WO2012126194A1 - 移动终端和全球定位系统参数校准方法 - Google Patents

移动终端和全球定位系统参数校准方法 Download PDF

Info

Publication number
WO2012126194A1
WO2012126194A1 PCT/CN2011/074060 CN2011074060W WO2012126194A1 WO 2012126194 A1 WO2012126194 A1 WO 2012126194A1 CN 2011074060 W CN2011074060 W CN 2011074060W WO 2012126194 A1 WO2012126194 A1 WO 2012126194A1
Authority
WO
WIPO (PCT)
Prior art keywords
gps
mobile terminal
calibration
parameter
module
Prior art date
Application number
PCT/CN2011/074060
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/984,618 priority Critical patent/US9274212B2/en
Priority to EP11861458.5A priority patent/EP2664944B1/en
Priority to ES11861458.5T priority patent/ES2604933T3/es
Publication of WO2012126194A1 publication Critical patent/WO2012126194A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to the field of communications, and in particular to a mobile terminal and a global positioning system.
  • GPS Global Position System, abbreviated as GPS
  • BACKGROUND At present, GPS applications in mobile terminals (also referred to as terminals or user terminals, for example, mobile phones) are more and more widely used, and mobile terminals have higher and higher requirements on GPS performance, and calibration of mobile terminal GPS improves performance of GPS. Play an important role.
  • the GPS calibration method in the related art will be described below. In the related art, the methods of GPS calibration are as follows: 1. Take a small number of terminal sample calibrations, obtain an average value, and then write the parameters to all terminals. 2. Each terminal is independently calibrated and the respective calibration values are written to their respective terminals. 3. The A-GPS server provides an approximate Doppler shift of the GPS signal.
  • the A-GPS server has a reference GPS receiver that can calculate the Doppler shift of the satellite signal. 4.
  • the calculation is not advisable. 5.
  • the method 1 has a single calibration value and cannot meet the GPS parameter difference requirement.
  • a primary object of the present invention is to provide a mobile terminal and GPS parameter calibration method to solve at least one of the above problems.
  • a mobile terminal comprising: a global positioning system GPS parameter calibration module configured to calibrate GPS parameters according to at least one of: The data of the feedback collection module, the state parameter of the mobile terminal, and the environmental parameter of the mobile terminal; the GPS signal feedback collection module is configured to collect the GPS parameter calibration module for pre-calibration and calibration The subsequent GPS parameters are fed back to the GPS parameter calibration module.
  • the GPS parameter calibration module includes at least one of the following: a time delay calibration module, set to be
  • the GPS time delay parameter is calibrated; the Doppler offset calibration module is set to calibrate the GPS Doppler frequency parameter; the carrier-to-noise ratio calibration module is set to calculate and compensate for the GPS system loss; latitude and longitude calibration Module, set to calibrate the preloaded latitude and longitude.
  • the latitude and longitude calibration module is configured to receive information about a current network detected by the mobile terminal or receive an input latitude and longitude to obtain the pre-loaded latitude and longitude.
  • the time delay calibration module is configured to calculate a difference between a time of capturing a satellite (Satellite Vehicle, SV for short) and a required network search time, and compare the difference with a target time difference, where the difference is If the value is less than the target time difference, increasing the time delay value, and if the difference is greater than the target time difference, reducing the time delay value; or, the time delay calibration module is set to be based on
  • the time delay value preloaded by the mobile terminal initiates receiving positioning, and after positioning is completed, checking positioning accuracy and/or signal strength, and adjusting the pre-loading time according to the positioning accuracy and/or the signal strength
  • the delay value, the receiving position is activated again, and the positioning accuracy and/or the signal strength is checked until the positioning accuracy and/or the difference between the signal strength and the target value is within a predetermined range.
  • the Doppler offset calibration module is configured to detect a current clock frequency offset of the GPS receiver of the mobile terminal by using a hardware clock frequency offset detector, and clock the mobile terminal according to the detected clock frequency offset The frequency offset is corresponding to 4 ⁇ positive.
  • the carrier-to-noise ratio calibration module is configured to calculate a signal strength of a GPS receiver from the mobile terminal that is collected by the GPS signal feedback collection module, and obtain a first noise value and a result from a baseband processing of the mobile terminal.
  • the signal strength of the GPS receiver of the mobile terminal is compared with the difference between the second noise values collected by the GPS filter and the amplification module, and the difference is compared with a preloaded value, if the difference If the difference between the preloaded value and the preloaded value is greater than the first threshold, increasing a system loss value of the mobile terminal, if the difference between the difference value and the preloaded value is less than a second threshold, reducing the The system loss value of the mobile terminal.
  • the method further includes: a control module configured to adjust data from the GPS signal feedback collection module according to a state parameter of the mobile terminal and/or an environmental parameter in which the mobile terminal is located;
  • the GPS parameter calibration module is configured to calibrate the GPS parameters based on the adjusted data of the control module.
  • the method further includes: an application detecting module, configured to detect a status parameter of the mobile terminal and/or an environmental parameter of the mobile terminal, and send the parameter to the GPS parameter calibration module; and/or a user interaction module, And configured to receive the input status parameter of the mobile terminal and/or the environmental parameter in which the mobile terminal is located, and send the status parameter to the GPS parameter calibration module.
  • the state parameter of the mobile terminal includes at least one of the following: a current communication system of the mobile terminal, and an acceleration of the mobile terminal;
  • the environment parameter of the mobile terminal includes at least one of the following: The temperature of the environment, the latitude and longitude of the area in which the mobile terminal is located.
  • a global positioning system parameter calibration method is provided, which is applied to a mobile terminal, comprising: calibrating a global positioning system GPS parameter according to at least one of: before the calibration of the mobile terminal set Data and data after calibration, state parameters of the mobile terminal, environmental parameters of the mobile terminal; GPS parameters before and after calibration are collected, and the collected data is fed back for GPS Calibration of the parameters.
  • Calibrating the GPS parameters includes at least one of: calibrating GPS time delay parameters; calibrating GPS Doppler frequency parameters; calculating and compensating for GPS system losses; preloading latitude and longitude Perform calibration.
  • Calibrating the GPS parameters includes: adjusting data before calibration and data after calibration of the mobile terminal according to state parameters of the mobile terminal and/or environmental parameters of the mobile terminal, The GPS parameters are calibrated based on the adjusted data.
  • the invention solves at least one of the problems caused by the GPS calibration method in the related art, and further enhances the GPS calibration function of the mobile terminal.
  • FIG. 1 is a block diagram showing the structure of a mobile terminal according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing a GPS parameter calibration method according to an embodiment of the present invention
  • 3 is a structural block diagram of a GPS adaptive calibration apparatus according to a preferred embodiment of the present invention
  • FIG. 4 is a structural block diagram of a GPS adaptive calibration apparatus applied to a mobile phone according to a preferred embodiment of the present invention
  • FIG. 1 is a structural block diagram of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 1, the mobile terminal includes: a GPS parameter calibration module 10 and a GPS signal feedback set module. 12, the structure is explained below:
  • the GPS parameter calibration module 10 is configured to calibrate the GPS parameters in at least one of the following: data from the GPS signal feedback collection module 12, status parameters of the mobile terminal (eg, current communication system of the mobile terminal, acceleration of the mobile terminal) The environmental parameters of the mobile terminal (for example, the temperature of the environment in which the mobile terminal is located, the latitude and longitude of the region where the mobile terminal is located); the GPS signal feedback collection module 12 is connected to the GPS parameter calibration module, and is set to collect GPS parameter calibration The module 10 performs GPS parameters before and after calibration, and feeds the collected data to the GPS parameter calibration module 10. Through the GPS parameter calibration module 10 and the GPS signal feedback collection module 12 set in the above mobile terminal, automatic GPS parameter calibration can be performed in the mobile terminal by feedback, and the related art is written by writing to the terminal.
  • data from the GPS signal feedback collection module 12 e. current communication system of the mobile terminal, acceleration of the mobile terminal
  • the environmental parameters of the mobile terminal for example, the temperature of the environment in which the mobile terminal is located, the latitude and longitude of the region where
  • the GPS parameter calibration module 10 can also calibrate the GPS parameters according to the state parameters of the mobile terminal that can affect the GPS function and the environmental parameters in which the GPS function is located, the mobile terminal adapts to the environment, and implements the mobile terminal according to the mobile terminal.
  • the state of the mobile terminal and the actual environment adjust the GPS parameters to reduce the external influence as much as possible.
  • the minimum signal strength of the C/A code in the L1 band is -160 dBw. Compared with other RF signals on the mobile phone, this signal is very weak and extremely susceptible to interference.
  • the GPS signal reaches the ground due to the difference in the elevation angle of the satellite and the obstruction by trees, buildings, etc.
  • the strength may be -160dBw at 4, so the mobile terminal with integrated GPS function will have some problems in identifying the weak GPS signal in the building or on the dense street.
  • the minimum value of the C/A code signal strength is adjusted in real time to better adapt to the environment.
  • the implementation of the GPS parameter calibration module 10 described above can calibrate various GPS parameters, which have different effects on the implementation of the GPS function. For example, calibrate the carrier-to-noise ratio.
  • the carrier-to-noise ratio is the signal-to-noise ratio per unit bandwidth.
  • the data demodulated by the I channel can be used as a signal, and the energy of the Q channel can be used as noise, and the average carrier-to-noise ratio C/N0 can be estimated after multiple statistics.
  • C/N0 is an important indicator to measure the GPS performance of a terminal.
  • the C/N0 calibration test is used to calibrate the C/N0 estimator of the mobile station.
