WO2012124853A1 - 착용형 로봇의 유압 장치 - Google Patents

착용형 로봇의 유압 장치 Download PDF

Info

Publication number
WO2012124853A1
WO2012124853A1 PCT/KR2011/002268 KR2011002268W WO2012124853A1 WO 2012124853 A1 WO2012124853 A1 WO 2012124853A1 KR 2011002268 W KR2011002268 W KR 2011002268W WO 2012124853 A1 WO2012124853 A1 WO 2012124853A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
flow path
valve
hydraulic actuator
pressure
Prior art date
Application number
PCT/KR2011/002268
Other languages
English (en)
French (fr)
Inventor
이종원
김효곤
장재호
박상덕
손웅희
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2012124853A1 publication Critical patent/WO2012124853A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/14Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
    • B25J9/144Linear actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • Wearable robots that are worn by humans to support or assist the strength of the human body are becoming widespread. Most of these wearable robots employ hydraulic devices to produce great force.
  • the present invention has been created to solve the problems described above, the problem to be solved by the present invention is to improve the weight, volume, noise, vibration and energy efficiency of the existing hydraulic device is suitable for a wearable robot To provide.
  • the hydraulic apparatus supplies hydraulic pressure to the hydraulic actuator of the wearable robot, compresses the hydraulic oil for operating the cylinder to generate hydraulic pressure, and a supply flow path connecting the hydraulic actuator and the hydraulic pump. It includes a flow control valve which is installed in the discharge flow path which is branched in to act as a passage for discharging the hydraulic pressure.
  • the hydraulic device is provided on the supply flow path between the hydraulic actuator and the hydraulic pump to allow a check valve to allow the hydraulic fluid to flow from the hydraulic pump to the hydraulic actuator and to block the flow of the reverse It may further include.
  • the hydraulic apparatus may further include a valve installed at a point where the supply flow passage and the discharge flow passage diverge and selectively open or close the supply flow passage and the discharge flow passage. .
  • the valve may be a two-way valve that may act to open one of the supply flow passage and the discharge flow passage and close the other.
  • the valve may be a three-way valve that may act to close both the supply flow passage and the discharge flow passage or to open either one and close the other.
  • the flow control valve may be installed in the three-way valve to control the flow rate of the working oil flowing through the discharge flow path.
  • the hydraulic device is installed on the supply flow path or the discharge flow path between the hydraulic actuator and the hydraulic pump accumulate the pressure accumulate and discharge it when the load is large to compensate the pressure It may further include.
  • the present invention it is possible to selectively supply the hydraulic oil pressurized by the hydraulic pump and to selectively discharge or shut off the hydraulic oil supplied to the hydraulic actuator by the operation of the flow control valve, the existing hydraulic system Compared to this, energy efficiency can be increased and smaller, lighter, less noise and vibration hydraulic system can be constructed.
  • FIG. 1 is a perspective view illustrating an example of a wearable robot to which a hydraulic device according to an exemplary embodiment of the present invention may be applied.
  • FIG. 2 is a block diagram of a hydraulic device of a wearable robot according to one embodiment of the present invention.
  • FIG. 3 is a view showing the hydraulic flow when the hydraulic device of the wearable robot according to an embodiment of the present invention when the wearable robot is sitting.
  • Figure 4 is a view showing the hydraulic flow when the hydraulic device of the wearable robot according to an embodiment of the present invention when the wearable robot stands.
  • FIG. 5 is a view illustrating a hydraulic flow when a hydraulic device of a wearable robot according to an embodiment of the present invention maintains the wearable robot in a line state.
  • FIG. 6 is a view illustrating a hydraulic flow when a leg of a wearable robot is floating in the air while the wearable robot is walking according to an embodiment of the present invention.
  • FIG. 12 is a block diagram of a hydraulic device of a wearable robot according to still another embodiment of the present invention.
  • Hydraulic device can be applied to the wearable robot, by supplying the hydraulic pressure to the hydraulic actuator of the wearable robot to provide a force to support or assist the wearer's muscle strength.
  • the hydraulic apparatus according to the embodiment of the present invention may be applied to the wearable robot 100 as shown in FIG. 1.
  • the hydraulic device according to an embodiment of the present invention is connected to the upper leg part 101 and the lower leg part 103 of the wearable robot 100, respectively, hydraulic actuator 10 such as a hydraulic cylinder for assisting leg movement. ) Can be supplied with hydraulic pressure.
  • the hydraulic device according to the embodiment of the present invention may be applied to the upper limb as well as the lower limb.
  • the hydraulic apparatus includes a hydraulic pump 40 and a flow control valve 70.
  • the hydraulic pump 40 is installed in the supply flow path 1 connecting the oil tank 41 in which the working oil is stored and the hydraulic actuator 10.
  • the hydraulic pump 40 is connected to the oil tank 41 in which the working oil is stored and is configured to pressurize the working oil stored in the oil tank 41, and may be operated by the electric motor 30. That is, the electric motor 30 and the hydraulic pump 40 serve to pressurize the hydraulic oil to supply to the hydraulic actuator 10.
  • the hydraulic pump 40 may be a hydraulic pump connected to the electric motor 30 and operating in one direction.
  • the electric motor 30 is controlled to be operated by a control signal of a motor controller 31, and the motor controller 31 receives a control signal of the main controller 200 and controls corresponding thereto. The signal is output to the motor 30.
  • the flow control valve 70 is installed in the discharge flow passage 3 which is a passage for branching the supply flow passage 1 connecting the hydraulic actuator 10 and the hydraulic pump 40 to discharge the hydraulic pressure. When the flow control valve 70 is opened, the hydraulic oil acting on the hydraulic actuator 10 passes through the flow control valve 70 and is discharged to the oil tank 41.
  • the flow control valve 70 is controlled to be operated by the control signal of the valve controller 71, and the valve controller 200 controls the operation of the flow control valve 70 according to the control signal output from the main controller 200. Generate and output a control signal for
  • the flow control valve 70 can be any valve capable of controlling the flow rate, such as a relief valve, an on / off valve, and the like.
