WO2012127081A1 - Planta desalinizadora solar de agua de mar, salmueras o aguas residuales y procedimiento de desalinizacion - Google Patents

Planta desalinizadora solar de agua de mar, salmueras o aguas residuales y procedimiento de desalinizacion Download PDF

Info

Publication number
WO2012127081A1
WO2012127081A1 PCT/ES2012/000070 ES2012000070W WO2012127081A1 WO 2012127081 A1 WO2012127081 A1 WO 2012127081A1 ES 2012000070 W ES2012000070 W ES 2012000070W WO 2012127081 A1 WO2012127081 A1 WO 2012127081A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
enclosure
air
column
plant according
Prior art date
Application number
PCT/ES2012/000070
Other languages
English (en)
French (fr)
Inventor
Angel BOSCH I BOSCH
Original Assignee
Universitat Politecnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica De Catalunya filed Critical Universitat Politecnica De Catalunya
Priority to EP12761424.6A priority Critical patent/EP2690069B1/en
Priority to AU2012230190A priority patent/AU2012230190B2/en
Priority to US14/006,476 priority patent/US9623344B2/en
Priority to MX2013010787A priority patent/MX339099B/es
Publication of WO2012127081A1 publication Critical patent/WO2012127081A1/es
Priority to IL228547A priority patent/IL228547B/en
Priority to ZA2014/02729A priority patent/ZA201402729B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0005Evaporating devices suitable for floating on water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • B01D5/0066Dome shaped condensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention refers, in a first aspect, to a solar desalination plant of seawater, brines or wastewater.
  • the invention concerns in a second aspect a process for desalination of seawater, brine or wastewater.
  • the invention is within the technical sector of water treatment by desalination and evaporation using solar energy. In particular, it allows the desalination of seawater and recovery of useful salt.
  • the object of the invention is centered on a solar water desalination plant (sea, brine or wastewater) by means of a tent or roof, advantageously light collection of irradiation, and column condensation that defines a closed enclosure, based on calories captured and refrigerators available underground.
  • a computer monitoring of the system variables is carried out by a computer program for capturing values and searching for an optimal performance regime.
  • the water desalination plant of the invention is based on the capture of heat by transparent and black parallel sheets outside and inside, respectively, exposed to the pyramid-shaped sun that concentrates the hot air at its apex.
  • the seawater that will be sucked into a condensation column is evaporated, which, in a first simple mode, leads it to the subsoil where the lower temperature of the latter causes the condensation of the contained vapor.
  • the performance is improved by the inclusion in the condensation column of sectioned chambers where condensation occurs in order to recover the latent heat of evaporation, which is transferred to the salt water to be vaporized.
  • thermoelectric plants Based on renewable energies, on the one hand, facilities that take energy from hydrothermal sources or residual energy are known in installations, such as thermoelectric plants and those that resort to the sun or wind.
  • the primary objective of these facilities is more the greenhouse than desalination, and in fact the desalinated water is used in it.
  • the efficiencies are not optimized for maximum performance and the technical solutions are different and less efficient than the one proposed here.
  • the invention still and being based on the use of solar energy and the vaporization of the water to be treated and condensation of the humid air resulting from the vaporization, proposes an effective solution for said treatment cycle, in addition to providing significant improvements as far as to the recovery of water and useful salt, with a high yield and to provide a habitable enclosure susceptible of use for diverse uses (agriculture, cabin, etc.).
  • the proposed system is based on the use of heat from the sun and allows you to take advantage of heat stroke to vaporize and distill water. In addition, it is in the months of greatest water need when the system allows more performance. Another advantage is that the energy expenditure is negligible since most of the necessary energy comes from the sun (except a small amount of electrical energy, for general operation of the system that can also come from the sun through photovoltaic panels).
  • the seawater desalination plant that the invention advocates comprises a solar heat collector by means of a structure or surface of dark material (to retain maximum heat) and with another transparent surface parallel to the previous one, for example in shape of pyramidal tent between which two parallel surfaces an inter-space is defined that generates a heated air layer that ascends to the top of the tent.
  • the pyramid shape of said structure allows heat to accumulate on the cusp until it provides high temperatures that allow the vaporization of seawater injected by micro-nebulizers. This results in a moisture-laden air that is sucked (by a vacuum-compressor assembly) by a central tube (axial to the pyramid) or condensation column that directs it towards a 'cold spot' consisting of one or more reservoirs located / s underground.
  • a vacuum-compressor assembly axial to the pyramid
  • condensation column that directs it towards a 'cold spot' consisting of one or more reservoirs located / s underground.
  • the air For its part, the air, partially cooled, as well as part of its condensed water load, arrives at the aforementioned reservoir where it cools even more, since it is in the subsoil, which maintains an always lower temperature (coldest point of the whole process).
  • the invention also contemplates the incorporation of a computer control of the processes that evaluates the variables at all times, in order to optimize yields; all this with the use of statistical techniques of data collection and adjustment of complex equations by least squares and generalized linear and nonlinear models in a process that could be called "self-learning" of the system itself.
  • the system controls are: air flow and water mist, system operating regime. These are evaluated and modified (monitored) in order to achieve the highest yields in any case: inclination of the incidence of sunrays, air and water temperatures, etc.
  • this installation cannot operate at the same rate at all times, since by varying the primary element (the sun) and some secondary elements (air and water temperatures) every hour is different from all others.
  • the installation as a whole consists of very light and economical materials: polyvinyl sheets, polyethylene pipes and polyester structures reinforced with fiberglass, which allows it to be installed on land, at sea (floating) or on the roof of a house or block of flats.
  • the space enclosed in the tent of the pyramidal structure allows other uses, such as homes, farms and / or nurseries.
  • the environment is comfortable and at night the system is silent, it stops working when the sun goes down.
