WO2012122919A1 - 用于时分双工系统的通信方法和装置 - Google Patents

用于时分双工系统的通信方法和装置 Download PDF

Info

Publication number
WO2012122919A1
WO2012122919A1 PCT/CN2012/072171 CN2012072171W WO2012122919A1 WO 2012122919 A1 WO2012122919 A1 WO 2012122919A1 CN 2012072171 W CN2012072171 W CN 2012072171W WO 2012122919 A1 WO2012122919 A1 WO 2012122919A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
downlink subframe
configuration
downlink
Prior art date
Application number
PCT/CN2012/072171
Other languages
English (en)
French (fr)
Inventor
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12757758.3A priority Critical patent/EP2685640B1/en
Publication of WO2012122919A1 publication Critical patent/WO2012122919A1/zh
Priority to US14/021,908 priority patent/US9444513B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus for a Time Division Duplex (TDD) system.
  • TDD Time Division Duplex
  • a base station transmits data and control information to a User Equipment UE (User Equipment) on the downlink, and receives data and control information of the user equipment on the uplink.
  • the user equipment transmits data and control information for the base station on the uplink and receives data and control information for the base station on the downlink.
  • the base station and the UE can communicate by using TDD.
  • the downlink transmission and the uplink transmission use the same carrier, but the downlink transmission and the uplink transmission are on different time slots (or subframes), that is, the downlink transmission and the uplink transmission are time division multiplexed.
  • time division duplexing is that it can flexibly configure the uplink and downlink subframes, so that the system can adapt to the business change requirements of uplink and downlink data transmission. For example, as the amount of uplink data increases, the base station can allocate more time slot resources to the uplink, and when the amount of uplink data decreases, the base station can reduce the time slot resources used by the uplink.
  • each radio frame contains 10 subframes.
  • the subframe type may be a downlink subframe, an uplink subframe, and a special subframe.
  • the base station notifies the UE of the uplink and downlink subframe configuration by using the system message, and the UE learns the uplink and downlink subframe configuration, and learns the type of each subframe in each radio frame.
  • the base station can dynamically adjust the uplink and downlink subframe configuration of the system.
  • the system message is semi-statically updated, and the update period of the system message is compared. Long, therefore, if the base station The dynamic adjustment of the uplink and downlink subframe configuration is performed.
  • the UEs cannot learn the uplink and downlink subframe configuration dynamically adjusted by the base station in real time, and continue to receive and transmit data according to the uplink and downlink subframe configuration determined by the system message. Therefore, the base station Dynamic adjustment of the uplink and downlink subframe configuration may result in failure to communicate normally between the UE and the base station.
  • Embodiments of the present invention provide a communication method and apparatus for a TDD system, which can effectively ensure normal communication between a UE and a base station.
  • a communication method for a TDD system comprising:
  • An intersection is a set of subframes having the same subframe index and the same subframe type, where the intersection includes at least one uplink subframe and at least one downlink subframe;
  • a communication method for a TDD system comprising:
  • the UE communicates with the base station according to the first uplink and downlink subframe configuration
  • the UE After the first uplink and downlink subframe configuration is adjusted to the second uplink and downlink subframe configuration, the UE is in the second timing according to the same timing relationship as the timing relationship corresponding to the first uplink and downlink subframe configuration.
  • the subframe corresponding to the subframe configuration and the subframe corresponding to the first uplink and downlink subframe configuration are in communication with the base station, where the intersection is the same subframe index and the same subframe.
  • a set of subframes of a type, the intersection includes at least one uplink subframe and at least one downlink subframe.
  • a base station comprising:
  • a configuration adjustment unit configured to adjust the first uplink and downlink subframe configuration to a second uplink and downlink subframe configuration, where the second uplink and downlink subframe configuration corresponds to the subframe and the first uplink and downlink subframe Configuring a corresponding sub-frame to have an intersection, where the intersection is a set of subframes having the same subframe index and the same subframe type, where the intersection includes at least one uplink subframe and at least one downlink subframe;
  • a UE configured to communicate with the UE in the at least one uplink subframe and the at least one downlink subframe included in the intersection according to a timing relationship that is the same as a timing relationship corresponding to the first uplink and downlink subframe configuration.
  • a UE comprising:
  • a configuration determining unit configured to learn the first uplink and downlink subframe configuration
  • a communication unit configured to: after the first uplink and downlink subframe configuration is adjusted to the second uplink and downlink subframe configuration, according to a timing relationship that is the same as a timing relationship corresponding to the first uplink and downlink subframe configuration,
  • the subframe corresponding to the subframes corresponding to the second uplink and downlink subframe configuration and the subframes corresponding to the subframes corresponding to the first uplink and downlink subframe configuration are in communication with the base station, where the intersection is the same subframe index and the same A set of subframes of a subframe type, the intersection includes at least one uplink subframe and at least one downlink subframe.