  • the hydraulic actuator 10 is connected to the upper leg part 101 and the lower leg part 103 of the wearable robot, respectively, and the hydraulic actuator 10 when the hydraulic oil is supplied to the hydraulic actuator 10.
  • the force provided by the actuator 10 is removed to allow the upper leg part 101 and the lower leg part 103 to rotate in a direction closer to each other, thereby allowing the wearable robot 100 to sit.
  • the hydraulic pump 40 does not operate and the flow control valve 70 is controlled to open. Accordingly, the hydraulic oil supplied to the hydraulic actuator 10 is discharged to the oil tank 41 through the flow control valve 70. Therefore, the wearable robot 100 may perform a sitting operation.
  • the wearable robot 100 when the wearable robot 100 performs the standing operation, the hydraulic oil stored in the oil tank 41 is operated by the electric motor 30 and the hydraulic pump 40 to be pressed to check. Passed through the valve 50 is supplied to the hydraulic actuator 10, the flow control valve 70 is controlled to close. Accordingly, the pressurized hydraulic oil is supplied to the hydraulic actuator 10, whereby the wearable robot 100 stands up by the operating force of the hydraulic actuator 10.
  • the flow control valve 70 is controlled to close in a state in which hydraulic oil is supplied to the hydraulic actuator 10 at a maximum.
  • the electric motor 30 and the hydraulic pump 40 can be controlled to not operate. Accordingly, the flow control valve 70 and the check valve 50 prevent the hydraulic oil supplied to the hydraulic actuator 10 from being discharged, thereby maintaining the state in which the hydraulic oil is supplied to the hydraulic actuator 10.
  • the force for maintaining the standing posture of the wearable robot 10 is provided.
  • the flow control valve 70 when the wearable robot 100 walks while the leg floats in the air, that is, when the leg is separated from the ground and moved forward, the flow control valve 70 is opened. Accordingly, the hydraulic oil supplied to the hydraulic actuator 10 may be discharged through the flow control valve 70. On the contrary, the hydraulic oil stored in the oil tank 41 is supplied to the hydraulic actuator 10 through the flow control valve 70. May be supplied. Accordingly, the upper leg part 101 and the lower leg part 103 can freely rotate so that the wearable robot 100 can walk.
  • FIGS. 7 and 12 A hydraulic apparatus according to another exemplary embodiment of the present invention will be described with reference to FIGS. 7 and 12.
  • valves 80 and 90 are installed at the points where the supply flow path 1 and the discharge flow path 3 branch to act to selectively open or close the supply flow path 1 and the discharge flow path 3. , 20).
  • FIGS. 9 to 11 show a case where a three-way valve 90 is installed
  • FIG. 12 shows a flow rate control. This is the case where the three-way valve 20 in which the valve 29 is built is installed.
  • the two-way valve 80 is operated by a control signal of the valve controller 81, and the valve controller 81 receives a control signal of the main controller 200 and controls correspondingly. The signal is generated and output to the two-way valve 80.
  • the two-way valve 80 has two flow paths 83 and 85 therein, and as shown in FIG. 7, one of the flow paths 83 and 85 of the two-way valve 80 is supplied with the supply flow path 1. And the other one 85 is isolated, the discharge of the hydraulic oil is cut off and the pressurized hydraulic oil can be selectively supplied to the hydraulic actuator 10 depending on whether the electric motor 30 and the hydraulic pump 40 are in operation. have. Meanwhile, as shown in FIG. 8, when one of the flow paths 83 and 85 of the two-way valve 80 is connected to the discharge flow path 3 and the other one 83 is isolated, the supply of hydraulic oil is blocked. And the discharge of the hydraulic oil may be blocked or discharged depending on whether the flow control valve 70 is operated.
  • a three-way valve 90 is installed at a point where the supply flow path 1 and the discharge flow path 3 branch.
  • the three-way valve 90 is operated by the control signal of the valve controller 91, the valve controller 91 receives the control signal of the main controller 200 to generate a corresponding control signal to the three-way valve 90 Will output
  • Three-way valve 90 has three flow paths (93, 95, 97) therein, the flow path of 93 is a flow path that can be connected to the hydraulic pump 40 through the supply flow path (1), The flow path 95 is a blocked flow path, and the flow path 97 is a flow path that can be connected to the flow control valve 70 through the discharge flow path 3.
  • the hydraulic pump 40 when the hydraulic pump 40 is connected to the hydraulic actuator 10 through a flow path of reference numeral 93, the hydraulic oil pressurized according to whether the electric motor 30 and the hydraulic pump 40 are operated. It may be supplied to the hydraulic actuator 10.
  • the blocked flow path of the reference numeral 95 when the blocked flow path of the reference numeral 95 is connected between the hydraulic actuator 10 and the hydraulic pump 40, the supply of hydraulic oil to the hydraulic actuator 10 is cut off and at the same time the hydraulic oil Exhaust from the actuator 10 may also be blocked.
  • the flow control valve 70 when the flow control valve 70 is connected to the hydraulic actuator 10 by the flow path of 97 as shown in Figure 11, the supply of the hydraulic oil is cut off depending on whether the flow control valve 70 is operating The discharge of the working oil may be blocked or discharged.
  • a three-way valve 20 is installed at a position where the supply flow passage 1 and the discharge flow passage 3 are branched.
  • the three-way valve 20 of FIG. 12 like the three-way valve 90 of FIGS. 9 to 11, is controlled by the valve controller 91 and has three flow paths 93, 95, and 97 therein. do.
  • the flow control valve is not provided separately, but the flow control valve 29 may be connected to the discharge flow path 3 side of the flow paths 93, 95, and 97 of the three-way valve 20. It is installed in).
  • the valve controller 21 is connected to the main controller 200 to receive a control signal, and generates and outputs a signal for controlling the operation of the three-way valve 20 and the operation of the flow control valve 29 according to the received control signal. do.
  • the accumulator 52 may further include an accumulator 52 which accumulates pressure and releases it when the load is large to compensate for the pressure.
  • the accumulator 52 may be implemented as a hydraulic accumulator used in a conventional hydraulic device. As shown in the figure, the accumulator 52 may be installed on the supply flow passage 1 or the discharge flow passage 3 between the hydraulic actuator 10 and the hydraulic pump 40, and is provided with a check valve 50. If so, it can be installed on the supply flow path 1 or the discharge flow path (3) between the hydraulic actuator 10 and the check valve (50).
  • the present invention relates to a hydraulic device, and can be applied to a wearable robot or the like and thus has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

