WO2012124845A1 - 배터리 팩의 셀 밸런싱 방법 및 장치 - Google Patents

배터리 팩의 셀 밸런싱 방법 및 장치 Download PDF

Info

Publication number
WO2012124845A1
WO2012124845A1 PCT/KR2011/001856 KR2011001856W WO2012124845A1 WO 2012124845 A1 WO2012124845 A1 WO 2012124845A1 KR 2011001856 W KR2011001856 W KR 2011001856W WO 2012124845 A1 WO2012124845 A1 WO 2012124845A1
Authority
WO
WIPO (PCT)
Prior art keywords
balancing
cell
resistance value
resistor
battery pack
Prior art date
Application number
PCT/KR2011/001856
Other languages
English (en)
French (fr)
Inventor
김형선
김석진
이인호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2011/001856 priority Critical patent/WO2012124845A1/ko
Publication of WO2012124845A1 publication Critical patent/WO2012124845A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to a cell balancing method and apparatus for a battery pack.
  • a battery management system for managing a battery pack (battery pack) combining a plurality of cells
  • BMS battery management system
  • a battery pack having a high voltage because a plurality of cells are connected in parallel / parallel has a voltage due to the manufacturing process, capacity difference, self-discharge effect, and battery pack structure difference of the battery cell. Deviation will inevitably occur. This voltage deviation eventually impairs battery voltage uniformity, and furthermore, causes battery deterioration, which in turn adversely affects battery pack life.
  • a passive cell balancing method using a discharge method based on a resistor hereinafter referred to as a 'register'
  • an active cell baloancing method using a DC converter are widely known.
  • the conventional passive cell balancing method obtains information on the voltage variation between cells through real-time voltage measurement, and determines whether or not the balancing operation based on this value.
  • a voltage feedback scheme in which start and end of balancing is determined by real-time voltage sensing is applied.
  • a conventional passive cell balancing method has a problem in that accurate balancing cannot be performed by using a resistor having one fixed resistance value.
  • the use of a large capacity resistor takes a long time to balance, and the use of a small capacity resistor reduces the balancing time but generates a lot of heat, which can cause unexpected effects on the device (eg electric vehicle). Problems that adversely affect will occur.
  • the present application is to provide an efficient cell balancing method and apparatus of a battery pack in a battery management system.
  • the present application in a passive cell balancing method, to provide an optimal cell balancing method and apparatus in consideration of both the balancing time and the amount of heat generated.
  • the present application is to provide a cell balancing method and apparatus capable of adjusting an accurate balancing time in a passive cell balancing method.
  • a cell balancing method of a battery pack includes: determining a balancing target cell by measuring voltages of a plurality of cells, and determining the balancing target cell; Determining a resistor having a specific resistance value applied to the cell balancing, and performing balancing through the determined resistor in consideration of the balancing time and the heating value applied to the cell balancing; do.
  • the determining of the resistor to be applied to the balancing may include selecting one of the resistors in consideration of the balancing time and the amount of heat generated while resistors having a plurality of different resistance values are selectively connected to the respective cells. It characterized in that it comprises a process of selecting.
  • a resistor having a low resistance value is selected to reduce a balancing time
  • a resistor having a high resistance value is selected to reduce a heating amount. Characterized in that.
  • a resistor having a low resistance value is selected, and when the heat generation amount reaches a predetermined standard, a resistor having a high resistance value is selected.
  • the determining of the resistor to be applied to the balancing may include changing the resistor to have a specific resistance value in consideration of the balancing time and the amount of heat generated while a resistor having a variable resistance value is connected to each cell. It characterized in that it comprises a process of adjusting the resistance value.
  • variable resistance value is adjusted to have a low resistance value, and when the calorific value reaches a predetermined standard, the variable resistance value is adjusted to have a high resistance value.
  • a cell balancing device of a battery pack including a plurality of cells, according to an embodiment of the present application, registers having a plurality of different resistance values for each individual cell
  • a balancing circuit unit including a switching means for selectively connecting a resistor to be used for balancing among the plurality of resistors, and measuring a voltage of each cell in the battery pack to determine a balancing target cell; And a controller for determining a register applied to each determined cell in consideration of a balancing time and a heat generation amount for the cell to be balanced, and then controlling the switching means to control the determined register to be used for balancing the corresponding cell. It is characterized by.
  • a cell balancing device of a battery pack including a plurality of cells is configured such that a resistor having a variable resistance value is connected to each individual cell.
  • a balancing circuit unit and a voltage of each cell in the battery pack are measured to determine a balancing target cell, and considering a balancing time and a heating amount of the determined balancing target cell, determining a resistor resistance value applied to each of the determined cells After that, the determined resistor resistance value is characterized in that it comprises a control unit for controlling to be utilized for the balancing of the cell.
  • the cell balancing time can be adjusted, and the amount of heat generated during cell balancing can be adjusted.
  • FIG. 1 illustrates a battery management system including a cell balancing device according to an embodiment of the present application.
  • FIG. 2 illustrates a portion of a battery cell balancing device according to an embodiment of the present application.
  • FIG. 3 illustrates a flowchart of a battery cell balancing method according to an embodiment of the present application.
  • FIG. 4 illustrates a portion of a battery cell balancing device according to another embodiment of the present application, for example.
  • FIG. 5 illustrates a flowchart of a battery cell balancing method according to another embodiment of the present application.
  • the battery management system includes a battery pack 107, a cell balancing circuit unit 106, a balancing circuit controller 105, a current sensor 102, a voltage sensor 103, and a temperature sensor 104. And the controller 101.
  • the above configuration is merely an example presented for each block to specifically describe the technical idea of the present application, and specific elements may be configured as one block incorporating functions or may be performed by a software program as well as a hardware device. have.
  • the balancing circuit controller 105 may be included in the controller 101 as one component, and may be configured in hardware or software, and this is within the scope of the technical idea of the present application. .
  • the battery pack 107 is configured by connecting a plurality of individual batteries (named 'battery cells') of the battery pack in series, parallel or series / parallel, and supplying power to the illustrated load 108. Will be supplied.
  • the current sensor 102 measures the current flowing from the battery pack 107 to the load 108.
  • the voltage sensor 103 measures the voltage of each cell constituting the battery pack 107.
  • the temperature sensor 104 measures the total temperature of the battery pack 107 and / or the temperature of individual cells. The temperature sensor 104 may also be used for checking whether the temperature is maintained within the predicted calorific value in relation to the calorific value in the balancing circuit unit, which will be described later. This will be described later in the specific embodiment description.
  • the cell balancing circuitry 106 includes one or more resistors configured to have at least different resistance values for performing the passive cell balancing described above.
