed pump P is provided on the downstream side of the desulfurizer 2.
  • the heat exchange unit 6 cools the reformed gas with a heat medium.
  • the heat exchanging unit 6 is provided in the circulation flow path R4, and water, air, oil, and the like are circulated as a heat medium.
  • the heat recovered by the heat medium is stored in, for example, a hot water tank and can be used as hot water.
  • the feed pump P is provided between the desulfurizer 2 and the reformer 3. However, if the feed pump P is provided downstream of the merging portion G2 and between the branch portions G1, the feed pump P is used to circulate the reformed gas. This is because a necessary pressure difference can be generated.
  • this embodiment can be suitably implemented in a fuel cell system in which the supply pressure to the cell stack 4 is relatively high. If the pressure of the branch part G1 is high, the reformed gas can be circulated without excessively reducing the pressure of the merge part G2, so that even if the feed pump P is provided downstream of the desulfurizer 2, good desulfurization conditions are maintained. Because it can.
  • FIG. 3 is a schematic block diagram showing a fuel cell system according to the third embodiment.
  • the fuel cell system 300 according to the third embodiment is provided between the second pressure drop portion 9 and the merging portion G2 of the circulation flow path R4 in addition to the first embodiment (see FIG. 1).
  • the condensate water removed by the drainage drain 7 is reused as reforming water.
  • the pressure of the hydrogen-containing fuel supplied to the feed pump P by the first pressure reduction unit 8 is set so that the pressure of the reformed gas supplied to the cell stack 4 becomes larger than the suction pressure of the feed pump P.
  • the pressure at the junction G2 changes to the pressure at the branch G1. May be more transiently high.
  • hydrogen-containing fuel that has not been subjected to fuel treatment such as desulfurization or reforming is supplied to the cell stack 4.
  • the circulation flow path R ⁇ b> 4 includes the backflow prevention unit 11, whereby supply of untreated hydrogen-containing fuel to the cell stack 4 can be suppressed.
  • the backflow prevention part 11 was arrange
  • the backflow prevention unit 11 is provided downstream of the drainage recovery drain 7. It is preferable. Thereby, it can suppress that the condensed water containing a sulfur compound touches an untreated hydrogen-containing fuel and mixes in reformed water, and that sulfur compound is supplied to the cell stack 4 via the reformer 3 by extension. It is possible to suppress a decrease in the life of the cell stack 4 due to the above.
  • the second pressure drop unit 9 can be omitted.
  • any pressure difference can be generated by adjusting the cracking pressure.
  • FIG. 4 is a schematic block diagram showing a fuel cell system according to the fourth embodiment.
  • the fuel cell system 400 of the fourth embodiment includes a pressure measurement unit 12 that measures the feed pump suction pressure, and a control unit 13 that operates the first pressure reduction unit. And a reforming water tank 14 for storing the reforming water.
  • a proportional valve 8a is used as the first pressure drop unit 8.
  • the control unit 13 measures the suction pressure of the feed pump P by the pressure measurement unit 12. The control unit 13 compares whether or not the measured suction pressure of the feed pump P is within a predetermined reference suction pressure range of the feed pump P. When the suction pressure is smaller than the suction reference pressure range, the control unit 13 controls the proportional valve 8a so as to increase the opening degree of the proportional valve 8a to reduce the pressure drop amount. On the other hand, when the suction pressure is larger than the suction reference pressure range, the control unit 13 controls the proportional valve 8a so as to increase the pressure drop amount by decreasing the opening degree of the proportional valve 8a.
  • the reforming tank 14 stores the introduced reforming water and the reforming water recovered by the drainage recovery drain 7 and supplies the reforming water to the heat exchanger 6.
  • the pressure decrease amount of the first pressure decrease unit 8 is increased or decreased according to the suction pressure of the feed pump P is shown, but the pressure decrease amount of the second pressure decrease unit 9 is changed. It may be increased or decreased.
  • the reformed gas can be circulated with a circulation amount suitable for regeneration.
  • the pressure of the hydrogen-containing fuel supplied to the feed pump P is reduced to the negative pressure by the first pressure reduction unit 8, but the reformer 3 does not have to be reduced to the negative pressure.
  • the suction pressure of the feed pump P may be lowered to be lower than the pressure of the reformed gas supplied to the cell stack 4.
  • the outlet pressure of the first pressure drop unit 8, the pressure of the junction G2 of the circulation flow path R4, and the suction pressure of the feed pump P are regarded as the same pressure for the sake of convenience.
  • the outlet pressure of the reformer 3, the supply pressure of the reformed gas supplied to the cell stack 4, and the pressure of the branching portion of the circulation flow path R4 are assumed to be pressures in another region. However, there may be a pressure gradient that can be implemented between them.
  • the value of the suction pressure of the feed pump P is the value of the outlet pressure of the first pressure drop unit 8 or the junction of the circulation flow path R4 from the viewpoint of convenience or practical (handling).
  • the pressure value of G2 can also be used.
  • the reformed gas can be reliably circulated at a low cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel-cell module provided with: a reformer that uses a hydrogen-containing fuel to generate a reformed gas; a cell stack that uses said reformed gas to generate electricity; a desulfurizer that desulfurizes the hydrogen-containing fuel supplied to the reformer; a hydrogen-containing-fuel supply channel for supplying the hydrogen-containing fuel to the desulfurizer; a feed pump, for providing the hydrogen-containing fuel to the desulfurizer, that is provided upstream of the desulfurizer in the hydrogen-containing-fuel supply channel; a circulation channel for returning part of the reformed gas, which is supplied to the cell stack by the reformer, to upstream of the feed pump in the hydrogen-containing-fuel supply channel; and a first pressure-reduction part that is provided in the hydrogen-containing-fuel supply channel, upstream of the junction between said channel and the circulation channel, and that reduces the pressure of the hydrogen-containing gas supplied to the feed pump such that the suction pressure of the feed pump is less than the pressure of the reformed gas supplied to the cell stack by the reformer.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 従来、燃料電池システムとしては、水素含有燃料を用いて改質ガスを発生させる改質器と、改質ガスを用いて発電を行うセルスタックと、改質器に供給される水素含有燃料の脱硫を行う脱硫器と、を具備するものが知られている。このような燃料電池システムは、例えば特許文献1に記載されたように、脱硫器へ水素含有燃料を供給する供給流路と、供給流路に設けられたフィードポンプ(原燃料圧縮器)と、改質器からセルスタックへ供給される改質ガスの一部を供給流路へ循環する循環流路(リサイクルライン)と、を備えている。 Conventionally, as a fuel cell system, a reformer that generates reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, and desulfurization of hydrogen-containing fuel supplied to the reformer The thing which comprises the desulfurizer which performs this is known. Such a fuel cell system includes, for example, a supply flow path for supplying a hydrogen-containing fuel to a desulfurizer, and a feed pump (raw fuel compressor) provided in the supply flow path, as described in Patent Document 1. A circulation channel (recycling line) that circulates part of the reformed gas supplied from the reformer to the cell stack to the supply channel.