유압 장치는 착용형 로봇의 유압 액추에이터에 유압을 공급하며, 실린더를 작동시키는 작동유를 압축하여 유압을 생성하는 유압 펌프, 그리고 상기 유압 액추에이터와 상기 유압 펌프를 연결하는 공급 유로에서 분기되어 유압을 배출하는 통로로 작용하는 배출 유로에 설치되는 유량 제어 밸브를 포함한다.

Description

착용형 로봇의 유압 장치
본 발명은 착용형 로봇의 유압 액추에이터에 유압을 공급하는 유압 장치에 관한 것이다.
사람이 착용하여 인체의 근력을 지원하거나 보조하는 착용형 로봇이 보급되고 있다. 이와 같은 착용형 로봇은 대부분 큰 힘을 내기 위해 유압 장치를 채택하여 사용하고 있다.
하지만 기존의 유압 시스템은 무게, 부피, 소음, 진동 및 에너지 효율 등에서 단점이 많아 착용형 로봇에 적용하기에는 무리가 있다.
따라서 착용형 로봇에 적합한 유압 장치의 개발에 대한 필요가 대두되고 있다.
본 발명은 전술한 바와 같은 문제점들을 해결하기 위해 창출된 것으로서, 본 발명이 해결하려는 과제는 기존의 유압 장치가 가지고 있는 무게, 부피, 소음, 진동 및 에너지 효율을 개선하여 착용형 로봇에 적합한 유압 장치를 제공하는 것이다.
본 발명의 실시예에 따른 유압 장치는 착용형 로봇의 유압 액추에이터에 유압을 공급하며, 실린더를 작동시키는 작동유를 압축하여 유압을 생성하는 유압 펌프, 그리고 상기 유압 액추에이터와 상기 유압 펌프를 연결하는 공급 유로에서 분기되어 유압을 배출하는 통로로 작용하는 배출 유로에 설치되는 유량 제어 밸브를 포함한다.
본 발명의 다른 실시예에 따른 유압 장치는 상기 유압 액추에이터와 상기 유압 펌프 사이의 상기 공급 유로 상에 설치되어 상기 작동유가 상기 유압 펌프에서 상기 유압 액추에이터로 흐르는 것은 허용하고 반대로 흐르는 것은 차단하는 체크 밸브를 더 포함할 수 있다.
한편, 본 발명의 다른 실시예에 따른 유압 장치는 상기 공급 유로와 상기 배출 유로가 분기되는 지점에서 설치되며 상기 공급 유로와 상기 배출 유로를 선택적으로 개방하거나 폐쇄하도록 작용하는 밸브를 더 포함할 수 있다.
상기 밸브는 상기 공급 유로와 상기 배출 유로 중 어느 하나를 개방하고 나머지 하나를 폐쇄하도록 작용할 수 있는 투웨이 밸브(2-way valve)일 수 있다.
상기 밸브는 상기 공급 유로와 상기 배출 유로를 모두 폐쇄하거나 둘 중 어느 하나를 개방하고 나머지 하나를 폐쇄하도록 작용할 수 있는 쓰리웨이 밸브(3-way valve)일 수 있다.
상기 유량 제어 밸브는 상기 쓰리웨이 밸브의 내부에 설치되어 상기 배출 유로를 통해 흐르는 상기 작동유의 유량을 제어하도록 구성될 수 있다.
본 발명의 다른 실시예에 따르면, 유압 장치는 상기 유압 액추에이터와 상기 유압 펌프 사이의 상기 공급 유로 또는 상기 배출 유로 상에 설치되어 압력을 축적하였다가 부하가 클 때 이를 방출하여 압력을 보상해 주는 어큐뮬레이터를 더 포함할 수 있다.
한편, 본 발명의 또 다른 실시예에 따르면, 유압 장치는 상기 유압 액추에이터와 상기 체크 밸브 사이의 상기 공급 유로 또는 상기 배출 유로 상에 설치되어 압력을 축적하였다가 부하가 클 때 이를 방출하여 압력을 보상해 주는 어큐뮬레이터를 더 포함할 수 있다.
본 발명에 의하면, 유압 펌프에 의해 가압된 작동유의 공급이 선택적으로 이루어지도록 할 수 있으며 또한 유량 제어 밸브의 작동에 의해 유압 액추에이터로 공급된 작동유가 선택적으로 배출되거나 배출이 차단되게 함으로써, 기존 유압 시스템에 비해 에너지 효율을 높일 수 있으며 보다 작고 가볍고 소음 및 진동이 작은 유압 장치를 구성할 수 있다.
도 1은 본 발명의 실시예에 따른 유압 장치가 적용될 수 있는 착용형 로봇의 한 예를 보여주는 사시도이다.
도 2는 본 발명의 한 실시예에 따른 착용형 로봇의 유압 장치의 블록도이다.
도 3은 본 발명의 한 실시예에 따른 착용형 로봇의 유압 장치가 착용형 로봇이 앉는 동작을 하는 경우의 유압 흐름을 보여주는 도면이다.
도 4는 본 발명의 한 실시예에 따른 착용형 로봇의 유압 장치가 착용형 로봇이 서는 동작을 하는 경우의 유압 흐름을 보여주는 도면이다.
도 5는 본 발명의 한 실시예에 따른 착용형 로봇의 유압 장치가 착용형 로봇이 선 상태를 유지하는 경우의 유압 흐름을 보여주는 도면이다.
