WO2012128320A1 - ゴム組成物及び空気入りタイヤ - Google Patents

ゴム組成物及び空気入りタイヤ Download PDF

Info

Publication number
WO2012128320A1
WO2012128320A1 PCT/JP2012/057344 JP2012057344W WO2012128320A1 WO 2012128320 A1 WO2012128320 A1 WO 2012128320A1 JP 2012057344 W JP2012057344 W JP 2012057344W WO 2012128320 A1 WO2012128320 A1 WO 2012128320A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
atom
formula
Prior art date
Application number
PCT/JP2012/057344
Other languages
English (en)
French (fr)
Inventor
鉄也 國澤
剛史 土田
上坂 憲市
津森 勇
鈴可 大竹
岡部 昇
大村 直也
健宏 田中
隆文 田口
顕哉 渡邊
融 飯塚
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011064575A external-priority patent/JP5623946B2/ja
Priority claimed from JP2011064576A external-priority patent/JP5623947B2/ja
Priority claimed from JP2011096563A external-priority patent/JP5628735B2/ja
Priority claimed from JP2011118354A external-priority patent/JP5628744B2/ja
Priority claimed from JP2011150305A external-priority patent/JP5628758B2/ja
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201280015296.3A priority Critical patent/CN103443191B/zh
Priority to EP12760492.4A priority patent/EP2679628B1/en
Priority to BR112013024425A priority patent/BR112013024425A2/pt
Priority to US13/980,594 priority patent/US9012560B2/en
Publication of WO2012128320A1 publication Critical patent/WO2012128320A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition and a pneumatic tire produced using the rubber composition.
  • a rubber composition for an automobile tire a rubber composition containing a conjugated diene polymer such as polybutadiene or butadiene-styrene copolymer and a filler such as carbon black or silica is used.
  • Patent Document 1 proposes a method using a diene rubber modified with an organosilicon compound containing an amino group and an alkoxy group.
  • the performance required for rubber compositions for automobile tires includes wet grip performance and wear resistance, but these performances generally have a contradiction to low fuel consumption, and each performance is It was difficult to obtain a high dimension and good balance.
  • silica-containing rubber compositions are used not only for treads but also for various members.
  • silica has hydrophilic silanol groups on its surface, it has lower affinity with rubber (especially natural rubber, butadiene rubber, styrene butadiene rubber, etc. often used for tires) and wear resistance compared to carbon black. And mechanical strength (tensile strength and elongation at break) are often inferior.
  • silica having a high reinforcing property generally has low dispersibility in the rubber composition, and therefore there are cases where the wear resistance and mechanical strength cannot be improved so much and these properties may be deteriorated.
  • silane coupling agents such as bis (3-triethoxysilylpropyl) disulfide and bis (3-triethoxysilylpropyl) tetrasulfide, which are widely used in conventional tire rubber compositions, greatly increase the dispersibility of silica. Improve and give good mechanical properties.
  • silane coupling agent since a large amount of silane coupling agent is required to disperse highly reinforcing silica well, the cost is greatly increased and good dispersion can be obtained even if it is sufficiently added. Sometimes it is not.
  • a silane coupling agent having a mercapto group has been proposed as a coupling agent having a higher reactivity than the above-described coupling agents used conventionally (see, for example, Patent Document 2).
  • Such a silane coupling agent has high reactivity due to its high reactivity, but since the scorch time is considerably shortened, it is difficult to put it to practical use in the tire industry, and is hardly used at present.
  • Patent Document 3 discloses a rubber composition for a tire that can improve the wet grip performance without deteriorating rolling resistance and wear resistance by blending silica, but these performances are improved in a well-balanced manner. However, there is still room for improvement.
  • An object of the present invention is to solve the above-mentioned problems and to provide a rubber composition that can improve fuel economy, wet grip performance, and wear resistance in a well-balanced manner, and a pneumatic tire using the same.
  • the present invention contains a rubber component, silica and a silane coupling agent, and has a structural unit based on a conjugated diene and a structural unit represented by the following formula (I) among 100% by mass of the rubber component,
  • At least one end of the polymer is modified with at least one compound selected from the group consisting of a silicon compound having a group represented by (VI) and a compound having a group represented by the following formula (VII):
  • a rubber composition in which the content of the conjugated diene polymer is 5% by mass or more, the content of the silica is 5 to 150 parts by mass with respect to 100 parts by mass of the rubber component, and the silane coupling agent has a mercapto group.
  • X 1 , X 2 and X 3 each independently represent a group represented by the following formula (Ia), a hydroxyl group, a hydrocarbyl group or a substituted hydrocarbyl group, and at least one of X 1 , X 2 and X 3 One is a group or a hydroxyl group represented by the following formula (Ia).
  • R 1 and R 2 each independently represent a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having a carbon number of 1-6, a silyl group, or a substituted silyl group, R 1 and R 2 may be bonded to form a ring structure with the nitrogen atom.
  • n represents an integer of 1 to 10
  • R 11 , R 12 and R 13 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms. Wherein at least one of R 11 , R 12 and R 13 is a hydrocarbyloxy group, and A 1 represents a functional group having a nitrogen atom.
  • p represents an integer of 0 or 1
  • T represents a hydrocarbylene group having 1 to 20 carbon atoms or a substituted hydrocarbylene group having 1 to 20 carbon atoms
  • a 2 represents nitrogen.
  • a functional group having an atom is represented.
  • R 21 represents a hydrogen atom, a hydrocarbyl group having 1 to 6 carbon atoms or a substituted hydrocarbyl group having 1 to 6 carbon atoms
  • a 3 represents Represents an oxygen atom or —NR 22 — group (R 22 represents a hydrogen atom or a hydrocarbyl group having 1 to 10 carbon atoms)
  • a 4 represents a functional group having a nitrogen atom and / or an oxygen atom.
  • w represents an integer of 1 to 11
  • a 5 represents a functional group having a nitrogen atom.
  • R 1 and R 2 in formula (Ia) are preferably hydrocarbyl groups having 1 to 6 carbon atoms.
  • Two of X 1 , X 2 and X 3 in the formula (I) are preferably a group or a hydroxyl group represented by the formula (Ia).
  • a 1 in formula (II) is preferably a group represented by the following formula (IIa).
  • R 14 and R 15 each independently have 1 to 6 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 14 and R 15 may be bonded to form a ring structure with the nitrogen atom, and R 14 and R 15 may be the same group bonded to the nitrogen by a double bond.
  • the group represented by the formula (III) is preferably a group represented by the following formula (IIIa).
  • a compound having a group represented by the formula (III) is represented by a compound represented by the following formula (IIIa-1), a compound represented by the following formula (IIIa-2), and the following formula (IIIa-3):
  • the compound is at least one compound selected from the group consisting of the following compounds.
  • R 31 represents a hydrogen atom, a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, or a heterocycle having a nitrogen atom and / or an oxygen atom as a hetero atom.
  • Each of R 32 and R 33 independently has 1 to 10 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 32 and R 33 may be bonded to form a ring structure with the nitrogen atom, and R 32 and R 33 may be the same group bonded to the nitrogen by a double bond.
  • e represents an integer of 0 to 10
  • R 34 and R 35 each independently represents a hydrocarbyl group having 1 to 20 carbon atoms or a substituted hydrocarbyl group having 1 to 20 carbon atoms.
  • R 36 represents a hydrocarbyl group having 1 to 20 carbon atoms or a substituted hydrocarbyl group having 1 to 20 carbon atoms.
  • the compound having a group represented by the formula (III) is preferably a compound represented by the following formula (IIIb-1).
  • R 37 represents a hydrogen atom, a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, or a heterocycle having a nitrogen atom and / or an oxygen atom as a hetero atom.
  • R 38 and R 39 each independently have 1 to 10 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 38 and R 39 may be bonded to form a ring structure together with the nitrogen atom, R 38 and R 39 may be the same group bonded to the nitrogen by a double bond, and T Represents a hydrocarbylene group having 1 to 20 carbon atoms or a substituted hydrocarbylene group having 1 to 20 carbon atoms.
  • the compound represented by the formula (IIIb-1) is at least selected from the group consisting of a compound represented by the following formula (IIIb-1-1) and a compound represented by the following formula (IIIb-1-2):
  • a single compound is preferred.
  • r denotes an integer of 1 or 2
  • Y 1 is a substituent on the benzene ring, represents a functional group having a nitrogen atom, if Y 1 is more, a plurality of Y 1 are the same But it can be different.
  • s represents an integer of 1 or 2
  • t represents an integer of 0 to 2
  • Y 2 and Y 3 represent substituents on the benzene ring and represent a functional group having a nitrogen atom, If the Y 2 there is a plurality, Y 2 there are a plurality of, may be the same or different, if Y 3 is more, plural Y 3 may be the same or different.
  • a 4 in the formula (IV) is preferably a group or a hydroxyl group represented by the following formula (IVa).
  • R 23 and R 24 each independently have 1 to 6 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 23 and R 24 may be bonded to form a ring structure together with a nitrogen atom, and R 23 and R 24 may be the same group bonded to nitrogen by a double bond.
  • the silicon compound has a group represented by the following formula (VIII).
  • R 41, R 42 and R 43 each independently carbon atoms is a hydrocarbyl group or a number of carbon atoms of 1 to 4 represent hydrocarbyl group of 1 to 4, R 41, R 42 and R At least one of 43 is a hydrocarbyloxy group.
  • the silicon compound has a group represented by the following formula (Va). [Wherein, h represents an integer of 1 to 10, and R 44 , R 45 and R 46 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms. And at least one of R 44 , R 45 and R 46 is a hydrocarbyloxy group. ]
  • the compound having a group represented by the formula (VII) is preferably a compound represented by the following formula (VII-1).
  • z represents an integer of 0 to 10
  • R 71 represents a hydrocarbyl group having 1 to 5 carbon atoms
  • R 72 , R 73 , R 74 and R 75 each independently represent a hydrogen atom
  • a hydrocarbyl group having 1 to 5 carbon atoms, a substituted hydrocarbyl group having 1 to 5 carbon atoms, or a hydrocarbyloxy group having 1 to 5 carbon atoms, and a plurality of R 72 and R 73 are present.
  • R 72 and a plurality of R 73 may be the same or different, and R 76 and R 77 are each independently at least one selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom. atom represent good number of carbon atoms even if the groups 1-6 has, R 76 and R 77 may form a ring structure with a nitrogen atom bonded to, R 76 and R 77 is a nitrogen With double bond It may be the same group if. ]
  • R 74 and R 75 in formula (VII-1) is preferably a hydrogen atom.
  • the vinyl bond content of the conjugated diene polymer is preferably 10 mol% or more and 80 mol% or less, with the content of structural units based on the conjugated diene being 100 mol%.
  • the rubber composition preferably contains natural rubber and / or butadiene rubber.
  • Silica has a nitrogen adsorption specific surface area of preferably 40 to 400 m 2 / g.
  • the silane coupling agent is a compound containing a compound represented by the following formula (1) and / or a binding unit A represented by the following formula (2) and a binding unit B represented by the following formula (3).
  • R 101 to R 103 each represents a branched or unbranched alkyl group having 1 to 12 carbon atoms, a branched or unbranched alkoxy group having 1 to 12 carbon atoms, or —O— (R 111 — O) b -R 112
  • b R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms.
  • the b R 111 may be the same or different.
  • R 112 is a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • B represents an integer of 1 to 30).
  • R 101 to R 103 may be the same or different.
  • R 104 represents a branched or unbranched alkylene group having 1 to 6 carbon atoms.
  • R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched. Represents an alkynyl group having 2 to 30 carbon atoms, or a group in which hydrogen at the terminal of the alkyl group is substituted with a hydroxyl group or a carboxyl group.
  • R 202 represents a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, or a branched or unbranched alkynylene group having 2 to 30 carbon atoms.
  • R 201 and R 202 may form a ring structure.
  • the rubber composition is preferably used as a tread rubber composition.
  • the present invention also relates to a pneumatic tire produced using the rubber composition.
  • the present invention since it is a rubber composition in which a specific conjugated diene polymer, silica, and a silane coupling agent having a mercapto group (mercapto silane coupling agent) are blended, low fuel consumption, wet A pneumatic tire with improved grip performance and wear resistance in a well-balanced manner can be provided.
  • the rubber composition of the present invention has a structural unit based on a conjugated diene and a structural unit represented by the following formula (I), a compound represented by the following formula (II), and represented by the following formula (III): A compound having a group, a compound represented by the following formula (IV), a silicon compound having a group represented by the following formula (V) and / or a group represented by the following formula (VI), and the following formula (VII): A conjugated diene polymer in which at least one end of the polymer is modified with at least one compound selected from the group consisting of compounds having a group represented by formula (I), silica, and a mercapto silane coupling agent. .
  • X 1 , X 2 and X 3 each independently represent a group represented by the following formula (Ia), a hydroxyl group, a hydrocarbyl group or a substituted hydrocarbyl group, and at least one of X 1 , X 2 and X 3 One is a group or a hydroxyl group represented by the following formula (Ia).
  • R 1 and R 2 each independently represent a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having a carbon number of 1-6, a silyl group, or a substituted silyl group, R 1 and R 2 may be bonded to form a ring structure with the nitrogen atom.
  • n represents an integer of 1 to 10
  • R 11 , R 12 and R 13 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms. Wherein at least one of R 11 , R 12 and R 13 is a hydrocarbyloxy group, and A 1 represents a functional group having a nitrogen atom.
  • p represents an integer of 0 or 1
  • T represents a hydrocarbylene group having 1 to 20 carbon atoms or a substituted hydrocarbylene group having 1 to 20 carbon atoms
  • a 2 represents nitrogen.
  • a functional group having an atom is represented.
  • R 21 represents a hydrogen atom, a hydrocarbyl group having 1 to 6 carbon atoms or a substituted hydrocarbyl group having 1 to 6 carbon atoms
  • a 3 represents Represents an oxygen atom or —NR 22 — group (R 22 represents a hydrogen atom or a hydrocarbyl group having 1 to 10 carbon atoms)
  • a 4 represents a functional group having a nitrogen atom and / or an oxygen atom.
  • w represents an integer of 1 to 11
  • a 5 represents a functional group having a nitrogen atom.
  • conjugated dienes based on conjugated dienes include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene, and the like. These may be one type or two or more types. From the viewpoint of availability, 1,3-butadiene and isoprene are preferred.
  • X 1 , X 2 and X 3 in formula (I) of the structural unit represented by formula (I) each independently represent a group represented by formula (Ia), a hydroxyl group, a hydrocarbyl group or a substituted hydrocarbyl group.
  • X 1 , X 2 and X 3 are a group represented by the formula (Ia) or a hydroxyl group.
  • R 1 and R 2 of formula (Ia) represent each independently, a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having a carbon number of 1-6, a silyl group, or a substituted silyl group, R 1 And R 2 may be bonded together to form a ring structure together with the nitrogen atom.
  • a hydrocarbyl group represents a monovalent hydrocarbon residue.
  • the hydrocarbon residue represents a group obtained by removing hydrogen from a hydrocarbon.
  • a substituted hydrocarbyl group represents a group in which one or more hydrogen atoms of a monovalent hydrocarbon residue are substituted with a substituent.
  • the hydrocarbyloxy group represents a group in which a hydrogen atom of a hydroxyl group is substituted with a hydrocarbyl group, and the substituted hydrocarbyloxy group represents a group in which one or more hydrogen atoms of the hydrocarbyloxy group are substituted with a substituent.
  • the hydrocarbylene group represents a divalent hydrocarbon residue.
  • the substituted hydrocarbylene group represents a group in which one or more hydrogen atoms of a divalent hydrocarbon residue are substituted with a substituent.
  • the substituted silyl group represents a group in which one or more hydrogen atoms of the silyl group are substituted with a substituent.
  • Examples of the hydrocarbyl group having 1 to 6 carbon atoms in R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n- Examples thereof include alkyl groups such as pentyl group, neopentyl group, isopentyl group and n-hexyl group; cycloalkyl groups such as cyclohexyl group; phenyl groups and the like.
  • the substituted hydrocarbyl group having 1 to 6 carbon atoms in R 1 and R 2 is at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom, and a group having a silicon atom.
  • the substituted hydrocarbyl group which has as a substituent can mention
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group, ethoxyethyl group and the like, and groups having a silicon atom as a substituent include trialkylsilylalkyl groups such as trimethylsilylmethyl group, etc. I can give you.
  • Examples of the substituted silyl group for R 1 and R 2 include trialkylsilyl groups such as trimethylsilyl group, triethylsilyl group, and t-butyldimethylsilyl group.
  • the group to which R 1 and R 2 are bonded is a divalent group having 1 to 12 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the group to which R 1 and R 2 are bonded is preferably a nitrogen-containing group, a group represented by —CH 2 CH 2 —NH—CH 2 —, a group represented by —CH 2 CH 2 —N ⁇ CH—. Is more preferable.
  • the hydrocarbyl group of R 1 and R 2 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, an n-propyl group, or an n-butyl group. And the group n-butyl is particularly preferred.
  • the substituted hydrocarbyl group for R 1 and R 2 is preferably an alkoxyalkyl group, more preferably an alkoxyalkyl group having 1 to 4 carbon atoms.
  • the substituted silyl group for R 1 and R 2 is preferably a trialkylsilyl group, and more preferably a trimethylsilyl group.
  • R 1 and R 2 are preferably an alkyl group, an alkoxyalkyl group, a substituted silyl group, or a nitrogen-containing group to which R 1 and R 2 are bonded, more preferably an alkyl group, still more preferably carbon. It is an alkyl group having 1 to 4 atoms, and more preferably a methyl group, an ethyl group, an n-propyl group, or an n-butyl group.
  • Examples of the group represented by the formula (Ia) include an acyclic amino group and a cyclic amino group.
  • Examples of the acyclic amino group include dimethylamino group, diethylamino group, di (n-propyl) amino group, di (isopropyl) amino group, di (n-butyl) amino group, di (sec-butyl) amino group, di ( dialkylamino groups such as tert-butyl) amino group, di (neopentyl) amino group, ethylmethylamino group; di (methoxymethyl) amino group, di (methoxyethyl) amino group, di (ethoxymethyl) amino group, di ( And di (alkoxyalkyl) amino groups such as ethoxyethyl) amino group; di (trialkylsilyl) amino groups such as di (trimethylsilyl) amino group and di (t-butyldimethylsilyl) amino group.
  • Examples of the cyclic amino group include 1-pyrrolidinyl group, 1-piperidino group, 1-hexamethyleneimino group, 1-heptamethyleneimino group, 1-octamethyleneimino group, 1-decamethyleneimino group, 1-dodecamethyleneimino group. And 1-polymethyleneimino group such as a group.
  • Examples of the cyclic amino group include 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, 1-imidazolidinyl group, 1-piperazinyl group, morpholino group and the like.
  • the group represented by the formula (Ia) is preferably an acyclic amino group, more preferably a dialkylamino group, and still more preferably a carbon atom number of 1 to 1, in view of economy and availability.
  • Examples of the hydrocarbyl group of X 1 to X 3 in the formula (I) include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group. be able to.
  • Examples of the substituted hydrocarbyl group include alkoxyalkyl groups such as a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group, and an ethoxyethyl group.
  • the hydrocarbyl group of X 1 to X 3 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group of X 1 to X 3 is preferably an alkoxyalkyl group, more preferably an alkoxyalkyl group having 1 to 4 carbon atoms.
  • the hydrocarbyl group and substituted hydrocarbyl group represented by X 1 to X 3 are preferably an alkyl group or an alkoxyalkyl group, more preferably an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms.
  • At least one of X 1 , X 2 and X 3 in the formula (I) is a group or a hydroxyl group represented by the formula (Ia).
  • X 1 , X 2 and X 3 are a group or a hydroxyl group represented by the formula (Ia), more preferably two of X 1 , X 2 and X 3 are represented by the formula (Ia ) Or a hydroxyl group.
  • At least one of X 1 , X 2, and X 3 is a hydroxyl group from the viewpoint that low fuel consumption, wet grip performance, and wear resistance can be obtained in a high-order and well-balanced manner, and X 1 , X 2 and It is more preferable that two or more of X 3 are hydroxyl groups, and it is still more preferable that two of X 1 , X 2 and X 3 are hydroxyl groups.
  • X 1 , X 2 and X 3 are acyclic amino groups or hydroxyl groups.
  • a structural unit is preferred.
  • X 1 , X 2 and X 3 are acyclic amino groups
  • bis (dialkylamino) alkylvinylsilane units are preferred, bis (dimethylamino) methylvinylsilane units, bis (diethylamino) methylvinylsilane units, Bis (di (n-propyl) amino) methylvinylsilane units and bis (di (n-butyl) amino) methylvinylsilane units are more preferred.
  • X 1 , X 2 and X 3 are hydroxyl groups
  • a dihydroxyalkylvinylsilane unit is preferable, and a dihydroxymethylvinylsilane unit is more preferable.
  • the content of the structural unit represented by the formula (I) in the conjugated diene polymer is preferably 0 per unit mass of the polymer from the viewpoint of improving fuel economy, wet grip performance and wear resistance in a balanced manner. It is 0.001 mmol / g polymer or more and 0.1 mmol / g polymer or less. More preferably, it is 0.002 mmol / g polymer or more and 0.07 mmol / g polymer or less. More preferably, it is 0.003 mmol / g polymer or more and 0.05 mmol / g polymer or less.
  • At least one end of the polymer is modified with a specific compound (modifiers 1 to 5).
  • a specific compound modifiers 1 to 5
  • n represents an integer of 1 to 10
  • R 11 , R 12 and R 13 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms.
  • at least one of R 11 , R 12 and R 13 is a hydrocarbyloxy group
  • a 1 represents a functional group having a nitrogen atom.
  • R 11 , R 12 and R 13 in the formula (II) each independently represent a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms, and R 11 , R 12 and At least one of R 13 is a hydrocarbyloxy group.
  • Examples of the hydrocarbyl group of R 11 , R 12 and R 13 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-butyl group. Can do.
  • the hydrocarbyloxy group of R 11 , R 12 and R 13 is an alkoxy group such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group or a t-butoxy group. Can give.
  • the hydrocarbyl group of R 11 , R 12 and R 13 is preferably an alkyl group, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably a methyl group or an ethyl group.
  • the hydrocarbyloxy group of R 11 , R 12 and R 13 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, and still more preferably a methoxy group, ethoxy group It is a group.
  • R 11 , R 12 and R 13 are preferably at least two of R 11 , R 12 and R 13 are hydrocarbyloxy groups from the viewpoint of improving the fuel economy, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 11 , R 12 and R 13 are hydrocarbyloxy groups.
  • N in the formula (II) represents an integer of 1 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a well-balanced manner, it is preferably 3 or more, and from the viewpoint of improving economy, it is preferably 4 or less. Particularly preferred is 3.
  • a 1 in the formula (II) is a functional group having a nitrogen atom, and examples thereof include an amino group, an isocyano group, a cyano group, a pyridyl group, a piperidyl group, a pyrazinyl group, and a morpholino group.
  • a 1 is preferably a group represented by the following formula (IIa).
  • R 14 and R 15 each independently have 1 to 6 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 14 and R 15 may be bonded to form a ring structure with the nitrogen atom, and R 14 and R 15 may be the same group bonded to the nitrogen by a double bond.
  • R 14 and R 15 in the formula (IIa) include a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having 1 to 6 carbon atoms, and a substituted silyl group.
  • Examples of the hydrocarbyl group of R 14 and R 15 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, and isopentyl group. And an alkyl group such as n-hexyl group; a cycloalkyl group such as cyclohexyl group; a phenyl group and the like.
  • the substituted hydrocarbyl group of R 14 and R 15 is a substituted hydrocarbyl group having at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom and a group having a silicon atom as a substituent.
  • a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group, ethoxyethyl group; alkylene oxide group such as epoxy group, tetrahydrofuranyl group; alkylene oxide alkyl group such as glycidyl group, tetrahydrofurfuryl group, etc.
  • Examples of the group having a group having a silicon atom as a substituent include a trialkylsilylalkyl group such as a trimethylsilylmethyl group.
  • the alkylene oxide group represents a monovalent group obtained by removing a hydrogen atom from a ring of a cyclic ether compound.
  • the alkylene oxide alkyl group represents a group in which one or more hydrogen atoms of the alkyl group are substituted with an alkylene oxide group.
  • Examples of the substituted silyl group of R 14 and R 15 include a trialkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, and a t-butyldimethylsilyl group; a trialkoxysilyl group such as a trimethoxysilyl group.
  • the group to which R 14 and R 15 are bonded is a divalent group having 2 to 12 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group. for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the group to which R 14 and R 15 are bonded is preferably a nitrogen-containing group, a group represented by —CH 2 CH 2 —NH—CH 2 —, a group represented by —CH 2 CH 2 —N ⁇ CH—. Is more preferable.
  • the number of carbon atoms optionally having at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom Is a divalent group of 2 to 12.
  • examples thereof include an ethylidene group, 1-methylpropylidene group, 1,3-dimethylbutylidene group, 1-methylethylidene group, 4-N, N-dimethylaminobenzylidene group.
  • the hydrocarbyl group of R 14 and R 15 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group, an ethyl group, or an n-propyl group. N-butyl group, more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group for R 14 and R 15 is preferably an alkoxyalkyl group, an alkylene oxide group, or an alkylene oxide alkyl group.
  • the substituted silyl group for R 14 and R 15 is preferably a trialkylsilyl group or a trialkoxysilyl group, more preferably a trialkylsilyl group, still more preferably a trimethylsilyl group or a triethylsilyl group. .
  • R 14 and R 15 are preferably a nitrogen-containing group, an alkyl group, an alkoxyalkyl group, an alkylene oxide group, an alkylene oxide alkyl group or a substituted silyl group to which R 14 and R 15 are bonded, and more preferably an alkyl group.
  • Examples of the group represented by the formula (IIa) include an acyclic amino group and a cyclic amino group.
  • Examples of the acyclic amino group include dimethylamino group, diethylamino group, di (n-propyl) amino group, di (isopropyl) amino group, di (n-butyl) amino group, di (sec-butyl) amino group, di ( dialkylamino groups such as tert-butyl) amino group, di (neopentyl) amino group, ethylmethylamino group; di (methoxymethyl) amino group, di (methoxyethyl) amino group, di (ethoxymethyl) amino group, di ( And di (alkoxyalkyl) amino groups such as ethoxyethyl) amino group; di (trialkylsilyl) amino groups such as di (trimethylsilyl) amino group and di (t-butyldimethylsilyl) amino group.
  • di (alkylene oxide) amino groups such as di (epoxy) amino groups and di (tetrahydrofuranyl) amino groups
  • di (alkylene oxide alkyl) amino groups such as di (glycidyl) amino groups and di (tetrahydrofurfuryl) amino groups
  • ethylideneamino group 1-methylpropylideneamino group, 1,3-dimethylbutylideneamino group, 1-methylethylideneamino group, 4-N, N-dimethylaminobenzylideneamino group, and the like.
  • the di (alkylene oxide) amino group represents an amino group in which two hydrogen atoms bonded to a nitrogen atom are substituted with two alkylene oxide groups
  • the di (alkylene oxide alkyl) amino group Represents an amino group in which two hydrogen atoms bonded to a nitrogen atom are substituted with two alkylene oxide alkyl groups.
  • Examples of the cyclic amino group include 1-pyrrolidinyl group, 1-piperidino group, 1-hexamethyleneimino group, 1-heptamethyleneimino group, 1-octamethyleneimino group, 1-decamethyleneimino group, 1-dodecamethyleneimino group. And 1-polymethyleneimino group such as a group.
  • Examples of the cyclic amino group include 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, 1-imidazolidinyl group, 1-piperazinyl group, morpholino group and the like.
  • the group represented by the formula (IIa) is preferably an acyclic amino group, more preferably a dialkyl, from the viewpoint of low fuel consumption, wet grip performance, wear resistance, long-term stability and availability of the compound.
  • the formula (IIa) is a dialkylamino group, a di (alkoxyalkyl) amino group, a di (alkyleneoxide) amino group, a di (alkyleneoxidealkyl) amino group, a trialkylsilyl group.
  • Examples thereof include compounds that are non-cyclic amino groups such as a group.
  • [3- (dialkylamino) propyl] trialkoxysilane is preferred, [3- (dimethylamino) propyl] trimethoxysilane, [3- (diethylamino) propyl] trimethoxysilane, [3- (dimethylamino) propyl] triethoxysilane, [3- (Diethylamino) propyl] triethoxysilane is more preferred.
  • the formula (IIa) is a 1-piperidino group, 1-hexamethyleneimino group, 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, 1-piperidino group, 1-hexamethyleneimino group, 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, Examples thereof include compounds that are cyclic amino groups such as piperazinyl group and morpholino group.
  • Examples of the compound in which the formula (IIa) is a 1-piperidino group include 3- (1-piperidino) propyltrimethoxysilane, 3- (1-piperidino) propyltriethoxysilane, 3- (1-piperidino) propylmethyldimethoxysilane, 3- (1-piperidino) propylethyldimethoxysilane, 3- (1-piperidino) propylmethyldiethoxysilane, Examples thereof include 3- (1-piperidino) propylethyldiethoxysilane.
  • Examples of the compound in which the formula (IIa) is a 1-hexamethyleneimino group include 3- (1-hexamethyleneimino) propyltrimethoxysilane, 3- (1-hexamethyleneimino) propyltriethoxysilane, 3- (1-hexamethyleneimino) propylmethyldimethoxysilane, 3- (1-hexamethyleneimino) propylethyldimethoxysilane, 3- (1-hexamethyleneimino) propylmethyldiethoxysilane, Examples thereof include 3- (1-hexamethyleneimino) propylethyldiethoxysilane.
  • N- (3-trimethoxysilylpropyl) imidazole examples thereof include N- (3-triethoxysilylpropyl) imidazole.
  • N- (3-trimethoxysilylpropyl) -4,5-dihydroimidazole examples thereof include N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole.
  • T represents a hydrocarbylene group having 1 to 20 carbon atoms or a substituted hydrocarbylene group having 1 to 20 carbon atoms.
  • a 2 represents a functional group having a nitrogen atom, and examples thereof include an amino group, an isocyano group, a cyano group, a pyridyl group, a piperidyl group, a pyrazinyl group, and a morpholino group.
  • Examples of the compound having a group represented by the formula (III) include a compound having a group represented by the following formula (IIIa) in which p in the formula (III) is 0 and A 2 is an amino group. it can.
  • Examples of the compound having a group represented by the formula (IIIa) include carboxylic acid amide compounds such as formamide, acetamide, and propionamide. Moreover, cyclic compounds, such as imidazolidinone and its derivative (s), and lactams, can be mentioned.
  • Examples of the compound having a group represented by the formula (IIIa) include a carboxylic acid amide compound represented by the following formula (IIIa-1).
  • R 31 represents a hydrogen atom, a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, or a heterocycle having a nitrogen atom and / or an oxygen atom as a hetero atom.
  • Each of R 32 and R 33 independently has 1 to 10 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 32 and R 33 may be bonded to form a ring structure with the nitrogen atom, and R 32 and R 33 may be the same group bonded to the nitrogen by a double bond.
  • hydrocarbyl group of R 31 examples include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, sec-butyl groups, t-butyl groups and the like; phenyl groups, methylphenyl groups, ethylphenyl groups An aryl group such as a naphthyl group; and an aralkyl group such as a benzyl group.
  • Examples of the substituted hydrocarbyl group of R 31 include a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom and a group having an oxygen atom.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl And alkoxyalkyl groups such as methoxyethyl group, ethoxymethyl group, and ethoxyethyl group.