  • the C/N0 calibration number is affected by the software algorithm, the NF of the specific mobile phone RF, etc., so different batches The NF noise figure of the secondary and board manufacturers may be different, and the C/N0 is too large, which will result in poor GPS receiving sensitivity. Therefore, in actual use, it is necessary to make a compensation calibration for C/N0.
  • the C/N0 calibration number can be equal to Spirent specifies the difference between the average C/N0 measured by the C/N0 and the terminal at the baseband, minus the test set loss.
  • Spirent specifies the difference between the average C/N0 measured by the C/N0 and the terminal at the baseband, minus the test set loss.
  • GPS is a time-based pseudorange test. Time differences can cause large fluctuations in positioning accuracy.
  • Dopp. Le frequency bias when there is relative motion between the GPS receiver carrier and the GPS satellite, the frequency of the GPS carrier signal received by the receiver is different from the frequency of the carrier signal transmitted by the satellite, and the frequency difference between them is called Dopp. Le frequency bias.
  • the GPS Doppler shift is also different due to the difference between the local oscillator of the mobile phone's voltage-controlled crystal oscillator (VCTCXO) and the self-jamming.
  • the GPS speed measurement is realized by measuring the Doppler shift, so the Doppler frequency offset directly affects the speed measurement accuracy in mobile positioning.
  • the calibration of different parameters may be performed by using different modules.
  • the GPS parameter calibration module may include at least one of the following: a time delay calibration module, configured to calibrate the GPS time delay parameter.
  • Doppler offset calibration module set to calibrate GPS Doppler frequency parameters
  • carrier-to-noise ratio calibration module set to calculate and compensate for GPS system loss
  • latitude and longitude calibration module set to pre-load The latitude and longitude is calibrated.
  • the GPS parameter calibration module can include: a time delay calibration module, a Doppler offset calibration module, and The three modules of the carrier-to-noise ratio calibration module, in this way, can meet the requirements of GPS parameter differences.
  • the time delay calibration module may be configured to calculate a difference between the time of capturing the predetermined number of times SV and the required network search time, compare the difference with the target time difference, and increase the time when the difference is smaller than the target time difference.
  • the delay value when the difference is greater than the target time difference, reduces the time delay value; or, the time delay calibration module may be set to start receiving and positioning according to the time delay value preloaded by the mobile terminal, and after the positioning is completed, check Positioning accuracy and/or signal strength, and positioning accuracy and/or signal strength to adjust the preloaded time delay value, again to initiate positioning, check positioning accuracy and/or signal strength until positioning accuracy and/or signal
  • the difference between the intensity and the target value is within a predetermined range.
  • the Doppler offset calibration module can be configured to detect the current clock frequency offset of the GPS receiver of the mobile terminal by using a hardware clock frequency offset detector, and according to the detected clock frequency offset, the clock of the mobile terminal The frequency offset is corresponding to 4 ⁇ positive.
  • the state parameters and/or environmental parameters of the mobile terminal may affect the GPS parameters, for example, the GPS coverage in some places is not good, and there is a problem in synchronization with the local operator base station, and there may be some differences. Or, there may be some differences in the environment in which the mobile terminal may be used. For example, the difference in temperature between winter and outdoor areas in the same area may also affect the calculation model of multipath attenuation.
  • the data collected by the GPS signal feedback collection module 12 can be adjusted according to the state parameters and/or environmental parameters of the mobile terminal, and the GPS parameter calibration module 12 performs GPS parameters according to the adjusted data. Calibration, this function can be implemented by the control module.
  • the mobile terminal may cause the first positioning time may be long, and the latitude and longitude calibration module can be used.
  • the pre-loaded latitude and longitude of the module may be derived from information of the current network detected by the mobile terminal or received latitude and longitude of the input.
  • the status parameter of the mobile terminal and/or the location environment parameter where the mobile terminal is located may be obtained in various manners.
  • the mobile terminal may include: an application detection module, where the module is configured to detect a status parameter of the mobile terminal.
  • FIG. 2 is a flowchart of a GPS parameter calibration method according to an embodiment of the present invention.
  • the GPS parameter calibration method can be applied to a mobile terminal, as shown in FIG.
  • Step S202 Perform calibration on at least one of the following GPS parameters: data before calibration of the mobile terminal and data after calibration, status parameters of the mobile terminal, and environmental parameters of the mobile terminal;
  • Step S204 collecting GPS parameters before and after calibration, and feeding back the collected data to perform calibration of the GPS parameters in step S202.
  • calibrating the GPS parameters includes at least one of: calibrating a GPS time delay parameter; calibrating a GPS Doppler frequency parameter; calculating and compensating for GPS system loss; Calibrate the preloaded latitude and longitude.
  • the GPS time delay parameter for calibrating the GPS time delay parameter, it can be performed by: calculating the difference between the time of capturing the predetermined number of times SV and the required network search time, comparing the difference with the target time difference, and the difference is smaller than the target In the case of a time difference, the time delay value is increased, and when the difference is greater than the target time difference, the time delay value is decreased; or, the receiving position is started according to the time delay value preloaded by the mobile terminal, and after the positioning is completed, the positioning is checked. Accuracy and/or signal strength, with positioning accuracy and/or signal strength adjusted for preloaded time delay values, again to initiate positioning, check positioning accuracy and/or signal strength until positioning accuracy and/or signal strength The difference from the target value is within a predetermined range.
  • the calibration of the Doppler frequency parameter of the GPS may be performed by: detecting a current clock frequency offset of the GPS receiver of the mobile terminal by using a hardware clock frequency offset detector, according to the detected clock frequency offset, The clock frequency offset of the mobile terminal is correspondingly positive.
  • the calculation and compensation for the system loss of the GPS can be performed by: calculating the signal strength of the GPS receiver from the mobile terminal that is collected by the GPS signal feedback collection module, and obtaining the first result after the baseband processing of the mobile terminal
  • the difference between the noise value and the signal strength of the GPS receiver from the mobile terminal through the second noise value collected by the GPS filter and the amplification module (better, the first noise value and the first noise value can be obtained by the multiple access set)
  • the average of the two noise values and then by comparing the difference of the average values, compares the difference with the preloaded value, and if the difference between the difference and the preloaded value is greater than the first threshold, increasing the mobile terminal
  • the calibrating the GPS parameters comprises: adjusting a state parameter of the mobile terminal and/or an environment parameter of the mobile terminal, adjusting data before calibration of the mobile terminal and data after calibration, and adjusting the data according to the adjustment Calibrate the GPS parameters.
  • the following is a description of the GPS adaptive calibration device on the phone.
  • the preferred embodiment provides an intelligent, convenient and fast GPS adaptive calibration device.
  • the GPS adaptive calibration device is located in the mobile phone to ensure that the mobile phone can be implemented in various application environments, communication states and personalized requirements. Parameter calibration, so that the mobile phone GPS is always in the best working condition.
  • 3 is a structural block diagram of a GPS adaptive calibration apparatus according to a preferred embodiment of the present invention. As shown in FIG.
  • the apparatus includes an application detection module 300, an adaptive control module 302 (implementing the functions of the foregoing control module), Time delay self-calibration module 304 (implementing the function of the time delay calibration module described above), Doppler shift self-calibration module 306 (implementing the function of the Doppler calibration module described above;), latitude and longitude self-calibration module 308 (implementation The function of the above latitude and longitude calibration module;), the C/N0 self-calibration module 310 (implementing the function of the above-mentioned carrier-to-noise ratio calibration module), the GPS signal feedback collection module 312, and the user interaction module 314.
  • an application detection module 300 includes an application detection module 300, an adaptive control module 302 (implementing the functions of the foregoing control module), Time delay self-calibration module 304 (implementing the function of the time delay calibration module described above), Doppler shift self-calibration module 306 (implementing the function of the Doppler calibration module described above;), latitude and longitude self-calibration module 308
  • the application detection module 300 is connected to each radio communication module, and is configured to detect the current communication standard, frequency band, and user demand status of the mobile phone in real time.
  • the adaptive control module outputs a parameter adjustment signal through state monitoring.
  • the adaptive control module 302 is connected to the application detection module 300 and configured to perform different calibration parameter adjustment response control on different states.
  • the time delay self-calibration module 304 is connected to the adaptive control module 302 and configured to adjust the real-time time delay parameter of the GPS.
  • the Doppler offset self-calibration module 306 is coupled to the adaptive control module 302 and configured to adjust the real-time Doppler frequency parameters of the GPS.
  • the latitude and longitude self-calibration module 308 is connected to the adaptive control module and is set to the real-time latitude and longitude preload adjustment of the GPS.
  • the C/N0 self-calibration module 310 is connected to the adaptive control module 302 and is set to calculate and compensate for the system loss of the GPS.
  • the GPS signal feedback collection module 312 is connected to the above three modules and the GPS receiving module, and collects the GPS carrier-to-noise ratio and sensitivity information before and after adjustment in real time.
  • the user interaction module 314 is connected to the application detection module 300 and configured to be different for the user. Applications such as style, frequency band requirements, work location or environmental requirements are interactively selected, and the mobile phone completes parameter adjustment according to different needs.
