WO2012126272A1 - 全视野闪电事件观测系统及方法 - Google Patents

全视野闪电事件观测系统及方法 Download PDF

Info

Publication number
WO2012126272A1
WO2012126272A1 PCT/CN2012/000323 CN2012000323W WO2012126272A1 WO 2012126272 A1 WO2012126272 A1 WO 2012126272A1 CN 2012000323 W CN2012000323 W CN 2012000323W WO 2012126272 A1 WO2012126272 A1 WO 2012126272A1
Authority
WO
WIPO (PCT)
Prior art keywords
full
mode
lightning
data acquisition
processing unit
Prior art date
Application number
PCT/CN2012/000323
Other languages
English (en)
French (fr)
Inventor
吕伟涛
马颖
张阳
杨俊�
姚雯
郑栋
孟青
张义军
Original Assignee
中国气象科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国气象科学研究院 filed Critical 中国气象科学研究院
Priority to US13/980,515 priority Critical patent/US8902312B2/en
Publication of WO2012126272A1 publication Critical patent/WO2012126272A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/16Measuring atmospheric potential differences, e.g. due to electrical charges in clouds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0842Measurements related to lightning, e.g. measuring electric disturbances, warning systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This invention relates to lightning observations, and more particularly to an observation system and method for lightning events in a full field of view. Background technique
  • Lightning is a spectacular weather phenomenon that occurs in the atmosphere. Along with transient high currents, high voltages, and strong electromagnetic radiation, it often causes major disasters, causing not only casualties, but also aerospace. Major industries such as defense, communications, electronics, chemical oil, post and telecommunications, transportation, and forests cause serious economic losses. With the rapid development of social economy, the improvement of modernization level and the popularization and application of information technology, the degree of lightning damage, economic losses and social impacts are increasing.
  • the real-time positioning data of lightning is an important basis for early warning of the area where lightning activity will occur to take countermeasures and reduce the loss of lightning disasters.
  • lightning location data is also an important basis for conducting disaster investigations.
  • the detection efficiency and positioning accuracy of the lightning location system are critical to the effectiveness of lightning warnings, the assessment of lightning warning results, and the investigation of lightning disasters.
  • the system has a simple structure and is convenient to set up.
  • the observation data of the system is sufficient for the effective evaluation of the detection efficiency and positioning accuracy of the existing lightning location system.
  • Another further object of the present invention is to provide a full-field lightning event observation system with a temperature control device, which provides automatic temperature control of the working environment of some devices or modules of the system, so that it can be stable and reliable for a long time. Work in the wild environment.
  • the present invention provides a full field lightning event observation system including a cabinet, a photographing device, a sensor, a data acquisition device, a processing unit, and a control module.
  • the top of the case has an opening, and a transparent shield is mounted at the opening.
  • the photographing device is disposed inside the case and at the opening.
  • the sensor senses characteristic parameters of the thunderstorm activity and produces sensed data.
  • the data acquisition device acquires the sensed data from the sensor.
  • the processing unit receives the sensing data from the data collection device, and the processing unit causes the system to be in a first working mode when the sensing data indicates that there is no thunderstorm weather process within the observation range of the system Having the data collection device in a first data collection mode, the processing unit causing the system to be in a second operational mode and causing the data to be present when the sensing data indicates a thunderstorm weather process within an observation range of the system
  • the acquisition device is in the second data acquisition mode.
  • the control module is disposed within the housing, the control module receiving a first command from the processing unit when the sensing data indicates that there is no thunderstorm weather process within the observation range of the system, and based on the first Instructing to turn off the photographing device, thereby stopping capturing a digital image of a full field of view, the control module receiving a second instruction from the processing unit when the sensing data indicates a thunderstorm weather process within the observation range of the system The second command activates the camera to capture a digital image of the full field of view.
  • the first working mode is a normal monitoring mode
  • the first data collecting mode is a low-speed real-time data collecting mode
  • the second working mode is a lightning observation mode
  • the second data collecting mode is a high-speed real-time data. Acquisition mode.
  • the characterization parameter is a corona current.
  • the photographing device includes a digital camera and a fisheye lens disposed on the digital camera, the angle of view of the fisheye lens is greater than or equal to 180 degrees, and an imaging surface of the photographing device is horizontally arranged, the fisheye lens Above the upper surface of the box and &, the axis points in the direction of the zenith.
  • the full-field lightning event observation system further includes a shading device
  • An optical device is disposed in the casing, between the protective cover and the photographing device, and the control module controls the shading device to close based on the first instruction to cover the photographing device, and the control module is based on The second command controls the shading device to open so as not to cover the photographing device.
  • the shading device comprises a motor, a light shielding flap and two limit switches, wherein the limit switch is configured to limit a rotational position of the shading flap, and in the first working mode, the The control module controls the rotation of the motor to close the shading flap based on the first instruction to cover the photographing device, and in the second working mode, the control module controls the fan based on the second command
  • the motor is rotated in the reverse direction to open the shutter, never covering the camera.
  • the full-field lightning event observing system further includes a temperature control device disposed in the casing and configured to adjust an ambient temperature in the casing, and the control module is coupled to the temperature control device And controlling the temperature control device.
  • the full-field lightning event observing system further includes a power module, wherein the power module is disposed in the box and coupled to the photographing device, the control module, the shading device, and the temperature control device powered by.
  • the full-field lightning event observation system further includes a GPS antenna and a GPS time-out module, the GPS antenna is coupled to the GPS timing module, the GPS timing module is coupled to the processing unit, and the GPS timing module is used for Timing is performed on the processing unit and the accurate trigger time information is acquired and sent to the processing unit in response to an external trigger signal, the time precision requirement being better than 1 ⁇ ⁇ .
  • the processing unit is a computer
  • the data collection device is a data acquisition card
  • the present invention also provides a full-field lightning event observation method, comprising the steps of: providing a full-field lightning event observation system, the full-field lightning event observation system comprising a photographing device, a sensor, and a data acquisition device; The device collects sensing data of the thunderstorm activity from the sensor in a low-speed real-time data acquisition mode; and determines whether there is a thunderstorm weather process within the observation range of the system based on the sensing data; when there is no observation range in the system During a thunderstorm weather process, the system is placed in a normal monitoring mode, the data acquisition device is placed in a low-speed real-time data acquisition mode, and the camera is turned off, thereby stopping capturing a digital image of the full field of view; and when the system is When the thunderstorm weather process exists in the observation range, the system is placed in the lightning observation mode. The data acquisition device is in a high-speed real-time data acquisition mode, and activates the camera to observe lightning events in a full field of view.
  • the invention has the following advantages and beneficial effects: 1. It can observe the lightning events in the full field of view, obtain the image of the lightning channel, and give the GPS time and lightning category (the cloud flash and the ground flash) when the lightning event occurs in the image. ) and the polarity of the ground flash; 2. It can be used to evaluate the detection efficiency and positioning accuracy of the existing lightning positioning system; 3. Monitor the halo current waveform in real time, and automatically open the shading device only when there is thunderstorm weather in the observation range. Image acquisition and automatic control of the working environment temperature, can effectively improve the efficiency of equipment use, extend the service life of the equipment, and work stably in the field for a long time. 4. Simple structure, convenient installation, and low cost. . DRAWINGS
  • FIG. 1 is a schematic diagram of a full field lightning event observation system in accordance with the present invention.
  • FIG. 2 is a flow chart of a full field lightning event observation system in accordance with the present invention
  • FIG. 3 is a flow chart of a lightning event observation method in accordance with the present invention.