  • the system itself allows the use of galleries and reservoirs as a source of heat or cold to acclimatize the space inside the tent conveniently.
  • the plant enclosure may have different configurations including the aforementioned quadrangular pyramidal configuration including a single condensation-distillation column or a configuration with at least one upper portion in elongated triangular dome including several spaced condensation-distillation columns.
  • the number 1 and only figure shows a schematic representation of an embodiment of the solar seawater, brine or wastewater desalination plant object of the invention in which the elements it comprises and the operation of the system are appreciated, having represented for this the movements of water and air circulation by means of arrows.
  • the plant comprises:
  • a wrapping structure that delimits a closed enclosure 1, in the example illustrated in the form of a pyramidal tent with a dark inner sheet (to retain maximum heat) and a transparent outer surface or sheet 2, arranged parallel to the previous one, so that in the inter-space defined by these two surfaces a layer of air heated by solar energy is generated, ascending towards the upper part of the structure;
  • a characteristic of the plant lies in the fact that a section of the water supply conduit (A) to be treated interferes with the humid air collection duct at a high temperature next to the upper end of the column., With what the water of contribution to nebulize is heated and this favors the evaporation process.
  • the installation further comprises a freshwater collecting tank 7, which, disposed at a certain depth, for example in the subsoil or submerged in seawater, below the condensation column 3 provides a low temperature to the tank 4, in general of smaller size that is located inside it to allow condensation.
  • This collecting tank 7 is cooled overnight to allow evacuating the heat accumulated during the day, in case the system is on the ground, but not in the case of a floating structure.
  • the communication of said reservoir 7 with the outside is provided for this purpose to provide an air flow from the outside environment at a time when its temperature is adequate.
  • the tank 7 can be connected to galleries with a system that homogenizes the temperature and allows a good dispersion of heat in the subsoil, in addition to serving as a cistern to accumulate water at times of maximum production to be used at times of maximum consumption .
  • the low temperature of the collecting tank is ensured, since the temperature of the sea water at a certain depth is always lower than that of the environment (in external sunstroke conditions).
  • the figure shows a water trap 8 incorporated in the smaller tank 4, to discharge it into the tank 7, since it is closed to allow the circulation of air with a single impeller.
  • a water trap 8 incorporated in the smaller tank 4, to discharge it into the tank 7, since it is closed to allow the circulation of air with a single impeller.
  • the collecting tank 7, which is the one that stores the water produced and that must provide the necessary refrigerators to the system.
  • the minimum content of the tank 7 that must be maintained to ensure this task and the cooling that must be provided at night are calculated so that the next day it is able to perform its condenser work. It also serves as a cistern.
  • a support base 9 or installation area is the place where the plant is located and which can be both on the ground, as on the sea with floats - dashed line, and can also be the roof of a house, since The weight is not high.
  • the collection area 10 of the salt which in the example shown is located in the lower central area of the pyramidal structure 1, is the place where the non-vaporized water and salt fall, this because the CINa molecule is heavier than that of water. At least one access and one passage to the interior of the enclosure 1 is provided for removal of the useful salt, accumulated at the foot of the column or columns 3.
  • the rest of the space delimited under the transparent cover 2 is useful as a cabin or for agricultural purposes with a controllable microclimate.
  • the seawater (A) to be desalted is injected through micro-nebulizers 6 provided in the upper part of the condensation column 3, saturated air that is collected near the vertex to direct it through the condensation column duct to the bottom of the pyramid structure tent 1.
  • the vertex or higher part of said pyramidal structure 1 receives the less dense air, which is mostly that which is loaded with moisture, since the greater the moisture load of the less dense air will be. From here it takes the air that will pass through the condensation column 3, which sucks it through its upper part and directs it towards the smaller tank 4 which is a 'cold spot' and where the collecting tank 7 is placed to which water discharges through the trap, and the remaining calories by diffusion.
  • the condensation in the column can be sectioned to better recover the latent heat of condensation.
  • the air 5 By circulating through the tubes the air 5 reaches the point where it is again introduced to the system at the base of the pyramid, which normally coincides with the support base 9 where it can collaborate in the drying of the rest of salt water that did not vaporize at exit through the micro nebulizers 6; It is heated by solar radiation and again contributes to the vaporization of water thus closing the air circuit.
  • the invention also contemplates the incorporation of a computerized control system (not shown) of the processes comprising: air flow and water mist controls and operating regime of the installation.
  • the invention thus provides a process for desalination of seawater, brines or wastewater, characterized by performing a vaporization stage of the water to be treated by micropulvering said fluid in a high area of a closed enclosure, delimited by a transparent envelope, in which hot air generated by solar energy accumulates, and by proceeding to capture the humid air resulting from vaporization in said area and transport to a condensation column (3), vertical, and distillation completing the condensation and heat dissipation in at least one tank (4, 7) installed in the subsoil or below sea level, and recirculation of the humid air captured, discharged from water, into the enclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental Sciences (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Comprende una carpa o cubierta de estructura con forma piramidal (1) con doble lámina interior oscura y exterior transparente instalada sobre una base de sustentación (9) anclada al suelo o en unos flotadores en la superficie del mar, en la que se incorporan unos medios de vaporización en el vértice de la pirámide con unos micro nebulizadores para pulverizar el agua a tratar, medios de captación del aire húmedo por columna de condensación (3) continua o seccionada y destilación en subsuelo y disipación del calor en depósito menor (4) de recogida de agua, y recirculación de aire desprovisto de humedad al interior del recinto (1). Además, incorpora un sistema de control informatizado de los procesos que comprende controles de caudal de aire y del agua nebulizada y régimen de funcionamiento de la instalación.