特開2008-277308号公報JP 2008-277308 A
 しかし、上述したような燃料電池システムでは、例えば改質器からセルスタックへ供給される改質ガスの圧力が十分に高いものでない場合、循環流路により改質ガスを供給流路へ循環することが困難になるおそれがある。この点、循環流路にフィードポンプ等を設け、循環流路により改質ガスを積極的に循環させる場合があるが、この場合、フィードポンプが必要となるためにコストが高くなり好ましくない。 However, in the fuel cell system as described above, for example, when the pressure of the reformed gas supplied from the reformer to the cell stack is not sufficiently high, the reformed gas is circulated to the supply channel by the circulation channel. May become difficult. In this respect, there is a case where a feed pump or the like is provided in the circulation flow path, and the reformed gas is actively circulated through the circulation flow path. However, in this case, a feed pump is required, which increases costs and is not preferable.
 そこで、本発明は、低コストで確実に改質ガスを循環させることができる燃料電池システムを提供することを課題とする。 Therefore, an object of the present invention is to provide a fuel cell system that can reliably circulate the reformed gas at a low cost.
 上記課題を解決するため、本発明の一側面に係る燃料電池システムは、水素含有燃料を用いて改質ガスを発生させる改質器と、改質ガスを用いて発電を行うセルスタックと、改質器に供給される水素含有燃料の脱硫を行う脱硫器と、水素含有燃料を脱硫器へ供給するための水素含有燃料供給流路と、脱硫器の上流側又は下流側に設けられ、水素含有燃料を圧送するフィードポンプと、改質器からセルスタックへ供給される改質ガスの一部を、水素含有燃料供給流路の脱硫器及びフィードポンプの上流側へ循環するための循環流路と、水素含有燃料供給流路において循環流路との合流部より上流側に設けられ、フィードポンプの吸込圧力が改質器からセルスタックへ供給される改質ガスの圧力よりも低くなるように、フィードポンプに供給される水素含有燃料の圧力を低下させる第1圧力低下部と、を備えている。 In order to solve the above problems, a fuel cell system according to one aspect of the present invention includes a reformer that generates a reformed gas using a hydrogen-containing fuel, a cell stack that generates power using the reformed gas, A desulfurizer that performs desulfurization of the hydrogen-containing fuel supplied to the catalyst, a hydrogen-containing fuel supply passage for supplying the hydrogen-containing fuel to the desulfurizer, and a hydrogen-containing fuel that is provided upstream or downstream of the desulfurizer. A feed pump for pumping fuel, and a circulation flow path for circulating a part of the reformed gas supplied from the reformer to the cell stack to the upstream side of the desulfurizer and feed pump of the hydrogen-containing fuel supply flow path. The hydrogen-containing fuel supply flow path is provided upstream of the junction with the circulation flow path so that the suction pressure of the feed pump is lower than the pressure of the reformed gas supplied from the reformer to the cell stack. Supplied to the feed pump A first pressure drop section to reduce the pressure of that the hydrogen-containing fuel, and a.
 この燃料電池システムでは、第1圧力低下部によって供給流路における循環流路との合流部の上流側にて水素含有燃料の圧力が低下され、フィードポンプの吸込圧力が改質器からセルスタックへ供給される改質ガスの圧力よりも低くされる。よって、循環流路における入口側の圧力と出口側の圧力との間に改質ガスが循環するよう圧力差が生じ、フィードポンプ等を循環流路に設けなくとも、改質ガスが供給流路のフィードポンプの上流側へ自圧で確実に循環されることとなる。従って、低コストで確実に改質ガスを循環させることが可能となる。 In this fuel cell system, the pressure of the hydrogen-containing fuel is reduced at the upstream side of the junction with the circulation passage in the supply passage by the first pressure reduction portion, and the suction pressure of the feed pump is changed from the reformer to the cell stack. The pressure is lower than the pressure of the reformed gas supplied. Therefore, a pressure difference is generated between the pressure on the inlet side and the pressure on the outlet side in the circulation channel so that the reformed gas circulates, and the reformed gas is supplied to the supply channel without providing a feed pump or the like in the circulation channel. Thus, it is reliably circulated to the upstream side of the feed pump by self-pressure. Therefore, the reformed gas can be reliably circulated at a low cost.
第1実施形態に係る燃料電池システムを示す概略ブロック図である。1 is a schematic block diagram showing a fuel cell system according to a first embodiment. 第2実施形態に係る燃料電池システムを示す概略ブロック図である。It is a schematic block diagram which shows the fuel cell system which concerns on 2nd Embodiment. 第3実施形態に係る燃料電池システムを示す概略ブロック図である。It is a schematic block diagram which shows the fuel cell system which concerns on 3rd Embodiment. 第4実施形態に係る燃料電池システムを示す概略ブロック図である。It is a schematic block diagram which shows the fuel cell system which concerns on 4th Embodiment.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
[第1実施形態]
 図1は、第1実施形態に係る燃料電池システムを示す概略ブロック図である。図1に示すように、燃料電池システム1は、脱硫器2と、改質器3と、セルスタック4と、を備えている。この燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック4にて発電を行う。燃料電池システム1におけるセルスタック4の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:PhosphoricAcid
Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。
[First Embodiment]
FIG. 1 is a schematic block diagram showing a fuel cell system according to the first embodiment. As shown in FIG. 1, the fuel cell system 1 includes a desulfurizer 2, a reformer 3, and a cell stack 4. The fuel cell system 1 generates power in the cell stack 4 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 4 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. Fuel cell (PAFC: PhosphoricAcid)
Fuel Cell), Molten Carbonate Fuel Cell (MCFC), and other types can be employed.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil.
 なお、アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 In addition, methanol and ethanol are mentioned as alcohols. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet. As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫器2は、改質器3に供給される水素含有燃料の脱硫を行う。脱硫器2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫器2では、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。なお、水素化脱硫方式に加えて、他の脱硫器2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式を併用してもよい。脱硫器2は、脱硫した水素含有燃料を改質器3へ供給する。 The desulfurizer 2 desulfurizes the hydrogen-containing fuel supplied to the reformer 3. The desulfurizer 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. The desulfurizer 2 employs a hydrodesulfurization method in which a sulfur compound is removed by reacting with hydrogen. In addition to the hydrodesulfurization system, as another desulfurization system of the desulfurizer 2, for example, an adsorptive desulfurization system that adsorbs and removes sulfur compounds may be used in combination. The desulfurizer 2 supplies the desulfurized hydrogen-containing fuel to the reformer 3.
 改質器3は、供給される水素含有燃料から水素リッチガス(水素含有ガス)としての改質ガスを発生させる。改質器3は、改質触媒を用いた改質反応により、水素含有燃料を改質して改質ガスを発生させる。改質器3での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、改質器3は、セルスタック4に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック4のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、改質器3は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。改質器3は、改質ガスをセルスタック4へ供給する。 The reformer 3 generates a reformed gas as a hydrogen-rich gas (hydrogen-containing gas) from the supplied hydrogen-containing fuel. The reformer 3 reforms the hydrogen-containing fuel and generates a reformed gas by a reforming reaction using a reforming catalyst. The reforming method in the reformer 3 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The reformer 3 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen-rich gas required for the cell stack 4. For example, when the type of the cell stack 4 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the reformer 3 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The reformer 3 supplies the reformed gas to the cell stack 4.