  • the mobile terminal can be more intelligent, convenient and fast to realize GPS self-calibration from the combination of hardware and software, combined with the internal structure and function of the mobile phone, fully consider the various application environments and user experiences of the mobile phone GPS, and adjust the GPS of the mobile phone. Evolving toward intelligence.
  • 4 is a structural block diagram of a GPS adaptive calibration apparatus applied to a mobile phone according to a preferred embodiment of the present invention. As shown in FIG. 4, the mobile terminal includes the above application detection module 300, an adaptive control module 302, and time.
  • the application detection module 300 is connected to the acceleration sensor, the temperature sensing module and the user interaction module, and is configured to detect the current state of the mobile phone and the state of the user demand in real time.
  • the multi-channel selection switch realizes that the input signal is the output enable signal of each sensor, and the output signal is an adaptive control enable signal.
  • the application detection module 300 detects that the input signal is a high level signal that is valid for S1, and the bad state is an effective low level signal of the SO; Flat signal, the mobile phone temperature is low to a low level signal, the mobile phone temperature is a high resistance signal in the normal range; the mobile phone is in a high level state during high speed movement, and the mobile phone moves to a low level state at a stationary or low speed;
  • the instantaneous detection sends a control signal to the adaptive control module 302 to make a real-time calibration parameter adjustment.
  • the adaptive control module 302 is connected to the application detection module 300 and the respective calibration modules, and is configured to perform different parameter adjustment response control on different mobile phone states.
  • the control end of the module is the output signal of the application detection module.
  • the output of the module is the input adjustment signal of the parameter adjustable module or the memory NV value to be written.
  • the adjustment signal amplitude is calculated and compared according to the feedback value, and the adaptive control module is obtained. It contains a set of amplitude and digital correspondence tables, and the output control parameter values are adjusted according to the feedback results to achieve adaptive amplitude signal output until the final full calibration is completed.
  • the time delay self-calibration module 304 is connected to the adaptive control module 302 and configured to adjust the real-time time delay parameter of the GPS.
  • the system first detects the current network mode, and then clears the NV item corresponding to the preset basic time delay value to 0.
  • the mobile phone turns on the clock frequency divider, and divides the basic clock signal by N times to obtain the minimum collected signal clock.
  • the module turns on the specific satellite signal collection function, and the precise clock is turned on.
  • Start timing calculate the time of capturing SV 100 times and the required network search time difference, and then compare with the target time difference: When the test time difference is less than the target time difference, it means that to increase the time delay value, the NV value will increase; when the test time difference When the target time difference is greater than the target time difference, the corresponding time delay value is reduced, and the corresponding NV value will be decreased.
  • the time delay self-calibration module 304 can also detect the current positioning accuracy and the carrier-to-noise ratio value through a closed loop, and indirectly reflect whether the time delay correction is currently performed according to the positioning accuracy and the carrier-to-noise ratio. If the mobile phone first loads the predetermined time delay value, then the receiving positioning is started. After the positioning is completed, the positioning accuracy and the signal strength are checked. If the positioning accuracy is very poor, it is greater than the assumed target value of 6 meters, and the carrier-to-noise ratio is small. Below the average value of 38dB-Hz, it indicates that the time delay difference may be obtained by fine-tuning the time delay value of the corresponding unit (if it is originally 9600NS).
  • the Doppler offset self-calibration module 306 is coupled to the adaptive control module 302 and configured to adjust the real-time Doppler frequency parameters of the GPS.
  • the Doppler offset self-calibration module 306 is coupled to the adaptive control module 302 and configured to adjust the real-time Doppler frequency parameters of the GPS.
  • the frequency offset caused by the Doppler effect causes the GPS receiver to search for more than one frequency range. It is necessary to search the range of the entire Doppler frequency offset, which causes the traditional GPS receiver to take a long time to start, and also causes positional accuracy deviation.
  • the system After the module is turned on, the system first loads the preset Doppler frequency delay value, such as the current value is 9HZ, and then detects the current positioning accuracy and sensitivity value through the closed loop, completes the variable range adjustment, and locks the Doppler shift to a certain value.
  • the clock bias of the current GPS receiver is detected by the hardware clock frequency offset detector, and then the clock frequency offset is corresponding to ⁇ ⁇ ' ⁇ . If the current frequency offset is 2 ⁇ , the Doppler calibration value should be 4 ⁇ to 7 ⁇ . If the current frequency offset is -4 ⁇ , the Doppler calibration value should be 4 ⁇ is 5 ⁇ .
  • the test of the above calibration value needs to be averaged for multiple tests of high, medium and low signals.
  • the latitude and longitude self-calibration module 308 is connected to the adaptive control module 302 and configured as a real-time latitude and longitude preload adjustment of the GPS. For example, when a mobile phone moves from a land to a land, when the latitude and longitude span is large, the GPS receiver may not be able to quickly locate in a short time due to a large change in ephemeris and almanac.
  • the latitude and longitude self-calibration module can be automatically turned on, and the latitude and longitude is preloaded and adjusted in real time.
  • the mobile phone extracts a certain built-in latitude and longitude position parameter by detecting the current mobile network information or the user's custom area range setting, and the adaptive control module controls the latitude and longitude self-calibration module after the application detecting module detects the triggering instruction. , correct it to the specified parameter information, and then pass
  • the GPS signal feedback set module re-collects the current signal strength and the number of satellites to determine whether the current latitude and longitude parameters are reasonable, so the feedback is replaced and adjusted until the signal is strongest.
  • the C/N0 self-calibration module 310 is connected to the adaptive control module 302, and calculates the difference between the two by using the C/N0 value of the baseband of the system and the input signal value of the system, and calculates the system loss of the GPS. And compensation. For example, the signal strength collected at the GPS RF inlet is input to the baseband processing module, and the thermal noise density at that time is subtracted and converted into the corresponding CN01, and the CN02 value collected by the GPS filter and the amplification module is passed. The difference between the average values is measured multiple times, and compared with the predetermined load CNO LOSS value. If it is too large, the system loss value is increased.
  • the GPS signal feedback collection module 312 is connected to the above three modules and the GPS receiving module, and collects the GPS parameters before and after adjustment in real time, for example, the carrier-to-noise ratio, the number of satellites, and the positioning accuracy.
  • the user interaction module 314 is connected to the application detection module 300, and is configured to interactively select applications for different frequency band requirements, regions, or ambient temperature requirements, and the mobile phone completes calibration parameter adjustment according to different requirements.
  • the baseband chip module is connected to the adaptive control module 302 and configured to detect the current signal amplitude CNO of the mobile phone.
  • FIG. 5 is a flowchart of the operation of the adaptive GPS calibration module according to a preferred embodiment of the present invention. As shown in FIG. 5, the process includes the following steps: Step S501: The mobile phone turns on the adaptive calibration function, and the application detection module 300 is The activation and each calibration module are activated; Step S502: The user selects the current priority calibration mode in the user interaction module 314 according to the personality requirement, and the subsequent calibration model performs calibration comparison according to the calibration mode.
  • Step S503 The baseband chip demodulates the navigation information of the GPS signal, and detects the current received signal strength CNO in real time.
  • Step S504 The mobile phone detects the current state and communication mode of the mobile phone through the application detection module 300.
  • Step S505 The adaptive control module outputs an adjustment signal according to the current state, and adjusts each calibration module.
  • Step S506 Each calibration adjustable module selects a reasonable calibration mode according to the adjustment signal, and adjusts the calibration parameter.
  • Step S507 GPS signal feedback
  • the collecting module 312 collects the GPS parameters before and after adjustment in real time, for example, the carrier-to-noise ratio and the positioning accuracy information
  • Step S508 Each calibration module compares the actual measured value with the target value, and the comparison result is fed back to the adaptive control Module, realize loop feedback control adjustment
  • Step S509 If the parameter and the target value do not match, indicating that the parameter is mismatched, each self-calibration module obtains the calibration adjustment direction and the adjustment range according to the empirical model parameter, and feeds it back to the adaptive control module.
  • Step S510 If each calibration is modulated to the target range, the positioning accuracy obtained by the sampling module is higher, the CN0 value is larger, and the first positioning time is shorter, indicating that the self-calibration adjustment is passed, and one round of adjustment is completed. After the calibration is completed, the calibration NV is written into the corresponding RF profile.
  • the above preferred embodiment is different from a single fixed GPS calibration parameter, and fully considers the differential matching of various application states of the mobile phone, so that the GPS receiving performance of the mobile phone is optimized.
  • the above embodiments are not limited to the simple combination switching of multiple calibration modes, but are dynamically adjustable on the basis of the optimal algorithm design, so that the GPS parameters are organically matched.
  • the mobile phone makes full use of the internal circuit and structure of the mobile phone, adopts self-detection technology, adaptive calibration design, and the adjustment method is scientific and reasonable, intelligent and practical.
  • the whole adjustment process does not depend on the A-GPS base station network, and does not rely on large-scale complex algorithms, but instead adopts a simple and feasible adaptive method implementation.
  • the above preferred embodiment fully considers the state of the mobile phone application, and combines the user's requirements for performance and use conditions to adjust the GPS calibration NV to the optimal state at all times, which is safe and reliable.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