  • the heterocyclic group having a nitrogen atom and / or oxygen atom as a hetero atom of R 31 represents a heterocyclic compound residue containing a nitrogen atom and / or oxygen atom in the ring, and the group includes 2-pyridyl Group, 3-pyridyl group, 4-pyridyl group, 2-furyl group and the like.
  • R 31 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, Particularly preferred are a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • R 32 and R 33 in formula (IIIa-1) include a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, and the like.
  • the hydrocarbyl group of R 32 and R 33 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group; a phenyl group, a methylphenyl group Aryl groups such as ethylphenyl group and naphthyl group; and aralkyl groups such as benzyl group.
  • Examples of the substituted hydrocarbyl group of R 32 and R 33 include a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom and a group having an oxygen atom.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl And alkoxyalkyl groups such as methoxyethyl group, ethoxymethyl group, and ethoxyethyl group.
  • the group to which R 32 and R 33 are bonded is a divalent group having 2 to 20 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the number of carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom and an oxygen atom is 2 to 12 divalent groups. Examples thereof include an ethylidene group, 1-methylpropylidene group, 1,3-dimethylbutylidene group, 1-methylethylidene group, 4-N, N-dimethylaminobenzylidene group.
  • R 32 and R 33 are preferably a hydrocarbyl group, more preferably an alkyl group, still more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group, an ethyl group Group, n-propyl group, n-butyl group.
  • Examples of the carboxylic acid amide compound represented by the formula (IIIa-1) include formamide compounds such as formamide, N, N-dimethylformamide, N, N-diethylformamide; Acetamide, N, N-dimethylacetamide, N, N-diethylacetamide, aminoacetamide, N, N-dimethyl-N ′, N′-dimethylaminoacetamide, N, N-dimethylaminoacetamide, N-ethylaminoacetamide, N Acetamide compounds such as N, N-dimethyl-N′-ethylaminoacetamide, N, N-dimethylaminoacetamide, N-phenyldiacetamide; Propionamide compounds such as propionamide, N, N-dimethylpropionamide; Pyridylamide compounds such as 4-pyridylamide, N, N-dimethyl-4-pyridylamide; Benzamide, N, N-dimethylbenzamide, N ′
  • Examples of the cyclic compound having a group represented by the formula (IIIa) include compounds represented by the following formula (IIIa-2) or the following formula (IIIa-3).
  • e represents an integer of 0 to 10
  • R 34 and R 35 each independently represents a hydrocarbyl group having 1 to 20 carbon atoms or a substituted hydrocarbyl group having 1 to 20 carbon atoms.
  • f represents an integer of 0 to 10
  • R 36 represents a hydrocarbyl group having 1 to 20 carbon atoms or a substituted hydrocarbyl group having 1 to 20 carbon atoms.
  • R 34 , R 35 and R 36 in formula (IIIa-2) and formula (IIIa-3) are each independently a hydrocarbyl group having 1 to 20 carbon atoms or a substituted hydrocarbyl group having 1 to 20 carbon atoms. Represents.
  • Examples of the hydrocarbyl group of R 34 , R 35 and R 36 include an alkyl group such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group; phenyl group, Examples thereof include aryl groups such as methylphenyl group, ethylphenyl group and naphthyl group; and aralkyl groups such as benzyl group.
  • the substituted hydrocarbyl group of R 34 , R 35 and R 36 is a substituent having at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom and a group having a silicon atom as a substituent.
  • Hydrocarbyl groups can be mentioned. Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Groups, methoxyethyl groups, ethoxymethyl groups, alkoxyalkyl groups such as ethoxyethyl groups; alkoxyaryl groups such as methoxyphenyl groups, ethoxyphenyl groups, and the like. , Trimethylsilylmethyl group, t-butyldimethylsilyloxymethyl group, trimethoxysilylpropyl group and the like.
  • R 34 and R 35 in formula (IIIa-2) are preferably hydrocarbyl groups, more preferably alkyl groups, and still more preferably methyl groups.
  • R 36 in formula (IIIa-3) is preferably a hydrocarbyl group, more preferably an alkyl group or an aryl group, still more preferably a methyl group or a phenyl group.
  • E and f in the formula (IIIa-2) and the formula (IIIa-3) each represents an integer of 0 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a well-balanced manner, it is preferably 2 or more, and from the viewpoint of improving economy during production, it is preferably 7 or less.
  • Examples of the compound represented by the formula (IIIa-2) include 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-di (n-propyl) -2. -Mentioning 1,3-hydrocarbyl-substituted-2-imidazolidinones such as imidazolidinone, 1,3-di (t-butyl) -2-imidazolidinone, 1,3-diphenyl-2-imidazolidinone Can do.
  • 1,3-substituted-2-imidazolidinone is preferred, 1,3-hydrocarbyl substituted-2-imidazolidinone is more preferred, and 1,3-dialkyl-2-imidazolidinone is more preferred. It is non.
  • 1,3-dialkyl-2-imidazolidinone preferably 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-di (n-propyl) ) -2-imidazolidinone, more preferably 1,3-dimethyl-2-imidazolidinone.
  • Examples of the compound represented by the formula (IIIa-3) include ⁇ -propiolactam, N-methyl- ⁇ -propiolactam, N- (t-butyl) - ⁇ -propiolactam, N-phenyl- ⁇ -propiolactam, and the like.
  • the compound represented by the formula (IIIa-3) is preferably a 2-pyrrolidone compound or an ⁇ -caprolactam compound, more preferably a 1-hydrocarbyl substituted-2-pyrrolidone or an N-hydrocarbyl substituted- ⁇ -caprolactam.
  • Examples of the compound having a group represented by the formula (III) include a compound having a group represented by the following formula (IIIb) in which p in the formula (III) is 1 and A 2 is an amino group. it can.
  • T represents a hydrocarbylene group having 1 to 20 carbon atoms or a substituted hydrocarbylene group having 1 to 20 carbon atoms.
  • Examples of the compound having a group represented by the formula (IIIb) include benzaldehyde compounds, acetophenone compounds, and benzophenone compounds.
  • Examples of the compound having a group represented by the formula (IIIb) include compounds represented by the following formula (IIIb-1).
  • R 37 represents a hydrogen atom, a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, or a heterocycle having a nitrogen atom and / or an oxygen atom as a hetero atom.
  • R 38 and R 39 each independently have 1 to 10 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 38 and R 39 may be bonded to form a ring structure together with the nitrogen atom, R 38 and R 39 may be the same group bonded to the nitrogen by a double bond, and T Represents a hydrocarbylene group having 1 to 20 carbon atoms or a substituted hydrocarbylene group having 1 to 20 carbon atoms.
  • Examples of the hydrocarbyl group of R 37 include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, sec-butyl groups, t-butyl groups and the like alkyl groups; phenyl groups, methylphenyl groups, ethylphenyl groups An aryl group such as a naphthyl group; and an aralkyl group such as a benzyl group.
  • Examples of the substituted hydrocarbyl group represented by R 37 include a substituted hydrocarbyl group having at least one group selected from the group consisting of a group having a nitrogen atom and a group having an oxygen atom as a substituent.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl And alkoxyalkyl groups such as methoxyethyl group, ethoxymethyl group, and ethoxyethyl group.
  • the heterocyclic group having a nitrogen atom and / or oxygen atom as a hetero atom of R 37 represents a heterocyclic compound residue containing a nitrogen atom and / or oxygen atom in the ring, and the group includes 2-pyridyl Group, 3-pyridyl group, 4-pyridyl group, 2-furyl group and the like.
  • R 37 is preferably a hydrogen atom, a hydrocarbyl group having 1 to 10 carbon atoms, or a substituted hydrocarbyl group having 1 to 10 carbon atoms.
  • the hydrocarbyl group having 1 to 10 carbon atoms is preferably an alkyl group or phenyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group, an ethyl group, an n-propyl group, or an n-butyl group. Group, a phenyl group.
  • the substituted hydrocarbyl group having 1 to 10 carbon atoms is preferably an aryl group having a nitrogen atom group as a substituent, more preferably a dialkylaminophenyl group or a 4-morpholinophenyl group. .
  • R 38 and R 39 in formula (IIIb-1) include a hydrocarbyl group having 1 to 10 carbon atoms, a substituted hydrocarbyl group having 1 to 10 carbon atoms, and the like.
  • Examples of the hydrocarbyl group of R 38 and R 39 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a t-butyl group; a phenyl group, a methylphenyl group Aryl groups such as ethylphenyl group and naphthyl group; and aralkyl groups such as benzyl group.
  • Examples of the substituted hydrocarbyl group for R 38 and R 39 include a substituted hydrocarbyl group having at least one group selected from the group consisting of a group having a nitrogen atom and a group having an oxygen atom as a substituent.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl And alkoxyalkyl groups such as methoxyethyl group, ethoxymethyl group, and ethoxyethyl group.
  • the group to which R 38 and R 39 are bonded is a divalent group having 2 to 20 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the number of carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom and an oxygen atom is 2 to 12 divalent groups. Examples thereof include an ethylidene group, 1-methylpropylidene group, 1,3-dimethylbutylidene group, 1-methylethylidene group, 4-N, N-dimethylaminobenzylidene group.
  • R 38 and R 39 are preferably a hydrocarbyl group, more preferably an alkyl group, still more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group, ethyl group Group, n-propyl group, n-butyl group.
  • hydrocarbylene group of T examples include alkylene groups such as methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group; phenylene group, methylphenylene group, ethylphenyllene group, naphthylene group, etc.
  • An arylene group can be mentioned.
  • Examples of the substituted hydrocarbylene group for T include a substituted hydrocarbylene group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom and a group having an oxygen atom.
  • Examples of the group having a nitrogen atom as a substituent include dialkylaminoalkylene groups such as dimethylaminoethylene group and diethylaminoethylene group; and dialkylaminoarylene groups such as dimethylaminophenylene group and diethylaminophenylene group.
  • Examples of the group having a group having an oxygen atom as a substituent include alkoxyalkylene groups such as a methoxymethylene group, a methoxyethylene group, an ethoxymethylene group, and an ethoxyethylene group.
  • T is preferably a hydrocarbylene group, more preferably an arylene group, and still more preferably a phenylene group.
  • Examples of the compound represented by the formula (IIIb-1) include dialkylamino-substituted benzaldehyde compounds such as 4-dimethylaminobenzaldehyde, 4-diethylaminobenzaldehyde, 3,5-bis (dihexylamino) -benzaldehyde; 4-dimethylaminoacetophenone, Dialkylamino-substituted acetophenone compounds such as 4-diethylaminoacetophenone; 4-morpholinoacetophenone, heterocyclic group-substituted acetophenone compounds such as 4′-imidazol-1-yl-acetophenone, 4-pyrazolylacetophenone; 4,4′-bis (dimethylamino) ) -Benzophenone, 4,4'-bis (diethylamino) -benzophenone, 4-dimethylaminobenzophenone, 4-diethylaminobenzophenone, 3-dimethylamin
  • the compound represented by the formula (IIIb-1) is preferably a substituted acetophenone compound or a substituted benzophenone compound, represented by the following formula (IIIb-1-1) or the following formula (IIIb-1-2):
  • Compounds can be mentioned.
  • r denotes an integer of 1 or 2
  • Y 1 is a substituent on the benzene ring, represents a functional group having a nitrogen atom, if Y 1 is more, a plurality of Y 1 are the same But it can be different.
  • s represents an integer of 1 or 2
  • t represents an integer of 0 to 2
  • Y 2 and Y 3 represent substituents on the benzene ring and represent a functional group having a nitrogen atom, If the Y 2 there is a plurality, Y 2 there are a plurality of, may be the same or different, if Y 3 is more, plural Y 3 may be the same or different.
  • Y 1 , Y 2 and Y 3 in formula (IIIb-1-1) and formula (IIIb-1-2) represent a functional group having a nitrogen atom, and are an amino group, isocyano group, cyano group, pyridyl group, piperidyl Group, pyrazinyl group, pyrimidinyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, morpholino group and the like.
  • Preferred are a dialkylamino group, an imidazolyl group, and a morpholino group.
  • the alkyl group of the dialkylamino group is preferably an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by the formula (IIIb-1) is more preferably a heterocyclic group-substituted acetophenone compound, a dialkylamino-substituted benzophenone compound, or a heterocyclic group-substituted benzophenone compound, and particularly preferably 4′-imidazole-1 -Yl-acetophenone, 4-morpholinoacetophenone, 4-dimethylaminobenzophenone, 4-diethylaminobenzophenone, 4,4'-bis (dimethylamino) -benzophenone, 4,4'-bis (diethylamino) -benzophenone, 4-morpholinobenzophenone It is.
  • R 21 represents a hydrogen atom, a hydrocarbyl group having 1 to 6 carbon atoms or a substituted hydrocarbyl group having 1 to 6 carbon atoms
  • a 3 represents Represents an oxygen atom or —NR 22 — group
  • R 22 represents a hydrogen atom or a hydrocarbyl group having 1 to 10 carbon atoms
  • a 4 represents a functional group having a nitrogen atom and / or an oxygen atom.
  • g represents an integer of 1 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner, it is preferably 2 or more, and preferably 4 or less from the viewpoint of improving economics during production. Particularly preferred is 3.
  • R 21 in formula (IV) represents a hydrogen atom, a hydrocarbyl group having 1 to 6 carbon atoms, or a substituted hydrocarbyl group having 1 to 6 carbon atoms.
  • hydrocarbyl group of R 21 examples include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and t-butyl group.
  • Examples of the substituted hydrocarbyl group represented by R 21 include a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom, and a group having a silicon atom. it can.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl
  • An alkoxyalkyl group such as a methoxyethyl group, an ethoxymethyl group, and an ethoxyethyl group, and a group having a silicon atom group as a substituent includes a trialkylsilylalkyl group such as a trimethylsilylmethyl group;
  • a trialkylsilyloxyalkyl group such as a butyldimethylsiloxymethyl group;
  • a trialkoxysilylalkyl group such as a trimethoxysilylpropyl group;
  • the hydrocarbyl group for R 21 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group or an ethyl group, still more preferably It is a methyl group.
  • the substituted hydrocarbyl group for R 21 is preferably an alkoxyalkyl group, more preferably an alkoxyalkyl group having 1 to 4 carbon atoms, still more preferably a methoxymethyl group or an ethoxyethyl group. More preferably a methoxymethyl group.
  • R 21 is preferably a hydrogen atom, an alkyl group, or an alkoxyalkyl group, more preferably a hydrogen atom, a carbon atom, from the viewpoint of improving fuel economy, wet grip performance and wear resistance in a well-balanced manner and economy.
  • a 3 in the formula (IV) represents an oxygen atom or a —NR 22 — group
  • R 22 represents a hydrogen atom or a hydrocarbyl group having 1 to 10 carbon atoms.
  • hydrocarbyl group of R 22 examples include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, sec-butyl groups, t-butyl groups and the like; phenyl groups, methylphenyl groups, ethylphenyl groups An aryl group such as a naphthyl group; and an aralkyl group such as a benzyl group.
  • the hydrocarbyl group for R 22 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • R 22 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group. And more preferably a hydrogen atom or a methyl group.
  • a 4 in formula (IV) represents a functional group having a nitrogen atom and / or an oxygen atom.
  • the functional group having a nitrogen atom include an amino group, isocyano group, cyano group, pyridyl group, piperidyl group, piperazinyl group, morpholino group and the like.
  • Examples of the functional group having an oxygen atom include an alkoxy group such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and a t-butoxy group; a methoxymethyl group, a methoxyethyl group And alkoxyalkyl groups such as ethoxymethyl group and ethoxyethyl group; alkoxyaryl groups such as methoxyphenyl group and ethoxyphenyl group; and alkylene oxide groups such as epoxy group and tetrahydrofuranyl group.
  • trialkylsilyloxy groups such as trimethylsilyloxy group, triethylsilyloxy group, and t-butyldimethylsilyloxy group can be exemplified.
  • a hydroxyl group can be mention
  • a 4 is preferably a group or a hydroxyl group represented by the following formula (IVa), more preferably a group represented by the following formula (IVa).
  • R 23 and R 24 each independently have 1 to 6 carbon atoms which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • R 23 and R 24 may be bonded to form a ring structure together with a nitrogen atom, and R 23 and R 24 may be the same group bonded to nitrogen by a double bond.
  • R 23 and R 24 in the formula (IVa) include a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having 1 to 6 carbon atoms, and a substituted silyl group.
  • Examples of the hydrocarbyl group of R 23 and R 24 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, and isopentyl group. And an alkyl group such as n-hexyl group; a cycloalkyl group such as cyclohexyl group; a phenyl group and the like.
  • the substituted hydrocarbyl group of R 23 and R 24 includes a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom, and a group having a silicon atom.
  • a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group, ethoxyethyl group; alkylene oxide group such as epoxy group, tetrahydrofuranyl group; alkylene oxide alkyl group such as glycidyl group, tetrahydrofurfuryl group, etc.
  • Examples of the group having a group having a silicon atom as a substituent include a trialkylsilylalkyl group such as a trimethylsilylmethyl group.
  • the alkylene oxide group represents a monovalent group obtained by removing a hydrogen atom from a ring of a cyclic ether compound.
  • the alkylene oxide alkyl group represents a group in which one or more hydrogen atoms of the alkyl group are substituted with an alkylene oxide group.
  • Examples of the substituted silyl group for R 23 and R 24 include a trialkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, and a t-butyldimethylsilyl group; a trialkoxysilyl group such as a trimethoxysilyl group.
  • the group to which R 23 and R 24 are bonded is a divalent group having 2 to 12 carbon atoms, which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the group to which R 23 and R 24 are bonded is preferably a nitrogen-containing group, a group represented by —CH 2 CH 2 —NH—CH 2 —, a group represented by —CH 2 CH 2 —N ⁇ CH—. Is more preferable.
  • the same group bonded to the nitrogen of R 23 and R 24 with a double bond is the number of carbon atoms optionally having at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom Is a divalent group of 2 to 12.
  • Examples thereof include an ethylidene group, 1-methylpropylidene group, 1,3-dimethylbutylidene group, 1-methylethylidene group, 4-N, N-dimethylaminobenzylidene group.
  • the hydrocarbyl group of R 23 and R 24 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group, an ethyl group, or an n-propyl group. N-butyl group, more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group for R 23 and R 24 is preferably an alkoxyalkyl group, an alkylene oxide group, or an alkylene oxide alkyl group.
  • the substituted silyl group for R 23 and R 24 is preferably a trialkylsilyl group or a trialkoxysilyl group, more preferably a trialkylsilyl group, still more preferably a trimethylsilyl group or a triethylsilyl group. .
  • R 23 and R 24 are preferably a nitrogen-containing group to which R 23 and R 24 are bonded, an alkyl group, an alkoxyalkyl group, an alkylene oxide group, an alkylene oxide alkyl group, or a substituted silyl group, and more preferably an alkyl group.
  • Examples of the group represented by the formula (IVa) include an acyclic amino group and a cyclic amino group.
  • Examples of the acyclic amino group include dimethylamino group, diethylamino group, di (n-propyl) amino group, di (isopropyl) amino group, di (n-butyl) amino group, di (sec-butyl) amino group, di ( dialkylamino groups such as tert-butyl) amino group, di (neopentyl) amino group, ethylmethylamino group; di (methoxymethyl) amino group, di (methoxyethyl) amino group, di (ethoxymethyl) amino group, di ( And di (alkoxyalkyl) amino groups such as ethoxyethyl) amino group; di (trialkylsilyl) amino groups such as di (trimethylsilyl) amino group and di (t-butyldimethylsilyl) amino group.
  • di (alkylene oxide) amino groups such as di (epoxy) amino groups and di (tetrahydrofuranyl) amino groups
  • di (alkylene oxide alkyl) amino groups such as di (glycidyl) amino groups and di (tetrahydrofurfuryl) amino groups
  • ethylideneamino group 1-methylpropylideneamino group, 1,3-dimethylbutylideneamino group, 1-methylethylideneamino group, 4-N, N-dimethylaminobenzylideneamino group, and the like.
  • the di (alkylene oxide) amino group represents an amino group in which two hydrogen atoms bonded to a nitrogen atom are substituted with two alkylene oxide groups
  • the di (alkylene oxide alkyl) amino group Represents an amino group in which two hydrogen atoms bonded to a nitrogen atom are substituted with two alkylene oxide alkyl groups.
  • Examples of the cyclic amino group include 1-pyrrolidinyl group, 1-piperidino group, 1-hexamethyleneimino group, 1-heptamethyleneimino group, 1-octamethyleneimino group, 1-decamethyleneimino group, 1-dodecamethyleneimino group. And 1-polymethyleneimino group such as a group.
  • Examples of the cyclic amino group include 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, 1-imidazolidinyl group, 1-piperazinyl group, morpholino group and the like.
  • the group represented by the formula (IVa) is preferably an acyclic amino group, more preferably a dialkyl group, from the viewpoint of low fuel consumption, wet grip performance, abrasion resistance, long-term stability and availability of the compound.
  • Examples of the compound represented by the formula (IV) include acrylamide compounds and methacrylamide compounds as compounds in which A 3 is a secondary amino group.
  • acrylamide compound in which A 4 is an oxygen atom-containing group N- (3-methoxypropyl) acrylamide, N- (3-ethoxypropyl) acrylamide, N- (propoxymethyl) acrylamide, N- (butoxymethyl) acrylamide, N-glycidyl acrylamide, Examples thereof include N-tetrahydrofurfuryl acrylamide.
  • methacrylamide compound in which A 4 is an oxygen atom-containing group N- (3-methoxypropyl) methacrylamide, N- (3-ethoxypropyl) methacrylamide, N- (propoxymethyl) methacrylamide, N- (butoxymethyl) methacrylamide, N-glycidyl methacrylamide, Examples thereof include N-tetrahydrofurfuryl methacrylamide.
  • acrylamide compound in which A 4 is a group containing a nitrogen atom and an oxygen atom N- (3-di (glycidyl) aminopropyl) acrylamide, N- (3-di (tetrahyhydrofurfuryl) aminopropyl) acrylamide and the like.
  • the compound represented by Formula (IV), a compound A 3 is an oxygen atom, may be mentioned acrylate compounds, methacrylate compounds, and the like.
  • acrylate compound in which A 4 is a nitrogen atom-containing group 2-dimethylaminoethyl acrylate, 2-diethylaminoethyl acrylate, 3-dimethylaminopropyl acrylate, 3-diethylaminopropyl acrylate, 4-dimethylaminobutyl acrylate, 4-diethylaminobutyl acrylate.
  • a 4 is a group containing a nitrogen atom
  • Examples include 4-diethylaminobutyl methacrylate.
  • acrylate compound in which A 4 is an oxygen atom-containing group 2-ethoxyethyl acrylate, 2-propoxyethyl acrylate, 2-butoxyethyl acrylate, 3-methoxypropyl acrylate, 3-ethoxypropyl acrylate, Glycidyl acrylate, And tetrahydrofurfuryl acrylate.
  • methacrylate compound in which A 4 is an oxygen atom-containing group 2-ethoxyethyl methacrylate, 2-propoxyethyl methacrylate, 2-butoxyethyl methacrylate, 3-methoxypropyl methacrylate, 3-ethoxypropyl methacrylate, Glycidyl methacrylate, And tetrahydrofurfuryl methacrylate.
  • acrylate compound in which A 4 is a group containing a nitrogen atom and an oxygen atom 3-di (glycidyl) aminopropyl acrylate, And 3-di (tetrahydrofurfuryl) aminopropyl acrylate.
  • methacrylate compound in which A 4 is a group containing a nitrogen atom and an oxygen atom include 3-di (glycidyl) aminopropyl methacrylate and 3-di (tetrahydrofurfuryl) aminopropyl methacrylate.
  • a 4 is a group represented by the formula (IVa), More preferably, it is a compound in which A 3 is an amino group and A 4 is a group represented by the formula (IVa), More preferred is a compound wherein A 3 is a secondary amino group (—NH—) and A 4 is a group represented by the formula (IVa).
  • N- (3-dialkylaminopropyl) acrylamide N- (3-dialkylaminopropyl) methacrylamide
  • Examples of the group having a group represented by the formula (V) include an amide group, a carboxylic ester group, a methacryloyl group, and an acryloyl group.
  • Examples of the group having a group represented by the formula (VI) include oxydialkylene groups such as oxydimethylene group and oxydiethylene group; alkylene oxide groups such as epoxy group and tetrahydrofuranyl group.
  • the alkylene oxide group represents a monovalent group obtained by removing a hydrogen atom from a ring of a cyclic ether compound.
  • the silicon compound preferably has a group represented by the following formula (VIII).
  • R 41, R 42 and R 43 each independently carbon atoms is a hydrocarbyl group or a number of carbon atoms of 1 to 4 represent hydrocarbyl group of 1 to 4, R 41, R 42 and R At least one of 43 is a hydrocarbyloxy group.
  • examples of the hydrocarbyl group of R 41 , R 42 and R 43 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • An alkyl group etc. can be mentioned.
  • the hydrocarbyloxy group of R 41 , R 42 and R 43 is an alkoxy group such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group or a t-butoxy group. Can give.
  • the hydrocarbyl group of R 41 , R 42 and R 43 is preferably an alkyl group, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably a methyl group or an ethyl group.
  • the hydrocarbyloxy group of R 41 , R 42 and R 43 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, still more preferably a methoxy group, ethoxy group It is a group.
  • R 41 , R 42 and R 43 preferably, at least two of R 41 , R 42 and R 43 are hydrocarbyloxy groups from the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 41 , R 42 and R 43 are hydrocarbyloxy groups.
  • Examples of the silicon compound having a group represented by the formula (V) and a group represented by the formula (VIII) include a silicon compound having a group represented by the following formula (Va). [Wherein, h represents an integer of 1 to 10, and R 44 , R 45 and R 46 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms. And at least one of R 44 , R 45 and R 46 is a hydrocarbyloxy group. ]
  • h represents an integer of 1 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner, it is preferably 2 or more, and preferably 4 or less from the viewpoint of improving economics during production. Particularly preferred is 3.
  • R 44 , R 45 and R 46 the exemplified groups and preferred groups are the same as the exemplified groups and preferred groups described above for R 41 , R 42 and R 43 of formula (VIII).
  • Examples of the silicon compound having a group represented by the formula (Va) include compounds represented by the following formula (Va-1) or the following formula (Va-2). [Wherein, i represents an integer of 1 to 10, and R 47 , R 48 and R 49 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms. Wherein at least one of R 47 , R 48 and R 49 is a hydrocarbyloxy group, R 50 and R 51 are each independently a hydrocarbyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms. And a substituted hydrocarbyloxy group having 1 to 10 carbon atoms or a substituted hydrocarbyloxy group having 1 to 10 carbon atoms, and R 50 and R 51 may be bonded to each other. ]
  • R 52 to R 60 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or 1 carbon atom.
  • R 52 , R 53 and R 54 is a hydrocarbyloxy group
  • at least one of R 55 , R 56 and R 57 is a hydrocarbyloxy group
  • at least one of R 60 is a hydrocarbyloxy group.
  • I in the formula (Va-1) represents an integer of 1 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner, it is preferably 2 or more, and preferably 4 or less from the viewpoint of improving economics during production. Particularly preferred is 3.
  • the hydrocarbyl groups of R 47 , R 48 and R 49 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group And an alkyl group.
  • the hydrocarbyloxy group of R 47 , R 48 and R 49 is an alkoxy group such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group or a t-butoxy group. Can give.
  • the hydrocarbyl group of R 47 , R 48 and R 49 is preferably an alkyl group, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably a methyl group or an ethyl group.
  • the hydrocarbyloxy group of R 47 , R 48 and R 49 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, and still more preferably a methoxy group, ethoxy group It is a group.
  • R 47 , R 48 and R 49 are preferably at least two of R 47 , R 48 and R 49 are hydrocarbyloxy groups from the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 47 , R 48 and R 49 are hydrocarbyloxy groups.
  • Examples of the hydrocarbyl group of R 50 and R 51 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group.
  • the substituted hydrocarbyl group of R 50 and R 51 is a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom, and a group having a silicon atom.
  • a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group, ethoxyethyl group and the like.
  • Examples of the group having a silicon atom group as a substituent include trialkylsilyl groups such as trimethylsilylmethyl group and triethylsilylmethyl group. Examples thereof include a silylalkyl group.
  • Examples of the hydrocarbyloxy group of R 50 and R 51 include alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and a t-butoxy group.
  • examples of the substituted hydrocarbyloxy group for R 50 and R 51 include alkoxyalkoxy groups such as a methoxymethoxy group, a methoxyethoxy group, an ethoxymethoxy group, and an ethoxyethoxy group.
  • the group to which R 50 and R 51 are bonded is a divalent group having 2 to 12 carbon atoms, which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • R 50 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • R 51 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group and an ethyl group.
  • J, k and l in the formula (Va-2) each independently represents an integer of 1 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner, it is preferably 2 or more, and preferably 4 or less from the viewpoint of improving economics during production. Particularly preferred is 3.
  • the hydrocarbyl groups of R 52 to R 60 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group.
  • Examples of the hydrocarbyloxy group of R 52 to R 60 include alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and a t-butoxy group. Can do.
  • the hydrocarbyl group of R 52 to R 60 is preferably an alkyl group, more preferably an alkyl group having 1 to 3 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • the hydrocarbyloxy group of R 52 to R 60 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, and still more preferably a methoxy group or an ethoxy group. .
  • R 52 , R 53 and R 54 preferably, at least two of R 52 , R 53 and R 54 are hydrocarbyloxy groups from the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 52 , R 53 and R 54 are hydrocarbyloxy groups.
  • R 55 , R 56 and R 57 are preferably at least two of R 55 , R 56 and R 57 are hydrocarbyloxy groups from the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 55 , R 56 and R 57 are hydrocarbyloxy groups.
  • R 58 , R 59 and R 60 are preferably at least two of R 58 , R 59 and R 60 are hydrocarbyloxy groups from the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 58 , R 59 and R 60 are hydrocarbyloxy groups.
  • N-alkyl-N-trialkoxysilylalkyl-substituted carboxylic acid amide More preferably, N-alkyl-N-trialkoxysilylalkyl-propionamide, More preferably, N-methyl-N- (3-trimethoxysilylpropyl) -propionamide, N-methyl-N- (3-triethoxysilylpropyl) -propionamide.
  • Examples of the silicon compound having a group represented by the formula (VI) and a group represented by the formula (VIII) include a silicon compound represented by the following formula (VIa).
  • v represents an integer of 1 to 10
  • R 61 , R 62 and R 63 each independently represents a hydrocarbyl group having 1 to 4 carbon atoms or a hydrocarbyloxy group having 1 to 4 carbon atoms.
  • at least one of R 61 , R 62 and R 63 is a hydrocarbyloxy group
  • R 64 represents a hydrocarbyl group having 1 to 10 carbon atoms or a substituted hydrocarbyl group having 1 to 10 carbon atoms.
  • V in the formula (VIa) represents an integer of 1 to 10. From the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner, it is preferably 2 or more, and preferably 4 or less from the viewpoint of improving economics during production. Particularly preferred is 3.
  • examples of the hydrocarbyl group of R 61 , R 62 and R 63 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • An alkyl group etc. can be mention
  • the hydrocarbyloxy groups of R 61 , R 62 and R 63 include alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group and a t-butoxy group. Can give.
  • the hydrocarbyl group of R 61 , R 62 and R 63 is preferably an alkyl group, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably a methyl group or an ethyl group.
  • the hydrocarbyloxy group of R 61 , R 62 and R 63 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, still more preferably a methoxy group, ethoxy group It is a group.
  • R 61 , R 62 and R 63 are preferably at least two of R 61 , R 62 and R 63 are hydrocarbyloxy groups from the viewpoint of improving the fuel efficiency, wet grip performance and wear resistance in a balanced manner. More preferably, three of R 61 , R 62 and R 63 are hydrocarbyloxy groups.
  • hydrocarbyl group of R 64 examples include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, sec-butyl groups, tert-butyl groups and other alkyl groups.
  • Examples of the substituted hydrocarbyl group represented by R 64 include a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom, and a group having a silicon atom. it can.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group and ethoxyethyl group; alkylene oxide alkyl group such as glycidyl group and tetrahydrofurfuryl group, and the like having a group having a silicon atom as a substituent. Includes a trialkylsilylalkyl group such as a trimethylsilylmethyl group.