  • a full field lightning event observation system 10 including a processing unit 12, a case 14 and a power module 16, is schematically illustrated in accordance with the present invention.
  • Processing unit 12 is for processing data and controlling the operation of some of the devices or modules of system 10.
  • processing unit 12 may be a computer and may include a clock (not shown).
  • the case 14 may be a protective case having a circular opening 18 on the top upper surface, and a transparent shield 20 is mounted at the opening 18.
  • transparent refers to being unobstructed for shooting lightning events and is not limited to being transparent to light of a particular wavelength or range of wavelengths.
  • the opening 18 is a circular opening.
  • the shield 20 is hemispherical.
  • the shield 20 is made of a material having hydrophobic properties, or the surface is sprayed with a hydrophobic coating.
  • the shield 20 is an acrylic hemispherical shield coated with a hydrophobic coating.
  • the box body 14 can be designed with double metal and intermediate insulation materials. It can also be made directly from a hard material that has thermal insulation and waterproof properties.
  • the cabinet is designed with double metal and intermediate insulation materials. It can also be made directly from a hard material that has thermal insulation and waterproof properties.
  • the cabinet is designed with double metal and intermediate insulation materials. It can also be made directly from a hard material that has thermal insulation and waterproof properties.
  • the cabinet
  • the shape of 14 can be a square cavity or a cylindrical cavity, or any other suitable shape.
  • the housing 14 is constructed of a double layer of metal, with an insulative material in the shape of a square cavity.
  • the power module 16 is used to power some of the devices or modules of the full-field lightning event observing system 10, as will be described in further detail below.
  • the power module 16 can be disposed within the cabinet 14.
  • the full field lightning event observation system 10 further includes a camera 22 that is disposed within the cabinet 14 and located at the opening 18, the camera 22 being adapted to capture a digital image of the full field of view field of view.
  • the camera 22 includes a digital camera 24 and a fisheye lens 26 disposed on the digital camera 24 with a viewing angle of 180 degrees or greater.
  • the digital camera 24 is used to capture an image and directly output a digital signal of the captured image, and does not require an image capture card, and is directly connected to the processing unit 12 through the data line to transmit the captured image to the processing unit 12.
  • digital camera 24 may be a digital camera in the visible or infrared range, and may employ a USB, 1394, Camera Link or GigE interface, or any other interface known in the art. If a digital camera 24 of the USB or 1394 interface type is selected, the digital camera 24 can be powered directly by the connection line with the processing unit 12; if a digital camera 24 of the Camera Link or GigE interface is selected, the digital camera 24 can be The power module 16 is powered. For the digital camera 24 of the Camera Link interface, a Camera Link digital image acquisition processing card (not shown) can also be installed in the processing unit 12.
  • the horizontal image plane 24 is arranged a digital camera, fisheye lens 26 and an optical axis directed upward zenith direction, the fisheye lens 26 above the housing: the upper surface of the mounting plane in order to achieve the above The entire field of view is imaged.
  • the fisheye lens 26 is slightly above the upper surface of the casing 14, as long as the full field of view imaging is achieved, in a preferred embodiment, the fisheye lens 26 is 10 mm above the upper surface of the casing 14.
  • the full field lightning event observation system 10 also includes a sensor 28 for sensing the characterization parameters of the thunderstorm activity within the observation range and generating sensed data.
  • the characterization parameter is a corona current and the sensor 28 is a corona current sensor for sensing a corona current.
  • the characterizing parameters may be known in the art; any parameter characterizing the thunderstorm activity, such as changes in the electric field, and magnetic field changes intensity light radiation '
  • the sensor 28 can be any sensor known in the art that is capable of sensing the characterization parameters, such as fast and slow electric field change sensors, magnetic coils, photodiodes, and the like.
  • the full field lightning event observing system 10 also includes a data acquisition device 30 for acquiring sensed data of the characterization parameters from the sensor 28.
  • data acquisition device 30 is a data acquisition card mounted on a PCI slot within processing unit 12 (in this embodiment, a computer) for transmitting data over a PCI bus.
  • the data acquisition card has at least one input channel and one output channel, the highest sampling rate is not less than 1 MS/s, and the output channel has a trigger output function.
  • the input channel is coupled to the sensor 28.
  • an output channel having a trigger output function is coupled to a GPS timing module 42 (described in more detail below).
  • the full-field lightning event observation system 10 further includes a control module 32 for implementing the full-field lightning event observation system 10 Control of some devices or modules.
  • the control module 32 is disposed within the housing 14.
  • control module 32 is coupled to camera 22 and receives commands from processing unit 12, such as through a serial port, to effect control of camera 22.
  • the control module 32 can be a PLC (Programmable Controller) or a microcontroller board.
  • control module 32 is a PLC that is coupled to processing unit 12, such as through a serial port.
  • processing unit 12 determines the operational mode of full-field lightning event observation system 10 and the data acquisition mode of data acquisition device 30 based on the sensed data collected by sensor 28 from data acquisition device 30.
  • the processing unit 12 causes the system 10 to be in the first operational mode and the data acquisition device 30 is in the first data acquisition mode
  • the control module 32 receives the first instruction from the processing unit 12 and turns off the imaging device 22 based on the first instruction, thereby stopping the shooting.
  • the processing unit 12 When the sensing data indicates that there is a thunderstorm weather process in the observation range of the full-field lightning event observation system 10, the processing unit 12 causes the system 10 to be in the second operational mode and the data acquisition device 30 is in the second data acquisition mode, and the control module 32 The processing unit 12 receives the second command and activates the camera 22 based on the second command to proceed to the camera.
  • observation range means a radius of 15 km centered on the full-field lightning event observation system 10.
  • the first mode of operation is a conventional monitoring mode
  • the first data acquisition mode is a low speed real time data acquisition mode
  • the second mode of operation is a lightning observation mode
  • the second data acquisition mode is a high speed real time data acquisition mode.
  • the processing unit 12 continuously acquires images from the photographing device 22 in real time and detects in real time whether or not there is a lightning channel in the acquired image.
  • the photographing device 22 is turned off, and the processing unit 12 performs real-time food analysis on the sensing data collected by the data collecting device 30 from the sensor 28 to determine whether there is a thunderstorm weather process in the observation range.
  • processing unit 12 transitions system 10 to a lightning observation mode and causes data acquisition device 30 to transition to a high speed real-time data acquisition mode while the camera 22 is turned on to enter a continuous acquisition state. If there is no thunderstorm weather process, processing unit 12 causes system 10 to maintain the regular monitoring mode and maintain data acquisition device 30 in a low speed real time data acquisition mode.
  • high speed means that the sampling rate is not less than 1 M times / sec
  • low speed means that the sampling rate is not higher than 10 times / sec.
  • the full field lightning event observing system 10 can also include an optical device 34.
  • the control module 32 is coupled to the shading device 34 and receives commands from the processing unit 12, such as through a serial port, to effect control of the shading device 34.
  • the shading device 34 can be disposed within the housing 14 between the housing 20 and the camera 22.
  • the control module 32 controls the shading device 34 to close based on the first command to cover the photographing device 22, and the control die 32 controls the shading device 34 to open based on the second command so as not to cover the photographing device 22.
  • shading The device 34 includes a motor (not shown), a shutter 56 and two limit switches (not shown), wherein the limit switch can be a rotational position known to the art for the shade flap 36.
  • control module 32 controls the rotation of the motor to close the opacifying flap 36 based on the first command to cover the camera 22, and in the second mode of operation, the control module 32 is based on The second command controls the motor to rotate in the opposite direction to open the shutter 56, without covering the camera 22.