移动终端和全球定位系统参数校准方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种移动终端和全球定位系统
( Global Position System , 简称为 GPS ) 参数校准方法。 背景技术 目前, 移动终端(也称为终端或用户终端, 例如, 手机) 中 GPS的应用越 来越广泛, 移动终端对 GPS性能要求越来越高, 移动终端 GPS的校准对提高 GPS的性能起着艮重要的作用。 以下对相关技术中的 GPS校准方式进行说明。 在相关技术中, GPS 校准的方式有如下几种: 1. 取少量终端样品校准, 得出平均值, 然后将参数写入到所有终端。 2. 每个终端独立校准, 将各自的 校准值写到各自的终端。 3. 通过 A-GPS服务器提供 GPS信号的近似的多普勒 频偏, A-GPS服务器有一个参考的 GPS接收机, 能计算出卫星信号的多普勒 频偏。 4. 通过定位软件估计算法优化实现, 在频偏估计理论中, 大部分频率 估计问题都可以归结为最大似然估计问题, 但是在许多要求快速估计校正频偏 的实时应用中, 这样花费大量时间的计算是不可取的。 5. 根据卫星与地面接 收站之间的相对位置和速度,预先计算出信号的多普勒频偏,据此实时地修正接 收机中数字频率合成器输出的本振频率,以达到消除多普勒频偏的目的。 上述方法都存在着一些缺点, 例如, 方式 1校准数值单一, 不能满足 GPS 参数差异性需求; 方式 2工序复杂, 校准过程及时间很长, 不利于批量大规模 生产; 方式 3 需要借助于 A-GPS 的辅助, 会耗费终端流量及占用网络资源; 方式 4软件算法复杂, 且是一种近似算法, 实际精确度不高; 方式 5需要借助 于大规模测试及预推测算法, 实际在终端中应用意义不大。 发明内容 本发明的主要目的在于提供一种移动终端和 GPS参数校准方法,以至少解 决上述问题之一。 才艮据本发明的一个方面, 提供了一种移动终端, 包括: 全球定位系统 GPS 参数校准模块, 设置为根据至少以下之一对 GPS参数进行校准: 来自 GPS信 号反馈釆集模块的数据、 所述移动终端的状态参数、 所述移动终端所处的环境 参数; 所述 GPS信号反馈釆集模块, 设置为釆集所述 GPS参数校准模块进行 校准前和校准之后的 GPS参数, 并将釆集到的数据反馈给所述 GPS参数校准 模块。 所述 GPS参数校准模块包括至少以下之一: 时间延时校准模块,设置为对
GPS 的时间延时参数进行校准; 多普勒偏移校准模块, 设置为对 GPS 的多普 勒频率参数进行校准; 载噪比校准模块,设置为对 GPS的系统损耗进行计算和 补偿; 经纬度校准模块, 设置为对预装载的经纬度进行校准。 所述经纬度校准模块, 设置为接收所述移动终端检测到的当前网络的信息 或者接收到输入的经纬度得到所述预装载的经纬度。 所述时间延时校准模块, 设置为计算捕获预定次数卫星 (Satellite Vehicle, 简称为 SV ) 的时间和所需网络搜寻时间的差值, 将所述差值和目标时间差相 比较, 在所述差值小于所述目标时间差的情况下, 增大时间延时值, 在所述差 值大于所述目标时间差的情况下, 减小时间延迟值; 或者, 所述时间延时校准 模块, 设置为根据所述移动终端预先装载的时间延迟值启动接收定位, 在定位 完成后, 检查定位准确度和 /或信号强度, 并 居所述定位准确度和 /或所述信 号强度调整所述预先装载的时间延迟值, 再次启动接收定位, 检查所述定位准 确度和 /或所述信号强度, 直到所述定位准确度和 /或所述信号强度与目标值的 差值在预定的范围内。 所述多普勒偏移校准模块, 设置为通过硬件时钟频偏检测器, 检测所述移 动终端的 GPS接收机当前的时钟频偏,根据检测到的时钟频偏, 对所述移动终 端的时钟频偏进行对应的 4爹正。 所述载噪比校准模块,设置为计算所述 GPS信号反馈釆集模块釆集的来自 所述移动终端的 GPS 接收机的信号强度经过所述移动终端的基带处理后得到 第一噪声值和来自所述移动终端的 GPS接收机的信号强度经过 GPS滤波器和 放大模块后釆集到的第二噪声值的差值, 将所述差值和预先载入的值进行比 较, 如果所述差值与所述预先载入的值的差大于第一阈值, 则增大所述移动终 端的系统损耗值, 如果所述差值和所述预先载入的值的差小于第二阈值, 则减 少所述移动终端的系统损耗值。 还包括: 控制模块, 设置为根据所述移动终端的状态参数和 /或所述移动终 端所处的环境参数对来自所述 GPS 信号反馈釆集模块的数据进行调整; 所述 GPS 参数校准模块设置为根据所述控制模块调整后的数据对 GPS 参数进行校 准。 还包括: 应用侦测模块, 设置为侦测所述移动终端的状态参数和 /或所述移 动终端所处的环境参数, 并发送给所述 GPS参数校准模块; 和 /或, 用户交互 模块,设置为接收输入的所述移动终端的状态参数和 /或所述移动终端所处的环 境参数, 并发送给所述 GPS参数校准模块。 所述移动终端的状态参数包括至少以下之一: 所述移动终端当前的通信制 式、所述移动终端的加速度; 所述移动终端所处的环境参数包括至少以下之一: 所述移动终端所处环境的温度、 所述移动终端所处的地区的经纬度。 根据本发明的另一个方面, 提供了一种全球定位系统参数校准方法, 应用 于移动终端中, 包括: 根据至少以下之一对全球定位系统 GPS参数进行校准: 所述移动终端釆集的校准之前的数据和校准之后的数据、 所述移动终端的状态 参数、 所述移动终端所处的环境参数; 釆集校准之前和校准之后的 GPS参数, 并将釆集到的数据进行反馈, 以进行 GPS参数的校准。 对所述 GPS参数进行校准包括至少以下之一: 对 GPS的时间延时参数进 行校准; 对 GPS的多普勒频率参数进行校准; 对 GPS的系统损耗进行计算和 补偿; 对预装载的经纬度进行校准。 对所述 GPS参数进行校准包括: 艮据所述移动终端的状态参数和 /或所述 移动终端所处的环境参数对所述移动终端釆集的校准之前的数据和校准之后 的数据进行调整, 并根据调整后的数据对 GPS参数进行校准。 通过本发明, 至少解决了相关技术中 GPS校准方式所导致的问题之一, 进 而加强了移动终端的 GPS校准功能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是 居本发明实施例的移动终端的结构框图; 图 2是才艮据本发明实施例的 GPS参数校准方法的流程图; 图 3是根据本发明优选实施例的 GPS 自适应校准装置的结构框图; 图 4是才艮据本发明优选实施例的 GPS自适应校准装置应用于手机的结构框 图; 图 5是根据本发明优选实施例的自适应 GPS校准模块工作的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在以下实施例中, 涉及智能自校准 GPS的设计, 可以尽最大可能保证移动 终端中的 GPS随时以最优性能工作,提高定位效率达到最高。 本实施例提供了 一种移动终端, 图 1是才艮据本发明实施例的移动终端的结构框图,如图 1所示, 该移动终端包括: GPS参数校准模块 10和 GPS信号反馈釆集模块 12, 下面对 该结构进行说明:
GPS参数校准模块 10, 设置为 居至少以下之一对 GPS参数进行校准: 来自 GPS信号反馈釆集模块 12的数据、 移动终端的状态参数 (例如, 移动终 端当前的通信制式、 移动终端的加速度)、 移动终端所处的环境参数 (例如, 移动终端所处环境的温度、 移动终端所处的地区的经纬度); GPS 信号反馈釆 集模块 12连接至 GPS参数校准模块, 设置为釆集 GPS参数校准模块 10进行 校准前和校准之后的 GPS参数, 并将釆集到的数据反馈给 GPS参数校准模块 10。 通过上述移动终端中设置的 GPS参数校准模块 10和 GPS信号反馈釆集模 块 12, 通过反馈的方式可以在该移动终端中进行自动的 GPS参数的校准, 改 变了在相关技术中通过向终端写入参数的校准方式。 另外, 由于 GPS参数校准 模块 10还可以根据能够影响 GPS功能的移动终端的状态参数和其所处的环境 参数对 GPS参数进行校准,从而做到了移动终端对环境的自适应, 实现了根据 移动终端实际应用场景的变化时移动终端所处的状态和实际的环境来调整 GPS参数, 将外界影响尽可能的降低。 例如, 在手机中, GPS在 L1频段 C/A码信号强度最小值为 -160dBw, 和 手机其他射频信号相比, 这个信号是非常微弱的, 极易受到千扰。 