  • the balancing circuit controller 105 selects a resistor having a specific resistance value in the cell balancing circuit unit 106 or performs a variable adjustment to have a specific resistance value. Detailed configurations and operations of the cell balancing circuit unit 106 and the balancing circuit control unit 105 will be described later in detail in the specific embodiments.
  • controller 101 performs a role of controlling individual operations of the above-described components, and for this purpose, the controller 101 may include a control program for performing contextual control of the components.
  • the present application is intended to provide various embodiments for effectively performing cell balancing of the battery pack 107, and in particular, a passive cell balancing method using a resistor (register) will be described as an example. That is, an embodiment of the present application is characterized in that the resistor used for cell balancing does not have a fixed resistance value, and the register is operated to have a variable resistance value in consideration of cell balancing time and / or heat generation amount.
  • FIGS. 2 to 3 illustrate one embodiment of the present application, and include a plurality of resistors together with a switching means. After connecting in parallel to each cell, it is characterized in that by using the switching means control only the register (s) having the optimum resistance value for cell balancing.
  • FIGS. 4 to 5 show another embodiment of the present application, and after connecting a variable resistor which may have a variable resistance value to each cell, the optimum resistance value is adjusted by adjusting the variable resistance value.
  • Branches are registers that are used for cell balancing.
  • FIG. 2 illustrates a portion of a battery cell balancing device according to an embodiment of the present application.
  • FIG. 2 illustrates a detailed configuration and operation of the battery pack 107 and the cell balancing circuit unit 106 according to an embodiment of the present application.
  • the battery pack 107 may include a plurality of battery cells (e. G., 1071, 1072).
  • a plurality of battery cells e. G., 1071, 1072
  • FIG. 2 for example, only two battery cells 1071 and 1072 are shown for convenience of description, but it is apparent that the number of battery cells can be configured as a plurality of N cells according to the size of the voltage to be implemented. something to do.
  • the cell balancing circuit unit 106 connects the registers (eg, 1061 to 1064) corresponding to each of the cells 1071 and 1072 in parallel, and switching means (eg, to determine whether the circuits are connected to each register). 1065 to 1068) may be configured. For example, a first resistor 1061 and a second resistor 1062 having different resistance values corresponding to the first cell 1071 are connected in parallel to the corresponding cell 1071, and the respective resistors 1061, Switching means 1065 and 1066 for determining whether to connect the circuit of the 1062, respectively.
  • the third resistor 1063 and the fourth register 1064 having different resistance values corresponding to the second cell 1072 are connected in parallel to the corresponding cell 1072, Switching means 1066 and 1067 are respectively provided for determining whether or not each of the registers 1063 and 1064 is connected to a circuit.
  • FIG. 2 illustrates the case where the resistance value of the corresponding resistor is 10K or 30K, it will be obvious that the most optimal resistance value may be predicted and utilized in an actual use example.
  • the switching means 1065 to 1068 are shown as a one-to-one corresponding structure for each register, but this is merely shown for convenience of description, and achieves the same effect according to the number of resistors and circuit design actually used. It would also be possible to have switching means in various positions.
  • the balancing circuit control unit 105 may provide a switch control signal for controlling whether each of the switching means 1065 to 1068 is connected to the circuit, that is, whether the switching means 1065 to 1068 are turned on or off. Will be created.
  • FIG. 3 illustrates a flowchart of a battery cell balancing method according to an embodiment of the present application. The flowchart of FIG. 3 will be described with reference to the above-described block diagrams of FIGS. 1 and 2.
  • the controller 101 measures the voltage of each cell in the battery pack (S101).
  • the terminal voltage of the individual cell is measured by using the above-described voltage sensor 103.
  • the current value measured using the current sensor 102 is a non-current state or a low current state below a threshold value, measuring the voltage of the individual cell enables more accurate voltage measurement.
  • the controller 101 determines a cell to be a balancing target based on the voltage of the individual cell measured in step S101 (S102).
  • the determination of the balancing target cell may utilize the voltage deviation of the measured individual voltages. That is, for example, a cell having a voltage deviation greater than or equal to a specific threshold value may be selected as a balancing target cell based on the voltage having the lowest value among the measured individual cells. Therefore, there may not be a balancing target cell when a plurality of cells in the battery pack 107 are less than or equal to the threshold value. On the other hand, when all cells except the lowest voltage cell have a voltage deviation greater than or equal to the threshold value, all of the cells are to be balanced. You can also decide.
  • the control unit 101 estimates the time required for balancing and the amount of heat generated in the circuit (S103).
  • the balancing time predicts a balancing time applied to an individual cell, and based on this, it is possible to predict the time required for total balancing.
  • the calorific value also predicts the calorific value that can be generated from the circuit corresponding to the individual cell, and based on this, it is possible to predict the calorific value that can be generated in the entire circuit.
  • the controller 101 determines a final balancing process based on the estimated balancing time and heat generation amount through step S103 (S104).
  • the balancing process includes determining a balancing register applied to an individual balancing target cell and a usage time of the corresponding register in order to maintain an optimal balancing time and to adjust the amount of heat generated during the entire balancing.
  • both the first cell 1071 and the second cell 1072 are determined to be the cells to be balanced in FIG. 2 (there will be another cell that maintains the lowest voltage, but is not shown for convenience of description). . Further, for example, it is assumed that the first cell 1071 has a larger voltage deviation than the second cell 1072. Under the above assumption, the balancing process may determine a register and a corresponding time applied to balancing the first cell 1071 and the second cell 1072 among the registers 1061 to 1064 having a plurality of different resistance values. Will be decided.
  • the balancing process applied to the first cell 1071 having a large voltage deviation needs to first reduce the balancing time, and therefore, among the resistors 1061 and 1062 having a plurality of different resistance values, A resistor 1061 having a resistance value is first selected for a specific time t1. In addition, after the specific time t1 has elapsed, it may be controlled to select a resistor 1062 having a higher resistance value.
  • resistors eg, 1061 with low resistance values allow more discharge to flow faster than resistors (eg, 1062) with higher resistance values, while the amount of heat generated in the circuit Since there is a problem that increases, it is intended to utilize for balancing only for a predetermined time (for example, t1).
  • the balancing process applied to the second cell 1072 having a small voltage deviation may be reduced, among the resistors 1063 and 1064 having a plurality of different resistance values, in order to reduce the generation of heat generation rather than the balancing time.
  • the resistor 1064 having a high resistance value can be controlled to be continuously selected during the balancing time. That is, the resistor (e.g., 1064) having a high resistance value considers a feature in which less current flows and the amount of heat generated in the resistor is reduced compared to the resistor (e.g., 1063) having a lower resistance value.