Description

0
1
PLANTA DESALINIZADORA SOLAR DE AGUA DE MAR, SALMUERAS O AGUAS RESIDUALES Y PROCEDIMIENTO DE DESALINIZACION
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere, en un primer aspecto, a una planta desalinizadora solar de agua de mar, salmueras o aguas residuales.
La invención concierne en un segundo aspecto a un procedimiento para desalinización de agua de mar, salmuera o aguas residuales.
La invención se encuentra dentro del sector técnico de tratamiento de aguas por desalinización y evaporación usando energía solar. En particular permite la desalinización de agua del mar y recuperación de sal útil.
Más en particular, el objeto de la invención se centra en una planta desalinizadora solar de agua (de mar, salmueras o aguas residuales) mediante una carpa o cubierta, ventajosamente ligera de captación de irradiación, y condensación en columna que define un recinto cerrado, basándose en las calorías captadas y las frigorías disponibles en el subsuelo. Se realiza una monitorizacion mediante ordenador de las variables del sistema por programa informático de captación de valores y búsqueda de régimen óptimo de rendimiento.
La desalinizadora de agua de la invención está basada, en la captación de calor por láminas paralelas transparente y negra en exterior e interior, respectivamente, expuestas al sol en forma de pirámide que concentran en su vértice el aire caliente. Aquí, mediante micro nebulizadores se evapora el agua de mar que será succionada en una columna de condensación que, en una primera modalidad sencilla, lo conduce hacia el subsuelo donde la temperatura inferior de éste provoca la condensación del vapor contenido.
En una segunda opción se mejora el rendimiento mediante la inclusión en la columna de condensación de cámaras seccionadas donde se produce condensación a fin de recuperar el calor latente de evaporación, el cual es transferido al agua salada que ha de vaporizarse.
Dado que las condiciones externas: irradiación, temperaturas del aire y el agua captada son variables a lo largo del día y en los diferentes días de años cambiantes, no se puede pensar en obtener un máximo rendimiento con un único régimen de funcionamiento: caudales de aire y agua, régimen de presiones y temperaturas. Por ello se propone un sistema de control informático que captando los valores de las variables y los rendimientos en cada momento, construya las funciones matemáticas sobre datos empíricos que determinarán la vinculación entre las variables y buscará los máximos relativos para en cada caso optimizar los rendimientos - métodos estadísticos de ajuste por mínimos cuadrados y modelos lineales y no lineales generalizados. Se trataría de un sistema de autoaprendizaje continuo.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad, y como referencia al estado de la técnica, debe señalarse que son conocidos distintos sistemas para la desalinizacion del agua, sin embargo, por parte del solicitante se desconoce la existencia de ninguna otra planta o invención de aplicación similar que presente unas características técnicas semejantes a las que presenta la que aquí se preconiza.
En este sentido hay que señalar que se han revisado muchos métodos de separación del agua de las sales desde la osmosis inversa que es la que más se ha implantado recientemente en el mundo, con grandes costes energéticos y de inversión en las instalaciones, hasta la destilación por efecto flash, que es la que mayor cantidad de agua desala, aunque está asociada a instalaciones pequeñas y también con grandes costes energéticos. Las propuestas anteriormente mencionadas recurren a fuentes convencionales de energía, lo que las hace muy caras de operar.
Basadas en las energías renovables se conocen, por una parte, instalaciones que toman la energía de fuentes hidrotermales o energías residuales en instalaciones, como por ejemplo plantas termoeléctricas y las que recurren al sol o al viento.
Dentro de las que toman el sol como fuente de energía se conocen varias propuestas a lo largo de los años, con eficiencias y complejidades varias. La más actual y exitosa hasta el momento es la presentada por la compañía británica seawatergreenhouse® que dispone de instalaciones en Santa Cruz de Tenerife,
Omán y Emiratos Árabes Unidos; y que es la más parecida a la que aquí se propone.
Consta también de un gran invernadero que sirve de captador de calor, pero la evaporación la efectúa en un panel de evaporación en una de las paredes y condensa gracias a la captación de agua de mar fría procedente de cotas profundas para volver a usarla en la evaporación. Un ejemplo de implementación de esta tecnología aparece descrito en la AU 2010224409-A1 de la citada compañía.
El objetivo primario de estas instalaciones es más el invernadero que la desalinizacion, y de hecho el agua desalinizada se usa en él. Las eficiencias no están optimizadas para un rendimiento máximo y las soluciones técnicas son diferentes y menos eficientes que la que se propone aquí. No usan el subsuelo como refrigerador (en su caso están condicionados a la disponibilidad de agua de mar de cotas profundas para tener suficientes frigorías) y, además, no usan la optimización por ordenador ni la concentración de aire cálido propuesta en la estructura piramidal.
Asimismo, y relacionadas con el tema, cabe mencionar la existencia de los siguientes documentos: ES 426199, ES 8604071 , ES 2346605 A1 , ES 2078885 A1 , ES 2109888 A1 , ES 2185514 A1 , FR 2957388 A1 , US 4343683, EP 626345 A1. En estos antecedentes se describe en general soluciones basadas en la evaporación del agua a tratar por energía solar y la condensación ulterior del vapor de agua para recuperar agua útil.
La invención aún y estar basada en el aprovechamiento de la energía solar y en la vaporización del agua a tratar y condensación del aire húmedo resultado de la vaporización, propone una solución eficaz para el citado ciclo de tratamiento, además de aportar unas mejoras importantes en cuanto a la recuperación de agua y sal útil, con un elevado rendimiento y proporcionar un recinto habitable susceptible de aprovechamiento para usos diversos (agricultura, habitáculo, etc.).
EXPLICACIÓN DE LA INVENCIÓN
La desalineación del agua de mar (u otras aguas salobres o residuales, aunque la invención se centrará en la primera) es una herramienta que hoy día puede permitir la obtención de agua dulce sin más limitación que la energía requerida para separar el agua de la sal contenida. Esto se hace en la actualidad con la técnica de la osmosis inversa o con otros procedimientos que suponen gran gasto económico por la energía requerida y el coste de las instalaciones.
Teniendo en cuenta que donde más necesaria es el agua dulce es también donde más insolación hay, el sistema que se propone se basa en el aprovechamiento del calor del sol y permite aprovechar la insolación para vaporizar y destilar el agua. Además, es en los meses de mayor necesidad hídrica cuando más rendimiento permite el sistema. Otra de sus ventajas es que el gasto energético es ínfimo ya que la mayor parte de la energía necesaria procede del sol (excepto una pequeña cantidad de energía eléctrica, para funcionamiento general del sistema que también puede provenir del sol mediante placas fotovoltaicas).