  • the full field lightning event observing system 10 can also include a temperature control device 38.
  • the control module 32 is coupled to the temperature control device 38 and receives commands from the processing unit 12, such as through a serial port, to effect control of the temperature control device 38.
  • the temperature control device 38 can be disposed within the tank 14 and used to adjust the ambient temperature within the tank 14.
  • the temperature control device 38 can be arranged in the housing 14 and used to adjust the working environment temperature of the imaging unit 22 in order to meet the normal operation requirements of the imaging device 22, so that it can work stably and reliably in the harsh environment in the field for a long time. in.
  • the full-field lightning event observation system 10 can also include a GPS antenna 40 and a GPS timing module: 42.
  • GPS antenna 40 can be connected to GPS timing module Block 42, the GPS timing module 42 can be coupled to the processing unit 12.
  • the GPS timing module 42 is configured to time the processing unit 12 for 4 times and obtain accurate trigger time information in response to the external trigger signal and send it to the processing unit 12 with a time precision requirement of better than 1 s.
  • power module 16 can couple and power camera 22, control module 32, shading device 34, and temperature control device 38.
  • the cabinet 14, sensor 28 and GPS antenna 40 are both located outdoors, and the GPS timing module 42 and processing unit 12 are located indoors.
  • processing unit 12 coupled to camera 22, sensor 28, control module 32, and GPS timing module 42 accomplishes the following tasks by collecting data and transmitting instructions: collecting characterization parameters of thunderstorm activity from sensor 28 (particularly Sensing data for corona current); sending instructions to the control module 32 to control the camera 22 and the shading device 34; acquiring, saving and displaying the captured device 22. capturing the image, detecting whether there is a lightning channel in the image; Obtaining the GPS time from the GPS timing module 42 and performing the timing; acquiring and recording the waveform data of the rapid and large change of the sensing data and the time information of the trigger output of the data acquisition device 30, thereby discriminating the lightning type (cloud flash and ground flash) and The polarity of the ground flash.
  • system 10 can have a variety of modes of operation: a conventional monitoring mode and a lightning observation mode.
  • system 10 is in a regular monitoring mode. In this mode, the camera 22 is turned off (no shooting), and the data acquisition device 30 is in the low-speed real-time data acquisition mode (for example, sampling 10 times or 100 times per second).
  • data acquisition device 30 performs low speed real time data acquisition, for example, on the corona current waveform.
  • the processing unit 12 performs real-time analysis on the collected corona current data, and in step 108, determines that there is a thunderstorm weather process within the observation range. If there is a thunderstorm weather, turn the system 10 into a flash, electrical observation mode in step 1 10. If there is no thunderstorm weather, return to step 104.
  • the camera 22 is in an active state (photographing state) in this mode, and the data collection device 30 is in a high speed real time data acquisition mode.
  • the shading device 34 is turned on in step 112, and the data acquisition device is placed in the high speed real time data acquisition mode in step 14.
  • the photographing device 22 is turned on at step 116.
  • the processing unit 12 causes the photographing device 22 to continuously acquire digital images of the full field of view in real time.
  • the processing unit 12 detects the lightning bolt in the acquired image in real time in step 120.
  • the track and in step 122 determine if there is a lightning path.
  • step 124 If there is a lightning channel, Bay
  • the processing unit 12 monitors the change of the electric current-carrying waveform in real time at a high speed in step 126 and determines whether the trigger condition is met in step 128. If the electric current waveform has a rapid and large change (that is, the trigger condition is met), in step 130, the data acquisition device 30 outputs a trigger signal to the GPS timing module 42, and the GPS timing module 42 transmits the trigger time information to the processing through the serial port. Unit 12, and then processing unit 12 temporarily stores the GPS trigger time and the corresponding corona current change waveform at step 132.
  • step 134 For each image in which a lightning path is detected, the processing unit 12 records in step 134 a waveform in which all corona current waveforms appearing during the exposure period corresponding to the image and a trigger time thereof are recorded, and in the step The image of the lightning channel combined with the corona current variation waveform in 136 analyzes the lightning events of the image in the other 'J (cloud flash and ground flash) and polarity (ground flash), and then stores the analysis results in step 138. : In step 140, it is judged whether the thunderstorm weather process is over.
  • step 144 the data collection device 30 is switched to the low speed real time data acquisition mode, and then returns to step 102, and the system 10 transitions to the conventional monitoring mode ; if it is determined in step 140 that the thunderstorm weather process has not ended, Return to step 1 18.
  • a set threshold eg, 15 minutes
  • the GPS timing module 42 performs GPS timing on the processing unit 12 (e.g., every 10 minutes), whether in the conventional detection mode or in the lightning observation mode, to ensure that the clock of the processing unit 12 is better than lms.
  • the image acquisition and the lightning channel detection can be processed by the parallel algorithm.
  • the real-time acquisition and analysis of the corona current waveform can be implemented by a parallel algorithm, which can meet the requirements of real-time data acquisition and processing.
  • the full-field lightning event observation system 10 of the present invention can automatically acquire images of full-view range cloud flash and ground flash channels, record GPS time of cloud flash and ground flashes, and polarity information of ground flashes under the control of processing unit 12: .
  • the image of the lightning channel can provide the azimuth information of the grounding point relative to the observation position.
  • the position information of the exact ground point can be obtained from the image, such as the top end is within the field of view.
  • the ground flash that occurs on the hillside where the grounding position can be seen on the building or in the field of view, combined with the flash time of the ground flash image and the GPS time of the ground flash can detect the existing ground flash positioning system ⁇ Rate and positioning accuracy are evaluated.
  • the image of the lightning channel provides azimuth and elevation information for different locations of the lightning path, allowing evaluation of the results of the lightning source location system.
  • the full field lightning event observation system 10 of the present invention is also suitable for monitoring lightning activity within a designated area.
  • the full-field lightning device observation system 10 of the invention can realize the automatic shading of the photographing device and the automatic control of the working environment temperature in the non-thunderstorm weather, so that it can work stably and reliably in the field environment for a long time.
  • two sets of lightning observing systems can be erected at a distance (e.g., 2 km) in a region.
  • the lightning channel image obtained by the two full-field lightning observation systems can synthesize the three-dimensional position of the lightning channel, thereby evaluating the results of the lightning three-dimensional detection system.
  • the present invention also discloses a lightning event observation method 200.
  • the lightning event observation method 200 in accordance with the present invention is described in detail below.
  • a full field lightning event observation system is provided, the full field lightning event observation system including a camera, a sensor, and a data acquisition device.
  • the sensing data of the sensor for thunderstorm activity is acquired from the sensor by the data acquisition device in a low-speed real-time data acquisition mode.
  • step 214 When the system determines that the thunderstorm weather process occurs within the observation range, then the system is placed in the lightning observation mode in step 214, the data acquisition device is placed in the high speed real time data acquisition mode in step 216, and the camera is activated in step 218, thereby Lightning events in the full field of view are observed s. Then, in step 222, it is determined whether the thunderstorm weather is over. If the thunderstorm weather does not end, then return to step 220. If the thunderstorm weather is over, the system is placed in the normal monitoring mode at step 208, the data acquisition device is placed in the low speed real time data acquisition mode at step 210, and the camera is turned off at step 212, thereby stopping capturing the digital image of the full field of view and then returning Go to step 204.