  • the balancing process of step S104 includes determining a register applied to the balancing of each cell and a circuit connection time of the corresponding register in consideration of the total allowable balancing time and the amount of heat generated. Therefore, a specific balancing process will be determined in order to achieve an optimal balancing effect according to the voltage deviation value of the cell to be balanced and the resistor resistance value provided in the circuit unit 106. In particular, for cells with large voltage deviations, it is generally desirable to determine the balancing process so that a resistor with a lower resistance is selected in the first half of the balancing process and a resistor with a higher resistance is selected in the second half of the balancing process. will be.
  • control unit 101 controls to generate a switching control signal through the balancing circuit control unit 105 according to the balancing process determined through step S104 (S105).
  • the functions and operations of the balancing circuit controller 105 may be included in the controller 101.
  • the balancing circuit controller 105 controls the on / off of switching means (eg, on / off) of the switching means (eg, 1065 to 1068) in the cell balancing circuit section 106 according to the determined balancing process.
  • a switch control signal is generated.
  • step S105 The balancing switch control of step S105 is continued until cell balancing is completed (S106).
  • the control unit 101 performs the balancing control according to the balancing process, but after the time estimated as the completion of the balancing ends, the above-described current sensor 102 and voltage sensor 103 By checking the voltage deviation of each cell can be used to determine whether the final balancing is completed.
  • FIG. 4 illustrates a portion of a battery cell balancing device according to another embodiment of the present application, for example.
  • 5 is a flowchart of a battery cell balancing method according to another embodiment of the present application.
  • the resistors eg, 106a and 106b having a variable resistance value are not used as compared to the above-described embodiments of FIGS. 2 to 3 without using resistors having a plurality of resistance values. It is different in terms of utilization.
  • the balancing circuit controller 105 generates a variable resistance control signal for adjusting the resistance value applied to the resistor having the variable resistance value according to the balancing process of the controller 101.
  • steps S201 to S204 and S206 of FIG. 5 are the same steps as those of steps S101 to S104 and S106 of FIG. 3 described above, and a detailed description thereof will be omitted.
  • step S205 of Figure 5 in performing the balancing process determined in step S204, characterized in that for adjusting the resistance value of the resistor (e.g., 106a, 106b) having a variable resistance value connected to the balancing target cell.
  • the embodiment utilizing the fixed resistance value registers of FIG. 2 and the embodiment utilizing the variable resistance value register of FIG. 4 may be modified and applied to battery cell balancing by applying an integrated technique. Those who have the same will be apparent from the technical spirit of the present application is easily apparent facts.
  • the battery cell balancing method applied to the present invention may be produced as a program for execution in a computer and stored in a computer-readable recording medium.
  • the computer readable recording medium includes all kinds of storage devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, and may also be implemented in the form of a carrier wave (for example, transmission over the Internet). Include.
  • the present invention is applicable to high voltage battery management systems that require efficient battery cell balancing.
  • the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains, and claims to be described below. Various modifications and variations may be made within the scope of equivalents of the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 출원은 배터리 팩(battery pack)의 셀 밸런싱 방법 및 장치에 관한 것이다. 본 출원의 일 실시예에 의한, 배터리 팩의 셀 밸런싱 방법은, 배터리 팩내의 복수개 셀(cell)의 전압을 측정하여, 밸런싱(balancing) 대상 셀을 결정하는 단계와, 상기 결정된 밸런싱 대상 셀에 적용되는 밸런싱 시간 및 발열량을 고려하여, 상기 셀 밸런싱에 적용되는 특정 저항값을 가지는 레지스터(resistor)를 결정하는 단계와, 상기 결정된 레지스터를 통해 밸런싱을 수행하는 단계를 포함하여 이루어 지는 것을 특징으로 한다. 본 출원에서 제시하는 다양한 실시예를 통해, 최적의 셀 밸런싱 효과를 제공하는 것이 가능하다. 예를 들어, 셀 밸런싱 시간의 조절이 가능하고 또한, 셀 밸런싱시 발생되는 발열량의 조절이 가능해 진다.

Description

배터리 팩의 셀 밸런싱 방법 및 장치
본 출원은 배터리 팩의 셀 밸런싱 방법 및 장치에 관한 것이다.
최근 고전압의 배터리를 사용하는 전자 기기들이 늘어나는 추세이다. 예를 들어, 전기 자동차의 경우 배터리 성능이 기기 운영에 결정적인 역활을 수행한다는 사실은 주지의 사실이기도 하다. 또한 전기 자동차외에도 고전압의 배터리를 사용하는 경우는 점차 늘어나는 추세이고, 이는 차세대 디지털 전력망(예를 들어, 스마트 그리드(smart grid)) 시스템하에서는 더욱 필연적인 현상이라 할 것이다.
특히 상기와 같은 고전압의 배터리를 활용하는 경우에는 다수의 셀(cell)을 결합한 배터리 팩(battery pack)을 관리하기 위한 배터리 관리 시스템(BMS:Battery Management System)을 운영하게 된다. 하지만, 다수의 셀(cell)이 직/병렬로 연결되어 고전압을 띤 배터리 팩(battery pack)은 배터리 셀의 제조 공정, 용량차이, 자기 방전 효과, 및 배터리 팩(batery pack) 구조 차이에 의한 전압편차가 필연적으로 발생하게 된다. 이러한 전압편차는 결국 배터리 전압 균일성을 저해하며, 나아가 배터리 열화의 원인이 되고, 결국 배터리 팩(battery pack)수명을 감소하는 악영향을 미치게 된다.
따라서, 종래 이러한 고전압 배터리 관리 시스템에서는, 셀 밸런싱(cell balancing) 기술을 도입하여 셀간 전압 편차를 감소시키고자 하는 노력이 있어 왔다. 특히, 상기 밸런싱 방법으로는 저항(resistor, 이하 '레지스터'라고도 한다)에 의한 방전방식의 패시브 셀 밸런싱(passive cell balancing) 방법과 DC 컨버터에 의한 액티브 셀 밸런싱(active cell baloancing) 방법이 널리 알려져 있다.
관련하여, 상기 종래 패시브 셀 밸런싱 방법은, 예를 들어 셀간 전압 편차에 대한 정보를 실시간 전압측정을 통해 획득하며, 이 값에 근거하여 밸런싱 동작 여부를 결정하게 된다. 즉, 밸런싱에 대한 개시와 종료가 실시간 전압 센싱에 의해 결정되는 전압 피드백 방식을 적용하고 있다.