在实际场景 中, 由于卫星仰角的不同、 以及受树木、 建筑物等的遮挡, GPS信号到达地面 的强度可能会 4氏于 - 160dBw, 所以集成 GPS功能的移动终端在楼宇中或者密集 街道上识别原本微弱的 GPS信号会存在一些问题, 通过上述的 GPS参数校准 模块 10, 就可以根据实际情况来实时调整 C/A码信号强度的最小值以更好的 适应环境。 上述的 GPS参数校准模块 10的实现方式可以校准多种 GPS参数,这些参 数对 GPS功能的实现均有不同程度的影响。 例如, 校准载噪比。 载噪比为单位带宽的信噪比。 在接收机里面, 可以把 I路解调下来的数据作为信号, 把 Q路的能量作为噪声, 多次统计平均后来估 计载噪比 C/N0。 C/N0是衡量一个终端 GPS性能的重要指标, C/N0校准测试 用于校准移动台的 C/N0评估器, C/N0校准数受软件算法、特定手机 RF的 NF 等影响, 所以不同批次和板厂的 NF噪声系数可能不一样, 而 C/N0偏大就会 导致 GPS接收灵敏度差, 所以实际使用中就需要对 C/N0做一个补偿校准, 例 如, C/N0校准数可以等于斯伯伦 ( Spirent )指定 C/N0和终端在基带测量的平 均 C/N0的差, 减去测试设置损耗。 又例如, 不同制式手机和不同基站在故时间同步时, 由于基站内部系统误 差和时延的差别, 导致两套系统在时间上没有精确同步, 而 GPS是基于时间的 伪距测试, 细啟的时间差异就会导致定位精度的 艮大波动。 又例如, 当 GPS接收机载体和 GPS卫星之间存在相对运动时, 接收机接 收到的 GPS载波信号频率与卫星发射的载波信号的频率是不同的,其间的频率 差值, 就称为多普勒频偏。 由于手机个体压控晶振( VCTCXO )本振的差异和 自千扰 (self-jamming ) 的原因, GPS 多普勒偏移也不尽相同。 GPS 的测速是 通过测定多普勒频移来实现的, 因此多普勒频偏会直接影响移动定位中的测速 精度。 在本实施例中对于不同的参数的校准可以釆用不同的模块来进行, 例如, GPS参数校准模块可以包括至少以下之一: 时间延时校准模块, 设置为对 GPS 的时间延时参数进行校准; 多普勒偏移校准模块,设置为对 GPS的多普勒频率 参数进行校准; 载噪比校准模块, 设置为对 GPS的系统损耗进行计算和补偿; 经纬度校准模块, 设置为对预装载的经纬度进行校准。 只要包括了上述之一的 模块, 就可以对 GPS参数的之一进行校准, 当然, 如果为了更佳的进行校准, GPS参数校准模块可以包括: 时间延迟校准模块、 多普勒偏移校准模块和载噪 比校准模块这三个模块, 这样, 可以满足 GPS参数差异性的要求。 例如, 时间延时校准模块, 可以设置为计算捕获预定次数 SV的时间和所 需网络搜寻时间的差值, 将差值和目标时间差相比较, 在差值小于目标时间差 的情况下, 增大时间延时值, 在差值大于目标时间差的情况下, 减小时间延迟 值; 或者, 时间延时校准模块, 可以设置为根据移动终端预先装载的时间延迟 值启动接收定位, 在定位完成后, 检查定位准确度和 /或信号强度, 并 居定位 准确度和 /或信号强度调整预先装载的时间延迟值, 再次启动接收定位, 检查定 位准确度和 /或信号强度, 直到定位准确度和 /或信号强度与目标值的差值在预 定的范围内。 优选地, 多普勒偏移校准模块, 可以设置为通过硬件时钟频偏检测器, 检 测移动终端的 GPS接收机当前的时钟频偏,才艮据检测到的时钟频偏, 对移动终 端的时钟频偏进行对应的 4爹正。 优选地, 载噪比校准模块,设置为计算 GPS信号反馈釆集模块釆集的来自 移动终端的 GPS 接收机的信号强度经过移动终端的基带处理后得到第一噪声 值和来自移动终端的 GPS接收机的信号强度经过 GPS滤波器和放大模块后釆 集到的第二噪声值的差值(更优的, 可以通过多址釆集取得第一噪声值和第二 噪声值的平均值, 然后通过计算平均值的差值), 将差值和预先载入的值进行 比较, 如果差值与预先载入的值的差大于第一阈值, 则增大移动终端的系统损 耗值, 如果差值和预先载入的值的差小于第二阈值, 则减少移动终端的系统损 耗值。 由于移动终端的状态参数和 /或环境参数会对 GPS参数带来影响, 例如, 某些地方 GPS的覆盖不好,和当地运营商基站的同步有问题,也许会有些差别。 或者, 移动终端可能使用环境上会有些差别, 比如同地区冬天室外的温度的差 另 ij , 也会影响多径衰减的计算模型。 在一个优选实施例中, 可以才艮据移动终端 的状态参数和 /或环境参数对 GPS信号反馈釆集模块 12釆集的数据进行调整, GPS参数校准模块 12根据调整后的数据对 GPS参数进行校准, 该功能可以由 控制模块来实现。 在另一种情况下, 如果移动终端工作地域跨度很大(例如, 从美洲到欧洲, 或者从上海移动到深圳), 那么有可能导致首次定位时间可能很长, 此时就可 以使用经纬度校准模块, 该模块的预装载的经纬度可以来自于移动终端检测到 的当前网络的信息或者接收到输入的经纬度。 优选地,移动终端的状态参数和 /或移动终端所处的位置环境参数可以多种 的方式获得, 例如, 该移动终端可以包括: 应用侦测模块, 该模块设置为侦测 移动终端的状态参数和 /或移动终端所处的环境参数, 并发送给 GPS 参数校准 模块; 又例如, 该终端可以包括: 用户交互模块, 该模块设置为接收输入的移 动终端的状态参数和 /或移动终端所处的环境参数, 并发送给 GPS参数校准模 块。 在实施时, 如果使用用户输入的方式, 需要用户的参与, 但不需要额外增 加硬件; 而如果使用移动终端自身侦测的方式不需要用户参与, 可以提高用户 体验, 但是增加了额外的成本。 本实施例还提供了一种 GPS参数校准方法, 图 2是根据本发明实施例的 GPS参数校准方法的流程图, 该 GPS参数校准的方法可以应用于移动终端中, 如图 2所示, 该方法包括如下步 4聚: 步骤 S202, 居至少以下之一对 GPS参数进行校准: 移动终端釆集的校 准之前的数据和校准之后的数据、 移动终端的状态参数、 移动终端所处的环境 参数; 步骤 S204, 釆集校准之前和校准之后的 GPS参数, 并将釆集到的数据进 行反馈, 以执行步骤 S202中的 GPS参数的校准。 优选地,在步骤 S202中,对 GPS参数进行校准包括至少以下之一:对 GPS 的时间延时参数进行校准; 对 GPS的多普勒频率参数进行校准; 对 GPS的系 统损耗的计算和补偿; 对预装载的经纬度进行校准。 例如, 对于对 GPS的时间延时参数进行校准, 可以通过以下方式进行: 计 算捕获预定次数 SV的时间和所需网络搜寻时间的差值, 将差值和目标时间差 相比较, 在差值小于目标时间差的情况下, 增大时间延时值, 在差值大于目标 时间差的情况下, 减小时间延迟值; 或者, 根据移动终端预先装载的时间延迟 值启动接收定位, 在定位完成后, 检查定位准确度和 /或信号强度, 并 居定位 准确度和 /或信号强度调整预先装载的时间延迟值, 再次启动接收定位, 检查定 位准确度和 /或信号强度, 直到定位准确度和 /或信号强度与目标值的差值在预 定的范围内。 优选地,对于对 GPS的多普勒频率参数进行校准,可以通过以下方式进行: 通过硬件时钟频偏检测器,检测移动终端的 GPS接收机当前的时钟频偏,根据 检测到的时钟频偏, 对移动终端的时钟频偏进行对应的 4爹正。 优选地, 对于对 GPS的系统损耗的计算和补偿, 可以通过以下方式进行: 计算 GPS信号反馈釆集模块釆集的来自移动终端的 GPS接收机的信号强度经 过移动终端的基带处理后得到第一噪声值和来自移动终端的 GPS 接收机的信 号强度经过 GPS滤波器和放大模块后釆集到的第二噪声值的差值(更优的, 可 以通过多址釆集取得第一噪声值和第二噪声值的平均值, 然后通过计算平均值 的差值), 将差值和预先载入的值进行比较, 如果差值与预先载入的值的差大 于第一阈值, 则增大移动终端的系统损耗值, 如果差值和预先载入的值的差小 于第二阈值, 则减少移动终端的系统损耗值。 优选地, 对 GPS参数进行校准包括: 居移动终端的状态参数和 /或移动 终端所处的环境参数对移动终端釆集的校准之前的数据和校准之后的数据进 行调整, 并根据调整后的数据对 GPS参数进行校准。 下面结合手机上的 GPS 自适应校准装置进行说明。 本优选实施例提供了一种智能、 便捷、 快速的 GPS 自适应校准装置, 该 GPS 自适应校准装置位于手机中, 以保证手机能在各种应用环境, 通讯状态及 个性化需求下实现不同的参数校准, 使手机 GPS始终处于最佳工作状态。 