  • the communication method and device for the TDD system can dynamically adjust the uplink and downlink subframe configuration of the communication system, thereby effectively improving the performance and flexibility of the system.
  • the uplink and downlink subframe configuration of the TDD system is changed, the second uplink and downlink subframe configuration and the first uplink and downlink subframe configuration have the intersection, and the adjusted second uplink and downlink cannot be obtained in real time.
  • the UE configured in the subframe may configure the corresponding subframe type and the timing relationship according to the previously learned first uplink and downlink subframes. Therefore, the base station and the UE may be configured according to the timing relationship of the first uplink and downlink subframe configuration.
  • the subframes in the intersection are in communication, and the UE does not know that the uplink and downlink subframe configuration is adjusted, and the adjustment of the uplink and downlink subframe configuration does not affect the data transmission between the UE and the base station, that is, the second uplink and downlink subframes.
  • the frame configuration is transparent to the UE, and can effectively ensure normal communication between the UE and the base station.
  • FIG. 1 is a flowchart of a communication method for TDD according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a communication method for TD D according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a second uplink and downlink subframe configuration determined in the communication method shown in FIG. 3;
  • FIG. 5 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • the base station may be an evolved Node B (eNB), a Node B, an access point (Access Point), or the like.
  • eNB evolved Node B
  • Access Point Access Point
  • Each base station can provide communication coverage for a particular geographic area.
  • Cell which may be the coverage area of a base station, and/or the coverage area served by a base station subsystem, depends on the context in which the term is used.
  • the base station may be a macro cell, a pico cell, or a femto.
  • a cell (Femto Cell), and/or other types of cells provide communication coverage.
  • UEs may be distributed throughout the wireless network, and each UE may be static or mobile.
  • the UE may be called a terminal, a mobile station (MS), a subscriber unit (Subscriber Unit), a station (Station), and the like.
  • the UE can be a cellular phone, a personal digital assistant (PDA), a wireless modem (Modem), a wireless communication device, a handheld device (Handheld), a laptop computer (Laptop computer), a cordless phone ( Cordless Phone). Phone ) , Wireless Local Loop (WLL) station Wait.
  • the UE can communicate with a macro base station, a Pico base station, a Femto base station, and the like.
  • the uplink and downlink subframe configuration and timing relationship in the LTE T D D system are first introduced.
  • the specific uplink and downlink subframe configuration of the LTE TDD system is as shown in Table 1.
  • the LTE TDD system can support configuration of seven different uplink and downlink subframes from configuration 0 to configuration 6, and each uplink and downlink subframe configuration corresponds to a configuration of one radio frame.
  • Each radio frame includes 10 subframes whose subframe index (also referred to as a subframe number) is 0 to 9, that is, an uplink and downlink subframe configuration corresponding to 10 subframes whose subframe index is 0 to 9.
  • Each subframe has a corresponding subframe type, and the subframe type may be an uplink subframe, a downlink subframe, or a special subframe.
  • the uplink and downlink subframe configuration of the LTE TDD system D indicates that the subframe is a downlink subframe, S indicates that the subframe is a special subframe, and U indicates that the subframe is an uplink subframe.
  • the downlink subframe is only used for downlink transmission, and the uplink subframe is only used for uplink transmission.
  • the special subframe consists of three parts, namely, downlink pilot time slot DwPTS (Downlink Pilot Time Slot), protection period GP (Guard period) and uplink guide.
  • UpPTS Uplink Pilot Time Slot
  • DwPTS Downlink Pilot Time Slot
  • GP Guard interval between downlink transmission and uplink transmission
  • UpPTS is used for uplink transmission.
  • the base station passes the physical downlink control channel PDCCH.
  • the PDCCH may be a downlink grant DL grant for downlink scheduling grant or an uplink grant UL grant for uplink scheduling grant, and the PDCCH carries a physical downlink shared channel (PDSCH) or Physical uplink shared channel PUSCH (physical Uplink shared channel ) scheduling information such as time-frequency resource allocation.
  • PDSCH physical downlink shared channel
  • PUSCH Physical Uplink shared channel
  • the UE After receiving and decoding the PDCCH, the UE receives the downlink data carried by the PDSCH or the uplink data carried by the PUSCH according to the scheduling information carried by the PDCCH, and the UE performs a positive acknowledgement ACK (ACKnowledge)/negative acknowledgement NACK on the downlink received data.
  • ACKnowledge positive acknowledgement ACK
  • NACK negative acknowledgement NACK
  • Non ACKnowledge Non ACKnowledge
  • the base station after receiving the uplink data, the base station also performs ACK/NACK feedback on the downlink for the uplink data.