하지만, 종래 일반적인 패시브 셀 밸런싱 방법은, 하나의 고정된 저항값을 가지는 레지스터(resistor)를 사용함에 따라 정확한 밸런싱을 수행할 수 없는 문제점을 가지고 있다. 예를 들어, 큰 용량의 레지스터를 사용하게 되면 밸런싱 시간이 오래 걸리게 되고, 적은 용량의 레지스터를 사용하게 되면, 밸런싱 시간은 줄어들지만 발열이 많이 발생하게 되어 사용 기기(예, 전기 자동차)에 예기치 못한 악영향을 미치게 되는 문제점이 발생하게 된다.
본 출원은 배터리 관리 시스템내에서 배터리 팩의 효율적인 셀 밸런싱 방법 및 장치를 제공하고자 한다.
또한, 본 출원은, 패시브 셀 밸런싱 방법에서, 밸런싱 시간과 발열량을 모두 고려한 최적의 셀 밸런싱 방법 및 장치를 제공하고자 한다.
또한, 본 출원은, 패시브 셀 밸런싱 방법에서, 정확한 밸런싱 시간을 조절하는 것이 가능한 셀 밸런싱 방법 및 장치를 제공하고자 한다.
본 출원이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 출원의 일 실시예에 의한, .배터리 팩(battery pack)의 셀 밸런싱 방법은, 복수개 셀(cell)의 전압을 측정하여, 밸런싱(balancing) 대상 셀을 결정하는 단계와, 상기 결정된 밸런싱 대상 셀에 적용되는 밸런싱 시간 및 발열량을 고려하여, 상기 셀 밸런싱에 적용되는 특정 저항값을 가지는 레지스터(resistor)를 결정하는 단계와, 상기 결정된 레지스터를 통해 밸런싱을 수행하는 단계를 포함하여 이루어 지는 것을 특징으로 한다.
또한, 상기 밸런싱에 적용되는 레지스터를 결정하는 단계는, 복수개의 상이한 저항값을 가지는 레지스터(resistors)들이 상기 각 셀에 선택적으로 연결된 상태에서, 상기 밸런싱 시간 및 발열량을 고려하여 이중 어느 하나의 레지스터를 선택하는 과정을 포함하는 것을 특징으로 한다.
또한, 상기 복수개의 상이한 저항값을 가지는 레지스터(resistors)들중에서, 밸런싱 시간을 줄이고자 하는 경우는 낮은 저항값을 가지는 레지스터를 선택하고, 발열량을 줄이고자 하는 경우는 높은 저항값을 가지는 레지스터를 선택하는 것을 특징으로 한다.
또한, 밸런싱 초기에는 낮은 저항값을 가지는 레지스터를 선택하되, 발열량이 일정 기준에 도달하면 높은 저항값을 가지는 레지스터로 변경 선택하는 것을 특징으로 한다.
또한, 상기 밸런싱에 적용되는 레지스터를 결정하는 단계는, 가변 저항값을 가지는 레지스터(resistor)가 상기 각 셀에 연결된 상태에서, 상기 밸런싱 시간 및 발열량을 고려하여 상기 레지스터가 특정 저항값을 가지도록 가변 저항값을 조절하는 과정을 포함하는 것을 특징으로 한다.
또한, 밸런싱 초기에는 낮은 저항값을 가지도록 가변 저항값을 조절하고, 발열량이 일정 기준에 도달하면 높은 저항값을 가지도록 가변 저항값을 조절하는 것을 특징으로 한다.
또한, 본 출원의 일실시예에 의한, 복수개 셀(cell)을 포함하는 배터리 팩(battery pack)의 셀 밸런싱(balancing) 장치는, 상기 개별 셀 마다 복수개의 상이한 저항값을 가지는 레지스터(resistors)들을 선택적으로 연결하되, 상기 복수개의 레지스터들중 밸런싱에 활용되는 레지스터를 선택할수 있는 스위칭 수단을 포함하는 밸런싱 회로부와, 상기 배터리 팩내의 각 셀의 전압을 측정하여, 밸런싱 대상 셀을 결정하고, 상기 결정된 밸런싱 대상 셀에 대한, 밸런싱 시간 및 발열량을 고려하여, 상기 결정된 셀 마다 적용되는 레지스터를 결정한 후, 상기 스위칭 수단을 제어하여 상기 결정된 레지스터가 해당 셀의 밸런싱에 활용되도록 제어하는 제어부를 포함하여 이루어 지는 것을 특징으로 한다.
또한, 본 출원의 다른 실시예에 의한, 복수개 셀(cell)을 포함하는 배터리 팩(battery pack)의 셀 밸런싱(balancing) 장치는 상기 개별 셀 마다 가변 저항값을 가지는 레지스터(resistor)가 연결되도록 구성된 밸런싱 회로부와, 상기 배터리 팩내의 각 셀의 전압을 측정하여, 밸런싱 대상 셀을 결정하고, 상기 결정된 밸런싱 대상 셀에 대한, 밸런싱 시간 및 발열량을 고려하여, 상기 결정된 셀 마다 적용되는 레지스터 저항값을 결정한 후, 상기 결정된 레지스터 저항값이 해당 셀의 밸런싱에 활용되도록 제어하는 제어부를 포함하여 이루어 지는 것을 특징으로 한다.
본 출원에서 제시하는 다양한 실시예를 통해, 최적의 셀 밸런싱 효과를 제공하는 것이 가능하다. 예를 들어, 셀 밸런싱 시간의 조절이 가능하고 또한, 셀 밸런싱시 발생되는 발열량의 조절이 가능해 진다.
도 1은 본 출원의 실시예에 의한, 셀 밸런싱 장치를 포함하는 배터리 관리 시스템을 도시한 것이다.
도 2는 본 출원의 일 실시예에 의한, 배터리 셀 밸런싱 장치의 일 부분을 예를 들어 도시한 것이다.
도 3은 본 출원의 일 실시예에 의한, 배터리 셀 밸런싱 방법의 흐름도를 도시한 것이다.
도 4는 본 출원의 다른 실시예에 의한, 배터리 셀 밸런싱 장치의 일 부분을 예를 들어 도시한 것이다.
도 5는 본 출원의 다른 실시예에 의한, 배터리 셀 밸런싱 방법의 흐름도를 도시한 것이다.
이하, 본 출원의 다양한 실시예를 설명한다. 참고로, 본 출원에서 제공하는 실시예는 본 출원의 기술적 사상을 설명하기 위한 하나의 예로서 제공되어 지며, 본 발명의 기술적 범위는 제공되는 실시예들에만 한정되지 않음은 자명하다 할 것이다.