En concreto, la planta desalinizadora de agua de mar que la invención propugna comprende un captador de calor solar mediante una estructura o superficie de material oscuro (para retener el máximo de calor) y con otra superficie transparente paralela a la anterior, por ejemplo en forma de carpa piramidal entre cuales dos superficies paralelas se define un inter-espacio que genera una capa de aire calentado que asciende hacia la cúspide de la carpa.
La forma de pirámide de dicha estructura permite acumular el calor en la cúspide hasta proporcionar en ella unas temperaturas elevadas que permiten la vaporización del agua de mar inyectada mediante micro nebulizadores. Esto da lugar a un aire cargado de humedad que se succiona (mediante un conjunto aspirador- compresor) por un tubo central (axial a la pirámide) o columna de condensación que lo dirige hacia un 'punto frío' constituido por uno o más depósitos situado/s en el subsuelo. Con el propósito de tener un circuito cerrado del aire que permita su circulación con un solo compresor, se tienen un depósito de menor tamaño incluido dentro de uno mayor que comprende una red de galerías y un remanente de agua almacenada y sus correspondientes frigorías, para disipar el calor y condensar el vapor. Un purgador transfiere el agua producida en el depósito pequeño hacia las galerías.
En el transcurso del trayecto del agua de mar que se ha de insuflar, ésta ha transcurrido por un tubo vertical dentro de la columna de condensación que transporta contracorriente la mezcla aire-vapor y permitiendo así la condensación de éste en forma de agua dulce mediante intercambiador de calor: aire húmedo-agua de mar; el agua salada de entrada se ha ido calentando. Las circulaciones son siempre contracorriente. En los puntos donde la temperatura a disipar es mayor, la temperatura del elemento captador es mayor, y viceversa. Así, la eficiencia del proceso de recuperación de calorías queda asegurada.
Por su parte, el aire, parcialmente enfriado, así como parte de su carga de agua condensada, llega al depósito anteriormente citado donde se enfría aún más, al estar éste en el subsuelo, el cual mantiene una temperatura siempre inferior (punto más frío de todo el proceso).
En este punto se produce la condensación máxima del agua contenida. Este aire vuelve hacia la parte superior donde se va calentando a la vez que favorece la condensación del aire húmedo que circula en sentido contrario durante un tramo, también con intercambiador de calor y de nuevo contracorriente.
Se requiere enfriamiento nocturno de las galerías o aljibes subterráneos para que al día siguiente se disponga de un buen recurso de frigorías para el sistema.
Circulando el aire por el tubo previsto a tal efecto, llega al punto en que es de nuevo introducido al sistema en la base de la pirámide donde podrá colaborar en el secado del resto de agua salada que no se vaporizó al salir por los micro nebulizadores; se calienta con la radiación solar y vuelve a contribuir a la vaporización del agua cerrando así el circuito del aire.
En la zona central inferior de la pirámide se recoge sal marina. 0
La invención contempla así mismo la incorporación de un control informático de los procesos que evalúe las variables en cada momento, a fin de llegar a optimizar los rendimientos; todo ello con la utilización de técnicas estadísticas de toma de datos y ajuste de ecuaciones complejas por mínimos cuadrados y modelos lineales y no lineales generalizados en un proceso que se podría denominar de "auto-aprendizaje" del propio sistema.
Los controles del sistema son: caudal de aire y del agua nebulizada, régimen de funcionamiento de la instalación. Éstos son evaluados y modificados (monitorizados) a fin de alcanzar los mayores rendimientos en cualquier caso: inclinación de la incidencia de los rayos solares, temperaturas del aire y el agua, etc.
A diferencia de otras propuestas, esta instalación no puede funcionar al mismo régimen en todo momento, ya que al variar el elemento primario (el sol) y algunos secundarios (temperaturas del aire y del agua) cada hora es diferente a todas las demás.
Por ello, mediante el control informatizado de "auto-aprendizaje" y monitorización de parámetros puede alcanzar los máximos rendimientos.
La instalación en su conjunto consta de materiales muy ligeros y económicos: láminas de polivinilo, tuberías de polietileno y estructuras de poliéster reforzado con fibra de vidrio, lo cual permite instalarlo en tierra, en el mar (flotando) o en el tejado de una vivienda o bloque de viviendas.
Por último, cabe destacar que el espacio encerrado en la carpa de la estructura piramidal permite otras utilizaciones, tales como viviendas, granjas y/o viveros. El entorno es confortable y en la noche el sistema es silencioso, deja de funcionar cuando se va el sol. El propio sistema permite utilizar las galerías y aljibes como fuente de calor o frío para aclimatar a conveniencia el espacio dentro de la carpa. Al no cerrar completamente la pirámide de lámina oscura (queda en forma de tronco de pirámide) hay una entrada de luz al interior de la carpa que permite su utilización como invernadero u otros usos.
El recinto de la planta puede tener diferentes configuraciones entre ellas la citada configuración piramidal cuadrangular incluyendo una única columna de condensación-destilación o una configuración con al menos una porción superior en cúpula triangular alargada incluyendo varias columnas de condensación-destilación distanciadas.
En un ejemplo de realización de una planta situada en Ibiza, se han calculado unos rendimientos teóricos de más de 2 m3 anuales por m2 de carpa de captación (20000 m3 por Ha año, latitud 39° N, Ibiza). Visto lo que antecede, se constata que la descrita planta desalinizadora solar de agua de mar, salmueras o aguas residuales representa una estructura innovadora de características estructurales y constitutivas desconocidas hasta ahora para tal fin, y con resultados industriales
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando del mecanismo objeto de la invención y para ayudar a una mejor comprensión de las características que lo distinguen, se acompaña la presente memoria descriptiva, como parte integrante de la misma, de un plano, en el que con carácter ilustrativo y no limitativo se ha representado lo siguiente:
La figura número 1 y única, muestra una representación esquemática de un ejemplo de realización de la planta desalinizadora solar de agua de mar, salmueras o aguas residuales objeto de la invención en la que se aprecian los elementos que comprende y el funcionamiento del sistema, habiéndose representado para ello los movimientos de circulación del agua y del aire mediante unas flechas.
DESCRIPCION DE UN EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN A la vista de la descrita figura 1 y única, y de acuerdo con la numeración adoptada en ella, se puede apreciar las partes y elementos que comprende la planta desalinizadora de la invención así como entender el proceso de funcionamiento de la misma.
La planta comprende:
- una estructura envolvente que delimita un recinto cerrado 1 , en el ejemplo ilustrado en forma de carpa piramidal con una lámina interior de color oscuro (para retener el máximo de calor) y una superficie o lámina exterior transparente 2, dispuesta paralela a la anterior, de forma que en el inter-espacio que definen dichas dos superficies se genera una capa de aire calentado por energía solar, ascendente hacia la parte alta de la estructura;
una columna 3 vertical, que finaliza en una región próxima a dicha parte alta del recinto;