 セルスタック4は、改質器3からの改質ガス及び酸化剤を用いて発電を行う。このセルスタック4は、発電に用いられなかった改質ガス及び酸化剤をオフガスとして、後段の燃焼部(不図示)へ供給する。 The cell stack 4 generates power using the reformed gas and oxidant from the reformer 3. The cell stack 4 supplies a reformed gas and an oxidant that have not been used for power generation as off-gas to a subsequent combustion section (not shown).
 また、燃料電池システム1は、水素含有燃料供給流路R1と、改質ガス供給流路R2と、改質水供給流路R3と、循環流路R4と、を備えている。 Further, the fuel cell system 1 includes a hydrogen-containing fuel supply channel R1, a reformed gas supply channel R2, a reformed water supply channel R3, and a circulation channel R4.
 水素含有燃料供給流路R1は、少なくとも水素含有燃料を脱硫器2へ供給するための水素含有燃料供給ラインであり、脱硫器2に接続されている。この水素含有燃料供給流路R1には、圧送手段としてのフィードポンプPが設けられている。フィードポンプPは、後述の分岐部G1の上流に設けられ、セルスタック4へ供給する燃料流量を調整する。 The hydrogen-containing fuel supply flow path R <b> 1 is a hydrogen-containing fuel supply line for supplying at least a hydrogen-containing fuel to the desulfurizer 2, and is connected to the desulfurizer 2. The hydrogen-containing fuel supply flow path R1 is provided with a feed pump P as pressure feeding means. The feed pump P is provided upstream of a later-described branch portion G1, and adjusts the flow rate of fuel supplied to the cell stack 4.
 改質ガス供給流路R2は、改質器3からセルスタック4へ改質ガスを供給するための改質ガス供給ラインであり、改質器3及びセルスタック4に接続されている。改質水供給流路R3は、改質器3に改質水を水蒸気として供給するための改質水ラインであり、改質器3に接続されている。 The reformed gas supply flow path R2 is a reformed gas supply line for supplying reformed gas from the reformer 3 to the cell stack 4, and is connected to the reformer 3 and the cell stack 4. The reforming water supply flow path R <b> 3 is a reforming water line for supplying the reforming water as steam to the reformer 3, and is connected to the reformer 3.
 循環流路R4は、改質器3からセルスタック4へ供給される改質ガスの一部を、水素含有燃料供給流路R1のフィードポンプPの上流側へ循環するためのリサイクルラインである。循環流路R4は、改質ガス供給流路R2及び水素含有燃料供給流路R1のフィードポンプPの上流側に接続されている。ここでは、循環流路R4は、改質ガス供給流路R2の途中から分岐し(以下、分岐している部分を分岐部G1とする)、水素含有燃料供給流路R1のフィードポンプPの上流側に合流している(以下、合流している部分を合流部G2とする)。なお、この循環流路R4で循環する改質ガスは、例えば水素化脱硫のために、或いは、脱硫器2の触媒再生のために利用される。 The circulation flow path R4 is a recycle line for circulating a part of the reformed gas supplied from the reformer 3 to the cell stack 4 to the upstream side of the feed pump P of the hydrogen-containing fuel supply flow path R1. The circulation channel R4 is connected to the reformed gas supply channel R2 and the hydrogen-containing fuel supply channel R1 upstream of the feed pump P. Here, the circulation flow path R4 is branched from the middle of the reformed gas supply flow path R2 (hereinafter, the branched portion is referred to as a branch portion G1), and upstream of the feed pump P of the hydrogen-containing fuel supply flow path R1. (Hereinafter, the joined part is referred to as a joining part G2). Note that the reformed gas circulated in the circulation flow path R4 is used, for example, for hydrodesulfurization or for catalyst regeneration of the desulfurizer 2.
 改質水供給流路R3及び循環流路R4には、改質ガスから改質水へ熱を移動させる熱交換器6が設けられている。これにより、改質ガスの保有熱が利用されて改質水が加熱される。また、循環流路R4において熱交換器6の下流側には、循環流路R4を流通する改質ガスから生じる水(凝縮水)を回収し排水する排水回収ドレン7が設けられている。これにより、循環流路R4に流通する改質ガスと共に凝縮水がフィードポンプPに流入するのを抑制することができる。 The heat exchanger 6 for transferring heat from the reformed gas to the reformed water is provided in the reformed water supply channel R3 and the circulation channel R4. Thereby, the retained water of the reformed gas is utilized to heat the reformed water. Further, a drainage drain 7 for collecting and draining water (condensed water) generated from the reformed gas flowing through the circulation channel R4 is provided downstream of the heat exchanger 6 in the circulation channel R4. Thereby, it is possible to prevent the condensed water from flowing into the feed pump P together with the reformed gas flowing through the circulation flow path R4.
 また、水素含有燃料供給流路R1において循環流路R4との合流部G(合流部G2)よりも上流側には、差圧を発生させる毛細管であるキャピラリ等の第1圧力低下部8が設けられている。この第1圧力低下部8は、フィードポンプPの吸込圧力が改質器3からセルスタック4へ供給される改質ガスの圧力よりも低くなるように水素含有燃料の圧力を低下させる。第1圧力低下部8は限定されるものではなく、例えば第1圧力低下部8としては、第1圧力低下部8自体の入口圧力から予め定められる一定の圧力量を低下させるもの、第1圧力低下部8自体の入口圧力から低下させることができる圧力量を多段階で調整することができるもの、及び、第1圧力低下部8自体の入口圧力によらずそれ自体の出口圧力を予め定められた一定圧力値まで低下させるもの等を適宜選択することができる。例えば、キャピラリの他に、オリフィス、逆止弁、比例弁、減圧弁、ゼロガバナ等を用いることができる。 In addition, a first pressure reduction unit 8 such as a capillary that is a capillary for generating a differential pressure is provided on the upstream side of the merging portion G (merging portion G2) with the circulation channel R4 in the hydrogen-containing fuel supply channel R1. It has been. The first pressure reduction unit 8 reduces the pressure of the hydrogen-containing fuel so that the suction pressure of the feed pump P is lower than the pressure of the reformed gas supplied from the reformer 3 to the cell stack 4. The first pressure reduction unit 8 is not limited. For example, as the first pressure reduction unit 8, a first pressure reduction unit that reduces a predetermined amount of pressure from the inlet pressure of the first pressure reduction unit 8 itself. The amount of pressure that can be reduced from the inlet pressure of the lowering portion 8 itself can be adjusted in multiple stages, and the outlet pressure of the lowering portion 8 can be adjusted in advance regardless of the inlet pressure of the first pressure lowering portion 8 itself. What reduces to a certain fixed pressure value etc. can be selected suitably. For example, in addition to the capillary, an orifice, a check valve, a proportional valve, a pressure reducing valve, a zero governor, or the like can be used.
 また、循環流路R4において排水回収ドレン7と合流部G(合流部G2)との間には、差圧を発生させる毛細管であるキャピラリ等の第2圧力低下部9が設けられている。この第2圧力低下部9は、水素含有燃料供給流路R1へ循環する改質ガスの圧力を、当該改質ガスの流量が所定流量となるよう低下させる。循環流路R4における圧力低下量が十分であれば、第2圧力低下部9を省略することができるが、第2圧力低下部9を設けることにより、例えば燃料電池システム1の発電量の変動に基づき、フィードポンプPの吐出圧力が変動しても、より安定的に改質ガスを循環させることができる。例えば第2圧力低下部9としては、上記第1圧力低下部8と同様に、キャピラリの他に、オリフィス、逆止弁、比例弁、減圧弁、ゼロガバナ等を用いることができる。 In the circulation channel R4, a second pressure reduction unit 9 such as a capillary that is a capillary for generating a differential pressure is provided between the drainage recovery drain 7 and the junction G (junction G2). The second pressure reduction unit 9 reduces the pressure of the reformed gas circulating to the hydrogen-containing fuel supply channel R1 so that the flow rate of the reformed gas becomes a predetermined flow rate. If the pressure drop amount in the circulation flow path R4 is sufficient, the second pressure drop unit 9 can be omitted. However, by providing the second pressure drop unit 9, for example, fluctuations in the power generation amount of the fuel cell system 1 can be achieved. Based on this, even if the discharge pressure of the feed pump P fluctuates, the reformed gas can be circulated more stably. For example, as the second pressure reduction unit 9, similarly to the first pressure reduction unit 8, an orifice, a check valve, a proportional valve, a pressure reducing valve, a zero governor, and the like can be used in addition to the capillary.
 以上のように構成された燃料電池システム1では、まず、水素含有燃料供給流路R1において、例えば2.5kPaの圧力で流通する水素含有燃料の圧力が第1圧力低下部8により低下され、第1圧力低下部8の出口圧力は負圧(例えば、-5kPa)とされる。続いて、水素含有燃料が合流部G(合流部G2)を介して循環流路R4からの改質ガスと合流され、水素含有燃料及び改質ガスがフィードポンプPにより例えば5kPaの吐出圧で下流側へ圧送される。そしてその後、これら水素含有燃料及び改質ガスが脱硫器2に供給される。なお、上記において例示する圧力の数値は、ゲージ圧である(以下、同じ)。 In the fuel cell system 1 configured as described above, first, in the hydrogen-containing fuel supply flow path R1, for example, the pressure of the hydrogen-containing fuel flowing at a pressure of 2.5 kPa is reduced by the first pressure reducing unit 8, 1 The outlet pressure of the pressure drop unit 8 is a negative pressure (for example, −5 kPa). Subsequently, the hydrogen-containing fuel is merged with the reformed gas from the circulation flow path R4 via the merging portion G (merging portion G2), and the hydrogen-containing fuel and the reformed gas are downstream at a discharge pressure of, for example, 5 kPa by the feed pump P. Pumped to the side. Thereafter, these hydrogen-containing fuel and reformed gas are supplied to the desulfurizer 2. In addition, the numerical value of the pressure illustrated in the above is a gauge pressure (hereinafter the same).
 続いて、脱硫器2により水素含有燃料が脱硫された後、改質器3により水素含有燃料が改質されて改質ガスが発生される。また、脱硫器2及び改質器3での圧力損失により改質ガスの圧力は低下(例えば0.4kPa)する。続いて、改質ガス供給流路R2において、例えば0.4kPaの圧力の改質ガスがセルスタック4へ供給される。そして、セルスタック4から例えば0.1kPaの圧力のオフガスが発生される。 Subsequently, after the hydrogen-containing fuel is desulfurized by the desulfurizer 2, the hydrogen-containing fuel is reformed by the reformer 3 to generate a reformed gas. Further, the pressure of the reformed gas decreases (for example, 0.4 kPa) due to pressure loss in the desulfurizer 2 and the reformer 3. Subsequently, the reformed gas having a pressure of 0.4 kPa, for example, is supplied to the cell stack 4 in the reformed gas supply channel R2. Then, an off gas having a pressure of, for example, 0.1 kPa is generated from the cell stack 4.
 一方、改質ガス供給流路R2においては、改質器3からセルスタック4へ供給される改質ガスの一部(ここでは、改質器3からセルスタック4へ供給される改質ガスの約5%程度)が分岐部G1から循環流路R4に流入される。循環流路R4では、熱交換器6を介して改質ガスが改質水供給流路R3の改質水を加熱した後、排水回収ドレン7により改質ガス中の水が回収される。当該改質ガスは、流量が所定流量となるように第2圧力低下部9により圧力が低下され、そしてその後、前述のように、合流部Gを介して水素含有燃料供給流路R1の水素含有燃料に合流される。 On the other hand, in the reformed gas supply flow path R2, a part of the reformed gas supplied from the reformer 3 to the cell stack 4 (here, the reformed gas supplied from the reformer 3 to the cell stack 4). About 5%) flows from the branch part G1 into the circulation channel R4. In the circulation channel R4, the reformed gas heats the reformed water in the reformed water supply channel R3 via the heat exchanger 6, and then the water in the reformed gas is recovered by the drainage recovery drain 7. The reformed gas is reduced in pressure by the second pressure reduction unit 9 so that the flow rate becomes a predetermined flow rate, and then, as described above, the hydrogen-containing fuel supply flow path R1 contains hydrogen through the junction G. Joined with fuel.
 ここで、本実施形態では、上述したように、第1圧力低下部8により、水素含有燃料供給流路R1においてフィードポンプPに供給される水素含有燃料の圧力が低下されて、フィードポンプPの吸込圧力が改質器3から供給される改質ガスの圧力(0.4kPa)よりも低い負圧(-5kPa)とされている。具体的には、フィードポンプPの吸込圧力は、改質器3からセルスタック4へ供給される改質ガスの圧力から循環流路R4全体における圧力低下量を減じた値より小さい値とされる。よって、循環流路R4において、入口側の圧力と出口側の圧力とに圧力差を生じさせ、入口側から出口側に吸い込むようにして改質ガスを自圧で流通させることが可能となる。その結果、循環流路R4にフィードポンプ等の圧送手段を別途に設けなくとも、改質ガスが水素含有燃料供給流路R1へ確実且つ安定して循環されることとなる。 Here, in the present embodiment, as described above, the pressure of the hydrogen-containing fuel supplied to the feed pump P in the hydrogen-containing fuel supply flow path R1 is reduced by the first pressure reduction unit 8, and the feed pump P The suction pressure is set to a negative pressure (−5 kPa) lower than the pressure (0.4 kPa) of the reformed gas supplied from the reformer 3. Specifically, the suction pressure of the feed pump P is set to a value smaller than a value obtained by subtracting the pressure drop amount in the entire circulation flow path R4 from the pressure of the reformed gas supplied from the reformer 3 to the cell stack 4. . Therefore, in the circulation flow path R4, a pressure difference is generated between the pressure on the inlet side and the pressure on the outlet side, and the reformed gas can be circulated at its own pressure so as to be sucked from the inlet side to the outlet side. As a result, the reformed gas is reliably and stably circulated to the hydrogen-containing fuel supply flow path R1 without separately providing a pressure feeding means such as a feed pump in the circulation flow path R4.
 すなわち、本実施形態では、フィードポンプPの吸込ライン(上流)に第1圧力低下部8を配置し、フィードポンプPの吸込圧を負圧にしてから、セルスタック4に改質ガスが供給可能なフィードポンプ吐出圧力で水素含有燃料を圧送することで、改質器3からの改質ガスの圧力と、フィードポンプPによる水素含有燃料及び改質ガスの吸込圧との間に圧力差を人為的に作り出す。これにより、循環流路R4による改質ガスの循環が自圧で可能となる。従って、本実施形態によれば、低コストで確実に改質ガスを循環させることが可能となる。 That is, in the present embodiment, the first pressure drop unit 8 is arranged in the suction line (upstream) of the feed pump P, and the reformed gas can be supplied to the cell stack 4 after the suction pressure of the feed pump P is set to a negative pressure. The pressure difference between the pressure of the reformed gas from the reformer 3 and the suction pressure of the hydrogen-containing fuel and the reformed gas by the feed pump P is artificially generated by pumping the hydrogen-containing fuel at a feed pump discharge pressure. To produce. As a result, the reformed gas can be circulated through the circulation flow path R4 at its own pressure. Therefore, according to the present embodiment, it is possible to reliably circulate the reformed gas at a low cost.
 また、燃料電池システム1の運転制御の一つとして、電力需要の変化に応じて発電量を変化させる制御形態が知られている。この場合、発電量の増減に応じて必要とする水素含有燃料も増減する。すなわち、フィードポンプPの単位時間当たりの燃料吐出量が増減し、セルスタック4へ供給される改質ガス圧力も変動する。このような場合において、フィードポンプPの制御や圧力変化に応答の遅れが生じることがある。しかし、循環流路R4に第2圧力低下部を備えることにより、過渡的な圧力変動を低減し、安定的に循環流路R4に流れる改質ガスを循環できる。 In addition, as one of operation controls of the fuel cell system 1, a control mode is known in which the amount of power generation is changed in accordance with a change in power demand. In this case, the required hydrogen-containing fuel increases and decreases according to the increase and decrease of the power generation amount. That is, the fuel discharge amount per unit time of the feed pump P increases and decreases, and the reformed gas pressure supplied to the cell stack 4 also varies. In such a case, there may be a delay in response to control of the feed pump P or pressure change. However, by providing the second pressure drop unit in the circulation flow path R4, it is possible to reduce the transient pressure fluctuation and stably circulate the reformed gas flowing in the circulation flow path R4.
 なお、SOFCのセルスタック4の場合には、PEFCの場合に比べ、セルスタック4の圧力損失が小さいことからフィードポンプPの吸込圧力と改質器3からの改質ガスの圧力との圧力差が少なく、自圧で改質ガスの循環が容易でないため、本実施形態は、特にSOFCのセルスタック4の場合に有効なものといえる。 Note that the pressure difference between the suction pressure of the feed pump P and the pressure of the reformed gas from the reformer 3 is smaller in the case of the SOFC cell stack 4 than in the case of the PEFC because the pressure loss of the cell stack 4 is small. This embodiment is particularly effective in the case of the SOFC cell stack 4 because the reformed gas is not easily circulated by the self-pressure.
 また、本実施形態では、上述したように、改質水供給流路R3及び循環流路R4に熱交換器6が設けられ、改質ガスから改質水へ熱を移動させている。これにより、循環流路R4で循環する改質ガスの保有熱を、改質水で回収することが可能となる。 In this embodiment, as described above, the heat exchanger 6 is provided in the reforming water supply channel R3 and the circulation channel R4, and heat is transferred from the reformed gas to the reforming water. This makes it possible to recover the retained heat of the reformed gas circulated in the circulation channel R4 with the reformed water.
[第2実施形態]
 図2は、第2実施形態に係る燃料電池システムを示す概略ブロック図である。図2に示すように、第2実施形態の燃料電池システム200が上記第1実施形態(図1参照)と主に異なる点は、フィードポンプPが脱硫器2の下流側に設けられていると共に、熱交換部6が熱媒体により改質ガスを冷却する点である。ここでの熱交換部6は、循環流路R4に設けられており、熱媒体として例えば、水、空気、油等が流通される。熱媒体によって回収された熱は、例えば貯湯槽に蓄熱され、温水として利用することができる。なお、フィードポンプPは脱硫器2と改質器3との間に設けられているが、合流部G2の下流且つ分岐部G1の間に設けられていれば、改質ガスを循環させるために必要な圧力差を生じさせることができるためである。
[Second Embodiment]
FIG. 2 is a schematic block diagram showing a fuel cell system according to the second embodiment. As shown in FIG. 2, the fuel cell system 200 of the second embodiment is mainly different from the first embodiment (see FIG. 1) in that the feed pump P is provided on the downstream side of the desulfurizer 2. The heat exchange unit 6 cools the reformed gas with a heat medium. Here, the heat exchanging unit 6 is provided in the circulation flow path R4, and water, air, oil, and the like are circulated as a heat medium. The heat recovered by the heat medium is stored in, for example, a hot water tank and can be used as hot water. The feed pump P is provided between the desulfurizer 2 and the reformer 3. However, if the feed pump P is provided downstream of the merging portion G2 and between the branch portions G1, the feed pump P is used to circulate the reformed gas. This is because a necessary pressure difference can be generated.
 なお、本実施形態は、セルスタック4への供給圧力が比較的高い燃料電池システムにおいて、好適に実施することができる。分岐部G1の圧力が高ければ合流部G2の圧力も過剰に下げることなく改質ガスを循環させることができるため、フィードポンプPを脱硫器2の下流に設けても、良好な脱硫条件を保つことができるからである。 In addition, this embodiment can be suitably implemented in a fuel cell system in which the supply pressure to the cell stack 4 is relatively high. If the pressure of the branch part G1 is high, the reformed gas can be circulated without excessively reducing the pressure of the merge part G2, so that even if the feed pump P is provided downstream of the desulfurizer 2, good desulfurization conditions are maintained. Because it can.
[第3実施形態]
 図3は、第3実施形態に係る燃料電池システムを示す概略ブロック図である。図3に示すように、第3実施形態の燃料電池システム300は、上記第1実施形態(図1参照)に加えて、循環流路R4の第2圧力低下部9と合流部G2との間に逆流防止部11を備えており、排水回収ドレン7で除去された凝縮水が改質水として再利用される。
[Third Embodiment]
FIG. 3 is a schematic block diagram showing a fuel cell system according to the third embodiment. As shown in FIG. 3, the fuel cell system 300 according to the third embodiment is provided between the second pressure drop portion 9 and the merging portion G2 of the circulation flow path R4 in addition to the first embodiment (see FIG. 1). The condensate water removed by the drainage drain 7 is reused as reforming water.
 本実施形態は、セルスタック4へ供給される改質ガスの圧力がフィードポンプPの吸込圧力より大きくなるように、第1圧力低下部8によってフィードポンプPに供給される水素含有燃料の圧力を低下させるものであるが、例えば、水素含有燃料として例えば都市ガスを利用する場合においては、燃料電池システム300への水素含有燃料の供給圧力が変動すると、合流部G2の圧力が分岐部G1の圧力より過渡的に高くなる場合がある。この場合、脱硫や改質等の燃料処理が施されていない状態の水素含有燃料がセルスタック4に供給されることになる。このように処理が不十分の水素含有燃料がセルスタック4に供給されると、セルスタック4の寿命低下に繋がる。そこで、循環流路R4が逆流防止部11を備えることにより、未処理の水素含有燃料がセルスタック4に供給されることを抑制できる。 In the present embodiment, the pressure of the hydrogen-containing fuel supplied to the feed pump P by the first pressure reduction unit 8 is set so that the pressure of the reformed gas supplied to the cell stack 4 becomes larger than the suction pressure of the feed pump P. For example, in the case where city gas is used as the hydrogen-containing fuel, for example, when the supply pressure of the hydrogen-containing fuel to the fuel cell system 300 fluctuates, the pressure at the junction G2 changes to the pressure at the branch G1. May be more transiently high. In this case, hydrogen-containing fuel that has not been subjected to fuel treatment such as desulfurization or reforming is supplied to the cell stack 4. When the hydrogen-containing fuel that is insufficiently processed is supplied to the cell stack 4 as described above, the life of the cell stack 4 is reduced. Therefore, the circulation flow path R <b> 4 includes the backflow prevention unit 11, whereby supply of untreated hydrogen-containing fuel to the cell stack 4 can be suppressed.
 なお、本実施形態においては、逆流防止部11を第2圧力低下部9と合流部G2の間に配置したが、循環流路R4上であればどこに配置してもよい。例えば、図3のように、循環流路R4が排水回収ドレン7を備え、その除去された凝縮水を改質水として再利用するシステムでは、逆流防止部11を排水回収ドレン7の下流に設けることが好ましい。これにより、未処理の水素含有燃料に触れて硫黄化合物を含有した凝縮水が改質水に混入することを抑制でき、ひいては、硫黄化合物が改質器3を経てセルスタック4に供給されることによるセルスタック4の寿命低下を抑制できる。 In addition, in this embodiment, although the backflow prevention part 11 was arrange | positioned between the 2nd pressure fall part 9 and the confluence | merging part G2, as long as it is on the circulation flow path R4, it may arrange | position anywhere. For example, as shown in FIG. 3, in the system in which the circulation flow path R4 includes the drainage recovery drain 7 and the removed condensed water is reused as reformed water, the backflow prevention unit 11 is provided downstream of the drainage recovery drain 7. It is preferable. Thereby, it can suppress that the condensed water containing a sulfur compound touches an untreated hydrogen-containing fuel and mixes in reformed water, and that sulfur compound is supplied to the cell stack 4 via the reformer 3 by extension. It is possible to suppress a decrease in the life of the cell stack 4 due to the above.
 ちなみに、図3に示す実施形態では、第2圧力低下部9を省略することもできる。また、第2圧力低下部9、又は、逆流防止部11として逆止弁を用いる場合、クラッキング圧力を調整することで任意の圧力差を発生させることができるため、圧力低下機能と逆流防止機能とを逆流防止部11、又は、第2圧力低下部9で兼ねることができる。 Incidentally, in the embodiment shown in FIG. 3, the second pressure drop unit 9 can be omitted. In addition, when a check valve is used as the second pressure drop unit 9 or the backflow prevention unit 11, any pressure difference can be generated by adjusting the cracking pressure. Can also serve as the backflow prevention unit 11 or the second pressure reduction unit 9.
[第4実施形態]
 図4は、第4実施形態に係る燃料電池システムを示す概略ブロック図である。第4実施形態の燃料電池システム400は、上記第1実施形態(図1参照)に加えて、フィードポンプ吸込圧力を測定する圧力測定部12と、第1圧力低下部を操作する制御部13と、改質水を貯留する改質水タンク14と、を更に備えている。また、第1圧力低下部8として、比例弁8aを用いている。
[Fourth Embodiment]
FIG. 4 is a schematic block diagram showing a fuel cell system according to the fourth embodiment. In addition to the first embodiment (see FIG. 1), the fuel cell system 400 of the fourth embodiment includes a pressure measurement unit 12 that measures the feed pump suction pressure, and a control unit 13 that operates the first pressure reduction unit. And a reforming water tank 14 for storing the reforming water. In addition, a proportional valve 8a is used as the first pressure drop unit 8.
 制御部13は、圧力測定部12によってフィードポンプPの吸込圧力を測定する。制御部13は、測定されたフィードポンプPの吸込圧力が、予め定めたフィードポンプPの基準吸込圧力範囲であるか否かを比較する。吸込圧力が吸込基準圧力範囲より小さい場合、制御部13は、比例弁8aの開度を上げて圧力低下量を少なくするように当該比例弁8aを制御する。一方、吸込圧力が吸込基準圧力範囲より大きい場合、制御部13は、比例弁8aの開度を下げて圧力低下量を多くするように当該比例弁8aを制御する。これにより、フィードポンプPの吸込圧力を、予め定めた吸込圧力範囲において安定的に保つことができるため、改質ガスの一部を安定的に循環させることができる。改質タンク14は、導入された改質水及び排水回収ドレン7で回収した改質水を貯留すると共に、当該改質水を熱交換器6へ供給する。 The control unit 13 measures the suction pressure of the feed pump P by the pressure measurement unit 12. The control unit 13 compares whether or not the measured suction pressure of the feed pump P is within a predetermined reference suction pressure range of the feed pump P. When the suction pressure is smaller than the suction reference pressure range, the control unit 13 controls the proportional valve 8a so as to increase the opening degree of the proportional valve 8a to reduce the pressure drop amount. On the other hand, when the suction pressure is larger than the suction reference pressure range, the control unit 13 controls the proportional valve 8a so as to increase the pressure drop amount by decreasing the opening degree of the proportional valve 8a. Thereby, since the suction pressure of the feed pump P can be stably maintained within a predetermined suction pressure range, a part of the reformed gas can be circulated stably. The reforming tank 14 stores the introduced reforming water and the reforming water recovered by the drainage recovery drain 7 and supplies the reforming water to the heat exchanger 6.
 なお、図4に示す実施形態においては、フィードポンプPの吸込圧力に応じて第1圧力低下部8の圧力低下量を増減させる例を示したが、第2圧力低下部9の圧力低下量を増減させてもよい。例えば、循環させた改質ガスを脱硫器2内の触媒再生に利用する場合には、再生に適した循環量で改質ガスを循環させることができる。 In the embodiment shown in FIG. 4, the example in which the pressure decrease amount of the first pressure decrease unit 8 is increased or decreased according to the suction pressure of the feed pump P is shown, but the pressure decrease amount of the second pressure decrease unit 9 is changed. It may be increased or decreased. For example, when the circulated reformed gas is used for catalyst regeneration in the desulfurizer 2, the reformed gas can be circulated with a circulation amount suitable for regeneration.
 以上、好適な実施形態について説明したが、本発明は上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。 The preferred embodiments have been described above. However, the present invention is not limited to the above-described embodiments, and may be modified without changing the gist described in each claim or applied to other embodiments. Also good.
 例えば、上記実施形態では、好ましいとして、フィードポンプPに供給される水素含有燃料の圧力を第1圧力低下部8により負圧に低下させたが、負圧まで低下させなくとも、改質器3からセルスタック4へ供給される改質ガスの圧力よりもフィードポンプPの吸込圧力が低くなるように低下させればよい。 For example, in the above-described embodiment, it is preferable that the pressure of the hydrogen-containing fuel supplied to the feed pump P is reduced to the negative pressure by the first pressure reduction unit 8, but the reformer 3 does not have to be reduced to the negative pressure. The suction pressure of the feed pump P may be lowered to be lower than the pressure of the reformed gas supplied to the cell stack 4.
 なお、上記においては、第1圧力低下部8の出口圧力、循環流路R4の合流部G2の圧力、及びフィードポンプPの吸込圧力を、一領域の圧力であるとして便宜的に同じ圧力とみなして説明し、また、改質器3の出口圧力、セルスタック4に供給される改質ガスの供給圧力、及び循環流路R4の分岐部の圧力を、他の一領域の圧力であるとして便宜的に同じ圧力とみなして説明したが、これらの間に実施可能な程度の圧力勾配があってもよい。また、上記において、フィードポンプPの吸込圧力とした値については、便宜上もしくは事実上(取扱い上)等の観点から、第1圧力低下部8の出口圧力の値、又は循環流路R4の合流部G2の圧力の値を用いることもできる。 In the above description, the outlet pressure of the first pressure drop unit 8, the pressure of the junction G2 of the circulation flow path R4, and the suction pressure of the feed pump P are regarded as the same pressure for the sake of convenience. In addition, the outlet pressure of the reformer 3, the supply pressure of the reformed gas supplied to the cell stack 4, and the pressure of the branching portion of the circulation flow path R4 are assumed to be pressures in another region. However, there may be a pressure gradient that can be implemented between them. In the above description, the value of the suction pressure of the feed pump P is the value of the outlet pressure of the first pressure drop unit 8 or the junction of the circulation flow path R4 from the viewpoint of convenience or practical (handling). The pressure value of G2 can also be used.
 本発明によれば、低コストで確実に改質ガスを循環させることが可能となる。 According to the present invention, the reformed gas can be reliably circulated at a low cost.
 1,200,300,400…燃料電池システム、2…脱硫器、3…改質器、4…セルスタック、6…熱交換器、8…第1圧力低下部、8a…比例弁(第1圧力低下部)、9…第2圧力低下部、R1…水素含有燃料供給流路、R3…改質水供給流路、R4…循環流路、P…フィードポンプ、G1…循環流路分岐部、G2…循環流路合流部。 DESCRIPTION OF SYMBOLS 1,200,300,400 ... Fuel cell system, 2 ... Desulfurizer, 3 ... Reformer, 4 ... Cell stack, 6 ... Heat exchanger, 8 ... 1st pressure reduction part, 8a ... Proportional valve (1st pressure 9) 2nd pressure drop part, R1 ... Hydrogen-containing fuel supply flow path, R3 ... Reformed water supply flow path, R4 ... Circulation flow path, P ... Feed pump, G1 ... Circulation flow path branching part, G2 ... circulation channel junction.

Claims (10)

  1.  水素含有燃料を用いて改質ガスを発生させる改質器と、
     前記改質ガスを用いて発電を行うセルスタックと、
     前記改質器に供給される前記水素含有燃料の脱硫を行う脱硫器と、
     前記水素含有燃料を前記脱硫器へ供給するための水素含有燃料供給流路と、
     前記脱硫器の上流側又は下流側に設けられ、前記水素含有燃料を圧送するフィードポンプと、
     前記改質器から前記セルスタックへ供給される前記改質ガスの一部を、前記水素含有燃料供給流路の前記脱硫器及び前記フィードポンプの上流側へ循環するための循環流路と、
     前記水素含有燃料供給流路において前記循環流路との合流部より上流側に設けられ、前記フィードポンプの吸込圧力が前記改質器から前記セルスタックへ供給される前記改質ガスの圧力よりも低くなるように、前記フィードポンプに供給される前記水素含有燃料の圧力を低下させる第1圧力低下部と、を備えた燃料電池システム。
    A reformer that generates reformed gas using hydrogen-containing fuel;
    A cell stack for generating power using the reformed gas;
    A desulfurizer for desulfurizing the hydrogen-containing fuel supplied to the reformer;
    A hydrogen-containing fuel supply channel for supplying the hydrogen-containing fuel to the desulfurizer;
    A feed pump that is provided upstream or downstream of the desulfurizer and pumps the hydrogen-containing fuel;
    A circulation flow path for circulating a part of the reformed gas supplied from the reformer to the cell stack to the upstream side of the desulfurizer and the feed pump of the hydrogen-containing fuel supply flow path;
    The hydrogen-containing fuel supply flow path is provided upstream of the junction with the circulation flow path, and the suction pressure of the feed pump is higher than the pressure of the reformed gas supplied from the reformer to the cell stack. A fuel cell system comprising: a first pressure reduction unit that reduces the pressure of the hydrogen-containing fuel supplied to the feed pump so as to be low.
  2.  前記脱硫器は、前記合流部の下流、且つ、前記改質器から前記セルスタックへ前記改質ガスを供給する改質ガス供給流路から前記循環流路へ前記改質ガスの一部を分岐させる分岐部の上流にある請求項1記載の燃料電池システム。 The desulfurizer branches a part of the reformed gas from a reformed gas supply channel for supplying the reformed gas from the reformer to the cell stack downstream from the junction and from the reformer gas to the circulation channel. The fuel cell system according to claim 1, wherein the fuel cell system is upstream of the branching section.
  3.  前記フィードポンプは、前記水素含有燃料供給流路において前記脱硫器の上流側に設けられ、前記脱硫器に前記水素含有燃料を供給する請求項1又は2記載の燃料電池システム。 The fuel cell system according to claim 1 or 2, wherein the feed pump is provided upstream of the desulfurizer in the hydrogen-containing fuel supply flow path, and supplies the hydrogen-containing fuel to the desulfurizer.
  4.  前記フィードポンプの吸込圧力は、前記改質器から前記セルスタックへ供給される前記改質ガスの圧力から、前記循環流路の圧力低下量を減じた値より小さい請求項1~3の何れか一項記載の燃料電池システム。 4. The suction pressure of the feed pump is smaller than a value obtained by subtracting the pressure drop amount of the circulation flow path from the pressure of the reformed gas supplied from the reformer to the cell stack. The fuel cell system according to one item.