도 1은 본 출원의 실시예에 의한, 셀 밸런싱 장치를 포함하는 배터리 관리 시스템을 도시한 것이다. 본 출원의 일 실시예에 의한 배터리 관리 시스템은, 배터리 팩(107), 셀 밸런싱 회로부(106), 밸런싱 회로 제어부(105), 전류센서(102), 전압센서(103), 온도센서(104) 및 제어부(101)를 포함하여 구성할 수 있다. 단, 상기 구성은 본 출원의 기술적 사상을 구체적으로 설명하기 위해 블록별로 제시한 일예에 불과하고, 특정 요소들은 기능을 통합한 하나의 블록으로 구성하거나 또는 하드웨어 장치 뿐만 아니라 소프트웨어적인 프로그램으로 수행될 수도 있다. 예를 들어, 상기 밸런싱 회로 제어부(105)는 제어부(101)내에 포함하여 하나의 구성요소로서, 하드웨어적 또는 소트웨어적으로 구성하는 것이 모두 가능하고, 이는 본 출원의 기술적 사상의 범위내에 해당된다.
상기 배터리 팩(107)은 배터리 팩을 구성하는 다수의 개별 배터리(이를 '배터리 셀'이라고 명명하였다)들이 직렬, 병렬 또는 직/병렬 연결되어 구성되고, 도시한 로드(108, load)에 전력을 공급하게 된다.
상기 전류센서(102)는 상기 배터리 팩(107)으로부터 로드(108)에 흐르는 전류를 측정한다. 또한, 상기 전압센서(103)는 상기 배터리 팩(107)을 구성하는 각 셀의 전압을 측정한다. 또한, 상기 온도센서(104)는 상기 배터리 팩(107)의 전체 온도 및/또는 개별 셀의 온도를 측정한다. 상기 온도센서(104)는 후술할 밸런싱 회로부내의 발열량과 관련하여 예측된 발열량내로 온도가 유지되는 지를 확인하는 용도로도 활용될 수 있다. 이에 대해서는 구체적인 실시예 설명부분에서 후술할 예정이다.
상기 셀 밸런싱 회로부(106)는 전술한 패시브 셀 밸런싱을 수행하기 위한 적어도 상이한 저항값을 가지도록 구성된 하나 이상의 레지스터를 포함한다. 또한, 밸런싱 회로 제어부(105)는 상기 셀 밸런싱 회로부(106)내의 특정 저항값을 가지는 레지스터를 선택하거나 또는 특정 저항값을 가지도록 가변 조절하는 기능을 수행한다. 상기 셀 밸런싱 회로부(106) 및 밸런싱 회로 제어부(105)의 상세 구성 및 동작에 대해서는 구체적인 실시예 설명부분에서 상세히 후술할 예정이다.
또한, 제어부(101)는 전술한 구성 요소들의 개별 동작을 제어하는 역활을 수행하며, 이를 위해 상기 구성 요소들의 상황별 제어를 수행하는 제어 프로그램을 포함하여 구성 될 수 있다.
본 출원은 전술한 바와 같이, 상기 배터리 팩(107)의 셀 밸런싱을 효과적으로 수행하기 위한 다양한 실시예를 제공하고자 하며, 특히 저항(레지스터)을 활용한 패시브 셀 밸런싱 방법을 예로 하여 설명하고자 한다. 즉, 본 출원의 실시예는 셀 밸런싱에 활용되는 레지스터가 고정된 저항값을 가지지 않고, 셀 밸런싱 시간 및/또는 발열량을 고려하여 가변적인 저항값을 가지도록 레지스터를 운영하는 것에 특징이 있다.
관련하여, 본 출원은 상기 기술적 사상을 구현하기 위한 다양한 실시예들을 제안하는 바, 예를 들어, 도 2 ~ 도 3은 본 출원 일 실시예로서, 복수의 레지스터들(resistors)을 스위칭 수단과 함께 각 셀에 병렬로 연결한 후, 상기 스위칭 수단 제어를 통해 최적의 저항값을 가지는 레지스터(들)만을 셀 밸런싱에 활용하는 것을 특징으로 한다. 또한, 예를 들어, 도 4 ~ 도 5은 본 출원 다른 실시예로서, 가변적 저항값을 가질 수 있는 가변 레지스터를 각 셀에 연결한 후, 상기 가변 저항값의 조절을 통해, 최적의 저항값을 가지는 레지스터로 셀 밸런싱에 활용하는 것을 특징으로 한다. 이하 상기 실시예들을 상세히 설명하면 다음과 같다.
도 2는 본 출원의 일 실시예에 의한, 배터리 셀 밸런싱 장치의 일 부분을 예를 들어 도시한 것이다. 특히 도 2는 본 출원의 일 실시예에 의한, 전술한 배터리 팩(107) 및 셀 밸런싱 회로부(106)의 상세 구성 및 동작을 설명하기 위해 도시한 것이다.
상기 배터리 팩(107)은 복수의 배터리 셀(e.g., 1071, 1072)를 포함할 수 있다. 도 2에서는 설명의 편의를 위해, 예를 들어 2개의 배터리 셀(1071, 1072)만을 도시하였으나, 배터리 셀의 갯수는 전체 구현하고자 하는 전압의 크기에 따라 복수의 N개로 구성할 수 있음은 자명하다 할 것이다.
또한, 상기 셀 밸런싱 회로부(106)는 각 셀(1071, 1072)에 대응하는 레지스터들(e.g., 1061 ~ 1064)을 병렬로 연결하고 또한 각 레지스터의 회로 연결 여부를 결정하는 스위칭 수단들(e.g., 1065 ~ 1068)을 각각 구비하여 구성될 수 있다. 예를 들어, 상기 제1 셀(1071)에 대응하여 상이한 저항값을 가지는 제1 레지스터(1061) 및 제 2 레지스터(1062)를 해당 셀(1071)에 병렬로 연결하고, 상기 각 레지스터(1061, 1062)의 회로 연결 여부를 결정하는 스위칭 수단(1065, 1066)을 각각 구비하게 된다. 또한, 동일한 구조로서, 예를 들어, 상기 제2 셀(1072)에 대응하여 상이한 저항값을 가지는 제3 레지스터(1063) 및 제4 레지스터(1064)를 해당 셀(1072)에 병렬로 연결하고, 상기 각 레지스터(1063, 1064)의 회로 연결 여부를 결정하는 스위칭 수단(1066, 1067)을 각각 구비하게 된다.
관련하여, 상기 도 2의 실시예에서는 설명의 편의를 위해 각 셀에 대응하는 2개의 레지스터들만을 예로서 도시하였으나, 실제 사용예에 따라서는 3개 이상의 레지스터들을 연결하는 것도 가능하다 할 것이다. 또한, 도 2에서는 해당 레지스터들의 저항값의 크기가 10K 또는 30K 인 경우를 도시하였으나, 실제 사용예에 있어서 가장 최적의 저항값을 예측하여 이를 활용할 수 있음은 자명하다 할 것이다. 또한, 상기 스위칭 수단(1065 ~ 1068)들도 각 레지스터들 마다 일대일 대응하는 구조로 도시하였으나, 이는 단지 설명의 편의를 위해 도시한 것으로, 실제 사용되는 레지스터 갯수 및 회로 설계에 따라 동일한 효과를 달성하는 다양한 위치에 스위칭 수단을 구비하는 것도 가능하다 할 것이다.