una conducción A de aportación de agua a tratar que queda soportada en la citada columna 3;
- unas toberas 6 para micronebulización del agua a tratar, bombeada a través de dicha conducción A, hacia dicha zona de acumulación de aire calentado, produciendo una vaporización del agua, y una evacuación de los cristales salinos que caen por gravedad hacia la base de la columna 3, donde se acumulan;
un equipo para bombeo del agua a tratar circulando por la conducción A hacia las citadas toberas 6;
- un conducto axial a la citada columna 3 para captación del aire húmedo, mediante un conjunto aspirador-compresor C situado junto a la cúspide de la columna 2, en una zona de entrada al conducto axial;
un depósito 4 receptor del líquido condensado conectado a la citada columna de captación de aire húmedo; y
- unos tubos 5 para recirculación del aire desde el citado depósito 4 de líquido condensado hacia el interior del recinto 1.
Una característica de la planta reside en el hecho de que un tramo de la conducción (A) de aportación de agua a tratar, interfiere con el conducto de captación del aire húmedo a elevada temperatura junto a la zona extrema superior de la columna., con lo que el agua de aportación a nebulizar se calienta y ello favorece el proceso de evaporación.
La instalación comprende además un depósito colector 7 de agua dulce, el cual, dispuesto a cierta profundidad, por ejemplo en el subsuelo o sumergido en el agua de mar, debajo de la columna de condensación 3 proporciona una temperatura baja al depósito 4, en general de menor tamaño que queda situado dentro de él para permitir la condensación. Este depósito colector 7 se enfría durante la noche para permitir evacuar el calor acumulado durante el día, en caso de que el sistema se encuentre en el suelo no así en caso de estructura flotante. Se ha previsto a tal efecto la comunicación de dicho depósito 7 con el exterior para aportación de un caudal de aire del ambiente exterior en un momento en que su temperatura sea adecuada. Además el depósito 7 puede estar conectado a galerías con un sistema que homogeneice la temperatura y permita una buena dispersión del calor en el subsuelo, además de servir de aljibe para acumular agua en los momentos de máxima producción para ser usada en los momentos de máximo consumo.
Si la planta se instala sobre el mar, la baja temperatura del depósito colector está asegurada, dado que la temperatura del agua de mar a cierta profundidad es siempre más baja que la del entorno (en condiciones externas de insolación).
Se aprecia en la figura un purgador de agua 8 incorporado en el depósito menor 4, para descargar éste hacia el depósito 7, puesto que está cerrado para permitir la circulación del aire con un sólo impulsor. A medida que se acumula agua en dicho depósito menor 4 ésta se descarga al depósito colector 7, que es quien almacena el agua producida y que debe proporcionar las frigorías necesarias al sistema.
Se calcula el contenido mínimo del depósito 7 que debe mantenerse para asegurar esta tarea y el enfriamiento que se debe proporcionar en la noche para que al día siguiente sea capaz de ejercer su labor de condensador. Además sirve de aljibe.
Una base de sustentación 9 o área de instalación, es el lugar donde se sitúa la planta y que puede ser en tanto en el suelo, como sobre el mar con flotadores -línea discontinua, pudiendo así mismo tratarse del tejado de una vivienda, ya que el peso no es elevado.
El área de recogida 10 de la sal, que en el ejemplo representado se sitúa en la zona central inferior de la estructura piramidal 1 es el lugar donde cae el agua no vaporizada y la sal, ello debido a que la molécula de CINa es más pesada que la del agua. Se ha previsto al menos un acceso y un paso al interior del recinto 1 para retirada de la sal útil, acumulada al pie de la columna o columnas 3.
Por otro lado el resto del espacio delimitado bajo la cubierta transparente 2 es útil como habitáculo o para fines agrícolas con un microclima controlable.
Así pues, el funcionamiento de la planta es, como ya se ha apuntado anterior, el siguiente:
En primer lugar, el agua de mar (A) a desalar es inyectada a través unos micro nebulizadores 6 previstos en la parte superior de la columna de condensación 3, aire saturado que se recoge cerca del vértice para dirigirlo a través del conducto columna de condensación a la parte inferior de la carpa de estructura de piramidal 1.
El vértice o parte más alta de dicha estructura piramidal 1 acoge el aire menos denso, que es mayormente aquél que está cargado de humedad, ya que cuanta mayor sea la carga de humedad del aire menos denso será. De aquí toma el aire que transcurrirá por la columna de condensación 3, que lo succiona por su parte superior y lo dirige hacia el depósito menor 4 que es un 'punto frío' y donde se sitúa el depósito colector 7 al que descarga agua mediante el purgador, y las calorías restantes mediante difusión. La condensación en la columna puede seccionarse para recuperar mejor el calor latente de condensación.
En el transcurso del trayecto del agua de mar que se ha de insuflar, ésta ha transcurrido por un tubo vertical dentro de la columna de condensación 3 que transporta contracorriente la mezcla aire-vapor permitiendo la condensación en forma de agua dulce mediante el intercambiador de calor, aire húmedo-agua de mar.
Por su parte, el aire, parcialmente enfriado, así como parte de su carga de agua condensada, llega ai depósito menor 4 (punto más frío de todo el proceso).
En este punto se produce la condensación máxima del agua contenida. El aire vuelve hacia la parte superior donde se va calentando a la vez que favorece la condensación del aire húmedo que circula en sentido contrario durante un tramo, también con intercambiador de calor y de nuevo contracorriente.
Circulando por los tubos el aire 5 llega al punto en que es de nuevo introducido al sistema en la base de la pirámide, que normalmente coincide con la base de sustentación 9 donde podrá colaborar en el secado del resto de agua salada que no se vaporizó al salir por los micro nebulizadores 6; se calienta con la radiación solar y vuelve a contribuir a la vaporización del agua cerrando así el circuito del aire.
La invención contempla asimismo la incorporación de un sistema de control informatizado (no representado) de los procesos que comprende: controles de caudal de aire y del agua nebulizada y régimen de funcionamiento de la instalación.
La invención aporta así un procedimiento para desalinización de agua de mar, salmueras o aguas residuales, caracterizado por realizar una etapa de vaporización del agua a tratar mediante una micropulverización de dicho fluido en una zona alta de un recinto cerrado, delimitado por una envolvente transparente, en la que se acumula aire caliente generado por energía solar, y por proceder a la captura del aire húmedo resultante de la vaporización en dicha zona y transporte hacia una columna de condensación (3), vertical, y destilación completando la condensación y disipación del calor en al menos un depósito (4, 7) instalado en el subsuelo o bajo el nivel del mar, y recirculación del aire húmedo captado, descargado de agua, hacia el interior del recinto.
La aportación de aire caliente hacia la parte alta del recinto, donde se produce la vaporización se realiza mediante un captador solar asociado a dicha envolvente transparente, y distanciado del mismo, que proporciona un interespacio inclinado, ascendente.