도 6은 본 발명의 한 실시예에 따른 착용형 로봇의 유압 장치가 착용형 로봇이 걷는 중 다리가 허공에 떠 있는 경우의 유압 흐름을 보여주는 도면이다.
도 7 및 도 8은 본 발명의 다른 실시예에 따른 착용형 로봇의 유압 장치의 블록도이다.
도 9 내지 도 11은 본 발명의 또 다른 실시예에 따른 착용형 로봇의 유압 장치의 블록도이다.
도 12는 본 발명의 또 다른 실시예에 따른 착용형 로봇의 유압 장치의 블록도이다.
이하에서 본 발명의 실시예를 첨부된 도면을 참조로 상세히 설명한다.
본 발명의 실시예에 따른 유압 장치는 착용형 로봇에 적용될 수 있으며, 착용형 로봇의 유압 액추에이터에 유압을 공급하여 착용형 로봇이 착용자의 근력을 지원하거나 보조하는 힘을 제공하도록 한다.
예를 들어, 본 발명의 실시예에 따른 유압 장치는 도 1에 도시된 바와 같은 착용형 로봇(100)에 적용될 수 있다. 구체적으로, 본 발명의 실시예에 따른 유압 장치는 착용형 로봇(100)의 상부 다리 파트(101)와 하부 다리 파트(103)에 각각 연결되어 다리 운동을 보조하는 유압 실린더와 같은 유압 액추에이터(10)에 유압을 공급할 수 있다. 한편 본 발명의 실시예에 따른 유압 장치는 하지뿐만 아니라 상지에 적용될 수도 있다.
이하에서 첨부된 도 2 내지 도 11을 참조하여 본 발명의 실시예에 따른 유압 장치에 대해서 설명한다.
도면을 참조하면, 본 발명의 실시예에 따른 유압 장치는 유압 펌프(40)와 유량 제어 밸브(70)를 포함한다.
유압 펌프(40)는 작동유가 저장되어 있는 오일 탱크(41)와 유압 액추에이터(10)를 연결하는 공급 유로(1)에 설치된다. 유압 펌프(40)는 작동유가 저장되어 있는 오일 탱크(41)에 연결되어 오일 탱크(41)에 저장된 작동유를 가압할 수 있도록 형성되며, 전기 모터(30)에 의해 작동될 수 있다. 즉, 전기 모터(30)와 유압 펌프(40)는 작동유를 가압하여 유압 액추에이터(10)로 공급하는 역할을 한다. 예를 들어, 유압 펌프(40)는 전기 모터(30)에 연결되어 단 방향으로 작동하는 유압 펌프일 수 있다.
전기 모터(30)는 모터 컨트롤러(motor controller)(31)의 제어 신호에 의해 작동이 제어되며, 모터 컨트롤러(31)는 메인 컨트롤러(main controller)(200)의 제어 신호를 수신하고 그에 대응하는 제어 신호를 모터(30)로 출력한다.
유량 제어 밸브(70)는 유압 액추에이터(10)와 유압 펌프(40)를 연결하는 공급 유로(1)에서 분기되어 유압을 배출하는 통로인 배출 유로(3)에 설치된다. 유량 제어 밸브(70)가 개방되는 경우, 유압 액추에이터(10)에 작용하는 작동유가 유량 제어 밸브(70)를 통과하여 오일 탱크(41)로 배출된다.
유량 제어 밸브(70)는 밸브 컨트롤러(71)의 제어 신호에 의해 작동이 제어되며, 밸브 컨트롤러(200)는 메인 컨트롤러(200)에서 출력되는 제어 신호에 따라 유량 제어 밸브(70)의 작동을 제어하기 위한 제어 신호를 생성하여 출력한다. 예를 들어, 유량 제어 밸브(70)는 릴리프 밸브, 온/오프(on/off) 밸브 등과 같은 유량을 제어할 수 있는 임의의 밸브일 수 있다.
한편, 압력 센서(60)가 유압 액추에이터(10)로 작동유를 공급하는 공급 유로(1)에 설치될 수 있으며, 압력 센서(60)는 유압 액추에이터(10)에 작용하는 작동유의 압력을 검출하여 해당하는 신호를 출력한다. 신호 프로세서(61)는 압력 센서(60)의 출력 신호를 처리하여 메인 컨트롤러(200)로 전송한다. 메인 컨트롤러(200)는 압력 센서(60)에 의해 검출된 작동유의 압력 및 착용형 로봇(100)의 작동 상태 등 여러 파라미터를 기초로 유량 제어 밸브(70)와 전기 모터(30)를 제어하기 위한 제어 신호를 생성하여 이를 밸브 컨트롤러(71)와 모터 컨트롤러(31)로 제어 신호를 출력한다. 유량 제어 밸브(70)의 제어에 대해서는 이하에서 별도로 설명한다.
한편, 본 발명의 한 실시예에 따르면, 도 2에 도시된 바와 같이, 유압 액추에이터(10)와 유압 펌프(40) 사이의 공급 유로(1) 상에 설치되어 유압 펌프(30)에 의해 가압된 작동유가 유압 펌프(30)에서 유압 액추에이터(10)로 흐르는 것은 허용하고 반대로 흐르는 것은 차단하는 체크 밸브(50)가 더 구비될 수 있다.