또한, 상기 밸런싱 회로 제어부(105)는 상기 각 스위칭 수단(1065 ~ 1068)의 회로 연결 여부, 즉 상기 스위칭 수단(1065 ~ 1068)의 온/오프(on/off) 여부를 제어하는 스위치 제어신호를 생성하게 된다.
도 3은 본 출원의 일 실시예에 의한, 배터리 셀 밸런싱 방법의 흐름도를 도시한 것이다. 도 3의 흐름도를 전술한 도 1 및 도 2의 블록도를 참조하여 설명하면 다음과 같다.
우선, 제어부(101)는 배터리 팩내의 각 셀의 전압을 측정한다(S101). 상기 단계 S101을 위해, 전술한 전압센서(103)를 활용하여 개별 셀의 터미널 전압을 측정하게 된다. 또한, 예를 들어, 전류센서(102)를 활용하여 측정된 전류값이 무전류 상태 또는 임계치 이하의 저전류 상태인 경우에, 상기 개별 셀의 전압을 측정하면 더욱 정확한 전압 측정이 가능하게 된다.
또한, 제어부(101)는 상기 단계 S101을 통해 측정된 개별 셀의 전압을 토대로 밸런싱 대상이 되는 셀을 결정한다(S102). 예를 들어, 상기 밸런싱 대상 셀의 결정은, 측정된 개별 전압의 전압편차를 활용할 수 있다. 즉, 예를 들어 상기 측정된 개별 셀의 전압중 최저치를 갖는 전압을 기준으로, 특정 임계값 이상의 전압편차를 갖는 셀을 밸런싱 대상 셀로 선정할 수 있다. 따라서, 배터리 팩(107)내의 복수의 셀이 모두 상기 임계치 이하일 경우 밸런싱 대상 셀이 없을 수도 있고, 반면, 최저 전압 셀을 제외한 모든 셀들이 상기 임계치 이상의 전압편차를 가지는 경우 해당 셀들을 모두 밸런싱 대상 셀로 결정할 수 도 있게 된다.
상기 제어부(101)는 단계 S102를 통해, 밸런싱 대상 셀이 결정되면, 밸런싱에 소요되는 시간 및 회로에 발생하는 발열량을 예측한다(S103). 관련하여, 상기 밸런싱 시간은 개별 셀에 적용되는 밸런싱 시간을 예측하고, 이를 토대로 전체 밸런싱에 소요되는 시간을 예측하는 것이 가능하다. 또한, 상기 발열량도 개별 셀에 대응하는 회로로부터 발생가능한 발열량을 예측하고, 이를 토대로 전체 회로에서 발생가능한 발열량을 예측하는 것이 가능하다.
또한, 상기 제어부(101)는 단계 S103을 통해, 예측된 밸런싱 시간 및 발열량을 토대로, 최종적인 밸런싱 프로세스(balancing process)를 결정한다(S104). 상기 밸런싱 프로세스라 함은, 전체 밸런싱 수행시의, 최적 밸런싱 시간 유지 및 적절한 발열량 조절을 위해, 개별 밸런싱 대상 셀에 적용되는 밸런싱 레지스터 및 해당 레지스터의 사용 시간을 결정하는 과정을 포함한다.
상기 단계 S104를 구체적으로 예를 들어 설명하면 다음과 같다. 우선, 도 2 에서 제1 셀(1071) 및 제2 셀(1072)가 모두 밸런싱 대상 셀로 결정된 경우로 가정한다(이를 위해서는 최저 전압을 유지하는 또 다른 셀이 존재할 것이지만, 설명의 편의상 미도시함). 또한, 예를 들어, 제1 셀(1071)이 제2 셀(1072)보다 전압편차가 더 큰 경우로 가정한다. 상기 가정하에서, 상기 밸런싱 프로세스는, 복수개의 상이한 저항값을 가지는 레지스터들(1061 ~ 1064)들중에서, 상기 제1 셀(1071) 및 제2 셀(1072)의 밸런싱에 적용되는 레지스터 및 해당 시간을 결정하게 된다.
즉, 예를 들어, 전압편차가 큰 제1 셀(1071)에 적용되는 밸런싱 프로세스는, 우선적으로 밸런싱 시간을 줄이는 것이 필요하므로 복수개의 상이한 저항값을 가지는 레지스터들(1061, 1062)들중에서, 낮은 저항값을 가지는 레지스터(1061)을 특정 시간(t1)동안 우선 선택한다. 또한, 상기 특정 시간(t1) 경과 후에는 보다 높은 저항값을 가지는 레지스터(1062)가 선택되도록 제어할 수도 있다. 즉, 이는 저항값이 낮은 레지스터(e.g., 1061)는, 보다 높은 저항값을 가지는 레지스터(e.g., 1062)에 비해, 더 많은 전류를 흐르게 하여 빠른 방전이 가능하게 하는 반면, 회로에 발생하는 발열량이 커지는 문제점이 있으므로, 소정의 시간동안(예를 들어, t1)만 밸런싱에 활용하고자 하는 것이다.
또한, 예를 들어, 전압편차가 작은 제2 셀(1072)에 적용되는 밸런싱 프로세스는, 밸런싱 시간 보다는 발열량 발생을 줄이기 위해, 복수개의 상이한 저항값을 가지는 레지스터들(1063, 1064)들중에서, 보더 높은 저항값을 가지는 레지스터(1064)을 밸런싱 시간 동안 계속 선택되도록 제어할 수 있다. 즉, 이는 저항값이 높은 레지스터(e.g., 1064)는 보다 낮은 저항값을 가지는 레지스터(e.g., 1063)에 비해, 적은 전류가 흐르게 되어 레지스터에 발생하는 발열량이 줄어드는 특징을 고려한 것이다.
따라서, 상기 단계 S104의 밸런싱 프로세스는 허용되는 총 밸런싱 시간 및 발열량을 함께 고려하여, 각 셀의 밸런싱에 적용되는 레지스터 및 해당 레지스터의 회로 연결 시간을 결정하는 것을 포함한다. 따라서, 구체적인 밸런싱 프로세스는, 밸런싱 대상 셀의 전압편차값 및 회로부(106)내에 구비된 레지스터 저항값에 따라, 최적의 밸런싱 효과를 이루기 위해 결정되어 질 것이다. 특히, 전압편차값이 큰 셀에 대해서는, 일반적으로 밸런싱 전반 과정에는 낮은 저항값을 가지는 레지스터가 선택되고, 밸런싱 후반 과정에는 보다 높은 저항값을 가지는 레지스터가 선택되도록 밸런싱 프로세스를 결정하는 것이 바람직하다 할 것이다.