  • the system support is NACK
  • the base station or the UE performs retransmission.
  • the timing relationship includes: a timing relationship between a transmission time (or a subframe) of a UL grant for scheduling PUSCH transmission and a PUSCH transmission time, a timing relationship between a PUSCH transmission time and a downlink ACK/NACK feedback moment, and a PUSCH initial transmission.
  • the base station and the UE perform data scheduling, transmission, reception, feedback, or retransmission according to the timing relationship corresponding to the uplink and downlink subframe configuration.
  • each of the uplink and downlink subframe configurations of the LTE TDD system not only indicates the subframe type of each radio frame in the uplink and downlink subframe configuration, but also indicates the timing relationship corresponding to the uplink and downlink subframe configuration, including Between PUSCH and UL grant scheduling, PUSCH initial transmission and PUSCH retransmission, PUSCH transmission and downlink ACK/NACK response, or timing relationship between PDSCH transmission and uplink ACK/NACK response, and the like.
  • an embodiment of the present invention provides a communication method for a TDD system, based on a base station, including:
  • Step 101 Adjust the first uplink and downlink subframe configuration to a second uplink and downlink subframe configuration.
  • the uplink service and the downlink service have asymmetry, and the service load of the system may be time-varying. For example, at one moment, when the user wants to upload a large amount of services, the uplink load increases greatly; at another moment, when the user wants to download a large amount of services, the downlink load greatly increases.
  • the base station can dynamically adjust the uplink and downlink subframe configuration currently used in the system according to the change of the service load, and the original first uplink and downlink subframe configuration is adjusted to The second uplink and downlink subframe configuration.
  • the base station can increase the number of uplink subframes in the radio frame, that is, adjust the subframe type configured in the uplink and downlink subframes, when the uplink traffic, that is, the uplink load increases, according to the change of the traffic load.
  • the base station can also adjust the timing relationship of the uplink and downlink subframe configuration.
  • the dynamic adjustment of the uplink and downlink subframe configuration and the semi-static adjustment of the uplink and downlink subframe configuration by the system message are independent of each other, and do not affect each other.
  • the UE is configured to determine the uplink and downlink subframes of the system only according to the system message.
  • the base station adjusts the uplink and downlink subframe configuration, and the adjusted uplink and downlink subframe configuration and the system message configuration, the uplink and downlink subframe configuration is not configured.
  • the UE cannot know the uplink and downlink subframe configuration adjusted by the base station in real time.
  • the base station can determine the adjusted second uplink and downlink subframe configuration according to the first uplink and downlink subframe configuration configured by the system message.
  • the first uplink and downlink subframe configuration may be configured for the uplink and downlink subframes configured by the system message; the subframe type and the timing relationship corresponding to the second uplink and downlink subframe configuration correspond to the first uplink and downlink subframe configuration At least one of the subframe type and the timing relationship may be different; the second uplink and downlink subframe configuration corresponding subframe has an intersection with the subframe corresponding to the first uplink and downlink subframe configuration, and the intersection is the first uplink and downlink subframe configuration A set of subframes having the same subframe index and the same subframe type in the subframe corresponding to the corresponding subframe and the second uplink and downlink subframe configuration. The intersection includes at least one uplink subframe and at least one downlink subframe.
  • the second uplink and downlink subframe configuration may be one of the uplink and downlink subframe configurations shown in Table 1, or may be configured differently from the uplink and downlink subframe configurations shown in Table 1.
  • the at least one uplink subframe included in the intersection includes an uplink subframe for PUSCH transmission
  • the at least one downlink subframe includes a UL for carrying the scheduling PUSCH transmission.
  • the downlink subframe of the grant which is used for The timing relationship between the uplink subframe of the PUSCH transmission and the downlink subframe that carries the UL grant is the same as the timing relationship of the first uplink and downlink subframe configuration, so as to effectively ensure the normal PUSCH scheduling between the base station and the UE. And transmission.
  • the uplink subframe used for PUSCH transmission is the subframe n
  • the downlink subframe used for scheduling the UL grant for scheduling the PUSCH transmission is the subframe nk
  • the intersection includes an uplink subframe with a subframe index of n for PUSCH transmission, and the intersection includes a downlink subframe carrying a UL grant for scheduling PUSCH transmission of the subframe n, and the subframe index is nk.
  • the at least one uplink subframe included in the intersection includes an uplink subframe for PUSCH transmission
  • the at least one downlink subframe includes a downlink subframe used for performing ACK/NACK feedback on the PUSCH transmission.
  • a timing relationship between the uplink subframe for PUSCH transmission and the downlink subframe for performing ACK/N ACK feedback is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration, to be effective Ensure that the PUSCH transmission is normally performed between the base station and the UE.