Claims

R E I V I N D I C A C I O N E S
1- Planta desalinizadora solar de agua de mar, salmueras o aguas residuales, caracterizada por comprender un recinto cerrado delimitado por una envolvente transparente (2) y con una zona superior en bóveda, cúpula triangular o piramidal (1), instalada sobre una base de sustentación (9) anclada al suelo o en unos flotadores en la superficie del mar, en la que se incorporan unos medios de vehiculación del aire del interior del recinto, calentado por energía solar, hacia la parte más alta del recinto, medios de vaporización próximos a dicha parte alta que incluyen unos micro nebulizadores del agua a tratar, aportada, medios de captación de aire húmedo resultante de la vaporización hacia una columna de condensación (3) y destilación que comunica con un depósito (4, 7) en el subsuelo o bajo el nivel del mar, en donde se completa la condensación y disipación del calor y medios (5) de recirculación del aire húmedo captado, descargado de agua, hacia el interior del recinto (1).
2. - Planta desalinizadora según la reivindicación 1 , caracterizada porque dichos medios para vehiculación de aire caliente hacia la parte más alta del recinto (1) comprenden una superficie de captación solar (2a), formada por una superficie interior al recinto (1) paralela a la envolvente exterior (2) transparente, y distanciada de la misma delimitando un espacio inclinado ascendente.
3. - Planta desalinizadora según la reivindicación 2, caracterizada porque dicha superficie captadora (2a) es una superficie con un acabado oscuro.
4.- Planta desalinizadora según la reivindicación 1 , que comprende: a) una carpa o cubierta que delimita dicho recinto (1) cerrado;
b) medios para conducción y acumulación de aire calentado al menos por energía solar ;
c) hacia la parte alta de dicha zona superior del recinto (1);
d) al menos una columna (3), vertical, que finaliza en una región próxima a dicha parte alta del recinto;
e) al menos una conducción (A) de agua a tratar que queda soportada en la citada columna (3);
f) unas toberas (6) para micronebulización del agua bombeada hacia dicha zona de acumulación de aire calentado, produciendo una vaporización del agua, y 11
una evacuación de los cristales salinos que caen por gravedad hacia la base de la columna (3), donde se acumulan;
medios para bombeo del agua a tratar hacia las citadas toberas;
un conducto axial a la citada columna (3) para captación del aire húmedo, mediante un conjunto aspirador-compresor situado junto a la cúspide de la columna (2), en una zona de entrada al conducto axial;
al menos un depósito (4) receptor del líquido condensado conectado a la citada columna de captación de aire húmedo; y
unos tubos (5) para recirculación del aire desde el citado, al menos un depósito (4), de líquido condensado hacia el interior del recinto (1).
5. - Planta desalinizadora según la reivindicación 4, caracterizado porque al menos un tramo de la conducción (A) de aportación de agua a tratar, interfiere con el conducto de captación del aire húmedo a elevada temperatura junto a la zona extrema superior de la columna.
6. - Planta desalinizadora según una cualquiera de las reivindicaciones anteriores caracterizada porque dicho depósito (4) queda ubicado en el interior de un depósito mayor, (7) destinado al aporte o servicio del agua útil recuperada, situado a un nivel inferior, con una comunicación selectiva de uno a otro depósito mediante una válvula controlada o purgador (8).
7. - Planta desalinizadora según la reivindicación 6, caracterizado porque dicho depósito comprende varias ramas que se extienden por debajo de la base del recinto, desde cuales ramas se establece una comunicación de retorno del aire desprovisto de humedad hacia el interior del recinto por los tubos (5).
8. - Planta desalinizadora según la reivindicación 7, caracterizado porque dicho depósito (7) tiene una comunicación con el exterior mediante al menos una conducción para introducción desde el exterior, de aire de refresco en un momento seleccionado por una temperatura adecuada del ambiente exterior.
9. - Planta desalinizadora según una cualquiera de las reivindicaciones anteriores caracterizada porque el citado recinto (1) tiene una configuración piramidal cuadrangular incluyendo una única columna (3) o una configuración con al menos una porción superior en cúpula triangular alargada incluyendo varias columnas (3) distanciadas.
10. - Planta según una cualquiera de las reivindicaciones anteriores caracterizada porque incorpora un sistema de control informatizado de los procesos que comprende controles de caudal de aire y del agua a tratar nebulizada y régimen de funcionamiento de la instalación.
11. - Planta según una cualquiera de las reivindicaciones anteriores caracterizada porque tanto el citado depósito colector menor (4) como el depósito colector (7) están dispuestos a cierta profundidad por debajo de la columna de condensación (3).
12. - Planta según la reivindicación 11 , según la reivindicación 4, caracterizada porque el depósito colector (4) está comunicado y en contacto con unas galerías del subsuelo para disipación del calor.
13. - Planta según una cualquiera de las reivindicaciones anteriores caracterizada porque se ha previsto una zona de recogida y acumulación de sal junto al pie de la columna o columnas (3) y porque el resto del espacio delimitado bajo la cubierta transparente (2) es útil como habitáculo o para fines agrícolas con un microclima controlable.
14. - Planta, según la reivindicación 13, caracterizado porque se ha previsto al menos un acceso y un paso al interior del recinto (1) para retirada de la sal útil, acumulada al pie de la columna o columnas (3).
15. - Procedimiento para desalinización de agua de mar, salmueras o aguas residuales, caracterizado por realizar una etapa de vaporización del agua a tratar mediante una micropulverización de dicho fluido en una zona alta de un recinto cerrado, delimitado por una envolvente transparente, en la que se acumula aire caliente generado por energía solar, y por proceder a la captura del aire húmedo resultante de la vaporización en dicha zona y transporte hacia una columna de condensación (3), vertical, y destilación completando la condensación y disipación del calor en al menos un depósito (4, 7) instalado en el subsuelo o bajo el nivel del mar, y recirculación del aire húmedo captado, descargado de agua, hacia el interior del recinto.
16. - Procedimiento según la reivindicación 15, caracterizado por aportar aire caliente hacia la parte alta del recinto, donde se produce la vaporización mediante un captador solar asociado a dicha envolvente transparente, y distanciado del mismo, que proporciona un interespacio inclinado, ascendente.
17. - Procedimiento según una cualquiera de las reivindicaciones anteriores 15 o 16, caracterizado porque se ha previsto la comunicación de dicho depósito (4, 7) con el exterior para aportación de un caudal de aire del ambiente exterior en un momento en que su temperatura sea adecuada.
18. - Procedimiento según la reivindicación 15, caracterizado porque a partir del depósito (7) se proporciona un suministro de agua útil, recuperada.
PCT/ES2012/000070 2011-03-22 2012-03-22 Planta desalinizadora solar de agua de mar, salmueras o aguas residuales y procedimiento de desalinizacion WO2012127081A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12761424.6A EP2690069B1 (en) 2011-03-22 2012-03-22 Solar desalination plant for sea water, brines or waste water and desalination method
AU2012230190A AU2012230190B2 (en) 2011-03-22 2012-03-22 Solar desalination plant for sea water, brines or waste water and desalination method
US14/006,476 US9623344B2 (en) 2011-03-22 2012-03-22 Seawater, brine or sewage solar desalination plant, and desalination method
MX2013010787A MX339099B (es) 2011-03-22 2012-03-22 Planta desalinizadora solar de agua de mar, salmueras o aguas residuales y procedimiento de desalinizacion.
IL228547A IL228547B (en) 2011-03-22 2013-09-29 Solar desalination plant for sea water, salt water and wastewater and desalination method
ZA2014/02729A ZA201402729B (en) 2011-03-22 2014-04-14 Solar desalination plant for sea water ,brines or waste water and desalination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201130414 2011-03-22
ES201130414A ES2401516B1 (es) 2011-03-22 2011-03-22 Planta desalinizadora solar de agua de mar, salmueras o aguas residuales.

Publications (1)

Publication Number Publication Date
WO2012127081A1 true WO2012127081A1 (es) 2012-09-27

Family

ID=46878660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000070 WO2012127081A1 (es) 2011-03-22 2012-03-22 Planta desalinizadora solar de agua de mar, salmueras o aguas residuales y procedimiento de desalinizacion

Country Status (8)

Country Link
US (1) US9623344B2 (es)
EP (1) EP2690069B1 (es)
AU (1) AU2012230190B2 (es)
ES (1) ES2401516B1 (es)
IL (1) IL228547B (es)
MX (1) MX339099B (es)
WO (1) WO2012127081A1 (es)
ZA (1) ZA201402729B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057674A (zh) * 2013-01-18 2013-04-24 上海交通大学 救生筏用太阳能海水淡化保温顶棚
CN112723452A (zh) * 2021-01-04 2021-04-30 孔令斌 一种漂浮在水面的太阳能海水淡化装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102546B2 (en) * 2011-09-20 2015-08-11 Saudi Arabian Oil Company Apparatus for distillation of water and methods for using same
US20130161180A1 (en) * 2011-12-27 2013-06-27 William R. Brown Solar Water Still
CN103288285B (zh) * 2013-06-21 2014-08-06 常州市亚美电气制造有限公司 塔式聚光太阳能光热储能发电海水淡化制盐滩涂养殖系统
US10035080B2 (en) 2014-10-20 2018-07-31 At&T Mobility Ii Llc Liquid purification methods and apparatus
CA2882972A1 (en) * 2015-02-24 2016-08-24 Gaston Beaulieu Vertically integrated industrial scale multilevel closed ecosystem greenhouse
US9956497B2 (en) 2015-06-12 2018-05-01 Carei Nical Churcheart Saltwater evaporation mechanism
US20170081210A1 (en) * 2015-09-18 2017-03-23 Pasteurization Technology Group, Inc. Solar wastewater disinfection system and method
CN105347412B (zh) * 2015-11-13 2017-10-27 武汉理工大学 一种应用于小型船舶的海水淡化装置
WO2019023746A1 (en) * 2017-07-31 2019-02-07 Dmac Ip Pty Ltd WATER MANAGEMENT SYSTEM
CN109264807B (zh) * 2018-11-19 2021-07-02 东北林业大学 一种木材凝胶基整体式太阳能海水淡化装置
CN109867319A (zh) * 2019-04-22 2019-06-11 华北电力大学(保定) 一种太阳能海水淡化器装置
CN110980850B (zh) * 2019-12-19 2022-05-03 西安交通大学 太阳能取水发电装置及取水发电方法
US11597660B2 (en) * 2021-02-22 2023-03-07 Saudi Arabian Oil Company Control of hot air flow circulation within a solar desalination system
US11554970B2 (en) * 2021-02-22 2023-01-17 Saudi Arabian Oil Company Hot air flow-circulation within a solar desalination system
US11318396B1 (en) * 2021-10-06 2022-05-03 David Quadrini, Jr. System of water supply, desalination and mineral retrieval
ES2938958B2 (es) * 2021-10-13 2024-02-08 Univ Malaga Estructura de condensación y desalinización de agua mediante energía solar para sistemas flotantes de desalinización
WO2023236083A1 (zh) * 2022-06-08 2023-12-14 鹏辰新材料科技股份有限公司 一种芳烃溶剂生产用挥发气体处理装置
CN116589008B (zh) * 2023-06-16 2024-04-26 上海海事大学 一种零卤水的太阳能海水淡化装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES426199A1 (es) 1974-05-10 1977-01-16 Isla Ordonana Jose Ant Planta desalinizadora y potabilizadora aprovechando la ener-gia calorifica de las zonas geotermicas y volcanicas.
US4343683A (en) 1978-01-12 1982-08-10 Diggs Richard E Method for desalinating water
DE3122312A1 (de) * 1981-06-05 1982-12-23 Dr. Melchior Entwicklungsgesellschaft mbH & Co KG, 5630 Remscheid Vorrichtung zum entsalzen von meerwasser
ES8604071A1 (es) 1985-05-23 1986-01-16 Gonzalez Castro Jose Anton Instalacion para la desalinizacion de agua, en especial del agua del mar
EP0626345A1 (de) 1993-05-27 1994-11-30 Willy Kaufmann Vorrichtung zum Entsalzen von Meerwasser
ES2078885A1 (es) 1994-04-08 1995-12-16 Urbano Pedro Montero Planta potabilizadora perfeccionada de agua marina.
ES2109888A1 (es) 1996-01-16 1998-01-16 Montero Urbano Pedro Perfeccionamientos en la construccion de plantas potabilizadoras de agua marina.
ES2185514A1 (es) 2001-10-13 2003-04-16 Fernandez De Mazarambroz Berna Planta para la obtencion de agua exenta de sal a partir de aguas marinas, a baja temperatura, con funcionamiento continuo y recuperacion de entalpia.
FR2851766A1 (fr) * 2003-02-27 2004-09-03 Yves Renaut Procede pour la production d'eau douce a partir d'eau de mer ou d'eaux saumatres
WO2005042411A1 (de) * 2003-10-28 2005-05-12 Rolf Goldschmidt Meerwasserentsalzungsverfahren und -vorrichtung
WO2009073929A1 (en) * 2007-12-13 2009-06-18 H2Oasis Energy Pty Ltd Solar distillation device
GB2464724A (en) * 2008-10-24 2010-04-28 Stephen Butterton Method and apparatus for distilling water from sea water
ES2346605A1 (es) 2006-12-04 2010-10-18 Jose Antonio Revuelta De Celis Desalinizadora de agua.
FR2957388A1 (fr) 2010-03-15 2011-09-16 Essertaux Jean Marie D Cheminee solaire de production d'electricite, de recyclage d'eau et de production agricole
AU2010224409A1 (en) 2010-03-31 2011-10-20 Seawater Greenhouse (Australia) Pty Limited Humidified and cooled greenhouse