图 3 是根据本发明优选实施例的 GPS 自适应校准装置的结构框图, 如图 3所示, 该 装置包括应用侦测模块 300、 自适应控制模块 302 (实现了上述的控制模块的 功能)、 时间延迟自校准模块 304 (实现了上述的时间延迟校准模块的功能)、 多普勒偏移自校准模块 306 (实现了上述的多普勒校准模块的功能;)、 经纬度自 校准模块 308 (实现了上述经纬度校准模块的功能;)、 C/N0 自校准模块 310 (实 现了上述的载噪比校准模块的功能)、 GPS信号反馈釆集模块 312和用户交互 模块 314。 其中, 应用侦测模块 300, 与各射频通信模块相连, 设置为实时侦 测手机当前的通信制式、 频段及用户需求状态。 通过状态监测控制自适应控制 模块输出参数调整信号。 自适应控制模块 302, 与应用侦测模块 300相连, 设 置为对不同的状态做不同的校准参数调整响应控制。时间延迟自校准模块 304, 与自适应控制模块 302相连,设置为 GPS的实时时间延迟参数调整。 多普勒偏 移自校准模块 306, 与自适应控制模块 302相连, 设置为 GPS的实时多普勒频 率参数调整。 经纬度自校准模块 308, 与自适应控制模块相连, 设置为 GPS的 实时经纬度预装载调整。 C/N0 自校准模块 310, 与自适应控制模块 302相连, 设置为 GPS的系统损耗的计算和补偿。 GPS信号反馈釆集模块 312, 与上述三 个模块及 GPS接收模块相连, 实时釆集调整前及调整后的 GPS载噪比及灵敏 度信息。 用户交互模块 314, 与应用侦测模块 300相连, 设置为用户对不同制 式、 频段需求、 工作地点或环境需求等应用做交互选择, 手机根据不同需求完 成参数调整。 通过上述模块, 能够从硬软件相结合方面使移动终端更加智能、 便捷、 快 速的实现 GPS 自校准, 结合手机内部结构和功能, 充分考虑手机 GPS多种应 用环境和用户体验, 让手机的 GPS调节向智能化方向演进。 图 4是才艮据本发明优选实施例的 GPS自适应校准装置应用于手机的结构框 图, 如图 4所示, 该移动终端包括了上述的应用侦测模块 300、 自适应控制模 块 302、 时间延迟自校准模块 304、 多普勒偏移自校准模块 306、 经纬度自校准 模块 308、 C/N0 自校准模块 310、 GPS信号反馈釆集模块 312、 用户交互模块 314 , 还包括加速度感应器、 温度感应模块、 以及手机自身的基带芯片模块、 GPS接收器模块、 GPS滤波放大模块、 GPS天线单元。 下面将结合图 3和图 4 进行说明。 应用侦测模块 300, 与加速度感应器、 温度感应模块及用户交互模块相连, 设置为实时侦测手机当前所处状态及用户需求状态。 通过多路选择开关实现, 输入信号为各传感器的输出使能信号,输出信号为自适应控制使能信号。例如, 手机当前处于气候环境良好状态,则应用侦测模块 300会检测到输入信号为 S 1 有效的高电平信号, 状态恶劣则是 SO有效的低电平信号; 当前手机过热显示 为高电平信号, 手机温度偏低为低电平信号, 手机温度在正常范围内为高阻信 号; 手机在高速移动中为高电平状态,手机在静止或者低速移动为低电平状态; 手机通过脉冲瞬侦测, 发出控制信号给自适应控制模块 302, 做出实时校准参 数调整。 自适应控制模块 302 , 与应用侦测模块 300及各自校准模块相连, 设置为 对不同的手机状态做不同的参数调整响应控制。 模块的控制端为应用侦测模块 的输出信号, 模块的输出为参数可调模块的输入调整信号或待写入的内存 NV 值, 调整信号幅度根据反馈值计算比较得出, 在自适应控制模块内含有一组幅 度数字对应表, 输出控制参数值根据反馈结果做出自适应幅度信号输出调整, 直到完成最终完全校准。 时间延迟自校准模块 304, 与自适应控制模块相连 302, 设置为 GPS的实 时时间延迟参数调整。 例如, 系统先检测当前网络模式, 然后将预置的基本时 间延迟值对应的 NV项清 0, 手机开启时钟分频器, 将基本时钟信号进行 N次 分频, 得到最小釆集信号时钟。 模块开启特定卫星信号釆集功能, 精确时钟开 始计时, 计算 100次捕获 SV的时间及所需网络搜寻时间差, 然后和目标时间 差相比较: 当测试时间差小于目标时间差时, 说明要增大时间延迟值, NV值 将跟着增大; 当测试时间差大于目标时间差时, 说明要减小时间延迟值, 对应 NV值将跟着减小。 又例如, 时间延迟自校准模块 304还可以通过闭环检测当 前定位精度和载噪比值, 根据定位精度和载噪比的大小, 来间接反映当前是否 要做时间延迟修正。 如手机先装载预定的时间延迟值, 然后启动接收定位, 定 位完成后, 检查定位准确度和信号强度。 如果定位精度很差, 大于假定的目标 值 6米, 同时载噪比很小, 低于平均值 38dB-Hz, 则表明可能时间延迟差, 通 过微调相应单位的时间延迟值(如原来是 9600NS ), 将其调大或者调小, 重新 检查对应的效果值, 直到接近目标值为止。 多普勒偏移自校准模块 306, 与自适应控制模块 302相连, 设置为 GPS的 实时多普勒频率参数调整。 在 GPS接收机中, 在捕获 GPS信号阶段, 实际上 要搜索所有可能的频率和代码延迟空间, 而由多普勒效应引起的频偏, 使 GPS 接收机要搜索的频率范围远不止一个, 而是要搜索整个多普勒频偏的范围, 这 也就造成传统 GPS 接收机在启动进的时间要很长, 同时也会造成地位精度偏 差。 开启此模块后, 系统先装载预置的多普勒频率延迟值, 如当前值为 9HZ, 然后通过闭环检测当前定位精度和灵敏度值, 完成可变范围调节, 将多普勒偏 移锁定在一定范围内。 同时, 通过硬件时钟频偏检测器, 检测当前 GPS接收机 的时钟频偏, 然后对时钟频偏#丈对应^ ί'爹正。 如当前频偏为 2ΗΖ, 则多普勒校准 值应该 4爹丈为 7ΗΖ, 如当前频偏位 -4ΗΖ, 则多普勒校准值应该 4爹正为 5ΗΖ。 上 述校准值的测试需要针对高中低各信号做多次测试求平均值, 同时会检查手机 在高速、 低速及静止各移动状态下的信号输入值, 最后将校准得到的频偏置换 算成对应的 NV值, 写入手机对应的 NV项生效。 经纬度自校准模块 308, 与自适应控制模块 302相连, 设置为 GPS的实时 经纬度预装载调整。 例如, 当手机从甲地移动到乙地, 经纬度跨度很大时, GPS 接收器由于星历及年历变化较大, 往往在短时间内无法快速定位。 尤其是对于 那种没有 A-GPS基站辅助定位系统的终端, 或者 GPS 系统和当地基站存储星 历有误差的地区, 就可以自动开启此经纬度自校准模块, 实时对经纬度进行预 装载调整。手机通过检测当前移动网络信息,或者用户的自定义地区范围设定, 提取某一个内置经纬度位置参数, 应用侦测模块侦测到该触发指令后, 自适应 控制模块对经纬度自校准模块做控制调整, 将其修正到指定参数信息, 然后通 过 GPS信号反馈釆集模块重新釆集当前信号强度和卫星颗数,判断当前经纬度 参数是否合理, 如此反馈更换调整, 直到信号最强为止。
C/N0 自校准模块 310, 与自适应控制模块 302相连, 通过反馈釆集系统基 带的 C/N0值和系统输入信号值, 计算两者之间的差值, 设置为 GPS的系统损 耗的计算和补偿。 例如, 将 GPS射频入口处釆集到的信号强度输入到基带处理 模块, 减去当时的热噪声密度后换算成对应的 CN01 , 将经过 GPS滤波器及放 大模块后釆集到的 CN02值, 经过多次测量取其平均值的差值, 将其和预定载 入 CNO LOSS值相比较, 如果偏大, 则增大系统损耗值, 如果偏小, 则较少系 统损耗值; 最后将其转化为 GPS_RF_LOSS对应的 NV值写入相应项。 GPS信号反馈釆集模块 312, 与上述三个模块及 GPS接收模块相连, 实时 釆集调整前及调整后的 GPS参数, 例如, 载噪比值、 卫星颗数、 定位精度。 用户交互模块 314, 与应用侦测模块 300相连, 设置为用户对不同频段需 求、 地区或环境温度需求等应用做交互选择, 手机根据不同需求完成校准参数 调整。 基带芯片模块, 与自适应控制模块 302相连, 设置为侦测手机当前信号幅 度 CNO。 CN0可以考察手机 GPS当前信号强度, 基带芯片判定接收链路质量, 以及是否需要增大广播发送强度, 通过信号幅度强弱对手机匹配进行自校准, 校准结果通过自适应控制模块进行阻抗调整控制。 