이하에서 첨부된 도 3 내지 도 6을 참조하여 도 2에 도시된 바와 같은 유압 장치의 작동에 대해서 설명한다. 도 3 내지 도 6에서, 유압 액추에이터(10)는 착용형 로봇의 상부 다리 파트(101)와 하부 다리 파트(103)에 각각 연결되며, 유압 액추에이터(10)에 작동유가 공급되는 경우 유압 액추에이터(10)가 상부 다리 파트(101)와 하부 다리 파트(103)가 서로 멀어지게 회전하도록 함으로써 착용형 로봇(100)이 일어서도록 하는 힘이 생성되며, 반대로 유압 액추에이터(10)로부터 작동유가 배출되는 경우 유압 액추에이터(10)가 제공하는 힘이 제거되어 상부 다리 파트(101)와 하부 다리 파트(103)가 서로 가까워지는 방향으로 회전하도록 함으로써 착용형 로봇(100)이 앉는 것을 허용하게 된다.
먼저, 도 3을 참조하면, 착용형 로봇(100)이 앉는 동작을 수행하는 경우, 유압 펌프(40)는 작동하지 않으며 유량 제어 밸브(70)는 개방되도록 제어된다. 이에 따라 유압 액추에이터(10)에 공급되었던 작동유가 유량 제어 밸브(70)를 통해서 오일 탱크(41)로 배출된다. 따라서 착용형 로봇(100)이 앉는 동작을 수행할 수 있게 된다.
한편, 도 4를 참조하면, 착용형 로봇(100)이 서는 동작을 수행하는 경우, 전기 모터(30) 및 유압 펌프(40)가 작동하여 오일 탱크(41)에 저장되어 있는 작동유가 가압되어 체크 밸브(50)를 통과하여 유압 액추에이터(10)로 공급되며 이때 유량 제어 밸브(70)는 폐쇄되도록 제어된다. 이에 따라 가압된 작동유가 유압 액추에이터(10)로 공급됨으로써, 유압 액추에이터(10)의 작동 힘에 의해 착용형 로봇(100)이 일어서게 된다.
한편, 도 5를 참조하면, 착용형 로봇(100)이 서 있는 자세를 유지해야 하는 경우, 유압 액추에이터(10)에 작동유가 최대로 공급된 상태에서 유량 제어 밸브(70)가 폐쇄되도록 제어되고 이때 전기 모터(30) 및 유압 펌프(40)는 작동하지 않도록 제어될 수 있다. 이에 따라 유량 제어 밸브(70) 및 체크 밸브(50)가 유압 액추에이터(10)에 공급되어 있는 작동유가 배출되는 것을 막게 됨으로써 유압 액추에이터(10)에 작동유가 공급된 상태가 유지된다. 따라서 착용형 로봇(10)이 서 있는 자세를 유지하는 힘이 제공된다.
한편, 도 6을 참조하면, 착용형 로봇(100)이 걷는 중 다리가 허공에 떠 있는 경우, 즉 해당 다리가 지면에서 이탈하여 앞으로 전진되는 경우, 유량 제어 밸브(70)가 개방된다. 이에 따라 유압 액추에이터(10)에 공급되어 있는 작동유가 유량 제어 밸브(70)를 통해서 배출될 수도 있고 반대로 오일 탱크(41)에 저장되어 있는 작동유가 유량 제어 밸브(70)를 통해서 유압 액추에이터(10)로 공급될 수도 있다. 이에 따라 상부 다리 파트(101)와 하부 다리 파트(103)가 자유롭게 회전할 수 있게 됨으로써 착용형 로봇(100)이 걸을 수 있게 된다.
도 7 및 도 12를 참조하여 본 발명의 다른 실시예에 따른 유압 장치에 대해서 설명한다.
도면에 도시된 바와 같이, 공급 유로(1)와 배출 유로(3)가 분기되는 지점에 설치되어 공급 유로(1)와 배출 유로(3)를 선택적으로 개방하거나 폐쇄하도록 작용하는 밸브(80, 90, 20)가 구비된다.
도 7 및 도 8은 투웨이 밸브(2-way valve)(90)가 설치된 경우이고, 도 9 내지 도 11은 쓰리웨이 밸브(3-way valve)(90)가 설치된 경우이고, 도 12는 유량 제어 밸브(29)가 내장된 쓰리웨이 밸브(20)가 설치되는 경우이다.
먼저, 도 7 및 도 8을 참조하면, 투웨이 밸브(80)는 밸브 컨트롤러(81)의 제어 신호에 의해 작동하며, 밸브 컨트롤러(81)는 메인 컨트롤러(200)의 제어 신호를 수신하여 대응하는 제어 신호를 생성하여 투웨이 밸브(80)로 출력한다.
투웨이 밸브(80)는 내부에 두 개의 유로(83, 85)를 구비하며, 도 7에 도시된 바와 같이 투웨이 밸브(80)의 유로(83, 85) 중 하나(83)가 공급 유로(1)로 연결되고 나머지 하나(85)는 고립되는 경우, 작동유의 배출은 차단되고 전기 모터(30) 및 유압 펌프(40)의 작동 여부에 따라 가압된 작동유가 유압 액추에이터(10)로 선택적으로 공급될 수 있다. 한편, 도 8에 도시된 바와 같이 투웨이 밸브(80)의 유로(83, 85) 중 하나(85)가 배출 유로(3)로 연결되고 나머지 하나(83)는 고립되는 경우, 작동유의 공급은 차단되고 유량 제어 밸브(70)의 작동 여부에 따라 작동유의 배출이 차단되거나 배출될 수 있다.