또한, 상기 제어부(101)는 단계 S104를 통해 결정된 밸런싱 프로세스에 따라, 상기 밸런싱 회로 제어부(105)를 통한 스위칭 제어 신호를 발생하도록 제어하게 된다(S105). 관련하여, 상기 밸런싱 회로 제어부(105)의 기능 및 동작은 상기 제어부(101)에 포함될 수도 있음은 전술항 바 있다.
즉, 예를 들어, 상기 밸런싱 회로 제어부(105)는 결정된 밸런싱 프로세스에 따라, 셀 밸런싱 회로부(106)내의 스위칭 수단들(e.g., 1065 ~ 1068)의 온/오프(on/off)를 제어하는 밸런싱 스위치 제어신호를 발생하게 된다.
상기 단계 S105의 밸런싱 스위치 제어는, 셀 밸런싱이 완료될까지 계속 수행되어 진다(S106). 예를 들어, 단계 S106을 위해, 상기 제어부(101)는 밸런싱 프로세스에 따라 밸런싱 제어를 수행하되, 밸런싱 완료로 예측된 시간이 종료된 후에는, 전술한 전류센서(102) 및 전압센서(103)를 활용하여 각 셀의 전압편차를 확인하여 최종적인 밸런싱 완료 여부를 판단할 수도 있다.
도 4는 본 출원의 다른 실시예에 의한, 배터리 셀 밸런싱 장치의 일 부분을 예를 들어 도시한 것이다. 또한, 도 5는 본 출원의 다른 실시예에 의한, 배터리 셀 밸런싱 방법의 흐름도를 도시한 것이다.
상기 도 4 ~ 도 5의 실시예는 전술한 도 2 ~ 도 3의 실시예와 비교시, 복수의 저항값을 가지는 레지스터들을 사용하지 않고, 가변 저항값을 가지는 레지스터(e.g., 106a, 106b)를 활용하는 점에서 상이하다.
따라서, 상기 밸런싱 회로 제어부(105)는 제어부(101)의 밸런싱 프로세스에 따라 상기 가변 저항값을 가지는 레지스터에 적용되는 저항값을 조절하기 위한 가변저항 제어신호를 발생하게 된다.
즉, 도 5의 단계 S201 ~ S204 및 S206은 전술한 도 3의 단계 S101 ~ S104및 S106과 각각 동일한 과정을 수행하는 단계들로서 이하 상세한 설명은 생략하고자 한다. 반면, 도 5의 단계 S205는, 단계 S204에서 결정된 밸런싱 프로세스를 수행함에 있어서, 밸런싱 대상 셀에 연결된 가변 저항값을 가지는 레지스터(e.g., 106a, 106b)의 저항값을 조절하는 것을 특징으로 한다.
결국, 상기 가변적 저항값을 가질 수 있는 레지스터(e.g., 106a, 106b)에 밸런싱 프로세스에 따른 최적의 저항값이 특정 시간동안 셀 밸런싱에 적용되도록 조절함에 의해 전술한 도 2 ~ 도 3의 실시예와 동일한 효과를 달성할 수 있게 된다.
또한, 전술한 도 2의 고정 저항값 레지스터들을 활용하는 실시예와 도 4의 가변 저항값 레지스터를 활용하는 실시예를, 통합 적용하여 배터리 셀 밸런싱에 변형 적용하는 것도 가능하며, 이는 통상의 기술적 지식을 가진 자라면 본 출원의 기술적 사상으로부터 쉽게 유추가능한 자명한 사실임을 밝혀둔다.
본 발명에 적용되는 배터리 셀 밸런싱 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 저장 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
본 발명은 효율적인 배터리 셀 밸런싱이 필요한 고전압 배터리 관리 시스템내에 적용 가능하다. 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능할 것이다.

Claims (8)

  1. 복수개 셀(cell)의 전압을 측정하여, 밸런싱(balancing) 대상 셀을 결정하는 단계와,
    상기 결정된 밸런싱 대상 셀에 적용되는 밸런싱 시간 및 발열량을 고려하여, 상기 셀 밸런싱에 적용되는 특정 저항값을 가지는 레지스터(resistor)를 결정하는 단계와,
    상기 결정된 레지스터를 통해 밸런싱을 수행하는 단계를 포함하여 이루어 지는 것을 특징으로 하는 배터리 팩(battery pack)의 셀 밸런싱 방법.
  2. 제 1항에 있어서,
    상기 밸런싱에 적용되는 레지스터를 결정하는 단계는,
    복수개의 상이한 저항값을 가지는 레지스터(resistors)들이 상기 각 셀에 선택적으로 연결된 상태에서, 상기 밸런싱 시간 및 발열량을 고려하여 이중 어느 하나의 레지스터를 선택하는 과정을 포함하는 것을 특징으로 하는 셀 밸런싱 방법.
  3. 제 2항에 있어서,
    상기 복수개의 상이한 저항값을 가지는 레지스터(resistors)들중에서,
    밸런싱 시간을 줄이고자 하는 경우는 낮은 저항값을 가지는 레지스터를 선택하고, 발열량을 줄이고자 하는 경우는 높은 저항값을 가지는 레지스터를 선택하는 것을 특징으로 하는 셀 밸런싱 방법.
  4. 제 3항에 있어서,
    밸런싱 초기에는 낮은 저항값을 가지는 레지스터를 선택하되, 발열량이 일정 기준에 도달하면 높은 저항값을 가지는 레지스터로 변경 선택하는 것을 특징으로 하는 셀 밸런싱 방법.
  5. 제 1항에 있어서,
    상기 밸런싱에 적용되는 레지스터를 결정하는 단계는,
    가변 저항값을 가지는 레지스터(resistor)가 상기 각 셀에 연결된 상태에서, 상기 밸런싱 시간 및 발열량을 고려하여 상기 레지스터가 특정 저항값을 가지도록 가변 저항값을 조절하는 과정을 포함하는 것을 특징으로 하는 셀 밸런싱 방법.
  6. 제 5항에 있어서,
    밸런싱 초기에는 낮은 저항값을 가지도록 가변 저항값을 조절하고, 발열량이 일정 기준에 도달하면 높은 저항값을 가지도록 가변 저항값을 조절하는 것을 특징으로 하는 셀 밸런싱 방법.