  • the alkylene oxide alkyl group represents a group in which one or more hydrogen atoms of the alkyl group are substituted with an alkylene oxide group.
  • R 64 is preferably an alkylene oxide alkyl group, more preferably a glycidyl group or a tetrahydrofurfuryl group.
  • R 64 is an alkyl group
  • 3- (methoxy) propyltrimethoxysilane, 3- (ethoxy) propyltrimethoxysilane, 3- (n-propoxy) propyltrimethoxysilane, 3- (isopropoxy) propyltrimethoxysilane, 3- (n-butoxy) propyltrimethoxysilane, 3- (sec-butoxy) propyltrimethoxysilane Mention may be made of 3- (alkoxy) propyltrialkoxysilanes such as 3- (t-butoxy) propyltrimethoxysilane.
  • R 64 is an alkylene oxide alkyl group
  • 2-glycidoxyethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2-glycidoxyethyl triethoxysilane Glycidoxyalkyltrialkoxysilanes such as 3-glycidoxypropyltriethoxysilane; 2-tetrahydrofurfuryloxyethyltrimethoxysilane, 3-tetrahydrofurfuryloxypropyltrimethoxysilane, 2-tetrahydrofurfuryloxyethyl triethoxysilane, Mention may be made of tetrahydrofurfuryloxyalkyltrialkoxysilanes such as 3-tetrahydroflufuroxypropyltriethoxysilane.
  • R 64 is an alkoxyalkyl group
  • the compound represented by the formula (VIa) is preferably a compound in which R 64 is an alkylene oxide alkyl group, more preferably 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-tetrahydrofurfuryloxypropyltrimethoxysilane, 3-tetrahydrofurfuryloxypropyltriethoxysilane.
  • Examples of the silicon compound having a group represented by the formula (V), a group represented by the formula (VI), and a group represented by the formula (VIII) include acryloxyalkyltrialkoxysilane and methacryloxyalkyltrialkoxysilane. I can give you.
  • Examples of the acryloxyalkyltrialkoxysilane include 3-acryloxypropyltrialkoxysilane such as 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane.
  • Examples of the methacryloxyalkyltrialkoxysilane include 3-methacryloxypropyltrialkoxysilane such as 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane.
  • Examples of the silicon compound having a group represented by the formula (V), a group represented by the formula (VI), and a group represented by the formula (VIII) include trialkoxysilylalkyl succinic anhydride and trialkoxysilylalkyl. Mention may be made of maleic anhydride.
  • trialkoxysilylalkyl succinic anhydrides include 3-trialkoxysilylpropyl succinic anhydrides such as 3-trimethoxysilylpropyl succinic anhydride and 3-triethoxysilylpropyl succinic anhydride.
  • trialkoxysilylalkylmaleic anhydride include 3-trialkoxysilylpropylmaleic anhydride such as 3-trimethoxysilylpropylmaleic anhydride and 3-triethoxysilylpropylmaleic anhydride.
  • a 5 is a functional group having a nitrogen atom, and examples thereof include an amino group, an isocyano group, a cyano group, a pyridyl group, a piperidyl group, a pyrazinyl group, and a morpholino group.
  • Examples of the compound having a group represented by the formula (VII) include a compound represented by the following formula (VII-1).
  • z represents an integer of 0 to 10
  • R 71 represents a hydrocarbyl group having 1 to 5 carbon atoms
  • R 72 , R 73 , R 74 and R 75 each independently represent a hydrogen atom
  • a hydrocarbyl group having 1 to 5 carbon atoms, a substituted hydrocarbyl group having 1 to 5 carbon atoms, or a hydrocarbyloxy group having 1 to 5 carbon atoms, and a plurality of R 72 and R 73 are present.
  • R 72 and a plurality of R 73 may be the same or different, and R 76 and R 77 are each independently at least one selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom. atom represent good number of carbon atoms even if the groups 1-6 has, R 76 and R 77 may form a ring structure with a nitrogen atom bonded to, R 76 and R 77 is a nitrogen With double bond It may be the same group if. ]
  • Z in the formula (VII-1) represents an integer of 0 to 10. From the viewpoint of improving economy, it is preferably 3 or less, more preferably 0.
  • R 71 in formula (VII-1) represents a hydrocarbyl group having 1 to 5 carbon atoms.
  • the hydrocarbyl group of R 71 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and t-butyl group.
  • the hydrocarbyl group represented by R 71 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • R 72 to R 75 in formula (VII-1) are each independently a hydrogen atom, a hydrocarbyl group having 1 to 5 carbon atoms, a substituted hydrocarbyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • 5 represents a hydrocarbyloxy group, and when there are a plurality of R 72 and R 73 , the plurality of R 72 and the plurality of R 73 may be the same or different.
  • Examples of the hydrocarbyl group of R 72 to R 75 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and t-butyl group.
  • Examples of the substituted hydrocarbyl group of R 72 to R 75 include a substituted hydrocarbyl group having as a substituent at least one group selected from the group consisting of a group having a nitrogen atom and a group having an oxygen atom.
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl And alkoxyalkyl groups such as a methoxyethyl group, an ethoxymethyl group, and an ethoxyethyl group.
  • Examples of the hydrocarbyloxy group of R 72 to R 75 include alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and a t-butoxy group. .
  • the hydrocarbyl group of R 72 to R 75 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group of R 72 to R 75 is preferably an alkoxyalkyl group, more preferably an alkoxyalkyl group having 1 to 4 carbon atoms, still more preferably a methoxymethyl group or an ethoxyethyl group. .
  • the hydrocarbyloxy group of R 72 to R 75 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, and still more preferably a methoxy group or an ethoxy group.
  • R 74 and R 75 is a hydrogen atom. More preferably, one of R 74 and R 75 is a hydrogen atom, and the other is an alkyl group or an alkoxy group. More preferably, one of R 74 and R 75 is a hydrogen atom, and the other is an alkoxy group. Particularly preferred are a methoxy group and an ethoxy group.
  • R 76 and R 77 in formula (VII-1) each independently have 1 carbon atom which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom. And R 76 and R 77 may be bonded to form a ring structure with the nitrogen atom, and R 76 and R 77 may be the same group bonded to the nitrogen by a double bond. Good.
  • R 76 and R 77 in formula (VII-1) include a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having 1 to 6 carbon atoms, and a substituted silyl group.
  • Examples of the hydrocarbyl group of R 76 and R 77 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, and isopentyl group. And an alkyl group such as n-hexyl group; a cycloalkyl group such as cyclohexyl group; a phenyl group and the like.
  • the substituted hydrocarbyl group of R 76 and R 77 is a substituted hydrocarbyl group having at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom and a group having a silicon atom as a substituent.
  • a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group, ethoxyethyl group; alkylene oxide group such as epoxy group, tetrahydrofuranyl group; alkylene oxide alkyl group such as glycidyl group, tetrahydrofurfuryl group, etc.
  • Examples of the group having a group having a silicon atom as a substituent include a trialkylsilylalkyl group such as a trimethylsilylmethyl group.
  • the alkylene oxide group represents a monovalent group obtained by removing a hydrogen atom from a ring of a cyclic ether compound.
  • the alkylene oxide alkyl group represents a group in which one or more hydrogen atoms of the alkyl group are substituted with an alkylene oxide group.
  • Examples of the substituted silyl group for R 76 and R 77 include trialkylsilyl groups such as trimethylsilyl group, triethylsilyl group and t-butyldimethylsilyl group; trialkoxysilyl groups such as trimethoxysilyl group.
  • the group to which R 76 and R 77 are bonded is a divalent group having 2 to 12 carbon atoms, which may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the group to which R 76 and R 77 are bonded is preferably a nitrogen-containing group, a group represented by —CH 2 CH 2 —NH—CH 2 —, a group represented by —CH 2 CH 2 —N ⁇ CH—. Is more preferable.
  • the same group bonded to the nitrogen of R 76 and R 77 with a double bond is the number of carbon atoms optionally having at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom Is a divalent group of 2 to 12.
  • Examples thereof include an ethylidene group, 1-methylpropylidene group, 1,3-dimethylbutylidene group, 1-methylethylidene group, 4-N, N-dimethylaminobenzylidene group.
  • the hydrocarbyl group of R 76 and R 77 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group, an ethyl group, or an n-propyl group. N-butyl group, more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group for R 76 and R 77 is preferably an alkoxyalkyl group, an alkylene oxide group, or an alkylene oxide alkyl group.
  • the substituted silyl group for R 76 and R 77 is preferably a trialkylsilyl group or a trialkoxysilyl group, more preferably a trialkylsilyl group, still more preferably a trimethylsilyl group or a triethylsilyl group. .
  • R 76 and R 77 are preferably an alkyl group, an alkoxyalkyl group, a substituted silyl group, or a nitrogen-containing group to which R 76 and R 77 are bonded, and more preferably an alkyl group having 1 to 4 carbon atoms. More preferred are a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, and even more preferred are a methyl group and an ethyl group.
  • Examples of the amino group in which R 76 and R 77 are bonded to a nitrogen atom include an acyclic amino group and a cyclic amino group.
  • Examples of the acyclic amino group include dimethylamino group, diethylamino group, di (n-propyl) amino group, di (isopropyl) amino group, di (n-butyl) amino group, di (sec-butyl) amino group, di ( dialkylamino groups such as tert-butyl) amino group, di (neopentyl) amino group, ethylmethylamino group; di (methoxymethyl) amino group, di (methoxyethyl) amino group, di (ethoxymethyl) amino group, di ( And di (alkoxyalkyl) amino groups such as ethoxyethyl) amino group; di (trialkylsilyl) amino groups such as di (trimethylsilyl) amino group and di (t-butyldimethylsilyl) amino group.
  • di (alkylene oxide) amino groups such as di (epoxy) amino groups and di (tetrahydrofuranyl) amino groups
  • di (alkylene oxide alkyl) amino groups such as di (glycidyl) amino groups and di (tetrahydrofurfuryl) amino groups
  • ethylideneamino group 1-methylpropylideneamino group, 1,3-dimethylbutylideneamino group, 1-methylethylideneamino group, 4-N, N-dimethylaminobenzylideneamino group, and the like.
  • Examples of the cyclic amino group include 1-pyrrolidinyl group, 1-piperidino group, 1-hexamethyleneimino group, 1-heptamethyleneimino group, 1-octamethyleneimino group, 1-decamethyleneimino group, 1-dodecamethyleneimino group. And 1-polymethyleneimino group such as a group.
  • Examples of the cyclic amino group include 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, 1-imidazolidinyl group, 1-piperazinyl group, morpholino group and the like.
  • the amino group in which R 76 and R 77 are bonded to the nitrogen atom is preferably an acyclic amino group from the viewpoint of low fuel consumption, wet grip performance, wear resistance, long-term stability and availability of the compound, A dialkylamino group is preferable, and a dimethylamino group and a diethylamino group are more preferable.
  • Examples of the compound represented by the formula (VII-1) include N, N-dialkyl-substituted carboxylic acid amide dialkyl acetal compounds.
  • N, N-dialkyl-substituted carboxylic acid amide dialkyl acetal compound N, N-dimethylformamide dimethyl acetal, N, N-diethylformamide dimethyl acetal, N, N-di (n-propyl) formamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-diethylformamide diethyl acetal, N, N-di (n-propyl) formamide diethyl acetal, N, N-dialkylformamide dialkyl acetals such as N, N-dimethylformamide ethyl methyl acetal, N, N-diethylformamide ethyl methyl acetal, N, N-di (n-propyl) formamide ethyl methyl acetal;
  • N, N-dialkylformamide dialkyl acetal More preferably, N, N-dimethylformamide dimethyl acetal, N, N-diethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-diethylformamide diethyl acetal.
  • the conjugated diene polymer may have a constituent unit based on another monomer in addition to the constituent unit based on the conjugated diene (conjugated diene unit).
  • the other monomer include aromatic vinyl, vinyl nitrile, and unsaturated carboxylic acid ester.
  • the aromatic vinyl include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, trivinyl benzene, and divinyl naphthalene.
  • Examples of the vinyl nitrile include acrylonitrile, and examples of the unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate. Among these, aromatic vinyl is preferable, and styrene is more preferable.
  • the conjugated diene polymer preferably has a structural unit based on aromatic vinyl (aromatic vinyl unit) from the viewpoint of wear resistance.
  • the content of the aromatic vinyl unit is preferably a conjugated diene unit.
  • the total amount of aromatic vinyl units is 100% by mass, preferably 10% by mass or more (conjugated diene unit content is 90% by mass or less), more preferably 15% by mass or more (conjugate diene unit content) Is 85% by mass or less).
  • the content of the aromatic vinyl unit is preferably 50% by mass or less (the content of the conjugated diene unit is 50% by mass or more), more preferably 45% by mass or less (conjugated diene).
  • the unit content is 55% by mass or more).
  • the vinyl bond content of the conjugated diene polymer is preferably 80 mol% or less, more preferably 70 mol% or less from the viewpoint of fuel efficiency, with the content of the conjugated diene unit being 100 mol%. Moreover, from a viewpoint of wet grip performance, Preferably it is 10 mol% or more, More preferably, it is 15 mol% or more, More preferably, it is 20 mol% or more, Most preferably, it is 40 mol% or more.
  • the vinyl bond amount is determined from the absorption intensity in the vicinity of 910 cm ⁇ 1, which is the absorption peak of the vinyl group, by infrared spectroscopy.
  • the molecular weight distribution of the conjugated diene polymer is preferably 1 to 5 and more preferably 1 to 2 from the viewpoint of low fuel consumption.
  • the molecular weight distribution is obtained by measuring the number average molecular weight (Mn) and the weight average molecular weight (Mw) by gel permeation chromatography (GPC) method and dividing Mw by Mn.
  • Step A A monomer containing a conjugated diene and a vinyl compound represented by the following formula (IX) is polymerized with an alkali metal catalyst in a hydrocarbon solvent, and the monomer unit based on the conjugated diene
  • X 4 , X 5 and X 6 each independently represent a group represented by the following formula (IXa), a hydrocarbyl group or a substituted hydrocarbyl group, wherein at least one of X 4 , X 5 and X 6 is And a group represented by the following formula (IXa).
  • R 81 and R 82 each independently represent a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having a carbon number of 1-6, a silyl group, or a substituted silyl group, R 81 and R 82 may be bonded to form a ring structure with the nitrogen atom.
  • Step B A step of reacting the polymer obtained in Step A with at least one of the modifiers 1 to 5.
  • Examples of the alkali metal catalyst used in (Step A) include alkali metals, organic alkali metal compounds, complexes of alkali metals and polar compounds, oligomers having alkali metals, and the like.
  • Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like.
  • organic alkali metal compound examples include ethyl lithium, n-propyl lithium, iso-propyl lithium, n-butyl lithium, sec-butyl lithium, t-octyl lithium, n-decyl lithium, phenyl lithium, 2-naphthyl lithium, 2 -Butylphenyllithium, 4-phenylbutyllithium, cyclohexyllithium, 4-cyclopentyllithium, dimethylaminopropyllithium, diethylaminopropyllithium, t-butyldimethylsiloxypropyllithium, N-morpholinopropyllithium, lithium hexamethyleneimide, lithium pyrrole Zido, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, 1,4-dilithio-2-butene, sodium naphthalenide, sodium Bifenirido, such as potassium napthalenide can be
  • Examples of the complex of alkali metal and polar compound include potassium-tetrahydrofuran complex and potassium-diethoxyethane complex.
  • Examples of the oligomer having alkali metal include sodium salt of ⁇ -methylstyrene tetramer. Can do. Among these, an organic lithium compound or an organic sodium compound is preferable, and an organic lithium compound or an organic sodium compound having 2 to 20 carbon atoms is more preferable.
  • the hydrocarbon solvent used in (Step A) is a solvent that does not deactivate the organic alkali metal compound catalyst, and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, and alicyclic hydrocarbons.
  • examples of the aliphatic hydrocarbon include propane, n-butane, iso-butane, n-pentane, iso-pentane, n-hexane, propene, 1-butene, iso-butene, trans-2-butene, cis-2- Examples include butene, 1-pentene, 2-pentene, 1-hexene, and 2-hexene.
  • examples of the aromatic hydrocarbon include benzene, toluene, xylene, and ethylbenzene.
  • examples of the alicyclic hydrocarbon include cyclopentane and cyclohexane. These may be used alone or in combination of two or more. Of these, hydrocarbons having 2 to 12 carbon atoms are preferable.
  • a monomer containing a conjugated diene and a vinyl compound represented by the formula (IX) is polymerized, and a conjugated diene polymer having an alkali metal derived from the above-mentioned alkali metal catalyst at the end of the polymer chain.
  • the conjugated diene include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and 1,3-hexadiene. Used in combination of more than one species. Of these, 1,3-butadiene and isoprene are preferred from the viewpoint of availability.
  • X 4 , X 5 and X 6 in the formula (IX) each independently represent a group represented by the formula (IXa), a hydrocarbyl group or a substituted hydrocarbyl group, and at least one of X 4 , X 5 and X 6 Is a group represented by the formula (IXa).
  • R 81 and R 82 of formula (IXa) represent each independently, a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having a carbon number of 1-6, a silyl group, or a substituted silyl group, R 81 And R 82 may combine with each other to form a ring structure together with the nitrogen atom.
  • Examples of the hydrocarbyl group having 1 to 6 carbon atoms in R 81 and R 82 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n- Examples thereof include alkyl groups such as pentyl group, neopentyl group, isopentyl group and n-hexyl group; cycloalkyl groups such as cyclohexyl group; phenyl groups and the like.
  • the substituted hydrocarbyl group having 1 to 6 carbon atoms in R 81 and R 82 is at least one group selected from the group consisting of a group having a nitrogen atom, a group having an oxygen atom, and a group having a silicon atom.
  • the substituted hydrocarbyl group which has as a substituent can be mention
  • Examples of the group having a group having a nitrogen atom as a substituent include dialkylaminoalkyl groups such as a dimethylaminoethyl group and a diethylaminoethyl group.
  • Examples of the group having a group having an oxygen atom as a substituent include methoxymethyl Group, alkoxyalkyl group such as methoxyethyl group, ethoxymethyl group, ethoxyethyl group and the like, and groups having a silicon atom as a substituent include trialkylsilylalkyl groups such as trimethylsilylmethyl group, etc. I can give you.
  • Examples of the substituted silyl group for R 81 and R 82 include a trialkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, and a t-butyldimethylsilyl group.
  • the group to which R 81 and R 82 are bonded is a divalent group having 1 to 12 carbon atoms that may have at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom.
  • Group for example, an alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group; an oxydialkylene group such as an oxydiethylene group or an oxydipropylene group; —CH 2 CH 2 —NH—CH 2 — And a nitrogen-containing group such as a group represented by —CH 2 CH 2 —N ⁇ CH—.
  • the group to which R 81 and R 82 are bonded is preferably a nitrogen-containing group, a group represented by —CH 2 CH 2 —NH—CH 2 —, a group represented by —CH 2 CH 2 —N ⁇ CH—. Is more preferable.
  • the hydrocarbyl group of R 81 and R 82 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, an n-propyl group, or an n-butyl group. And the group n-butyl is particularly preferred.
  • the substituted hydrocarbyl group for R 81 and R 82 is preferably an alkoxyalkyl group, more preferably an alkoxyalkyl group having 1 to 4 carbon atoms.
  • the substituted silyl group for R 81 and R 82 is preferably a trialkylsilyl group, and more preferably a trimethylsilyl group.
  • R 81 and R 82 are preferably an alkyl group, an alkoxyalkyl group, a substituted silyl group, or a nitrogen-containing group to which R 81 and R 82 are bonded, more preferably an alkyl group, still more preferably carbon. It is an alkyl group having 1 to 4 atoms, and more preferably a methyl group, an ethyl group, an n-propyl group, or an n-butyl group.
  • Examples of the group represented by the formula (IXa) include an acyclic amino group and a cyclic amino group.
  • Examples of the acyclic amino group include dimethylamino group, diethylamino group, di (n-propyl) amino group, di (isopropyl) amino group, di (n-butyl) amino group, di (sec-butyl) amino group, di ( dialkylamino groups such as tert-butyl) amino group, di (neopentyl) amino group, ethylmethylamino group; di (methoxymethyl) amino group, di (methoxyethyl) amino group, di (ethoxymethyl) amino group, di ( And di (alkoxyalkyl) amino groups such as ethoxyethyl) amino group; di (trialkylsilyl) amino groups such as di (trimethylsilyl) amino group and di (t-butyldimethylsilyl) amino group.
  • Examples of the cyclic amino group include 1-pyrrolidinyl group, 1-piperidino group, 1-hexamethyleneimino group, 1-heptamethyleneimino group, 1-octamethyleneimino group, 1-decamethyleneimino group, 1-dodecamethyleneimino group. And 1-polymethyleneimino group such as a group.
  • Examples of the cyclic amino group include 1-imidazolyl group, 4,5-dihydro-1-imidazolyl group, 1-imidazolidinyl group, 1-piperazinyl group, morpholino group and the like.
  • the group represented by the formula (IXa) is preferably an acyclic amino group, more preferably a dialkylamino group, and still more preferably a carbon atom number of 1 to 1, in view of economy and availability.
  • Examples of the hydrocarbyl group of X 4 to X 6 in the formula (IX) include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group. be able to.
  • Examples of the substituted hydrocarbyl group include alkoxyalkyl groups such as a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group, and an ethoxyethyl group.
  • the hydrocarbyl group of X 4 to X 6 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group of X 4 to X 6 is preferably an alkoxyalkyl group, more preferably an alkoxyalkyl group having 1 to 4 carbon atoms.
  • the hydrocarbyl group and substituted hydrocarbyl group of X 4 to X 6 are preferably an alkyl group or an alkoxyalkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms.
  • At least one of X 4 , X 5 and X 6 in the formula (IX) is a group represented by the formula (IXa).
  • X 4 , X 5 and X 6 are groups represented by the formula (IXa), more preferably two of X 4 , X 5 and X 6 are represented by the formula (IXa) It is a group represented.
  • one of X 4 to X 6 is an acyclic amino group represented by the formula (IXa), and two are hydrocarbyl groups or substituted hydrocarbyls.
  • the group-containing compound include (dialkylamino) dialkylvinylsilane, ⁇ di (trialkylsilyl) amino ⁇ dialkylvinylsilane, (dialkylamino) dialkoxyalkylvinylsilane, and the like.
  • (Dialkylamino) dialkylvinylsilanes include (dimethylamino) dimethylvinylsilane, (ethylmethylamino) dimethylvinylsilane, (diethylamino) dimethylvinylsilane, (ethyl-n-propylamino) dimethylvinylsilane, (ethylisopropylamino) dimethylvinylsilane, ( Di (n-propyl) amino) dimethylvinylsilane, (diisopropylamino) dimethylvinylsilane, (n-butyl-n-propylamino) dimethylvinylsilane, (di (n-butyl) amino) dimethylvinylsilane, (dimethylamino) diethylvinylsilane, (Ethylmethylamino) diethylvinylsilane, (diethylamino) diethyl
  • ⁇ Di (trialkylsilyl) amino ⁇ dialkylvinylsilane includes ⁇ di (trimethylsilyl) amino ⁇ dimethylvinylsilane, ⁇ di (t-butyldimethylsilyl) amino ⁇ dimethylvinylsilane, ⁇ di (trimethylsilyl) amino ⁇ diethylvinylsilane, ⁇ di (T-butyldimethylsilyl) amino ⁇ diethylvinylsilane and the like.
  • (Dialkylamino) dialkoxyalkylvinylsilane includes (dimethylamino) dimethoxymethylvinylsilane, (dimethylamino) dimethoxyethylvinylsilane, (dimethylamino) diethoxymethylvinylsilane, (dimethylamino) diethoxyethylvinylsilane, (diethylamino) dimethoxymethyl Examples thereof include vinylsilane, (diethylamino) dimethoxyethylvinylsilane, (diethylamino) diethoxymethylvinylsilane, (diethylamino) diethoxyethylvinylsilane, and the like.
  • Compounds in which two of X 4 to X 6 are acyclic amino groups represented by the formula (IXa) and one is a hydrocarbyl group or a substituted hydrocarbyl group include bis (dialkylamino) alkylvinylsilane, bis ⁇ di (trialkyl Silyl) amino ⁇ alkylvinylsilane, bis (dialkylamino) alkoxyalkylvinylsilane, and the like.
  • Bis (dialkylamino) alkylvinylsilanes include bis (dimethylamino) methylvinylsilane, bis (ethylmethylamino) methylvinylsilane, bis (diethylamino) methylvinylsilane, bis (ethyl-n-propylamino) methylvinylsilane, and bis (ethylisopropyl).
  • bis ⁇ di (trialkylsilyl) amino ⁇ alkylvinylsilane examples include bis ⁇ di (trimethylsilyl) amino ⁇ methylvinylsilane, bis ⁇ di (t-butyldimethylsilyl) amino ⁇ methylvinylsilane, bis ⁇ di (trimethylsilyl) amino ⁇ ethyl
  • examples thereof include vinyl silane and bis ⁇ di (t-butyldimethylsilyl) amino ⁇ ethyl vinyl silane.
  • Bis (dialkylamino) alkoxyalkylvinylsilanes include bis (dimethylamino) methoxymethylvinylsilane, bis (dimethylamino) methoxyethylvinylsilane, bis (dimethylamino) ethoxymethylvinylsilane, bis (dimethylamino) ethoxyethylvinylsilane, and bis (diethylamino).
  • Methoxymethylvinylsilane bis (diethylamino) methoxyethylvinylsilane, bis (diethylamino) ethoxymethylvinylsilane, bis (diethylamino) ethoxyethylvinylsilane, and the like.
  • Examples of the compound in which three of X 4 to X 6 are acyclic amino groups represented by the formula (IXa) include tri (dialkylamino) vinylsilane.
  • tri (dimethylamino) vinylsilane, tri (ethylmethylamino) vinylsilane, tri (diethylamino) vinylsilane, tri (ethylpropylamino) vinylsilane, tri (dipropylamino) vinylsilane, tri (butylpropylamino) vinylsilane Can do.
  • Compounds in which two of X 4 to X 6 are cyclic amino groups represented by the formula (IXa) and one is a hydrocarbyl group or a substituted hydrocarbyl group include bis (morpholino) methylvinylsilane, bis (piperidino) methylvinylsilane, bis (4,5-dihydroimidazolyl) methylvinylsilane, bis (hexamethyleneimino) methylvinylsilane and the like can be mentioned.
  • X 4 is a group represented by 2 Exemplary ethynylphenylbiadamantane derivatives (IXa) of X 6, preferably, two of the non-cyclic X 4, X 5 and X 6
  • bis (diethylamino) methylvinylsilane and bis (di (n-butyl) amino) methylvinylsilane are preferable from the viewpoint of availability
  • another monomer may be combined with the conjugated diene and the vinyl compound represented by the formula (IX) for polymerization.
  • examples of other monomers include aromatic vinyl, vinyl nitrile, and unsaturated carboxylic acid ester.
  • aromatic vinyl include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, trivinyl benzene, and divinyl naphthalene.
  • the vinyl nitrile include acrylonitrile
  • examples of the unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate.
  • aromatic vinyl is preferable, and styrene is more preferable.
  • Polymerization in (Step A) is an agent that adjusts the vinyl bond amount of the conjugated diene unit, and an agent that adjusts the distribution of constituent units based on monomers other than the conjugated diene unit and the conjugated diene in the conjugated diene polymer chain. (Hereinafter collectively referred to as “regulator”) or the like.
  • regulatory include ether compounds, tertiary amines, and phosphine compounds.
  • the ether compound examples include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; aliphatic monoethers such as diethyl ether and dibutyl ether; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, and diethylene glycol diethyl ether. And aliphatic diethers such as diethylene glycol dibutyl ether; aromatic ethers such as diphenyl ether and anisole.
  • cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane
  • aliphatic monoethers such as diethyl ether and dibutyl ether
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether ethylene glycol dibutyl ether
  • Examples of the tertiary amine include triethylamine, tripropylamine, tributylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N-diethylaniline, pyridine, quinoline and the like.
  • Examples of the phosphine compound include trimethylphosphine, triethylphosphine, triphenylphosphine, and the like. These may be used alone or in combination of two or more.
  • the polymerization temperature in (Step A) is usually 25 to 100 ° C., preferably 35 to 90 ° C. More preferably, it is 50 to 80 ° C.
  • the polymerization time is usually 10 minutes to 5 hours.
  • the amount of modifiers 1 to 5 to be brought into contact with the polymer prepared in Step A is usually 0.1 to 3 moles per mole of alkali metal derived from the organic alkali metal catalyst, preferably Is 0.5 to 2 moles, more preferably 0.7 to 1.5 moles, and still more preferably 1 to 1.5 moles.
  • the temperature at which the polymer prepared in Step A is brought into contact with at least one of the modifiers 1 to 5 is usually 25 to 100 ° C., preferably 35 to 90 ° C. More preferably, it is 50 to 80 ° C.
  • the contact time is usually 60 seconds to 5 hours, preferably 5 minutes to 1 hour, more preferably 15 minutes to 1 hour.
  • a coupling agent may be added to the hydrocarbon solution of the conjugated diene polymer in the polymerization termination from the start of polymerization of the monomer using an alkali metal catalyst, if necessary.
  • the coupling agent include compounds represented by the following formula (X).
  • R 91 a ML 4-a (X) [Wherein R 91 represents an alkyl group, an alkenyl group, a cycloalkenyl group or an aromatic residue, M represents a silicon atom or a tin atom, L represents a halogen atom or a hydrocarbyloxy group, and a represents 0 to 2 Represents an integer. ]
  • the aromatic residue represents a monovalent group obtained by removing hydrogen bonded to an aromatic ring from an aromatic hydrocarbon.
  • silicon tetrachloride methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, tin tetrachloride, methyltrichlorotin, dimethyldichlorotin, trimethylchlorotin, tetramethoxysilane, methyl Examples include trimethoxysilane, dimethoxydimethylsilane, methyltriethoxysilane, ethyltrimethoxysilane, dimethoxydiethylsilane, diethoxydimethylsilane, tetraethoxysilane, ethyltriethoxysilane, and diethoxydiethylsilane.
  • the addition amount of the coupling agent is preferably 0.03 mol or more, more preferably 0.05 mol or more, from the viewpoint of processability of the conjugated diene polymer per 1 mol of alkali metal derived from the alkali metal catalyst. is there. Moreover, from a viewpoint of low fuel consumption, Preferably it is 0.4 mol or less, More preferably, it is 0.3 mol or less.
  • Conjugated diene polymers can be collected by known recovery methods, for example, (1) a method of adding a coagulant to a hydrocarbon solution of a conjugated diene polymer, and (2) adding steam to a hydrocarbon solution of a conjugated diene polymer.
  • the conjugated diene polymer can be recovered from the hydrocarbon solution.
  • the recovered conjugated diene polymer may be dried by a known dryer such as a band dryer or an extrusion dryer.
  • the treatment may be performed in the state of the polymer alone or in the state of the composition as described below.
  • Examples of the hydrolysis method include known methods such as a method by steam stripping.
  • the conjugated diene polymer can be used in the rubber composition of the present invention as a rubber component, and is preferably used in combination with other rubber components and additives.
  • general diene rubbers can be used, for example, styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), butadiene-isoprene copolymer rubber, butyl rubber and the like. I can give you.
  • natural rubber (NR), ethylene-propylene copolymer, ethylene-octene copolymer and the like can also be mentioned. Two or more of these rubber components may be used in combination.
  • NR and / or BR it is preferable to use NR and / or BR, and it is more preferable to use both components of NR and BR from the point that low-fuel-consumption property, wet grip performance, and abrasion resistance can be improved with good balance.
  • the content of the conjugated diene polymer in 100% by mass of the rubber component is 5% by mass or more, preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the content of the conjugated diene polymer is preferably 90% by mass or less, more preferably 80% by mass or less, and still more preferably 70% by mass or less.
  • the content of the conjugated diene polymer exceeds 90% by mass, the wear resistance is lowered and the cost tends to be high.
  • the NR is not particularly limited.
  • SIR20, RSS # 3, TSR20, deproteinized natural rubber (DPNR), high-purity natural rubber (HPNR), etc. which are common in the tire industry can be used.
  • the content of NR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. If it is less than 5% by mass, the wear resistance tends to decrease.
  • the NR content is preferably 70% by mass or less, more preferably 60% by mass or less, and still more preferably 30% by mass or less. If it exceeds 70% by mass, the wet grip performance tends to decrease.
  • the BR is not particularly limited.
  • BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd., BR150B having high cis content such as BR150B, VCR412 manufactured by Ube Industries, Ltd., VCR617, etc.
  • Commonly used in the tire industry such as BR containing syndiotactic polybutadiene crystals, can be used.
  • the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. If it is less than 5% by mass, the wear resistance tends to decrease.
  • the BR content is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 35% by mass or less, still more preferably 30% by mass or less, and particularly preferably 25% by mass or less. If it exceeds 60% by mass, the wet grip performance tends to decrease.
  • the total content of NR and BR in 100% by mass of the rubber component is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more. If it is less than 10% by mass, the wear resistance tends to decrease.
  • the total content is preferably 70% by mass or less, more preferably 50% by mass or less. If it exceeds 70% by mass, the wet grip performance tends to decrease.
  • the rubber composition of the present invention is characterized by compounding silica as a reinforcing agent.
  • the amount (content) of silica is 5 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
  • the blending amount of silica is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, further preferably 45 parts by mass or more, preferably 120 parts by mass or less, more preferably 100 parts by mass or less.
  • Silica may be used alone or in combination of two or more.
  • the content of silica in a total of 100% by mass of silica and carbon black is preferably 60% by mass or more, more preferably 85% by mass or more, preferably 98% by mass or less, more preferably 95% by mass or less. . If it is in the said range, low-fuel-consumption property, wet-grip performance, and abrasion resistance can be improved with a high dimension in a well-balanced manner.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 40 m 2 / g or more, more preferably 50 m 2 / g or more, still more preferably 60 m 2 / g or more, and particularly preferably 150 m 2 / g or more. Yes, preferably 400 m 2 / g or less, more preferably 360 m 2 / g or less, still more preferably 300 m 2 / g or less, particularly preferably 200 m 2 / g or less.
  • Silica having a nitrogen adsorption specific surface area of less than 40 m 2 / g has a small reinforcing effect and tends to have low wear resistance, and silica having a nitrogen adsorption specific surface area of more than 400 m 2 / g has poor dispersibility, increases hysteresis loss, and lowers fuel efficiency.
  • the nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.
  • a silane coupling agent having a mercapto group (mercapto silane coupling agent) is used.
  • the mercapto-based silane coupling agent the compound represented by the following formula (1) and / or the binding unit A represented by the following formula (2) and the following formula can be obtained because the effects of the present invention can be obtained satisfactorily.
  • a compound containing the binding unit B represented by (3) can be suitably used.
  • R 101 to R 103 each represents a branched or unbranched alkyl group having 1 to 12 carbon atoms, a branched or unbranched alkoxy group having 1 to 12 carbon atoms, or —O— (R 111 — O) b -R 112
  • b R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms.
  • the b R 111 may be the same or different.
  • R 112 is a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • B represents an integer of 1 to 30).
  • R 101 to R 103 may be the same or different.
  • R 104 represents a branched or unbranched alkylene group having 1 to 6 carbon atoms.
  • R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched. Represents an alkynyl group having 2 to 30 carbon atoms, or a group in which hydrogen at the terminal of the alkyl group is substituted with a hydroxyl group or a carboxyl group.
  • R 202 represents a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, or a branched or unbranched alkynylene group having 2 to 30 carbon atoms.
  • R 201 and R 202 may form a ring structure.
  • silane coupling agent represented by the formula (1) By blending the silane coupling agent represented by the formula (1), wet grip performance and rolling resistance characteristics (low fuel consumption) can be further improved.
  • R 101 to R 103 are branched or unbranched alkyl groups having 1 to 12 carbon atoms, branched or unbranched alkoxy groups having 1 to 12 carbon atoms, or —O— (R 111 —O) b —R 112 . Represents the group represented.
  • At least one of R 101 to R 103 is preferably a group represented by —O— (R 111 —O) b —R 112 , and two of them are — More preferably, it is a group represented by O— (R 111 —O) b —R 112 , and one is a branched or unbranched alkoxy group having 1 to 12 carbon atoms.
  • Examples of the branched or unbranched alkyl group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 101 to R 103 include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group, nonyl group and the like.
  • Examples of the branched or unbranched alkoxy group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 101 to R 103 include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- Examples include butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, heptyloxy, 2-ethylhexyloxy, octyloxy, nonyloxy and the like.
  • R 111 represents a branched or unbranched carbon number of 1 to 30 (preferably having a carbon number of 1 to 15, more preferably a carbon number of 1).
  • a divalent hydrocarbon group examples include a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, and a branched or unbranched alkynylene group having 2 to 30 carbon atoms. And an arylene group having 6 to 30 carbon atoms. Of these, branched or unbranched alkylene groups having 1 to 30 carbon atoms are preferred.
  • Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 to 3 carbon atoms) of R 111 include, for example, a methylene group, an ethylene group, a propylene group, and a butylene group. Pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.
  • the branched or unbranched 2 carbon atoms to 30 (preferably 2 to 15 carbon atoms, more preferably having 2 to 3 carbon atoms) alkenylene group of R 111, for example, vinylene group, propenylene group, 2-propenylene Group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2-pentenylene group, 1-hexenylene group, 2-hexenylene group, 1-octenylene group and the like.
  • Examples of the branched or unbranched alkynylene group having 2 to 30 carbon atoms (preferably 2 to 15 carbon atoms, more preferably 2 to 3 carbon atoms) of R 111 include, for example, an ethynylene group, a propynylene group, a butynylene group, and a pentynylene group. Hexynylene group, heptynylene group, octynylene group, noninylene group, decynylene group, undecynylene group, dodecynylene group and the like.
  • Examples of the arylene group having 6 to 30 carbon atoms (preferably 6 to 15 carbon atoms) of R 111 include a phenylene group, a tolylene group, a xylylene group, and a naphthylene group.
  • b represents an integer of 1 to 30 (preferably 2 to 20, more preferably 3 to 7, still more preferably 5 to 6).
  • R 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. To express. Of these, branched or unbranched alkyl groups having 1 to 30 carbon atoms are preferred.
  • Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) of R 112 include, for example, a methyl group, an ethyl group, an n-propyl group, Isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group and the like.
  • Examples of the branched or unbranched alkenyl group having 2 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) of R 112 include, for example, vinyl group, 1-propenyl group, 2-propenyl group. Group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group Group, pentadecenyl group, octadecenyl group and the like.
  • Examples of the aryl group having 6 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenyl group.
  • Examples of the aralkyl group having 7 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include benzyl group and phenethyl group.
  • —O— (R 111 —O) b —R 112 include, for example, —O— (C 2 H 4 —O) 5 —C 11 H 23 , —O— (C 2 H 4 —O) 5 —C 12 H 25 , —O— (C 2 H 4 —O) 5 —C 13 H 27 , —O— (C 2 H 4 —O) 5 —C 14 H 29 , —O -(C 2 H 4 -O) 5 -C 15 H 31 , -O- (C 2 H 4 -O) 3 -C 13 H 27 , -O- (C 2 H 4 -O) 4 -C 13 H 27 , —O— (C 2 H 4 —O) 6 —C 13 H 27 , —O— (C 2 H 4 —O) 7 —C 13 H 27, and the like.
  • —O— (C 2 H 4 —O) 5 —C 11 H 23 , —O— (C 2 H 4 —O) 5 —C 13 H 27 , —O— (C 2 H 4 —O) 5 —C 15 H 31 , —O— (C 2 H 4 —O) 6 —C 13 H 27 are preferred.
  • Examples of the branched or unbranched alkylene group having 1 to 6 carbon atoms (preferably 1 to 5 carbon atoms) of R 104 include the same groups as the branched or unbranched alkylene group having 1 to 30 carbon atoms of R 111. Can give.
  • Examples of the compound represented by the above formula (1) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, (Si363 manufactured by Evonik Degussa) and the like, and a compound represented by the following formula can be preferably used. These may be used alone or in combination of two or more.
  • the compound containing the bond unit A represented by the formula (2) and the bond unit B represented by the formula (3) is more viscous during processing than the polysulfide silane such as bis- (3-triethoxysilylpropyl) tetrasulfide.
  • the rise is suppressed. This is presumably because the increase in Mooney viscosity is small because the sulfide portion of the bond unit A is a C—S—C bond and is thermally stable compared to tetrasulfide and disulfide.
  • the shortening of the scorch time is suppressed as compared with mercaptosilane such as 3-mercaptopropyltrimethoxysilane.
  • the bonding unit B has a mercaptosilane structure, but the —C 7 H 15 portion of the bonding unit A covers the —SH group of the bonding unit B, so that it is difficult to react with the polymer. it is conceivable that. Therefore, even when the amount of the vulcanization accelerator is increased or SBR which is easily scorched is blended, good processability can be obtained.
  • the content of the bond unit A is preferably 30 from the viewpoint that the effect of suppressing the increase in viscosity during processing and the effect of suppressing the shortening of the scorch time can be enhanced. It is at least mol%, more preferably at least 50 mol%, preferably at most 99 mol%, more preferably at most 90 mol%. Further, the content of the binding unit B is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less, More preferably, it is 55 mol% or less.
  • the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.
  • the content of the bond units A and B is an amount including the case where the bond units A and B are located at the terminal of the silane coupling agent.
  • the form in which the bonding units A and B are located at the end of the silane coupling agent is not particularly limited, as long as the units corresponding to the formulas (2) and (3) indicating the bonding units A and B are formed. .
  • halogen for R 201 examples include chlorine, bromine, and fluorine.
  • Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms of R 201 and R 202 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, and a sec-butyl group. Tert-butyl, pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, nonyl, decyl and the like.
  • the alkyl group preferably has 1 to 12 carbon atoms.
  • Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms of R 201 and R 202 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, Examples include an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, an octadecylene group, and the like.
  • the alkylene group preferably has 1 to 12 carbon atoms.
  • Examples of the branched or unbranched alkenyl group having 2 to 30 carbon atoms of R 201 and R 202 include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, Examples include 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-octenyl group and the like.
  • the alkenyl group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or unbranched C 2-30 alkenylene group of R 201 and R 202 include vinylene group, 1-propenylene group, 2-propenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, Examples include 2-pentenylene group, 1-hexenylene group, 2-hexenylene group, 1-octenylene group and the like.
  • the alkenylene group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or unbranched alkynyl group having 2 to 30 carbon atoms of R 201 and R 202 include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, noninyl group, decynyl group, An undecynyl group, a dodecynyl group, etc. are mention
  • the alkynyl group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or unbranched C 2-30 alkynylene group of R 201 and R 202 include ethynylene group, propynylene group, butynylene group, pentynylene group, hexynylene group, heptynylene group, octynylene group, noninylene group, decynylene group, An undecynylene group, a dodecynylene group, etc. are mention
  • the alkynylene group preferably has 2 to 12 carbon atoms.
  • the total number of repetitions of the repeating number (x) of the bonding unit A and the repeating number (y) of the bonding unit B is preferably in the range of 3 to 300. Within this range, the mercaptosilane of the bond unit B is covered with —C 7 H 15 of the bond unit A, so that it is possible to suppress the scorch time from being shortened and to have good reactivity with silica and rubber components. Can be secured.
  • NXT-Z30, NXT-Z45, NXT-Z60 manufactured by Momentive, etc. may be used as the compound containing the binding unit A represented by the formula (2) and the coupling unit B represented by the formula (3). Can do. These may be used alone or in combination of two or more.
  • the content of the mercapto-based silane coupling agent is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, still more preferably 1.5 parts by mass or more, and still more preferably with respect to 100 parts by mass of silica. 2 parts by mass or more, particularly preferably 2.5 parts by mass or more. If it is less than 0.5 mass part, it may become difficult to disperse
  • additives can be used, such as sulfur vulcanizing agents; thiazole vulcanization accelerators, thiuram vulcanization accelerators, sulfenamide vulcanization accelerators, guanidine vulcanization accelerators.
  • Vulcanization accelerators such as stearic acid and zinc oxide; organic peroxides; fillers such as carbon black, calcium carbonate, talc, alumina, clay, aluminum hydroxide and mica; Examples include processing aids such as lubricants; anti-aging agents.
  • Examples of the carbon black include furnace black (furness carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black); FT and Examples thereof include thermal black (thermal carbon black) such as MT; channel black (channel carbon black) such as EPC, MPC and CC; graphite and the like. These can be used alone or in combination of two or more.
  • the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts per 100 parts by mass of the rubber component from the viewpoint that fuel economy, wet grip performance and wear resistance can be improved in a high-dimensional and well-balanced manner. It is at least part by mass, preferably at most 60 parts by mass, more preferably at most 50 parts by mass, even more preferably at most 30 parts by mass, particularly preferably at most 10 parts by mass.
  • Nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g or more, more preferably 30 m 2 / g or more, more preferably 50 m 2 / g or more, particularly preferably be 70m 2 / g or more , Preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less, still more preferably 150 m 2 / g or less.
  • the dibutyl phthalate (DBP) absorption amount of carbon black is preferably 5 ml / 100 g or more, more preferably 80 ml / 100 g or more, preferably 300 ml / 100 g or less, more preferably 180 ml / 100 g or less. If the N 2 SA or DBP absorption amount of the carbon black is less than the lower limit of the above range, the reinforcing effect tends to be small and the wear resistance tends to decrease. If the upper limit of the above range is exceeded, dispersibility is poor and hysteresis loss increases. There is a tendency for fuel efficiency to decrease.
  • the nitrogen adsorption specific surface area is measured according to ASTM D4820-93, and the DBP absorption is measured according to ASTM D2414-93.
  • ASTM D4820-93 The nitrogen adsorption specific surface area is measured according to ASTM D4820-93
  • DBP absorption is measured according to ASTM D2414-93.
  • SHIEST 6 As a commercially available product, Tokai Carbon Co., Ltd. trade name SHIEST 6, SEAST 7HM, SEAST KH, Evonik Degussa trade name CK3, Special Black 4A, etc. can be used.
  • the extending oil examples include aromatic mineral oil (viscosity specific gravity constant (VGC value) 0.900 to 1.049), naphthenic mineral oil (VGC value 0.850 to 0.899), paraffinic mineral oil (VG value 0.790 to 0.849), and the like.
  • the polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass.
  • the polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method.
  • the aromatic compound content (CA) of the extending oil is preferably 20% by mass or more.
  • These extending oils may be used in combination of two or more.
  • vulcanization accelerator examples include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram Thiuram vulcanization accelerators such as disulfides; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N -Sulfenamide vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; diphenylguanidine, diortolylguanidine, orthotolylbiguanidine What guanidine-based
  • a known method for example, using a known mixer such as a roll or a banbury for each component.
  • a kneading method can be used.
  • the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C., and the kneading time is usually 30 seconds. -30 minutes, and preferably 1-30 minutes.
  • the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C.
  • a composition containing a vulcanizing agent and a vulcanization accelerator is usually used after vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.
  • the rubber composition of the present invention is excellent in the balance of low fuel consumption, wet grip performance and wear resistance, and can achieve a remarkable improvement effect of these performances.
  • the rubber composition of the present invention can be suitably used for each member of a tire, and can be particularly suitably used for a tread.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded according to the shape of the tread of the tire at an unvulcanized stage, and molded by a normal method on a tire molding machine, Laminate together with other tire members to form an unvulcanized tire. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce the pneumatic tire of the present invention.
  • the pneumatic tire of the present invention can be suitably used as a tire for passenger cars and a tire for trucks and buses (heavy load tire).
  • the reference comparative example in Table 6 is Comparative Example 1
  • the reference comparative example in Table 7 is Comparative Example 4
  • the reference comparative example in Table 8 is Comparative Example 11, and the reference comparative examples in Tables 9 to 10 are used.
  • Comparative Example 14 Comparative Reference Example in Table 11 Comparative Example 32, Comparative Comparative Example in Table 12, Comparative Example 38, Comparative Comparative Example in Tables 13-14, Comparative Example 46, Comparative Comparative Example in Tables 15-16 52
  • the reference comparative example in Table 17 was set as Comparative Example 59
  • the reference comparative example in Table 18 was set as Comparative Example 67.
  • Vinyl bond amount (unit: mol%) The amount of vinyl bonds in the polymer was determined from the absorption intensity near 910 cm ⁇ 1, which is the absorption peak of the vinyl group, by infrared spectroscopy.
  • Styrene unit content (unit: mass%) According to JIS K6383 (1995), the content of styrene units in the polymer was determined from the refractive index.
  • tan ⁇ A strip-shaped test piece having a width of 1 mm or 2 mm and a length of 40 mm was punched out from the sheet-like vulcanized rubber composition and subjected to the test. Using a spectrometer manufactured by Ueshima Seisakusho, tan ⁇ was measured at a dynamic strain amplitude of 1%, a frequency of 10 Hz, and a temperature of 50 ° C. The reciprocal value of tan ⁇ was expressed as an index with the reference comparative example being 100. Larger values indicate lower rolling resistance and better fuel efficiency.
  • Abrasion resistance 1 Using a LAT tester (Laboratory Abbreviation and Skid Tester), the volume loss of each vulcanized rubber composition was measured under the conditions of a load of 50 N, a speed of 20 km / h, and a slip angle of 5 °.
  • the numerical values (1 index of wear resistance) in the table are relative values when the volume loss amount of the reference comparative example is 100. The larger the value, the better the wear resistance.
  • Abrasion resistance 2 The manufactured test tire was mounted on all the wheels of a vehicle (domestic FF2000cc) and traveled on an actual vehicle, and the change in the groove depth of the tread pattern before and after traveling 3000 km was measured. And the abrasion resistance 2 index
  • Abrasion resistance 2 index (change in groove depth of reference comparative example) / (change in groove depth of each formulation) ⁇ 100
  • Production Example 1 (Synthesis of Polymer 1) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.1 mmol of 3-diethylaminopropyltriethoxysilane was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • the amount of 1,3-butadiene supplied was 205 g
  • the amount of styrene supplied was 65 g.
  • 2.8 mmol of bis (diethylamino) methylvinylsilane as a cyclohexane solution was added into the polymerization reactor under a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C. and stirred for 30 minutes. .
  • 20 ml of a hexane solution containing 0.14 ml of methanol was put into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • 1,3-butadiene and styrene were copolymerized for 3 hours while continuously supplying the monomer into the polymerization reactor.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g
  • the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.1 mmol of 3-diethylaminopropyltriethoxysilane was added and stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.1 mmol of 3-diethylaminopropyltriethoxysilane was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the evaluation results of the polymer 6 are shown in Table 1.
  • the content of the structural unit represented by the formula (I) in the polymer calculated from the input amount and the supply amount of the raw material into the polymerization reactor is 0.006 mmol / g polymer per polymer unit mass. there were.
  • Production Example 7 (Synthesis of Polymer 7) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.0 mmol of 1,3-dimethyl-2-imidazolidinone was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 8 (Synthesis of Polymer 8) 5.
  • the inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6.
  • 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • 12.9 mmol of n-butyllithium was added as an n-hexane solution, and 1,3-butadiene and styrene were copolymerized for 0.83 hours.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously supplied into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 1.67 hours.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.0 mmol of 1,3-dimethyl-2-imidazolidinone was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 9 (Synthesis of Polymer 9) 5.
  • the inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6.
  • 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • 13.7 mmol of n-butyllithium was added as an n-hexane solution, and 1,3-butadiene and styrene were copolymerized for 1 hour.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.0 mmol of 1,3-dimethyl-2-imidazolidinone was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 10 (Synthesis of Polymer 10) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.0 mmol of 1-phenyl-2-pyrrolidone was added, and the mixture was stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.0 mmol of 1-phenyl-2-pyrrolidone was added, and the mixture was stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 12 (Synthesis of Polymer 12) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.0 mmol of N-methyl- ⁇ -caprolactam was added, and the mixture was stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.0 mmol of N-methyl- ⁇ -caprolactam was added, and the mixture was stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 14 (Synthesis of Polymer 14) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring rate of 130 rpm, and 11.8 mmol of 4,4′-bis (diethylamino) benzophenone was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 12.2 mmol of 4 ′-(imidazol-1-yl) -acetophenone was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • the amount of 1,3-butadiene supplied was 205 g
  • the amount of styrene supplied was 65 g.
  • 2.8 mmol of bis (diethylamino) methylvinylsilane as a cyclohexane solution was added into the polymerization reactor under a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C. and stirred for 30 minutes. .
  • 20 ml of a hexane solution containing 0.14 ml of methanol was put into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • Production Example 17 (Synthesis of Polymer 17) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • 1,3-butadiene and styrene were copolymerized for 3 hours while continuously supplying the monomer into the polymerization reactor.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g
  • the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.0 mmol of 1,3-dimethyl-2-imidazolidinone was added and stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 11.0 mmol of 1,3-dimethyl-2-imidazolidinone was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the evaluation results of the polymer 20 are shown in Table 2.
  • the content of the structural unit represented by the formula (I) in the polymer calculated from the input amount and the supply amount of the raw material into the polymerization reactor is 0.006 mmol / g polymer per polymer unit mass. there were.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 10.5 mmol of N- (3-dimethylaminopropyl) acrylamide was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 10.5 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously supplied into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 1.67 hours.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 10.5 mmol of N- (3-dimethylaminopropyl) acrylamide was added and stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 10.5 mmol of N- (3-dimethylaminopropyl) acrylamide was added and stirred for 15 minutes.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 10.5 mmol of N- (3-dimethylaminopropyl) acrylamide was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • the amount of 1,3-butadiene supplied was 205 g
  • the amount of styrene supplied was 65 g.
  • 2.8 mmol of bis (diethylamino) methylvinylsilane as a cyclohexane solution was added into the polymerization reactor under a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C. and stirred for 30 minutes. .
  • 20 ml of a hexane solution containing 0.14 ml of methanol was put into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • Production Example 26 (Synthesis of Polymer 26) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • Production Example 27 (Synthesis of Polymer 27) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor. Next, 14.9 mmol of n-butyllithium was added as an n-hexane solution to initiate polymerization.
  • hexane specific gravity 0.68 g / cm 3
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • 1,3-butadiene and styrene were copolymerized for 3 hours while continuously supplying the monomer into the polymerization reactor.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g
  • the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 10.5 mmol of N- (3-dimethylaminopropyl) acrylamide was added and stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 28 (Synthesis of Polymer 28) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor. Next, 14.9 mmol of n-butyllithium was added as an n-hexane solution to initiate polymerization.
  • hexane specific gravity 0.68 g / cm 3
  • Production Example 29 (Synthesis of Polymer 29) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • hexane specific gravity 0.68 g / cm 3
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 10.5 mmol of N- (3-dimethylaminopropyl) acrylamide was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the evaluation results of the polymer 29 are shown in Table 3.
  • the content of the structural unit represented by the formula (I) in the polymer calculated from the input amount and the supply amount of the raw material into the polymerization reactor is 0.006 mmol / g polymer per polymer unit mass. there were.
  • Production Example 30 (Synthesis of Polymer 30) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 4.0 mmol of 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.80 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 14.4 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • 14.4 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring rate of 130 rpm, and 3.6 mmol of 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.80 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • the amount of 1,3-butadiene supplied was 205 g
  • the amount of styrene supplied was 65 g.
  • 2.8 mmol of bis (diethylamino) methylvinylsilane as a cyclohexane solution was added into the polymerization reactor under a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C., and stirred for 30 minutes. did.
  • 20 ml of a hexane solution containing 0.14 ml of methanol was put into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • 1,3-butadiene and styrene were copolymerized for 3 hours while continuously supplying the monomer into the polymerization reactor.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g
  • the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 4.0 mmol of 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate was added and stirred for 15 minutes. 20 ml of hexane solution containing 0.80 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 35 (Synthesis of Polymer 35) 5.
  • the inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6.
  • 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • 18.5 mmol of n-butyllithium was added as an n-hexane solution to initiate polymerization.
  • Production Example 36 (Synthesis of Polymer 36) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 4.0 mmol of 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.80 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Table 4 shows the evaluation results of the polymer 36.
  • the content of the structural unit represented by the formula (I) in the polymer calculated from the input amount and the supply amount of the raw material into the polymerization reactor is 0.009 mmol / g polymer per polymer unit mass. there were.
  • Production Example 37 (Synthesis of Polymer 37) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, and 4.0 mmol of 3- (methoxy) propyltrimethoxysilane was added and stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.80 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 38 (Synthesis of Polymer 38) 5. The inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6. 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.5 mmol of N, N-dimethylformamide dimethyl acetal was added, and the mixture was stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • Production Example 39 (Synthesis of Polymer 39) 5.
  • the inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6.
  • 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • 14.1 mmol of n-butyllithium was added as an n-hexane solution, and 1,3-butadiene and styrene were copolymerized for 1 hour.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • 11.0 mmol of bis (diethylamino) methylvinylsilane was added as a cyclohexane solution, and the mixture was charged into the polymerization reactor under the conditions of a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C.
  • the monomer was continuously fed into the polymerization reactor, and 1,3-butadiene and styrene were copolymerized for 0.5 hour.
  • the stirring speed was 130 rpm, and the temperature in the polymerization reactor was 65 ° C.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.0 mmol of N, N-dimethylformamide dimethylacetal was added, and the mixture was stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • the monomer was continuously fed into the polymerization reactor.
  • the amount of 1,3-butadiene supplied was 205 g
  • the amount of styrene supplied was 65 g.
  • 2.8 mmol of bis (diethylamino) methylvinylsilane as a cyclohexane solution was added into the polymerization reactor under a stirring speed of 130 rpm and a polymerization reactor internal temperature of 65 ° C. and stirred for 30 minutes. .
  • 20 ml of a hexane solution containing 0.14 ml of methanol was put into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • Production Example 41 (Synthesis of Polymer 41) 5.
  • the inside of a stainless steel polymerization reactor having an internal volume of 20 liters was washed, dried, and replaced with dry nitrogen, and hexane (specific gravity 0.68 g / cm 3 ) 10.2 kg, 1,3-butadiene 547 g, styrene 173 g, tetrahydrofuran 6.
  • 1 ml and ethylene glycol diethyl ether 5.0 ml were charged into the polymerization reactor.
  • the stirring speed was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • 1,3-butadiene and styrene were copolymerized for 3 hours while continuously supplying the monomer into the polymerization reactor.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g
  • the amount of styrene supplied was 259 g.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.5 mmol of N, N-dimethylformamide dimethyl acetal was added, and the mixture was stirred for 15 minutes. 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, 11.5 mmol of N, N-dimethylformamide dimethyl acetal was added, and the mixture was stirred for 15 minutes.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • the evaluation results of the polymer 44 are shown in Table 5.
  • the content of the structural unit represented by the formula (I) in the polymer calculated from the input amount and the supply amount of the raw material into the polymerization reactor is 0.006 mmol / g polymer per polymer unit mass. there were.
  • Natural rubber 1 RSS # 3
  • Natural rubber 2 SIR20 Butadiene rubber: Ubepol BR150B manufactured by Ube Industries, Ltd.
  • SBR NS116R manufactured by Nippon Zeon Co., Ltd.
  • Silane coupling agent 1 Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Evonik Degussa Silane coupling agent 2: Si363 (compound represented by the following formula) manufactured by Evonik Degussa Silane coupling agent 3: NXT-Z45 manufactured by Momentive (copolymer of bonding unit A and bonding unit B (bonding unit A: 55 mol%, bonding unit B: 45 mol%)) Silane coupling agent 4: Si75 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Degussa Carbon black 1: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 96
  • Anti-aging agent 1 Antigen 3C manufactured by Sumitomo Chemical Co., Ltd.
  • Anti-aging agent 2 Antigen 6C manufactured by Sumitomo Chemical Co., Ltd.
  • Stearic acid Beads manufactured by NOF Co., Ltd. Beaded stearic acid zinc oxide 1: Zinc flower No. 1 zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sannok N manufactured by Shinsei Chemical Industry Co., Ltd.
  • Sulfur 1 Powder sulfur sulfur manufactured by Tsurumi Chemical Co., Ltd. 2: 5% oil-treated powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Soxinol CZ manufactured by Sumitomo Chemical Co., Ltd.
  • Vulcanization accelerator 2 Soxinol D manufactured by Sumitomo Chemical Co., Ltd.
  • the obtained vulcanized rubber composition and test tire were used for evaluation by the above test method.
  • the test results are shown in Tables 6-18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