图 5是根据本发明优选实施例的自适应 GPS校准模块工作的流程图,如图 5所示, 该流程包括以下步 4聚: 步骤 S501 : 手机开启自适应校准功能, 应用侦测模块 300被激活及各校准 模块等被激活; 步骤 S502:用户根据个性需要在用户交互模块 314中选择当前优先校准模 式, 后续校准模型根据校准模式进行校准比较。 步骤 S503: 基带芯片对 GPS信号的导航信息进行解调, 实时侦测当前接 收信号强度 CNO; 步骤 S504: 手机通过应用侦测模块 300侦测当前手机所处状态和通讯模 式; 步骤 S505 : 自适应控制模块根据当前状态输出调整信号, 对各校准模块进 行调整; 步骤 S506: 各校准可调模块根据调整信号选择合理的校准模式, 对校准参 数进行调整; 步骤 S507: GPS信号反馈釆集模块 312, 实时釆集调整前及调整后的 GPS 参数, 例如, 载噪比及定位精度信息; 步骤 S508: 各校准模块将上述实际测量值和目标值比较, 比较结果反馈到 自适应控制模块, 实现环路反馈控制调节; 步骤 S509: 如果参数和目标值不匹配, 表明参数失配, 各个自校准模块根 据经验模型参数得出校准调整方向和调整幅度, 将其反馈到自适应控制模块, 进行幅度参数控制输出; 步骤 S510: 如果各校准调制到目标范围, 釆样模块得到的定位精度较高, CN0值较大, 首次定位时间较短, 说明自校准调整通过, 一轮调节完成, 校准 完成后将校准 NV写入相应的射频配置文件中。 上述优选实施例不同于单一固定的 GPS校准参数,充分考虑手机多种应用 状态差异化匹配, 使手机 GPS接收性能达到最优。 另外, 上述实施例不局限于 多种校准模式的简单组合切换, 而是在最佳算法设计的基础上实现动态可调, 让 GPS参数达到有机匹配。 再者, 充分利用了手机内部电路和结构, 釆用自侦 测技术, 自适应校准设计, 调整方式科学合理, 智能实用。 同时, 整个调节过 程不依赖于 A-GPS基站网络, 不依赖于大规模复杂算法, 而是釆取简单可行的 自适应方法实现。 上述优选实施例充分考虑手机应用状态, 结合用户对性能和 使用条件的需求, 时刻将 GPS校准 NV调整到最佳状态, 安全可靠。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而可以将它们存储在存储装置中由计算装置来执行, 或者将它们分 别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成 电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种移动终端, 包括:
全球定位系统 GPS参数校准模块,设置为根据至少以下之一对 GPS 参数进行校准: 来自 GPS信号反馈釆集模块的数据、 所述移动终端的状 态参数、 所述移动终端所处的环境参数;
所述 GPS信号反馈釆集模块, 设置为釆集所述 GPS参数校准模块 进行校准前和校准之后的 GPS参数,并将釆集到的数据反馈给所述 GPS 参数校准模块。
2. 根据权利要求 1所述的移动终端, 其中, 所述 GPS参数校准模块至少包 括以下之一:
时间延时校准模块, 设置为对 GPS的时间延时参数进行校准; 多普勒偏移校准模块, 设置为对 GPS的多普勒频率参数进行校准; 载噪比校准模块, 设置为对 GPS的系统损耗进行计算和补偿; 经纬度校准模块, 设置为对预装载的经纬度进行校准。
3. 根据权利要求 2所述的移动终端, 其中, 所述经纬度校准模块, 设置为 接收所述移动终端检测到的当前网络的信息或者接收到输入的经纬度得 到所述预装载的经纬度。
4. 根据权利要求 2所述的移动终端, 其中,
所述时间延时校准模块, 设置为计算捕获预定次数卫星 SV 的时间 和所需网络搜寻时间的差值, 将所述差值和目标时间差相比较, 在所述 差值小于所述目标时间差的情况下, 增大时间延时值, 在所述差值大于 所述目标时间差的情况下, 减小时间延迟值; 或者,
所述时间延时校准模块, 设置为根据所述移动终端预先装载的时间 延迟值启动接收定位, 在定位完成后, 检查定位准确度和 /或信号强度, 并才艮据所述定位准确度和 /或所述信号强度调整所述预先装载的时间延 迟值, 再次启动接收定位, 检查所述定位准确度和 /或所述信号强度, 直 到所述定位准确度和 /或所述信号强度与目标值的差值在预定的范围内。
5. 根据权利要求 2所述的移动终端, 其中,
所述多普勒偏移校准模块, 设置为通过硬件时钟频偏检测器, 检测 所述移动终端的 GPS接收机当前的时钟频偏, 根据检测到的时钟频偏, 对所述移动终端的时钟频偏进行对应的 4爹正。
6. 根据权利要求 2所述的移动终端, 其中,
所述载噪比校准模块,设置为计算所述 GPS信号反馈釆集模块釆集 的来自所述移动终端的 GPS接收机的信号强度经过所述移动终端的基带 处理后得到第一噪声值和来自所述移动终端的 GPS接收机的信号强度经 过 GPS滤波器和放大模块后釆集到的第二噪声值的差值, 将所述差值和 预先载入的值进行比较, 如果所述差值与所述预先载入的值的差大于第 一阈值, 则增大所述移动终端的系统损耗值, 如果所述差值和所述预先 载入的值的差小于第二阈值, 则减少所述移动终端的系统损耗值。
7. 根据权利要求 1至 6中任一项所述的移动终端, 其中,
还包括: 控制模块, 设置为根据所述移动终端的状态参数和 /或所述 移动终端所处的环境参数对来自所述 GPS信号反馈釆集模块的数据进行 调整;
所述 GPS参数校准模块设置为并根据所述控制模块调整后的数据对 GPS参数进行校准。
8. 根据权利要求 1至 6中任一项所述的移动终端, 其中还包括:
应用侦测模块, 设置为侦测所述移动终端的状态参数和 /或所述移动 终端所处的环境参数, 并发送给所述 GPS参数校准模块; 和 /或,
用户交互模块, 设置为接收输入的所述移动终端的状态参数和 /或所 述移动终端所处的环境参数, 并发送给所述 GPS参数校准模块。
9. 根据权利要求 1至 6中任一项所述的移动终端, 其中,
所述移动终端的状态参数包括至少以下之一: 所述移动终端当前的 通信制式、 所述移动终端的加速度;
所述移动终端所处的环境参数包括至少以下之一: 所述移动终端所 处环境的温度、 所述移动终端所处的地区的经纬度。
10. —种全球定位系统参数校准方法, 应用于移动终端中, 包括: 根据至少以下之一对全球定位系统 GPS参数进行校准: 所述移动终 端釆集的校准之前的数据和校准之后的数据、所述移动终端的状态参数、 所述移动终端所处的环境参数; 釆集校准之前和校准之后的 GPS参数,并将釆集到的数据进行反馈, 以进行 GPS参数的校准。
11. 根据权利要求 10所述的方法, 其中, 对所述 GPS参数进行校准包括至 少以下之一:
对 GPS的时间延时参数进行校准;
对 GPS的多普勒频率参数进行校准;
对 GPS的系统损耗进行计算和补偿;
对预装载的经纬度进行校准。
12. 根据权利要求 10或 11所述的方法, 其中, 对所述 GPS参数进行校准包 括:
才艮据所述移动终端的状态参数和 /或所述移动终端所处的环境参数 对所述移动终端釆集的校准之前的数据和校准之后的数据进行调整, 并 才艮据调整后的数据对 GPS参数进行校准。
PCT/CN2011/074060 2011-03-23 2011-05-13 移动终端和全球定位系统参数校准方法 WO2012126194A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/984,618 US9274212B2 (en) 2011-03-23 2011-05-13 Mobile terminal and parameter calibration method for global positioning system
EP11861458.5A EP2664944B1 (en) 2011-03-23 2011-05-13 Mobile terminal and parameter calibration method for global positioning system
ES11861458.5T ES2604933T3 (es) 2011-03-23 2011-05-13 Terminal móvil y procedimiento de calibración de parámetros para sistema de posicionamiento global

