WO2012124773A1 - Method for inspecting for filter defects and device for inspecting for filter defects - Google Patents

Method for inspecting for filter defects and device for inspecting for filter defects Download PDF

Info

Publication number
WO2012124773A1
WO2012124773A1 PCT/JP2012/056743 JP2012056743W WO2012124773A1 WO 2012124773 A1 WO2012124773 A1 WO 2012124773A1 JP 2012056743 W JP2012056743 W JP 2012056743W WO 2012124773 A1 WO2012124773 A1 WO 2012124773A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
particles
gas
filter
gas flow
Prior art date
Application number
PCT/JP2012/056743
Other languages
French (fr)
Japanese (ja)
Inventor
幸人 徳岡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012124773A1 publication Critical patent/WO2012124773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95692Patterns showing hole parts, e.g. honeycomb filtering structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/18Testing of filters, filter elements, sealings

Definitions

  • the present invention relates to a filter defect inspection method and a filter defect inspection apparatus.
  • Patent Document 1 a defect inspection method for a honeycomb filter used as a diesel particulate filter is known.
  • a gas flow containing liquid particles generated from a spray nozzle is provided on the inlet end face of a honeycomb filter, and the gas flow emitted from the outlet end face of the honeycomb filter is irradiated with light to illuminate the particles. Is disclosed.
  • the pores of the filter are clogged with liquid, and it may be difficult to perform inspection with sufficient accuracy.
  • the present invention has been made in view of the above problems, and provides a defect inspection method for a filter and a defect inspection apparatus for a filter that can further improve defect detection accuracy while using liquid particles. Objective.
  • the filter defect inspection method includes: Generating a gas stream containing liquid particles, Removing relatively large particles in the liquid particle group; Supplying a gas stream containing the liquid particle group to one end face of the filter after the removal of the large particles; Detecting a concentration distribution of liquid particles in the gas discharged from the other end face of the filter.
  • the filter defect inspection apparatus includes: A generating section for generating a gas flow including liquid particles, and A removing section for removing particles having a relatively large particle diameter in the liquid particle group; An introduction part for guiding a gas flow including a group of liquid particles from which the large particles have been removed to one end face of the filter; A detection unit that detects a concentration distribution of liquid particles in the gas discharged from the other end surface of the filter.
  • the pores of the filter may be blocked by the liquid particles having a large particle size. It is suppressed. This improves the inspection accuracy of the filter.
  • the removal by allowing a gas flow containing the liquid particle group to pass through a bent tube.
  • Small particles can bend inside the bent pipe by riding on the gas flow, but large particles collide with the wall without being able to bend the bent part due to the large inertia, or gravity is applied after being supplied to the inside Therefore, the large particles can be selectively removed easily with a simple configuration.
  • the angle between the axis of the gas inlet side and the axis of the gas outlet side of the bent pipe is preferably 45 to 135 °, and more preferably 45 to 90 °.
  • a gas flow including the liquid particle group is generated by a two-fluid nozzle (a nozzle that generates a liquid microparticle group by mixing two fluids of gas and liquid inside or outside the nozzle).
  • the removing step it is preferable to remove a group of liquid particles having a particle size of at least 11 ⁇ m, preferably 5 ⁇ m or more.
  • the filter includes a porous partition wall that forms a plurality of channels extending in parallel to each other, one end of a part of the plurality of channels, and the other end of the remaining part of the plurality of channels.
  • a honeycomb filter having a sealing portion to be closed is preferable.
  • filter defects can be detected with high accuracy.
  • FIG. 1A is a perspective view of a honeycomb filter 100 to be inspected
  • FIG. 1B is a view taken along the arrow Ib-Ib in FIG.
  • FIG. 2 is a schematic cross-sectional view of the defect inspection apparatus 400 for the honeycomb filter 100 according to the first embodiment.
  • 3 is a view taken in the direction of arrows III-III in FIG. 4 is a top view around the honeycomb filter 100 of the device 400 of FIG.
  • FIG. 4 is a schematic cross-sectional view of the defect inspection apparatus 400 for the honeycomb filter 100 according to the second embodiment.
  • the honeycomb filter 100 to be inspected in the present embodiment will be described.
  • the honeycomb filter 100 can be used as, for example, a diesel particulate filter.
  • the target honeycomb filter 100 in the present embodiment includes partition walls 112 that form a plurality of flow paths 110 that extend in parallel to each other, and a plurality of flow paths 110.
  • the length of the honeycomb filter 100 in the direction in which the flow path 110 extends is not particularly limited, but may be, for example, 40 to 350 mm. Further, the outer diameter of the honeycomb filter 100 is not particularly limited, but may be, for example, 100 to 320 mm.
  • the size of the cross section of the channel 110 can be set to 0.8 to 2.5 mm on a side in the case of a square, for example.
  • the thickness of the partition 112 can be 0.05 to 0.5 mm.
  • the material of the partition 112 of the honeycomb filter 100 is porous ceramics (fired body).
  • the ceramic is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • the left end of a part of the plurality of channels 110 of the honeycomb filter 100 is sealed by the sealing part 114, and the right end of the remaining part of the plurality of channels 110 of the honeycomb filter 100 is sealed by the sealing part 114.
  • the material of the sealing portion 114 the same ceramic material as that of the honeycomb filter 100 can be used.
  • the “part of the plurality of flow paths 110” and the “remaining part of the plurality of flow paths 110” described above are preferably arranged in a matrix when viewed from the end face side as shown in FIG. Of the plurality of flow paths arranged in the vertical direction and the horizontal direction in the horizontal direction.
  • the honeycomb filter 100 has porous partition walls 112.
  • the pore diameter of the partition wall is not particularly limited, but can be, for example, about 11 to 30 ⁇ m.
  • the gas supplied from the left end of the flow path 110 passes through the partition wall 112, reaches the adjacent flow path 110, and is discharged from the right end of the flow path 110. At this time, particles in the inflowing gas are removed by the partition walls 112, and the honeycomb filter 100 functions as a filter.
  • Such a honeycomb filter 100 can be manufactured as follows, for example.
  • an inorganic compound source powder, an organic binder, a solvent, and additives to be added as necessary are prepared. These are mixed by a kneader or the like to obtain a raw material mixture.
  • the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the shape of the partition wall, cut to a desired length, and then dried by a known method. By doing so, a green honeycomb molded body is obtained. Then, the end of the flow path of the green honeycomb molded body is sealed with a sealing material by a known method and fired, or the green honeycomb molded body is fired and the end of the flow path is sealed by a known method. That's fine.
  • the inspection apparatus 400 includes a two-fluid nozzle (generator) 20 that generates a gas flow including liquid particles P (also referred to as mist), and a relatively large particle diameter in the liquid particles generated by the two-fluid nozzle 20.
  • a bent tube (removal part) 50 that removes the liquid particles PL, and a gas mainly containing liquid particles PS having a relatively small particle diameter that exits from the bent tube 50 is one end of the plurality of channels 110 of the honeycomb filter 100 (the lower ends in FIG. 2).
  • the liquid particles mean liquid fine particles dispersed in a gas, and the two fluid nozzles 20 mix, collide, or scatter two fluids of gas and liquid inside or outside the nozzle. To be generated.
  • the two-fluid nozzle 20 receives the liquid supplied from the tank 10 through the line L1, and receives a gas, for example, air, supplied from the gas source 14 through the valve V1 and the line L2, and receives liquid particles (mist). ) Producing a gas stream containing P;
  • the form of the two-fluid nozzle is not particularly limited.
  • the diameter of the liquid particles (mist) P is not particularly limited, but usually has a wide distribution. For example, the distribution can be about 0.1 to 100 ⁇ m.
  • the gas of the gas source 14 is not particularly limited, but air is preferable in terms of economy. Further, the gas temperature of the gas source 14 is preferably 0 to 50 ° C., more preferably 0 to 30 ° C.
  • the bent pipe 50 mainly has a gas inlet side part 50a whose axis extends in the horizontal direction and a gas outlet side part 50b which is connected to the gas inlet side part 50a and whose axis extends vertically upward.
  • the angle ⁇ formed by the shaft 50aa of the gas inlet side portion 50a and the shaft 50ba of the gas outlet side portion 50b is not particularly limited as long as it is other than 180 °, but is preferably 45 to 135 °, more preferably 45 to 90 °. In the present embodiment, the angle ⁇ is 90 °.
  • the inlet end of the gas inlet side 50a is closed by a closed plate 51, and a plurality of two-fluid nozzles 20 are provided on the closed plate 51.
  • a plurality of two-fluid nozzles 20 can be provided in the horizontal direction and a plurality in the vertical direction and arranged in a matrix.
  • the closed plate 51 may have only one two-fluid nozzle 20 according to the required concentration of liquid particles.
  • the diameters of the gas inlet side portion 50a and the gas outlet side portion 50b are not particularly limited, but may be, for example, 50 to 200% with respect to the diameter of the end face of the honeycomb filter 100.
  • the lengths of the gas inlet side portions 50a and 50b are not particularly limited, but can be set to 10 to 2000 mm, respectively.
  • the shape of the connecting portion between the gas outlet side portion 50b and the gas inlet side portion 50a is formed so that the axial direction changes to an acute angle without rounding, but the rounded direction May be formed such that the angle ⁇ changes.
  • the bent pipe 50 further has a drain pipe 50d extending downward in the vertical direction at the connecting portion between the gas inlet side portion 50a and the gas outlet side portion 50b. That is, the bent tube 50 includes a gas inlet side portion 50a extending upward in the vertical direction, a drain pipe 50d extending downward in the vertical direction and closed at the bottom, and a gas inlet side connected laterally to these connecting portions. It has a portion 50a and is generally T-shaped.
  • a drain line L3 having a valve V3 is connected to the drain pipe 50d, and the liquid collected in the drain pipe 50d can be discharged.
  • the diameter of the drain pipe 50d is not particularly limited, and may be different from the diameter of the gas outlet side part 50b.
  • the connecting portion between the gas inlet side portion 50a and the gas outlet side portion 50b may be rounded like a J shape instead of an L shape. .
  • the introduction part 52 includes a mounting ring 52a, a cylindrical part 52b, and a seal ring 52c.
  • the mounting ring 52a has an opening 52ai and is provided on the outlet end surface of the gas outlet side portion 50b.
  • the cylindrical portion 52b is provided so as to rise from the outside of the mounting ring 52a, and surrounds the outer peripheral surface of the honeycomb filter 100.
  • the seal ring 52c is disposed between the inner surface of the cylindrical portion 52b and the outer peripheral surface of the honeycomb filter 100, and seals the gas containing the liquid particles P so as not to leak from the gap.
  • Scales 260A and 260B are provided at the entry positions.
  • the laser sheet LS is irradiated in parallel to an XY plane that is perpendicular to the Z direction in which the plurality of flow paths 110 of the honeycomb filter 100 extend, and the camera 220 is a laser sheet. A portion of the laser sheet LS facing the upper end surface 110t of the honeycomb filter 100 is photographed from a direction perpendicular to the LS (Z direction).
  • FIG. 4 shows a field of view FV of an image taken by the camera 220.