  • the uplink subframe used for PUSCH transmission is subframe n
  • the downlink subframe used for ACK/NACK feedback for PUSCH transmission is n+1
  • the intersection set includes an uplink subframe for PUSCH transmission and a subframe index of n
  • the intersection includes a downlink subframe for performing ACK/NACK feedback on the PUSCH transmission of the subframe n
  • the subframe index is n+l .
  • the at least one downlink subframe included in the intersection includes a downlink subframe used for PDSCH transmission
  • the at least one uplink subframe includes an uplink subframe used for performing ACK/NACK feedback on the PDSCH transmission.
  • the timing relationship between the downlink subframe for the PDSCH transmission and the uplink subframe for performing ACK/NACK feedback is the same as the timing relationship corresponding to the configuration of the first uplink and downlink subframes, so as to ensure effective
  • the PDSCH transmission is normally performed between the base station and the UE.
  • the downlink subframe used for PDSCH transmission is n
  • the uplink subframe used for ACK/NACK feedback on the PDSCH transmission is n+p.
  • the intersection set includes a downlink subframe for PDSCH transmission and a subframe index of n, and the intersection includes an uplink subframe for performing ACK/NACK feedback on the PDSCH transmission of the subframe n, and the subframe index is n+ p.
  • the at least one uplink subframe included in the intersection includes an uplink subframe for PUSCH transmission, and the at least one uplink subframe further includes The PUSCH transmits an uplink subframe for retransmission, the timing relationship between the uplink subframe for PUSCH transmission and the uplink subframe for retransmission of the PUSCH transmission, and the first uplink and downlink subframes
  • the timing relationship corresponding to the frame configuration is the same, so as to effectively ensure the normal PUSCH retransmission between the base station and the UE.
  • the uplink subframe used for PUSCH transmission is n
  • the uplink subframe used for retransmission of the PUSCH transmission is n+q
  • the aggregation includes an uplink subframe for transmitting a PUSCH with a subframe index of n
  • the intersection includes an uplink subframe for retransmitting the PUSCH transmission of the subframe n
  • the subframe index is n+q.
  • n, k, 1, p, and q are integers. If the subframe index of the subframe included in one radio frame is 0 to 9, n may be any one of 0 to 9. An integer, if the value of n+1, n+p, or n+q exceeds 9, indicates that the transmission is performed on the corresponding subframe in the next radio frame. Similarly, if n-k is less than 0, it means that the transmission is performed on the corresponding subframe in the previous radio frame.
  • the second uplink and downlink subframe configuration may be obtained by the base station according to the service load and the first uplink and downlink subframe configuration, or may be selected by the base station from the uplink and downlink subframe configuration set;
  • the configuration set is preset or the base station obtains according to the service load and the first uplink and downlink subframe configuration.
  • the service load may be obtained by the base station for detecting, or may be reported by the UE to the base station, which is not limited by the embodiment of the present invention.
  • the uplink and downlink subframe configuration that the system is using may be the first uplink and downlink subframe configuration configured by the system message, or may be the first uplink and downlink configuration.
  • the subframe configuration is different from other uplink and downlink subframe configurations.
  • Step 102 Communicate with the UE in at least one uplink subframe and at least one downlink subframe included in the intersection according to a timing relationship that is the same as a timing relationship corresponding to the first uplink and downlink subframe configuration.
  • the base station when communicating with the UE, the base station carries a UL grant for scheduling PUSCH transmission on the downlink subframe nk in at least one uplink subframe and at least one downlink subframe included in the intersection, and performs uplink subframe n on the uplink subframe n.
  • the timing relationship between the uplink subframe n and the downlink subframe nk is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration.
  • n + 1 is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration.
  • performing PDSCH transmission on the downlink subframe n, performing ACK/NACK feedback on the PDSCH transmission in the uplink subframe n+p, and timing relationship between the downlink subframe n and the uplink subframe n+p is the same.
  • the UE that fails to obtain the adjusted second uplink and downlink subframe configuration in real time may be based on the previous system.
  • the subframe type and the timing relationship corresponding to the first uplink and downlink subframe configuration are obtained by the message. Therefore, the base station and the UE may perform the corresponding timing relationship according to the first uplink and downlink subframe configuration, and use the subframe in the intersection.
  • the UE does not know that the uplink and downlink subframe configuration is adjusted, and the adjustment of the uplink and downlink subframe configuration does not affect the data transmission between the UE and the base station, that is, the second uplink and downlink subframe configuration is transparent to the UE.
  • the normal communication between the UE and the base station can be effectively guaranteed.
  • the UE may obtain the subframe type of the subframe corresponding to the second uplink and downlink subframe configuration in real time, and the second The timing relationship between the uplink and downlink subframes is configured. Therefore, the second uplink and downlink subframe configuration can be used for communication between the base station and the second uplink and downlink subframes that can be adjusted in real time, thereby improving the flexibility of the communication system. performance.
  • an embodiment of the present invention further provides a communication method for a TDD system, based on the UE, including:
  • Step 201 The UE communicates with the base station according to the first uplink and downlink subframe configuration.
  • the first uplink and downlink subframe configuration may be an uplink and downlink subframe configuration configured by the system message.
  • Step 202 After the first uplink and downlink subframe configuration is adjusted to the second uplink and downlink subframe configuration, the UE performs the second timing relationship according to the timing relationship corresponding to the first uplink and downlink subframe configuration. And the subframes included in the intersection of the subframe corresponding to the uplink and downlink subframe configuration and the subframe corresponding to the first uplink and downlink subframe configuration are in communication with the base station, where the intersection has the same subframe index and the same sub-frame. a set of subframes of a frame type, the intersection The method includes at least one uplink subframe and at least one downlink subframe.
  • the at least one uplink subframe included in the intersection includes an uplink subframe for PUSCH transmission
  • the at least one downlink subframe includes a UL for carrying the scheduling PUSCH transmission.
  • the downlink subframe of the grant, the timing relationship between the uplink subframe for the PUSCH transmission and the downlink subframe that carries the UL grant is the same as the timing relationship corresponding to the configuration of the first uplink and downlink subframes, to ensure effective
  • the scheduling and transmission of the PUS CH is normally performed between the base station and the UE.
  • the at least one uplink subframe included in the intersection includes an uplink subframe for PUSCH transmission
  • the at least one downlink subframe includes a downlink subframe used for performing ACK/NACK feedback on the PUSCH transmission.
  • a timing relationship between the uplink subframe for PUSCH transmission and the downlink subframe for performing ACK/N ACK feedback is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration, to be effective Ensure that the PUSCH transmission is normally performed between the base station and the UE.
  • the at least one downlink subframe included in the intersection includes a downlink subframe used for PDSCH transmission
  • the at least one uplink subframe includes an uplink subframe used for performing ACK/NACK feedback on the PDSCH transmission.
  • the timing relationship between the downlink subframe for the PDSCH transmission and the uplink subframe for performing ACK/NACK feedback is the same as the timing relationship corresponding to the configuration of the first uplink and downlink subframes, so as to ensure effective
  • the PDSCH transmission is normally performed between the base station and the UE.
  • the at least one uplink subframe included in the intersection includes an uplink subframe for PUSCH transmission, and the at least one uplink subframe further includes an uplink subframe used for retransmitting the PUSCH transmission.
  • the timing relationship between the uplink subframe for the PUSCH transmission and the uplink subframe for retransmitting the PUSCH transmission is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration, It is effective to ensure normal PUSCH retransmission between the base station and the UE.
  • the second uplink and downlink subframe configuration may be obtained by the base station according to the service load and the first uplink and downlink subframe configuration, or may be selected by the base station from the uplink and downlink subframe configuration set; The setting or the base station is obtained according to the service load and the first uplink and downlink subframe configuration.
  • the second uplink and downlink subframe configuration and the first uplink and downlink subframe configuration have the intersection, and the adjusted second uplink and downlink subframe configuration cannot be obtained in real time.
  • the UE may configure the corresponding subframe type and the timing relationship according to the first uplink and downlink subframes obtained by the previous system message. Therefore, the base station and the UE may configure the corresponding timing relationship according to the first uplink and downlink subframe configuration, and use the The subframes in the intersection are communicated, and the UE does not know that the uplink and downlink subframe configuration is adjusted, and the adjustment of the uplink and downlink subframe configuration does not affect the
  • the data transmission between the UE and the base station that is, the second uplink and downlink subframe configuration is transparent to the UE, and can effectively ensure normal communication between the UE and the base station.
  • the UE may obtain the subframe type of the subframe corresponding to the second uplink and downlink subframe configuration in real time, and the second The timing relationship between the uplink and downlink subframes is configured. Therefore, the second uplink and downlink subframe configuration can be used for communication between the base station and the second uplink and downlink subframes that can be adjusted in real time, thereby improving the flexibility of the communication system. performance.
  • the communication method for the TDD system of the present invention will be further described in detail below by way of specific embodiments. As shown in FIG. 3, the communication method for the TDD system of this embodiment includes:
  • Step 301 The UE determines a first uplink and downlink subframe configuration.
  • the UE may obtain the first uplink and downlink subframe configuration according to the system message, so that the radio frame corresponding to the first uplink and downlink subframe configuration may be obtained, that is, the subframe type of the subframe corresponding to the first uplink and downlink subframe configuration is obtained, and The timing relationship between subframes.
  • Step 302 The base station and the UE communicate according to the first uplink and downlink subframe configuration.
  • the base station may generate the second uplink and downlink subframe configuration according to the traffic load and the first uplink and downlink subframe configuration configured by the system message, and adjust the first uplink and downlink subframe configuration to the second uplink and downlink subframe configuration;
  • the base station may further determine the second uplink and downlink subframe configuration according to the subframe configuration change principle.
  • the subframe configuration change principle may include at least one of a subframe type change principle and a timing relationship change principle, and a subframe type change principle specifies which subframe types of subframes can be changed and how they are changed, and the timing relationship change principle specifies which Timing relationships can be changed and changed.
  • sub-frame 5 is always a downlink sub-frame
  • sub-frame 1 is always a special sub-frame
  • sub-frame 6 can only be a special sub-frame or a downlink sub-frame
  • sub-frame 2 is always an uplink sub-frame. Since subframe 5 is to carry the scheduling system message, subframes 0, 1, 5, and 6 are required to carry the scheduling paging message. Therefore, when changing the configuration of the uplink and downlink subframes, the base station needs to maintain the types of subframes 0 and 5. That is, the subframes 0 and 5 can only be the downlink subframes.
  • the system needs at least one special subframe to support the downlink subframe to the uplink subframe.
  • the conversion that is, the previous subframe of the special subframe is always the downlink subframe, the latter subframe of the special subframe is always the uplink subframe
  • the subframe 1 can always be the special subframe
  • the corresponding subframe 2 Always uplink subframes.
  • the base station can change the type of the subframe 6 to the downlink subframe.
  • the number 6 can be The uplink subframes in the subframes (subframes 7, 8, and 9) after the subframe are configured as downlink subframes. Based on this, optionally, in this embodiment, the subframe configuration change principle is as shown in Table 2.
  • Step 304 The base station determines whether there is an intersection between the subframe corresponding to the second uplink and downlink subframe configuration and the subframe corresponding to the first uplink and downlink subframe configuration, where the intersection is a subframe having the same subframe index and the same subframe type.
  • the set, and the intersection includes at least one uplink subframe and one downlink subframe.
  • step 305 If yes, go to step 305. If no, go back to step 303.
  • the base station regenerates another second uplink and downlink subframe configuration.
  • Step 305 The base station determines whether an uplink subframe n exists in at least one uplink subframe in the intersection, and the downlink subframe of the UL grant of the PUSCH in the uplink subframe n is scheduled to be in the intersection. At least one downlink subframe; at the same time, the downlink subframe that performs ACK/NACK feedback on the PUSCH in the uplink subframe n is in at least one downlink subframe in the intersection. Where n is the subframe index.
  • the uplink subframe that retransmits the PUSCH in the uplink subframe n is in at least one uplink subframe in the intersection.
  • the base station regenerates another second uplink and downlink subframe configuration.
  • 9 Yes can be an uplink or downlink subframe type
  • Step 306 The base station determines whether there is a downlink subframe m in at least one downlink subframe in the intersection, and an uplink subframe that performs ACK/NACK feedback on the PDSCH in the downlink subframe m is in the intersection. At least one uplink subframe. Where m is the sub-frame index.
  • Step 307 The base station communicates with the UE in at least one uplink subframe and at least one downlink subframe included in the intersection according to the same timing relationship as the timing relationship corresponding to the first uplink and downlink subframe configuration.
  • the base station can communicate with the UE by using the subframe type and the timing relationship determined by the second uplink and downlink subframe configuration.
  • the base station may dynamically adjust the uplink and downlink subframe configuration again or according to the service load change.
  • set up system messages such as System Information Block 1 (System Information Block 1 1, the SIB1) indicates the configuration of the TDD subframe, that is, the configuration of the first uplink and downlink subframes is the uplink and downlink subframe configuration of the 0th, and the configuration of the uplink and downlink subframes of the 0th is shown in Table 1.
  • the base station changes the subframe type of the uplink subframe 9 in the uplink and downlink subframe configuration of No. 0 according to the traffic load, the uplink and downlink subframe configuration of 0, and the subframe configuration change principle (shown in Table 2).
  • the base station determines, between the subframe determined by the subframe type corresponding to the generated second uplink and downlink subframe configuration X, and the subframe determined by the subframe type corresponding to the first uplink and downlink subframe configuration of No. 0. There is an intersection, and the intersection includes at least one uplink subframe and one downlink subframe.
  • the intersection is a set of subframes having the same subframe index and the same subframe type in the subframe corresponding to the first uplink and downlink subframe configuration and the subframe corresponding to the second uplink and downlink subframe configuration.
  • the subframe type of the subframe with the subframe index of 0 and 5 is the downlink subframe, and the subframe index is 1 and
  • the subframe type of the subframe of 6 is a special subframe, and the subframe type of the subframe whose subframe index is 2, 3, 4, 7, 8, and 9 is an uplink subframe.
  • the subframe type of the subframe whose subframe index subframe index is 0, 5, and 9 is the downlink subframe, and the subframe index is 1 and 6.
  • the subframe type of the subframe is a special subframe, and the subframe type of the subframe with the subframe index of 2, 3, 4, 7, and 8 is an uplink subframe. Therefore, in the subframe corresponding to the subframe corresponding to the uplink and downlink subframe configuration of the 0th and the second uplink and downlink subframe configuration shown in FIG. 4, the subframe having the same subframe index and the same subframe subframe type is The subframe index is 9 subframes of 0 to 8. Therefore, in this embodiment, the intersection A of the second uplink and downlink subframe configuration X and the first uplink and downlink subframe configuration is:
  • the base station determines that there is an uplink subframe 2, 7, and 8 in the intersection A, and follows the timing relationship of the uplink and downlink subframe configuration of the 0th, and satisfies the downlink of the UL grant of the PUSCH carrying the uplink subframes 2, 7, and 8
  • the subframe is in the intersection A, and the downlink subframe in which the ACK/NACK feedback is performed on the PUSCHs of the uplink subframes 2, 7, and 8 is in the intersection A.
  • step 306 the base station determines that, in the intersection A, the downlink subframes 0, 1, and 6 are stored according to the timing relationship of the uplink and downlink subframes configured on the 0th, and the PDSCH of the downlink subframes 0, 1, and 6 is satisfied.
  • the uplink subframe of the /NACK feedback is in the intersection A.
  • the base station will communicate with the UE that does not obtain the second uplink and downlink subframe configuration in real time according to the same timing relationship as the timing relationship corresponding to the uplink and downlink subframe configuration of No. 0.
  • the second uplink and downlink subframe configuration X can be used, and the second uplink and downlink subframe can be obtained in real time.
  • the configured UE communicates.
  • the second uplink and downlink configuration is obtained by the base station according to the service load and the first uplink and downlink configuration, but the embodiment of the present invention is not limited thereto, and the uplink and downlink configuration set may be preset.
  • the system includes a plurality of uplink and downlink subframe configurations that meet the second uplink and downlink configuration conditions.
  • the base station directly selects the second uplink and downlink subframe configuration from the uplink and downlink subframe configuration set, or The base station may obtain an uplink and downlink configuration set according to the service load and the first uplink and downlink configuration, and the uplink and downlink subframe configurations that meet the second uplink and downlink configuration conditions are included in the set. And selecting the second uplink and downlink subframe configuration from the set.
  • an embodiment of the present invention further provides a base station, which is an example. As shown in Figure 5, it includes:
  • the configuration adjustment unit 10 is configured to adjust the first uplink and downlink subframe configuration to a second uplink and downlink subframe configuration, where the subframe corresponding to the second uplink and downlink subframe configuration corresponds to the first uplink and downlink subframe configuration
  • the subframe has an intersection, where the intersection is a set of subframes having the same subframe index and the same subframe type, and the intersection includes at least one uplink subframe and at least one downlink subframe;
  • the communication unit 11 is configured to communicate with the UE in at least one uplink subframe and at least one downlink subframe included in the intersection according to a timing relationship that is the same as a timing relationship corresponding to the first uplink and downlink subframe configuration.
  • the configuration adjustment unit 10 of the base station adjusts the configuration of the second uplink and downlink subframes, and the method for the communication unit 11 to communicate with the UE may refer to the method in the embodiment of the present invention.
  • the first uplink and downlink subframe configuration and the second uplink and downlink subframe configuration may be the first uplink and downlink subframe configuration and the second method in the method embodiment provided by the embodiment of the present invention.
  • the uplink and downlink subframe configurations are the same.
  • the base station provided by the embodiment of the present invention may be configured according to the previous uplink and downlink subframe configuration and the first uplink and downlink subframe configuration, and the UE that fails to obtain the adjusted second uplink and downlink subframe configuration in real time may be based on the previous Corresponding to the first uplink and downlink subframe configuration learned by the system message The subframe type and the timing relationship. Therefore, the base station and the UE can perform communication according to the timing relationship of the first uplink and downlink subframe configuration, and use the subframes in the intersection.
  • the UE does not know that the uplink and downlink subframe configuration is adjusted, and the adjustment of the uplink and downlink subframe configuration does not affect the data transmission between the UE and the base station, that is, the second uplink and downlink subframe configuration is transparent to the UE, which can effectively ensure Normal communication between the UE and the base station.