  • Coupled is not limited to direct connections, but rather includes various forms of indirect connections as are known in the art.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

全视野闪电事件观测系统及方法 技术领域
本发明涉及闪电观测, 更特别地涉及全视野范围内闪电事件的观 测系统及方法。 背景技术
闪电 (雷电) 是发生于大气中的一种壮观的天气现象, 伴随着瞬 态大电流、 高电压和强电磁辐射, 常会引起重大的灾害事故, 不仅会 造成人员伤亡, 也会给航空航天、 国防、 通讯、 电子工业、 化工石油、 邮电、 交通、 森林等行业造成严重的经济损失。 随着社会经济的快速 发展、 现代化水平的提高和信息技术的普及应用, 闪电危害的程度、 造成的经济损失和社会影响越来越大。
闪电的实时定位数据是对将要发生闪电活动的区域进行预警以提. 前采取应对措施、 减少闪电灾害损失的重要基础。 另外, 闪电定位数 据也是进行灾害事故成因调查的重要依据。 闪电定位系统的探测效率 和定位精度对闪电预警的效果、 闪电预警结果的评估以及闪电灾害的 调查至关重要。
虽然目前世界上很多国家和地区已经架设了大区域范围的地闪定. 位站网以及少量的总闪定位系统, 能够对闪电进行实时监测, 部分系 统还能对闪电通道的发展进行探测。 然而迄今为止, 还没有设备能够 自动同时获取全视野范围闪电通道的数字图像以及图像中闪电发生的 时间、 类别 (云闪、 地闪) 和地闪的极性等信息, 也没有合适的设备 能够观测积累丰富的用于对现有闪电定位系统探测效率和定位精度进 行评估的数据, 这大大限制了闪电定位资料的有效应用。 发明内容
本发明的一个目的在于提供一种全视野闪电事件的观测系统, 该 系统能够获取全视野范围的数字图像, 并自动筛选、 存储和显示包含 有闪电通道的图像, 同时记录图像中云闪和地闪发生的 GPS时间以及 地闪的极性信息。 该系统结构简单、 架设方便。 该系统的观测资料熊 够用于对现有闪电定位系统的探测效率和定位精度进行有效评估。 本发明的一个进一步的目的在于提供一种具有遮光装置的全视野 闪电事件观测系统, 其只在雷暴天气时自动打开遮光装置以进行图像 采集, 从而有效提高使用效率, 延长使用寿命。
本发明的另一个进一步的目的在于提供一种具有温控装置的全视 野闪电事件观测系统, 该温控装置提供对该系统的一些装置或模块工 作环境的自动温控, 使其能够长期稳定可靠地工作于野外环境。
本发明提供了一种全视野闪电事件观测系统, 其包括箱体、 拍摄 装置、 传感器、 数据采集装置、 处理单元和控制模块。 所述箱体的顶 部具有开口, 在所述开口处安装有透明的防护罩。 所述拍摄装置布置 在所述箱体内并且位于所述开口处。 所述传感器对雷暴活动的表征参 数进行感测并产生感测数据。 所述数据采集装置从所述传感器采集所 述感测数据。 所述处理单元从所述数据采集装置接收所述感测数据, 所述处理单元在所述感测数据指示所述系统的观测范围内没有雷暴天 气过程时使所述系统处于第一工作模式并使所述数据采集装置处于第 一数据采集模式, 所述处理单元在所述感测数据指示所述系统的观测 范围内存在雷暴天气过程时使所述系统处于第二工作模式并使所述数 据采集装置处于第二数据采集模式。 '所述控制模块布置在所述箱体内, 所述控制模块在所述感测数据指示所述系统的观测范围内没有雷暴天 气过程时从所述处理单元接收第一指令并基于所述笫一指令关闭所 拍摄装置, 从而停止拍摄全视野范围的数字图像, 所述控制模块在 述感测数据指示所述系统的观测范围内存在雷暴天气过程时从所述处 理单元接收第二指令并基于所述第二指令启动所述拍摄装置, 以拍摄 全视野范围的数字图像。
优选地, 所述第一工作模式是常规监测模式, 所述第一数据采集 模式是低速实时数据采集模式, 所述第二工作模式是闪电观测模式, 所述第二数据采集模式是高速实时数据采集模式。
优选地, 所述表征参数是电暈电流。
优选地, 所述拍摄装置包括数字摄像机以及布置在所述数字摄像 机上的鱼眼镜头, 所述鱼眼镜头的视角大于等于 180 度, 所述拍摄装 置的成像面水平布置, 所述鱼眼镜头高于所述箱体的上表面并且 & , 轴指向天顶方向。
优选地, 所述全视野闪电事件观测系统还包括遮光装置, 所述遮 光装置布置在所述箱体内, 位于所述防护罩和所述拍摄装置之间, 所 述控制模块基于所述第一指令控制所述遮光装置关闭从而覆盖所述拍 摄装置, 所述控制模块基于所述第二指令控制所述遮光装置打开从而 不覆盖所述拍摄装置。
优选地, 所述遮光装置包括电机、 遮光瓣片和两个限位开关, 所 述限位开关用于对所述遮光瓣片的旋转位置进行限制, 在所述第一工 作模式中, 所述控制模块基于所述第一指令控制所述电机旋转以关闭 所述遮光瓣片, 从而覆盖所述拍摄装置, 在所述第二工作模式中, 所 述控制模块基于所述第二指令控制所迷电机反向旋转以打开所述遮 瓣片, 从而不覆盖所述拍摄装置。
优选地, 所述全视野闪电事件观测系统还包括温控装置, 所述温 控装置布置在所述箱体内并且用于调节所述箱体内的环境温度, 所述 控制模块联接所述温控装置并控制所述温控装置。
优选地, 所述全视野闪电事件观测系统还包括电源模块, 所迷电 源模块布置在所述箱体内并联接所述拍摄装置、 所述控制模块、 所述 遮光装置和所述温控装置以为它们供电。
优选地, 所述全视野闪电事件观测系统还包括 GPS天线和 GPS揭 时模块, 所述 GPS天线联接所述 GPS授时模块, 所述 GPS授时模块 联接所述处理单元, 所述 GPS授时模块用于定时对所述处理单元进行 授时并且响应于外部触发信号来获取准确的触发时间信息并发送给所 述处理单元, 其时间精度要求优于 1 μ β。
优选地, 所述处理单元是计算机, 所述数据采集装置是数据采集 卡。
本发明还提供了一种全视野闪电事件观测方法, 其包括如下步骤: 提供全视野闪电事件观测系统, 所述全视野闪电事件观测系统包括拍 摄装置、 传感器和数据采集装置; 利用所述数据采集装置以低速实时 数据采集模式从所述传感器采集其对雷暴活动的感测数据; 基于所述 感测数据判断所述系统的观测范围内是否存在雷暴天气过程; 当所述 系统的观测范围内没有雷暴天气过程时, 使所述系统处于常规监测模 式, 使所述数据采集装置处于低速实时数据采集模式, 并关闭所述拍 摄装置, 从而停止拍摄全视野范围的数字图像; 并且当所述系统的观 测范围内存在雷暴天气过程时, 使所述系统处于闪电观测模式, 使所 述数据采集装置处于高速实时数据采集模式, 并启动所述拍摄装置, 对全视野范围内的闪电事件进行观测。