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110071075.5 2011-03-23
CN201110071075.5A CN102135623B (zh) 2011-03-23 2011-03-23 移动终端和全球定位系统参数校准方法

Publications (1)

Publication Number Publication Date
WO2012126194A1 true WO2012126194A1 (zh) 2012-09-27

Family

ID=44295461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074060 WO2012126194A1 (zh) 2011-03-23 2011-05-13 移动终端和全球定位系统参数校准方法

Country Status (5)

Country Link
US (1) US9274212B2 (zh)
EP (1) EP2664944B1 (zh)
CN (1) CN102135623B (zh)
ES (1) ES2604933T3 (zh)
WO (1) WO2012126194A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276065B2 (ja) * 2014-02-26 2018-02-07 パナソニック株式会社 無線通信方法及び無線通信装置
KR102422372B1 (ko) * 2014-08-29 2022-07-19 삼성전자 주식회사 생체 정보와 상황 정보를 이용한 인증 방법 및 장치
CN105205019B (zh) * 2015-10-30 2018-01-02 上海斐讯数据通信技术有限公司 基于高通平台手机的nv参数读写系统及方法
CN105424030B (zh) * 2015-11-24 2018-11-09 东南大学 基于无线指纹和mems传感器的融合导航装置和方法
CN106257305B (zh) * 2016-01-27 2018-10-02 上海华测导航技术股份有限公司 一种基于gnss接收机硬件模块获取源列表自动化检测方法
CN106772465B (zh) * 2017-02-09 2021-08-10 惠州Tcl移动通信有限公司 移动终端gps的灵敏度衰减自动化测试方法及系统
CN108039921B (zh) * 2017-12-05 2021-05-14 Oppo广东移动通信有限公司 一种移动终端的校准方法、终端设备及存储介质
CN110361719B (zh) * 2018-03-26 2022-03-08 北京中科海讯数字科技股份有限公司 一种主动声呐复杂编码信号多普勒分级搜索的方法
US10747290B1 (en) * 2018-03-30 2020-08-18 Shopkick, Inc. Varying application strategy based on device state
CN114830613B (zh) * 2019-12-31 2024-04-26 华为技术有限公司 一种通信传输的方法、设备及系统
CN114114352A (zh) * 2020-08-31 2022-03-01 中兴通讯股份有限公司 频率补偿方法及电路、存储介质、电子装置
CN112881977B (zh) * 2021-01-13 2024-05-17 南京鼎臻智能电气有限公司 一种基于北斗或gps的高精度自校准时钟同步方法
US20220283315A1 (en) * 2021-03-08 2022-09-08 The Aerospace Corporation Systems and methods for simulating performance of receivers in realistic interference scenarios
CN115696651B (zh) * 2022-10-22 2024-01-26 深圳市遨游通讯设备有限公司 一种通讯多模终端及采用该多模终端的智能定位方法
CN116381457A (zh) * 2023-04-10 2023-07-04 中山市博测达电子科技有限公司 一种基于数据预统计的光感芯片校正方法
CN117590435B (zh) * 2024-01-16 2024-04-16 福建福大北斗通信科技有限公司 一种北斗三代的朝向自动校准装置及其校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287149A (en) * 1994-03-02 1995-09-06 Cossor Electronics Ltd Differential global positioning system
CN101257700A (zh) * 2007-03-02 2008-09-03 英华达(南京)科技有限公司 一种提高低功率移动通讯系统定位精度的方法
CN101604010A (zh) * 2002-12-13 2009-12-16 高通股份有限公司 用于卫星定位系统的校准和校正系统
US20100099434A1 (en) * 2007-03-29 2010-04-22 Panasonic Corporation Signal capturing apparatus and signal capturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636744B1 (en) * 2000-04-20 2003-10-21 Lucent Technologies Inc. Obtaining pilot phase offset time delay parameter for a wireless terminal of an integrated wireless-global positioning system
US6834180B1 (en) * 2000-06-30 2004-12-21 Cellco Partnership Radio propagation model calibration software
US6816111B2 (en) * 2002-12-13 2004-11-09 Qualcomm Incorporated Calibration and correction system for satellite position location systems
US7580672B2 (en) * 2003-06-27 2009-08-25 Qualcomm Incorporated Synthetic path diversity repeater
AU2005333115B2 (en) * 2005-06-13 2010-08-26 Nokia Technologies Oy Supporting an assisted satellite based positioning
US7221313B2 (en) * 2005-07-05 2007-05-22 Center For Remote Sensing, Inc. GPS receiver with calibrator
US20130095819A1 (en) * 2011-10-18 2013-04-18 Qualcomm Incorporated Method and apparatus for performing neighboring cell measurements in wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287149A (en) * 1994-03-02 1995-09-06 Cossor Electronics Ltd Differential global positioning system
CN101604010A (zh) * 2002-12-13 2009-12-16 高通股份有限公司 用于卫星定位系统的校准和校正系统
CN101257700A (zh) * 2007-03-02 2008-09-03 英华达(南京)科技有限公司 一种提高低功率移动通讯系统定位精度的方法
US20100099434A1 (en) * 2007-03-29 2010-04-22 Panasonic Corporation Signal capturing apparatus and signal capturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2664944A4 *

Also Published As

Publication number Publication date
EP2664944A4 (en) 2015-02-18
ES2604933T3 (es) 2017-03-10
CN102135623B (zh) 2014-11-05
CN102135623A (zh) 2011-07-27
US9274212B2 (en) 2016-03-01
EP2664944B1 (en) 2016-09-21
US20140004880A1 (en) 2014-01-02
EP2664944A1 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2012126194A1 (zh) 移动终端和全球定位系统参数校准方法
CN101999216B (zh) 使用噪声功率进行校准的方法及设备
CN110333478B (zh) 一种到达角度、出发角度确定方法及通信装置
EP2436212B1 (en) Movement sensor uses in communication systems
RU2552646C2 (ru) Способ и система для оценки положения с использованием сдвоенных кинематических механизмов реального времени
KR101423126B1 (ko) 마이크로 전력 모드에서 gps 디바이스를 작동시키는 시스템 및 방법
JP2014510260A (ja) 時計修正値を特定するための方法およびシステム
US20130335272A1 (en) Calculating a location
CN112904383B (zh) 单频多频gnss接收机跟踪环路自适应切换方法
CN113824517B (zh) 一种基于数字波束合成的无线在轨自适应幅相校正系统
CN103278831A (zh) 一种基于北斗的多制式信号检测装置及其切换方法
US20150097729A1 (en) Method and apparatus for gnss signal tracking
CN109085563A (zh) 基于软件无线电平台的wlan测距技术
JPWO2009054068A1 (ja) 測位用受信装置及び測位方法
WO2016191941A1 (zh) 对移动终端定位时的到达时间toa获取方法及装置
JP2013246024A (ja) Gpsモジュール及びgpsによる位置測定方法並びにコンピュータプログラム
CN112881976A (zh) 一种基于csi的单天线定位方法、装置、设备及存储介质
CN114594498A (zh) 一种小型化高精度抗干扰授时装置及方法
US7911377B2 (en) Method for obtaining precise tracking frequency of GPS signal
Jin et al. Two-Step Unbiased Estimation on Small-Delay Multipath of GNSS Signals Based on S-Curve Bias
US20240030998A1 (en) Multiple receiver combining for wireless communications
GB2620145A (en) Wireless communication systems and methods
CN117270001A (zh) 一种卫星信号收发终端、方法、装置及电子设备
CN115856943A (zh) 一种基于三线天线的星载全视场四模gnss接收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861458

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011861458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984618

Country of ref document: US

Ref document number: 2011861458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE