WO2012128320A1 - ゴム組成物及び空気入りタイヤ - Google Patents

ゴム組成物及び空気入りタイヤ Download PDF

Info

Publication number
WO2012128320A1
WO2012128320A1 PCT/JP2012/057344 JP2012057344W WO2012128320A1 WO 2012128320 A1 WO2012128320 A1 WO 2012128320A1 JP 2012057344 W JP2012057344 W JP 2012057344W WO 2012128320 A1 WO2012128320 A1 WO 2012128320A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
atom
formula
Prior art date
Application number
PCT/JP2012/057344
Other languages
English (en)
French (fr)
Inventor
鉄也 國澤
剛史 土田
上坂 憲市
津森 勇
鈴可 大竹
岡部 昇
大村 直也
健宏 田中
隆文 田口
顕哉 渡邊
融 飯塚
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011064575A external-priority patent/JP5623946B2/ja
Priority claimed from JP2011064576A external-priority patent/JP5623947B2/ja
Priority claimed from JP2011096563A external-priority patent/JP5628735B2/ja
Priority claimed from JP2011118354A external-priority patent/JP5628744B2/ja
Priority claimed from JP2011150305A external-priority patent/JP5628758B2/ja
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201280015296.3A priority Critical patent/CN103443191B/zh
Priority to EP12760492.4A priority patent/EP2679628B1/en
Priority to BR112013024425A priority patent/BR112013024425A2/pt
Priority to US13/980,594 priority patent/US9012560B2/en
Publication of WO2012128320A1 publication Critical patent/WO2012128320A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

本発明は、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く改善できるゴム組成物、及びこれを用いた空気入りタイヤを提供する。 本発明は、ゴム成分、シリカ及びシランカップリング剤を含有し、上記ゴム成分100質量%のうち、共役ジエンに基づく構成単位と下式(I)で表される構成単位とを有し、特定の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体の含有量が5質量%以上であり、上記ゴム成分100質量部に対する上記シリカの含有量が5~150質量部であり、上記シランカップリング剤がメルカプト基を有するゴム組成物に関する。

Description

ゴム組成物及び空気入りタイヤ
本発明は、ゴム組成物及びそれを用いて作製した空気入りタイヤに関するものである。
近年、環境問題への関心の高まりから、自動車に対して低燃費化の要求が強くなっており、自動車用タイヤに用いるゴム組成物に対しても、低燃費性に優れることが求められている。自動車タイヤ用のゴム組成物としては、ポリブタジエンやブタジエン-スチレン共重合体などの共役ジエン系重合体と、カーボンブラックやシリカなどの充填剤とを含有するゴム組成物等が用いられている。
低燃費性を改善する方法として、例えば、特許文献1では、アミノ基及びアルコキシ基を含有する有機ケイ素化合物で変性されたジエン系ゴムを用いる方法が提案されている。しかし、近年では、低燃費性の更なる改善が求められている。また、自動車タイヤ用のゴム組成物に要求される性能としては、ウェットグリップ性能や耐摩耗性もあげられるが、これらの性能は一般的に低燃費性と背反する関係にあり、それぞれの性能を高次元でバランス良く得ることは困難であった。
また、低燃費化の要求から、トレッドだけでなく様々な部材でシリカ配合ゴム組成物が使われる様になってきている。ところが、シリカは表面に親水性シラノール基が存在するため、カーボンブラックに比べゴム(特に、タイヤ用でよく使われる天然ゴム、ブタジエンゴム、スチレンブタジエンゴム等)との親和性が低く、耐摩耗性や力学強度(引張強度や破断伸び)の点で劣る場合が多い。
このような点を改善するため、シランカップリング剤を用いる方法や、微粒子シリカなどの補強性の高いシリカを用いる方法がある。
しかし、補強性の高いシリカは、一般的にゴム組成物中での分散性が低いため、耐摩耗性や力学強度をそれ程改善できない場合や、これらの特性を悪化させてしまう場合がある。
また、従来のタイヤ用ゴム組成物で汎用されている、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィドといったシランカップリング剤は、シリカの分散性を大きく改善し、良好な力学特性を与える。しかしながら、補強性の高いシリカを良好に分散させるには、多量のシランカップリング剤が必要であるため、コストが大きく上昇してしまう上、充分に添加しても良好な分散を得ることが出来ない場合もある。
従来用いられている上記カップリング剤より反応性の高いカップリング剤として、メルカプト基を有するシランカップリング剤が提案されている(例えば、特許文献2参照)。かかるシランカップリング剤は、反応性が高いため高性能であるが、スコーチタイムがかなり短くなるため、タイヤ工業において実用化するのは難しく、ほとんど使用されていないのが現状である。
また、特許文献3には、シリカを配合し、転がり抵抗、耐摩耗性を悪化させることなく、ウェットグリップ性能を向上できるタイヤ用ゴム組成物が開示されているが、これらの性能をバランスよく改善する点については、未だ改善の余地がある。
特開2000-344955号公報 特開2009-126907号公報 特開2008-31244号公報
本発明は、前記課題を解決し、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く改善できるゴム組成物、及びこれを用いた空気入りタイヤを提供することを目的とする。
本発明は、ゴム成分、シリカ及びシランカップリング剤を含有し、上記ゴム成分100質量%のうち、共役ジエンに基づく構成単位と下式(I)で表される構成単位とを有し、下式(II)で表される化合物、下式(III)で表される基を有する化合物、下式(IV)で表される化合物、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物、並びに下式(VII)で表される基を有する化合物からなる群より選択される少なくとも1種の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体の含有量が5質量%以上であり、上記ゴム成分100質量部に対する上記シリカの含有量が5~150質量部であり、上記シランカップリング剤がメルカプト基を有するゴム組成物に関する。
Figure JPOXMLDOC01-appb-C000023
[式中、X、X及びXは、それぞれ独立に、下式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(Ia)で表される基又は水酸基である。]
Figure JPOXMLDOC01-appb-C000024
[式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000025
[式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000026
[式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000027
[式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
式(Ia)のR及びRが炭素原子数1~6のヒドロカルビル基であることが好ましい。
式(I)のX、X及びXの2つが式(Ia)で表される基又は水酸基であることが好ましい。
式(II)のAが下式(IIa)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
[式中、R14及びR15は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R14及びR15は結合して窒素原子と共に環構造を形成していてもよく、R14及びR15は窒素に二重結合で結合する同一の基であってもよい。]
式(III)で表される基が、下式(IIIa)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
式(III)で表される基を有する化合物が、下式(IIIa-1)で表される化合物、下式(IIIa-2)で表される化合物及び下式(IIIa-3)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
[式中、R31は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R32及びR33は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R32及びR33は結合して窒素原子と共に環構造を形成していてもよく、R32及びR33は窒素に二重結合で結合する同一の基であってもよい。]
Figure JPOXMLDOC01-appb-C000033
[式中、eは0~10の整数を表し、R34及びR35は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
Figure JPOXMLDOC01-appb-C000034
[式中、fは0~10の整数を表し、R36は、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
式(III)で表される基を有する化合物が、下式(IIIb-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
[式中、R37は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R38及びR39は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R38及びR39は結合して窒素原子と共に環構造を形成していてもよく、R38及びR39は窒素に二重結合で結合する同一の基であってもよく、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
式(IIIb-1)で表される化合物が、下式(IIIb-1-1)で表される化合物及び下式(IIIb-1-2)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
[式中、rは1又は2の整数を表し、Yはベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000037
[式中、sは1又は2の整数を表し、tは0~2の整数を表し、Y及びYは、ベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよく、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
式(IV)のAが、下式(IVa)で表される基又は水酸基であることが好ましい。
Figure JPOXMLDOC01-appb-C000038
[式中、R23及びR24は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R23及びR24は結合して窒素原子と共に環構造を形成していてもよく、R23及びR24は窒素に二重結合で結合する同一の基であってもよい。]
ケイ素化合物が下式(VIII)で表される基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000039
[式中、R41、R42及びR43は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R41、R42及びR43の少なくとも1つがヒドロカルビルオキシ基である。]
ケイ素化合物が下式(Va)で表される基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000040
[式中、hは1~10の整数を表し、R44、R45及びR46は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R44、R45及びR46の少なくとも1つがヒドロカルビルオキシ基である。]
式(VII)で表される基を有する化合物が下式(VII-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000041
[式中、zは0~10の整数を表し、R71は炭素原子数が1~5のヒドロカルビル基を表し、R72、R73、R74及びR75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよく、R76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。]
式(VII-1)のR74及びR75の一方が水素原子であることが好ましい。
共役ジエン系重合体のビニル結合量が、共役ジエンに基づく構成単位の含有量を100モル%として、10モル%以上80モル%以下であることが好ましい。
上記ゴム組成物は、天然ゴム及び/又はブタジエンゴムを含有することが好ましい。
シリカの窒素吸着比表面積が40~400m/gであることが好ましい。
シランカップリング剤が、下式(1)で表される化合物、及び/又は下式(2)で示される結合単位Aと下式(3)で示される結合単位Bとを含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
[式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(b個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。bは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。]
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044