本发明具有以下优点和有益效果: 1、 能够对全视野范围内的闪电 事件进行观测, 获取闪电通道的图像, 并给出图像中闪电事件发生时 的 GPS时间、 闪电类别 (云闪和地闪) 以及地闪的极性; 2、 可用于^: 已有的闪电定位系统的探测效率和定位精度进行评估; 3、 实时监测 晕电流波形, 只在观测范围内有雷暴天气时自动打开遮光装置和拍摄 装置进行图像采集并自动控制其工作环境温度, 能有效提高设备使用 效率, 延长设备使用寿命, 能够长期稳定可靠地工作于野外环境; 4、 结构简单, 架设方便, 并具有较低的成本。 附图说明
图 1是根据本发明的全视野闪电事件观测系统的示意图;
图 2是根据本发明的全视野闪电事件观测系统的流程图; 以及 图 3是根据本发明的闪电事件观测方法的流程图。 具体实施方式
以下结合附图和具体实施例对本发明提出的全视野闪电事件观 ') 系统进行说明。
在本发明的一个方面, 参见图 1 , 示意性地示出了根据本发明的一 种全视野闪电事件观测系统 10 , 其包括处理单元 12、 箱体 14和电源 模块 16。
处理单元 12用于处理数据并控制所述系统 10的一些装置或模块 的操作。 在一个优选实施例中, 处理单元 12可以是计算机, 并且可以 包括时钟 (未示出) 。
箱体 14可以是顶部上表面具有圆形开口 18的防护箱, 在开口 18 处安装有透明的防护罩 20。 在本文中, 术语 "透明" 指的是对于拍摄 闪电事件而言是无障碍的, 并不限于对某个特定波长或波长范围的光 线透明。 优选地, 开口 18为圆形开口。 优选地, 防护罩 20为半球形。 优选地, 防护罩 20由具有憎水特性的材料制成, 或者表面喷涂憎水涂 层。 在一个优选实施例中, 防护罩 20为涂有憎水涂层的亚克力半球形 防护罩。 优选地, 箱体 14可以采用双层金属、 中间加保温材料的设计, 也可以直接采用具有隔热、 防水特性的硬质材料制作。 优选地, 箱体
14的形状可以是方形空腔或者圆柱形空腔,或者任意其他合适的形状。 在一个优选实施例中, 箱体 14采用双层金属、 中间加保温材料的设计, 其形状为方形空腔。
电源模块 16用于为全视野闪电事件观测系统 10的一些装置或模 块供电, 下面将进一步详细说明。 电源模块 16可以布置在箱体 14内。
全视野闪电事件观测系统 10还包括拍摄装置 22 , 拍摄装置 22 以布置在箱体 14内并且位于开口 18处, 拍摄装置 22适于拍摄全视纡 视野范围的数字图像。 在一个优选实施例中, 拍摄装置 22包括数字摄 像机 24以及布置在数字摄像机 24上的视角大于等于 180度的鱼眼镜 头 26。数字摄像机 24用于拍摄图像并直接输出所拍摄图像的数字信号, 不需要图像采集卡, 直接通过数据线与处理单元 12连接, 以将所拍摄 的图像传送给处理单元 12。 在一个优选实施例中, 数字摄像机 24可 是可见光波段或者红外波段的数字摄像机,可采用 USB、 1394、 Camera Link或 GigE接口, 或者本领域已知的任何其他接口。 如果选择 USB 或 1394接口类型的数字摄像机 24, 则该数字摄像机 24可以由与处理 单元 12之间的连接线直接供电;如果选择 Camera Link或 GigE接口的 数字摄像机 24 , 则该数字摄像机 24 可以由电源模块 16 供电。 对于 Camera Link接口的数字摄像机 24 , 还可在处理单元 12中安装 Camera Link 数字图像采集处理卡 (未示出) 。 在一个优选实施例中, 可采 : 1394接口的数字摄像机 24和视角为 185度的鱼眼镜头 26, 数字摄像 机 24和处理单元 12采用 1394连接线连接, 用于向处理单元 12传输 数字图像。 在一个优选实施例中, 数字摄像机 24的成像面水平布置, 鱼眼镜头 26朝上并且其光轴指向天顶方向, 鱼眼镜头 26高于箱体 : 的上表面, 以实现对安装平面以上的全部视野进行成像。 优选地, 鱼 眼镜头 26略高于箱体 14的上表面, 只要能实现所述全视野成像即可, 在一个优选实施例中, 鱼眼镜头 26高于箱体 14的上表面 10毫米。
全视野闪电事件观测系统 10还包括传感器 28,用于对观测范围内 的雷暴活动的表征参数进行感测并产生感测数据。 在一个优选实施例 中, 所述表征参数是电暈电流, 所述传感器 28是用于对电晕电流进行 感测的电晕电流传感器。 应当理解, 所述表征参数可以是本领域已知 ; 的任何表征雷暴活动的参数, 如电场变化、 磁场变化和光辐射强度等' 所述传感器 28 可以是本领域已知的能够感测该表征参数的任何传感 器, 如快慢电场变化传感器、 磁线圈和光电二极管等。
全视野闪电事件观测系统 10还包括数据采集装置 30 ,用于从传感 器 28采集所述表征参数的感测数据。 在一个优选实施例中, 数据采集 装置 30为安装在处理单元 12 (在该实施例中为计算机)内的 PCI插槽 上的数据采集卡, 通过 PCI 总线传输数据。 该数据采集卡的输入通道 和输出通道各为至少 1 个, 最高采样率不低于 1 MS/s , 输出通道具有 触发输出功能。 输入通道联接传感器 28。 在一个优选实施例中, 具有 触发输出功能的输出通道联接 GPS授时模块 42 (下面将详细描述) 全视野闪电事件观测系统 10还包括控制模块 32,用于实现对全视 野闪电事件观测系统 10的一些装置或模块的控制。 控制模块 32布置 在箱体 14 内。 在一个优选实施例中, 控制模块 32联接拍摄装置 22 , 并例如通过串口接收来自处理单元 12 的指令, 实现对拍摄装置 22 的. 控制。 优选地, 控制模块 32可以是 PLC (可编程控制器) 或单片机^ 制板。 在一个优选实施例中, 控制模块 32是 PLC , 其例如通过串口与 处理单元 12联接。
在一个优选实施例中, 处理单元 12基于数据采集装置 30从传感 器 28采集到的感测数据来确定全视野闪电事件观测系统 10的工作模 式和数据采集装置 30的数据采集模式。 当所述感测数据指示全视野闪 电事件观测系统 10 的观测范围内没有雷暴天气过程时, 处理单元 12 使系统 10处于第一工作模式并使数据采集装置 30处于第一数据采集 模式, 控制模块 32从处理单元 12接收第一指令并基于该第一指令关 闭拍摄装置 22 , 从而停止拍摄。 当感测数据指示全视野闪电事件观测 系统 10的观测范围内存在雷暴天气过程时, 处理单元 12使系统 10处 于第二工作模式并使数据采集装置 30处于第二数据采集模式, 控制模 块 32从处理单元 12接收第二指令并基于该第二指令启动拍摄装置 22 从而进 4亍拍才聂。