  7. 복수개 셀(cell)을 포함하는 배터리 팩(battery pack)의 셀 밸런싱(balancing) 장치에 있어서,
    상기 개별 셀 마다 복수개의 상이한 저항값을 가지는 레지스터(resistors)들을 선택적으로 연결하되, 상기 복수개의 레지스터들중 밸런싱에 활용되는 레지스터를 선택할수 있는 스위칭 수단을 포함하는 밸런싱 회로부와,
    상기 배터리 팩내의 각 셀의 전압을 측정하여, 밸런싱 대상 셀을 결정하고, 상기 결정된 밸런싱 대상 셀에 대한, 밸런싱 시간 및 발열량을 고려하여, 상기 결정된 셀 마다 적용되는 레지스터를 결정한 후, 상기 스위칭 수단을 제어하여 상기 결정된 레지스터가 해당 셀의 밸런싱에 활용되도록 제어하는 제어부를 포함하여 이루어 지는 것을 특징으로 하는 배터리 팩(battery pack)의 셀 밸런싱 장치.
  8. 복수개 셀(cell)을 포함하는 배터리 팩(battery pack)의 셀 밸런싱(balancing) 장치에 있어서,
    상기 개별 셀 마다 가변 저항값을 가지는 레지스터(resistor)가 연결되도록 구성된 밸런싱 회로부와,
    상기 배터리 팩내의 각 셀의 전압을 측정하여, 밸런싱 대상 셀을 결정하고, 상기 결정된 밸런싱 대상 셀에 대한, 밸런싱 시간 및 발열량을 고려하여, 상기 결정된 셀 마다 적용되는 레지스터 저항값을 결정한 후, 상기 결정된 레지스터 저항값이 해당 셀의 밸런싱에 활용되도록 제어하는 제어부를 포함하여 이루어 지는 것을 특징으로 하는 배터리 팩(battery pack)의 셀 밸런싱 장치.
PCT/KR2011/001856 2011-03-17 2011-03-17 배터리 팩의 셀 밸런싱 방법 및 장치 WO2012124845A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/001856 WO2012124845A1 (ko) 2011-03-17 2011-03-17 배터리 팩의 셀 밸런싱 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/001856 WO2012124845A1 (ko) 2011-03-17 2011-03-17 배터리 팩의 셀 밸런싱 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2012124845A1 true WO2012124845A1 (ko) 2012-09-20

Family

ID=46830896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001856 WO2012124845A1 (ko) 2011-03-17 2011-03-17 배터리 팩의 셀 밸런싱 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2012124845A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205725A1 (de) * 2015-03-30 2016-10-06 Robert Bosch Gmbh Verfahren zum Betrieb einer Batterieeinheit
KR101667913B1 (ko) 2016-03-25 2016-10-20 (주)아이비티 충전특성곡선을 이용한 배터리 팩 균등 충전 장치 및 방법
KR101720960B1 (ko) 2016-03-25 2017-03-29 (주)아이비티 밸런싱 전류 가변 배터리 팩 균등 충전 장치 및 방법
US11442112B2 (en) * 2020-03-05 2022-09-13 Robert Bosch Gmbh Method for determining at least one aging state of a first plurality of electrical energy store units
TWI828448B (zh) * 2022-09-04 2024-01-01 立錡科技股份有限公司 電池平衡系統及電池平衡控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060792A (ja) * 2005-08-24 2007-03-08 Yazaki Corp 組電池の充電状態調整装置
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
JP2010028920A (ja) * 2008-07-16 2010-02-04 Toshiba Mitsubishi-Electric Industrial System Corp 充電池の充電装置
JP2010088179A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 電池均等化回路、及び電池電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060792A (ja) * 2005-08-24 2007-03-08 Yazaki Corp 組電池の充電状態調整装置
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
JP2010028920A (ja) * 2008-07-16 2010-02-04 Toshiba Mitsubishi-Electric Industrial System Corp 充電池の充電装置
JP2010088179A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 電池均等化回路、及び電池電源装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205725A1 (de) * 2015-03-30 2016-10-06 Robert Bosch Gmbh Verfahren zum Betrieb einer Batterieeinheit
US10355504B2 (en) 2015-03-30 2019-07-16 Robert Bosch Gmbh Method for operating a battery unit
KR101667913B1 (ko) 2016-03-25 2016-10-20 (주)아이비티 충전특성곡선을 이용한 배터리 팩 균등 충전 장치 및 방법
KR101720960B1 (ko) 2016-03-25 2017-03-29 (주)아이비티 밸런싱 전류 가변 배터리 팩 균등 충전 장치 및 방법
US11442112B2 (en) * 2020-03-05 2022-09-13 Robert Bosch Gmbh Method for determining at least one aging state of a first plurality of electrical energy store units
TWI828448B (zh) * 2022-09-04 2024-01-01 立錡科技股份有限公司 電池平衡系統及電池平衡控制方法

Similar Documents

Publication Publication Date Title
JP6636654B2 (ja) 省エネルギー及び速いセルバランシングが可能な充電制御装置及び方法
JP5529402B2 (ja) 蓄電システム
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2012124845A1 (ko) 배터리 팩의 셀 밸런싱 방법 및 장치
EP2161810A1 (en) Cell balancing system comprising a transformer
US20110140662A1 (en) Balancing system for a battery pack
FI123467B (fi) Menetelmä ja järjestelmä litium-ioni-kennoston varaustilan hallinnoimiseksi
JPH08129436A (ja) バッテリ駆動型電子機器
WO2013035963A1 (ko) 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법
WO2020085819A1 (ko) 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩
WO2012115393A2 (en) Soc correcting system having multiple packs in parallel
WO2018074807A1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
JP7469554B2 (ja) 電池加熱システム、電池パック及び電力消費装置
JP7136424B2 (ja) 並列マルチバッテリーパックに含まれたスイッチ部のターンオン動作制御装置及び方法
KR20200099057A (ko) 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
CN109435777A (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
KR101909104B1 (ko) 배터리팩 밸런싱이 가능한 에너지 저장 장치
WO2018135735A1 (ko) 배터리 충전 방법 및 충전 시스템
JP2022044137A (ja) 充電制御装置、バッテリシステム、及び充電制御方法
KR20200020486A (ko) 배터리 모듈 밸런싱 장치 및 방법
WO2018131874A1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2021085869A1 (ko) 배터리 충전상태 추정방법 및 이를 적용한 배터리 관리 시스템
WO2020166877A1 (ko) 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
EP3675312A1 (en) Battery balancing system, vehicle, battery balancing method, and storage medium
CN115117970A (zh) 主动均衡电路、设备及车用电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861113

Country of ref document: EP

Kind code of ref document: A1