한편, 도 9 내지 도 11을 참조하면, 공급 유로(1)와 배출 유로(3)가 분기되는 지점에 쓰리웨이 밸브(90)가 설치된다. 쓰리웨이 밸브(90)는 밸브 컨트롤러(91)의 제어 신호에 의해 작동하며, 밸브 컨트롤러(91)는 메인 컨트롤러(200)의 제어 신호를 수신하여 대응하는 제어 신호를 생성하여 쓰리웨이 밸브(90)로 출력한다.
쓰리웨이 밸브(90)는 내부에 세 개의 유로(93, 95, 97)를 구비하며, 도면부호 93의 유로는 공급 유로(1)를 통해 유압 펌프(40)에 연결될 수 있는 유로이며, 도면부호 95의 유로는 차단된 유로이고, 도면부호 97의 유로는 배출 유로(3)를 통해 유량 제어 밸브(70)에 연결될 수 있는 유로이다.
도 9에 도시된 바와 같이 도면부호 93의 유로를 통해 유압 펌프(40)가 유압 액추에이터(10)에 연결되는 경우, 전기 모터(30) 및 유압 펌프(40)의 작동 여부에 따라 가압된 작동유가 유압 액추에이터(10)로 공급될 수 있다. 한편, 도 10에 도시된 바와 같이, 도면부호 95의 차단된 유로가 유압 액추에이터(10)와 유압 펌프(40) 사이에 연결되는 경우 유압 액추에이터(10)로의 작동유의 공급이 차단됨과 동시에 작동유가 유압 액추에이터(10)로부터 배출되는 것도 차단될 수 있다. 한편, 도 11에 도시된 바와 같이 도면부호 97의 유로에 의해 유량 제어 밸브(70)가 유압 액추에이터(10)에 연결되는 경우, 작동유의 공급은 차단되고 유량 제어 밸브(70)의 작동 여부에 따라 작동유의 배출이 차단되거나 배출될 수 있다.
한편, 본 발명의 다른 실시예에 따르면, 도 12를 참조하면, 공급 유로(1)와 배출 유로(3)가 분기되는 위치에 쓰리웨이 밸브(20)가 설치된다. 도 12의 쓰리웨이 밸브(20)는, 도 9 내지 도 11의 쓰리웨이 밸브(90)와 마찬가지로, 밸브 컨트롤러(91)에 의해 제어되며, 내부에 세 개의 유로(93, 95, 97)가 구비된다.
본 실시예에서는 유량 제어 밸브가 별도로 구비되는 것이 아니라, 유량 제어 밸브(29)가 쓰리웨이 밸브(20)의 유로(93, 95, 97) 중 배출 유로(3) 측에 연결될 수 있는 유로(97)에 설치된다.
밸브 컨트롤러(21)는 메인 컨트롤러(200)에 연결되어 제어 신호를 수신하며 수신된 제어 신호에 따라 쓰리웨이 밸브(20)의 작동 및 유량 제어 밸브(29)의 작동을 제어하는 신호를 생성하여 출력한다.
도면부호 23의 유로를 통해 유압 펌프(40)가 유압 액추에이터(10)에 연결되는 경우, 전기 모터(30) 및 유압 펌프(40)의 작동 여부에 따라 가압된 작동유가 유압 액추에이터(10)로 공급될 수 있다. 한편, 도면부호 25의 차단된 유로가 유압 액추에이터(10)와 유압 펌프(40) 사이에 연결되는 경우 유압 액추에이터(10)로의 작동유의 공급이 차단됨과 동시에 작동유가 유압 액추에이터(10)로부터 배출되는 것도 차단될 수 있다. 한편, 도면부호 27의 유로에 의해 배출 유로(3)가 유압 액추에이터(10)에 연결되는 경우, 작동유의 공급은 차단되고 유량 제어 밸브(29)의 작동 여부에 따라 작동유의 배출이 차단되거나 배출될 수 있다.
그리고 본 발명의 다른 실시예에 따르면, 압력을 축적하였다가 부하가 클 때 이를 방출하여 압력을 보상해주는 기능을 수행하는 어큐뮬레이터(52)를 더 포함할 수 있다. 어큐뮬레이터(52)는 통상의 유압장치에 사용되는 유압 어큐뮬레이터로 구현될 수 있다. 도면에 도시된 바와 같이, 어큐뮬레이터(52)는 유압 액추에이터(10)와 유압 펌프(40) 사이의 공급 유로(1) 또는 배출 유로(3) 상에 설치될 수 있으며, 체크 밸브(50)가 구비되는 경우에는 유압 액추에이터(10)와 체크 밸브(50) 사이의 공급 유로(1) 또는 배출 유로(3) 상에 설치될 수 있다.
이상에서 본 발명의 실시예를 설명하였으나, 본 발명의 권리범위는 이에 한정되지 아니하며 본 발명의 실시예로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 용이하게 변경되어 균등한 것으로 인정되는 범위의 모든 변경 및 수정을 포함한다.
본 발명은 유압 장치에 관한 것으로 착용형 로봇 등에 적용될 수 있어 산업상 이용가능성이 있다.