  • Scales 260A and 260B are disposed in the field of view FV.
  • the scales 260A and 260B extend in the Y direction and the X direction, respectively, and have marks 261 at positions corresponding to the central axes of the plurality of flow paths 110 of the honeycomb filter 100, respectively.
  • the computer 230 performs image analysis on the image taken by the camera 220 and detects a portion where particles are discharged. For example, a portion brighter than a predetermined threshold value may be extracted from the image, and this portion may be set as a place where particles are discharged. The computer acquires and outputs the coordinates of this part as necessary.
  • the partition wall 112 of the honeycomb filter 100 has, as a defect, a hole h that communicates the flow path 110x with the upper end sealed and the flow path 110y with the lower end sealed. It shall be.
  • the channel 110x is at the position of the leftmost mark 261 on the scale 260B and at the position of the third mark 261 from the bottom on the scale 260A.
  • the flow path 110y is at the position of the second mark 261 from the left on the scale 260B, and is at the position of the third mark 261 from the bottom on the scale 260A.
  • the introduction part 52 is attached to the lower part of the honeycomb filter 100.
  • the valve V1 is opened to supply the gas to the two-fluid nozzle 20 and the liquid is sucked up from the tank 10 via the line L1 to generate a gas flow including the liquid particle group (mist) P from the two-fluid nozzle 20.
  • the generated gas flow including the liquid particle group P flows as indicated by an arrow A and is supplied to the honeycomb filter 100 via the bent pipe 50.
  • the concentration of the liquid particles is preferably 0.0001 to 0.1 g / NL.
  • the flow rate of the gas supplied to the honeycomb filter 100 is not particularly limited, but may be, for example, 50 to 500 NL / min.
  • the liquid particle group P included in the gas flow generated from the two-fluid nozzle 20 has a particle size distribution. Therefore, the liquid particle group P has relatively large liquid particles PL and relatively small liquid particles PS. Then, when this gas passes through the bent tube 50, the particles PL having a relatively large particle diameter are removed. Specifically, the inertia and gravity of the liquid particle P are proportional to the volume, that is, the cube of the particle diameter, while the force applied to the liquid particle by the gas flow is proportional to the area, that is, the second particle diameter.
  • the liquid particle PS having a small particle size is relatively influenced by the gas flow and the moving direction is easily changed as indicated by an arrow A
  • the liquid particle PL having a large particle size is relatively influenced by the gas flow.
  • the movement direction is difficult to change. Accordingly, when the liquid particle group P having a particle size distribution is passed through the bent tube 50 together with the gas, the particles PS having a relatively small particle size follow the direction of the flow following the bending of the gas flow as indicated by the arrow A.
  • the particle PL can be changed, the relatively large particle PL cannot follow the gas flow as indicated by the arrow A, and collides with the tube wall, for example, the wall 50b0 of the gas outlet side portion 50b or falls to the drain tube 50d. To do.
  • the large particles can be selectively removed, and the small particles can be selectively supplied to the honeycomb filter 100 via the introduction part 52.
  • the liquid particles colliding with the wall 50b0 form a liquid film and flow down along the wall and are stored in the drain pipe 50d.
  • the stored liquid may be appropriately discharged to the outside through the valve V3 and the line L3.
  • the diameter of the large particles to be removed can be appropriately adjusted according to the angle ⁇ , the linear velocity of the gas flowing through the bent tube 50, the concentration of the liquid particles, and the like. These factors are preferably set so that at least liquid particles having a particle diameter of 11 ⁇ m or more, preferably 5 ⁇ m or more can be removed.
  • the liquid particles PS having a relatively small particle size are supplied into the plurality of flow paths 110 of the honeycomb filter 100 together with the gas. Thereafter, the gas containing the liquid particles PS passes through the porous partition wall 112, and the gas containing the liquid particles PS flows out from the upper ends 110 t of the plurality of flow paths 110 of the honeycomb filter 100. At this time, in the vicinity of the upper ends 110t of the plurality of flow paths 110 of the honeycomb filter 100, it is preferable that the atmosphere gas hardly flow, for example, the flow rate is 1 m / s or less.
  • the temperature of the atmospheric gas is preferably 0 to 30 ° C. for ease of experiment.
  • the atmospheric gas is preferably air.
  • the mixed gas containing the liquid particles (mist) PS is concentrated from the upper end of the defective flow path 110y at a higher flow rate and flow velocity than the other flow paths 110. leak.
  • the sealing portion 114 is missing or when there is a defect such as a gap between the sealing portion 114 and the flow path 110, the mixed gas containing liquid particles flows out in a concentrated manner. Therefore, the concentration of the liquid particles PS is relatively higher above the flow path 110y as compared to other portions.
  • the laser 220 When the gas flowing out from the upper end of the honeycomb filter 100 has a non-uniform concentration of the liquid particles PS, the laser 220 is strongly scattered when the high concentration portion passes through the laser sheet LS, and the camera 220 takes an image. It appears as a relatively bright part in the image. The unevenness of the concentration of particles can be detected by the light intensity profile of the bright part.
  • the present invention by detecting the concentration distribution of particles in the gas flowing out from the flow path 110, the presence or absence and location of the flow path can be easily detected.
  • the liquid is coarser than when the gas is directly supplied to the honeycomb filter 100 without using the bent tube 50. Particles can be extremely reduced, and liquid particles can be miniaturized. For this reason, problems as described below are reduced, and the presence or absence of a channel defect can be detected with high accuracy. That is, when coarse liquid particles are present, the liquid derived from the liquid particles may block the pores of the porous partition walls, thereby causing clogging. Once the eyes are closed, it is difficult to remove clogging unless drying is performed.
  • gas outlet side portion 50b is vertically upward, gravity acts greatly on relatively large particles, and large particles can be removed more efficiently.
  • the inspection apparatus 400 according to the present invention is different from the first embodiment in that a cyclone (removal unit) 60 is provided instead of the bent tube 50. Specifically, a closed plate 51 having a two-fluid nozzle 20 is provided at the end of the horizontal inlet pipe 60 a of the cyclone 60. Also, an introduction part 52 is provided at the upper end of the upper outlet pipe 60b of the cyclone 60, the lower end of the lower outlet pipe 60c of the cyclone 60 is closed to form a liquid reservoir 60c, and the line L3 and the valve V3 are connected. Yes.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the two-fluid nozzle is adopted as the method for generating the liquid particle group, but the present invention is not limited to this.
  • another spray nozzle such as a one-fluid nozzle may be used.
  • a liquid particle group may be generated using a four-fluid nozzle or a nebulizer.
  • the 4-fluid nozzle is a nozzle having two liquid flow paths and two gas flow paths, and causes the fluids coming out of the two liquid flow paths and the two gas flow paths to collide at the collision focus at the tip of the nozzle edge.
  • the atomized liquid particle group is generated.
  • a large amount of liquid particles of several microns can be sprayed.
  • edge nozzle 4 fluid nozzle
  • a straight edge nozzle and a circle edge nozzle are mentioned.
  • the type of the nebulizer is not particularly limited, and examples thereof include a jet type that generates liquid particle groups with compressed air, an ultrasonic type that generates liquid particle groups with ultrasonic waves, and a mesh type. Moreover, you may produce
  • a generator that generates a gas flow including a liquid particle group can be configured by appropriately adding a gas from a gas source.
  • a single fluid nozzle can also be used to supplement the gas. That is, a single fluid nozzle for generating a liquid particle group and a single fluid nozzle for supplying a gas can be used in combination.
  • the introduction pressure to the honeycomb body of the liquid particle group generated by one fluid nozzle is insufficient due to the pressure loss due to the honeycomb body, the liquid particle group is generated by the gas flow supplied from the other fluid nozzle.
  • the indentation pressure into the honeycomb body can be increased, and the liquid particles can be smoothly introduced into the honeycomb body.
  • the bent tube 50 and the cyclone 60 are used as a removing unit that removes liquid particles having a large particle diameter, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • a wind classification method that can be classified by balancing the drag force acting on liquid particles by gas and the volume force acting on liquid particles by gravity, inertial force, centrifugal force, etc., gravity classifier, inertia classifier, centrifugal classifier Machine or a combination of these.
  • removing portions in a plurality of stages in series, such as connecting the bent tube 50 in two stages in series or connecting the cyclone 60 in two stages in series.
  • increasing the gas flow rate and increasing the flow rate in the later stage can easily remove particles having a particle size that could not be removed in the previous stage, and further increase the particle size. Miniaturization becomes easy.
  • the gas outlet side portion 50b of the bent tube 50 is arranged vertically upward, but can be implemented even if it is arranged in another direction.
  • the drain pipe 50d is provided in the bent pipe 50.
  • the present invention can also be implemented in an aspect without a drain pipe.
  • the direction of the laser sheet and the direction of the camera are not limited to the above embodiments. For example, you may image
  • the scattered light generated by applying light to the particle is detected as a method for detecting the concentration distribution of the particle.
  • the present invention is not limited to this.
  • reflection generated by applying ultrasonic waves to the particle. A wave or the like may be detected.
  • the atmospheric gas is air, but it goes without saying that other gases may be used as the atmospheric gas.
  • the flow path 110 of the honeycomb filter 100 is arranged in the vertical direction, but the present invention can be implemented in any direction such as a horizontal direction.
  • the cross-sectional shape of the flow path 110 is substantially square, but is not limited thereto, and may be rectangular, circular, elliptical, triangular, hexagonal, octagonal, or the like. Moreover, in the flow path 110, what has a different diameter and a different cross-sectional shape may be mixed. In addition, the arrangement of the flow paths is a square arrangement in FIG. 1, but is not limited to this. it can. Further, the outer shape of the honeycomb filter is not limited to a cylinder, and may be, for example, a triangular column, a quadrangular column, a hexagonal column, an octagonal column, or the like.
  • the honeycomb filter is an inspection target, but a normal plate filter or the like can also be an inspection target.
  • the presence / absence of particles is determined by the computer based on the image obtained by the camera 220.
  • the presence / absence and position of a bright spot may be determined manually.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Abstract

Provided are a method for inspecting for filter defects and a device for inspecting for filter defects that are able to further increase defect detection precision while using liquid particles. The method for inspecting for filter defects is provided with: a step for generating a gas flow containing a liquid particle group; a step for eliminating particles in the liquid particle group having a relatively large particle size; a step for supplying to one end surface of a filter the gas flow containing the liquid particle group from which the large particles have been eliminated; and a step for detecting the concentration distribution of the liquid particles in the gas discharged from the other end surface of the filter.

Description

フィルタの欠陥の検査方法、及び、フィルタの欠陥の検査装置Filter defect inspection method and filter defect inspection apparatus
 本発明は、フィルタの欠陥の検査方法、及び、フィルタの欠陥の検査装置に関する。 The present invention relates to a filter defect inspection method and a filter defect inspection apparatus.
 従来より、ディーゼルパティキュレートフィルタとして用いられるハニカムフィルタの欠陥検査方法が知られている。例えば、特許文献1には、噴霧ノズルから発生させた液体粒子を含むガス流をハニカムフィルタの入口端面に提供し、このハニカムフィルタの出口端面から出るガス流に光を照射し、粒子を照らすことが開示されている。 Conventionally, a defect inspection method for a honeycomb filter used as a diesel particulate filter is known. For example, in Patent Document 1, a gas flow containing liquid particles generated from a spray nozzle is provided on the inlet end face of a honeycomb filter, and the gas flow emitted from the outlet end face of the honeycomb filter is irradiated with light to illuminate the particles. Is disclosed.
特開2009-503508号公報JP 2009-503508 A
 しかしながら、従来の方法では、フィルタの空孔が液体により詰まってしまい十分に精度よく検査を行うことが困難な場合があった。 However, in the conventional method, the pores of the filter are clogged with liquid, and it may be difficult to perform inspection with sufficient accuracy.
 本発明は、上記課題に鑑みてなされたものであり、液体粒子を使いつつ、欠陥の検出精度をより向上できる、フィルタの欠陥の検査方法、及び、フィルタの欠陥の検査装置を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a defect inspection method for a filter and a defect inspection apparatus for a filter that can further improve defect detection accuracy while using liquid particles. Objective.
 本発明に係るフィルタの欠陥の検査方法は、
 液体粒子群を含むガス流を発生させる工程と、
 前記液体粒子群中の相対的に粒径が大きな粒子を除去する工程と、
 前記大きな粒子の除去後に、前記液体粒子群を含むガス流を、フィルタの一端面に供給する工程と、
 前記フィルタの他端面から排出されるガス中の液体粒子の濃度分布を検出する工程と、を備える。
The filter defect inspection method according to the present invention includes:
Generating a gas stream containing liquid particles,
Removing relatively large particles in the liquid particle group;
Supplying a gas stream containing the liquid particle group to one end face of the filter after the removal of the large particles;
Detecting a concentration distribution of liquid particles in the gas discharged from the other end face of the filter.
 本発明に係るフィルタの欠陥の検査装置は、
 液体粒子群を含むガス流を発生する発生部と、
 前記液体粒子群中の相対的に粒径が大きな粒子を除去する除去部と、
 前記大きな粒子が除去された液体粒子群を含むガス流をフィルタの一端面に導く導入部と、
 前記フィルタの他端面から排出されるガス中の液体粒子の濃度分布を検出する検出部と、を備える。
The filter defect inspection apparatus according to the present invention includes:
A generating section for generating a gas flow including liquid particles, and
A removing section for removing particles having a relatively large particle diameter in the liquid particle group;
An introduction part for guiding a gas flow including a group of liquid particles from which the large particles have been removed to one end face of the filter;
A detection unit that detects a concentration distribution of liquid particles in the gas discharged from the other end surface of the filter.
 本発明によれば、除去部により液体粒子のうちの相対的に粒径が大きな液体粒子が選択的に除去されるので、粒径な大きな液体粒子によってフィルタの細孔が閉塞してしまうことが抑制される。これにより、フィルタの検査精度が向上する。 According to the present invention, since the liquid particles having a relatively large particle size among the liquid particles are selectively removed by the removing unit, the pores of the filter may be blocked by the liquid particles having a large particle size. It is suppressed. This improves the inspection accuracy of the filter.
 ここで、前記液体粒子群を含むガス流を、屈曲管内を通過させることにより前記除去を行うことが好ましい。小粒子はガスの流れに乗って屈曲管の内部を曲がることができるが、大粒子は慣性が大きいために屈曲した部分を曲がりきれずに壁に衝突する、あるいは内部に供給された後、重力の影響を受けて管底へ落下するため、簡易な構成でありながら容易に大粒子を選択的に除去できる。 Here, it is preferable to perform the removal by allowing a gas flow containing the liquid particle group to pass through a bent tube. Small particles can bend inside the bent pipe by riding on the gas flow, but large particles collide with the wall without being able to bend the bent part due to the large inertia, or gravity is applied after being supplied to the inside Therefore, the large particles can be selectively removed easily with a simple configuration.
 この場合、前記屈曲管はガス入口側部の軸とガス出口側部の軸とがなす角が45~135°であることが好ましく、45~90°がより好ましい。これにより、大きな液体粒子の除去効果が高くなる。 In this case, the angle between the axis of the gas inlet side and the axis of the gas outlet side of the bent pipe is preferably 45 to 135 °, and more preferably 45 to 90 °. Thereby, the removal effect of a large liquid particle becomes high.
 また、前記屈曲管のガス出口側部の軸を鉛直上向きに配置することも好ましい。これにより、重力を利用した分級効果が高くなる。 It is also preferable to arrange the gas outlet side axis of the bent pipe vertically upward. Thereby, the classification effect using gravity becomes high.
 また、前記液体粒子群を含むガス流を、サイクロンを通過させることにより前記除去を行うことも好ましい。これにより、小粒子はガスの流れに乗ってガスと共に通過できるが、大粒子は遠心力が大きく働くためにサイクロンの壁面に衝突して除去される。 It is also preferable to perform the removal by passing a gas flow containing the liquid particle group through a cyclone. As a result, small particles can ride on the gas flow and pass along with the gas, but the large particles collide with the wall of the cyclone and are removed due to the large centrifugal force.
 また、前記液体粒子群を含むガス流を二流体ノズル(気体と液体の2つの流体をノズル内部又は外部で混合して液体微粒子群を生成するノズル)により発生させることが好ましい。 Further, it is preferable that a gas flow including the liquid particle group is generated by a two-fluid nozzle (a nozzle that generates a liquid microparticle group by mixing two fluids of gas and liquid inside or outside the nozzle).
 また、前記除去する工程では、少なくとも粒径が11μm、好ましくは、5μm以上の液体粒子群を除去することが好ましい。 In the removing step, it is preferable to remove a group of liquid particles having a particle size of at least 11 μm, preferably 5 μm or more.
 また、前記フィルタは、互いに平行に伸びる複数の流路を形成する多孔質隔壁、及び、前記複数の流路の内の一部の一端、及び、前記複数の流路内の残部の他端を閉鎖する封口部を有するハニカムフィルタであることが好ましい。 The filter includes a porous partition wall that forms a plurality of channels extending in parallel to each other, one end of a part of the plurality of channels, and the other end of the remaining part of the plurality of channels. A honeycomb filter having a sealing portion to be closed is preferable.
 本発明によれば、フィルタの欠陥を高精度に検出できる。 According to the present invention, filter defects can be detected with high accuracy.
図1の(a)は検査対象となるハニカムフィルタ100の斜視図、図1の(b)は(a)のIb-Ib矢視図である。FIG. 1A is a perspective view of a honeycomb filter 100 to be inspected, and FIG. 1B is a view taken along the arrow Ib-Ib in FIG. 図2は、第1実施形態にかかるハニカムフィルタ100の欠陥の検査装置400の概略断面図である。FIG. 2 is a schematic cross-sectional view of the defect inspection apparatus 400 for the honeycomb filter 100 according to the first embodiment. 図3は、図2のIII-III矢視図である。3 is a view taken in the direction of arrows III-III in FIG. 図4は、図2の装置400のハニカムフィルタ100周りの上面図である。4 is a top view around the honeycomb filter 100 of the device 400 of FIG. 図4は、第2実施形態にかかるハニカムフィルタ100の欠陥の検査装置400の概略断面図である。FIG. 4 is a schematic cross-sectional view of the defect inspection apparatus 400 for the honeycomb filter 100 according to the second embodiment.
 図面を参照して、発明の実施形態について説明する。まず、本実施形態で検査対象となるハニカムフィルタ100について説明する。このハニカムフィルタ100は、例えば、ディーゼルパティキュレートフィルタとして用いることのできるものである。 Embodiments of the invention will be described with reference to the drawings. First, the honeycomb filter 100 to be inspected in the present embodiment will be described. The honeycomb filter 100 can be used as, for example, a diesel particulate filter.
 本実施形態において対象となるハニカムフィルタ100は、図1の(a)及び(b)に示すように、互いに平行に伸びる複数の流路110を形成する隔壁112、及び、複数の流路110の内の一部の一端(図1の(b)の左端)、及び、複数の流路110の内の残部の他端(図1の(b)の右端)を閉鎖する封口部114を有する円柱体である。 As shown in FIGS. 1A and 1B, the target honeycomb filter 100 in the present embodiment includes partition walls 112 that form a plurality of flow paths 110 that extend in parallel to each other, and a plurality of flow paths 110. A cylinder having a sealing portion 114 that closes one end of the inside (the left end in FIG. 1B) and the other end of the remaining portion of the plurality of flow paths 110 (the right end in FIG. 1B). Is the body.
 ハニカムフィルタ100の流路110が延びる方向の長さは特に限定されないが、例えば、40~350mmとすることができる。また、ハニカムフィルタ100の外径も特に限定されないが、例えば、100~320mmとすることできる。流路110の断面のサイズは、例えば、正方形の場合一辺0.8~2.5mmとすることができる。隔壁112の厚みは、0.05~0.5mmとすることができる。 The length of the honeycomb filter 100 in the direction in which the flow path 110 extends is not particularly limited, but may be, for example, 40 to 350 mm. Further, the outer diameter of the honeycomb filter 100 is not particularly limited, but may be, for example, 100 to 320 mm. The size of the cross section of the channel 110 can be set to 0.8 to 2.5 mm on a side in the case of a square, for example. The thickness of the partition 112 can be 0.05 to 0.5 mm.
 ハニカムフィルタ100の隔壁112の材質は、多孔性セラミクス(焼成体)である。セラミクスは特に限定されないが、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。なお、チタン酸アルミニウムは、さらに、マグネシウム及び/又はケイ素を含むことができる。 The material of the partition 112 of the honeycomb filter 100 is porous ceramics (fired body). The ceramic is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal. The aluminum titanate can further contain magnesium and / or silicon.
 上述のように、ハニカムフィルタ100の複数の流路110のうちの一部の左端が封口部114により封口され、ハニカムフィルタ100の複数の流路110のうちの残部の右端が封口部114により封口されている。封口部114の材質としては、ハニカムフィルタ100と同様のセラミクス材料を用いることができる。上述の「複数の流路110のうちの一部」と「複数の流路110のうちの残部」とは、好ましくは、図1の(a)に示すように、端面側から見て行列状に配列された複数の流路の内の、縦方向及び横方向それぞれ1つおきに選択された流路の組合せである。 As described above, the left end of a part of the plurality of channels 110 of the honeycomb filter 100 is sealed by the sealing part 114, and the right end of the remaining part of the plurality of channels 110 of the honeycomb filter 100 is sealed by the sealing part 114. Has been. As the material of the sealing portion 114, the same ceramic material as that of the honeycomb filter 100 can be used. The “part of the plurality of flow paths 110” and the “remaining part of the plurality of flow paths 110” described above are preferably arranged in a matrix when viewed from the end face side as shown in FIG. Of the plurality of flow paths arranged in the vertical direction and the horizontal direction in the horizontal direction.
 ハニカムフィルタ100は多孔質の隔壁112を有する。隔壁の細孔径は特に限定されないが、例えば、11~30μm程度とすることができる。そして、図1の(b)において、流路110の左端から供給されたガスは、隔壁112を通過して隣の流路110に到達し、流路110の右端から排出される。このとき、流入したガス中の粒子が、隔壁112によって除去され、ハニカムフィルタ100はフィルタとして機能する。 The honeycomb filter 100 has porous partition walls 112. The pore diameter of the partition wall is not particularly limited, but can be, for example, about 11 to 30 μm. In FIG. 1B, the gas supplied from the left end of the flow path 110 passes through the partition wall 112, reaches the adjacent flow path 110, and is discharged from the right end of the flow path 110. At this time, particles in the inflowing gas are removed by the partition walls 112, and the honeycomb filter 100 functions as a filter.
 このようなハニカムフィルタ100は例えば以下のようにして製造することができる。 Such a honeycomb filter 100 can be manufactured as follows, for example.
 まず、無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。そして、これらを混練機等により混合して原料混合物を得、得られた原料混合物を隔壁の形状に対応する出口開口を有する押出機から押し出し、所望の長さに切断後、公知の方法で乾燥することにより、グリーンハニカム成形体を得る。そして、グリーンハニカム成形体の流路の端部を公知の方法によって封口材で封口してから焼成する、または、グリーンハニカム成形体を焼成してから公知の方法によって流路の端部を封口すればよい。 First, an inorganic compound source powder, an organic binder, a solvent, and additives to be added as necessary are prepared. These are mixed by a kneader or the like to obtain a raw material mixture. The obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the shape of the partition wall, cut to a desired length, and then dried by a known method. By doing so, a green honeycomb molded body is obtained. Then, the end of the flow path of the green honeycomb molded body is sealed with a sealing material by a known method and fired, or the green honeycomb molded body is fired and the end of the flow path is sealed by a known method. That's fine.
 (第1実施形態)
 続いて、図2~図4を参照して、第1実施形態にかかるハニカムフィルタ100の検査装置について説明する。
(First embodiment)
Next, an inspection apparatus for the honeycomb filter 100 according to the first embodiment will be described with reference to FIGS.
 この検査装置400は、液体粒子P(ミストとも呼ばれる)を含むガス流を生成する二流体ノズル(発生部)20と、二流体ノズル20により生成された液体粒子中の相対的に粒子径の大きな液体粒子PLを除去する屈曲管(除去部)50、屈曲管50から出る相対的に粒子径の小さな液体粒子PSを主として含むガスをハニカムフィルタ100の複数の流路110の一端(図2の下端)に導く導入部52と、粒子濃度検出部200と、を備える。ここで、液体粒子とは、気体中に分散した液体の微粒子を意味し、2流体ノズル20により、気体と液体の2つの流体をノズル内部又は外部で混合すること、衝突させること、又は、飛散させることで生成される。 The inspection apparatus 400 includes a two-fluid nozzle (generator) 20 that generates a gas flow including liquid particles P (also referred to as mist), and a relatively large particle diameter in the liquid particles generated by the two-fluid nozzle 20. A bent tube (removal part) 50 that removes the liquid particles PL, and a gas mainly containing liquid particles PS having a relatively small particle diameter that exits from the bent tube 50 is one end of the plurality of channels 110 of the honeycomb filter 100 (the lower ends in FIG. 2). ), And a particle concentration detection unit 200. Here, the liquid particles mean liquid fine particles dispersed in a gas, and the two fluid nozzles 20 mix, collide, or scatter two fluids of gas and liquid inside or outside the nozzle. To be generated.
 二流体ノズル20は、タンク10から供給される液体を、ラインL1を介して受け入れると共に、ガス源14から供給されるガス、例えば、空気をバルブV1及びラインL2を介して受入、液体粒子(ミスト)Pを含むガス流を生成する。二流体ノズルの形態は特に限定されない。また、液体粒子(ミスト)Pの径は特に限定されないが、通常広い分布を有し、例えば、分布は、0.1~100μm程度とすることができる。 The two-fluid nozzle 20 receives the liquid supplied from the tank 10 through the line L1, and receives a gas, for example, air, supplied from the gas source 14 through the valve V1 and the line L2, and receives liquid particles (mist). ) Producing a gas stream containing P; The form of the two-fluid nozzle is not particularly limited. The diameter of the liquid particles (mist) P is not particularly limited, but usually has a wide distribution. For example, the distribution can be about 0.1 to 100 μm.
 液体としては、検査後の除去の容易さを考えると、揮発性の液体が好ましく、特に、水が好ましい。なお、液体として、グリコール系アルコール(例えば、プロピレングリコール)を使用してもよい。 The liquid is preferably a volatile liquid in view of ease of removal after inspection, and water is particularly preferable. In addition, you may use glycol type alcohol (for example, propylene glycol) as a liquid.
 ガス源14のガスは特に限定されないが、経済性の点で、空気が好ましい。また、ガス源14のガスの温度は0~50℃であることが好ましく、0~30℃であることがより好ましい。 The gas of the gas source 14 is not particularly limited, but air is preferable in terms of economy. Further, the gas temperature of the gas source 14 is preferably 0 to 50 ° C., more preferably 0 to 30 ° C.
 屈曲管50は、軸が水平方向に延びるガス入口側部50aと、ガス入口側部50aに連結し、軸が鉛直上向きに延びるガス出口側部50bとを主として有している。ガス入口側部50aの軸50aaとガス出口側部50bの軸50baとがなす角度θは、180°以外であれば特に限定されないが、45~135°が好ましく、45~90°がより好ましい。本実施形態では、角度θは90°である。 The bent pipe 50 mainly has a gas inlet side part 50a whose axis extends in the horizontal direction and a gas outlet side part 50b which is connected to the gas inlet side part 50a and whose axis extends vertically upward. The angle θ formed by the shaft 50aa of the gas inlet side portion 50a and the shaft 50ba of the gas outlet side portion 50b is not particularly limited as long as it is other than 180 °, but is preferably 45 to 135 °, more preferably 45 to 90 °. In the present embodiment, the angle θ is 90 °.
 ガス入口側部50aの入口端部は、閉板51により閉じられており、閉板51に二流体ノズル20が複数設けられている。具体的には、例えば、図3に示すように、二流体ノズル20を、水平方向に複数、及び、垂直方向に複数設け、マトリクス状に配置することができる。なお、必要とされる液体粒子の濃度等に応じて、閉板51が、一つの二流体ノズル20のみを有してもよい。 The inlet end of the gas inlet side 50a is closed by a closed plate 51, and a plurality of two-fluid nozzles 20 are provided on the closed plate 51. Specifically, for example, as shown in FIG. 3, a plurality of two-fluid nozzles 20 can be provided in the horizontal direction and a plurality in the vertical direction and arranged in a matrix. Note that the closed plate 51 may have only one two-fluid nozzle 20 according to the required concentration of liquid particles.
 ガス入口側部50a及びガス出口側部50bの径は特に限定されないが、例えば、ハニカムフィルタ100の端面の直径に対して50~200%とすることができる。また、ガス入口側部50a、50bの長さは特に限定されないが、それぞれ、10~2000mmとすることができる。
 本実施形態では、ガス出口側部50bとガス入口側部50aとの連結部の形状は、丸みを帯びずに鋭角に軸方向が角度θ変わるように形成されているが、丸みを帯びて方向が角度θ変わるように形成されていてもよい。
The diameters of the gas inlet side portion 50a and the gas outlet side portion 50b are not particularly limited, but may be, for example, 50 to 200% with respect to the diameter of the end face of the honeycomb filter 100. The lengths of the gas inlet side portions 50a and 50b are not particularly limited, but can be set to 10 to 2000 mm, respectively.
In the present embodiment, the shape of the connecting portion between the gas outlet side portion 50b and the gas inlet side portion 50a is formed so that the axial direction changes to an acute angle without rounding, but the rounded direction May be formed such that the angle θ changes.
 屈曲管50は、さらに、ガス入口側部50aとガス出口側部50bとの連結部において、鉛直方向下向きに延びるドレン管50dを有している。すなわち、屈曲管50は、鉛直方向上向きに延びるガス入口側部50a、鉛直方向下向きに延びかつ底部が閉鎖されたドレン管50d、及び、これらの接続部に対して横向きに接続されたガス入口側部50aを有し、概ねT字状をなしている。 The bent pipe 50 further has a drain pipe 50d extending downward in the vertical direction at the connecting portion between the gas inlet side portion 50a and the gas outlet side portion 50b. That is, the bent tube 50 includes a gas inlet side portion 50a extending upward in the vertical direction, a drain pipe 50d extending downward in the vertical direction and closed at the bottom, and a gas inlet side connected laterally to these connecting portions. It has a portion 50a and is generally T-shaped.
 ドレン管50dには、バルブV3を有するドレンラインL3が接続されており、ドレン管50dに回収された液体を排出可能となっている。ドレン管50dの径は特に限定されず、ガス出口側部50bの径と異なっていてもよい。例えば、ガス出口側部50bの径よりも小さい場合には、ガス入口側部50aとガス出口側部50bとの連結部は、L字でなく、J字のように丸みを帯びていてもよい。 A drain line L3 having a valve V3 is connected to the drain pipe 50d, and the liquid collected in the drain pipe 50d can be discharged. The diameter of the drain pipe 50d is not particularly limited, and may be different from the diameter of the gas outlet side part 50b. For example, when it is smaller than the diameter of the gas outlet side portion 50b, the connecting portion between the gas inlet side portion 50a and the gas outlet side portion 50b may be rounded like a J shape instead of an L shape. .
 導入部52は、載置リング52a、筒状部52b、及び、シールリング52cを有する。
 載置リング52aは、開口52aiを有し、ガス出口側部50bの出口端面に設けられている。ハニカムフィルタ100の下端面110bの外周部が載置リング52a上に載置されることにより、ハニカムフィルタ100の下端面110bの内の各流路110に対して、液体粒子Pを含むガスを供給することができる。
The introduction part 52 includes a mounting ring 52a, a cylindrical part 52b, and a seal ring 52c.
The mounting ring 52a has an opening 52ai and is provided on the outlet end surface of the gas outlet side portion 50b. By supplying the outer peripheral portion of the lower end surface 110b of the honeycomb filter 100 on the mounting ring 52a, the gas containing the liquid particles P is supplied to each flow path 110 in the lower end surface 110b of the honeycomb filter 100. can do.
 筒状部52bは、載置リング52aの外側から立ち上がるように設けられ、ハニカムフィルタ100の外周面を取り囲んでいる。 The cylindrical portion 52b is provided so as to rise from the outside of the mounting ring 52a, and surrounds the outer peripheral surface of the honeycomb filter 100.
 シールリング52cは、筒状部52bの内面とハニカムフィルタ100の外周面との間に配置され、液体粒子Pを含むガスがこの隙間から漏れないようにシールする。 The seal ring 52c is disposed between the inner surface of the cylindrical portion 52b and the outer peripheral surface of the honeycomb filter 100, and seals the gas containing the liquid particles P so as not to leak from the gap.
 図2に示す粒子濃度検出部200は、レーザーシートLSを発生させるレーザ光源210、レーザーシートLSを撮影するカメラ220、カメラ220が取得した画像を解析するコンピュータ230、カメラ220が取得する視野内に入る位置に設けられるスケール260A,260Bを備える。 2 includes a laser light source 210 that generates a laser sheet LS, a camera 220 that captures the laser sheet LS, a computer 230 that analyzes an image acquired by the camera 220, and a field of view acquired by the camera 220. Scales 260A and 260B are provided at the entry positions.
 本実施形態では、レーザーシートLSは、図2に示すように、ハニカムフィルタ100の複数の流路110が伸びるZ方向に垂直な方向であるXY平面に平行に照射され、カメラ220は、レーザーシートLSに対して垂直な方向(Z方向)から、レーザーシートLSの内のハニカムフィルタ100の上端面110tとの対向部を撮影する。 In the present embodiment, as shown in FIG. 2, the laser sheet LS is irradiated in parallel to an XY plane that is perpendicular to the Z direction in which the plurality of flow paths 110 of the honeycomb filter 100 extend, and the camera 220 is a laser sheet. A portion of the laser sheet LS facing the upper end surface 110t of the honeycomb filter 100 is photographed from a direction perpendicular to the LS (Z direction).
 カメラ220が撮影する画像の視野FVを図4に示す。視野FV内には、スケール260A、260Bが配置されている。スケール260A,260Bは、それぞれ、Y方向、X方向に延びており、それぞれ、ハニカムフィルタ100の複数の流路110の中心軸に対応する位置にマーク261を有する。 FIG. 4 shows a field of view FV of an image taken by the camera 220. Scales 260A and 260B are disposed in the field of view FV. The scales 260A and 260B extend in the Y direction and the X direction, respectively, and have marks 261 at positions corresponding to the central axes of the plurality of flow paths 110 of the honeycomb filter 100, respectively.
 図2に戻って、コンピュータ230は、カメラ220が撮影した画像を画像解析し、粒子が排出されている部分を検出する。例えば、画像から所定のしきい値に比べて明るい部分を抽出し、この部分を粒子が排出された場所とすればよい。コンピュータは、必要に応じて、この部分の座標を取得し、出力する。 Referring back to FIG. 2, the computer 230 performs image analysis on the image taken by the camera 220 and detects a portion where particles are discharged. For example, a portion brighter than a predetermined threshold value may be extracted from the image, and this portion may be set as a place where particles are discharged. The computer acquires and outputs the coordinates of this part as necessary.
 続いて、上述の検査装置400を使用したハニカムフィルタ100の検査方法について説明する。 Subsequently, an inspection method of the honeycomb filter 100 using the above-described inspection apparatus 400 will be described.
 ここでは、一例として、図2に示すように、ハニカムフィルタ100の隔壁112には、欠陥として、上端が封口された流路110xと、下端が封口された流路110yとを連通させる孔hがあるものとする。ここで、図4に示すように、流路110xは、スケール260Bにおいて一番左側のマーク261の位置にあり、かつ、スケール260Aにおいて下から3番目のマーク261の位置にある。一方、流路110yは、スケール260Bにおいて左から2番目のマーク261の位置にあり、スケール260Aにおいて下から3番目のマーク261の位置にあるものとする。 Here, as an example, as shown in FIG. 2, the partition wall 112 of the honeycomb filter 100 has, as a defect, a hole h that communicates the flow path 110x with the upper end sealed and the flow path 110y with the lower end sealed. It shall be. Here, as shown in FIG. 4, the channel 110x is at the position of the leftmost mark 261 on the scale 260B and at the position of the third mark 261 from the bottom on the scale 260A. On the other hand, it is assumed that the flow path 110y is at the position of the second mark 261 from the left on the scale 260B, and is at the position of the third mark 261 from the bottom on the scale 260A.
 図2に戻って、まず、導入部52をハニカムフィルタ100の下部に装着する。そして、バルブV1を開放してガスを二流体ノズル20に供給し、タンク10からラインL1を介して液体を吸い上げて、二流体ノズル20から、液体粒子群(ミスト)Pを含むガス流を発生させる。発生した液体粒子群Pを含むガス流は、矢印Aのように流れて屈曲管50を介してハニカムフィルタ100に供給される。
 ここで、液体粒子の濃度は、0.0001~0.1g/NLが好ましい。また、ハニカムフィルタ100に対して供給するガスの流量は特に限定されないが、例えば、50~500NL/minとすることができる。
Returning to FIG. 2, first, the introduction part 52 is attached to the lower part of the honeycomb filter 100. Then, the valve V1 is opened to supply the gas to the two-fluid nozzle 20 and the liquid is sucked up from the tank 10 via the line L1 to generate a gas flow including the liquid particle group (mist) P from the two-fluid nozzle 20. Let The generated gas flow including the liquid particle group P flows as indicated by an arrow A and is supplied to the honeycomb filter 100 via the bent pipe 50.
Here, the concentration of the liquid particles is preferably 0.0001 to 0.1 g / NL. Further, the flow rate of the gas supplied to the honeycomb filter 100 is not particularly limited, but may be, for example, 50 to 500 NL / min.
 ここで、二流体ノズル20から発生したガス流に含まれる液体粒子群Pは、粒径分布を有する。従って、液体粒子群Pは、相対的に大きな液体粒子PL及び相対的に小さな液体粒子PSを有する。そして、このガスが、屈曲管50を通ることにより、相対的に粒径の大きな粒子PLが除去される。具体的には、液体粒子Pの慣性や重力は、その体積、すなわち、粒径の3乗に比例する一方、ガス流れにより液体粒子に与えられる力はその面積すなわち粒径の2条に比例するため、粒径が小さな液体粒子PSはガス流れの影響を相対的に大きく受けて矢印Aのように移動方向が変わりやすいのに対し、粒径が大きな液体粒子PLはガス流れの影響を相対的に受けにくく移動方向が変わりにくい。従って、粒度分布のある液体粒子群Pをガスと共に屈曲管50を通過させると、相対的に粒径の小さい粒子PSはガスの流れが矢印Aのように曲がることに追従して流れの向きを変化できるが、相対的に粒子の大きな粒子PLは矢印Aのようなガスの流れに追従できずに、管壁、たとえば、ガス出口側部50bの壁50b0に衝突したり、ドレン管50dへ落下する。これにより、大粒子を選択的に除去することができ、小粒子を選択的に導入部52を介してハニカムフィルタ100に対して供給できる。壁50b0に衝突した液体粒子は、液膜となって壁沿いに流下してドレン管50dに貯留される。貯留した液体は、適宜、バルブV3及びラインL3を介して外部に排出すればよい。 Here, the liquid particle group P included in the gas flow generated from the two-fluid nozzle 20 has a particle size distribution. Therefore, the liquid particle group P has relatively large liquid particles PL and relatively small liquid particles PS. Then, when this gas passes through the bent tube 50, the particles PL having a relatively large particle diameter are removed. Specifically, the inertia and gravity of the liquid particle P are proportional to the volume, that is, the cube of the particle diameter, while the force applied to the liquid particle by the gas flow is proportional to the area, that is, the second particle diameter. Therefore, the liquid particle PS having a small particle size is relatively influenced by the gas flow and the moving direction is easily changed as indicated by an arrow A, whereas the liquid particle PL having a large particle size is relatively influenced by the gas flow. The movement direction is difficult to change. Accordingly, when the liquid particle group P having a particle size distribution is passed through the bent tube 50 together with the gas, the particles PS having a relatively small particle size follow the direction of the flow following the bending of the gas flow as indicated by the arrow A. Although the particle PL can be changed, the relatively large particle PL cannot follow the gas flow as indicated by the arrow A, and collides with the tube wall, for example, the wall 50b0 of the gas outlet side portion 50b or falls to the drain tube 50d. To do. Thereby, the large particles can be selectively removed, and the small particles can be selectively supplied to the honeycomb filter 100 via the introduction part 52. The liquid particles colliding with the wall 50b0 form a liquid film and flow down along the wall and are stored in the drain pipe 50d. The stored liquid may be appropriately discharged to the outside through the valve V3 and the line L3.
 除去される大粒子の直径は、角度θや、屈曲管50を流れるガスの線速度、液体粒子の濃度等に応じて、適宜調節できる。これらの因子は、11μm以上、好ましくは、5μm以上の粒径の液体粒子を少なくとも除去できるように、設定することが好ましい。 The diameter of the large particles to be removed can be appropriately adjusted according to the angle θ, the linear velocity of the gas flowing through the bent tube 50, the concentration of the liquid particles, and the like. These factors are preferably set so that at least liquid particles having a particle diameter of 11 μm or more, preferably 5 μm or more can be removed.
 このようにして、相対的に粒径の小さい液体粒子PSがガスと共にハニカムフィルタ100の複数の流路110内に供給される。その後、この液体粒子PSを含むガスは、多孔質である隔壁112を通過し、ハニカムフィルタ100の複数の流路110の上端110tから液体粒子PSを含むガスが流出する。このとき、ハニカムフィルタ100の複数の流路110の上端110tの近傍においては、雰囲気ガスの流れが殆ど無い状態、例えば、流速1m/s以下としておくことが好ましい。また、実験の容易さから、雰囲気ガスの温度は0~30℃であることが好ましい。雰囲気ガスは空気であることが好ましい。 In this way, the liquid particles PS having a relatively small particle size are supplied into the plurality of flow paths 110 of the honeycomb filter 100 together with the gas. Thereafter, the gas containing the liquid particles PS passes through the porous partition wall 112, and the gas containing the liquid particles PS flows out from the upper ends 110 t of the plurality of flow paths 110 of the honeycomb filter 100. At this time, in the vicinity of the upper ends 110t of the plurality of flow paths 110 of the honeycomb filter 100, it is preferable that the atmosphere gas hardly flow, for example, the flow rate is 1 m / s or less. In addition, the temperature of the atmospheric gas is preferably 0 to 30 ° C. for ease of experiment. The atmospheric gas is preferably air.
 そして、流路110間に図2に示すような孔hが存在する場合、流路110x、孔h、及び、流路110yによって複数の流路110の上端110tと下端110bとを結ぶ流路が形成されるため、矢印Gに示すように、当該欠陥がある流路110yの上端から、液体粒子(ミスト)PSを含む混合ガスが他の流路110に比べて高い流量や流速で集中的に流出する。封口部114が欠落している場合や、封口部114と流路110との間に隙間が生じている等の欠陥がある場合も同様に液体粒子を含む混合ガスが集中的に流出する。したがって、このような流路110yの上方では、他の部分と比べて、液体粒子PSの濃度が相対的に高くなる。 And when the hole h as shown in FIG. 2 exists between the flow paths 110, the flow path which connects the upper end 110t and the lower end 110b of the some flow path 110 by the flow path 110x, the hole h, and the flow path 110y. Therefore, as shown by the arrow G, the mixed gas containing the liquid particles (mist) PS is concentrated from the upper end of the defective flow path 110y at a higher flow rate and flow velocity than the other flow paths 110. leak. Similarly, when the sealing portion 114 is missing or when there is a defect such as a gap between the sealing portion 114 and the flow path 110, the mixed gas containing liquid particles flows out in a concentrated manner. Therefore, the concentration of the liquid particles PS is relatively higher above the flow path 110y as compared to other portions.
 そして、ハニカムフィルタ100の上端から流出するガスに液体粒子PSの濃度の不均一がある場合、この濃度の高い部分がレーザーシートLSを通過する際にレーザ光を強く散乱し、カメラ220が撮影する画像において相対的に明るい部分となって現れる。この明るい部分の光量のプロファイルにより、粒子の濃度のムラを検出できる。 When the gas flowing out from the upper end of the honeycomb filter 100 has a non-uniform concentration of the liquid particles PS, the laser 220 is strongly scattered when the high concentration portion passes through the laser sheet LS, and the camera 220 takes an image. It appears as a relatively bright part in the image. The unevenness of the concentration of particles can be detected by the light intensity profile of the bright part.
 そして、図4に示すような画像の視野FVにおいて、例えば、スケール260Aの下から3番目のマーク261の上でかつ、スケール260Bの左から2番目のマーク261の上に明るい点が生じた場合には、座標(3、2)というデータを得ることができ、これにより欠陥場所の特定が容易である。 Then, in the image field of view FV as shown in FIG. 4, for example, when a bright spot occurs on the third mark 261 from the bottom of the scale 260A and on the second mark 261 from the left of the scale 260B. Can obtain data of coordinates (3, 2), which makes it easy to identify the defect location.
 なお、流路110間を連通する等の欠陥が無い場合には、図2の矢印Hに示すように、液体粒子及びガスは多孔体である隔壁112をそれぞれ通過して上端出口から流出する。ことのき、各流路110の上端から流出するガスや液体粒子の流速や流量は互いにほぼ均一であり、したがって、流路110の上端110tの上で液体粒子の濃度の不均一は起こりにくい。 If there is no defect such as communication between the flow paths 110, the liquid particles and the gas flow through the partition walls 112, which are porous bodies, and flow out from the upper end outlet, as indicated by an arrow H in FIG. At this time, the flow velocity and flow rate of the gas and liquid particles flowing out from the upper end of each flow path 110 are substantially uniform with each other, and therefore, the concentration of liquid particles on the upper end 110t of the flow path 110 is unlikely to occur.
 本発明によれば、流路110から流出するガス中の粒子の濃度分布を検出することにより、流路の欠陥の有無や場所を容易に検出できる。 According to the present invention, by detecting the concentration distribution of particles in the gas flowing out from the flow path 110, the presence or absence and location of the flow path can be easily detected.
 特に、本実施形態では、液体粒子を含むガスを、屈曲管50を介してハニカムフィルタ100に供給するので、屈曲管50を介さずに直接ハニカムフィルタ100に供給する場合に比べて、粗大な液体粒子を極めて少なくでき、液体粒子の微細化が可能である。このため、以下に説明するような不具合が減少し、流路の欠陥の有無を高精度に検出できる。すなわち、粗大な液体粒子が存在すると、これにより多孔質である隔壁の細孔をこの液体粒子に由来する液体が塞いでしまい、目詰まりを起こすことがある。一度目をふさいでしまうと、乾燥等をしない限り目詰まりを除去することが困難である。また、目詰まりがあると、多孔質隔壁であってもガスがほとんど流れなくなるので、欠陥がない場所でも、流路110の上端110t上の液体粒子の濃度にムラを生じ、欠陥の検出が不可能になることがある。 In particular, in this embodiment, since the gas containing liquid particles is supplied to the honeycomb filter 100 via the bent tube 50, the liquid is coarser than when the gas is directly supplied to the honeycomb filter 100 without using the bent tube 50. Particles can be extremely reduced, and liquid particles can be miniaturized. For this reason, problems as described below are reduced, and the presence or absence of a channel defect can be detected with high accuracy. That is, when coarse liquid particles are present, the liquid derived from the liquid particles may block the pores of the porous partition walls, thereby causing clogging. Once the eyes are closed, it is difficult to remove clogging unless drying is performed. In addition, if clogging occurs, gas hardly flows even in the porous partition walls, so that the concentration of liquid particles on the upper end 110t of the flow path 110 is uneven even in a place where there is no defect, and defect detection is not possible. May be possible.
 さらに、本実施形態では、ガス出口側部50bが鉛直上向きであるので、相対的に大きな粒子には重力も大きく作用し、より効率よく大粒子を除去できる。 Further, in the present embodiment, since the gas outlet side portion 50b is vertically upward, gravity acts greatly on relatively large particles, and large particles can be removed more efficiently.
 なお、本装置からは、液体粒子を含むガスが排出されるため、このガスを捕集して、外部に排気する排気手段を設けることが好ましい。 In addition, since the gas containing liquid particles is discharged from this apparatus, it is preferable to provide an exhaust means for collecting the gas and exhausting it to the outside.
 (第2実施形態)
 続いて、図5を参照して、第2実施形態にかかるハニカムフィルタ100の検査装置400について説明する。本発明にかかる検査装置400が、第1実施形態と異なる点は、屈曲管50に代えて、サイクロン(除去部)60を備える点である。具体的には、サイクロン60の横入口管60aの端部に、二流体ノズル20を有する閉板51が設けられている。また、サイクロン60の上部出口管60bの上端に導入部52が設けられ、サイクロン60の下部出口管60cの下端は塞がれて液溜部60cが形成され、ラインL3及びバルブV3が接続されている。
(Second Embodiment)
Next, an inspection apparatus 400 for the honeycomb filter 100 according to the second embodiment will be described with reference to FIG. The inspection apparatus 400 according to the present invention is different from the first embodiment in that a cyclone (removal unit) 60 is provided instead of the bent tube 50. Specifically, a closed plate 51 having a two-fluid nozzle 20 is provided at the end of the horizontal inlet pipe 60 a of the cyclone 60. Also, an introduction part 52 is provided at the upper end of the upper outlet pipe 60b of the cyclone 60, the lower end of the lower outlet pipe 60c of the cyclone 60 is closed to form a liquid reservoir 60c, and the line L3 and the valve V3 are connected. Yes.
 このような検査装置400によれば、二流体ノズル20により生じた液体粒子を含むガス流が、サイクロン60内で矢印Bのように旋回運動させられその後、上部出口管60bから排出される際に、相対的に大きな液体粒子PLは遠心力により周壁に衝突して液溜部60cに捕集される一方、相対的に小さな液体粒子PSは矢印Bのガス流れに乗って上部出口管60bを通って、ハニカムフィルタ100に供給される。
 本発明によっても、第1実施形態と同様の効果が生じる。
According to such an inspection apparatus 400, when the gas flow including the liquid particles generated by the two-fluid nozzle 20 is swung in the cyclone 60 as indicated by the arrow B and then discharged from the upper outlet pipe 60b. The relatively large liquid particles PL collide with the peripheral wall by centrifugal force and are collected in the liquid reservoir 60c, while the relatively small liquid particles PS ride on the gas flow indicated by the arrow B and pass through the upper outlet pipe 60b. And supplied to the honeycomb filter 100.
According to the present invention, the same effect as that of the first embodiment is produced.
 本発明は上記実施形態に限定されずさまざまな変形態様が可能である。
 例えば、上記実施形態では、液体粒子群の生成方法として二流体ノズルを採用しているがこれに限られず、例えば、一流体ノズル等の他の噴霧ノズルを使用してもよい。また、例えば、4流体ノズルやネブライザー等を用いて液体粒子群を生成してもよい。4流体ノズルとは、2つの液体流路と2つの気体流路とを有するノズルであり、ノズルエッジ先端の衝突焦点で2つの液体流路と2つの気体流路から出た流体を衝突させることで、微粒化した液体粒子群を生成するものである。4流体ノズルを用いることにより数ミクロンの液体粒子群の大量噴霧が可能となる。なお、エッジノズル(4流体ノズル)の種類としては、特に限定されないが、例えば、ストレートエッジノズルやサークルエッジノズルが挙げられる。また、ネブライザーの種類としては、特に限定されないが、圧縮空気で液体粒子群を発生させるジェット式、超音波で液体粒子群を発生させる超音波式およびメッシュ式等が挙げられる。また、水とドライアイスとを混合することにより液体粒子群を生成してもよい。一流体ノズルを使用する際には、適宜、ガス源からのガスを加えることにより、液体粒子群を含むガス流を発生させる発生部を構成することができる。
 一流体ノズルは、ガスを補完するために使用することもできる。すなわち、液体粒子群を生成するための一流体ノズルと、ガスを供給するための一流体ノズルとを組み合わせて使用することもできる。この場合、ハニカム体による圧力損失によって、一方の一流体ノズルにより生成された液体粒子群のハニカム体への導入圧力が不足した場合に、他方の一流体ノズルより供給されるガス流によって液体粒子群のハニカム体への押し込み圧を増大させ、液体粒子郡のハニカムへの導入をスムースに行うことができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, in the above-described embodiment, the two-fluid nozzle is adopted as the method for generating the liquid particle group, but the present invention is not limited to this. For example, another spray nozzle such as a one-fluid nozzle may be used. In addition, for example, a liquid particle group may be generated using a four-fluid nozzle or a nebulizer. The 4-fluid nozzle is a nozzle having two liquid flow paths and two gas flow paths, and causes the fluids coming out of the two liquid flow paths and the two gas flow paths to collide at the collision focus at the tip of the nozzle edge. Thus, the atomized liquid particle group is generated. By using a four-fluid nozzle, a large amount of liquid particles of several microns can be sprayed. In addition, although it does not specifically limit as a kind of edge nozzle (4 fluid nozzle), For example, a straight edge nozzle and a circle edge nozzle are mentioned. The type of the nebulizer is not particularly limited, and examples thereof include a jet type that generates liquid particle groups with compressed air, an ultrasonic type that generates liquid particle groups with ultrasonic waves, and a mesh type. Moreover, you may produce | generate a liquid particle group by mixing water and dry ice. When the one-fluid nozzle is used, a generator that generates a gas flow including a liquid particle group can be configured by appropriately adding a gas from a gas source.
A single fluid nozzle can also be used to supplement the gas. That is, a single fluid nozzle for generating a liquid particle group and a single fluid nozzle for supplying a gas can be used in combination. In this case, when the introduction pressure to the honeycomb body of the liquid particle group generated by one fluid nozzle is insufficient due to the pressure loss due to the honeycomb body, the liquid particle group is generated by the gas flow supplied from the other fluid nozzle. The indentation pressure into the honeycomb body can be increased, and the liquid particles can be smoothly introduced into the honeycomb body.
 また、上記実施形態では、大きな粒径の液体粒子を除去する除去部として、屈曲管50やサイクロン60を用いているが、これに限定されない。例えば、ガスにより液体粒子に働く抗力と、重力、慣性力、遠心力等により液体粒子に働く体積力との釣り合いにより分級が可能な風力分級方法としては、重力分級機、慣性分級機、遠心分級機やこれらの組み合わせが挙げられる。また、風力分級でなく、例えば、メッシュによりメッシュの目開きを超える液体粒子を除去してもよい。 In the above-described embodiment, the bent tube 50 and the cyclone 60 are used as a removing unit that removes liquid particles having a large particle diameter, but the present invention is not limited to this. For example, as a wind classification method that can be classified by balancing the drag force acting on liquid particles by gas and the volume force acting on liquid particles by gravity, inertial force, centrifugal force, etc., gravity classifier, inertia classifier, centrifugal classifier Machine or a combination of these. Moreover, you may remove the liquid particle which exceeds the mesh opening of a mesh instead of an air classification, for example with a mesh.
 さらに、屈曲管50を二段直列に接続したり、サイクロン60を二段直列に接続したりするなど、除去部を複数段直列に接続することも可能である。この場合、除去部間にガスを供給することにより、後段になるほどガス流量を多くして流速を高めると、前段では除去できなかった粒径の粒子を後段で容易に除去でき、さらなる粒子径の微細化が容易となる。また、除去部間に二流体ノズルをさらに設け、前段の除去部で得られた液滴とガスとの混合物を、当該二流体ノズルに流体として供給することも可能である。 Furthermore, it is also possible to connect the removing portions in a plurality of stages in series, such as connecting the bent tube 50 in two stages in series or connecting the cyclone 60 in two stages in series. In this case, by supplying the gas between the removal sections, increasing the gas flow rate and increasing the flow rate in the later stage can easily remove particles having a particle size that could not be removed in the previous stage, and further increase the particle size. Miniaturization becomes easy. It is also possible to further provide a two-fluid nozzle between the removal units and supply a mixture of droplets and gas obtained in the previous removal unit as a fluid to the two-fluid nozzle.
 また、上記第1実施形態では、屈曲管50のガス出口側部50bは、鉛直上向きに配置されているが、他の向きに配置されていても実施可能である。 Further, in the first embodiment, the gas outlet side portion 50b of the bent tube 50 is arranged vertically upward, but can be implemented even if it is arranged in another direction.
 また、上記第1実施形態では、屈曲管50にドレン管50dが設けられているが、ドレン管が無い態様でも実施は可能である。 In the first embodiment, the drain pipe 50d is provided in the bent pipe 50. However, the present invention can also be implemented in an aspect without a drain pipe.
 また、レーザーシートの方向や、カメラの方向も、上記実施形態の態様に限定されるものではない。例えば、レーザーシートLSに対して、垂直でなく斜め方向からカメラ220により撮影してもよい。 Also, the direction of the laser sheet and the direction of the camera are not limited to the above embodiments. For example, you may image | photograph with the camera 220 from diagonal direction with respect to the laser sheet LS.
 また、上記実施形態では、粒子の濃度分布の検出方法として、粒子に光をあてることにより生ずる散乱光を検出しているが、これに限られず、例えば、粒子に超音波を当てることにより生ずる反射波等を検出してもよい。 In the above-described embodiment, the scattered light generated by applying light to the particle is detected as a method for detecting the concentration distribution of the particle. However, the present invention is not limited to this. For example, reflection generated by applying ultrasonic waves to the particle. A wave or the like may be detected.
 また、上記実施形態では、雰囲気ガスが空気であるが、他のガスを雰囲気ガスとしてもよいことは言うまでも無い。 In the above embodiment, the atmospheric gas is air, but it goes without saying that other gases may be used as the atmospheric gas.
 また、上記実施形態では、ハニカムフィルタ100の流路110が上下方向に配置されているが、水平方向等、いずれの方向を向いても実施可能である。 In the above embodiment, the flow path 110 of the honeycomb filter 100 is arranged in the vertical direction, but the present invention can be implemented in any direction such as a horizontal direction.
 また、上記実施形態では、流路110の断面形状は、略正方形であるがこれに限定されず、矩形、円形、楕円形、3角形、6角形、8角形等にすることができる。また、流路110には、径の異なるもの、断面形状の異なるものが混在してもよい。また、流路の配置も、図1では正方形配置であるが、これに限定されず、断面において流路の中心軸が正三角形の頂点に配置される正三角形配置、千鳥配置等にすることができる。さらに、ハニカムフィルタの外形も、円柱に限られず、例えば3角柱、4角柱、6角柱、8角柱等とすることができる。 In the above-described embodiment, the cross-sectional shape of the flow path 110 is substantially square, but is not limited thereto, and may be rectangular, circular, elliptical, triangular, hexagonal, octagonal, or the like. Moreover, in the flow path 110, what has a different diameter and a different cross-sectional shape may be mixed. In addition, the arrangement of the flow paths is a square arrangement in FIG. 1, but is not limited to this. it can. Further, the outer shape of the honeycomb filter is not limited to a cylinder, and may be, for example, a triangular column, a quadrangular column, a hexagonal column, an octagonal column, or the like.
 また、上記実施形態では、ハニカムフィルタを検査の対象としているが、通常の板状フィルタ等を検査対象とすることも可能である。 In the above-described embodiment, the honeycomb filter is an inspection target, but a normal plate filter or the like can also be an inspection target.
 また、上記実施形態では、カメラ220により得られた画像に基づいて、コンピュータによって、粒子の有無を判断しているが、人手によって明るい点の有無や位置を判断してもよい。 In the above embodiment, the presence / absence of particles is determined by the computer based on the image obtained by the camera 220. However, the presence / absence and position of a bright spot may be determined manually.
 20…二流体ノズル(発生部)、50…屈曲管(除去部)、50a…ガス入口側部、50b…ガス出口側部、52…導入部、60…サイクロン(除去部)、100…ハニカムフィルタ、110…流路、110t…流路の上端(一端)、110b…流路の下端(他端)、112…隔壁、114…封口部、200…検出部、260A,B…スケール、400…検査装置、P…液体粒子、PL…相対的に大きな液体粒子、PS…相対的に小さな液体粒子。 DESCRIPTION OF SYMBOLS 20 ... Two-fluid nozzle (generation | generation part), 50 ... Bending pipe | tube (removal part), 50a ... Gas inlet side part, 50b ... Gas outlet side part, 52 ... Introduction part, 60 ... Cyclone (removal part), 100 ... Honeycomb filter , 110 ... flow path, 110 t ... upper end (one end) of the flow path, 110 b ... lower end (other end) of the flow path, 112 ... partition wall, 114 ... sealing part, 200 ... detection part, 260A, B ... scale, 400 ... inspection Apparatus, P ... liquid particles, PL ... relatively large liquid particles, PS ... relatively small liquid particles.

Claims (9)

  1.  液体粒子群を含むガス流を発生させる工程と、
     前記液体粒子群中の相対的に粒径が大きな粒子を除去する工程と、
     前記大きな粒子の除去後に、前記液体粒子群を含むガス流をフィルタの一端面に供給する工程と、
     前記フィルタの他端面から排出されるガス中の液体粒子の濃度分布を検出する工程と、を備えるフィルタの欠陥の検査方法。
    Generating a gas stream containing liquid particles,
    Removing relatively large particles in the liquid particle group;
    Supplying a gas flow containing the liquid particles to one end face of the filter after the removal of the large particles;
    Detecting the concentration distribution of the liquid particles in the gas discharged from the other end face of the filter.
  2.  前記液体粒子群を含むガス流を、屈曲管内を通過させることにより前記大きな粒子の除去を行う請求項1記載の方法。 The method according to claim 1, wherein the large particles are removed by passing a gas flow containing the liquid particle group through a bent tube.
  3.  前記屈曲管のガス入口側部の軸とガス出口側部の軸とがなす角が45~135°である請求項2記載の方法。 The method according to claim 2, wherein the angle formed by the gas inlet side axis and the gas outlet side axis of the bent pipe is 45 to 135 °.
  4.  前記屈曲管のガス出口側部の軸を鉛直上向きに配置する請求項2又は3記載の方法。 The method according to claim 2 or 3, wherein the axis of the gas outlet side of the bent pipe is arranged vertically upward.
  5.  前記液体粒子群を含むガス流を、サイクロン内を通過させることにより前記大きな粒子の除去を行う請求項1記載の方法。 The method according to claim 1, wherein the large particles are removed by passing a gas flow containing the liquid particle group through a cyclone.
  6.  前記液体粒子群を含むガス流を二流体ノズルにより発生させる請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein a gas flow including the liquid particle group is generated by a two-fluid nozzle.
  7.  前記大きな粒子を除去する工程では、少なくとも粒径が11μm以上の液体粒子を除去する請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein in the step of removing the large particles, at least liquid particles having a particle diameter of 11 μm or more are removed.
  8.  前記フィルタは、互いに平行に伸びる複数の流路を形成する多孔質隔壁、及び、前記複数の流路の内の一部の一端、及び、前記複数の流路内の残部の他端を閉鎖する封口部を有するハニカムフィルタである請求項1~7のいずれか一項に記載の方法。 The filter closes a porous partition wall that forms a plurality of channels extending in parallel to each other, one end of a part of the plurality of channels, and the other end of the remaining part of the plurality of channels. The method according to any one of claims 1 to 7, which is a honeycomb filter having a sealing portion.
  9.  液体粒子群を含むガス流を発生する発生部と、
     前記液体粒子群中の相対的に粒径が大きな粒子を除去する除去部と、
     前記大きな粒子が除去された液体粒子群を含むガス流をフィルタの一端面に導く導入部と、
     前記フィルタの他端面から排出されるガス中の液体粒子の濃度分布を検出する検出部と、
     を備えるフィルタの欠陥の検査装置。
    A generating section for generating a gas flow including liquid particles, and
    A removing section for removing particles having a relatively large particle diameter in the liquid particle group;
    An introduction part for guiding a gas flow including a group of liquid particles from which the large particles have been removed to one end face of the filter;
    A detection unit for detecting a concentration distribution of liquid particles in the gas discharged from the other end surface of the filter;
    A filter defect inspection apparatus comprising:
PCT/JP2012/056743 2011-03-15 2012-03-15 Method for inspecting for filter defects and device for inspecting for filter defects WO2012124773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011056652 2011-03-15
JP2011-056652 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124773A1 true WO2012124773A1 (en) 2012-09-20

Family

ID=46830838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056743 WO2012124773A1 (en) 2011-03-15 2012-03-15 Method for inspecting for filter defects and device for inspecting for filter defects

Country Status (2)

Country Link
JP (1) JP6027323B2 (en)
WO (1) WO2012124773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018346A1 (en) * 2018-07-20 2020-01-23 Corning Incorporated System and method for detecting defects in a honeycomb body
WO2020185365A1 (en) * 2019-03-14 2020-09-17 Corning Incorporated Thermal gas inspection of plugged honeycomb body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523623B2 (en) * 2012-11-28 2016-12-20 Corning Incorporated Methods for testing a honeycomb filter
KR101949715B1 (en) * 2017-06-01 2019-02-19 한국원자력연구원 Inspecting installation for screen quality of ion exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119415U (en) * 1990-03-14 1991-12-10
JP2002102752A (en) * 1998-05-25 2002-04-09 Fuji Koeki Kk Liquid coater and machining method
JP2008241531A (en) * 2007-03-28 2008-10-09 Denso Corp Method and device for inspecting porous material
JP2009503508A (en) * 2005-07-29 2009-01-29 コーニング インコーポレイテッド Method, system and apparatus for detecting defects in honeycomb body using particulate fluid
WO2009028709A1 (en) * 2007-08-30 2009-03-05 Ngk Insulators, Ltd. Method for inspecting defect of material to be inspected

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119415U (en) * 1990-03-14 1991-12-10
JP2002102752A (en) * 1998-05-25 2002-04-09 Fuji Koeki Kk Liquid coater and machining method
JP2009503508A (en) * 2005-07-29 2009-01-29 コーニング インコーポレイテッド Method, system and apparatus for detecting defects in honeycomb body using particulate fluid
JP2008241531A (en) * 2007-03-28 2008-10-09 Denso Corp Method and device for inspecting porous material
WO2009028709A1 (en) * 2007-08-30 2009-03-05 Ngk Insulators, Ltd. Method for inspecting defect of material to be inspected

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018346A1 (en) * 2018-07-20 2020-01-23 Corning Incorporated System and method for detecting defects in a honeycomb body
US11698017B2 (en) 2018-07-20 2023-07-11 Corning Incorporated System and method for detecting defects in a honeycomb body
WO2020185365A1 (en) * 2019-03-14 2020-09-17 Corning Incorporated Thermal gas inspection of plugged honeycomb body
CN113614502A (en) * 2019-03-14 2021-11-05 康宁股份有限公司 Hot gas inspection of plugged honeycomb bodies
US12111230B2 (en) 2019-03-14 2024-10-08 Corning Incorporated Thermal gas inspection of plugged honeycomb body

Also Published As

Publication number Publication date
JP6027323B2 (en) 2016-11-16
JP2012208119A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP4926173B2 (en) System and apparatus for detecting defects in honeycomb body using particulate fluid
JP6027323B2 (en) Filter defect inspection method and filter defect inspection apparatus
JP2008536661A5 (en)
RU2010110762A (en) METHOD AND DEVICE FOR INTRODUCING AUXILIARY MATERIAL
EP3472588B1 (en) Sensor system for sensing the mass concentration of particles in air
JP6669684B2 (en) Draft chamber with wall jet
WO2012124772A1 (en) Mist supply device for filter inspection
CN208943660U (en) A kind of air swirl dedusting demisting experiment tower
JP5939750B2 (en) Honeycomb filter defect inspection method and honeycomb filter manufacturing method
JP2013036989A (en) Method and device for inspecting defect in honeycomb filter, and method for manufacturing honeycomb filter
KR101462948B1 (en) Impactor Performance Evaluation System
US9144764B2 (en) Systems and methods for removing particulate matter from a gas stream
JPWO2017061383A1 (en) Honeycomb filter inspection method, honeycomb filter inspection apparatus, and honeycomb filter manufacturing method
Kohnen et al. Characterization of full cone nozzles
Dziubak Potential design improvements of a reverse flow mini-cyclone with a tangential inlet
Liao et al. A new design of wet scrubber for removal of fine particles from exhaust gas
Kurtyigit A Novel Method of Aerosol Particle Filtration Using Liquid Bridges
ITMI20110319A1 (en) DEVICE AND FLUID BED METHOD FOR FILLING FINE POWDERS IN GASEOUS EXHAUSTS "
JP2013226495A (en) Dust collecting device
Reinke Check for Additive Manufacturing in Gas Cleaning Applications Felix Reinke (), Christian Straube (), Jörg Meyer, and Achim Dittler
RAVILEVNA NUMERICAL STUDY OF DRIP ENTRAINMENT IN BUBBLING APPARATUSES
Klett et al. Numerical and experimental analysis of the 3D flow-pattern in exhaust gas sensors
Hou et al. Effects of structural parameters of pressure-swirl nozzle on atomization and dust removal characteristics
Altimira et al. On the disintegration of fan-shaped liquid sheets
Chlebnikovas et al. Researches of aggressive gas flow cleaning from wood ash particulate matter in the multi-channel cyclone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12756998

Country of ref document: EP

Kind code of ref document: A1