在本文中, "观测范围" 表示以全视野闪电事件观测系统 10为中 心的半径为 15公里的范围。
在一个优选实施例中, 第一工作模式是常规监测模式, 第一数据 采集模式是低速实时数据采集模式, 第二工作模式是闪电观测模式, 第二数椐采集模式是高速实时数据采集模式。 在闪电观测模式中, 处 理单元 12 实时连续地从拍摄装置 22获取图像并实时检测所获取的图 像中是否存在闪电通道。 在常规监测模式中, 拍摄装置 22关闭, 处理 单元 12对数据采集装置 30从传感器 28采集到的感测数据进行实时食 析, 判断观测范围内是否存在雷暴天气过程。 如果存在雷暴天气过程 : 则如上所述, 处理单元 12使系统 10转为闪电观测模式并使数据采集 装置 30转为高速实时数据采集模式, 同时打开拍摄装置 22进入连续 采集状态。 如果不存在雷暴天气过程, 处理单元 12使系统 10维持常 规监测模式并使数据采集装置 30维持低速实时数据采集模式。
在本文中, 术语 "高速" 指的是采样速率不低于 1 M次 /秒, 术语 "低速 " 指的是采样速率不高于 10次 /秒。
在一个优选实施例中, 全视野闪电事件观测系统 10还可以包括 光装置 34。 控制模块 32联接遮光装置 34 , 并例如通过串口接收来自 处理单元 12的指令, 实现对遮光装置 34的控制。 遮光装置 34可以布 置在箱体 14内, 位于防护罩 20和拍摄装置 22之间。 控制模块 32基 于所述第一指令控制遮光装置 34关闭从而覆盖拍摄装置 22,控制模 32基于所述第二指令控制遮光装置 34打开从而不覆盖拍摄装置 22 . 在一个特别优选实施例中, 遮光装置 34包括电机(未示出) 、 遮光瓣 片 36和两个限位开关 (未示出) , 其中, 所述限位开关可以是本领域 已知的用于对遮光瓣片 36的旋转位置进行限制的任意元件或构造。 在 所述第一工作模式中, 控制模块 32基于所述第一指令控制所述电机旋 转以关闭遮光瓣片 36 ,从而覆盖拍摄装置 22 ,在所述第二工作模式中, 控制模块 32基于所述第二指令控制电机反向旋转以打开遮光瓣片 36 , . 从而不覆盖拍摄装置 22。
在一个优选实施例中, 全视野闪电事件观测系统 10还可以包括温 控装置 38。 优选地, 控制模块 32联接温控装置 38 , 并例如通过串口 接收来自处理单元 12 的指令, 实现对温控装置 38 的控制。 优选地, 温控装置 38可以布置在箱体 14内并且用于调节箱体 14内的环境温度。 s 特别优选地, 温控装置 38可以布置在箱体 14 内并且用于调节拍摄 置 22的工作环境温度, 以便满足拍摄装置 22 的正常运行要求, 使得 其能够长期稳定可靠地工作在野外恶劣环境中。
在一个优选实施例中, 全视野闪电事件观测系统 10 还可以包括 GPS天线 40和 GPS授时模^: 42。 GPS天线 40可以联接 GPS授时模 块 42 , GPS授时模块 42可以联接处理单元 12。 GPS授时模块 42用于 定时对处理单元 12进行 4受时并且响应于外部触发信号来获取准确的触 发时间信息并发送给处理单元 12 , 其时间精度要求优于 1 s。
在一个优选实施例中, 电源模块 16可以联接拍摄装置 22、 控制模 块 32、 遮光装置 34和温控装置 38并为它们供电。
在一个优选实施例中, 箱体 14、 传感器 28和 GPS天线 40均位于 室外, GPS授时模块 42和处理单元 12位于室内。
在一个优选实施例中, 处理单元 12联接拍摄装置 22、 传感器 28、 控制模块 32和 GPS授时模块 42 , 通过采集数据和发送指令来完成以 下任务: 从传感器 28采集雷暴活动的表征参数(特别地, 为电晕电流) 的感测数据; 向控制模块 32发送指令以控制拍摄装置 22和遮光装置 34; 采集、 保存和显示拍摄装置 22.拍摄到的图像, 检测图像中是否存 在闪电通道; 定时从 GPS授时模块 42获取 GPS时间并进行授时; 获 取和记录感测数据的快速大幅度变化的波形数据以及数据采集装置 30 触发输出的时间信息, 进而判别闪电的类别 (云闪和地闪) 和地闪的 极性。
现在参见图 2 , 图 2是流程图, 示.出了根据本发明一个实施例的 视野闪电事件观测系统 10的流程 100。 如上所述, 系统 10可以具有 种工作模式: 常规监测模式和闪电观测模式。
在步骤 102 , 系统 10处于常规监测模式。 在该模式下拍摄装置 22 关闭 (不拍摄) , 数据采集装置 30处于低速实时数据采集模式 (如每 秒采样 10.次或者 100次)。 在步骤 104 , 数据采集装置 30例如对电暈 电流波形进行低速实时数据采集。 在步骤 106 , 处理单元 12对采集到 的电晕电流数据进行实时分析, 并在步骤 108 中判断观测范围内是 存在雷暴天气过程。, 如果存在雷暴天气, 则在步骤 1 10中使系统 10转 为闪,电观测模式。 如果不存在雷暴天气, 则返回到步骤 104。
如果系统 10处于闪电观测模式, 则在该模式下拍摄装置 22处于 工作状态(拍摄状态), 数据采集装置 30处于高速实时数据采集模式。 具体地, 在步骤 1 12打开遮光装置 34 , 在步骤 1 14使数据采集装置 处于高速实时数据采集模式。 然后, 在步骤 1 16打开拍摄装置 22。 ¾ 步骤 1 18,处理单元 12使拍摄装置 22实时连续地获取全视野范围的数 字图像。 处理单元 12在步骤 120中实时检测所采集的图像中的闪电通 道并且在步骤 122 中判断是否存在闪电通道。 如果存在闪电通道, 贝 |) 在步骤 124 中保存并显示图像; 如果不存在闪电通道, 则继续到步骤 140。 同时, 处理单元 12在步骤 126 中实时高速监测电牽电流波形的 变化并且在步骤 128 中判断是否符合触发条件。 如果电牽电流波形有 快速大幅度变化 (也即符合触发条件) , 则在步骤 130 中, 数据采集 装置 30输出触发信号给 GPS授时模块 42 , GPS授时模块 42将触发 时间信息通过串口传递给处理单元 12 ,然后处理单元 12在步骤 132 对 GPS触发时间和对应的电暈电流变化波形进行暂存。 如果不符合 ¾ 发条件, 则返回到步骤 126。 对于每一幅检测出有闪电通道的图像, 处 理单元 12在步骤 134中把该图像对应的曝光时间段内出现的所有电晕 电流波形大幅度变化的波形及其触发时间进行记录, 并在步骤 136 中 结合闪电通道的图像和电暈电流变化波形分析图像中闪电事件的类另 'J (云闪和地闪) 和极性 (地闪) , 然后在步骤 138 中存储分析结果。: 在步骤 140 中判断雷暴天气过程是否结束。 如果未检测出闪电通道所 持续的时间超过设定的阈值(如 15分钟)且电晕电流数据符合非雷暴 天气的判据, 则认为雷暴天气过程结束, 然后在步骤 142 关闭拍摄装 置 22和遮光装置 34 , 并且在步骤 144中使数据采集装置 30转为低速 实时数据采集模式, 然后返回到步骤 102 , 系统 10转为常规监测模^ ^; 如果在步骤 140中判断雷暴天气过程尚未结束, 则返回到步骤 1 18。