Claims (9)

  1. 착용형 로봇의 유압 액추에이터에 유압을 공급하는 유압 장치로서,
    실린더를 작동시키는 작동유를 압축하여 유압을 생성하는 유압 펌프, 그리고
    상기 유압 액추에이터와 상기 유압 펌프를 연결하는 공급 유로에서 분기되어 유압을 배출하는 통로로 작용하는 배출 유로에 설치되는 유량 제어 밸브를 포함하는 유압 장치.
  2. 제1항에서,
    상기 유압 액추에이터와 상기 유압 펌프 사이의 상기 공급 유로 상에 설치되어 상기 작동유가 상기 유압 펌프에서 상기 유압 액추에이터로 흐르는 것은 허용하고 반대로 흐르는 것은 차단하는 체크 밸브를 더 포함하는 유압 장치.
  3. 제1항에서,
    상기 공급 유로와 상기 배출 유로가 분기되는 지점에서 설치되며 상기 공급 유로와 상기 배출 유로를 선택적으로 개방하거나 폐쇄하도록 작용하는 밸브를 더 포함하는 유압 장치.
  4. 제3항에서,
    상기 밸브는 상기 공급 유로와 상기 배출 유로 중 어느 하나를 개방하고 나머지 하나를 폐쇄하도록 작용할 수 있는 투웨이 밸브(2-way valve)인 유압 장치.
  5. 제4항에서,
    상기 유압 액추에이터와 상기 유압 펌프 사이의 상기 공급 유로 상에 설치되어 상기 작동유가 상기 유압 펌프에서 상기 유압 액추에이터로 흐르는 것은 허용하고 반대로 흐르는 것은 차단하는 체크 밸브를 더 포함하는 유압 장치.
  6. 제3항에서,
    상기 밸브는 상기 공급 유로와 상기 배출 유로를 모두 폐쇄하거나 둘 중 어느 하나를 개방하고 나머지 하나를 폐쇄하도록 작용할 수 있는 쓰리웨이 밸브(3-way valve)인 유압 장치.
  7. 제6항에서,
    상기 유량 제어 밸브는 상기 쓰리웨이 밸브의 내부에 설치되어 상기 배출 유로를 통해 흐르는 상기 작동유의 유량을 제어하도록 구성되는 유압 장치.
  8. 제1항에서,
    상기 유압 액추에이터와 상기 유압 펌프 사이의 상기 공급 유로 또는 상기 배출 유로 상에 설치되어 압력을 축적하였다가 부하가 클 때 이를 방출하여 압력을 보상해 주는 어큐뮬레이터를 더 포함하는 유압 장치.
  9. 제2항 또는 제5에서,
    상기 유압 액추에이터와 상기 체크 밸브 사이의 상기 공급 유로 또는 상기 배출 유로 상에 설치되어 압력을 축적하였다가 부하가 클 때 이를 방출하여 압력을 보상해 주는 어큐뮬레이터를 더 포함하는 유압 장치.
PCT/KR2011/002268 2011-03-15 2011-04-01 착용형 로봇의 유압 장치 WO2012124853A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110022863A KR101307265B1 (ko) 2011-03-15 2011-03-15 착용형 로봇의 유압 장치
KR10-2011-0022863 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124853A1 true WO2012124853A1 (ko) 2012-09-20

Family

ID=46830904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002268 WO2012124853A1 (ko) 2011-03-15 2011-04-01 착용형 로봇의 유압 장치

Country Status (2)

Country Link
KR (1) KR101307265B1 (ko)
WO (1) WO2012124853A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104552276A (zh) * 2014-12-31 2015-04-29 浙江大学 气动肌肉驱动的外骨骼助力机构
EP2995291A1 (en) * 2014-09-10 2016-03-16 Uprobots S. de R.L. de C.V. Adjustable mechanical exoskeleton, for a biped animal with impaired bone and muscle
CN106112988A (zh) * 2016-08-18 2016-11-16 黄河科技学院 用于连接四肢外骨骼机构的人体躯干机械外骨骼装置
US9562547B2 (en) 2014-08-29 2017-02-07 Abb Schweiz Ag Electric hydraulic actuator
US9682473B2 (en) 2014-08-29 2017-06-20 Abb Schweiz Ag Electric fluidic rotary joint actuator with pump
CN106976494A (zh) * 2017-05-15 2017-07-25 山东大学 一种可变拓扑结构的四足机器人机构
CN109648542A (zh) * 2018-11-16 2019-04-19 浙江大学 一种分布式液压动力源下肢外骨骼机器人
RU206505U1 (ru) * 2020-04-20 2021-09-14 Публичное акционерное общество "ГМК "Норильский никель" Устройство для повышения безопасности при подъеме грузов
US20210370493A1 (en) * 2020-05-27 2021-12-02 Roam Robotics Inc. Direct drive pneumatic transmission for a mobile robot
US11872181B2 (en) 2017-08-29 2024-01-16 Roam Robotics Inc. Semi-supervised intent recognition system and method
US11931307B2 (en) 2019-12-13 2024-03-19 Roam Robotics Inc. Skiing exoskeleton control method and system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
KR101984050B1 (ko) * 2012-11-15 2019-05-30 대우조선해양 주식회사 구동모터 스톨링 방지 기능을 가지는 착용로봇의 유압구동장치 및 그 제어방법
KR101532683B1 (ko) * 2013-10-29 2015-07-01 국방과학연구소 유압시스템
KR101490885B1 (ko) * 2013-12-18 2015-02-06 국방과학연구소 보행의도 추정기반 착용로봇 및 그 제어방법
US10406676B2 (en) 2014-05-06 2019-09-10 Sarcos Lc Energy recovering legged robotic device
US10533542B2 (en) 2014-05-06 2020-01-14 Sarcos Lc Rapidly modulated hydraulic supply for a robotic device
US10512583B2 (en) 2014-05-06 2019-12-24 Sarcos Lc Forward or rearward oriented exoskeleton
US10766133B2 (en) 2014-05-06 2020-09-08 Sarcos Lc Legged robotic device utilizing modifiable linkage mechanism
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
US10765537B2 (en) 2016-11-11 2020-09-08 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
KR102040673B1 (ko) * 2018-02-28 2019-11-05 현대로템 주식회사 다리 관절 보조장치
US10906191B2 (en) 2018-12-31 2021-02-02 Sarcos Corp. Hybrid robotic end effector
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
KR102411478B1 (ko) * 2019-06-27 2022-06-22 케이와이비-와이에스 가부시키가이샤 모듈 로봇
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
US11794345B2 (en) 2020-12-31 2023-10-24 Sarcos Corp. Unified robotic vehicle systems and methods of control
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161937A1 (en) * 2005-01-26 2008-07-03 Yoshiyuki Sankai Wearing-Type Motion Assistance Device and Program for Control
US20090099520A1 (en) * 2005-06-30 2009-04-16 Intuitive Surgical Inc. Methods of fluid flow control with robotic surgical instruments for irrigation, aspiration, and blowing
KR20100069293A (ko) * 2008-12-16 2010-06-24 한성대학교 산학협력단 상지거동을 위한 착용형 로봇장치
US20100271051A1 (en) * 2007-12-27 2010-10-28 University Of Tsukuba Centroid position detector device and wearing type action assistance device including centroid position detector device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200652A (ja) * 2005-01-21 2006-08-03 Sanko Gosei Ltd アクチュエータ
KR101362115B1 (ko) * 2009-05-22 2014-02-21 고쿠사이 게이소쿠키 가부시키가이샤 유압 시스템 및 만능 시험 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161937A1 (en) * 2005-01-26 2008-07-03 Yoshiyuki Sankai Wearing-Type Motion Assistance Device and Program for Control
US20090099520A1 (en) * 2005-06-30 2009-04-16 Intuitive Surgical Inc. Methods of fluid flow control with robotic surgical instruments for irrigation, aspiration, and blowing
US20100271051A1 (en) * 2007-12-27 2010-10-28 University Of Tsukuba Centroid position detector device and wearing type action assistance device including centroid position detector device
KR20100069293A (ko) * 2008-12-16 2010-06-24 한성대학교 산학협력단 상지거동을 위한 착용형 로봇장치