本発明は、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く改善できるゴム組成物、及びこれを用いた空気入りタイヤを提供する。 本発明は、ゴム成分、シリカ及びシランカップリング剤を含有し、上記ゴム成分100質量%のうち、共役ジエンに基づく構成単位と下式(I)で表される構成単位とを有し、特定の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体の含有量が5質量%以上であり、上記ゴム成分100質量部に対する上記シリカの含有量が5~150質量部であり、上記シランカップリング剤がメルカプト基を有するゴム組成物に関する。

Description

ゴム組成物及び空気入りタイヤ
本発明は、ゴム組成物及びそれを用いて作製した空気入りタイヤに関するものである。
近年、環境問題への関心の高まりから、自動車に対して低燃費化の要求が強くなっており、自動車用タイヤに用いるゴム組成物に対しても、低燃費性に優れることが求められている。自動車タイヤ用のゴム組成物としては、ポリブタジエンやブタジエン-スチレン共重合体などの共役ジエン系重合体と、カーボンブラックやシリカなどの充填剤とを含有するゴム組成物等が用いられている。
低燃費性を改善する方法として、例えば、特許文献1では、アミノ基及びアルコキシ基を含有する有機ケイ素化合物で変性されたジエン系ゴムを用いる方法が提案されている。しかし、近年では、低燃費性の更なる改善が求められている。また、自動車タイヤ用のゴム組成物に要求される性能としては、ウェットグリップ性能や耐摩耗性もあげられるが、これらの性能は一般的に低燃費性と背反する関係にあり、それぞれの性能を高次元でバランス良く得ることは困難であった。
また、低燃費化の要求から、トレッドだけでなく様々な部材でシリカ配合ゴム組成物が使われる様になってきている。ところが、シリカは表面に親水性シラノール基が存在するため、カーボンブラックに比べゴム(特に、タイヤ用でよく使われる天然ゴム、ブタジエンゴム、スチレンブタジエンゴム等)との親和性が低く、耐摩耗性や力学強度(引張強度や破断伸び)の点で劣る場合が多い。
このような点を改善するため、シランカップリング剤を用いる方法や、微粒子シリカなどの補強性の高いシリカを用いる方法がある。
しかし、補強性の高いシリカは、一般的にゴム組成物中での分散性が低いため、耐摩耗性や力学強度をそれ程改善できない場合や、これらの特性を悪化させてしまう場合がある。
また、従来のタイヤ用ゴム組成物で汎用されている、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィドといったシランカップリング剤は、シリカの分散性を大きく改善し、良好な力学特性を与える。しかしながら、補強性の高いシリカを良好に分散させるには、多量のシランカップリング剤が必要であるため、コストが大きく上昇してしまう上、充分に添加しても良好な分散を得ることが出来ない場合もある。
従来用いられている上記カップリング剤より反応性の高いカップリング剤として、メルカプト基を有するシランカップリング剤が提案されている(例えば、特許文献2参照)。かかるシランカップリング剤は、反応性が高いため高性能であるが、スコーチタイムがかなり短くなるため、タイヤ工業において実用化するのは難しく、ほとんど使用されていないのが現状である。
また、特許文献3には、シリカを配合し、転がり抵抗、耐摩耗性を悪化させることなく、ウェットグリップ性能を向上できるタイヤ用ゴム組成物が開示されているが、これらの性能をバランスよく改善する点については、未だ改善の余地がある。
特開2000-344955号公報 特開2009-126907号公報 特開2008-31244号公報
本発明は、前記課題を解決し、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く改善できるゴム組成物、及びこれを用いた空気入りタイヤを提供することを目的とする。
本発明は、ゴム成分、シリカ及びシランカップリング剤を含有し、上記ゴム成分100質量%のうち、共役ジエンに基づく構成単位と下式(I)で表される構成単位とを有し、下式(II)で表される化合物、下式(III)で表される基を有する化合物、下式(IV)で表される化合物、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物、並びに下式(VII)で表される基を有する化合物からなる群より選択される少なくとも1種の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体の含有量が5質量%以上であり、上記ゴム成分100質量部に対する上記シリカの含有量が5~150質量部であり、上記シランカップリング剤がメルカプト基を有するゴム組成物に関する。
Figure JPOXMLDOC01-appb-C000023
[式中、X、X及びXは、それぞれ独立に、下式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(Ia)で表される基又は水酸基である。]
Figure JPOXMLDOC01-appb-C000024
[式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000025
[式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000026
[式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000027
[式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
式(Ia)のR及びRが炭素原子数1~6のヒドロカルビル基であることが好ましい。
式(I)のX、X及びXの2つが式(Ia)で表される基又は水酸基であることが好ましい。
式(II)のAが下式(IIa)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
[式中、R14及びR15は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R14及びR15は結合して窒素原子と共に環構造を形成していてもよく、R14及びR15は窒素に二重結合で結合する同一の基であってもよい。]
式(III)で表される基が、下式(IIIa)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
式(III)で表される基を有する化合物が、下式(IIIa-1)で表される化合物、下式(IIIa-2)で表される化合物及び下式(IIIa-3)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
[式中、R31は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R32及びR33は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R32及びR33は結合して窒素原子と共に環構造を形成していてもよく、R32及びR33は窒素に二重結合で結合する同一の基であってもよい。]
Figure JPOXMLDOC01-appb-C000033
[式中、eは0~10の整数を表し、R34及びR35は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
Figure JPOXMLDOC01-appb-C000034
[式中、fは0~10の整数を表し、R36は、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
式(III)で表される基を有する化合物が、下式(IIIb-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
[式中、R37は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R38及びR39は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R38及びR39は結合して窒素原子と共に環構造を形成していてもよく、R38及びR39は窒素に二重結合で結合する同一の基であってもよく、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
式(IIIb-1)で表される化合物が、下式(IIIb-1-1)で表される化合物及び下式(IIIb-1-2)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
[式中、rは1又は2の整数を表し、Yはベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000037
[式中、sは1又は2の整数を表し、tは0~2の整数を表し、Y及びYは、ベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよく、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
式(IV)のAが、下式(IVa)で表される基又は水酸基であることが好ましい。
Figure JPOXMLDOC01-appb-C000038
[式中、R23及びR24は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R23及びR24は結合して窒素原子と共に環構造を形成していてもよく、R23及びR24は窒素に二重結合で結合する同一の基であってもよい。]
ケイ素化合物が下式(VIII)で表される基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000039
[式中、R41、R42及びR43は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R41、R42及びR43の少なくとも1つがヒドロカルビルオキシ基である。]
ケイ素化合物が下式(Va)で表される基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000040
[式中、hは1~10の整数を表し、R44、R45及びR46は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R44、R45及びR46の少なくとも1つがヒドロカルビルオキシ基である。]
式(VII)で表される基を有する化合物が下式(VII-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000041
[式中、zは0~10の整数を表し、R71は炭素原子数が1~5のヒドロカルビル基を表し、R72、R73、R74及びR75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよく、R76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。]
式(VII-1)のR74及びR75の一方が水素原子であることが好ましい。
共役ジエン系重合体のビニル結合量が、共役ジエンに基づく構成単位の含有量を100モル%として、10モル%以上80モル%以下であることが好ましい。
上記ゴム組成物は、天然ゴム及び/又はブタジエンゴムを含有することが好ましい。
シリカの窒素吸着比表面積が40~400m/gであることが好ましい。
シランカップリング剤が、下式(1)で表される化合物、及び/又は下式(2)で示される結合単位Aと下式(3)で示される結合単位Bとを含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
[式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(b個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。bは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。]
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044

[式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。]
上記ゴム組成物は、トレッド用ゴム組成物として用いられることが好ましい。
本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。
本発明によれば、特定の共役ジエン系重合体と、シリカと、メルカプト基を有するシランカップリング剤(メルカプト系シランカップリング剤)とを配合したゴム組成物であるので、低燃費性、ウェットグリップ性能及び耐摩耗性がバランス良く改善された空気入りタイヤを提供できる。
本発明のゴム組成物は、共役ジエンに基づく構成単位及び下式(I)で表される構成単位を有し、下式(II)で表される化合物、下式(III)で表される基を有する化合物、下式(IV)で表される化合物、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物、並びに下式(VII)で表される基を有する化合物からなる群より選択される少なくとも1種の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体と、シリカと、メルカプト系シランカップリング剤とを含む。
Figure JPOXMLDOC01-appb-C000045
[式中、X、X及びXは、それぞれ独立に、下式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(Ia)で表される基又は水酸基である。]
Figure JPOXMLDOC01-appb-C000046
[式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000047
[式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000048
[式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000049
[式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
[式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
共役ジエンに基づく構成単位の共役ジエンとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエンなどをあげることができ、これらは1種でもよく、2種以上でもよい。入手容易性の観点から、1,3-ブタジエン、イソプレンが好ましい。
式(I)で表される構成単位の式(I)のX、X及びXは、それぞれ独立に、式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つは、式(Ia)で表される基又は水酸基である。
式(Ia)のR及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。
本明細書では、ヒドロカルビル基は1価の炭化水素残基を表す。ここで、炭化水素残基とは、炭化水素から水素を除いた基を表す。置換ヒドロカルビル基は、1価の炭化水素残基の1つ以上の水素原子が置換基で置換されている基を表す。ヒドロカルビルオキシ基は、ヒドロキシル基の水素原子がヒドロカルビル基で置換されている基を表し、置換ヒドロカルビルオキシ基は、ヒドロカルビルオキシ基の1つ以上の水素原子が置換基で置換されている基を表す。ヒドロカルビレン基は、2価の炭化水素残基を表す。置換ヒドロカルビレン基は、2価の炭化水素残基の1つ以上の水素原子が置換基で置換されている基を表す。また、置換シリル基は、シリル基の1つ以上の水素原子が置換基で置換されている基を表す。
及びRの炭素原子数が1~6のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
及びRの炭素原子数が1~6の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
及びRの置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基などをあげることができる。
及びRが結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
及びRが結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
及びRのヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基が更に好ましく、エチル基、n-ブチル基が特に好ましい。R及びRの置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。R及びRの置換シリル基としては、トリアルキルシリル基が好ましく、トリメチルシリル基がより好ましい。
及びRとしては、好ましくは、アルキル基、アルコキシアルキル基、置換シリル基又はR及びRが結合した含窒素基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(Ia)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(Ia)で表される基としては、経済性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基であり、更に好ましくは、炭素原子数が1~4のアルキル基で置換されたジアルキルアミノ基であり、より更に好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(n-ブチル)アミノ基である。
式(I)のX~Xのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基をあげることができる。また、置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
~Xのヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基又はエチル基が更に好ましい。また、X~Xの置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。
~Xのヒドロカルビル基及び置換ヒドロカルビル基としては、好ましくは、アルキル基又はアルコキシアルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基又は炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基又はエチル基である。
式(I)のX、X及びXの少なくとも1つは、式(Ia)で表される基又は水酸基である。好ましくは、X、X及びXの2つ以上が、式(Ia)で表される基又は水酸基であり、より好ましくは、X、X及びXの2つが、式(Ia)で表される基又は水酸基である。また、低燃費性、ウェットグリップ性能及び耐摩耗性を高次元でバランス良く得られるという点から、X、X及びXの少なくとも1つが水酸基であることが好ましく、X、X及びXの2つ以上が水酸基であることがより好ましく、X、X及びXの2つが水酸基であることが更に好ましい。
低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、式(I)で表される構成単位としては、X、X及びXの2つが非環状アミノ基又は水酸基である構成単位が好ましい。X、X及びXの2つが非環状アミノ基である構成単位としては、ビス(ジアルキルアミノ)アルキルビニルシラン単位が好ましく、ビス(ジメチルアミノ)メチルビニルシラン単位、ビス(ジエチルアミノ)メチルビニルシラン単位、ビス(ジ(n-プロピル)アミノ)メチルビニルシラン単位、ビス(ジ(n-ブチル)アミノ)メチルビニルシラン単位がより好ましい。X、X及びXの2つが水酸基である構成単位としては、ジヒドロキシアルキルビニルシラン単位が好ましく、ジヒドロキシメチルビニルシラン単位がより好ましい。
共役ジエン系重合体中の式(I)で表される構成単位の含有量は、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、重合体単位質量あたり、好ましくは、0.001mmol/g重合体以上0.1mmol/g重合体以下である。より好ましくは、0.002mmol/g重合体以上0.07mmol/g重合体以下である。更に好ましくは、0.003mmol/g重合体以上0.05mmol/g重合体以下である。
上記共役ジエン系重合体は、特定の化合物(変性剤1~5)によって重合体の少なくとも一端が変性されている。これにより、シリカとの相互作用が生じ、低燃費性、ウェットグリップ性能及び耐摩耗性をバランスよく改善できる。
以下、下式(II)で表される化合物(変性剤1)について説明する。
Figure JPOXMLDOC01-appb-C000052
[式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
式(II)のR11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基である。
11、R12及びR13のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R11、R12及びR13のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
11、R12及びR13のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R11、R12及びR13のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
11、R12及びR13としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R11、R12及びR13の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R11、R12及びR13の3つがヒドロカルビルオキシ基である。
式(II)のnは1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは3以上であり、経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(II)のAは窒素原子を有する官能基であり、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、モルホリノ基などをあげることができる。
としては、下式(IIa)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000053
[式中、R14及びR15は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R14及びR15は結合して窒素原子と共に環構造を形成していてもよく、R14及びR15は窒素に二重結合で結合する同一の基であってもよい。]
式(IIa)のR14及びR15としては、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、置換シリル基などをあげることができる。
14及びR15のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
14及びR15の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。また、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
14及びR15の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基;トリメトキシシリル基などのトリアルコキシシリル基などをあげることができる。
14及びR15が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
14及びR15が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
14及びR15の窒素に二重結合で結合する同一の基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
14及びR15のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。R14及びR15の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基である。R14及びR15の置換シリル基としては、好ましくは、トリアルキルシリル基、トリアルコキシシリル基であり、より好ましくは、トリアルキルシリル基であり、更に好ましくは、トリメチルシリル基、トリエチルシリル基である。
14及びR15としては、好ましくは、R14及びR15が結合した含窒素基、アルキル基、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、置換シリル基であり、より好ましくは、アルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、トリアルキルシリル基である。
式(IIa)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。また、ジ(エポキシ)アミノ基、ジ(テトラヒドロフラニル)アミノ基などのジ(アルキレンオキシド)アミノ基;ジ(グリシジル)アミノ基、ジ(テトラヒドロフルフリル)アミノ基などのジ(アルキレンオキシドアルキル)アミノ基をあげることができる。更には、エチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基などもあげることができる。
なお、本明細書において、ジ(アルキレンオキシド)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシド基に置換されたアミノ基を表し、ジ(アルキレンオキシドアルキル)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシドアルキル基に置換されたアミノ基を表す。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(IIa)で表される基としては、低燃費性、ウェットグリップ性能、耐摩耗性、化合物の長期安定性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基、ジ(アルキレンオキシド)アミノ基、ジ(アルキレンオキシドアルキル)アミノ基、ジ(トリアルキルシリル)アミノ基である。
式(II)で表される化合物としては、式(IIa)が、ジアルキルアミノ基、ジ(アルコキシアルキル)アミノ基、ジ(アルキレンオキシド)アミノ基、ジ(アルキレンオキシドアルキル)アミノ基、トリアルキルシリル基などの非環状アミノ基である化合物をあげることができる。
式(IIa)がジアルキルアミノ基である化合物としては、
[3-(ジメチルアミノ)プロピル]トリメトキシシラン、
[3-(ジエチルアミノ)プロピル]トリメトキシシラン、
[3-(エチルメチルアミノ)プロピル]トリメトキシシラン、
[3-(ジメチルアミノ)プロピル]トリエトキシシラン、
[3-(ジエチルアミノ)プロピル]トリエトキシシラン、
[3-(エチルメチルアミノ)プロピル]トリエトキシシランなどの
[3-(ジアルキルアミノ)プロピル]トリアルコキシシラン;
[3-(ジメチルアミノ)プロピル]メチルジメトキシシラン、
[3-(ジエチルアミノ)プロピル]メチルジメトキシシラン、
[3-(エチルメチルアミノ)プロピル]メチルジメトキシシラン、
[3-(ジメチルアミノ)プロピル]エチルジメトキシシラン、
[3-(ジエチルアミノ)プロピル]エチルジメトキシシラン、
[3-(エチルメチルアミノ)プロピル]エチルジメトキシシラン、
[3-(ジメチルアミノ)プロピル]メチルジエトキシシラン、
[3-(ジエチルアミノ)プロピル]メチルジエトキシシラン、
[3-(エチルメチルアミノ)プロピル]メチルジエトキシシラン、
[3-(ジメチルアミノ)プロピル]エチルジエトキシシラン、
[3-(ジエチルアミノ)プロピル]エチルジエトキシシラン、
[3-(エチルメチルアミノ)プロピル]エチルジエトキシシランなどの
[3-(ジアルキルアミノ)プロピル]アルキルジアルコキシシラン;
[3-(ジメチルアミノ)プロピル]ジメチルメトキシシラン、
[3-(ジエチルアミノ)プロピル]ジメチルメトキシシラン、
[3-(ジメチルアミノ)プロピル]ジエチルメトキシシラン、
[3-(ジエチルアミノ)プロピル]ジエチルメトキシシラン、
[3-(ジメチルアミノ)プロピル]ジメチルエトキシシラン、
[3-(ジエチルアミノ)プロピル]ジメチルエトキシシラン、
[3-(ジメチルアミノ)プロピル]ジエチルエトキシシラン、
[3-(ジエチルアミノ)プロピル]ジエチルエトキシシランなどの
[3-(ジアルキルアミノ)プロピル]ジアルキルアルコキシシランをあげることができる。
式(IIa)がジ(アルコキシアルキル)アミノ基である化合物としては、
{3-[ジ(メトキシメチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}トリエトキシシランなどの
{3-[ジ(アルコキシアルキル)アミノ]プロピル}トリアルコキシシラン;
{3-[ジ(メトキシメチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}エチルジエトキシシランなどの
{3-[ジ(アルコキシアルキル)アミノ]プロピル}アルキルジアルコキシシラン;
{3-[ジ(メトキシメチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}ジエチルエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジエチルエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジエチルエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジエチルエトキシシランなどの
{3-[ジ(アルコキシアルキル)アミノ]プロピル}ジアルキルアルコキシシランをあげることができる。
式(IIa)がジ(アルキレンオキシド)アミノ基である化合物としては、
{3-[ジ(エポキシ)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(エポキシ)アミノ基である化合物;
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(テトラヒドロフラニル)アミノ基である化合物をあげることができる。
式(IIa)がジ(アルキレンオキシドアルキル)アミノ基である化合物としては、
{3-[ジ(グリシジル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(グリシジル)アミノ基である化合物;
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(テトラヒドロフルフリル)アミノ基である化合物をあげることができる。
式(IIa)がトリアルキルシリル基である化合物としては、
{3-[ジ(トリメチルシリル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(トリメチルシリル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}トリエトキシシランなどの
{3-[ジ(トリアルキルシリル)アミノ]プロピル}トリアルコキシシラン;
{3-[ジ(トリメチルシリル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(トリメチルシリル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}メチルジエトキシシランなどの
{3-[ジ(トリアルキルシリル)アミノ]プロピル}アルキルジアルコキシシラン;
{3-[ジ(トリメチルシリル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(トリメチルシリル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}ジメチルエトキシシランなどの
{3-[ジ(トリアルキルシリル)アミノ]プロピル}ジアルキルアルコキシシランをあげることができる。
これらの中では、[3-(ジアルキルアミノ)プロピル]トリアルコキシシランが好ましく、
[3-(ジメチルアミノ)プロピル]トリメトキシシラン、
[3-(ジエチルアミノ)プロピル]トリメトキシシラン、
[3-(ジメチルアミノ)プロピル]トリエトキシシラン、
[3-(ジエチルアミノ)プロピル]トリエトキシシラン
がより好ましい。
また、式(II)で表される化合物としては、式(IIa)が、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-ピペラジニル基、モルホリノ基などの環状アミノ基である化合物をあげることができる。
式(IIa)が1-ピペリジノ基である化合物としては、
3-(1-ピペリジノ)プロピルトリメトキシシラン、
3-(1-ピペリジノ)プロピルトリエトキシシラン、
3-(1-ピペリジノ)プロピルメチルジメトキシシラン、
3-(1-ピペリジノ)プロピルエチルジメトキシシラン、
3-(1-ピペリジノ)プロピルメチルジエトキシシラン、
3-(1-ピペリジノ)プロピルエチルジエトキシシランなどをあげることができる。
式(IIa)が1-ヘキサメチレンイミノ基である化合物としては、
3-(1-ヘキサメチレンイミノ)プロピルトリメトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルトリエトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルメチルジメトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルエチルジメトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルメチルジエトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルエチルジエトキシシランなどをあげることができる。
式(IIa)が1-イミダゾリル基である化合物としては、
N-(3-トリメトキシシリルプロピル)イミダゾール、
N-(3-トリエトキシシリルプロピル)イミダゾールなどをあげることができる。
式(IIa)が4,5-ジヒドロ-1-イミダゾリル基である化合物としては、
N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、
N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾールなどをあげることができる。
式(IIa)が1-ピペラジニル基である化合物としては、
3-(1-ピペラジニル)プロピルトリメトキシシラン、
3-(1-ピペラジニル)プロピルトリエトキシシラン、
3-(1-ピペラジニル)プロピルメチルジメトキシシラン、
3-(1-ピペラジニル)プロピルエチルジメトキシシラン、
3-(1-ピペラジニル)プロピルメチルジエトキシシラン、
3-(1-ピペラジニル)プロピルエチルジエトキシシランなどをあげることができる。
式(IIa)がモルホリノ基である化合物としては、
3-モルホリノプロピルトリメトキシシラン、
3-モルホリノプロピルトリエトキシシラン、
3-モルホリノプロピルメチルジメトキシシラン、
3-モルホリノプロピルエチルジメトキシシラン、
3-モルホリノプロピルメチルジエトキシシラン、
3-モルホリノプロピルエチルジエトキシシランなどをあげることができる。
これらの中では、式(IIa)が1-イミダゾリル基である化合物、式(IIa)が4,5-ジヒドロ-1-イミダゾリル基である化合物が好ましく、
N-(3-トリメトキシシリルプロピル)イミダゾール、
N-(3-トリエトキシシリルプロピル)イミダゾール、
N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、
N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール
がより好ましい。
以下、下式(III)で表される基を有する化合物(変性剤2)について説明する。
Figure JPOXMLDOC01-appb-C000054
[式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
pは0又は1の整数を表す。Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。Aは窒素原子を有する官能基を表し、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、モルホリノ基などをあげることができる。
式(III)で表される基を有する化合物としては、式(III)のpが0であり、Aがアミノ基である下式(IIIa)で表される基を有する化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000055
式(IIIa)で表される基を有する化合物としては、ホルムアミド、アセトアミド、プロピオンアミドなどのカルボン酸アミド化合物をあげることができる。また、イミダゾリジノン及びその誘導体、ラクタム類などの環状化合物をあげることができる。
式(IIIa)で表される基を有する化合物としては、下式(IIIa-1)で表されるカルボン酸アミド化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000056
[式中、R31は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R32及びR33は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R32及びR33は結合して窒素原子と共に環構造を形成していてもよく、R32及びR33は窒素に二重結合で結合する同一の基であってもよい。]
31のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
31の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
31の窒素原子及び/又は酸素原子をヘテロ原子として有するヘテロ環基とは、窒素原子及び/又は酸素原子を環内に含む複素環式化合物残基を表し、該基としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フリル基などをあげることができる。
31としては、好ましくは、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(IIIa-1)のR32及びR33としては、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基などをあげることができる。R32及びR33のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
32及びR33の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
32及びR33が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~20の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
32及びR33の窒素に二重結合で結合する同一の基としては、窒素原子及び酸素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
32及びR33としては、好ましくは、ヒドロカルビル基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(IIIa-1)で表されるカルボン酸アミド化合物としては、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド化合物;
アセトアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、アミノアセトアミド、N,N-ジメチル-N’,N’-ジメチルアミノアセトアミド、N,N-ジメチルアミノアセトアミド、N-エチルアミノアセトアミド、N,N-ジメチル-N’-エチルアミノアセトアミド、N,N-ジメチルアミノアセトアミド、N-フェニルジアセトアミドなどのアセトアミド化合物;
プロピオンアミド、N,N-ジメチルプロピオンアミドなどのプロピオンアミド化合物;
4-ピリジルアミド、N,N-ジメチル-4-ピリジルアミドなどのピリジルアミド化合物;
ベンズアミド、N,N-ジメチルベンズアミド、N’,N’-(p-ジメチルアミノ)ベンズアミド、N’,N’-(p-ジエチルアミノ)ベンズアミド、N,N-ジメチル-N’,N’-(p-ジメチルアミノ)ベンズアミド、N,N-ジメチル-N’,N’-(p-ジエチルアミノ)ベンズアミドなどのベンズアミド化合物;
N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのアクリルアミド化合物;
N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミドなどのメタクリルアミド化合物;
N,N-ジメチルニコチンアミド、N,N-ジエチルニコチンアミドなどのニコチンアミド化合物;
N,N,N’,N’-テトラメチルフタルアミド、N,N,N’,N’-テトラエチルフタルアミドなどのフタルアミド化合物;
N-メチルフタルイミド、N-エチルフタルイミドなどのフタルイミド化合物などをあげることができる。
また、式(IIIa)で表される基を有する環状化合物としては、下式(IIIa-2)又は下式(IIIa-3)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000057
[式中、eは0~10の整数を表し、R34及びR35は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
Figure JPOXMLDOC01-appb-C000058
[式中、fは0~10の整数を表し、R36は、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
式(IIIa-2)及び式(IIIa-3)のR34、R35及びR36は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。R34、R35及びR36のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
34、R35及びR36の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;メトキシフェニル基、エトキシフェニル基などのアルコキシアリール基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基、t-ブチルジメチルシリロキシメチル基、トリメトキシシリルプロピル基などをあげることができる。
式(IIIa-2)のR34及びR35としては、好ましくはヒドロカルビル基であり、より好ましくはアルキル基であり、更に好ましくはメチル基である。
式(IIIa-3)のR36としては、好ましくはヒドロカルビル基であり、より好ましくはアルキル基、アリール基であり、更に好ましくはメチル基、フェニル基である。
式(IIIa-2)及び式(IIIa-3)のe及びfは、それぞれ0~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは7以下である。
式(IIIa-2)で表される化合物としては、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノン、1,3-ジ(t-ブチル)-2-イミダゾリジノン、1,3-ジフェニル-2-イミダゾリジノンなどの1,3-ヒドロカルビル置換-2-イミダゾリジノンをあげることができる。好ましくは、1,3-置換-2-イミダゾリジノンであり、より好ましくは、1,3-ヒドロカルビル置換-2-イミダゾリジノンであり、更に好ましくは、1,3-ジアルキル-2-イミダゾリジノンである。1,3-ジアルキル-2-イミダゾリジノンとしては、好ましくは、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノンであり、より好ましくは、1,3-ジメチル-2-イミダゾリジノンである。
式(IIIa-3)で表される化合物としては、N-メチル-β-プロピオラクタム、N-(t-ブチル)-β-プロピオラクタム、N-フェニル-β-プロピオラクタムなどのβ-プロピオラクタム化合物;
1-メチル-2-ピロリドン、1-(t-ブチル)-2-ピロリドン、1-フェニル-2-ピロリドン、1-(p-メチルフェニル)-2-ピロリドン、1-(p-メトキシフェニル)-2-ピロリドン、1-ベンジル-2-ピロリドン、1-ナフチル-2-ピロリドン、1-フェニル-5-メチル-2-ピロリドン、1-(t-ブチル)-5-メチル-2-ピロリドン、1-(t-ブチル)-1,3-ジメチル-2-ピロリドンなどの2-ピロリドン化合物;
1-(t-ブチル)-2-ピペリドン、1-フェニル-2-ピペリドン、1-(p-メチルフェニル)-2-ピペリドン、1-(p-メトキシフェニル)-2-ピペリドン、1-ナフチル-2-ピペリドンなどの2-ピペリドン化合物;
N-メチル-ε-カプロラクタム、N-エチル-ε-カプロラクタム、N-(n-プロピル)-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-(p-メトキシフェニル)-ε-カプロラクタム、N-ベンジル-ε-カプロラクタムなどのε-カプロラクタム化合物;
N-フェニル-ω-ラウリロラクタムなどのω-ラウリロラクタム化合物をあげることができる。
式(IIIa-3)で表される化合物としては、好ましくは、2-ピロリドン化合物、ε-カプロラクタム化合物であり、より好ましくは、1-ヒドロカルビル置換-2-ピロリドン、N-ヒドロカルビル置換-ε-カプロラクタムであり、更に好ましくは、1-アルキル置換-2-ピロリドン、1-アリール置換-2-ピロリドン、N-アルキル置換-ε-カプロラクタム、N-アリール置換-ε-カプロラクタムであり、特に好ましくは、1-フェニル-2-ピロリドン、N-メチル-ε-カプロラクタムである。
式(III)で表される基を有する化合物としては、式(III)のpが1であり、Aがアミノ基である下式(IIIb)で表される基を有する化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000059
[式中、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
式(IIIb)で表される基を有する化合物としては、ベンズアルデヒド化合物、アセトフェノン化合物、ベンゾフェノン化合物をあげることができる。
式(IIIb)で表される基を有する化合物としては、下式(IIIb-1)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000060
[式中、R37は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R38及びR39は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R38及びR39は結合して窒素原子と共に環構造を形成していてもよく、R38及びR39は窒素に二重結合で結合する同一の基であってもよく、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
37のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
37の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
37の窒素原子及び/又は酸素原子をヘテロ原子として有するヘテロ環基とは、窒素原子及び/又は酸素原子を環内に含む複素環式化合物残基を表し、該基としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フリル基などをあげることができる。
37としては、好ましくは、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基である。炭素原子数が1~10のヒドロカルビル基としては、好ましくは、炭素原子数が1~4のアルキル基及びフェニル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、フェニル基である。また、炭素原子数が1~10の置換ヒドロカルビル基としては、好ましくは、窒素原子を有する基を置換基として有するアリール基であり、より好ましくは、ジアルキルアミノフェニル基、4-モルホリノフェニル基である。
式(IIIb-1)のR38及びR39としては、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基などをあげることができる。
38及びR39のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
38及びR39の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
38及びR39が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~20の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
38及びR39の窒素に二重結合で結合する同一の基としては、窒素原子及び酸素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
38及びR39としては、好ましくは、ヒドロカルビル基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
Tのヒドロカルビレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;フェニレン基、メチルフェニレン基、エチルフェニルレン基、ナフチレン基などのアリレーン基をあげることができる。
Tの置換ヒドロカルビレン基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビレン基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチレン基、ジエチルアミノエチレン基などのジアルキルアミノアルキレン基;ジメチルアミノフェニレン基、ジエチルアミノフェニレン基などのジアルキルアミノアリレーン基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチレン基、メトキシエチレン基、エトキシメチレン基、エトキシエチレン基などのアルコキシアルキレン基をあげることができる。
Tとしては、好ましくは、ヒドロカルビレン基であり、より好ましくは、アリレーン基であり、更に好ましくは、フェニレン基である。
式(IIIb-1)で表される化合物としては、4-ジメチルアミノベンズアルデヒド、4-ジエチルアミノベンズアルデヒド、3,5-ビス(ジヘキシルアミノ)-ベンズアルデヒドなどのジアルキルアミノ置換ベンズアルデヒド化合物;4-ジメチルアミノアセトフェノン、4-ジエチルアミノアセトフェノンなどのジアルキルアミノ置換アセトフェノン化合物;4-モルホリノアセトフェノン、4’-イミダゾール-1-イル-アセトフェノン、4-ピラゾリルアセトフェノンなどのヘテロ環基置換アセトフェノン化合物;4,4’-ビス(ジメチルアミノ)-ベンゾフェノン、4,4’-ビス(ジエチルアミノ)-ベンゾフェノン、4-ジメチルアミノベンゾフェノン、4-ジエチルアミノベンゾフェノン、3-ジメチルアミノベンゾフェノン、3-ジエチルアミノベンゾフェノンなどのジアルキルアミノ置換ベンゾフェノン化合物;4-モルホリノベンゾフェノン、4’-(イミダゾール-1-イル)-ベンゾフェノン、4-ピラゾリルベンゾフェノンなどのヘテロ環基置換ベンゾフェノン化合物をあげることができる。
式(IIIb-1)で表される化合物としては、好ましくは、置換アセトフェノン化合物、置換ベンゾフェノン化合物であり、下式(IIIb-1-1)又は下式(IIIb-1-2)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000061
[式中、rは1又は2の整数を表し、Yはベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000062
[式中、sは1又は2の整数を表し、tは0~2の整数を表し、Y及びYは、ベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよく、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
式(IIIb-1-1)及び式(IIIb-1-2)のY、Y及びYは、窒素原子を有する官能基を表し、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、ピリミジニル基、ピロリル基、イミダゾリル基、ピラゾリル基、モルホリノ基などをあげることができる。好ましくは、ジアルキルアミノ基、イミダゾリル基、モルホリノ基である。また、ジアルキルアミノ基のアルキル基としては、炭素原子数1~10のアルキル基が好ましい。
式(IIIb-1)で表される化合物としては、より好ましくは、ヘテロ環基置換アセトフェノン化合物、ジアルキルアミノ置換ベンゾフェノン化合物、ヘテロ環基置換ベンゾフェノン化合物であり、特に好ましくは、4’-イミダゾール-1-イル-アセトフェノン、4-モルホリノアセトフェノン、4-ジメチルアミノベンゾフェノン、4-ジエチルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)-ベンゾフェノン、4,4’-ビス(ジエチルアミノ)-ベンゾフェノン、4-モルホリノベンゾフェノンである。
以下、下式(IV)で表される化合物(変性剤3)について説明する。
Figure JPOXMLDOC01-appb-C000063
[式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
gは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(IV)のR21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表す。
21のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基をあげることができる。
21の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基;t-ブチルジメチルシリロキシメチル基などのトリアルキルシリロキシアルキル基;トリメトキシシリルプロピル基などのトリアルコキシシリルアルキル基などをあげることができる。
21のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基であり、より更に好ましくは、メチル基である。また、R21の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基であり、より好ましくは、炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、メトキシメチル基、エトキシエチル基であり、より更に好ましくは、メトキシメチル基である。
21としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点及び経済性から、好ましくは、水素原子、アルキル基、アルコキシアルキル基であり、より好ましくは、水素原子、炭素原子数が1~4のアルキル基、炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、水素原子、メチル基、メトキシメチル基であり、より更に好ましくは水素原子、メチル基である。
式(IV)のAは、酸素原子又は-NR22-基を表し、R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。
22のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
22のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基である。
22としては、好ましくは、水素原子、アルキル基であり、より好ましくは、水素原子、炭素原子数が1~4のアルキル基であり、更に好ましくは、水素原子、メチル基、エチル基であり、より更に好ましくは、水素原子、メチル基である。
式(IV)のAは、窒素原子及び/又は酸素原子を有する官能基を表す。窒素原子を有する官能基としては、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピペラジニル基、モルホリノ基などをあげることができる。
酸素原子を有する官能基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブドキシ基、t-ブトキシ基などのアルコキシ基;メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;メトキシフェニル基、エトキシフェニル基などのアルコキシアリール基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基をあげることができる。また、トリメチルシリロキシ基、トリエチルシリロキシ基、t-ブチルジメチルシリロキシ基などのトリアルキルシリロキシ基をあげることができる。また、水酸基をあげることができる。
としては、下式(IVa)で表される基又は水酸基が好ましく、下式(IVa)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000064
[式中、R23及びR24は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R23及びR24は結合して窒素原子と共に環構造を形成していてもよく、R23及びR24は窒素に二重結合で結合する同一の基であってもよい。]
式(IVa)のR23及びR24としては、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、置換シリル基などをあげることができる。
23及びR24のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
23及びR24の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。また、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
23及びR24の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基;トリメトキシシリル基などのトリアルコキシシリル基などをあげることができる。
23及びR24が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
23及びR24が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
23及びR24の窒素に二重結合で結合する同一の基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
23及びR24のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。R23及びR24の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基である。R23及びR24の置換シリル基としては、好ましくは、トリアルキルシリル基、トリアルコキシシリル基であり、より好ましくは、トリアルキルシリル基であり、更に好ましくは、トリメチルシリル基、トリエチルシリル基である。
23及びR24としては、好ましくは、R23及びR24が結合した含窒素基、アルキル基、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、置換シリル基であり、より好ましくは、アルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、トリアルキルシリル基である。
式(IVa)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。また、ジ(エポキシ)アミノ基、ジ(テトラヒドロフラニル)アミノ基などのジ(アルキレンオキシド)アミノ基;ジ(グリシジル)アミノ基、ジ(テトラヒドロフルフリル)アミノ基などのジ(アルキレンオキシドアルキル)アミノ基をあげることができる。更には、エチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基などもあげることができる。
なお、本明細書において、ジ(アルキレンオキシド)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシド基に置換されたアミノ基を表し、ジ(アルキレンオキシドアルキル)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシドアルキル基に置換されたアミノ基を表す。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(IVa)で表される基としては、低燃費性、ウェットグリップ性能、耐摩耗性、化合物の長期安定性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基、ジ(アルキレンオキシド)アミノ基、ジ(アルキレンオキシドアルキル)アミノ基、ジ(トリアルキルシリル)アミノ基である。
式(IV)で表される化合物としては、Aが二級アミノ基である化合物として、アクリルアミド化合物、メタクリルアミド化合物などをあげることができる。
が窒素原子含有の基であるアクリルアミド化合物としては、
N-(2-ジメチルアミノエチル)アクリルアミド、
N-(2-ジエチルアミノエチル)アクリルアミド、
N-(3-ジメチルアミノプロピル)アクリルアミド、
N-(3-ジエチルアミノプロピル)アクリルアミド、
N-(4-ジメチルアミノブチル)アクリルアミド、
N-(4-ジエチルアミノブチル)アクリルアミド、
N-(3-モルホリノプロピル)アクリルアミド、
N-(3-シアノプロピル)アクリルアミドなどがあげられる。
が窒素原子含有の基であるメタクリルアミド化合物としては、
N-(2-ジメチルアミノエチル)メタクリルアミド、
N-(2-ジエチルアミノエチル)メタクリルアミド、
N-(3-ジメチルアミノプロピル)メタクリルアミド、
N-(3-ジエチルアミノプロピル)メタクリルアミド、
N-(4-ジメチルアミノブチル)メタクリルアミド、
N-(4-ジエチルアミノブチル)メタクリルアミド、
N-(3-モルホリノプロピル)メタクリルアミド、
N-(3-シアノプロピル)メタクリルアミドなどがあげられる。
が酸素原子含有の基であるアクリルアミド化合物としては、
N-(3-メトキシプロピル)アクリルアミド、
N-(3-エトキシプロピル)アクリルアミド、
N-(プロポキシメチル)アクリルアミド、
N-(ブトキシメチル)アクリルアミド、
N-グリシジルアクリルアミド、
N-テトラヒドロフルフリルアクリルアミドなどがあげられる。
が酸素原子含有の基であるメタクリルアミド化合物としては、
N-(3-メトキシプロピル)メタクリルアミド、
N-(3-エトキシプロピル)メタクリルアミド、
N-(プロポキシメチル)メタクリルアミド、
N-(ブトキシメチル)メタクリルアミド、
N-グリシジルメタクリルアミド、
N-テトラヒドロフルフリルメタクリルアミドなどがあげられる。
が窒素原子及び酸素原子含有の基であるアクリルアミド化合物としては、
N-(3-ジ(グリシジル)アミノプロピル)アクリルアミド、
N-(3-ジ(テトラヒヒドロフルフリル)アミノプロピル)アクリルアミド
などがあげられる。
が窒素原子及び酸素原子含有の基であるメタクリルアミド化合物としては、
N-(3-ジ(グリシジル)アミノプロピル)メタクリルアミド、
N-(3-ジ(テトラヒヒドロフルフリル)アミノプロピル)メタクリルアミド
などがあげられる。
また、式(IV)で表される化合物としては、Aが酸素原子である化合物として、アクリレート化合物、メタクリレート化合物などをあげることができる。
が窒素原子含有の基であるアクリレート化合物としては、
2-ジメチルアミノエチルアクリレート、
2-ジエチルアミノエチルアクリレート、
3-ジメチルアミノプロピルアクリレート、
3-ジエチルアミノプロピルアクリレート、
4-ジメチルアミノブチルアクリレート、
4-ジエチルアミノブチルアクリレートなどがあげられる。
が窒素原子含有の基であるメタクリレート化合物としては、
2-ジメチルアミノエチルメタクリレート、
2-ジエチルアミノエチルメタクリレート、
3-ジメチルアミノプロピルメタクリレート、
3-ジエチルアミノプロピルメタクリレート、
4-ジメチルアミノブチルメタクリレート、
4-ジエチルアミノブチルメタクリレートなどがあげられる。
が酸素原子含有の基であるアクリレート化合物としては、
2-エトキシエチルアクリレート、
2-プロポキシエチルアクリレート、
2-ブトキシエチルアクリレート、
3-メトキシプロピルアクリレート、
3-エトキシプロピルアクリレート、
グリシジルアクリレート、
テトラヒドロフルフリルアクリレートなどがあげられる。
が酸素原子含有の基であるメタクリレート化合物としては、
2-エトキシエチルメタクリレート、
2-プロポキシエチルメタクリレート、
2-ブトキシエチルメタクリレート、
3-メトキシプロピルメタクリレート、
3-エトキシプロピルメタクリレート、
グリシジルメタクリレート、
テトラヒドロフルフリルメタクリレートなどがあげられる。
が窒素原子及び酸素原子含有の基であるアクリレート化合物としては、
3-ジ(グリシジル)アミノプロピルアクリレート、
3-ジ(テトラヒドロフルフリル)アミノプロピルアクリレートなどがあげられる。
が窒素原子及び酸素原子含有の基であるメタクリレート化合物としては、3-ジ(グリシジル)アミノプロピルメタクリレート、3-ジ(テトラヒドロフルフリル)アミノプロピルメタクリレートなどがあげられる。
式(IV)で表される化合物としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、
好ましくは、Aが式(IVa)で表される基である化合物であり、
より好ましくは、Aがアミノ基であり、Aが式(IVa)で表される基である化合物であり、
更に好ましくは、Aが二級アミノ基(-NH-)であり、Aが式(IVa)で表される基である化合物である。
が二級アミノ基であり、Aが式(IVa)で表される基である化合物としては、
好ましくは、
N-(3-ジアルキルアミノプロピル)アクリルアミド、N-(3-ジアルキルアミノプロピル)メタクリルアミドであり、
より好ましくは、
N-(3-ジメチルアミノプロピル)アクリルアミド、
N-(3-ジエチルアミノプロピル)アクリルアミド、
N-(3-ジメチルアミノプロピル)メタクリルアミド、
N-(3-ジエチルアミノプロピル)メタクリルアミドである。
以下、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物(変性剤4)について説明する。
Figure JPOXMLDOC01-appb-C000065
式(V)で表される基を有する基としては、アミド基、カルボン酸エステル基、メタクリロイル基、アクリロイル基などがあげられる。また、式(VI)で表される基を有する基としては、オキシジメチレン基、オキシジエチレン基などのオキシジアルキレン基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基などがあげられる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。
ケイ素化合物としては、下式(VIII)で表される基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000066
 
[式中、R41、R42及びR43は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R41、R42及びR43の少なくとも1つがヒドロカルビルオキシ基である。]
式(VIII)において、R41、R42及びR43のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R41、R42及びR43のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
41、R42及びR43のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R41、R42及びR43のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
41、R42及びR43としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R41、R42及びR43の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R41、R42及びR43の3つがヒドロカルビルオキシ基である。
式(V)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、下式(Va)で表される基を有するケイ素化合物があげられる。
Figure JPOXMLDOC01-appb-C000067
[式中、hは1~10の整数を表し、R44、R45及びR46は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R44、R45及びR46の少なくとも1つがヒドロカルビルオキシ基である。]
hは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
44、R45及びR46について、例示される基及び好ましい基は、式(VIII)のR41、R42及びR43について上記した例示される基及び好ましい基と同じである。
式(Va)で表される基を有するケイ素化合物としては、下式(Va-1)又は下式(Va-2)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000068
[式中、iは1~10の整数を表し、R47、R48及びR49は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R47、R48及びR49の少なくとも1つがヒドロカルビルオキシ基であり、R50及びR51は、それぞれ独立に、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、炭素原子数が1~10のヒドロカルビルオキシ基又は炭素原子数が1~10の置換ヒドロカルビルオキシ基を表し、R50及びR51は結合していてもよい。]
Figure JPOXMLDOC01-appb-C000069
[式中、j、k及びlは、それぞれ独立に、1~10の整数を表し、R52~R60は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R52、R53及びR54の少なくとも1つがヒドロカルビルオキシ基であり、R55、R56及びR57の少なくとも1つがヒドロカルビルオキシ基であり、R58、R59及びR60の少なくとも1つがヒドロカルビルオキシ基である。]
式(Va-1)のiは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(Va-1)において、R47、R48及びR49のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R47、R48及びR49のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
47、R48及びR49のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R47、R48及びR49のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
47、R48及びR49としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R47、R48及びR49の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R47、R48及びR49の3つがヒドロカルビルオキシ基である。
50及びR51のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基をあげることができる。
50及びR51の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基、トリエチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
50及びR51のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。また、R50及びR51の置換ヒドロカルビルオキシ基としては、メトキシメトキシ基、メトキシエトキシ基、エトキシメトキシ基、エトキシエトキシ基などのアルコキシアルコキシ基をあげることができる。
50及びR51が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
50としては、好ましくは、アルキル基であり、より好ましくは、炭素数が1~4のアルキル基であり、更に好ましくは、メチル基及びエチル基である。
51としては、好ましくは、アルキル基であり、より好ましくは、炭素数が1~4のアルキル基であり、更に好ましくは、メチル基及びエチル基である。
式(Va-2)のj、k及びlは、それぞれ独立に、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(Va-2)において、R52~R60のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R52~R60のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
52~R60のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R52~R60のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
52、R53及びR54としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R52、R53及びR54の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R52、R53及びR54の3つがヒドロカルビルオキシ基である。R55、R56及びR57としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R55、R56及びR57の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R55、R56及びR57の3つがヒドロカルビルオキシ基である。また、R58、R59及びR60としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R58、R59及びR60の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R58、R59及びR60の3つがヒドロカルビルオキシ基である。
式(Va-1)で表される化合物としては、
N-メチル-N-(トリメトキシシリルメチル)-アセトアミド、
N-メチル-N-(トリエトキシシリルメチル)-アセトアミド、
N-メチル-N-(2-トリメトキシシリルエチル)-アセトアミド、
N-メチル-N-(2-トリエトキシシリルエチル)-アセトアミド、
N-メチル-N-(3-トリメトキシシリルプロピル)-アセトアミド、
N-メチル-N-(3-トリエトキシシリルプロピル)-アセトアミド
などのN-アルキル-N-トリアルコキシシリルアルキル-アセトアミド;
N-メチル-N-(トリメトキシシリルメチル)-プロピオンアミド、
N-メチル-N-(トリエトキシシリルメチル)-プロピオンアミド、
N-メチル-N-(2-トリメトキシシリルエチル)-プロピオンアミド、
N-メチル-N-(2-トリエトキシシリルエチル)-プロピオンアミド、
N-メチル-N-(3-トリメトキシシリルプロピル)-プロピオンアミド、
N-メチル-N-(3-トリエトキシシリルプロピル)-プロピオンアミド
などのN-アルキル-N-トリアルコキシシリルアルキル-プロピオンアミド等、
N-アルキル-N-トリアルコキシシリルアルキル置換カルボン酸アミドをあげることができる。
式(Va-1)で表される化合物として、好ましくは、
N-アルキル-N-トリアルコキシシリルアルキル置換カルボン酸アミドであり、
より好ましくは、
N-アルキル-N-トリアルコキシシリルアルキル-プロピオンアミドであり、
更に好ましくは、
N-メチル-N-(3-トリメトキシシリルプロピル)-プロピオンアミド、
N-メチル-N-(3-トリエトキシシリルプロピル)-プロピオンアミドである。
式(Va-2)で表される化合物としては、
1,3,5-トリス(トリメトキシシリルメチル)イソシアヌレート、
1,3,5-トリス(トリエトキシシリルメチル)イソシアヌレート、
1,3,5-トリス(トリメトキシシリルエチル)イソシアヌレート、
1,3,5-トリス(トリエトキシシリルエチル)イソシアヌレート、
1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、
1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌレート
などの1,3,5-トリス(トリアルコキシシリルアルキル)イソシアヌレートをあげることができる。
式(Va-2)で表される化合物として、好ましくは、
1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、
1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌレートである。
式(VI)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、下式(VIa)で表されるケイ素化合物があげられる。
Figure JPOXMLDOC01-appb-C000070
[式中、vは1~10の整数を表し、R61、R62及びR63は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R61、R62及びR63の少なくとも1つがヒドロカルビルオキシ基であり、R64は、炭素原子数が1~10のヒドロカルビル基又は炭素原子数が1~10の置換ヒドロカルビル基を表す。]
式(VIa)のvは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(VIa)において、R61、R62及びR63のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R61、R62及びR63のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
61、R62及びR63のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R61、R62及びR63のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
61、R62及びR63としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R61、R62及びR63の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R61、R62及びR63の3つがヒドロカルビルオキシ基である。
64のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。
64の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
64としては、好ましくは、アルキレンオキシドアルキル基であり、より好ましくは、グリシジル基、テトラヒドロフルフリル基である。
式(VIa)で表される化合物としては、
64がアルキル基である化合物として、
3-(メトキシ)プロピルトリメトキシシラン、
3-(エトキシ)プロピルトリメトキシシラン、
3-(n-プロポキシ)プロピルトリメトキシシラン、
3-(イソプロポキシ)プロピルトリメトキシシラン、
3-(n-ブトキシ)プロピルトリメトキシシラン、
3-(sec-ブトキシ)プロピルトリメトキシシラン、
3-(t-ブトキシ)プロピルトリメトキシシラン
などの3-(アルコキシ)プロピルトリアルコキシシランをあげることができる。
64がアルキレンオキシドアルキル基である化合物として、
2-グリシドキシエチルトリメトキシシラン、
3-グリシドキシプロピルトリメトキシシラン、
2-グリシドキシエチルトリエトキシシラン、
3-グリシドキシプロピルトリエトキシシラン
などのグリシドキシアルキルトリアルコキシシラン;
2-テトラヒドロフルフリロキシエチルトリメトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリメトキシシラン、
2-テトラヒドロフルフリロキシエチルトリエトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリエトキシシラン
などのテトラヒドロフルフリロキシアルキルトリアルコキシシランをあげることができる。
64がアルコキシアルキル基である化合物として、
3-(メトキシメトキシ)プロピルトリメトキシシラン、
3-(メトキシエトキシ)プロピルトリメトキシシラン、
3-(エトキシメトキシ)プロピルトリメトキシシラン、
3-(エトキシエトキシ)プロピルトリメトキシシラン、
3-(メトキシメトキシ)プロピルトリエトキシシラン、
3-(メトキシエトキシ)プロピルトリエトキシシラン、
3-(エトキシメトキシ)プロピルトリエトキシシラン、
3-(エトキシエトキシ)プロピルトリエトキシシラン
などの3-(アルコキシアルコキシ)プロピルトリアルコキシシランをあげることができる。
式(VIa)で表される化合物として、好ましくは、R64がアルキレンオキシドアルキル基である化合物であり、より好ましくは、
3-グリシドキシプロピルトリメトキシシラン、
3-グリシドキシプロピルトリエトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリメトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリエトキシシランである。
式(V)で表される基、式(VI)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、アクリロキシアルキルトリアルコキシシラン、メタクリロキシアルキルトリアルコキシシランをあげることができる。
アクリロキシアルキルトリアルコキシシランとしては、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシランなどの3-アクリロキシプロピルトリアルコキシシランをあげることができる。
メタクリロキシアルキルトリアルコキシシランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどの3-メタクリロキシプロピルトリアルコキシシランをあげることができる。
また、式(V)で表される基、式(VI)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、トリアルコキシシリルアルキル無水コハク酸、トリアルコキシシリルアルキル無水マレイン酸をあげることができる。
トリアルコキシシリルアルキル無水コハク酸としては、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸などの3-トリアルコキシシリルプロピル無水コハク酸をあげることができる。
トリアルコキシシリルアルキル無水マレイン酸としては、3-トリメトキシシリルプロピル無水マレイン酸、3-トリエトキシシリルプロピル無水マレイン酸などの3-トリアルコキシシリルプロピル無水マレイン酸をあげることができる。
以下、下式(VII)で表される基を有する化合物(変性剤5)について説明する。
Figure JPOXMLDOC01-appb-C000071
[式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
wは、1~11の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは1以上であり、製造時の経済性を高める観点から、好ましくは4以下である。Aは窒素原子を有する官能基であり、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、モルホリノ基などをあげることができる。
式(VII)で表される基を有する化合物としては、下式(VII-1)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000072
[式中、zは0~10の整数を表し、R71は炭素原子数が1~5のヒドロカルビル基を表し、R72、R73、R74及びR75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよく、R76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。]
式(VII-1)のzは、0~10の整数を表す。経済性を高める観点から、好ましくは3以下であり、より好ましくは0である。
式(VII-1)のR71は炭素原子数が1~5のヒドロカルビル基を表す。R71のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基をあげることができる。
71のヒドロカルビル基としては、好ましくはアルキル基であり、より好ましくは炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基である。
式(VII-1)のR72~R75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよい。
72~R75のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基をあげることができる。
72~R75の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基などをあげることができる。
72~R75のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
72~R75のヒドロカルビル基としては、好ましくはアルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基である。
72~R75の置換ヒドロカルビル基としては、好ましくはアルコキシアルキル基であり、より好ましくは炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、メトキシメチル基、エトキシエチル基である。
72~R75のヒドロカルビルオキシ基としては、好ましくはアルコキシ基であり、より好ましくは炭素数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点及び経済性から、R74及びR75の一方が水素原子であることが好ましい。より好ましくは、R74及びR75の一方が水素原子であり、もう一方がアルキル基又はアルコキシ基である。更に好ましくは、R74及びR75の一方が水素原子であり、もう一方がアルコキシ基である。特に好ましくは、メトキシ基、エトキシ基である。
式(VII-1)のR76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。
式(VII-1)のR76及びR77としては、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、置換シリル基などをあげることができる。
76及びR77のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
76及びR77の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。また、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
76及びR77の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基;トリメトキシシリル基などのトリアルコキシシリル基などをあげることができる。
76及びR77が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
76及びR77が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
76及びR77の窒素に二重結合で結合する同一の基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
76及びR77のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。R76及びR77の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基である。R76及びR77の置換シリル基としては、好ましくは、トリアルキルシリル基、トリアルコキシシリル基であり、より好ましくは、トリアルキルシリル基であり、更に好ましくは、トリメチルシリル基、トリエチルシリル基である。
76及びR77としては、好ましくは、アルキル基、アルコキシアルキル基、置換シリル基又はR76及びR77が結合した含窒素基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。
76及びR77が窒素原子に結合したアミノ基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。また、ジ(エポキシ)アミノ基、ジ(テトラヒドロフラニル)アミノ基などのジ(アルキレンオキシド)アミノ基;ジ(グリシジル)アミノ基、ジ(テトラヒドロフルフリル)アミノ基などのジ(アルキレンオキシドアルキル)アミノ基をあげることができる。更には、エチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基などもあげることができる。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
76及びR77が窒素原子に結合したアミノ基としては、低燃費性、ウェットグリップ性能、耐摩耗性、化合物の長期安定性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基であり、更に好ましくは、ジメチルアミノ基、ジエチルアミノ基である。
式(VII-1)で表される化合物としては、N,N-ジアルキル置換カルボン酸アミドジアルキルアセタール化合物をあげることができる。
N,N-ジアルキル置換カルボン酸アミドジアルキルアセタール化合物としては、
N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジエチルホルムアミドジメチルアセタール、N,N-ジ(n-プロピル)ホルムアミドジメチルアセタール、
N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジエチルホルムアミドジエチルアセタール、N,N-ジ(n-プロピル)ホルムアミドジエチルアセタール、
N,N-ジメチルホルムアミドエチルメチルアセタール、N,N-ジエチルホルムアミドエチルメチルアセタール、N,N-ジ(n-プロピル)ホルムアミドエチルメチルアセタールなどのN,N-ジアルキルホルムアミドジアルキルアセタール;
N,N-ジメチルアセトアミドジメチルアセタール、N,N-ジエチルアセトアミドジメチルアセタール、N,N-ジ(n-プロピル)アセトアミドジメチルアセタール、
N,N-ジメチルアセトアミドジエチルアセタール、N,N-ジエチルアセトアミドジエチルアセタール、N,N-ジ(n-プロピル)アセトアミドジエチルアセタール、
N,N-ジメチルアセトアミドエチルメチルアセタール、N,N-ジエチルアセトアミドエチルメチルアセタール、N,N-ジ(n-プロピル)アセトアミドエチルメチルアセタールなどのN,N-ジアルキルアセトアミドジアルキルアセタール;
N,N-ジメチルプロピオンアミドジメチルアセタール、N,N-ジエチルプロピオンアミドジメチルアセタール、N,N-ジ(n-プロピル)プロピオンアミドジメチルアセタール、
N,N-ジメチルプロピオンアミドジエチルアセタール、N,N-ジエチルプロピオンアミドジエチルアセタール、N,N-ジ(n-プロピル)プロピオンアミドジエチルアセタール、
N,N-ジメチルプロピオンアミドエチルメチルアセタール、N,N-ジエチルプロピオンアミドエチルメチルアセタール、N,N-ジ(n-プロピル)プロピオンアミドエチルメチルアセタールなどのN,N-ジアルキルプロピオンアミドジアルキルアセタールなどがあげられる。
これらの中では、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、
N,N-ジアルキルホルムアミドジアルキルアセタールであり、
より好ましくは、
N,N-ジメチルホルムアミドジメチルアセタール、
N,N-ジエチルホルムアミドジメチルアセタール、
N,N-ジメチルホルムアミドジエチルアセタール、
N,N-ジエチルホルムアミドジエチルアセタールである。
上記共役ジエン系重合体は、共役ジエンに基づく構成単位(共役ジエン単位)に加え、更に、他の単量体に基づく構成単位を有していてもよい。該他の単量体としては、芳香族ビニル、ビニルニトリル、不飽和カルボン酸エステルなどがあげられる。芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンを例示することができる。また、ビニルニトリルとしては、アクリロニトリルなどを、不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、メタアクリル酸メチル、メタアクリル酸エチルなどを例示することができる。これらの中では、芳香族ビニルが好ましく、スチレンがより好ましい。
上記共役ジエン系重合体は、耐摩耗性の観点から、芳香族ビニルに基づく構成単位(芳香族ビニル単位)を有していることが好ましく、芳香族ビニル単位の含有量としては、共役ジエン単位と芳香族ビニル単位との総量を100質量%として、好ましくは10質量%以上(共役ジエン単位の含有量は90質量%以下)であり、より好ましくは15質量%以上(共役ジエン単位の含有量は85質量%以下)である。また、低燃費性の観点から、芳香族ビニル単位の含有量は、好ましくは50質量%以下(共役ジエン単位の含有量は50質量%以上)であり、より好ましくは45質量%以下(共役ジエン単位の含有量は55質量%以上)である。
上記共役ジエン系重合体のビニル結合量は、共役ジエン単位の含有量を100モル%として、低燃費性の観点から、好ましくは80モル%以下であり、より好ましくは70モル%以下である。また、ウェットグリップ性能の観点から、好ましくは10モル%以上であり、より好ましくは15モル%以上であり、更に好ましくは20モル%以上であり、特に好ましくは40モル%以上である。該ビニル結合量は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求められる。
上記共役ジエン系重合体の分子量分布は、低燃費性の観点から、好ましくは1~5であり、より好ましくは1~2である。分子量分布は、ゲル・パーミエイション・クロマトグラフ(GPC)法により、数平均分子量(Mn)及び重量平均分子量(Mw)を測定し、MwをMnで除すことにより求められる。
上記共役ジエン系重合体の好適な製造方法としては、下記工程A及びBを有する製造方法をあげることができる。
(工程A):炭化水素溶媒中で、アルカリ金属触媒により、共役ジエンと下式(IX)で表されるビニル化合物とを含む単量体を重合させ、共役ジエンに基づく単量体単位と下式(IX)で表されるビニル化合物に基づく単量体単位とを有する重合体鎖の少なくとも一端に、該触媒由来のアルカリ金属を有する重合体を得る工程。
Figure JPOXMLDOC01-appb-C000073
[式中、X、X及びXは、それぞれ独立に、下式(IXa)で表される基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(IXa)で表される基である。]
Figure JPOXMLDOC01-appb-C000074
[式中、R81及びR82は、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R81及びR82は結合して窒素原子と共に環構造を形成していてもよい。]
(工程B):工程Aで得られた重合体と上記変性剤1~5の少なくとも1つとを反応させる工程。
(工程A)で用いられるアルカリ金属触媒としては、アルカリ金属、有機アルカリ金属化合物、アルカリ金属と極性化合物との錯体、アルカリ金属を有するオリゴマーなどをあげることができる。該アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどをあげることができる。該有機アルカリ金属化合物としては、エチルリチウム、n-プロピルリチウム、iso-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロヘキシルリチウム、4-シクロペンチルリチウム、ジメチルアミノプロピルリチウム、ジエチルアミノプロピルリチウム、t-ブチルジメチルシリロキシプロピルリチウム、N-モルホリノプロピルリチウム、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、1,4-ジリチオ-2-ブテン、ナトリウムナフタレニド、ナトリウムビフェニリド、カリウムナフタレニドなどをあげることができる。また、アルカリ金属と極性化合物との錯体としては、カリウム-テトラヒドロフラン錯体、カリウム-ジエトキシエタン錯体などをあげることができ、アルカリ金属を有するオリゴマーとしては、α-メチルスチレンテトラマーのナトリウム塩をあげることができる。これらの中でも、有機リチウム化合物又は有機ナトリウム化合物が好ましく、炭素原子数が2~20の有機リチウム化合物又は有機ナトリウム化合物がより好ましい。
(工程A)で用いられる炭化水素溶媒は、有機アルカリ金属化合物触媒を失活させない溶媒であり、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素などをあげることができる。該脂肪族炭化水素としては、プロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、n-ヘキサン、プロペン、1-ブテン、iso-ブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセンなどをあげることができる。また、芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼンをあげることができ、脂環族炭化水素としては、シクロペンタン、シクロヘキサンなどがあげられる。これらは単独で、あるいは2種以上組み合わせて用いられる。これらの中では、炭素原子数が2~12の炭化水素が好ましい。
(工程A)では、共役ジエンと式(IX)で表されるビニル化合物とを含む単量体を重合させ、上述のアルカリ金属触媒由来のアルカリ金属を重合体鎖末端に有する共役ジエン系重合体を製造する。該共役ジエンとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエンをあげることができ、これらは単独で、あるいは2種以上組み合わせて用いられる。中でも、入手容易性の観点から、1,3-ブタジエン、イソプレンが好ましい。
式(IX)のX、X及びXは、それぞれ独立に、式(IXa)で表される基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つは、式(IXa)で表される基である。
式(IXa)のR81及びR82は、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R81及びR82は結合して窒素原子と共に環構造を形成していてもよい。
81及びR82の炭素原子数が1~6のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
81及びR82の炭素原子数が1~6の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
81及びR82の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基などをあげることができる。
81及びR82が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
81及びR82が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
81及びR82のヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基が更に好ましく、エチル基、n-ブチル基が特に好ましい。R81及びR82の置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。R81及びR82の置換シリル基としては、トリアルキルシリル基が好ましく、トリメチルシリル基がより好ましい。
81及びR82としては、好ましくは、アルキル基、アルコキシアルキル基、置換シリル基又はR81及びR82が結合した含窒素基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(IXa)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(IXa)で表される基としては、経済性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基であり、更に好ましくは、炭素原子数が1~4のアルキル基で置換されたジアルキルアミノ基であり、より更に好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(n-ブチル)アミノ基である。
式(IX)のX~Xのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基をあげることができる。また、置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
~Xのヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基又はエチル基が更に好ましい。また、X~Xの置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。
~Xのヒドロカルビル基及び置換ヒドロカルビル基としては、好ましくは、アルキル基又はアルコキシアルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基又は炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基又はエチル基である。
式(IX)のX、X及びXの少なくとも1つは、式(IXa)で表される基である。好ましくは、X、X及びXの2つ以上が、式(IXa)で表される基であり、より好ましくは、X、X及びXの2つが、式(IXa)で表される基である。
(工程A)で用いられる式(IX)で表されるビニル化合物としては、X~Xの1つが式(IXa)で表される非環状アミノ基であり、2つがヒドロカルビル基又は置換ヒドロカルビル基である化合物として、(ジアルキルアミノ)ジアルキルビニルシラン、{ジ(トリアルキルシリル)アミノ}ジアルキルビニルシラン、(ジアルキルアミノ)ジアルコキシアルキルビニルシランなどをあげることができる。
(ジアルキルアミノ)ジアルキルビニルシランとしては、(ジメチルアミノ)ジメチルビニルシラン、(エチルメチルアミノ)ジメチルビニルシラン、(ジエチルアミノ)ジメチルビニルシラン、(エチル-n-プロピルアミノ)ジメチルビニルシラン、(エチルイソプロピルアミノ)ジメチルビニルシラン、(ジ(n-プロピル)アミノ)ジメチルビニルシラン、(ジイソプロピルアミノ)ジメチルビニルシラン、(n-ブチル-n-プロピルアミノ)ジメチルビニルシラン、(ジ(n-ブチル)アミノ)ジメチルビニルシラン、(ジメチルアミノ)ジエチルビニルシラン、(エチルメチルアミノ)ジエチルビニルシラン、(ジエチルアミノ)ジエチルビニルシラン、(エチル-n-プロピルアミノ)ジエチルビニルシラン、(エチルイソプロピルアミノ)ジエチルビニルシラン、(ジ(n-プロピル)アミノ)ジエチルビニルシラン、(ジイソプロピルアミノ)ジエチルビニルシラン、(n-ブチル-n-プロピルアミノ)ジエチルビニルシラン、(ジ(n-ブチル)アミノ)ジエチルビニルシラン、(ジメチルアミノ)ジプロピルビニルシラン、(エチルメチルアミノ)ジプロピルビニルシラン、(ジエチルアミノ)ジプロピルビニルシラン、(エチル-n-プロピルアミノ)ジプロピルビニルシラン、(エチルイソプロピルアミノ)ジプロピルビニルシラン、(ジ(n-プロピル)アミノ)ジプロピルビニルシラン、(ジイソプロピルアミノ)ジプロピルビニルシラン、(n-ブチル-n-プロピルアミノ)ジプロピルビニルシラン、(ジ(n-ブチル)アミノ)ジプロピルビニルシラン、(ジメチルアミノ)ジブチルビニルシラン、(エチルメチルアミノ)ジブチルビニルシラン、(ジエチルアミノ)ジブチルビニルシラン、(エチル-n-プロピルアミノ)ジブチルビニルシラン、(エチルイソプロピルアミノ)ジブチルビニルシラン、(ジ(n-プロピル)アミノ)ジブチルビニルシラン、(ジイソプロピルアミノ)ジブチルビニルシラン、(n-ブチル-n-プロピルアミノ)ジブチルビニルシラン、(ジ(n-ブチル)アミノ)ジブチルビニルシランなどをあげることができる。
{ジ(トリアルキルシリル)アミノ}ジアルキルビニルシランとしては、{ジ(トリメチルシリル)アミノ}ジメチルビニルシラン、{ジ(t-ブチルジメチルシリル)アミノ}ジメチルビニルシラン、{ジ(トリメチルシリル)アミノ}ジエチルビニルシラン、{ジ(t-ブチルジメチルシリル)アミノ}ジエチルビニルシランなどをあげることができる。
(ジアルキルアミノ)ジアルコキシアルキルビニルシランとしては、(ジメチルアミノ)ジメトキシメチルビニルシラン、(ジメチルアミノ)ジメトキシエチルビニルシラン、(ジメチルアミノ)ジエトキシメチルビニルシラン、(ジメチルアミノ)ジエトキシエチルビニルシラン、(ジエチルアミノ)ジメトキシメチルビニルシラン、(ジエチルアミノ)ジメトキシエチルビニルシラン、(ジエチルアミノ)ジエトキシメチルビニルシラン、(ジエチルアミノ)ジエトキシエチルビニルシランなどをあげることができる。
~Xの2つが式(IXa)で表される非環状アミノ基であり、1つがヒドロカルビル基又は置換ヒドロカルビル基である化合物として、ビス(ジアルキルアミノ)アルキルビニルシラン、ビス{ジ(トリアルキルシリル)アミノ}アルキルビニルシラン、ビス(ジアルキルアミノ)アルコキシアルキルビニルシランなどをあげることができる。
ビス(ジアルキルアミノ)アルキルビニルシランとしては、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(エチル-n-プロピルアミノ)メチルビニルシラン、ビス(エチルイソプロピルアミノ)メチルビニルシラン、ビス(ジ(n-プロピル)アミノ)メチルビニルシラン、ビス(ジイソプロピルアミノ)メチルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)メチルビニルシラン、ビス(ジ(n-ブチル)アミノ)メチルビニルシラン、ビス(ジメチルアミノ)エチルビニルシラン、ビス(エチルメチルアミノ)エチルビニルシラン、ビス(ジエチルアミノ)エチルビニルシラン、ビス(エチル-n-プロピルアミノ)エチルビニルシラン、ビス(エチルイソプロピルアミノ)エチルビニルシラン、ビス(ジ(n-プロピル)アミノ)エチルビニルシラン、ビス(ジイソプロピルアミノ)エチルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)エチルビニルシラン、ビス(ジ(n-ブチル)アミノ)エチルビニルシラン、ビス(ジメチルアミノ)プロピルビニルシラン、ビス(エチルメチルアミノ)プロピルビニルシラン、ビス(ジエチルアミノ)プロピルビニルシラン、ビス(エチル-n-プロピルアミノ)プロピルビニルシラン、ビス(エチルイソプロピルアミノ)プロピルビニルシラン、ビス(ジ(n-プロピル)アミノ)プロピルビニルシラン、ビス(ジイソプロピルアミノ)プロピルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)プロピルビニルシラン、ビス(ジ(n-ブチル)アミノ)プロピルビニルシラン、ビス(ジメチルアミノ)ブチルビニルシラン、ビス(エチルメチルアミノ)ブチルビニルシラン、ビス(ジエチルアミノ)ブチルビニルシラン、ビス(エチル-n-プロピルアミノ)ブチルビニルシラン、ビス(エチルイソプロピルアミノ)ブチルビニルシラン、ビス(ジ(n-プロピル)アミノ)ブチルビニルシラン、ビス(ジイソプロピルアミノ)ブチルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)ブチルビニルシラン、ビス(ジ(n-ブチル)アミノ)ブチルビニルシランなどをあげることができる。
ビス{ジ(トリアルキルシリル)アミノ}アルキルビニルシランとしては、ビス{ジ(トリメチルシリル)アミノ}メチルビニルシラン、ビス{ジ(t-ブチルジメチルシリル)アミノ}メチルビニルシラン、ビス{ジ(トリメチルシリル)アミノ}エチルビニルシラン、ビス{ジ(t-ブチルジメチルシリル)アミノ}エチルビニルシランなどをあげることができる。
ビス(ジアルキルアミノ)アルコキシアルキルビニルシランとしては、ビス(ジメチルアミノ)メトキシメチルビニルシラン、ビス(ジメチルアミノ)メトキシエチルビニルシラン、ビス(ジメチルアミノ)エトキシメチルビニルシラン、ビス(ジメチルアミノ)エトキシエチルビニルシラン、ビス(ジエチルアミノ)メトキシメチルビニルシラン、ビス(ジエチルアミノ)メトキシエチルビニルシラン、ビス(ジエチルアミノ)エトキシメチルビニルシラン、ビス(ジエチルアミノ)エトキシエチルビニルシランなどをあげることができる。
~Xの3つが式(IXa)で表される非環状アミノ基である化合物として、トリ(ジアルキルアミノ)ビニルシランなどをあげることができる。例えば、トリ(ジメチルアミノ)ビニルシラン、トリ(エチルメチルアミノ)ビニルシラン、トリ(ジエチルアミノ)ビニルシラン、トリ(エチルプロピルアミノ)ビニルシラン、トリ(ジプロピルアミノ)ビニルシラン、トリ(ブチルプロピルアミノ)ビニルシランなどをあげることができる。
~Xの2つが式(IXa)で表される環状アミノ基であり、1つがヒドロカルビル基又は置換ヒドロカルビル基である化合物として、ビス(モルホリノ)メチルビニルシラン、ビス(ピペリジノ)メチルビニルシラン、ビス(4,5-ジヒドロイミダゾリル)メチルビニルシラン、ビス(ヘキサメチレンイミノ)メチルビニルシランなどをあげることができる。
、X及びXの2つが式(IXa)で表される基である式(IX)で表されるビニル化合物として、好ましくは、X、X及びXの2つが非環状アミノ基であるビニル化合物であり、低燃費性、ウェットグリップ性能及び耐摩耗性の観点から、より好ましくは、ビス(ジアルキルアミノ)アルキルビニルシランであり、更に好ましくは、ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ(n-プロピル)アミノ)メチルビニルシラン、ビス(ジ(n-ブチル)アミノ)メチルビニルシランである。中でも、化合物の入手容易性の観点からは、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ(n-ブチル)アミノ)メチルビニルシランが好ましい。
(工程A)では、共役ジエンと式(IX)で表されるビニル化合物とに、他の単量体を組み合わせて重合を行ってもよい。他の単量体としては、芳香族ビニル、ビニルニトリル、不飽和カルボン酸エステルなどがあげられる。芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンを例示することができる。また、ビニルニトリルとしては、アクリロニトリルなどを、不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、メタアクリル酸メチル、メタアクリル酸エチルなどを例示することができる。これらの中では、芳香族ビニルが好ましく、スチレンがより好ましい。
(工程A)の重合は、共役ジエン単位のビニル結合量を調整する剤、共役ジエン系重合体鎖中での共役ジエン単位と共役ジエン以外の単量体に基づく構成単位の分布を調整する剤(以下、総称して「調整剤」と記す。)などの存在下で行ってもよい。このような剤としては、エーテル化合物、第三級アミン、ホスフィン化合物などをあげることができる。該エーテル化合物としては、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどの環状エーテル;ジエチルエーテル、ジブチルエーテルなどの脂肪族モノエーテル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテルなどの脂肪族ジエーテル;ジフェニルエーテル、アニソールなどの芳香族エーテルなどがあげられる。該第三級アミンとして、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジエチルアニリン、ピリジン、キノリンなどをあげることができる。また、該ホスフィン化合物として、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどをあげることができる。これらは単独で用いても、2種類以上を組み合わせて用いてもよい。
(工程A)での重合温度は、通常25~100℃であり、好ましくは35~90℃である。より好ましくは50~80℃である。重合時間は、通常10分~5時間である。
(工程B)において、工程Aで調製された重合体に接触させる変性剤1~5の量は、有機アルカリ金属触媒由来のアルカリ金属1モルあたり、通常、0.1~3モルであり、好ましくは、0.5~2モルであり、より好ましくは、0.7~1.5モルであり、更に好ましくは、1~1.5モルである。
(工程B)において、工程Aで調製された重合体と変性剤1~5の少なくとも一つとを接触させる温度は、通常25~100℃であり、好ましくは35~90℃である。より好ましくは50~80℃である。接触させる時間は、通常、60秒~5時間であり、好ましくは5分~1時間であり、より好ましくは15分~1時間である。
上記共役ジエン系重合体の製造方法においては、必要に応じて、アルカリ金属触媒による単量体の重合開始から重合停止において、共役ジエン系重合体の炭化水素溶液にカップリング剤を添加してもよい。カップリング剤としては、下式(X)で表される化合物をあげることができる。
91 ML4-a(X)
[式中、R91はアルキル基、アルケニル基、シクロアルケニル基又は芳香族残基を表し、Mはケイ素原子又はスズ原子を表し、Lはハロゲン原子又はヒドロカルビルオキシ基を表し、aは0~2の整数を表す。]
ここで、芳香族残基は、芳香族炭化水素から芳香環に結合している水素を除いた1価の基を表す。
式(X)で表されるカップリング剤としては、四塩化珪素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシランなどをあげることができる。
カップリング剤の添加量は、アルカリ金属触媒由来のアルカリ金属1モル当たり、共役ジエン系重合体の加工性の観点から、好ましくは0.03モル以上であり、より好ましくは0.05モル以上である。また、低燃費性の観点から、好ましくは0.4モル以下であり、より好ましくは0.3モル以下である。
共役ジエン系重合体は、公知の回収方法、例えば、(1)共役ジエン系重合体の炭化水素溶液に凝固剤を添加する方法、(2)共役ジエン系重合体の炭化水素溶液にスチームを添加する方法によって、共役ジエン系重合体の炭化水素溶液から回収することができる。回収した共役ジエン系重合体は、バンドドライヤーや押出型ドライヤーなどの公知の乾燥機で乾燥してもよい。
また、上記共役ジエン系重合体の製造方法においては、加水分解などにより、重合体の式(Ia)で表される基を水酸基に置換させる処理を行うことが好ましい。該処理は、重合体単独の状態で行ってもよく、後述のような組成物の状態で行ってもよい。加水分解する方法としては、例えば、スチームストリッピングによる方法などの公知の方法があげられる。上記処理により、式(I)のX~Xを水酸基とすることができ、低燃費性、ウェットグリップ性能及び耐摩耗性をよりバランスよく向上できる。
上記共役ジエン系重合体は、ゴム成分として本発明のゴム組成物に用いることができ、他のゴム成分や添加剤などと併用することが好ましい。
他のゴム成分としては、一般的なジエン系ゴムを使用することができ、例えば、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ブタジエン-イソプレン共重合体ゴム、ブチルゴムなどをあげることができる。また、天然ゴム(NR)、エチレン-プロピレン共重合体、エチレン-オクテン共重合体などもあげることができる。これらのゴム成分は、2種以上組み合わせて用いてもよい。中でも、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く改善できるという点から、NR及び/又はBRを使用することが好ましく、NR及びBRの両成分を使用することがより好ましい。
ゴム成分100質量%中の上記共役ジエン系重合体の含有量は、5質量%以上、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上である。上記共役ジエン系重合体の含有量が5質量%未満であると低燃費性の改善効果が得られにくい傾向がある。上記共役ジエン系重合体の含有量は、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。上記共役ジエン系重合体の含有量が90質量%を超えると、耐摩耗性が低下すると共に、高コストになる傾向がある。
NRとしては特に限定されず、例えば、SIR20、RSS#3、TSR20、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)等、タイヤ工業において一般的なものを使用できる。
ゴム成分100質量%中のNRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。5質量%未満であると、耐摩耗性が低下する傾向がある。上記NRの含有量は、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは30質量%以下である。70質量%を超えると、ウェットグリップ性能が低下する傾向がある。
BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150Bなどの高シス含有量のBR、宇部興産(株)製のVCR412、VCR617などのシンジオタクチックポリブタジエン結晶を含有するBR等、タイヤ工業において一般的なものを使用できる。
ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。5質量%未満であると、耐摩耗性が低下する傾向がある。上記BRの含有量は、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは35質量%以下、より更に好ましくは30質量%以下、特に好ましくは25質量%以下である。60質量%を超えると、ウェットグリップ性能が低下する傾向がある。
ゴム成分100質量%中のNR及びBRの合計含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上である。10質量%未満であると、耐摩耗性が低下する傾向がある。上記合計含有量は、好ましくは70質量%以下、より好ましくは50質量%以下である。70質量%を超えると、ウェットグリップ性能が低下する傾向がある。
本発明のゴム組成物は補強剤としてシリカを配合することを特徴とする。シリカの配合量(含有量)は、ゴム成分100質量部に対して、5~150質量部である。シリカの配合量が5質量部未満であると耐摩耗性が充分でない傾向があり、一方、シリカの配合量が150質量部を超えると、加工性が悪化する傾向がある。シリカの配合量は、好ましくは10質量部以上、より好ましくは15質量部以上、更に好ましくは45質量部以上であり、好ましくは120質量部以下、より好ましくは100質量部以下である。
シリカは単独で用いてもよく、2種以上組み合わせて用いてもよい。
シリカ及びカーボンブラックの合計100質量%中のシリカの含有量は、好ましくは60質量%以上、より好ましくは85質量%以上であり、好ましくは98質量%以下、より好ましくは95質量%以下である。上記範囲内であれば、低燃費性、ウェットグリップ性能及び耐摩耗性を高次元でバランス良く改善することができる。
また、シリカの窒素吸着比表面積(NSA)は、好ましくは40m/g以上、より好ましくは50m/g以上、更に好ましくは60m/g以上、特に好ましくは150m/g以上であり、好ましくは400m/g以下、より好ましくは360m/g以下、更に好ましくは300m/g以下、特に好ましくは200m/g以下である。窒素吸着比表面積が40m/g未満のシリカでは補強効果が小さく耐摩耗性が低下する傾向があり、400m/gを超えるシリカでは分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
本発明では、メルカプト基を有するシランカップリング剤(メルカプト系シランカップリング剤)が使用される。本発明の効果が良好に得られるという点から、メルカプト系シランカップリング剤としては、下式(1)で表される化合物、及び/又は下式(2)で示される結合単位Aと下式(3)で示される結合単位Bとを含む化合物を好適に使用できる。
Figure JPOXMLDOC01-appb-C000075
[式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(b個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。bは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。]
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
[式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。]
以下、式(1)で表される化合物について説明する。
式(1)で表されるシランカップリング剤を配合することにより、ウェットグリップ性能及び転がり抵抗特性(低燃費性)をより向上できる。
101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112で表される基を表す。本発明の効果が良好に得られるという点から、R101~R103は、少なくとも1つが-O-(R111-O)-R112で表される基であることが好ましく、2つが-O-(R111-O)-R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1~12のアルコキシ基であることがより好ましい。
101~R103の分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基などがあげられる。
101~R103の分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトシキ基、tert-ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。
101~R103の-O-(R111-O)-R112において、R111は、分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、分岐若しくは非分岐の炭素数2~30のアルキニレン基、炭素数6~30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1~30のアルキレン基が好ましい。
111の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルケニレン基としては、例えば、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。
111の炭素数6~30(好ましくは炭素数6~15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。
bは1~30(好ましくは2~20、より好ましくは3~7、更に好ましくは5~6)の整数を表す。
112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1~30のアルキル基が好ましい。
112の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。
112の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。
112の炭素数6~30(好ましくは炭素数10~20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。
112の炭素数7~30(好ましくは炭素数10~20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。
-O-(R111-O)-R112で表される基の具体例としては、例えば、-O-(C-O)-C1123、-O-(C-O)-C1225、-O-(C-O)-C1327、-O-(C-O)-C1429、-O-(C-O)-C1531、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327などがあげられる。中でも、-O-(C-O)-C1123、-O-(C-O)-C1327、-O-(C-O)-C1531、-O-(C-O)-C1327が好ましい。
104の分岐若しくは非分岐の炭素数1~6(好ましくは炭素数1~5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1~30のアルキレン基と同様の基をあげることができる。
上記式(1)で表される化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記式で表される化合物(エボニックデグッサ社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000078
次に、式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物について説明する。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物は、ビス-(3-トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇が抑制される。これは結合単位Aのスルフィド部分がC-S-C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
また、3-メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。この理由は、結合単位Bはメルカプトシランの構造を持っているが、結合単位Aの-C15部分が結合単位Bの-SH基を覆うことにより、ポリマーと反応しにくくなるためであると考えられる。従って、加硫促進剤を増量したり、スコーチしやすいSBRを配合した場合であっても、良好な加工性が得られる。
上述した加工中の粘度上昇を抑制する効果や、スコーチ時間の短縮を抑制する効果を高めることができるという点から、上記構造のシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、更に好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2)、(3)と対応するユニットを形成していればよい。
201のハロゲンとしては、塩素、臭素、フッ素などがあげられる。
201、R202の分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基等があげられる。該アルキル基の炭素数は、好ましくは1~12である。
201、R202の分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基等があげられる。該アルキレン基の炭素数は、好ましくは1~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基等があげられる。該アルケニル基の炭素数は、好ましくは2~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基等があげられる。該アルケニレン基の炭素数は、好ましくは2~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基等があげられる。該アルキニル基の炭素数は、好ましくは2~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基等があげられる。該アルキニレン基の炭素数は、好ましくは2~12である。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3~300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの-C15が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物としては、例えば、Momentive社製のNXT-Z30、NXT-Z45、NXT-Z60等を使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
メルカプト系シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは1.5質量部以上、より更に好ましくは2質量部以上、特に好ましくは2.5質量部以上である。0.5質量部未満では、シリカを良好に分散させることが困難となるおそれがある。含有量の下限は、4質量部以上、5質量部以上、8質量部以上であってもよい。また、メルカプト系シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。20質量部を超えると、添加量に見合った改善効果が得られず、コストが不必要に増大するおそれがある。また、スコーチタイムが短くなり、混練り工程や押出し工程での加工性が悪化する傾向がある。
添加剤としては、公知のものを用いることができ、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;伸展油、滑剤などの加工助剤;老化防止剤を例示することができる。
上記カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種又は2種以上組み合わせて用いることができる。低燃費性、ウェットグリップ性能及び耐摩耗性を高次元でバランス良く改善できるという点から、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上であり、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは30質量部以下、特に好ましくは10質量部以下である。
カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは5m/g以上、より好ましくは30m/g以上、更に好ましくは50m/g以上、特に好ましくは70m/g以上であり、好ましくは250m/g以下、より好ましくは200m/g以下、更に好ましくは150m/g以下である。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、好ましくは5ml/100g以上、より好ましくは80ml/100g以上であり、好ましくは300ml/100g以下、より好ましくは180ml/100g以下である。カーボンブラックのNSAやDBP吸収量が上記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、上記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。該窒素吸着比表面積は、ASTM D4820-93に従って測定され、該DBP吸収量は、ASTM D2414-93に従って測定される。市販品としては、東海カーボン社製商品名シースト6、シースト7HM、シーストKH、エボニックデグッサ社製商品名CK3、SpecialBlack4A等を用いることができる。
上記伸展油としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)、パラフィン系鉱物油(V.G.C.値0.790~0.849)などをあげることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。
上記加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤をあげることができ、その使用量は、ゴム成分100質量部に対して0.1~5質量部が好ましく、更に好ましくは0.2~3質量部である。
上記共役ジエン系重合体に、他のゴム成分や添加剤などを配合してゴム組成物を製造する方法としては、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混練する方法を用いることができる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50~200℃であり、好ましくは80~190℃であり、混練時間は、通常30秒~30分であり、好ましくは1分~30分である。
加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫などの加硫処理を行って用いられる。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
本発明のゴム組成物は、低燃費性、ウェットグリップ性能及び耐摩耗性のバランスに優れており、これらの性能の顕著な改善効果を得ることができる。
本発明のゴム組成物は、タイヤの各部材に好適に用いることができ、特にトレッドに好適に用いることができる。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドなどの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成型し、他のタイヤ部材と共に貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して、本発明の空気入りタイヤを製造できる。
本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ(重荷重用タイヤ)として好適に用いることができる。
以下、実施例によって本発明を説明する。
物性評価は次の方法で行った。なお、以下の物性評価において、表6における基準比較例を比較例1、表7における基準比較例を比較例4、表8における基準比較例を比較例11、表9~10における基準比較例を比較例14、表11における基準比較例を比較例32、表12における基準比較例を比較例38、表13~14における基準比較例を比較例46、表15~16における基準比較例を比較例52、表17における基準比較例を比較例59、表18における基準比較例を比較例67とした。
1.ビニル結合量(単位:モル%)
赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より重合体のビニル結合量を求めた。
2.スチレン単位の含量(単位:質量%)
JIS K6383(1995)に従って、屈折率から重合体のスチレン単位の含量を求めた。
3.分子量分布(Mw/Mn)
下記の条件(1)~(8)でゲル・パーミエイション・クロマトグラフ(GPC)法により、重合体の重量平均分子量(Mw)と数平均分子量(Mn)を測定した。そして、測定したMw、Mnから重合体の分子量分布(Mw/Mn)を求めた。
(1)装置:東ソー社製HLC-8020
(2)分離カラム:東ソー社製GMH-XL(2本直列)
(3)測定温度:40℃
(4)キャリア:テトラヒドロフラン
(5)流量:0.6mL/分
(6)注入量:5μL
(7)検出器:示差屈折
(8)分子量標準:標準ポリスチレン
4.tanδ
シート状の加硫ゴム組成物から幅1mm又は2mm、長さ40mmの短冊状試験片を打ち抜き、試験に供した。(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃でtanδを測定した。tanδの逆数の値について基準比較例を100として指数表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
5.転がり抵抗
転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させた時の転がり抵抗を測定し、基準比較例を100とした時の指数で表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
6.ウェットグリップ性能
製造した試験用タイヤを車両(国産FF2000cc)の全輪に装着させ、湿潤アスファルト路面にて、初速度100km/hからの制動距離を測定した。そして、基準比較例のウェットグリップ性能指数を100とし、以下に示す計算式により、各配合のウェットスキッド性能(ウェットグリップ性能)を指数表示した。数値が大きいほどウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(基準比較例の制動距離)/(各配合の制動距離)×100
7.耐摩耗性1
LAT試験機(Laboratory Abration and Skid Tester)を用い、荷重50N、速度20km/h、スリップアングル5°の条件にて、各加硫ゴム組成物の容積損失量を測定した。表中の数値(耐摩耗性1指数)は、基準比較例の容積損失量を100とした時の相対値である。当該数値が大きいほど耐摩耗性に優れている。
8.耐摩耗性2
製造した試験用タイヤを車両(国産FF2000cc)の全輪に装着して実車走行させ、3000km走行前後のトレッドパターンの溝深さの変化を測定した。そして、基準比較例の耐摩耗性2指数を100とし、以下に示す計算式により、各配合の溝深さの変化を指数表示した。数値が大きいほど耐摩耗性に優れることを示している。
耐摩耗性2指数=(基準比較例の溝深さの変化)/(各配合の溝深さの変化)×100
製造例1(重合体1の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.1mmol及びn-ブチルリチウム13.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-ジエチルアミノプロピルトリエトキシシラン11.1mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体1を回収した。重合体1の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例2(重合体2の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体2を回収した。重合体2の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例3(重合体3の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.1mmol及びn-ブチルリチウム13.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体3を回収した。重合体3の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例4(重合体4の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-ジエチルアミノプロピルトリエトキシシラン11.1mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体4を回収した。重合体4の評価結果を表1に示す。なお、重合体4は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例5(重合体5の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体5を回収した。重合体5の評価結果を表1に示す。なお、重合体5は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例6(重合体6の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.1mmol及びn-ブチルリチウム13.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-ジエチルアミノプロピルトリエトキシシラン11.1mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体6を得た。重合体6の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000079
製造例7(重合体7の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体7を回収した。重合体7の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例8(重合体8の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム12.9mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を0.83時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該0.83時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を1.67時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体8を回収した。重合体8の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例9(重合体9の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.7mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体9を回収した。重合体9の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例10(重合体10の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1-フェニル-2-ピロリドン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体10を回収した。重合体10の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例11(重合体11の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム15.1mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1-フェニル-2-ピロリドン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体11を回収した。重合体11の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例12(重合体12の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム13.4mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-メチル-ε-カプロラクタム11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体12を回収した。重合体12の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例13(重合体13の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.7mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-メチル-ε-カプロラクタム11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体13を回収した。重合体13の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例14(重合体14の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン8.26mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、4,4’-ビス(ジエチルアミノ)ベンゾフェノン11.8mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体14を回収した。重合体14の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.005mmol/g重合体であった。
製造例15(重合体15の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン12.2mmol及びn-ブチルリチウム15.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、4’-(イミダゾール-1-イル)-アセトフェノン12.2mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体15を回収した。重合体15の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.007mmol/g重合体であった。
製造例16(重合体16の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体16を回収した。重合体16の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例17(重合体17の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次にスチームストリッピングによって重合体溶液から重合体17を回収した。重合体17の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例18(重合体18の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.3mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体18を回収した。重合体18の評価結果を表2に示す。なお、重合体18は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例19(重合体19の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.3mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体19を回収した。重合体19の評価結果を表2に示す。なお、重合体19は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例20(重合体20の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体20を得た。重合体20の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000080
製造例21(重合体21の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム14.9mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体21を回収した。重合体21の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例22(重合体22の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム12.9mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を0.83時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該0.83時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン10.5mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を1.67時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体22を回収した。重合体22の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例23(重合体23の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム13.4mmolを、それぞれシクロヘキサン溶液及びn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン10.5mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン10.5mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を1.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。
重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体23を回収した。重合体23の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.017mmol/g重合体であった。
製造例24(重合体24の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス{ジ(n-ブチル)アミノ}メチルビニルシラン10.5mmol及びn-ブチルリチウム13.4mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体24を回収した。重合体24の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例25(重合体25の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体25を回収した。重合体25の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例26(重合体26の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム14.9mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体26を回収した。重合体26の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例27(重合体27の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.9mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体27を回収した。重合体27の評価結果を表3に示す。なお、重合体27は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例28(重合体28の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.9mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体28を回収した。重合体28の評価結果を表3に示す。なお、重合体28は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例29(重合体29の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム14.9mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体29を得た。重合体29の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000081
製造例30(重合体30の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体30を回収した。重合体30の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
製造例31(重合体31の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム17.3mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン14.4mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン14.4mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン14.4mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート3.6mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体31を回収した。重合体31の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.024mmol/g重合体であった。
製造例32(重合体32の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体32を回収した。重合体32の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例33(重合体33の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体33を回収した。重合体33の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
製造例34(重合体34の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム18.5mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体34を回収した。重合体34の評価結果を表4に示す。なお、重合体34は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例35(重合体35の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム18.5mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体35を回収した。重合体35の評価結果を表4に示す。なお、重合体35は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例36(重合体36の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体36を得た。重合体36の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
製造例37(重合体37の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-(メトキシ)プロピルトリメトキシシラン4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体37を回収した。重合体37の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000082
製造例38(重合体38の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.5mmol及びn-ブチルリチウム14.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体38を回収した。重合体38の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例39(重合体39の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.1mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体39を回収した。重合体39の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例40(重合体40の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体40を回収した。重合体40の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例41(重合体41の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.5mmol及びn-ブチルリチウム14.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体41を回収した。重合体41の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例42(重合体42の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体42を回収した。重合体42の評価結果を表5に示す。なお、重合体42は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例43(重合体43の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体43を回収した。重合体43の評価結果を表5に示す。なお、重合体43は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例44(重合体44の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.5mmol及びn-ブチルリチウム14.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体44を得た。重合体44の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000083
以下に、実施例及び比較例で用いた各種薬品について説明する。
天然ゴム1:RSS#3
天然ゴム2:SIR20
ブタジエンゴム:宇部興産(株)製のウベポールBR150B
SBR:日本ゼオン(株)製のNS116R(スチレン単位の含量:20質量%、ビニル結合量:60モル%)
重合体1~44:上記製造例1~44
シリカ:エボニックデグッサ社製のウルトラシルVN3-G(NSA:175m/g)
シランカップリング剤1:エボニックデグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
シランカップリング剤2:エボニックデグッサ社製のSi363(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000084
シランカップリング剤3:Momentive社製のNXT-Z45(結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%))
シランカップリング剤4:エボニックデグッサ社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
カーボンブラック1:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
カーボンブラック2:三菱化学(株)製のダイアブラックN220(NSA:114m/g、DBP吸収量:114ml/100g)
オイル1:JX日鉱日石エネルギ-(株)製のX-140
オイル2:出光興産(株)製のNH70-S
老化防止剤1:住友化学(株)製のアンチゲン3C
老化防止剤2:住友化学(株)製のアンチゲン6C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛1:三井金属鉱業(株)製の亜鉛華1号
酸化亜鉛2:三井金属鉱業(株)製の酸化亜鉛2種
ワックス:大内新興化学工業(株)製のサンノックN
硫黄1:鶴見化学工業(株)製の粉末硫黄
硫黄2:鶴見化学工業(株)製の5%オイル処理粉末硫黄
加硫促進剤1:住友化学(株)製のソクシノールCZ
加硫促進剤2:住友化学(株)製のソクシノールD
(実施例及び比較例)
表6~18に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成型し、タイヤ成型機上で他のタイヤ部材と共に貼り合わせて未加硫タイヤを形成した後、170℃で12分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
得られた加硫ゴム組成物及び試験用タイヤを使用して、上記試験方法により評価を行った。それぞれの試験結果を表6~18に示す。
Figure JPOXMLDOC01-appb-T000085
 
Figure JPOXMLDOC01-appb-T000086
 
Figure JPOXMLDOC01-appb-T000087
 
Figure JPOXMLDOC01-appb-T000088
 
Figure JPOXMLDOC01-appb-T000089
 
Figure JPOXMLDOC01-appb-T000090
 
Figure JPOXMLDOC01-appb-T000091
 
Figure JPOXMLDOC01-appb-T000092
 
Figure JPOXMLDOC01-appb-T000093
 
Figure JPOXMLDOC01-appb-T000094
 
Figure JPOXMLDOC01-appb-T000095
 
Figure JPOXMLDOC01-appb-T000096
 
Figure JPOXMLDOC01-appb-T000097
 
表6~18に示すように、共役ジエンに基づく構成単位及び上記式(I)で表される構成単位を有し、かつ特定の化合物によって末端が変性された重合体(重合体1、6、7~15、20、21~24、29~31、36~39、44)と、シリカと、メルカプト系カップリング剤とを含んだ実施例のゴム組成物は、比較例のゴム組成物に比べて、低燃費性、ウェットグリップ性能及び耐摩耗性が相乗的に改善し、これらの性能が高次元でバランス良く得られた。

Claims (19)

  1. ゴム成分、シリカ及びシランカップリング剤を含有し、
    前記ゴム成分100質量%のうち、共役ジエンに基づく構成単位と下式(I)で表される構成単位とを有し、下式(II)で表される化合物、下式(III)で表される基を有する化合物、下式(IV)で表される化合物、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物、並びに下式(VII)で表される基を有する化合物からなる群より選択される少なくとも1種の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体の含有量が5質量%以上であり、
    前記ゴム成分100質量部に対する前記シリカの含有量が5~150質量部であり、
    前記シランカップリング剤がメルカプト基を有することを特徴とするゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、X、X及びXは、それぞれ独立に、下式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(Ia)で表される基又は水酸基である。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    [式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
  2. 式(Ia)のR及びRが炭素原子数1~6のヒドロカルビル基であることを特徴とする請求項1に記載のゴム組成物。
  3. 式(I)のX、X及びXの2つが式(Ia)で表される基又は水酸基であることを特徴とする請求項1又は2に記載のゴム組成物。
  4. 式(II)のAが下式(IIa)で表される基であることを特徴とする請求項1~3のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000008
    [式中、R14及びR15は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R14及びR15は結合して窒素原子と共に環構造を形成していてもよく、R14及びR15は窒素に二重結合で結合する同一の基であってもよい。]
  5. 式(III)で表される基が、下式(IIIa)で表される基であることを特徴とする請求項1~4のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000009
  6. 式(III)で表される基を有する化合物が、下式(IIIa-1)で表される化合物、下式(IIIa-2)で表される化合物及び下式(IIIa-3)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることを特徴とする請求項5に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000010
    [式中、R31は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R32及びR33は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R32及びR33は結合して窒素原子と共に環構造を形成していてもよく、R32及びR33は窒素に二重結合で結合する同一の基であってもよい。]
    Figure JPOXMLDOC01-appb-C000011
    [式中、eは0~10の整数を表し、R34及びR35は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
    Figure JPOXMLDOC01-appb-C000012
    [式中、fは0~10の整数を表し、R36は、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
  7. 式(III)で表される基を有する化合物が、下式(IIIb-1)で表される化合物であることを特徴とする請求項1~4のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000013
    [式中、R37は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R38及びR39は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R38及びR39は結合して窒素原子と共に環構造を形成していてもよく、R38及びR39は窒素に二重結合で結合する同一の基であってもよく、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
  8. 式(IIIb-1)で表される化合物が、下式(IIIb-1-1)で表される化合物及び下式(IIIb-1-2)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることを特徴とする請求項7に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000014
    [式中、rは1又は2の整数を表し、Yはベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000015
    [式中、sは1又は2の整数を表し、tは0~2の整数を表し、Y及びYは、ベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよく、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
  9. 式(IV)のAが、下式(IVa)で表される基又は水酸基であることを特徴とする請求項1~8のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000016
    [式中、R23及びR24は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R23及びR24は結合して窒素原子と共に環構造を形成していてもよく、R23及びR24は窒素に二重結合で結合する同一の基であってもよい。]
  10. ケイ素化合物が下式(VIII)で表される基を有することを特徴とする請求項1~9のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000017
    [式中、R41、R42及びR43は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R41、R42及びR43の少なくとも1つがヒドロカルビルオキシ基である。]
  11. ケイ素化合物が下式(Va)で表される基を有することを特徴とする請求項1~10のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000018
    [式中、hは1~10の整数を表し、R44、R45及びR46は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R44、R45及びR46の少なくとも1つがヒドロカルビルオキシ基である。]
  12. 式(VII)で表される基を有する化合物が下式(VII-1)で表される化合物であることを特徴とする請求項1~11のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000019
    [式中、zは0~10の整数を表し、R71は炭素原子数が1~5のヒドロカルビル基を表し、R72、R73、R74及びR75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよく、R76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。]
  13. 式(VII-1)のR74及びR75の一方が水素原子であることを特徴とする請求項12に記載のゴム組成物。
  14. 共役ジエン系重合体のビニル結合量が、共役ジエンに基づく構成単位の含有量を100モル%として、10モル%以上80モル%以下であることを特徴とする請求項1~13のいずれかに記載のゴム組成物。
  15. 天然ゴム及び/又はブタジエンゴムを含有することを特徴とする請求項1~14のいずれかに記載のゴム組成物。
  16. シリカの窒素吸着比表面積が40~400m/gであることを特徴とする請求項1~15のいずれかに記載のゴム組成物。
  17. シランカップリング剤が、下式(1)で表される化合物、及び/又は下式(2)で示される結合単位Aと下式(3)で示される結合単位Bとを含む化合物であることを特徴とする請求項1~16のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000020
    [式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(b個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。bは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。]
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    [式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。]
  18. トレッド用ゴム組成物として用いられることを特徴とする請求項1~17のいずれかに記載のゴム組成物。
  19. 請求項1~18のいずれかに記載のゴム組成物を用いて作製した空気入りタイヤ。
PCT/JP2012/057344 2011-03-23 2012-03-22 ゴム組成物及び空気入りタイヤ WO2012128320A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280015296.3A CN103443191B (zh) 2011-03-23 2012-03-22 橡胶组合物及充气轮胎
EP12760492.4A EP2679628B1 (en) 2011-03-23 2012-03-22 Rubber composition and pneumatic tire
BR112013024425A BR112013024425A2 (pt) 2011-03-23 2012-03-22 composição de borracha e pneumático
US13/980,594 US9012560B2 (en) 2011-03-23 2012-03-22 Rubber composition and pneumatic tire

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011064575A JP5623946B2 (ja) 2011-03-23 2011-03-23 ゴム組成物及び空気入りタイヤ
JP2011064576A JP5623947B2 (ja) 2011-03-23 2011-03-23 ゴム組成物及び空気入りタイヤ
JP2011-064576 2011-03-23
JP2011-064575 2011-03-23
JP2011-096563 2011-04-22
JP2011096563A JP5628735B2 (ja) 2011-04-22 2011-04-22 ゴム組成物及び空気入りタイヤ
JP2011118354A JP5628744B2 (ja) 2011-05-26 2011-05-26 ゴム組成物及び空気入りタイヤ
JP2011-118354 2011-05-26
JP2011150305A JP5628758B2 (ja) 2011-07-06 2011-07-06 ゴム組成物及び空気入りタイヤ
JP2011-150305 2011-07-06

Publications (1)

Publication Number Publication Date
WO2012128320A1 true WO2012128320A1 (ja) 2012-09-27

Family

ID=46879461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057344 WO2012128320A1 (ja) 2011-03-23 2012-03-22 ゴム組成物及び空気入りタイヤ

Country Status (5)

Country Link
US (1) US9012560B2 (ja)
EP (1) EP2679628B1 (ja)
CN (1) CN103443191B (ja)
BR (1) BR112013024425A2 (ja)
WO (1) WO2012128320A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094609A1 (ja) * 2011-12-19 2013-06-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
CN105722909A (zh) * 2013-11-25 2016-06-29 住友橡胶工业株式会社 充气轮胎
US10214637B2 (en) 2012-02-22 2019-02-26 Sumitomo Rubber Industries, Ltd. Tire rubber composition and pneumatic tire

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034013B (zh) * 2017-12-28 2020-01-17 中科院广州化学有限公司 无机-有机硅杂化链转移剂及其制备方法、改性(甲基)丙烯酸酯聚合乳液及其制备方法
JP7095416B2 (ja) * 2018-06-06 2022-07-05 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
KR102421536B1 (ko) * 2019-07-15 2022-07-15 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
JP7403297B2 (ja) * 2019-12-10 2023-12-22 株式会社ブリヂストン 組成物及びポリマー成形体
EP4011921A1 (en) * 2020-12-09 2022-06-15 The Goodyear Tire & Rubber Company Rubber with backbone and end-group functionalization and its method of manufacturing and use in a tire
CN116376129B (zh) * 2023-01-13 2024-04-19 赛轮集团股份有限公司 一种超高性能轮胎胎面胶及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344955A (ja) 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd 変性ジエン系ゴム組成物
JP2008031244A (ja) 2006-07-27 2008-02-14 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびこれを用いた空気入りタイヤ
JP2009126907A (ja) 2007-11-21 2009-06-11 Sumitomo Rubber Ind Ltd ゴム組成物
JP2009263420A (ja) * 2008-04-22 2009-11-12 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた空気入りタイヤ
JP2010077412A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077414A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077415A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077413A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010189613A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp タイヤ
JP2010270292A (ja) * 2008-08-27 2010-12-02 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203251A1 (en) 2004-03-11 2005-09-15 Sumitomo Chemical Company, Limited Process for producing modified diene polymer rubber
EP1577341B1 (en) 2004-03-18 2006-12-13 Sumitomo Rubber Industries, Ltd. Rubber composition for tire tread and pneumatic tire using the same
CN101659732A (zh) 2008-08-27 2010-03-03 住友化学株式会社 共轭二烯系聚合物、共轭二烯系聚合物组合物及其制造方法
SG159475A1 (en) 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer and conjugated diene polymer composition
JP2010077257A (ja) 2008-09-25 2010-04-08 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
CN101724185B (zh) * 2008-10-16 2013-10-23 住友橡胶工业株式会社 橡胶组合物及轮胎

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344955A (ja) 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd 変性ジエン系ゴム組成物
JP2008031244A (ja) 2006-07-27 2008-02-14 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびこれを用いた空気入りタイヤ
JP2009126907A (ja) 2007-11-21 2009-06-11 Sumitomo Rubber Ind Ltd ゴム組成物
JP2009263420A (ja) * 2008-04-22 2009-11-12 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた空気入りタイヤ
JP2010077412A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077414A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077415A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077413A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010270292A (ja) * 2008-08-27 2010-12-02 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010189613A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679628A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094609A1 (ja) * 2011-12-19 2013-06-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
US9340663B2 (en) 2011-12-19 2016-05-17 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US10214637B2 (en) 2012-02-22 2019-02-26 Sumitomo Rubber Industries, Ltd. Tire rubber composition and pneumatic tire
CN105722909A (zh) * 2013-11-25 2016-06-29 住友橡胶工业株式会社 充气轮胎
US10189987B2 (en) 2013-11-25 2019-01-29 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Also Published As

Publication number Publication date
EP2679628B1 (en) 2016-03-02
US20130303679A1 (en) 2013-11-14
US9012560B2 (en) 2015-04-21
EP2679628A4 (en) 2014-06-25
EP2679628A1 (en) 2014-01-01
CN103443191B (zh) 2015-09-02
CN103443191A (zh) 2013-12-11
BR112013024425A2 (pt) 2016-12-20

Similar Documents

Publication Publication Date Title
JP5249404B2 (ja) ゴム組成物及び空気入りタイヤ
EP2679629B1 (en) Rubber composition and pneumatic tire
US9012560B2 (en) Rubber composition and pneumatic tire
WO2012144488A1 (ja) ゴム組成物及び空気入りタイヤ
US10189987B2 (en) Pneumatic tire
WO2012144577A1 (ja) ゴム組成物及び空気入りタイヤ
EP2671916B1 (en) Rubber composition and pneumatic tire
JP5628735B2 (ja) ゴム組成物及び空気入りタイヤ
JP2013204003A (ja) ベーストレッド用ゴム組成物及び空気入りタイヤ
WO2012147830A1 (ja) ゴム組成物及び空気入りタイヤ
JP6041552B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5628758B2 (ja) ゴム組成物及び空気入りタイヤ
JP5628744B2 (ja) ゴム組成物及び空気入りタイヤ
JP5623946B2 (ja) ゴム組成物及び空気入りタイヤ
WO2012144576A1 (ja) ゴム組成物及び空気入りタイヤ
JP5977087B2 (ja) トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
JP2014019725A (ja) タイヤサイド部補強用ゴム組成物及びランフラットタイヤ
JP5866244B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5890260B2 (ja) トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
JP5922472B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP5952083B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5933310B2 (ja) トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
WO2012144575A1 (ja) ゴム組成物及び空気入りタイヤ
JP2014001304A (ja) タイヤサイド部補強用ゴム組成物及びランフラットタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005105

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012760492

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024425

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024425

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130923