  5.  前記循環流路には、前記水素含有燃料供給流路へ循環する前記改質ガスの流量が所定流量となるように前記改質ガスの圧力を低下させる第2圧力低下部が設けられている請求項1~4の何れか一項記載の燃料電池システム。 The circulation channel is provided with a second pressure reduction unit that reduces the pressure of the reformed gas so that the flow rate of the reformed gas circulating to the hydrogen-containing fuel supply channel becomes a predetermined flow rate. Item 5. The fuel cell system according to any one of Items 1 to 4.
  6.  前記第1及び第2圧力低下部の少なくとも一方は、圧力低下量が可変である請求項5記載の燃料電池システム。 6. The fuel cell system according to claim 5, wherein at least one of the first and second pressure drop portions has a variable pressure drop amount.
  7.  前記フィードポンプの吸込圧力を測定する圧力測定部をさらに備え、
     前記フィードポンプの吸込圧力に応じて前記第1及び第2圧力低下部の少なくとも一方における圧力低下量を変更する請求項6に記載の燃料電池システム。
    A pressure measuring unit for measuring the suction pressure of the feed pump;
    The fuel cell system according to claim 6, wherein a pressure drop amount in at least one of the first and second pressure drop portions is changed according to a suction pressure of the feed pump.
  8.  前記循環流路は、逆流防止部をさらに備えた請求項1~7の何れか一項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 7, wherein the circulation flow path further includes a backflow prevention unit.
  9.  前記改質器に改質水を水蒸気として供給するための改質水供給流路を備え、
     前記循環流路及び前記改質水供給流路には、前記改質ガスから前記改質水へ熱を移動させる熱交換器が設けられている請求項1~8の何れか一項記載の燃料電池システム。
    A reforming water supply channel for supplying reforming water as steam to the reformer;
    The fuel according to any one of claims 1 to 8, wherein a heat exchanger for transferring heat from the reformed gas to the reformed water is provided in the circulation channel and the reformed water supply channel. Battery system.
  10.  前記循環流路は、前記水素含有燃料供給流路へ循環する前記改質ガスから生じる凝縮水を除去する排水回収ドレンをさらに備えた請求項1~9の何れか一項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 9, wherein the circulation channel further includes a waste water recovery drain for removing condensed water generated from the reformed gas that circulates to the hydrogen-containing fuel supply channel. .
PCT/JP2012/057628 2011-03-24 2012-03-23 Fuel-cell system WO2012128369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013506045A JPWO2012128369A1 (en) 2011-03-24 2012-03-23 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-065901 2011-03-24
JP2011065901 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012128369A1 true WO2012128369A1 (en) 2012-09-27

Family

ID=46879506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057628 WO2012128369A1 (en) 2011-03-24 2012-03-23 Fuel-cell system

Country Status (2)

Country Link
JP (1) JPWO2012128369A1 (en)
WO (1) WO2012128369A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225411A (en) * 2012-04-20 2013-10-31 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
WO2014083794A1 (en) * 2012-11-29 2014-06-05 パナソニック株式会社 Fuel cell system
JP2016012487A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016012486A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016012485A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016207378A (en) * 2015-04-20 2016-12-08 パナソニックIpマネジメント株式会社 Method of operating solid oxide type fuel battery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320761A (en) * 1994-05-25 1995-12-08 Toshiba Corp Fuel cell power generation plant
JPH0822831A (en) * 1994-07-08 1996-01-23 Mitsubishi Electric Corp Fuel cell power generating device
JP2002097001A (en) * 2000-09-25 2002-04-02 Sanyo Electric Co Ltd Fuel gas reformer and fuel-cell system
JP2008004467A (en) * 2006-06-26 2008-01-10 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2008140686A (en) * 2006-12-04 2008-06-19 Toshiba Corp Fuel cell power generation device and its control method
JP2011216308A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Solid oxide fuel battery system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145732A (en) * 1997-07-25 1999-02-16 Toshiba Corp Fuel cell power generating device
JP4931865B2 (en) * 2001-03-28 2012-05-16 大阪瓦斯株式会社 Solid polymer fuel cell power generation system and solid polymer fuel cell power generation method
JP4346843B2 (en) * 2001-11-08 2009-10-21 パナソニック株式会社 Fuel gas generator and fuel cell system
JP4098332B2 (en) * 2006-02-15 2008-06-11 アイシン精機株式会社 Reformer and fuel cell system
JP2008103279A (en) * 2006-10-20 2008-05-01 Aisin Seiki Co Ltd Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320761A (en) * 1994-05-25 1995-12-08 Toshiba Corp Fuel cell power generation plant
JPH0822831A (en) * 1994-07-08 1996-01-23 Mitsubishi Electric Corp Fuel cell power generating device
JP2002097001A (en) * 2000-09-25 2002-04-02 Sanyo Electric Co Ltd Fuel gas reformer and fuel-cell system
JP2008004467A (en) * 2006-06-26 2008-01-10 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2008140686A (en) * 2006-12-04 2008-06-19 Toshiba Corp Fuel cell power generation device and its control method
JP2011216308A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Solid oxide fuel battery system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225411A (en) * 2012-04-20 2013-10-31 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
WO2014083794A1 (en) * 2012-11-29 2014-06-05 パナソニック株式会社 Fuel cell system
US9478817B2 (en) 2012-11-29 2016-10-25 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
JP2016012487A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016012486A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016012485A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016207378A (en) * 2015-04-20 2016-12-08 パナソニックIpマネジメント株式会社 Method of operating solid oxide type fuel battery system

Also Published As

Publication number Publication date
JPWO2012128369A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2012128369A1 (en) Fuel-cell system
WO2012091096A1 (en) Fuel cell system
JP5852011B2 (en) Fuel cell system
US20130316257A1 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
WO2012091121A1 (en) Fuel cell system
JP2012250876A (en) Hydrogen generator and fuel cell system
JP2015179582A (en) Fuel battery system
JP5782458B2 (en) Fuel cell system
US20090068510A1 (en) Fuel cell system and method of operating the fuel cell system
WO2012090875A1 (en) Fuel cell system and desulfurization device
JP5738319B2 (en) Fuel cell system
JP2014135149A (en) Fuel battery system
JP2016132592A (en) Hydrogen generator and fuel cell system
JP2014139125A (en) Hydrogen generation apparatus and fuel cell system
JPWO2012091120A1 (en) Fuel cell system
JP5686592B2 (en) Fuel cell system
WO2012091131A1 (en) Fuel cell system
WO2012091132A1 (en) Fuel cell system
WO2012091094A1 (en) Fuel cell system
JP2016119151A (en) Fuel cell system and operation method of fuel cell system
JP2014070013A (en) Hydrogen generator and fuel cell system
JP5400425B2 (en) Hydrogen production apparatus and fuel cell system
JP5248067B2 (en) Fuel cell system
JP2015191785A (en) reformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761391

Country of ref document: EP

Kind code of ref document: A1