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3138546A (en) * 1958-05-02 1964-06-23 John G Muller Apparatus utilizing solar energy for demineralizing water
US5588779A (en) * 1995-06-07 1996-12-31 Schlumberger Industries, Inc. Sight, vent, and drain assembly for an underground tank
NO304976B1 (no) * 1997-02-04 1999-03-15 Pure Water Tech Ltd As Vannrenseanlegg
BR9807411A (pt) * 1997-02-18 2000-03-14 Masakatsu Takayasu Método e dispositivo para desalinização de água do mar
DE10353544B3 (de) * 2003-11-14 2005-09-08 Karl Reinhard Zeiss Bauwerk
FR2941227B1 (fr) * 2008-08-20 2013-02-08 Ugolin Nicolas Procede de dessalement ou d'epuration d'eau par distillation d'un spray
US20110266132A1 (en) * 2008-12-29 2011-11-03 Motohide Takezaki Air flow-circulation seawater desalination apparatus
CN102712501B (zh) * 2009-09-21 2015-05-20 顿悟太阳能水系统公司 太阳能水净化系统

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES426199A1 (es) 1974-05-10 1977-01-16 Isla Ordonana Jose Ant Planta desalinizadora y potabilizadora aprovechando la ener-gia calorifica de las zonas geotermicas y volcanicas.
US4343683A (en) 1978-01-12 1982-08-10 Diggs Richard E Method for desalinating water
DE3122312A1 (de) * 1981-06-05 1982-12-23 Dr. Melchior Entwicklungsgesellschaft mbH & Co KG, 5630 Remscheid Vorrichtung zum entsalzen von meerwasser
ES8604071A1 (es) 1985-05-23 1986-01-16 Gonzalez Castro Jose Anton Instalacion para la desalinizacion de agua, en especial del agua del mar
EP0626345A1 (de) 1993-05-27 1994-11-30 Willy Kaufmann Vorrichtung zum Entsalzen von Meerwasser
ES2078885A1 (es) 1994-04-08 1995-12-16 Urbano Pedro Montero Planta potabilizadora perfeccionada de agua marina.
ES2109888A1 (es) 1996-01-16 1998-01-16 Montero Urbano Pedro Perfeccionamientos en la construccion de plantas potabilizadoras de agua marina.
EP1443025A1 (en) * 2001-10-13 2004-08-04 HERNANDEZ HERNANDEZ, Fernandez Maria Installation used to obtain salt-free sea water at a low temperature with continuous operation and enthalpy recovery
ES2185514A1 (es) 2001-10-13 2003-04-16 Fernandez De Mazarambroz Berna Planta para la obtencion de agua exenta de sal a partir de aguas marinas, a baja temperatura, con funcionamiento continuo y recuperacion de entalpia.
FR2851766A1 (fr) * 2003-02-27 2004-09-03 Yves Renaut Procede pour la production d'eau douce a partir d'eau de mer ou d'eaux saumatres
WO2005042411A1 (de) * 2003-10-28 2005-05-12 Rolf Goldschmidt Meerwasserentsalzungsverfahren und -vorrichtung
ES2346605A1 (es) 2006-12-04 2010-10-18 Jose Antonio Revuelta De Celis Desalinizadora de agua.
WO2009073929A1 (en) * 2007-12-13 2009-06-18 H2Oasis Energy Pty Ltd Solar distillation device
GB2464724A (en) * 2008-10-24 2010-04-28 Stephen Butterton Method and apparatus for distilling water from sea water
FR2957388A1 (fr) 2010-03-15 2011-09-16 Essertaux Jean Marie D Cheminee solaire de production d'electricite, de recyclage d'eau et de production agricole
AU2010224409A1 (en) 2010-03-31 2011-10-20 Seawater Greenhouse (Australia) Pty Limited Humidified and cooled greenhouse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690069A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057674A (zh) * 2013-01-18 2013-04-24 上海交通大学 救生筏用太阳能海水淡化保温顶棚
CN112723452A (zh) * 2021-01-04 2021-04-30 孔令斌 一种漂浮在水面的太阳能海水淡化装置

Also Published As

Publication number Publication date
AU2012230190A1 (en) 2013-10-31
ZA201402729B (en) 2017-09-27
MX339099B (es) 2016-05-11
AU2012230190B2 (en) 2017-04-20
IL228547A0 (en) 2013-12-31
US9623344B2 (en) 2017-04-18
ES2401516B1 (es) 2014-03-27
EP2690069B1 (en) 2019-05-08
US20140054159A1 (en) 2014-02-27
EP2690069A4 (en) 2015-01-14
EP2690069A1 (en) 2014-01-29
IL228547B (en) 2018-07-31
ES2401516A1 (es) 2013-04-22
MX2013010787A (es) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2012127081A1 (es) Planta desalinizadora solar de agua de mar, salmueras o aguas residuales y procedimiento de desalinizacion
US7467523B2 (en) Autonomous water source
El-Ghonemy RETRACTED: Fresh water production from/by atmospheric air for arid regions, using solar energy
US6116034A (en) System for producing fresh water from atmospheric air
US20160114259A1 (en) Water treatment assembly comprising a solar evaporator
ES2402815T3 (es) Destilación isotérmica de agua libre de gas
US9289696B2 (en) Water desalination system using geothermal energy
CA2719496A1 (en) Condensation system for dehumidification and desalination
Lindblom Solar thermal technologies for seawater desalination: state of the art
RU2146744C1 (ru) Способ получения воды из воздуха
Chaibi et al. Solar thermal processes: A review of solar thermal energy technologies for water desalination
US20090308810A1 (en) Separation Apparatus and Method
ES2370552B1 (es) Procedimiento de refrigeración por tiro natural de una planta de concentración solar.
US20120234666A1 (en) Apparatus and methods for water treatment
ES2751848B2 (es) Dispositivo de desalinizacion y potabilizacion por evaporacion sobre un flujo en canal
JP4913635B2 (ja) 淡水化装置
US20090308091A1 (en) Waste Heat Air Conditioner
ES2716623B2 (es) Planta para desalinizacion de agua
KR102076849B1 (ko) 해수면에서 태양광가열로 응축수 응축보강을 위한 응축장치
ES2296519B1 (es) Evaporador solar de salina.
JP7053218B2 (ja) 水処理装置
Ghazouani et al. Solar Desalination by Humidification–Dehumidification: A Review. Water 2022, 14, 3424
NL1018558C2 (nl) Inrichting voor het bereiden van zoet water uit (niet drinkbaar) water.
KR20130127019A (ko) 나선형 열교환기를 이용한 히트펌프의 열원공급 장치
TWI472363B (zh) 太陽能海水淡化裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/010787

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012761424

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012230190

Country of ref document: AU

Date of ref document: 20120322

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14006476

Country of ref document: US