不论在常规检测模式还是在闪电观测模式中, GPS授时模块 42都 定时 (如每 10分钟)对处理单元 12进行 GPS授时, 以保证处理单元 12的时钟的准确度优于 lms。
在一个优选实施例中, 图像采集和闪电通道检测可以釆用并行算 法处理, 电晕电流波形实时采集和分析判断均可以采用并行算法实现 , 这样可以满足数据的实时获取和处理的要求。
本发明的全视野闪电事件观测系统 10能够在处理单元 12的控制: 下自动获取全视野范围云闪和地闪通道的图像、 记录云闪和地闪发生 的 GPS时间以及地闪的极性信息。 对于地闪事件, 闪电通道的图像能 够提供其接地点相对于观测位置的方位角信息, 在某些场合从图像上 还可以得 'J确切的接地点的位置信息, 如顶端处于视野之内的建筑 上或者视野内能看到接地位置的山坡上发生的地闪, 结合地闪图像 地闪极性和地闪发生的 GPS时间可以对已有的地闪定位系统的探测^ 率和定位精度进行评估。 不管是云闪和地闪, 闪电通道的图像能够提 供闪电通道不同位置的方位角和仰角信息, 可以对闪电辐射源定位系 统的观测结果进行评估。 另外, 本发明的全视野闪电事件观测系统 10 也适用于对指定区域内的闪电活动进行监测。 本发明的全视野闪电^ 件观测系统 10能实现非雷暴天气时拍摄装置的自动遮光及其工作环境 温度的自动控制, 使其能够长期稳定可靠地工作于野外环境。
在本发明的闪电观测系统的一个应用中, 可以在一个地区相隔一 定距离 (例如 2 km ) 架设两套闪电观测系统。 该两套全视野闪电事传 观测系统获得的闪电通道图像能够合成闪电通道的三维位置, 从而 于对闪电三维探测系统的结果进行评估。
如图 3所示, 本发明还公开了一种闪电事件观测方法 200。 以下详 细描述根据本发明的闪电事件观测方法 200。 在步骤 202 , 提供全视野 闪电事件观测系统, 该全视野闪电事件观测系统包括拍摄装置、 传感 器和数据采集装置。 在步骤 204 , 利用数据采集装置以低速实时数据采 集模式从传感器采集该传感器对雷暴活动的感测数据。 在步骤 206 , ¾ 于感测数据判断系统的观测范围内是否存在雷暴天气过程。 如果系 ^ 的观测范围内不存在雷暴天气过程, 返回到步骤 204。 当系统判断观测 范围内雷暴天气过程发生时, 则在步骤 214使系统处于闪电观测模式, 在步骤 216使数据采集装置处于高速实时数据采集模式,并在步骤 218 启动拍摄装置, 从而在步骤 220对全视野范围内的闪电事件进行观测 s 然后, 在步骤 222 判断雷暴天气是否结束。 如果雷暴天气没有结束, 则返回到步骤 220。 如果雷暴天气结束, 则在步骤 208使系统处于常规 监测模式, 在步骤 210 使数据采集装置处于低速实时数据采集模式, 并在步骤 212 关闭拍摄装置, 从而停止拍摄全视野范围的数字图像, 然后返回到步骤 204。
在本文中, 术语 "联接" 不限于直接连接, 而是也包括本领域已 知的各种形式的间接连接。
本领域技术人员可从前面的具体说明意识到本公开的广泛教导 以按照多种形式来实施。 虽然本公开包括了具体的示例, 但本公开的 真实范围却不应当被如此限制, 因为本领域技术人员在研究了附图、 说明书和所附权利要求书后将会明白其他的修改、 变形和替换。

Claims

权 利 要 求
1. 一种全视野闪电事件观测系统, 其特征在于, 包括:
箱体, 所述箱体的顶部具有开口, 在所述开口处安装有透明的 护罩;
拍摄装置, 所述拍摄装置布置在所述箱体内并且位于所述开口处; 传感器, 所述传感器对雷暴活动的表征参数进行感测并产生感测 数据;
数据采集装置, 所述数据采集装置从所述传感器采集所述感测数 据;
处理单元, 所述处理单元从所述数据采集装置接收所述感测数据, 所述处理单元在所述感测数据指示所述系统的观测范围内没有雷暴天 气过程时使所述系统处于第一工作模式并使所述数据采集装置处于第 一数据采集模式, 所述处理单元在所述感测数据指示所述系统的观测 范围内存在雷暴天气过程时使所述系统处于第二工作模式并使所述数 据采集装置处于第二数据采集模式; 和
控制模块, 所述控制模块布置在所述箱体内, 所述控制模块在^ 述感测数据指示所述系统的观测范围内没有雷暴天气过程时从所述处 理单元接收第一指令并基于所述第一指令关闭所述拍摄装置, 从而停 止拍摄全视野范围的数字图像, 所述控制模块在所述感测数据指示所 述系统的观测范围内存在雷暴天气过程时从所述处理单元接收第二 令并基于所述第二指令启动所述拍摄装置, 以拍摄全视野范围的数字 图像。
2. 如权利要求 1 所述的全视野闪电事件观测系统, 其特征在于, 所述第一工作模式是常规监测模式, 所述第一数据采集模式是低速实 时数据采集模式, 所述第二工作模式是闪电观测模式, 所述第二数据 采集模式是高速实时数据采集模式。
3. 如权利要求 1 所述的全视野闪电事件观测系统, 其特征在于, 所述表征参数是电晕电流。
4. 如权利要求 1 所述的全视野闪电事件观测系统, 其特征在于, 所述拍摄装置包括数字摄像机以^布置在所述数字摄像机上的鱼眼镜 头, 所述鱼眼镜头的视角大于等于 180 度, 所述拍摄装置的成像面水 平布置, 所述鱼眼镜头高于所述箱体的上表面并且其光轴指向天顶方 向。
5. 如权利要求 1或 4所述的全视野闪电事件观测系统, 其特征在 于, 还包括遮光装置, 其中, 所述遮光装置布置在所述箱体内, 位于 所述防护罩和所述拍摄装置之间, 并且其中, 所述控制模块基于所述 第一指令控制所述遮光装置关闭从而覆盖所述拍摄装置, 所述控制模 块基于所述第二指令控制所述遮光装置打开从而不覆盖所述拍摄装 置。
6. 如权利要求 5所述的全视野 电事件观测系统, 其特征在于, 所述遮光装置包括电机、 遮光瓣片和两个限位开关, 所述限位开关用 于对所述遮光瓣片的旋转位置进行限制, 在所述第一工作模式中, 所 述控制模块基于所述第一指令控制所述电机旋转以关闭所述遮光 片, 从而覆盖所述拍摄装置, 在所述第二工作模式中, 所述控制模块 基于所述第二指令控制所述电机反向旋转以打开所述遮光瓣片, 从而 不覆盖所述拍摄装置。
7. 如权利要求 6所述的全视野闪电事件观测系统, 其特征在于, 还包括温控装置, 其中, 所述温控装置布置在所述箱体内并且用于调 节所述箱体内的环境温度, 所述控制模块联接所述温控装置并控制所 述温控装置。 .
8. 如权利要求 7所述的全视野闪电事件观测系统, 其特征在于, 还包括电源模块, 其中, 所述电源模块布置在所述箱体内并联接所述 拍摄装置、 所述控制模块、 所述遮光装置和所述温控装置以为它们供 电。
9. 如权利要求 1 所述的全视野闪电事件观测系统, 其特征在于, : 还包括 GPS天线和 GPS授时模块,其中,所述 GPS天线联接所述 GPS 授时模块, 所述 GPS授时模块联接所述处理单元, 所迷 GPS授时模块 用于定时对所述处理单元进行授时并且响应于外部触发信号来获取准 确的触发时间信息并发送给所述处理单元, 其时间精度要求优于 1 μ
10. 如权利要求 1所述的全视野闪电事件观测系统, 其特征在于, 所述处理单元是计算机, 所述数据采集装置是数据采集卡。
1 1. 一种全视野闪电事件观测方法, 其特征在于, 包括如下步骤: 提供全视野闪电事件观测系统 , 所述全视野闪电事件观测系统包 括拍摄装置、 传感器和数据采集装置;
利用所述数据采集装置以低速实时数据采集模式从所述传感器采 集所述传感器对雷暴活动的感测数据;
基于所述感测数据判断所述系统的观测范围内是否存在雷暴天气 过程;
当所述系统的观测范围内没有雷暴天气过程时, 使所述系统处于 常规监测模式, 使所述数据采集装置处于低速实时数据采集模式, 并 关闭所述拍摄装置, 从而停止拍摄全视野范围的数字图像; 并且
当所述系统的观测范围内存在雷暴天气过程时, 使所述系统处于 闪电观测模式, 使所述数据采集装置处于高速实时数据采集模式, 并 启动所述拍摄装置, 对全视野范围内的闪电事件进行观测。
PCT/CN2012/000323 2011-03-18 2012-03-15 全视野闪电事件观测系统及方法 WO2012126272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/980,515 US8902312B2 (en) 2011-03-18 2012-03-15 Total-sky lightning event observation system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100662855A CN102186008B (zh) 2011-03-18 2011-03-18 全视野闪电事件观测系统及方法
CN201110066285.5 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012126272A1 true WO2012126272A1 (zh) 2012-09-27

Family

ID=44572071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000323 WO2012126272A1 (zh) 2011-03-18 2012-03-15 全视野闪电事件观测系统及方法

Country Status (3)

Country Link
US (1) US8902312B2 (zh)
CN (1) CN102186008B (zh)
WO (1) WO2012126272A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731245A (zh) * 2020-12-24 2021-04-30 国家卫星气象中心(国家空间天气监测预警中心) 基于不变特征的静止轨道闪电探测器辐射响应监测方法
CN117929861A (zh) * 2024-03-21 2024-04-26 云南能源投资股份有限公司 一种风电场的雷电检测方法、装置、设备及存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186008B (zh) * 2011-03-18 2013-09-11 中国气象科学研究院 全视野闪电事件观测系统及方法
CN102621414B (zh) * 2012-03-16 2015-04-15 国网电力科学研究院武汉南瑞有限责任公司 一种雷击放电综合同步观测方法及系统
CN103728503B (zh) * 2013-12-31 2015-08-12 国网电力科学研究院武汉南瑞有限责任公司 一种应用于古建筑群的雷击三维放电路径自动记录系统及其记录方法
CN103713338B (zh) * 2013-12-31 2015-08-19 国网电力科学研究院武汉南瑞有限责任公司 一种应用于气象台站的雷暴日自动记录系统及其记录方法
CN104113736B (zh) * 2014-07-30 2017-12-05 中国极地研究中心 一种极光活动监测系统
CN104569624A (zh) * 2015-01-30 2015-04-29 武汉大学 一种全闪电云地闪识别方法
CN104993248B (zh) * 2015-05-28 2017-09-29 北京航天控制仪器研究所 一种运动状态下寻星的动中通天线极化角分时控制方法
CN105530432A (zh) * 2016-01-18 2016-04-27 云南电网有限责任公司电力科学研究院 一种雷电回击通道拍摄装置及方法
CN105974207A (zh) * 2016-05-05 2016-09-28 中国科学院电工研究所 一种基于甚低频/低频三维全闪电探测定位系统
CN109829407B (zh) * 2019-01-23 2022-09-09 中国科学技术大学 基于卷积神经网络的智能闪电识别方法
CN110609178A (zh) * 2019-10-22 2019-12-24 中国气象科学研究院 闪电通道双摄自动观测系统及方法
CN111896795B (zh) * 2020-07-16 2023-01-03 中国人民解放军陆军工程大学 云闪电流波形测量方法及系统
CN113341630B (zh) * 2021-05-08 2023-04-21 华中科技大学 一种适用于闪电摄影系统的触发装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2710290Y (zh) * 2004-03-17 2005-07-13 四川康姆逊电磁防护有限责任公司 一种雷击检测报警系统
CN101545934A (zh) * 2009-04-29 2009-09-30 中国气象局气象探测中心 光声雷电探测方法及其探测器
CN201548622U (zh) * 2009-08-12 2010-08-11 中国气象科学研究院 宽带干涉仪三维闪电辐射源定位系统
CN102186008A (zh) * 2011-03-18 2011-09-14 中国气象科学研究院 全视野闪电事件观测系统及方法
CN202002978U (zh) * 2011-03-18 2011-10-05 中国气象科学研究院 全视野闪电通道图像自动拍摄设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050007450A1 (en) * 2002-12-13 2005-01-13 Duane Hill Vehicle mounted system and method for capturing and processing physical data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2710290Y (zh) * 2004-03-17 2005-07-13 四川康姆逊电磁防护有限责任公司 一种雷击检测报警系统
CN101545934A (zh) * 2009-04-29 2009-09-30 中国气象局气象探测中心 光声雷电探测方法及其探测器
CN201548622U (zh) * 2009-08-12 2010-08-11 中国气象科学研究院 宽带干涉仪三维闪电辐射源定位系统
CN102186008A (zh) * 2011-03-18 2011-09-14 中国气象科学研究院 全视野闪电事件观测系统及方法
CN202002978U (zh) * 2011-03-18 2011-10-05 中国气象科学研究院 全视野闪电通道图像自动拍摄设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731245A (zh) * 2020-12-24 2021-04-30 国家卫星气象中心(国家空间天气监测预警中心) 基于不变特征的静止轨道闪电探测器辐射响应监测方法
CN112731245B (zh) * 2020-12-24 2022-05-10 国家卫星气象中心(国家空间天气监测预警中心) 基于不变特征的静止轨道闪电探测器辐射响应监测方法
CN117929861A (zh) * 2024-03-21 2024-04-26 云南能源投资股份有限公司 一种风电场的雷电检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN102186008B (zh) 2013-09-11
US20130286203A1 (en) 2013-10-31
CN102186008A (zh) 2011-09-14
US8902312B2 (en) 2014-12-02

Similar Documents

Publication Publication Date Title
WO2012126272A1 (zh) 全视野闪电事件观测系统及方法
CN202172233U (zh) 一种高压输电线自动巡检系统
US20110265840A1 (en) Solar panel efficiency estimator
CN106657921A (zh) 一种便携式雷达周界安防系统
CN201118843Y (zh) 可夜视全景摄像机监控装置
US20120026320A1 (en) Aircraft traffic logging and acquisition system
CN113985400B (zh) 一种机场跑道外来异物监测报警系统及其方法
CN103309323B (zh) 隧道环境的巡检设备监控方法及系统
CN106197294A (zh) 一种基于光学的架空输电线覆冰厚度监测装置及方法
CN110031041B (zh) 一种自然雷击放电声、光、电、磁多物理过程监测系统
CN109917364A (zh) 一种集成雷达导引及光电跟踪功能的警戒系统
CN111163246A (zh) 高空抛坠物监测系统
CN104284070A (zh) 一种红外防水高清监控摄像机
CN209281254U (zh) 一种电力巡检无人机系统
KR101676444B1 (ko) 노측 설치식 다차로 구간 정보 수집 장치 및 방법
CN112326039B (zh) 一种光伏电站巡检辅助系统
CN106056832A (zh) 基于图像型火灾探测器报警系统
CN209197907U (zh) 一种红外热成像监测装置
CN111609267B (zh) 一种防遮挡监控装置
CN202002978U (zh) 全视野闪电通道图像自动拍摄设备
CN110609178A (zh) 闪电通道双摄自动观测系统及方法
CN207166616U (zh) 车载监控装置及系统
CN207589033U (zh) 一种内河船舶北斗视频监控多路视频装置
CN212541537U (zh) 变电站充油设备油位、温度红外热成像双光监测装置
CN214308618U (zh) 一种用遥感和机器视觉采集柔性桥梁振动数据的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760546

Country of ref document: EP

Kind code of ref document: A1