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562547B2 (en) 2014-08-29 2017-02-07 Abb Schweiz Ag Electric hydraulic actuator
US9682473B2 (en) 2014-08-29 2017-06-20 Abb Schweiz Ag Electric fluidic rotary joint actuator with pump
EP2995291A1 (en) * 2014-09-10 2016-03-16 Uprobots S. de R.L. de C.V. Adjustable mechanical exoskeleton, for a biped animal with impaired bone and muscle
WO2016039608A1 (es) * 2014-09-10 2016-03-17 Uprobots S. De R.L. De C.V. Exoesqueleto mecánico ajustable, para un animal bípedo con discapacidad ósea y muscular
CN104552276A (zh) * 2014-12-31 2015-04-29 浙江大学 气动肌肉驱动的外骨骼助力机构
CN106112988A (zh) * 2016-08-18 2016-11-16 黄河科技学院 用于连接四肢外骨骼机构的人体躯干机械外骨骼装置
CN106976494A (zh) * 2017-05-15 2017-07-25 山东大学 一种可变拓扑结构的四足机器人机构
CN106976494B (zh) * 2017-05-15 2023-03-03 山东大学 一种可变拓扑结构的四足机器人机构
US11872181B2 (en) 2017-08-29 2024-01-16 Roam Robotics Inc. Semi-supervised intent recognition system and method
CN109648542A (zh) * 2018-11-16 2019-04-19 浙江大学 一种分布式液压动力源下肢外骨骼机器人
US11931307B2 (en) 2019-12-13 2024-03-19 Roam Robotics Inc. Skiing exoskeleton control method and system
RU206505U1 (ru) * 2020-04-20 2021-09-14 Публичное акционерное общество "ГМК "Норильский никель" Устройство для повышения безопасности при подъеме грузов
US20210370493A1 (en) * 2020-05-27 2021-12-02 Roam Robotics Inc. Direct drive pneumatic transmission for a mobile robot

Also Published As

Publication number Publication date
KR20120105194A (ko) 2012-09-25
KR101307265B1 (ko) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2012124853A1 (ko) 착용형 로봇의 유압 장치
CA2724085C (en) Device and method for decreasing energy consumption of a person by use of a lower extremity exoskeleton
EP2346447B1 (en) An exoskeleton and method for controlling a swing leg of the exoskeleton
AU2006206394B2 (en) Low power lower extremity exoskeleton
EP1874239B1 (en) Semi-powered lower extremity exoskeleton
KR20150127002A (ko) 에너지 회수식 레그를 가진 로보트장치
WO2010071344A1 (ko) 건설 기계의 유압펌프 유량 제어장치
WO2013051737A1 (ko) 굴삭기를 이용한 평탄화 작업 제어시스템
WO2013008965A1 (ko) 건설기계용 유량 제어밸브
WO2019074301A1 (ko) 건설기계의 붐 증속 유압 시스템
CN104271962B (zh) 控制阀组件
WO2013180428A1 (ko) 굴삭기용 압력제어방식의 독립 유량제어 유압시스템
CN106460877B (zh) 挖土机及其控制方法
CN208153430U (zh) 一种应用于外骨骼机器人的阀控液压传动系统
CN109764029A (zh) 一种应用于外骨骼机器人的微型单动力源液压系统
JP3941328B2 (ja) 身体装着型筋力補助装置
BR102013013808B1 (pt) Sistema de controle de fluido para uso em um veículo de trabalho e máquina de trabalho
WO2012023755A2 (ko) 건설기계의 비상 조향 장치
CN109009889B (zh) 穿戴式柔性下肢康复机器人
CN108518368A (zh) 一种应用于外骨骼机器人的阀控液压传动系统
CN113304017A (zh) 一种具有多种行走辅助模式的柔性下肢助力服
CN113294391B (zh) 一种液压系统及工程机械
CN214924400U (zh) 无源外骨骼
CN218518648U (zh) 一种外骨骼机器人的髋板装置
KR101532683B1 (ko) 유압시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861064

Country of ref document: EP

Kind code of ref document: A1