[式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。]
上記ゴム組成物は、トレッド用ゴム組成物として用いられることが好ましい。
本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。
本発明によれば、特定の共役ジエン系重合体と、シリカと、メルカプト基を有するシランカップリング剤(メルカプト系シランカップリング剤)とを配合したゴム組成物であるので、低燃費性、ウェットグリップ性能及び耐摩耗性がバランス良く改善された空気入りタイヤを提供できる。
本発明のゴム組成物は、共役ジエンに基づく構成単位及び下式(I)で表される構成単位を有し、下式(II)で表される化合物、下式(III)で表される基を有する化合物、下式(IV)で表される化合物、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物、並びに下式(VII)で表される基を有する化合物からなる群より選択される少なくとも1種の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体と、シリカと、メルカプト系シランカップリング剤とを含む。
Figure JPOXMLDOC01-appb-C000045
[式中、X、X及びXは、それぞれ独立に、下式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(Ia)で表される基又は水酸基である。]
Figure JPOXMLDOC01-appb-C000046
[式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000047
[式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000048
[式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000049
[式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
[式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
共役ジエンに基づく構成単位の共役ジエンとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエンなどをあげることができ、これらは1種でもよく、2種以上でもよい。入手容易性の観点から、1,3-ブタジエン、イソプレンが好ましい。
式(I)で表される構成単位の式(I)のX、X及びXは、それぞれ独立に、式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つは、式(Ia)で表される基又は水酸基である。
式(Ia)のR及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。
本明細書では、ヒドロカルビル基は1価の炭化水素残基を表す。ここで、炭化水素残基とは、炭化水素から水素を除いた基を表す。置換ヒドロカルビル基は、1価の炭化水素残基の1つ以上の水素原子が置換基で置換されている基を表す。ヒドロカルビルオキシ基は、ヒドロキシル基の水素原子がヒドロカルビル基で置換されている基を表し、置換ヒドロカルビルオキシ基は、ヒドロカルビルオキシ基の1つ以上の水素原子が置換基で置換されている基を表す。ヒドロカルビレン基は、2価の炭化水素残基を表す。置換ヒドロカルビレン基は、2価の炭化水素残基の1つ以上の水素原子が置換基で置換されている基を表す。また、置換シリル基は、シリル基の1つ以上の水素原子が置換基で置換されている基を表す。
及びRの炭素原子数が1~6のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
及びRの炭素原子数が1~6の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
及びRの置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基などをあげることができる。
及びRが結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
及びRが結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
及びRのヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基が更に好ましく、エチル基、n-ブチル基が特に好ましい。R及びRの置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。R及びRの置換シリル基としては、トリアルキルシリル基が好ましく、トリメチルシリル基がより好ましい。
及びRとしては、好ましくは、アルキル基、アルコキシアルキル基、置換シリル基又はR及びRが結合した含窒素基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(Ia)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(Ia)で表される基としては、経済性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基であり、更に好ましくは、炭素原子数が1~4のアルキル基で置換されたジアルキルアミノ基であり、より更に好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(n-ブチル)アミノ基である。
式(I)のX~Xのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基をあげることができる。また、置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
~Xのヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基又はエチル基が更に好ましい。また、X~Xの置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。
~Xのヒドロカルビル基及び置換ヒドロカルビル基としては、好ましくは、アルキル基又はアルコキシアルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基又は炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基又はエチル基である。
式(I)のX、X及びXの少なくとも1つは、式(Ia)で表される基又は水酸基である。好ましくは、X、X及びXの2つ以上が、式(Ia)で表される基又は水酸基であり、より好ましくは、X、X及びXの2つが、式(Ia)で表される基又は水酸基である。また、低燃費性、ウェットグリップ性能及び耐摩耗性を高次元でバランス良く得られるという点から、X、X及びXの少なくとも1つが水酸基であることが好ましく、X、X及びXの2つ以上が水酸基であることがより好ましく、X、X及びXの2つが水酸基であることが更に好ましい。
低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、式(I)で表される構成単位としては、X、X及びXの2つが非環状アミノ基又は水酸基である構成単位が好ましい。X、X及びXの2つが非環状アミノ基である構成単位としては、ビス(ジアルキルアミノ)アルキルビニルシラン単位が好ましく、ビス(ジメチルアミノ)メチルビニルシラン単位、ビス(ジエチルアミノ)メチルビニルシラン単位、ビス(ジ(n-プロピル)アミノ)メチルビニルシラン単位、ビス(ジ(n-ブチル)アミノ)メチルビニルシラン単位がより好ましい。X、X及びXの2つが水酸基である構成単位としては、ジヒドロキシアルキルビニルシラン単位が好ましく、ジヒドロキシメチルビニルシラン単位がより好ましい。
共役ジエン系重合体中の式(I)で表される構成単位の含有量は、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、重合体単位質量あたり、好ましくは、0.001mmol/g重合体以上0.1mmol/g重合体以下である。より好ましくは、0.002mmol/g重合体以上0.07mmol/g重合体以下である。更に好ましくは、0.003mmol/g重合体以上0.05mmol/g重合体以下である。
上記共役ジエン系重合体は、特定の化合物(変性剤1~5)によって重合体の少なくとも一端が変性されている。これにより、シリカとの相互作用が生じ、低燃費性、ウェットグリップ性能及び耐摩耗性をバランスよく改善できる。
以下、下式(II)で表される化合物(変性剤1)について説明する。
Figure JPOXMLDOC01-appb-C000052
[式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
式(II)のR11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基である。
11、R12及びR13のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R11、R12及びR13のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
11、R12及びR13のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R11、R12及びR13のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
11、R12及びR13としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R11、R12及びR13の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R11、R12及びR13の3つがヒドロカルビルオキシ基である。
式(II)のnは1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは3以上であり、経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(II)のAは窒素原子を有する官能基であり、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、モルホリノ基などをあげることができる。
としては、下式(IIa)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000053
[式中、R14及びR15は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R14及びR15は結合して窒素原子と共に環構造を形成していてもよく、R14及びR15は窒素に二重結合で結合する同一の基であってもよい。]
式(IIa)のR14及びR15としては、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、置換シリル基などをあげることができる。
14及びR15のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
14及びR15の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。また、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
14及びR15の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基;トリメトキシシリル基などのトリアルコキシシリル基などをあげることができる。
14及びR15が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
14及びR15が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
14及びR15の窒素に二重結合で結合する同一の基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
14及びR15のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。R14及びR15の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基である。R14及びR15の置換シリル基としては、好ましくは、トリアルキルシリル基、トリアルコキシシリル基であり、より好ましくは、トリアルキルシリル基であり、更に好ましくは、トリメチルシリル基、トリエチルシリル基である。
14及びR15としては、好ましくは、R14及びR15が結合した含窒素基、アルキル基、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、置換シリル基であり、より好ましくは、アルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、トリアルキルシリル基である。
式(IIa)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。また、ジ(エポキシ)アミノ基、ジ(テトラヒドロフラニル)アミノ基などのジ(アルキレンオキシド)アミノ基;ジ(グリシジル)アミノ基、ジ(テトラヒドロフルフリル)アミノ基などのジ(アルキレンオキシドアルキル)アミノ基をあげることができる。更には、エチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基などもあげることができる。
なお、本明細書において、ジ(アルキレンオキシド)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシド基に置換されたアミノ基を表し、ジ(アルキレンオキシドアルキル)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシドアルキル基に置換されたアミノ基を表す。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(IIa)で表される基としては、低燃費性、ウェットグリップ性能、耐摩耗性、化合物の長期安定性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基、ジ(アルキレンオキシド)アミノ基、ジ(アルキレンオキシドアルキル)アミノ基、ジ(トリアルキルシリル)アミノ基である。
式(II)で表される化合物としては、式(IIa)が、ジアルキルアミノ基、ジ(アルコキシアルキル)アミノ基、ジ(アルキレンオキシド)アミノ基、ジ(アルキレンオキシドアルキル)アミノ基、トリアルキルシリル基などの非環状アミノ基である化合物をあげることができる。
式(IIa)がジアルキルアミノ基である化合物としては、
[3-(ジメチルアミノ)プロピル]トリメトキシシラン、
[3-(ジエチルアミノ)プロピル]トリメトキシシラン、
[3-(エチルメチルアミノ)プロピル]トリメトキシシラン、
[3-(ジメチルアミノ)プロピル]トリエトキシシラン、
[3-(ジエチルアミノ)プロピル]トリエトキシシラン、
[3-(エチルメチルアミノ)プロピル]トリエトキシシランなどの
[3-(ジアルキルアミノ)プロピル]トリアルコキシシラン;
[3-(ジメチルアミノ)プロピル]メチルジメトキシシラン、
[3-(ジエチルアミノ)プロピル]メチルジメトキシシラン、
[3-(エチルメチルアミノ)プロピル]メチルジメトキシシラン、
[3-(ジメチルアミノ)プロピル]エチルジメトキシシラン、
[3-(ジエチルアミノ)プロピル]エチルジメトキシシラン、
[3-(エチルメチルアミノ)プロピル]エチルジメトキシシラン、
[3-(ジメチルアミノ)プロピル]メチルジエトキシシラン、
[3-(ジエチルアミノ)プロピル]メチルジエトキシシラン、
[3-(エチルメチルアミノ)プロピル]メチルジエトキシシラン、
[3-(ジメチルアミノ)プロピル]エチルジエトキシシラン、
[3-(ジエチルアミノ)プロピル]エチルジエトキシシラン、
[3-(エチルメチルアミノ)プロピル]エチルジエトキシシランなどの
[3-(ジアルキルアミノ)プロピル]アルキルジアルコキシシラン;
[3-(ジメチルアミノ)プロピル]ジメチルメトキシシラン、
[3-(ジエチルアミノ)プロピル]ジメチルメトキシシラン、
[3-(ジメチルアミノ)プロピル]ジエチルメトキシシラン、
[3-(ジエチルアミノ)プロピル]ジエチルメトキシシラン、
[3-(ジメチルアミノ)プロピル]ジメチルエトキシシラン、
[3-(ジエチルアミノ)プロピル]ジメチルエトキシシラン、
[3-(ジメチルアミノ)プロピル]ジエチルエトキシシラン、
[3-(ジエチルアミノ)プロピル]ジエチルエトキシシランなどの
[3-(ジアルキルアミノ)プロピル]ジアルキルアルコキシシランをあげることができる。
式(IIa)がジ(アルコキシアルキル)アミノ基である化合物としては、
{3-[ジ(メトキシメチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}トリエトキシシランなどの
{3-[ジ(アルコキシアルキル)アミノ]プロピル}トリアルコキシシラン;
{3-[ジ(メトキシメチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}エチルジエトキシシランなどの
{3-[ジ(アルコキシアルキル)アミノ]プロピル}アルキルジアルコキシシラン;
{3-[ジ(メトキシメチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(メトキシメチル)アミノ]プロピル}ジエチルエトキシシラン、
{3-[ジ(エトキシメチル)アミノ]プロピル}ジエチルエトキシシラン、
{3-[ジ(メトキシエチル)アミノ]プロピル}ジエチルエトキシシラン、
{3-[ジ(エトキシエチル)アミノ]プロピル}ジエチルエトキシシランなどの
{3-[ジ(アルコキシアルキル)アミノ]プロピル}ジアルキルアルコキシシランをあげることができる。
式(IIa)がジ(アルキレンオキシド)アミノ基である化合物としては、
{3-[ジ(エポキシ)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(エポキシ)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(エポキシ)アミノ基である化合物;
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(テトラヒドロフラニル)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(テトラヒドロフラニル)アミノ基である化合物をあげることができる。
式(IIa)がジ(アルキレンオキシドアルキル)アミノ基である化合物としては、
{3-[ジ(グリシジル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(グリシジル)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(グリシジル)アミノ基である化合物;
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}エチルジメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}エチルジエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジエチルメトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(テトラヒドロフルフリル)アミノ]プロピル}ジエチルエトキシシランなどの
式(IIa)がジ(テトラヒドロフルフリル)アミノ基である化合物をあげることができる。
式(IIa)がトリアルキルシリル基である化合物としては、
{3-[ジ(トリメチルシリル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}トリメトキシシラン、
{3-[ジ(トリメチルシリル)アミノ]プロピル}トリエトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}トリエトキシシランなどの
{3-[ジ(トリアルキルシリル)アミノ]プロピル}トリアルコキシシラン;
{3-[ジ(トリメチルシリル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}メチルジメトキシシラン、
{3-[ジ(トリメチルシリル)アミノ]プロピル}メチルジエトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}メチルジエトキシシランなどの
{3-[ジ(トリアルキルシリル)アミノ]プロピル}アルキルジアルコキシシラン;
{3-[ジ(トリメチルシリル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}ジメチルメトキシシラン、
{3-[ジ(トリメチルシリル)アミノ]プロピル}ジメチルエトキシシラン、
{3-[ジ(t-ブチルジメチルシリル)アミノ]プロピル}ジメチルエトキシシランなどの
{3-[ジ(トリアルキルシリル)アミノ]プロピル}ジアルキルアルコキシシランをあげることができる。
これらの中では、[3-(ジアルキルアミノ)プロピル]トリアルコキシシランが好ましく、
[3-(ジメチルアミノ)プロピル]トリメトキシシラン、
[3-(ジエチルアミノ)プロピル]トリメトキシシラン、
[3-(ジメチルアミノ)プロピル]トリエトキシシラン、
[3-(ジエチルアミノ)プロピル]トリエトキシシラン
がより好ましい。
また、式(II)で表される化合物としては、式(IIa)が、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-ピペラジニル基、モルホリノ基などの環状アミノ基である化合物をあげることができる。
式(IIa)が1-ピペリジノ基である化合物としては、
3-(1-ピペリジノ)プロピルトリメトキシシラン、
3-(1-ピペリジノ)プロピルトリエトキシシラン、
3-(1-ピペリジノ)プロピルメチルジメトキシシラン、
3-(1-ピペリジノ)プロピルエチルジメトキシシラン、
3-(1-ピペリジノ)プロピルメチルジエトキシシラン、
3-(1-ピペリジノ)プロピルエチルジエトキシシランなどをあげることができる。
式(IIa)が1-ヘキサメチレンイミノ基である化合物としては、
3-(1-ヘキサメチレンイミノ)プロピルトリメトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルトリエトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルメチルジメトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルエチルジメトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルメチルジエトキシシラン、
3-(1-ヘキサメチレンイミノ)プロピルエチルジエトキシシランなどをあげることができる。
式(IIa)が1-イミダゾリル基である化合物としては、
N-(3-トリメトキシシリルプロピル)イミダゾール、
N-(3-トリエトキシシリルプロピル)イミダゾールなどをあげることができる。
式(IIa)が4,5-ジヒドロ-1-イミダゾリル基である化合物としては、
N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、
N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾールなどをあげることができる。
式(IIa)が1-ピペラジニル基である化合物としては、
3-(1-ピペラジニル)プロピルトリメトキシシラン、
3-(1-ピペラジニル)プロピルトリエトキシシラン、
3-(1-ピペラジニル)プロピルメチルジメトキシシラン、
3-(1-ピペラジニル)プロピルエチルジメトキシシラン、
3-(1-ピペラジニル)プロピルメチルジエトキシシラン、
3-(1-ピペラジニル)プロピルエチルジエトキシシランなどをあげることができる。
式(IIa)がモルホリノ基である化合物としては、
3-モルホリノプロピルトリメトキシシラン、
3-モルホリノプロピルトリエトキシシラン、
3-モルホリノプロピルメチルジメトキシシラン、
3-モルホリノプロピルエチルジメトキシシラン、
3-モルホリノプロピルメチルジエトキシシラン、
3-モルホリノプロピルエチルジエトキシシランなどをあげることができる。
これらの中では、式(IIa)が1-イミダゾリル基である化合物、式(IIa)が4,5-ジヒドロ-1-イミダゾリル基である化合物が好ましく、
N-(3-トリメトキシシリルプロピル)イミダゾール、
N-(3-トリエトキシシリルプロピル)イミダゾール、
N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、
N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール
がより好ましい。
以下、下式(III)で表される基を有する化合物(変性剤2)について説明する。
Figure JPOXMLDOC01-appb-C000054
[式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
pは0又は1の整数を表す。Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。Aは窒素原子を有する官能基を表し、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、モルホリノ基などをあげることができる。
式(III)で表される基を有する化合物としては、式(III)のpが0であり、Aがアミノ基である下式(IIIa)で表される基を有する化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000055
式(IIIa)で表される基を有する化合物としては、ホルムアミド、アセトアミド、プロピオンアミドなどのカルボン酸アミド化合物をあげることができる。また、イミダゾリジノン及びその誘導体、ラクタム類などの環状化合物をあげることができる。
式(IIIa)で表される基を有する化合物としては、下式(IIIa-1)で表されるカルボン酸アミド化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000056
[式中、R31は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R32及びR33は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R32及びR33は結合して窒素原子と共に環構造を形成していてもよく、R32及びR33は窒素に二重結合で結合する同一の基であってもよい。]
31のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
31の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
31の窒素原子及び/又は酸素原子をヘテロ原子として有するヘテロ環基とは、窒素原子及び/又は酸素原子を環内に含む複素環式化合物残基を表し、該基としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フリル基などをあげることができる。
31としては、好ましくは、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(IIIa-1)のR32及びR33としては、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基などをあげることができる。R32及びR33のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
32及びR33の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
32及びR33が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~20の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
32及びR33の窒素に二重結合で結合する同一の基としては、窒素原子及び酸素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
32及びR33としては、好ましくは、ヒドロカルビル基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(IIIa-1)で表されるカルボン酸アミド化合物としては、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド化合物;
アセトアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、アミノアセトアミド、N,N-ジメチル-N’,N’-ジメチルアミノアセトアミド、N,N-ジメチルアミノアセトアミド、N-エチルアミノアセトアミド、N,N-ジメチル-N’-エチルアミノアセトアミド、N,N-ジメチルアミノアセトアミド、N-フェニルジアセトアミドなどのアセトアミド化合物;
プロピオンアミド、N,N-ジメチルプロピオンアミドなどのプロピオンアミド化合物;
4-ピリジルアミド、N,N-ジメチル-4-ピリジルアミドなどのピリジルアミド化合物;
ベンズアミド、N,N-ジメチルベンズアミド、N’,N’-(p-ジメチルアミノ)ベンズアミド、N’,N’-(p-ジエチルアミノ)ベンズアミド、N,N-ジメチル-N’,N’-(p-ジメチルアミノ)ベンズアミド、N,N-ジメチル-N’,N’-(p-ジエチルアミノ)ベンズアミドなどのベンズアミド化合物;
N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのアクリルアミド化合物;
N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミドなどのメタクリルアミド化合物;
N,N-ジメチルニコチンアミド、N,N-ジエチルニコチンアミドなどのニコチンアミド化合物;
N,N,N’,N’-テトラメチルフタルアミド、N,N,N’,N’-テトラエチルフタルアミドなどのフタルアミド化合物;
N-メチルフタルイミド、N-エチルフタルイミドなどのフタルイミド化合物などをあげることができる。
また、式(IIIa)で表される基を有する環状化合物としては、下式(IIIa-2)又は下式(IIIa-3)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000057
[式中、eは0~10の整数を表し、R34及びR35は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
Figure JPOXMLDOC01-appb-C000058
[式中、fは0~10の整数を表し、R36は、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
式(IIIa-2)及び式(IIIa-3)のR34、R35及びR36は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。R34、R35及びR36のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
34、R35及びR36の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;メトキシフェニル基、エトキシフェニル基などのアルコキシアリール基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基、t-ブチルジメチルシリロキシメチル基、トリメトキシシリルプロピル基などをあげることができる。
式(IIIa-2)のR34及びR35としては、好ましくはヒドロカルビル基であり、より好ましくはアルキル基であり、更に好ましくはメチル基である。
式(IIIa-3)のR36としては、好ましくはヒドロカルビル基であり、より好ましくはアルキル基、アリール基であり、更に好ましくはメチル基、フェニル基である。
式(IIIa-2)及び式(IIIa-3)のe及びfは、それぞれ0~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは7以下である。
式(IIIa-2)で表される化合物としては、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノン、1,3-ジ(t-ブチル)-2-イミダゾリジノン、1,3-ジフェニル-2-イミダゾリジノンなどの1,3-ヒドロカルビル置換-2-イミダゾリジノンをあげることができる。好ましくは、1,3-置換-2-イミダゾリジノンであり、より好ましくは、1,3-ヒドロカルビル置換-2-イミダゾリジノンであり、更に好ましくは、1,3-ジアルキル-2-イミダゾリジノンである。1,3-ジアルキル-2-イミダゾリジノンとしては、好ましくは、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノンであり、より好ましくは、1,3-ジメチル-2-イミダゾリジノンである。
式(IIIa-3)で表される化合物としては、N-メチル-β-プロピオラクタム、N-(t-ブチル)-β-プロピオラクタム、N-フェニル-β-プロピオラクタムなどのβ-プロピオラクタム化合物;
1-メチル-2-ピロリドン、1-(t-ブチル)-2-ピロリドン、1-フェニル-2-ピロリドン、1-(p-メチルフェニル)-2-ピロリドン、1-(p-メトキシフェニル)-2-ピロリドン、1-ベンジル-2-ピロリドン、1-ナフチル-2-ピロリドン、1-フェニル-5-メチル-2-ピロリドン、1-(t-ブチル)-5-メチル-2-ピロリドン、1-(t-ブチル)-1,3-ジメチル-2-ピロリドンなどの2-ピロリドン化合物;
1-(t-ブチル)-2-ピペリドン、1-フェニル-2-ピペリドン、1-(p-メチルフェニル)-2-ピペリドン、1-(p-メトキシフェニル)-2-ピペリドン、1-ナフチル-2-ピペリドンなどの2-ピペリドン化合物;
N-メチル-ε-カプロラクタム、N-エチル-ε-カプロラクタム、N-(n-プロピル)-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-(p-メトキシフェニル)-ε-カプロラクタム、N-ベンジル-ε-カプロラクタムなどのε-カプロラクタム化合物;
N-フェニル-ω-ラウリロラクタムなどのω-ラウリロラクタム化合物をあげることができる。
式(IIIa-3)で表される化合物としては、好ましくは、2-ピロリドン化合物、ε-カプロラクタム化合物であり、より好ましくは、1-ヒドロカルビル置換-2-ピロリドン、N-ヒドロカルビル置換-ε-カプロラクタムであり、更に好ましくは、1-アルキル置換-2-ピロリドン、1-アリール置換-2-ピロリドン、N-アルキル置換-ε-カプロラクタム、N-アリール置換-ε-カプロラクタムであり、特に好ましくは、1-フェニル-2-ピロリドン、N-メチル-ε-カプロラクタムである。
式(III)で表される基を有する化合物としては、式(III)のpが1であり、Aがアミノ基である下式(IIIb)で表される基を有する化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000059
[式中、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
式(IIIb)で表される基を有する化合物としては、ベンズアルデヒド化合物、アセトフェノン化合物、ベンゾフェノン化合物をあげることができる。
式(IIIb)で表される基を有する化合物としては、下式(IIIb-1)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000060
[式中、R37は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R38及びR39は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R38及びR39は結合して窒素原子と共に環構造を形成していてもよく、R38及びR39は窒素に二重結合で結合する同一の基であってもよく、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
37のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
37の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
37の窒素原子及び/又は酸素原子をヘテロ原子として有するヘテロ環基とは、窒素原子及び/又は酸素原子を環内に含む複素環式化合物残基を表し、該基としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フリル基などをあげることができる。
37としては、好ましくは、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基である。炭素原子数が1~10のヒドロカルビル基としては、好ましくは、炭素原子数が1~4のアルキル基及びフェニル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、フェニル基である。また、炭素原子数が1~10の置換ヒドロカルビル基としては、好ましくは、窒素原子を有する基を置換基として有するアリール基であり、より好ましくは、ジアルキルアミノフェニル基、4-モルホリノフェニル基である。
式(IIIb-1)のR38及びR39としては、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基などをあげることができる。
38及びR39のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
38及びR39の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
38及びR39が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~20の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
38及びR39の窒素に二重結合で結合する同一の基としては、窒素原子及び酸素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
38及びR39としては、好ましくは、ヒドロカルビル基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
Tのヒドロカルビレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;フェニレン基、メチルフェニレン基、エチルフェニルレン基、ナフチレン基などのアリレーン基をあげることができる。
Tの置換ヒドロカルビレン基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビレン基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチレン基、ジエチルアミノエチレン基などのジアルキルアミノアルキレン基;ジメチルアミノフェニレン基、ジエチルアミノフェニレン基などのジアルキルアミノアリレーン基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチレン基、メトキシエチレン基、エトキシメチレン基、エトキシエチレン基などのアルコキシアルキレン基をあげることができる。
Tとしては、好ましくは、ヒドロカルビレン基であり、より好ましくは、アリレーン基であり、更に好ましくは、フェニレン基である。
式(IIIb-1)で表される化合物としては、4-ジメチルアミノベンズアルデヒド、4-ジエチルアミノベンズアルデヒド、3,5-ビス(ジヘキシルアミノ)-ベンズアルデヒドなどのジアルキルアミノ置換ベンズアルデヒド化合物;4-ジメチルアミノアセトフェノン、4-ジエチルアミノアセトフェノンなどのジアルキルアミノ置換アセトフェノン化合物;4-モルホリノアセトフェノン、4’-イミダゾール-1-イル-アセトフェノン、4-ピラゾリルアセトフェノンなどのヘテロ環基置換アセトフェノン化合物;4,4’-ビス(ジメチルアミノ)-ベンゾフェノン、4,4’-ビス(ジエチルアミノ)-ベンゾフェノン、4-ジメチルアミノベンゾフェノン、4-ジエチルアミノベンゾフェノン、3-ジメチルアミノベンゾフェノン、3-ジエチルアミノベンゾフェノンなどのジアルキルアミノ置換ベンゾフェノン化合物;4-モルホリノベンゾフェノン、4’-(イミダゾール-1-イル)-ベンゾフェノン、4-ピラゾリルベンゾフェノンなどのヘテロ環基置換ベンゾフェノン化合物をあげることができる。
式(IIIb-1)で表される化合物としては、好ましくは、置換アセトフェノン化合物、置換ベンゾフェノン化合物であり、下式(IIIb-1-1)又は下式(IIIb-1-2)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000061
[式中、rは1又は2の整数を表し、Yはベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000062
[式中、sは1又は2の整数を表し、tは0~2の整数を表し、Y及びYは、ベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよく、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
式(IIIb-1-1)及び式(IIIb-1-2)のY、Y及びYは、窒素原子を有する官能基を表し、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、ピリミジニル基、ピロリル基、イミダゾリル基、ピラゾリル基、モルホリノ基などをあげることができる。好ましくは、ジアルキルアミノ基、イミダゾリル基、モルホリノ基である。また、ジアルキルアミノ基のアルキル基としては、炭素原子数1~10のアルキル基が好ましい。
式(IIIb-1)で表される化合物としては、より好ましくは、ヘテロ環基置換アセトフェノン化合物、ジアルキルアミノ置換ベンゾフェノン化合物、ヘテロ環基置換ベンゾフェノン化合物であり、特に好ましくは、4’-イミダゾール-1-イル-アセトフェノン、4-モルホリノアセトフェノン、4-ジメチルアミノベンゾフェノン、4-ジエチルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)-ベンゾフェノン、4,4’-ビス(ジエチルアミノ)-ベンゾフェノン、4-モルホリノベンゾフェノンである。
以下、下式(IV)で表される化合物(変性剤3)について説明する。
Figure JPOXMLDOC01-appb-C000063
[式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
gは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(IV)のR21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表す。
21のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基をあげることができる。
21の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基;t-ブチルジメチルシリロキシメチル基などのトリアルキルシリロキシアルキル基;トリメトキシシリルプロピル基などのトリアルコキシシリルアルキル基などをあげることができる。
21のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基であり、より更に好ましくは、メチル基である。また、R21の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基であり、より好ましくは、炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、メトキシメチル基、エトキシエチル基であり、より更に好ましくは、メトキシメチル基である。
21としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点及び経済性から、好ましくは、水素原子、アルキル基、アルコキシアルキル基であり、より好ましくは、水素原子、炭素原子数が1~4のアルキル基、炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、水素原子、メチル基、メトキシメチル基であり、より更に好ましくは水素原子、メチル基である。
式(IV)のAは、酸素原子又は-NR22-基を表し、R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。
22のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基;フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基をあげることができる。
22のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基である。
22としては、好ましくは、水素原子、アルキル基であり、より好ましくは、水素原子、炭素原子数が1~4のアルキル基であり、更に好ましくは、水素原子、メチル基、エチル基であり、より更に好ましくは、水素原子、メチル基である。
式(IV)のAは、窒素原子及び/又は酸素原子を有する官能基を表す。窒素原子を有する官能基としては、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピペラジニル基、モルホリノ基などをあげることができる。
酸素原子を有する官能基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブドキシ基、t-ブトキシ基などのアルコキシ基;メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;メトキシフェニル基、エトキシフェニル基などのアルコキシアリール基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基をあげることができる。また、トリメチルシリロキシ基、トリエチルシリロキシ基、t-ブチルジメチルシリロキシ基などのトリアルキルシリロキシ基をあげることができる。また、水酸基をあげることができる。
としては、下式(IVa)で表される基又は水酸基が好ましく、下式(IVa)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000064
[式中、R23及びR24は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R23及びR24は結合して窒素原子と共に環構造を形成していてもよく、R23及びR24は窒素に二重結合で結合する同一の基であってもよい。]
式(IVa)のR23及びR24としては、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、置換シリル基などをあげることができる。
23及びR24のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
23及びR24の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。また、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
23及びR24の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基;トリメトキシシリル基などのトリアルコキシシリル基などをあげることができる。
23及びR24が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
23及びR24が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
23及びR24の窒素に二重結合で結合する同一の基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
23及びR24のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。R23及びR24の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基である。R23及びR24の置換シリル基としては、好ましくは、トリアルキルシリル基、トリアルコキシシリル基であり、より好ましくは、トリアルキルシリル基であり、更に好ましくは、トリメチルシリル基、トリエチルシリル基である。
23及びR24としては、好ましくは、R23及びR24が結合した含窒素基、アルキル基、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、置換シリル基であり、より好ましくは、アルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基、トリアルキルシリル基である。
式(IVa)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。また、ジ(エポキシ)アミノ基、ジ(テトラヒドロフラニル)アミノ基などのジ(アルキレンオキシド)アミノ基;ジ(グリシジル)アミノ基、ジ(テトラヒドロフルフリル)アミノ基などのジ(アルキレンオキシドアルキル)アミノ基をあげることができる。更には、エチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基などもあげることができる。
なお、本明細書において、ジ(アルキレンオキシド)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシド基に置換されたアミノ基を表し、ジ(アルキレンオキシドアルキル)アミノ基は、窒素原子に結合している2つの水素原子が2つのアルキレンオキシドアルキル基に置換されたアミノ基を表す。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(IVa)で表される基としては、低燃費性、ウェットグリップ性能、耐摩耗性、化合物の長期安定性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基、ジ(アルキレンオキシド)アミノ基、ジ(アルキレンオキシドアルキル)アミノ基、ジ(トリアルキルシリル)アミノ基である。
式(IV)で表される化合物としては、Aが二級アミノ基である化合物として、アクリルアミド化合物、メタクリルアミド化合物などをあげることができる。
が窒素原子含有の基であるアクリルアミド化合物としては、
N-(2-ジメチルアミノエチル)アクリルアミド、
N-(2-ジエチルアミノエチル)アクリルアミド、
N-(3-ジメチルアミノプロピル)アクリルアミド、
N-(3-ジエチルアミノプロピル)アクリルアミド、
N-(4-ジメチルアミノブチル)アクリルアミド、
N-(4-ジエチルアミノブチル)アクリルアミド、
N-(3-モルホリノプロピル)アクリルアミド、
N-(3-シアノプロピル)アクリルアミドなどがあげられる。
が窒素原子含有の基であるメタクリルアミド化合物としては、
N-(2-ジメチルアミノエチル)メタクリルアミド、
N-(2-ジエチルアミノエチル)メタクリルアミド、
N-(3-ジメチルアミノプロピル)メタクリルアミド、
N-(3-ジエチルアミノプロピル)メタクリルアミド、
N-(4-ジメチルアミノブチル)メタクリルアミド、
N-(4-ジエチルアミノブチル)メタクリルアミド、
N-(3-モルホリノプロピル)メタクリルアミド、
N-(3-シアノプロピル)メタクリルアミドなどがあげられる。
が酸素原子含有の基であるアクリルアミド化合物としては、
N-(3-メトキシプロピル)アクリルアミド、
N-(3-エトキシプロピル)アクリルアミド、
N-(プロポキシメチル)アクリルアミド、
N-(ブトキシメチル)アクリルアミド、
N-グリシジルアクリルアミド、
N-テトラヒドロフルフリルアクリルアミドなどがあげられる。
が酸素原子含有の基であるメタクリルアミド化合物としては、
N-(3-メトキシプロピル)メタクリルアミド、
N-(3-エトキシプロピル)メタクリルアミド、
N-(プロポキシメチル)メタクリルアミド、
N-(ブトキシメチル)メタクリルアミド、
N-グリシジルメタクリルアミド、
N-テトラヒドロフルフリルメタクリルアミドなどがあげられる。
が窒素原子及び酸素原子含有の基であるアクリルアミド化合物としては、
N-(3-ジ(グリシジル)アミノプロピル)アクリルアミド、
N-(3-ジ(テトラヒヒドロフルフリル)アミノプロピル)アクリルアミド
などがあげられる。
が窒素原子及び酸素原子含有の基であるメタクリルアミド化合物としては、
N-(3-ジ(グリシジル)アミノプロピル)メタクリルアミド、
N-(3-ジ(テトラヒヒドロフルフリル)アミノプロピル)メタクリルアミド
などがあげられる。
また、式(IV)で表される化合物としては、Aが酸素原子である化合物として、アクリレート化合物、メタクリレート化合物などをあげることができる。
が窒素原子含有の基であるアクリレート化合物としては、
2-ジメチルアミノエチルアクリレート、
2-ジエチルアミノエチルアクリレート、
3-ジメチルアミノプロピルアクリレート、
3-ジエチルアミノプロピルアクリレート、
4-ジメチルアミノブチルアクリレート、
4-ジエチルアミノブチルアクリレートなどがあげられる。
が窒素原子含有の基であるメタクリレート化合物としては、
2-ジメチルアミノエチルメタクリレート、
2-ジエチルアミノエチルメタクリレート、
3-ジメチルアミノプロピルメタクリレート、
3-ジエチルアミノプロピルメタクリレート、
4-ジメチルアミノブチルメタクリレート、
4-ジエチルアミノブチルメタクリレートなどがあげられる。
が酸素原子含有の基であるアクリレート化合物としては、
2-エトキシエチルアクリレート、
2-プロポキシエチルアクリレート、
2-ブトキシエチルアクリレート、
3-メトキシプロピルアクリレート、
3-エトキシプロピルアクリレート、
グリシジルアクリレート、
テトラヒドロフルフリルアクリレートなどがあげられる。
が酸素原子含有の基であるメタクリレート化合物としては、
2-エトキシエチルメタクリレート、
2-プロポキシエチルメタクリレート、
2-ブトキシエチルメタクリレート、
3-メトキシプロピルメタクリレート、
3-エトキシプロピルメタクリレート、
グリシジルメタクリレート、
テトラヒドロフルフリルメタクリレートなどがあげられる。
が窒素原子及び酸素原子含有の基であるアクリレート化合物としては、
3-ジ(グリシジル)アミノプロピルアクリレート、
3-ジ(テトラヒドロフルフリル)アミノプロピルアクリレートなどがあげられる。
が窒素原子及び酸素原子含有の基であるメタクリレート化合物としては、3-ジ(グリシジル)アミノプロピルメタクリレート、3-ジ(テトラヒドロフルフリル)アミノプロピルメタクリレートなどがあげられる。
式(IV)で表される化合物としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、
好ましくは、Aが式(IVa)で表される基である化合物であり、
より好ましくは、Aがアミノ基であり、Aが式(IVa)で表される基である化合物であり、
更に好ましくは、Aが二級アミノ基(-NH-)であり、Aが式(IVa)で表される基である化合物である。
が二級アミノ基であり、Aが式(IVa)で表される基である化合物としては、
好ましくは、
N-(3-ジアルキルアミノプロピル)アクリルアミド、N-(3-ジアルキルアミノプロピル)メタクリルアミドであり、
より好ましくは、
N-(3-ジメチルアミノプロピル)アクリルアミド、
N-(3-ジエチルアミノプロピル)アクリルアミド、
N-(3-ジメチルアミノプロピル)メタクリルアミド、
N-(3-ジエチルアミノプロピル)メタクリルアミドである。
以下、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物(変性剤4)について説明する。
Figure JPOXMLDOC01-appb-C000065
式(V)で表される基を有する基としては、アミド基、カルボン酸エステル基、メタクリロイル基、アクリロイル基などがあげられる。また、式(VI)で表される基を有する基としては、オキシジメチレン基、オキシジエチレン基などのオキシジアルキレン基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基などがあげられる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。
ケイ素化合物としては、下式(VIII)で表される基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000066
 
[式中、R41、R42及びR43は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R41、R42及びR43の少なくとも1つがヒドロカルビルオキシ基である。]
式(VIII)において、R41、R42及びR43のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R41、R42及びR43のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
41、R42及びR43のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R41、R42及びR43のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
41、R42及びR43としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R41、R42及びR43の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R41、R42及びR43の3つがヒドロカルビルオキシ基である。
式(V)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、下式(Va)で表される基を有するケイ素化合物があげられる。
Figure JPOXMLDOC01-appb-C000067
[式中、hは1~10の整数を表し、R44、R45及びR46は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R44、R45及びR46の少なくとも1つがヒドロカルビルオキシ基である。]
hは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
44、R45及びR46について、例示される基及び好ましい基は、式(VIII)のR41、R42及びR43について上記した例示される基及び好ましい基と同じである。
式(Va)で表される基を有するケイ素化合物としては、下式(Va-1)又は下式(Va-2)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000068
[式中、iは1~10の整数を表し、R47、R48及びR49は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R47、R48及びR49の少なくとも1つがヒドロカルビルオキシ基であり、R50及びR51は、それぞれ独立に、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、炭素原子数が1~10のヒドロカルビルオキシ基又は炭素原子数が1~10の置換ヒドロカルビルオキシ基を表し、R50及びR51は結合していてもよい。]
Figure JPOXMLDOC01-appb-C000069
[式中、j、k及びlは、それぞれ独立に、1~10の整数を表し、R52~R60は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R52、R53及びR54の少なくとも1つがヒドロカルビルオキシ基であり、R55、R56及びR57の少なくとも1つがヒドロカルビルオキシ基であり、R58、R59及びR60の少なくとも1つがヒドロカルビルオキシ基である。]
式(Va-1)のiは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(Va-1)において、R47、R48及びR49のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R47、R48及びR49のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
47、R48及びR49のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R47、R48及びR49のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
47、R48及びR49としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R47、R48及びR49の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R47、R48及びR49の3つがヒドロカルビルオキシ基である。
50及びR51のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基をあげることができる。
50及びR51の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基、トリエチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
50及びR51のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。また、R50及びR51の置換ヒドロカルビルオキシ基としては、メトキシメトキシ基、メトキシエトキシ基、エトキシメトキシ基、エトキシエトキシ基などのアルコキシアルコキシ基をあげることができる。
50及びR51が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
50としては、好ましくは、アルキル基であり、より好ましくは、炭素数が1~4のアルキル基であり、更に好ましくは、メチル基及びエチル基である。
51としては、好ましくは、アルキル基であり、より好ましくは、炭素数が1~4のアルキル基であり、更に好ましくは、メチル基及びエチル基である。
式(Va-2)のj、k及びlは、それぞれ独立に、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(Va-2)において、R52~R60のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R52~R60のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
52~R60のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R52~R60のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
52、R53及びR54としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R52、R53及びR54の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R52、R53及びR54の3つがヒドロカルビルオキシ基である。R55、R56及びR57としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R55、R56及びR57の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R55、R56及びR57の3つがヒドロカルビルオキシ基である。また、R58、R59及びR60としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R58、R59及びR60の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R58、R59及びR60の3つがヒドロカルビルオキシ基である。
式(Va-1)で表される化合物としては、
N-メチル-N-(トリメトキシシリルメチル)-アセトアミド、
N-メチル-N-(トリエトキシシリルメチル)-アセトアミド、
N-メチル-N-(2-トリメトキシシリルエチル)-アセトアミド、
N-メチル-N-(2-トリエトキシシリルエチル)-アセトアミド、
N-メチル-N-(3-トリメトキシシリルプロピル)-アセトアミド、
N-メチル-N-(3-トリエトキシシリルプロピル)-アセトアミド
などのN-アルキル-N-トリアルコキシシリルアルキル-アセトアミド;
N-メチル-N-(トリメトキシシリルメチル)-プロピオンアミド、
N-メチル-N-(トリエトキシシリルメチル)-プロピオンアミド、
N-メチル-N-(2-トリメトキシシリルエチル)-プロピオンアミド、
N-メチル-N-(2-トリエトキシシリルエチル)-プロピオンアミド、
N-メチル-N-(3-トリメトキシシリルプロピル)-プロピオンアミド、
N-メチル-N-(3-トリエトキシシリルプロピル)-プロピオンアミド
などのN-アルキル-N-トリアルコキシシリルアルキル-プロピオンアミド等、
N-アルキル-N-トリアルコキシシリルアルキル置換カルボン酸アミドをあげることができる。
式(Va-1)で表される化合物として、好ましくは、
N-アルキル-N-トリアルコキシシリルアルキル置換カルボン酸アミドであり、
より好ましくは、
N-アルキル-N-トリアルコキシシリルアルキル-プロピオンアミドであり、
更に好ましくは、
N-メチル-N-(3-トリメトキシシリルプロピル)-プロピオンアミド、
N-メチル-N-(3-トリエトキシシリルプロピル)-プロピオンアミドである。
式(Va-2)で表される化合物としては、
1,3,5-トリス(トリメトキシシリルメチル)イソシアヌレート、
1,3,5-トリス(トリエトキシシリルメチル)イソシアヌレート、
1,3,5-トリス(トリメトキシシリルエチル)イソシアヌレート、
1,3,5-トリス(トリエトキシシリルエチル)イソシアヌレート、
1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、
1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌレート
などの1,3,5-トリス(トリアルコキシシリルアルキル)イソシアヌレートをあげることができる。
式(Va-2)で表される化合物として、好ましくは、
1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、
1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌレートである。
式(VI)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、下式(VIa)で表されるケイ素化合物があげられる。
Figure JPOXMLDOC01-appb-C000070
[式中、vは1~10の整数を表し、R61、R62及びR63は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R61、R62及びR63の少なくとも1つがヒドロカルビルオキシ基であり、R64は、炭素原子数が1~10のヒドロカルビル基又は炭素原子数が1~10の置換ヒドロカルビル基を表す。]
式(VIa)のvは、1~10の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは2以上であり、製造時の経済性を高める観点から、好ましくは4以下である。特に好ましくは3である。
式(VIa)において、R61、R62及びR63のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。また、R61、R62及びR63のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
61、R62及びR63のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~3のアルキル基であり、更に好ましくは、メチル基、エチル基である。また、R61、R62及びR63のヒドロカルビルオキシ基としては、好ましくは、アルコキシ基であり、より好ましくは、炭素原子数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
61、R62及びR63としては、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、R61、R62及びR63の少なくとも2つがヒドロカルビルオキシ基であり、より好ましくは、R61、R62及びR63の3つがヒドロカルビルオキシ基である。
64のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基などをあげることができる。
64の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
64としては、好ましくは、アルキレンオキシドアルキル基であり、より好ましくは、グリシジル基、テトラヒドロフルフリル基である。
式(VIa)で表される化合物としては、
64がアルキル基である化合物として、
3-(メトキシ)プロピルトリメトキシシラン、
3-(エトキシ)プロピルトリメトキシシラン、
3-(n-プロポキシ)プロピルトリメトキシシラン、
3-(イソプロポキシ)プロピルトリメトキシシラン、
3-(n-ブトキシ)プロピルトリメトキシシラン、
3-(sec-ブトキシ)プロピルトリメトキシシラン、
3-(t-ブトキシ)プロピルトリメトキシシラン
などの3-(アルコキシ)プロピルトリアルコキシシランをあげることができる。
64がアルキレンオキシドアルキル基である化合物として、
2-グリシドキシエチルトリメトキシシラン、
3-グリシドキシプロピルトリメトキシシラン、
2-グリシドキシエチルトリエトキシシラン、
3-グリシドキシプロピルトリエトキシシラン
などのグリシドキシアルキルトリアルコキシシラン;
2-テトラヒドロフルフリロキシエチルトリメトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリメトキシシラン、
2-テトラヒドロフルフリロキシエチルトリエトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリエトキシシラン
などのテトラヒドロフルフリロキシアルキルトリアルコキシシランをあげることができる。
64がアルコキシアルキル基である化合物として、
3-(メトキシメトキシ)プロピルトリメトキシシラン、
3-(メトキシエトキシ)プロピルトリメトキシシラン、
3-(エトキシメトキシ)プロピルトリメトキシシラン、
3-(エトキシエトキシ)プロピルトリメトキシシラン、
3-(メトキシメトキシ)プロピルトリエトキシシラン、
3-(メトキシエトキシ)プロピルトリエトキシシラン、
3-(エトキシメトキシ)プロピルトリエトキシシラン、
3-(エトキシエトキシ)プロピルトリエトキシシラン
などの3-(アルコキシアルコキシ)プロピルトリアルコキシシランをあげることができる。
式(VIa)で表される化合物として、好ましくは、R64がアルキレンオキシドアルキル基である化合物であり、より好ましくは、
3-グリシドキシプロピルトリメトキシシラン、
3-グリシドキシプロピルトリエトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリメトキシシラン、
3-テトラヒドロフルフリロキシプロピルトリエトキシシランである。
式(V)で表される基、式(VI)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、アクリロキシアルキルトリアルコキシシラン、メタクリロキシアルキルトリアルコキシシランをあげることができる。
アクリロキシアルキルトリアルコキシシランとしては、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシランなどの3-アクリロキシプロピルトリアルコキシシランをあげることができる。
メタクリロキシアルキルトリアルコキシシランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどの3-メタクリロキシプロピルトリアルコキシシランをあげることができる。
また、式(V)で表される基、式(VI)で表される基及び式(VIII)で表される基を有するケイ素化合物としては、トリアルコキシシリルアルキル無水コハク酸、トリアルコキシシリルアルキル無水マレイン酸をあげることができる。
トリアルコキシシリルアルキル無水コハク酸としては、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸などの3-トリアルコキシシリルプロピル無水コハク酸をあげることができる。
トリアルコキシシリルアルキル無水マレイン酸としては、3-トリメトキシシリルプロピル無水マレイン酸、3-トリエトキシシリルプロピル無水マレイン酸などの3-トリアルコキシシリルプロピル無水マレイン酸をあげることができる。
以下、下式(VII)で表される基を有する化合物(変性剤5)について説明する。
Figure JPOXMLDOC01-appb-C000071
[式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
wは、1~11の整数を表す。低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは1以上であり、製造時の経済性を高める観点から、好ましくは4以下である。Aは窒素原子を有する官能基であり、アミノ基、イソシアノ基、シアノ基、ピリジル基、ピペリジル基、ピラジニル基、モルホリノ基などをあげることができる。
式(VII)で表される基を有する化合物としては、下式(VII-1)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000072
[式中、zは0~10の整数を表し、R71は炭素原子数が1~5のヒドロカルビル基を表し、R72、R73、R74及びR75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよく、R76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。]
式(VII-1)のzは、0~10の整数を表す。経済性を高める観点から、好ましくは3以下であり、より好ましくは0である。
式(VII-1)のR71は炭素原子数が1~5のヒドロカルビル基を表す。R71のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基をあげることができる。
71のヒドロカルビル基としては、好ましくはアルキル基であり、より好ましくは炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基である。
式(VII-1)のR72~R75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよい。
72~R75のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などのアルキル基をあげることができる。
72~R75の置換ヒドロカルビル基としては、窒素原子を有する基及び酸素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基などをあげることができる。
72~R75のヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基などのアルコキシ基をあげることができる。
72~R75のヒドロカルビル基としては、好ましくはアルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基である。
72~R75の置換ヒドロカルビル基としては、好ましくはアルコキシアルキル基であり、より好ましくは炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、メトキシメチル基、エトキシエチル基である。
72~R75のヒドロカルビルオキシ基としては、好ましくはアルコキシ基であり、より好ましくは炭素数が1~3のアルコキシ基であり、更に好ましくは、メトキシ基、エトキシ基である。
低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点及び経済性から、R74及びR75の一方が水素原子であることが好ましい。より好ましくは、R74及びR75の一方が水素原子であり、もう一方がアルキル基又はアルコキシ基である。更に好ましくは、R74及びR75の一方が水素原子であり、もう一方がアルコキシ基である。特に好ましくは、メトキシ基、エトキシ基である。
式(VII-1)のR76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。
式(VII-1)のR76及びR77としては、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、置換シリル基などをあげることができる。
76及びR77のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
76及びR77の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基;エポキシ基、テトラヒドロフラニル基などのアルキレンオキシド基;グリシジル基、テトラヒドロフルフリル基などのアルキレンオキシドアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
なお、本明細書において、アルキレンオキシド基は、環状エーテル化合物の環から水素原子を除いた1価の基を表す。また、アルキレンオキシドアルキル基は、アルキル基の1つ以上の水素原子がアルキレンオキシド基で置換されている基を表す。
76及びR77の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基;トリメトキシシリル基などのトリアルコキシシリル基などをあげることができる。
76及びR77が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
76及びR77が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
76及びR77の窒素に二重結合で結合する同一の基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が2~12の2価の基があげられる。例えば、エチリデン基、1-メチルプロピリデン基、1,3-ジメチルブチリデン基、1-メチルエチリデン基、4-N,N-ジメチルアミノベンジリデン基などをあげることができる。
76及びR77のヒドロカルビル基としては、好ましくは、アルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。R76及びR77の置換ヒドロカルビル基としては、好ましくは、アルコキシアルキル基、アルキレンオキシド基、アルキレンオキシドアルキル基である。R76及びR77の置換シリル基としては、好ましくは、トリアルキルシリル基、トリアルコキシシリル基であり、より好ましくは、トリアルキルシリル基であり、更に好ましくは、トリメチルシリル基、トリエチルシリル基である。
76及びR77としては、好ましくは、アルキル基、アルコキシアルキル基、置換シリル基又はR76及びR77が結合した含窒素基であり、より好ましくは、炭素原子数が1~4のアルキル基であり、更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基であり、より更に好ましくは、メチル基、エチル基である。
76及びR77が窒素原子に結合したアミノ基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。また、ジ(エポキシ)アミノ基、ジ(テトラヒドロフラニル)アミノ基などのジ(アルキレンオキシド)アミノ基;ジ(グリシジル)アミノ基、ジ(テトラヒドロフルフリル)アミノ基などのジ(アルキレンオキシドアルキル)アミノ基をあげることができる。更には、エチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基などもあげることができる。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
76及びR77が窒素原子に結合したアミノ基としては、低燃費性、ウェットグリップ性能、耐摩耗性、化合物の長期安定性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基であり、更に好ましくは、ジメチルアミノ基、ジエチルアミノ基である。
式(VII-1)で表される化合物としては、N,N-ジアルキル置換カルボン酸アミドジアルキルアセタール化合物をあげることができる。
N,N-ジアルキル置換カルボン酸アミドジアルキルアセタール化合物としては、
N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジエチルホルムアミドジメチルアセタール、N,N-ジ(n-プロピル)ホルムアミドジメチルアセタール、
N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジエチルホルムアミドジエチルアセタール、N,N-ジ(n-プロピル)ホルムアミドジエチルアセタール、
N,N-ジメチルホルムアミドエチルメチルアセタール、N,N-ジエチルホルムアミドエチルメチルアセタール、N,N-ジ(n-プロピル)ホルムアミドエチルメチルアセタールなどのN,N-ジアルキルホルムアミドジアルキルアセタール;
N,N-ジメチルアセトアミドジメチルアセタール、N,N-ジエチルアセトアミドジメチルアセタール、N,N-ジ(n-プロピル)アセトアミドジメチルアセタール、
N,N-ジメチルアセトアミドジエチルアセタール、N,N-ジエチルアセトアミドジエチルアセタール、N,N-ジ(n-プロピル)アセトアミドジエチルアセタール、
N,N-ジメチルアセトアミドエチルメチルアセタール、N,N-ジエチルアセトアミドエチルメチルアセタール、N,N-ジ(n-プロピル)アセトアミドエチルメチルアセタールなどのN,N-ジアルキルアセトアミドジアルキルアセタール;
N,N-ジメチルプロピオンアミドジメチルアセタール、N,N-ジエチルプロピオンアミドジメチルアセタール、N,N-ジ(n-プロピル)プロピオンアミドジメチルアセタール、
N,N-ジメチルプロピオンアミドジエチルアセタール、N,N-ジエチルプロピオンアミドジエチルアセタール、N,N-ジ(n-プロピル)プロピオンアミドジエチルアセタール、
N,N-ジメチルプロピオンアミドエチルメチルアセタール、N,N-ジエチルプロピオンアミドエチルメチルアセタール、N,N-ジ(n-プロピル)プロピオンアミドエチルメチルアセタールなどのN,N-ジアルキルプロピオンアミドジアルキルアセタールなどがあげられる。
これらの中では、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く高める観点から、好ましくは、
N,N-ジアルキルホルムアミドジアルキルアセタールであり、
より好ましくは、
N,N-ジメチルホルムアミドジメチルアセタール、
N,N-ジエチルホルムアミドジメチルアセタール、
N,N-ジメチルホルムアミドジエチルアセタール、
N,N-ジエチルホルムアミドジエチルアセタールである。
上記共役ジエン系重合体は、共役ジエンに基づく構成単位(共役ジエン単位)に加え、更に、他の単量体に基づく構成単位を有していてもよい。該他の単量体としては、芳香族ビニル、ビニルニトリル、不飽和カルボン酸エステルなどがあげられる。芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンを例示することができる。また、ビニルニトリルとしては、アクリロニトリルなどを、不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、メタアクリル酸メチル、メタアクリル酸エチルなどを例示することができる。これらの中では、芳香族ビニルが好ましく、スチレンがより好ましい。
上記共役ジエン系重合体は、耐摩耗性の観点から、芳香族ビニルに基づく構成単位(芳香族ビニル単位)を有していることが好ましく、芳香族ビニル単位の含有量としては、共役ジエン単位と芳香族ビニル単位との総量を100質量%として、好ましくは10質量%以上(共役ジエン単位の含有量は90質量%以下)であり、より好ましくは15質量%以上(共役ジエン単位の含有量は85質量%以下)である。また、低燃費性の観点から、芳香族ビニル単位の含有量は、好ましくは50質量%以下(共役ジエン単位の含有量は50質量%以上)であり、より好ましくは45質量%以下(共役ジエン単位の含有量は55質量%以上)である。
上記共役ジエン系重合体のビニル結合量は、共役ジエン単位の含有量を100モル%として、低燃費性の観点から、好ましくは80モル%以下であり、より好ましくは70モル%以下である。また、ウェットグリップ性能の観点から、好ましくは10モル%以上であり、より好ましくは15モル%以上であり、更に好ましくは20モル%以上であり、特に好ましくは40モル%以上である。該ビニル結合量は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求められる。
上記共役ジエン系重合体の分子量分布は、低燃費性の観点から、好ましくは1~5であり、より好ましくは1~2である。分子量分布は、ゲル・パーミエイション・クロマトグラフ(GPC)法により、数平均分子量(Mn)及び重量平均分子量(Mw)を測定し、MwをMnで除すことにより求められる。
上記共役ジエン系重合体の好適な製造方法としては、下記工程A及びBを有する製造方法をあげることができる。
(工程A):炭化水素溶媒中で、アルカリ金属触媒により、共役ジエンと下式(IX)で表されるビニル化合物とを含む単量体を重合させ、共役ジエンに基づく単量体単位と下式(IX)で表されるビニル化合物に基づく単量体単位とを有する重合体鎖の少なくとも一端に、該触媒由来のアルカリ金属を有する重合体を得る工程。
Figure JPOXMLDOC01-appb-C000073
[式中、X、X及びXは、それぞれ独立に、下式(IXa)で表される基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(IXa)で表される基である。]
Figure JPOXMLDOC01-appb-C000074
[式中、R81及びR82は、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R81及びR82は結合して窒素原子と共に環構造を形成していてもよい。]
(工程B):工程Aで得られた重合体と上記変性剤1~5の少なくとも1つとを反応させる工程。
(工程A)で用いられるアルカリ金属触媒としては、アルカリ金属、有機アルカリ金属化合物、アルカリ金属と極性化合物との錯体、アルカリ金属を有するオリゴマーなどをあげることができる。該アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどをあげることができる。該有機アルカリ金属化合物としては、エチルリチウム、n-プロピルリチウム、iso-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロヘキシルリチウム、4-シクロペンチルリチウム、ジメチルアミノプロピルリチウム、ジエチルアミノプロピルリチウム、t-ブチルジメチルシリロキシプロピルリチウム、N-モルホリノプロピルリチウム、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、1,4-ジリチオ-2-ブテン、ナトリウムナフタレニド、ナトリウムビフェニリド、カリウムナフタレニドなどをあげることができる。また、アルカリ金属と極性化合物との錯体としては、カリウム-テトラヒドロフラン錯体、カリウム-ジエトキシエタン錯体などをあげることができ、アルカリ金属を有するオリゴマーとしては、α-メチルスチレンテトラマーのナトリウム塩をあげることができる。これらの中でも、有機リチウム化合物又は有機ナトリウム化合物が好ましく、炭素原子数が2~20の有機リチウム化合物又は有機ナトリウム化合物がより好ましい。
(工程A)で用いられる炭化水素溶媒は、有機アルカリ金属化合物触媒を失活させない溶媒であり、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素などをあげることができる。該脂肪族炭化水素としては、プロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、n-ヘキサン、プロペン、1-ブテン、iso-ブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセンなどをあげることができる。また、芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼンをあげることができ、脂環族炭化水素としては、シクロペンタン、シクロヘキサンなどがあげられる。これらは単独で、あるいは2種以上組み合わせて用いられる。これらの中では、炭素原子数が2~12の炭化水素が好ましい。
(工程A)では、共役ジエンと式(IX)で表されるビニル化合物とを含む単量体を重合させ、上述のアルカリ金属触媒由来のアルカリ金属を重合体鎖末端に有する共役ジエン系重合体を製造する。該共役ジエンとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエンをあげることができ、これらは単独で、あるいは2種以上組み合わせて用いられる。中でも、入手容易性の観点から、1,3-ブタジエン、イソプレンが好ましい。
式(IX)のX、X及びXは、それぞれ独立に、式(IXa)で表される基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つは、式(IXa)で表される基である。
式(IXa)のR81及びR82は、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R81及びR82は結合して窒素原子と共に環構造を形成していてもよい。
81及びR82の炭素原子数が1~6のヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などをあげることができる。
81及びR82の炭素原子数が1~6の置換ヒドロカルビル基としては、窒素原子を有する基、酸素原子を有する基及びケイ素原子を有する基からなる基群から選ばれる少なくとも1種の基を置換基として有する置換ヒドロカルビル基をあげることができる。窒素原子を有する基を置換基として有する基としては、ジメチルアミノエチル基、ジエチルアミノエチル基などのジアルキルアミノアルキル基をあげることができ、酸素原子を有する基を置換基として有する基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができ、ケイ素原子を有する基を置換基として有する基としては、トリメチルシリルメチル基などのトリアルキルシリルアルキル基などをあげることができる。
81及びR82の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリアルキルシリル基などをあげることができる。
81及びR82が結合した基としては、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~12の2価の基があげられる。例えば、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのアルキレン基;オキシジエチレン基、オキシジプロピレン基などのオキシジアルキレン基;-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基などの含窒素基などをあげることができる。
81及びR82が結合した基としては、含窒素基が好ましく、-CHCH-NH-CH-で表される基、-CHCH-N=CH-で表される基がより好ましい。
81及びR82のヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基が更に好ましく、エチル基、n-ブチル基が特に好ましい。R81及びR82の置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。R81及びR82の置換シリル基としては、トリアルキルシリル基が好ましく、トリメチルシリル基がより好ましい。
81及びR82としては、好ましくは、アルキル基、アルコキシアルキル基、置換シリル基又はR81及びR82が結合した含窒素基であり、より好ましくは、アルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基である。
式(IXa)で表される基としては、非環状アミノ基、環状アミノ基をあげることができる。
該非環状アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジ(ネオペンチル)アミノ基、エチルメチルアミノ基などのジアルキルアミノ基;ジ(メトキシメチル)アミノ基、ジ(メトキシエチル)アミノ基、ジ(エトキシメチル)アミノ基、ジ(エトキシエチル)アミノ基などのジ(アルコキシアルキル)アミノ基;ジ(トリメチルシリル)アミノ基、ジ(t-ブチルジメチルシリル)アミノ基などのジ(トリアルキルシリル)アミノ基などをあげることができる。
該環状アミノ基としては、1-ピロリジニル基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-ポリメチレンイミノ基をあげることができる。また、環状アミノ基としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、1-イミダゾリジニル基、1-ピペラジニル基、モルホリノ基などもあげることができる。
式(IXa)で表される基としては、経済性及び入手容易性から、好ましくは、非環状アミノ基であり、より好ましくは、ジアルキルアミノ基であり、更に好ましくは、炭素原子数が1~4のアルキル基で置換されたジアルキルアミノ基であり、より更に好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジ(n-プロピル)アミノ基、ジ(n-ブチル)アミノ基である。
式(IX)のX~Xのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基をあげることができる。また、置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
~Xのヒドロカルビル基としては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基又はエチル基が更に好ましい。また、X~Xの置換ヒドロカルビル基としては、アルコキシアルキル基が好ましく、炭素原子数が1~4のアルコキシアルキル基がより好ましい。
~Xのヒドロカルビル基及び置換ヒドロカルビル基としては、好ましくは、アルキル基又はアルコキシアルキル基であり、より好ましくは、炭素原子数が1~4のアルキル基又は炭素原子数が1~4のアルコキシアルキル基であり、更に好ましくは、炭素原子数が1~4のアルキル基であり、より更に好ましくは、メチル基又はエチル基である。
式(IX)のX、X及びXの少なくとも1つは、式(IXa)で表される基である。好ましくは、X、X及びXの2つ以上が、式(IXa)で表される基であり、より好ましくは、X、X及びXの2つが、式(IXa)で表される基である。
(工程A)で用いられる式(IX)で表されるビニル化合物としては、X~Xの1つが式(IXa)で表される非環状アミノ基であり、2つがヒドロカルビル基又は置換ヒドロカルビル基である化合物として、(ジアルキルアミノ)ジアルキルビニルシラン、{ジ(トリアルキルシリル)アミノ}ジアルキルビニルシラン、(ジアルキルアミノ)ジアルコキシアルキルビニルシランなどをあげることができる。
(ジアルキルアミノ)ジアルキルビニルシランとしては、(ジメチルアミノ)ジメチルビニルシラン、(エチルメチルアミノ)ジメチルビニルシラン、(ジエチルアミノ)ジメチルビニルシラン、(エチル-n-プロピルアミノ)ジメチルビニルシラン、(エチルイソプロピルアミノ)ジメチルビニルシラン、(ジ(n-プロピル)アミノ)ジメチルビニルシラン、(ジイソプロピルアミノ)ジメチルビニルシラン、(n-ブチル-n-プロピルアミノ)ジメチルビニルシラン、(ジ(n-ブチル)アミノ)ジメチルビニルシラン、(ジメチルアミノ)ジエチルビニルシラン、(エチルメチルアミノ)ジエチルビニルシラン、(ジエチルアミノ)ジエチルビニルシラン、(エチル-n-プロピルアミノ)ジエチルビニルシラン、(エチルイソプロピルアミノ)ジエチルビニルシラン、(ジ(n-プロピル)アミノ)ジエチルビニルシラン、(ジイソプロピルアミノ)ジエチルビニルシラン、(n-ブチル-n-プロピルアミノ)ジエチルビニルシラン、(ジ(n-ブチル)アミノ)ジエチルビニルシラン、(ジメチルアミノ)ジプロピルビニルシラン、(エチルメチルアミノ)ジプロピルビニルシラン、(ジエチルアミノ)ジプロピルビニルシラン、(エチル-n-プロピルアミノ)ジプロピルビニルシラン、(エチルイソプロピルアミノ)ジプロピルビニルシラン、(ジ(n-プロピル)アミノ)ジプロピルビニルシラン、(ジイソプロピルアミノ)ジプロピルビニルシラン、(n-ブチル-n-プロピルアミノ)ジプロピルビニルシラン、(ジ(n-ブチル)アミノ)ジプロピルビニルシラン、(ジメチルアミノ)ジブチルビニルシラン、(エチルメチルアミノ)ジブチルビニルシラン、(ジエチルアミノ)ジブチルビニルシラン、(エチル-n-プロピルアミノ)ジブチルビニルシラン、(エチルイソプロピルアミノ)ジブチルビニルシラン、(ジ(n-プロピル)アミノ)ジブチルビニルシラン、(ジイソプロピルアミノ)ジブチルビニルシラン、(n-ブチル-n-プロピルアミノ)ジブチルビニルシラン、(ジ(n-ブチル)アミノ)ジブチルビニルシランなどをあげることができる。
{ジ(トリアルキルシリル)アミノ}ジアルキルビニルシランとしては、{ジ(トリメチルシリル)アミノ}ジメチルビニルシラン、{ジ(t-ブチルジメチルシリル)アミノ}ジメチルビニルシラン、{ジ(トリメチルシリル)アミノ}ジエチルビニルシラン、{ジ(t-ブチルジメチルシリル)アミノ}ジエチルビニルシランなどをあげることができる。
(ジアルキルアミノ)ジアルコキシアルキルビニルシランとしては、(ジメチルアミノ)ジメトキシメチルビニルシラン、(ジメチルアミノ)ジメトキシエチルビニルシラン、(ジメチルアミノ)ジエトキシメチルビニルシラン、(ジメチルアミノ)ジエトキシエチルビニルシラン、(ジエチルアミノ)ジメトキシメチルビニルシラン、(ジエチルアミノ)ジメトキシエチルビニルシラン、(ジエチルアミノ)ジエトキシメチルビニルシラン、(ジエチルアミノ)ジエトキシエチルビニルシランなどをあげることができる。
~Xの2つが式(IXa)で表される非環状アミノ基であり、1つがヒドロカルビル基又は置換ヒドロカルビル基である化合物として、ビス(ジアルキルアミノ)アルキルビニルシラン、ビス{ジ(トリアルキルシリル)アミノ}アルキルビニルシラン、ビス(ジアルキルアミノ)アルコキシアルキルビニルシランなどをあげることができる。
ビス(ジアルキルアミノ)アルキルビニルシランとしては、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(エチル-n-プロピルアミノ)メチルビニルシラン、ビス(エチルイソプロピルアミノ)メチルビニルシラン、ビス(ジ(n-プロピル)アミノ)メチルビニルシラン、ビス(ジイソプロピルアミノ)メチルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)メチルビニルシラン、ビス(ジ(n-ブチル)アミノ)メチルビニルシラン、ビス(ジメチルアミノ)エチルビニルシラン、ビス(エチルメチルアミノ)エチルビニルシラン、ビス(ジエチルアミノ)エチルビニルシラン、ビス(エチル-n-プロピルアミノ)エチルビニルシラン、ビス(エチルイソプロピルアミノ)エチルビニルシラン、ビス(ジ(n-プロピル)アミノ)エチルビニルシラン、ビス(ジイソプロピルアミノ)エチルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)エチルビニルシラン、ビス(ジ(n-ブチル)アミノ)エチルビニルシラン、ビス(ジメチルアミノ)プロピルビニルシラン、ビス(エチルメチルアミノ)プロピルビニルシラン、ビス(ジエチルアミノ)プロピルビニルシラン、ビス(エチル-n-プロピルアミノ)プロピルビニルシラン、ビス(エチルイソプロピルアミノ)プロピルビニルシラン、ビス(ジ(n-プロピル)アミノ)プロピルビニルシラン、ビス(ジイソプロピルアミノ)プロピルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)プロピルビニルシラン、ビス(ジ(n-ブチル)アミノ)プロピルビニルシラン、ビス(ジメチルアミノ)ブチルビニルシラン、ビス(エチルメチルアミノ)ブチルビニルシラン、ビス(ジエチルアミノ)ブチルビニルシラン、ビス(エチル-n-プロピルアミノ)ブチルビニルシラン、ビス(エチルイソプロピルアミノ)ブチルビニルシラン、ビス(ジ(n-プロピル)アミノ)ブチルビニルシラン、ビス(ジイソプロピルアミノ)ブチルビニルシラン、ビス(n-ブチル-n-プロピルアミノ)ブチルビニルシラン、ビス(ジ(n-ブチル)アミノ)ブチルビニルシランなどをあげることができる。
ビス{ジ(トリアルキルシリル)アミノ}アルキルビニルシランとしては、ビス{ジ(トリメチルシリル)アミノ}メチルビニルシラン、ビス{ジ(t-ブチルジメチルシリル)アミノ}メチルビニルシラン、ビス{ジ(トリメチルシリル)アミノ}エチルビニルシラン、ビス{ジ(t-ブチルジメチルシリル)アミノ}エチルビニルシランなどをあげることができる。
ビス(ジアルキルアミノ)アルコキシアルキルビニルシランとしては、ビス(ジメチルアミノ)メトキシメチルビニルシラン、ビス(ジメチルアミノ)メトキシエチルビニルシラン、ビス(ジメチルアミノ)エトキシメチルビニルシラン、ビス(ジメチルアミノ)エトキシエチルビニルシラン、ビス(ジエチルアミノ)メトキシメチルビニルシラン、ビス(ジエチルアミノ)メトキシエチルビニルシラン、ビス(ジエチルアミノ)エトキシメチルビニルシラン、ビス(ジエチルアミノ)エトキシエチルビニルシランなどをあげることができる。
~Xの3つが式(IXa)で表される非環状アミノ基である化合物として、トリ(ジアルキルアミノ)ビニルシランなどをあげることができる。例えば、トリ(ジメチルアミノ)ビニルシラン、トリ(エチルメチルアミノ)ビニルシラン、トリ(ジエチルアミノ)ビニルシラン、トリ(エチルプロピルアミノ)ビニルシラン、トリ(ジプロピルアミノ)ビニルシラン、トリ(ブチルプロピルアミノ)ビニルシランなどをあげることができる。
~Xの2つが式(IXa)で表される環状アミノ基であり、1つがヒドロカルビル基又は置換ヒドロカルビル基である化合物として、ビス(モルホリノ)メチルビニルシラン、ビス(ピペリジノ)メチルビニルシラン、ビス(4,5-ジヒドロイミダゾリル)メチルビニルシラン、ビス(ヘキサメチレンイミノ)メチルビニルシランなどをあげることができる。
、X及びXの2つが式(IXa)で表される基である式(IX)で表されるビニル化合物として、好ましくは、X、X及びXの2つが非環状アミノ基であるビニル化合物であり、低燃費性、ウェットグリップ性能及び耐摩耗性の観点から、より好ましくは、ビス(ジアルキルアミノ)アルキルビニルシランであり、更に好ましくは、ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ(n-プロピル)アミノ)メチルビニルシラン、ビス(ジ(n-ブチル)アミノ)メチルビニルシランである。中でも、化合物の入手容易性の観点からは、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ(n-ブチル)アミノ)メチルビニルシランが好ましい。
(工程A)では、共役ジエンと式(IX)で表されるビニル化合物とに、他の単量体を組み合わせて重合を行ってもよい。他の単量体としては、芳香族ビニル、ビニルニトリル、不飽和カルボン酸エステルなどがあげられる。芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンを例示することができる。また、ビニルニトリルとしては、アクリロニトリルなどを、不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、メタアクリル酸メチル、メタアクリル酸エチルなどを例示することができる。これらの中では、芳香族ビニルが好ましく、スチレンがより好ましい。
(工程A)の重合は、共役ジエン単位のビニル結合量を調整する剤、共役ジエン系重合体鎖中での共役ジエン単位と共役ジエン以外の単量体に基づく構成単位の分布を調整する剤(以下、総称して「調整剤」と記す。)などの存在下で行ってもよい。このような剤としては、エーテル化合物、第三級アミン、ホスフィン化合物などをあげることができる。該エーテル化合物としては、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどの環状エーテル;ジエチルエーテル、ジブチルエーテルなどの脂肪族モノエーテル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテルなどの脂肪族ジエーテル;ジフェニルエーテル、アニソールなどの芳香族エーテルなどがあげられる。該第三級アミンとして、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジエチルアニリン、ピリジン、キノリンなどをあげることができる。また、該ホスフィン化合物として、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどをあげることができる。これらは単独で用いても、2種類以上を組み合わせて用いてもよい。
(工程A)での重合温度は、通常25~100℃であり、好ましくは35~90℃である。より好ましくは50~80℃である。重合時間は、通常10分~5時間である。
(工程B)において、工程Aで調製された重合体に接触させる変性剤1~5の量は、有機アルカリ金属触媒由来のアルカリ金属1モルあたり、通常、0.1~3モルであり、好ましくは、0.5~2モルであり、より好ましくは、0.7~1.5モルであり、更に好ましくは、1~1.5モルである。
(工程B)において、工程Aで調製された重合体と変性剤1~5の少なくとも一つとを接触させる温度は、通常25~100℃であり、好ましくは35~90℃である。より好ましくは50~80℃である。接触させる時間は、通常、60秒~5時間であり、好ましくは5分~1時間であり、より好ましくは15分~1時間である。
上記共役ジエン系重合体の製造方法においては、必要に応じて、アルカリ金属触媒による単量体の重合開始から重合停止において、共役ジエン系重合体の炭化水素溶液にカップリング剤を添加してもよい。カップリング剤としては、下式(X)で表される化合物をあげることができる。
91 ML4-a(X)
[式中、R91はアルキル基、アルケニル基、シクロアルケニル基又は芳香族残基を表し、Mはケイ素原子又はスズ原子を表し、Lはハロゲン原子又はヒドロカルビルオキシ基を表し、aは0~2の整数を表す。]
ここで、芳香族残基は、芳香族炭化水素から芳香環に結合している水素を除いた1価の基を表す。
式(X)で表されるカップリング剤としては、四塩化珪素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシランなどをあげることができる。
カップリング剤の添加量は、アルカリ金属触媒由来のアルカリ金属1モル当たり、共役ジエン系重合体の加工性の観点から、好ましくは0.03モル以上であり、より好ましくは0.05モル以上である。また、低燃費性の観点から、好ましくは0.4モル以下であり、より好ましくは0.3モル以下である。
共役ジエン系重合体は、公知の回収方法、例えば、(1)共役ジエン系重合体の炭化水素溶液に凝固剤を添加する方法、(2)共役ジエン系重合体の炭化水素溶液にスチームを添加する方法によって、共役ジエン系重合体の炭化水素溶液から回収することができる。回収した共役ジエン系重合体は、バンドドライヤーや押出型ドライヤーなどの公知の乾燥機で乾燥してもよい。
また、上記共役ジエン系重合体の製造方法においては、加水分解などにより、重合体の式(Ia)で表される基を水酸基に置換させる処理を行うことが好ましい。該処理は、重合体単独の状態で行ってもよく、後述のような組成物の状態で行ってもよい。加水分解する方法としては、例えば、スチームストリッピングによる方法などの公知の方法があげられる。上記処理により、式(I)のX~Xを水酸基とすることができ、低燃費性、ウェットグリップ性能及び耐摩耗性をよりバランスよく向上できる。
上記共役ジエン系重合体は、ゴム成分として本発明のゴム組成物に用いることができ、他のゴム成分や添加剤などと併用することが好ましい。
他のゴム成分としては、一般的なジエン系ゴムを使用することができ、例えば、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ブタジエン-イソプレン共重合体ゴム、ブチルゴムなどをあげることができる。また、天然ゴム(NR)、エチレン-プロピレン共重合体、エチレン-オクテン共重合体などもあげることができる。これらのゴム成分は、2種以上組み合わせて用いてもよい。中でも、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く改善できるという点から、NR及び/又はBRを使用することが好ましく、NR及びBRの両成分を使用することがより好ましい。
ゴム成分100質量%中の上記共役ジエン系重合体の含有量は、5質量%以上、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上である。上記共役ジエン系重合体の含有量が5質量%未満であると低燃費性の改善効果が得られにくい傾向がある。上記共役ジエン系重合体の含有量は、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。上記共役ジエン系重合体の含有量が90質量%を超えると、耐摩耗性が低下すると共に、高コストになる傾向がある。
NRとしては特に限定されず、例えば、SIR20、RSS#3、TSR20、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)等、タイヤ工業において一般的なものを使用できる。
ゴム成分100質量%中のNRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。5質量%未満であると、耐摩耗性が低下する傾向がある。上記NRの含有量は、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは30質量%以下である。70質量%を超えると、ウェットグリップ性能が低下する傾向がある。
BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150Bなどの高シス含有量のBR、宇部興産(株)製のVCR412、VCR617などのシンジオタクチックポリブタジエン結晶を含有するBR等、タイヤ工業において一般的なものを使用できる。
ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。5質量%未満であると、耐摩耗性が低下する傾向がある。上記BRの含有量は、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは35質量%以下、より更に好ましくは30質量%以下、特に好ましくは25質量%以下である。60質量%を超えると、ウェットグリップ性能が低下する傾向がある。
ゴム成分100質量%中のNR及びBRの合計含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上である。10質量%未満であると、耐摩耗性が低下する傾向がある。上記合計含有量は、好ましくは70質量%以下、より好ましくは50質量%以下である。70質量%を超えると、ウェットグリップ性能が低下する傾向がある。
本発明のゴム組成物は補強剤としてシリカを配合することを特徴とする。シリカの配合量(含有量)は、ゴム成分100質量部に対して、5~150質量部である。シリカの配合量が5質量部未満であると耐摩耗性が充分でない傾向があり、一方、シリカの配合量が150質量部を超えると、加工性が悪化する傾向がある。シリカの配合量は、好ましくは10質量部以上、より好ましくは15質量部以上、更に好ましくは45質量部以上であり、好ましくは120質量部以下、より好ましくは100質量部以下である。
シリカは単独で用いてもよく、2種以上組み合わせて用いてもよい。
シリカ及びカーボンブラックの合計100質量%中のシリカの含有量は、好ましくは60質量%以上、より好ましくは85質量%以上であり、好ましくは98質量%以下、より好ましくは95質量%以下である。上記範囲内であれば、低燃費性、ウェットグリップ性能及び耐摩耗性を高次元でバランス良く改善することができる。
また、シリカの窒素吸着比表面積(NSA)は、好ましくは40m/g以上、より好ましくは50m/g以上、更に好ましくは60m/g以上、特に好ましくは150m/g以上であり、好ましくは400m/g以下、より好ましくは360m/g以下、更に好ましくは300m/g以下、特に好ましくは200m/g以下である。窒素吸着比表面積が40m/g未満のシリカでは補強効果が小さく耐摩耗性が低下する傾向があり、400m/gを超えるシリカでは分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
本発明では、メルカプト基を有するシランカップリング剤(メルカプト系シランカップリング剤)が使用される。本発明の効果が良好に得られるという点から、メルカプト系シランカップリング剤としては、下式(1)で表される化合物、及び/又は下式(2)で示される結合単位Aと下式(3)で示される結合単位Bとを含む化合物を好適に使用できる。
Figure JPOXMLDOC01-appb-C000075
[式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(b個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。bは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。]
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
[式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。]
以下、式(1)で表される化合物について説明する。
式(1)で表されるシランカップリング剤を配合することにより、ウェットグリップ性能及び転がり抵抗特性(低燃費性)をより向上できる。
101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112で表される基を表す。本発明の効果が良好に得られるという点から、R101~R103は、少なくとも1つが-O-(R111-O)-R112で表される基であることが好ましく、2つが-O-(R111-O)-R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1~12のアルコキシ基であることがより好ましい。
101~R103の分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基などがあげられる。
101~R103の分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトシキ基、tert-ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。
101~R103の-O-(R111-O)-R112において、R111は、分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、分岐若しくは非分岐の炭素数2~30のアルキニレン基、炭素数6~30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1~30のアルキレン基が好ましい。
111の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルケニレン基としては、例えば、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。
111の炭素数6~30(好ましくは炭素数6~15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。
bは1~30(好ましくは2~20、より好ましくは3~7、更に好ましくは5~6)の整数を表す。
112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1~30のアルキル基が好ましい。
112の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。
112の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。
112の炭素数6~30(好ましくは炭素数10~20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。
112の炭素数7~30(好ましくは炭素数10~20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。
-O-(R111-O)-R112で表される基の具体例としては、例えば、-O-(C-O)-C1123、-O-(C-O)-C1225、-O-(C-O)-C1327、-O-(C-O)-C1429、-O-(C-O)-C1531、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327などがあげられる。中でも、-O-(C-O)-C1123、-O-(C-O)-C1327、-O-(C-O)-C1531、-O-(C-O)-C1327が好ましい。
104の分岐若しくは非分岐の炭素数1~6(好ましくは炭素数1~5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1~30のアルキレン基と同様の基をあげることができる。
上記式(1)で表される化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記式で表される化合物(エボニックデグッサ社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000078
次に、式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物について説明する。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物は、ビス-(3-トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇が抑制される。これは結合単位Aのスルフィド部分がC-S-C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
また、3-メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。この理由は、結合単位Bはメルカプトシランの構造を持っているが、結合単位Aの-C15部分が結合単位Bの-SH基を覆うことにより、ポリマーと反応しにくくなるためであると考えられる。従って、加硫促進剤を増量したり、スコーチしやすいSBRを配合した場合であっても、良好な加工性が得られる。
上述した加工中の粘度上昇を抑制する効果や、スコーチ時間の短縮を抑制する効果を高めることができるという点から、上記構造のシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、更に好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2)、(3)と対応するユニットを形成していればよい。
201のハロゲンとしては、塩素、臭素、フッ素などがあげられる。
201、R202の分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基等があげられる。該アルキル基の炭素数は、好ましくは1~12である。
201、R202の分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基等があげられる。該アルキレン基の炭素数は、好ましくは1~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基等があげられる。該アルケニル基の炭素数は、好ましくは2~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基等があげられる。該アルケニレン基の炭素数は、好ましくは2~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基等があげられる。該アルキニル基の炭素数は、好ましくは2~12である。
201、R202の分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基等があげられる。該アルキニレン基の炭素数は、好ましくは2~12である。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3~300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの-C15が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物としては、例えば、Momentive社製のNXT-Z30、NXT-Z45、NXT-Z60等を使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
メルカプト系シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは1.5質量部以上、より更に好ましくは2質量部以上、特に好ましくは2.5質量部以上である。0.5質量部未満では、シリカを良好に分散させることが困難となるおそれがある。含有量の下限は、4質量部以上、5質量部以上、8質量部以上であってもよい。また、メルカプト系シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。20質量部を超えると、添加量に見合った改善効果が得られず、コストが不必要に増大するおそれがある。また、スコーチタイムが短くなり、混練り工程や押出し工程での加工性が悪化する傾向がある。
添加剤としては、公知のものを用いることができ、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;伸展油、滑剤などの加工助剤;老化防止剤を例示することができる。
上記カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種又は2種以上組み合わせて用いることができる。低燃費性、ウェットグリップ性能及び耐摩耗性を高次元でバランス良く改善できるという点から、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上であり、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは30質量部以下、特に好ましくは10質量部以下である。
カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは5m/g以上、より好ましくは30m/g以上、更に好ましくは50m/g以上、特に好ましくは70m/g以上であり、好ましくは250m/g以下、より好ましくは200m/g以下、更に好ましくは150m/g以下である。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、好ましくは5ml/100g以上、より好ましくは80ml/100g以上であり、好ましくは300ml/100g以下、より好ましくは180ml/100g以下である。カーボンブラックのNSAやDBP吸収量が上記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、上記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。該窒素吸着比表面積は、ASTM D4820-93に従って測定され、該DBP吸収量は、ASTM D2414-93に従って測定される。市販品としては、東海カーボン社製商品名シースト6、シースト7HM、シーストKH、エボニックデグッサ社製商品名CK3、SpecialBlack4A等を用いることができる。
上記伸展油としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)、パラフィン系鉱物油(V.G.C.値0.790~0.849)などをあげることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。
上記加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤をあげることができ、その使用量は、ゴム成分100質量部に対して0.1~5質量部が好ましく、更に好ましくは0.2~3質量部である。
上記共役ジエン系重合体に、他のゴム成分や添加剤などを配合してゴム組成物を製造する方法としては、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混練する方法を用いることができる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50~200℃であり、好ましくは80~190℃であり、混練時間は、通常30秒~30分であり、好ましくは1分~30分である。
加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫などの加硫処理を行って用いられる。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
本発明のゴム組成物は、低燃費性、ウェットグリップ性能及び耐摩耗性のバランスに優れており、これらの性能の顕著な改善効果を得ることができる。
本発明のゴム組成物は、タイヤの各部材に好適に用いることができ、特にトレッドに好適に用いることができる。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドなどの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成型し、他のタイヤ部材と共に貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して、本発明の空気入りタイヤを製造できる。
本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ(重荷重用タイヤ)として好適に用いることができる。
以下、実施例によって本発明を説明する。
物性評価は次の方法で行った。なお、以下の物性評価において、表6における基準比較例を比較例1、表7における基準比較例を比較例4、表8における基準比較例を比較例11、表9~10における基準比較例を比較例14、表11における基準比較例を比較例32、表12における基準比較例を比較例38、表13~14における基準比較例を比較例46、表15~16における基準比較例を比較例52、表17における基準比較例を比較例59、表18における基準比較例を比較例67とした。
1.ビニル結合量(単位:モル%)
赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より重合体のビニル結合量を求めた。
2.スチレン単位の含量(単位:質量%)
JIS K6383(1995)に従って、屈折率から重合体のスチレン単位の含量を求めた。
3.分子量分布(Mw/Mn)
下記の条件(1)~(8)でゲル・パーミエイション・クロマトグラフ(GPC)法により、重合体の重量平均分子量(Mw)と数平均分子量(Mn)を測定した。そして、測定したMw、Mnから重合体の分子量分布(Mw/Mn)を求めた。
(1)装置:東ソー社製HLC-8020
(2)分離カラム:東ソー社製GMH-XL(2本直列)
(3)測定温度:40℃
(4)キャリア:テトラヒドロフラン
(5)流量:0.6mL/分
(6)注入量:5μL
(7)検出器:示差屈折
(8)分子量標準:標準ポリスチレン
4.tanδ
シート状の加硫ゴム組成物から幅1mm又は2mm、長さ40mmの短冊状試験片を打ち抜き、試験に供した。(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃でtanδを測定した。tanδの逆数の値について基準比較例を100として指数表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
5.転がり抵抗
転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させた時の転がり抵抗を測定し、基準比較例を100とした時の指数で表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
6.ウェットグリップ性能
製造した試験用タイヤを車両(国産FF2000cc)の全輪に装着させ、湿潤アスファルト路面にて、初速度100km/hからの制動距離を測定した。そして、基準比較例のウェットグリップ性能指数を100とし、以下に示す計算式により、各配合のウェットスキッド性能(ウェットグリップ性能)を指数表示した。数値が大きいほどウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(基準比較例の制動距離)/(各配合の制動距離)×100
7.耐摩耗性1
LAT試験機(Laboratory Abration and Skid Tester)を用い、荷重50N、速度20km/h、スリップアングル5°の条件にて、各加硫ゴム組成物の容積損失量を測定した。表中の数値(耐摩耗性1指数)は、基準比較例の容積損失量を100とした時の相対値である。当該数値が大きいほど耐摩耗性に優れている。
8.耐摩耗性2
製造した試験用タイヤを車両(国産FF2000cc)の全輪に装着して実車走行させ、3000km走行前後のトレッドパターンの溝深さの変化を測定した。そして、基準比較例の耐摩耗性2指数を100とし、以下に示す計算式により、各配合の溝深さの変化を指数表示した。数値が大きいほど耐摩耗性に優れることを示している。
耐摩耗性2指数=(基準比較例の溝深さの変化)/(各配合の溝深さの変化)×100
製造例1(重合体1の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.1mmol及びn-ブチルリチウム13.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-ジエチルアミノプロピルトリエトキシシラン11.1mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体1を回収した。重合体1の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例2(重合体2の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体2を回収した。重合体2の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例3(重合体3の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.1mmol及びn-ブチルリチウム13.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体3を回収した。重合体3の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例4(重合体4の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-ジエチルアミノプロピルトリエトキシシラン11.1mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体4を回収した。重合体4の評価結果を表1に示す。なお、重合体4は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例5(重合体5の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体5を回収した。重合体5の評価結果を表1に示す。なお、重合体5は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例6(重合体6の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.1mmol及びn-ブチルリチウム13.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-ジエチルアミノプロピルトリエトキシシラン11.1mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体6を得た。重合体6の評価結果を表1に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000079
製造例7(重合体7の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体7を回収した。重合体7の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例8(重合体8の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム12.9mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を0.83時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該0.83時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を1.67時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体8を回収した。重合体8の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例9(重合体9の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.7mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体9を回収した。重合体9の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例10(重合体10の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1-フェニル-2-ピロリドン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体10を回収した。重合体10の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例11(重合体11の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム15.1mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1-フェニル-2-ピロリドン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体11を回収した。重合体11の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例12(重合体12の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム13.4mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-メチル-ε-カプロラクタム11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体12を回収した。重合体12の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例13(重合体13の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム13.7mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-メチル-ε-カプロラクタム11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体13を回収した。重合体13の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例14(重合体14の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン8.26mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、4,4’-ビス(ジエチルアミノ)ベンゾフェノン11.8mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体14を回収した。重合体14の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.005mmol/g重合体であった。
製造例15(重合体15の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン12.2mmol及びn-ブチルリチウム15.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、4’-(イミダゾール-1-イル)-アセトフェノン12.2mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体15を回収した。重合体15の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.007mmol/g重合体であった。
製造例16(重合体16の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体16を回収した。重合体16の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例17(重合体17の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次にスチームストリッピングによって重合体溶液から重合体17を回収した。重合体17の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例18(重合体18の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.3mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体18を回収した。重合体18の評価結果を表2に示す。なお、重合体18は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例19(重合体19の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.3mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体19を回収した。重合体19の評価結果を表2に示す。なお、重合体19は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例20(重合体20の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.0mmol及びn-ブチルリチウム14.3mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3-ジメチル-2-イミダゾリジノン11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体20を得た。重合体20の評価結果を表2に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000080
製造例21(重合体21の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム14.9mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体21を回収した。重合体21の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例22(重合体22の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム12.9mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を0.83時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該0.83時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン10.5mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を1.67時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体22を回収した。重合体22の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例23(重合体23の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム13.4mmolを、それぞれシクロヘキサン溶液及びn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン10.5mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン10.5mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を1.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。
重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体23を回収した。重合体23の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.017mmol/g重合体であった。
製造例24(重合体24の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス{ジ(n-ブチル)アミノ}メチルビニルシラン10.5mmol及びn-ブチルリチウム13.4mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体24を回収した。重合体24の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例25(重合体25の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体25を回収した。重合体25の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例26(重合体26の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム14.9mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体26を回収した。重合体26の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例27(重合体27の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.9mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体27を回収した。重合体27の評価結果を表3に示す。なお、重合体27は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例28(重合体28の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.9mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体28を回収した。重合体28の評価結果を表3に示す。なお、重合体28は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例29(重合体29の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン10.5mmol及びn-ブチルリチウム14.9mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミド10.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体29を得た。重合体29の評価結果を表3に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000081
製造例30(重合体30の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体30を回収した。重合体30の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
製造例31(重合体31の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム17.3mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン14.4mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン14.4mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン14.4mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート3.6mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体31を回収した。重合体31の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.024mmol/g重合体であった。
製造例32(重合体32の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入し30分間撹拌した。
次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体32を回収した。重合体32の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例33(重合体33の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体33を回収した。重合体33の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
製造例34(重合体34の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム18.5mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体34を回収した。重合体34の評価結果を表4に示す。なお、重合体34は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例35(重合体35の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム18.5mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体35を回収した。重合体35の評価結果を表4に示す。なお、重合体35は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例36(重合体36の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体36を得た。重合体36の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
製造例37(重合体37の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン16.0mmol及びn-ブチルリチウム18.5mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、3-(メトキシ)プロピルトリメトキシシラン4.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.80mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体37を回収した。重合体37の評価結果を表4に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.009mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000082
製造例38(重合体38の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.5mmol及びn-ブチルリチウム14.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体38を回収した。重合体38の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例39(重合体39の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.1mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を1時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。
該1時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。
該0.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン11.0mmolをシクロヘキサン溶液として、撹拌速度を130rpm、重合反応器内温度を65℃の条件下で、重合反応器内に投入した。
次に、重合反応器内に連続的に単量体を供給し、1,3-ブタジエンとスチレンの共重合を0.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とした。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.0mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体39を回収した。重合体39の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.018mmol/g重合体であった。
製造例40(重合体40の合成)
内容積5リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)2.55kg、1,3-ブタジエン137g、スチレン43g、テトラヒドロフラン1.5ml、エチレングリコールジエチルエーテル1.2mlを重合反応器内に投入した。次に、n-ブチルリチウム3.6mmolをn-ヘキサン溶液として投入し、1,3-ブタジエンとスチレンの共重合を2.5時間行った。重合中、撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給した。1,3-ブタジエンの供給量は205g、スチレンの供給量は65gであった。
該2.5時間の重合後、ビス(ジエチルアミノ)メチルビニルシラン2.8mmolをシクロヘキサン溶液として、撹拌速度130rpm、重合反応器内温度65℃の条件下で、重合反応器内に投入し30分間撹拌した。次に、メタノール0.14mlを含むヘキサン溶液20mlを重合反応器内に投入し、重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体40を回収した。重合体40の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例41(重合体41の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.5mmol及びn-ブチルリチウム14.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体41を回収した。重合体41の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
製造例42(重合体42の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体42を回収した。重合体42の評価結果を表5に示す。なお、重合体42は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例43(重合体43の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、n-ブチルリチウム14.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、スチームストリッピングによって重合体溶液から重合体43を回収した。重合体43の評価結果を表5に示す。なお、重合体43は合成時に式(IX)で表される化合物を使用しなかったため、式(I)で表される構成単位を含有していなかった。
製造例44(重合体44の合成)
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、1,3-ブタジエン547g、スチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応器内に投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン11.5mmol及びn-ブチルリチウム14.1mmolを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N,N-ジメチルホルムアミドジメチルアセタール11.5mmolを添加し、15分間撹拌した。重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学(株)製、商品名:スミライザーGM)1.8g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP-D)0.9gを加え、次に、重合体溶液を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、重合体44を得た。重合体44の評価結果を表5に示す。なお、重合反応器内への原料の投入量及び供給量から計算した重合体中の式(I)で表される構成単位の含有量は、重合体単位質量あたり0.006mmol/g重合体であった。
Figure JPOXMLDOC01-appb-T000083
以下に、実施例及び比較例で用いた各種薬品について説明する。
天然ゴム1:RSS#3
天然ゴム2:SIR20
ブタジエンゴム:宇部興産(株)製のウベポールBR150B
SBR:日本ゼオン(株)製のNS116R(スチレン単位の含量:20質量%、ビニル結合量:60モル%)
重合体1~44:上記製造例1~44
シリカ:エボニックデグッサ社製のウルトラシルVN3-G(NSA:175m/g)
シランカップリング剤1:エボニックデグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
シランカップリング剤2:エボニックデグッサ社製のSi363(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000084
シランカップリング剤3:Momentive社製のNXT-Z45(結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%))
シランカップリング剤4:エボニックデグッサ社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
カーボンブラック1:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
カーボンブラック2:三菱化学(株)製のダイアブラックN220(NSA:114m/g、DBP吸収量:114ml/100g)
オイル1:JX日鉱日石エネルギ-(株)製のX-140
オイル2:出光興産(株)製のNH70-S
老化防止剤1:住友化学(株)製のアンチゲン3C
老化防止剤2:住友化学(株)製のアンチゲン6C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛1:三井金属鉱業(株)製の亜鉛華1号
酸化亜鉛2:三井金属鉱業(株)製の酸化亜鉛2種
ワックス:大内新興化学工業(株)製のサンノックN
硫黄1:鶴見化学工業(株)製の粉末硫黄
硫黄2:鶴見化学工業(株)製の5%オイル処理粉末硫黄
加硫促進剤1:住友化学(株)製のソクシノールCZ
加硫促進剤2:住友化学(株)製のソクシノールD
(実施例及び比較例)
表6~18に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成型し、タイヤ成型機上で他のタイヤ部材と共に貼り合わせて未加硫タイヤを形成した後、170℃で12分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
得られた加硫ゴム組成物及び試験用タイヤを使用して、上記試験方法により評価を行った。それぞれの試験結果を表6~18に示す。
Figure JPOXMLDOC01-appb-T000085
 
Figure JPOXMLDOC01-appb-T000086
 
Figure JPOXMLDOC01-appb-T000087
 
Figure JPOXMLDOC01-appb-T000088
 
Figure JPOXMLDOC01-appb-T000089
 
Figure JPOXMLDOC01-appb-T000090
 
Figure JPOXMLDOC01-appb-T000091
 
Figure JPOXMLDOC01-appb-T000092
 
Figure JPOXMLDOC01-appb-T000093
 
Figure JPOXMLDOC01-appb-T000094
 
Figure JPOXMLDOC01-appb-T000095
 
Figure JPOXMLDOC01-appb-T000096
 
Figure JPOXMLDOC01-appb-T000097
 
表6~18に示すように、共役ジエンに基づく構成単位及び上記式(I)で表される構成単位を有し、かつ特定の化合物によって末端が変性された重合体(重合体1、6、7~15、20、21~24、29~31、36~39、44)と、シリカと、メルカプト系カップリング剤とを含んだ実施例のゴム組成物は、比較例のゴム組成物に比べて、低燃費性、ウェットグリップ性能及び耐摩耗性が相乗的に改善し、これらの性能が高次元でバランス良く得られた。

Claims (19)

  1. ゴム成分、シリカ及びシランカップリング剤を含有し、
    前記ゴム成分100質量%のうち、共役ジエンに基づく構成単位と下式(I)で表される構成単位とを有し、下式(II)で表される化合物、下式(III)で表される基を有する化合物、下式(IV)で表される化合物、下式(V)で表される基及び/又は下式(VI)で表される基を有するケイ素化合物、並びに下式(VII)で表される基を有する化合物からなる群より選択される少なくとも1種の化合物によって重合体の少なくとも一端が変性されてなる共役ジエン系重合体の含有量が5質量%以上であり、
    前記ゴム成分100質量部に対する前記シリカの含有量が5~150質量部であり、
    前記シランカップリング剤がメルカプト基を有することを特徴とするゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、X、X及びXは、それぞれ独立に、下式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下式(Ia)で表される基又は水酸基である。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子と共に環構造を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、nは1~10の整数を表し、R11、R12及びR13は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R11、R12及びR13の少なくとも1つがヒドロカルビルオキシ基であり、Aは窒素原子を有する官能基を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、pは0又は1の整数を表し、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表し、Aは窒素原子を有する官能基を表す。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、gは、1~10の整数を表し、R21は、水素原子、炭素原子数が1~6のヒドロカルビル基又は炭素原子数が1~6の置換ヒドロカルビル基を表し、Aは、酸素原子又は-NR22-基(R22は、水素原子又は炭素原子数が1~10のヒドロカルビル基を表す。)を表し、Aは、窒素原子及び/又は酸素原子を有する官能基を表す。]
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    [式中、wは1~11の整数を表し、Aは窒素原子を有する官能基を表す。]
  2. 式(Ia)のR及びRが炭素原子数1~6のヒドロカルビル基であることを特徴とする請求項1に記載のゴム組成物。
  3. 式(I)のX、X及びXの2つが式(Ia)で表される基又は水酸基であることを特徴とする請求項1又は2に記載のゴム組成物。
  4. 式(II)のAが下式(IIa)で表される基であることを特徴とする請求項1~3のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000008
    [式中、R14及びR15は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R14及びR15は結合して窒素原子と共に環構造を形成していてもよく、R14及びR15は窒素に二重結合で結合する同一の基であってもよい。]
  5. 式(III)で表される基が、下式(IIIa)で表される基であることを特徴とする請求項1~4のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000009
  6. 式(III)で表される基を有する化合物が、下式(IIIa-1)で表される化合物、下式(IIIa-2)で表される化合物及び下式(IIIa-3)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることを特徴とする請求項5に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000010
    [式中、R31は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R32及びR33は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R32及びR33は結合して窒素原子と共に環構造を形成していてもよく、R32及びR33は窒素に二重結合で結合する同一の基であってもよい。]
    Figure JPOXMLDOC01-appb-C000011
    [式中、eは0~10の整数を表し、R34及びR35は、それぞれ独立に、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
    Figure JPOXMLDOC01-appb-C000012
    [式中、fは0~10の整数を表し、R36は、炭素原子数が1~20のヒドロカルビル基又は炭素原子数が1~20の置換ヒドロカルビル基を表す。]
  7. 式(III)で表される基を有する化合物が、下式(IIIb-1)で表される化合物であることを特徴とする請求項1~4のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000013
    [式中、R37は、水素原子、炭素原子数が1~10のヒドロカルビル基、炭素原子数が1~10の置換ヒドロカルビル基、又は、窒素原子及び/若しくは酸素原子をヘテロ原子として有するヘテロ環基を表し、R38及びR39は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~10の基を表し、R38及びR39は結合して窒素原子と共に環構造を形成していてもよく、R38及びR39は窒素に二重結合で結合する同一の基であってもよく、Tは、炭素原子数が1~20のヒドロカルビレン基又は炭素原子数が1~20の置換ヒドロカルビレン基を表す。]
  8. 式(IIIb-1)で表される化合物が、下式(IIIb-1-1)で表される化合物及び下式(IIIb-1-2)で表される化合物からなる化合物群から選ばれる少なくとも1種の化合物であることを特徴とする請求項7に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000014
    [式中、rは1又は2の整数を表し、Yはベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000015
    [式中、sは1又は2の整数を表し、tは0~2の整数を表し、Y及びYは、ベンゼン環上の置換基であって、窒素原子を有する官能基を表し、Yが複数ある場合、複数あるYは、同一でも異なっていてもよく、Yが複数ある場合、複数あるYは、同一でも異なっていてもよい。]
  9. 式(IV)のAが、下式(IVa)で表される基又は水酸基であることを特徴とする請求項1~8のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000016
    [式中、R23及びR24は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R23及びR24は結合して窒素原子と共に環構造を形成していてもよく、R23及びR24は窒素に二重結合で結合する同一の基であってもよい。]
  10. ケイ素化合物が下式(VIII)で表される基を有することを特徴とする請求項1~9のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000017
    [式中、R41、R42及びR43は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R41、R42及びR43の少なくとも1つがヒドロカルビルオキシ基である。]
  11. ケイ素化合物が下式(Va)で表される基を有することを特徴とする請求項1~10のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000018
    [式中、hは1~10の整数を表し、R44、R45及びR46は、それぞれ独立に、炭素原子数が1~4のヒドロカルビル基又は炭素原子数が1~4のヒドロカルビルオキシ基を表し、R44、R45及びR46の少なくとも1つがヒドロカルビルオキシ基である。]
  12. 式(VII)で表される基を有する化合物が下式(VII-1)で表される化合物であることを特徴とする請求項1~11のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000019
    [式中、zは0~10の整数を表し、R71は炭素原子数が1~5のヒドロカルビル基を表し、R72、R73、R74及びR75は、それぞれ独立に、水素原子、炭素原子数が1~5のヒドロカルビル基、炭素原子数が1~5の置換ヒドロカルビル基又は炭素原子数が1~5のヒドロカルビルオキシ基を表し、R72及びR73が複数ある場合は、複数あるR72及び複数あるR73はそれぞれ同じであっても異なっていてもよく、R76及びR77は、それぞれ独立に、窒素原子、酸素原子及びケイ素原子からなる原子群から選ばれる少なくとも1種の原子を有していてもよい炭素原子数が1~6の基を表し、R76及びR77は結合して窒素原子と共に環構造を形成していてもよく、R76及びR77は窒素に二重結合で結合する同一の基であってもよい。]
  13. 式(VII-1)のR74及びR75の一方が水素原子であることを特徴とする請求項12に記載のゴム組成物。
  14. 共役ジエン系重合体のビニル結合量が、共役ジエンに基づく構成単位の含有量を100モル%として、10モル%以上80モル%以下であることを特徴とする請求項1~13のいずれかに記載のゴム組成物。
  15. 天然ゴム及び/又はブタジエンゴムを含有することを特徴とする請求項1~14のいずれかに記載のゴム組成物。
  16. シリカの窒素吸着比表面積が40~400m/gであることを特徴とする請求項1~15のいずれかに記載のゴム組成物。
  17. シランカップリング剤が、下式(1)で表される化合物、及び/又は下式(2)で示される結合単位Aと下式(3)で示される結合単位Bとを含む化合物であることを特徴とする請求項1~16のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000020
    [式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(b個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。bは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。]
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    [式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。]
  18. トレッド用ゴム組成物として用いられることを特徴とする請求項1~17のいずれかに記載のゴム組成物。
  19. 請求項1~18のいずれかに記載のゴム組成物を用いて作製した空気入りタイヤ。
PCT/JP2012/057344 2011-03-23 2012-03-22 ゴム組成物及び空気入りタイヤ WO2012128320A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280015296.3A CN103443191B (zh) 2011-03-23 2012-03-22 橡胶组合物及充气轮胎
EP12760492.4A EP2679628B1 (en) 2011-03-23 2012-03-22 Rubber composition and pneumatic tire
BR112013024425A BR112013024425A2 (pt) 2011-03-23 2012-03-22 composição de borracha e pneumático
US13/980,594 US9012560B2 (en) 2011-03-23 2012-03-22 Rubber composition and pneumatic tire

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011-064576 2011-03-23
JP2011064575A JP5623946B2 (ja) 2011-03-23 2011-03-23 ゴム組成物及び空気入りタイヤ
JP2011-064575 2011-03-23
JP2011064576A JP5623947B2 (ja) 2011-03-23 2011-03-23 ゴム組成物及び空気入りタイヤ
JP2011-096563 2011-04-22
JP2011096563A JP5628735B2 (ja) 2011-04-22 2011-04-22 ゴム組成物及び空気入りタイヤ
JP2011-118354 2011-05-26
JP2011118354A JP5628744B2 (ja) 2011-05-26 2011-05-26 ゴム組成物及び空気入りタイヤ
JP2011-150305 2011-07-06
JP2011150305A JP5628758B2 (ja) 2011-07-06 2011-07-06 ゴム組成物及び空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2012128320A1 true WO2012128320A1 (ja) 2012-09-27

Family

ID=46879461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057344 WO2012128320A1 (ja) 2011-03-23 2012-03-22 ゴム組成物及び空気入りタイヤ

Country Status (5)

Country Link
US (1) US9012560B2 (ja)
EP (1) EP2679628B1 (ja)
CN (1) CN103443191B (ja)
BR (1) BR112013024425A2 (ja)
WO (1) WO2012128320A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094609A1 (ja) * 2011-12-19 2013-06-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
CN105722909A (zh) * 2013-11-25 2016-06-29 住友橡胶工业株式会社 充气轮胎
US10214637B2 (en) 2012-02-22 2019-02-26 Sumitomo Rubber Industries, Ltd. Tire rubber composition and pneumatic tire

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034013B (zh) * 2017-12-28 2020-01-17 中科院广州化学有限公司 无机-有机硅杂化链转移剂及其制备方法、改性(甲基)丙烯酸酯聚合乳液及其制备方法
JP7095416B2 (ja) * 2018-06-06 2022-07-05 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
KR102421536B1 (ko) * 2019-07-15 2022-07-15 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
JP7403297B2 (ja) * 2019-12-10 2023-12-22 株式会社ブリヂストン 組成物及びポリマー成形体
EP4011921A1 (en) * 2020-12-09 2022-06-15 The Goodyear Tire & Rubber Company Rubber with backbone and end-group functionalization and its method of manufacturing and use in a tire
CN116376129B (zh) * 2023-01-13 2024-04-19 赛轮集团股份有限公司 一种超高性能轮胎胎面胶及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344955A (ja) 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd 変性ジエン系ゴム組成物
JP2008031244A (ja) 2006-07-27 2008-02-14 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびこれを用いた空気入りタイヤ
JP2009126907A (ja) 2007-11-21 2009-06-11 Sumitomo Rubber Ind Ltd ゴム組成物
JP2009263420A (ja) * 2008-04-22 2009-11-12 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた空気入りタイヤ
JP2010077414A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077413A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077412A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077415A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010189613A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp タイヤ
JP2010270292A (ja) * 2008-08-27 2010-12-02 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203251A1 (en) 2004-03-11 2005-09-15 Sumitomo Chemical Company, Limited Process for producing modified diene polymer rubber
DE602005000321T2 (de) 2004-03-18 2007-05-31 Sumitomo Rubber Industries Ltd., Kobe Kautschukmischung für Reifenlaufflächen und Luftreifen, welche diese verwenden
CN101659732A (zh) 2008-08-27 2010-03-03 住友化学株式会社 共轭二烯系聚合物、共轭二烯系聚合物组合物及其制造方法
SG159475A1 (en) * 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer and conjugated diene polymer composition
JP2010077257A (ja) 2008-09-25 2010-04-08 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
CN101724185B (zh) * 2008-10-16 2013-10-23 住友橡胶工业株式会社 橡胶组合物及轮胎

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344955A (ja) 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd 変性ジエン系ゴム組成物
JP2008031244A (ja) 2006-07-27 2008-02-14 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびこれを用いた空気入りタイヤ
JP2009126907A (ja) 2007-11-21 2009-06-11 Sumitomo Rubber Ind Ltd ゴム組成物
JP2009263420A (ja) * 2008-04-22 2009-11-12 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた空気入りタイヤ
JP2010077414A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077413A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077412A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010077415A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010270292A (ja) * 2008-08-27 2010-12-02 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2010189613A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679628A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094609A1 (ja) * 2011-12-19 2013-06-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
US9340663B2 (en) 2011-12-19 2016-05-17 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US10214637B2 (en) 2012-02-22 2019-02-26 Sumitomo Rubber Industries, Ltd. Tire rubber composition and pneumatic tire
CN105722909A (zh) * 2013-11-25 2016-06-29 住友橡胶工业株式会社 充气轮胎
US10189987B2 (en) 2013-11-25 2019-01-29 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Also Published As

Publication number Publication date
EP2679628B1 (en) 2016-03-02
CN103443191B (zh) 2015-09-02
US9012560B2 (en) 2015-04-21
BR112013024425A2 (pt) 2016-12-20
US20130303679A1 (en) 2013-11-14
CN103443191A (zh) 2013-12-11
EP2679628A1 (en) 2014-01-01
EP2679628A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5249404B2 (ja) ゴム組成物及び空気入りタイヤ
EP2679629B1 (en) Rubber composition and pneumatic tire
US9012560B2 (en) Rubber composition and pneumatic tire
WO2012144488A1 (ja) ゴム組成物及び空気入りタイヤ
US10189987B2 (en) Pneumatic tire
WO2012144577A1 (ja) ゴム組成物及び空気入りタイヤ
EP2671916B1 (en) Rubber composition and pneumatic tire
JP5628735B2 (ja) ゴム組成物及び空気入りタイヤ
JP2013204003A (ja) ベーストレッド用ゴム組成物及び空気入りタイヤ
WO2012147830A1 (ja) ゴム組成物及び空気入りタイヤ
JP6041552B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5628758B2 (ja) ゴム組成物及び空気入りタイヤ
JP5628744B2 (ja) ゴム組成物及び空気入りタイヤ
JP5623946B2 (ja) ゴム組成物及び空気入りタイヤ
WO2012144576A1 (ja) ゴム組成物及び空気入りタイヤ
JP5977087B2 (ja) トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
JP2014019725A (ja) タイヤサイド部補強用ゴム組成物及びランフラットタイヤ
JP5866244B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5890260B2 (ja) トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
JP5922472B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP5952083B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5933310B2 (ja) トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
WO2012144575A1 (ja) ゴム組成物及び空気入りタイヤ
JP2014001304A (ja) タイヤサイド部補強用ゴム組成物及びランフラットタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005105

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012760492

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024425

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024425

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130923