  • the UE may obtain the subframe type of the subframe corresponding to the second uplink and downlink subframe configuration in real time, and the second uplink and downlink subframe configuration.
  • the base station provided by the embodiment of the present invention can use the second uplink and downlink subframe configuration and the second uplink and downlink subframes that can be adjusted in real time to configure the UE to communicate with each other, thereby improving the flexibility of the communication system. performance.
  • the at least one uplink subframe Include an uplink subframe for PUSCH transmission, where the at least one downlink subframe includes a downlink subframe for carrying a UL grant for scheduling the PUSCH transmission, the uplink subframe for PUSCH transmission, and the 7-carrier UL
  • the timing relationship between the downlink subframes of the grant is the same as the timing relationship corresponding to the configuration of the first uplink and downlink subframes; or
  • the at least one uplink subframe includes an uplink subframe for PUSCH transmission, and the at least one downlink subframe includes a downlink subframe used for performing ACK/NACK feedback on the PUSCH transmission, and the uplink used for PUSCH transmission
  • the timing relationship between the subframe and the downlink subframe for performing ACK/NACK feedback is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration; or
  • the at least one downlink subframe includes a downlink subframe for PDSCH transmission, and the at least one uplink subframe includes an uplink subframe for performing ACK/NACK feedback on the PDSCH transmission, and the downlink for PDSCH transmission
  • the timing relationship between the subframe and the uplink subframe for performing ACK/NACK feedback is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration; or
  • the at least one uplink subframe includes an uplink subframe for PUSCH transmission, and the at least one uplink subframe further includes an uplink subframe for retransmitting the PUSCH transmission, where the uplink subframe for PUSCH transmission a timing relationship between the frame and the uplink subframe for retransmitting the PUSCH transmission, and the first uplink and downlink subframe configuration The corresponding timing relationship is the same.
  • the configuration adjustment unit 10 may be specifically configured to obtain the second uplink and downlink subframe configuration according to the traffic load and the first uplink and downlink subframe configuration, or select the second uplink and downlink from the uplink and downlink subframe configuration set.
  • an embodiment of the present invention further provides a UE, where the embodiment of the present invention provides:
  • the configuration determining unit 20 is configured to learn the first uplink and downlink subframe configuration
  • the communication unit 21 is configured to: after the first uplink and downlink subframe configuration is adjusted to the second uplink and downlink subframe configuration, according to a timing relationship that is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration, The subframe corresponding to the second uplink and downlink subframe configuration and the subframe corresponding to the first uplink and downlink subframe configuration are in communication with the base station, where the intersection is the same subframe.
  • An index, a set of subframes of the same subframe type, the intersection includes at least one uplink subframe and at least one downlink subframe.
  • the first uplink and downlink subframe configuration and the second uplink and downlink subframe configuration may be combined with the first uplink and downlink subframe configuration and the method in the method embodiment provided by the embodiment of the present invention.
  • the configuration of the second uplink and downlink subframes is the same.
  • the UE provided by the embodiment of the present invention may be configured according to the previous uplink and downlink subframe configuration and the first uplink and downlink subframe configuration, and the UE that fails to obtain the adjusted second uplink and downlink subframe configuration in real time may be based on the previous The subframe type and the timing relationship corresponding to the first uplink and downlink subframe configuration are obtained by the system message. Therefore, the base station and the UE can use the corresponding timing relationship according to the first uplink and downlink subframe configuration, and use the subframe in the intersection.
  • the UE does not know that the uplink and downlink subframe configuration is adjusted, and the adjustment of the uplink and downlink subframe configuration does not affect the data transmission between the UE and the base station, that is, the second uplink and downlink subframe configuration is transparent to the UE. , can effectively ensure normal communication between the UE and the base station.
  • the intersection of the subframe corresponding to the second uplink and downlink subframe configuration and the subframe corresponding to the first uplink and downlink subframe configuration, where the communication unit 21 communicates with the base station includes:
  • the at least one uplink subframe includes an uplink subframe for PUSCH transmission, and the at least one downlink subframe includes a downlink subframe for carrying a UL grant for scheduling the PUSCH transmission, and the uplink subframe for PUSCH transmission
  • the timing relationship between the frame and the downlink subframe of the 7-bit UL grant is the same as the timing relationship corresponding to the configuration of the first uplink-downlink subframe; or
  • the at least one uplink subframe includes an uplink subframe for PUSCH transmission, and the at least one downlink subframe includes a downlink subframe used for performing ACK/NACK feedback on the PUSCH transmission, and the uplink used for PUSCH transmission
  • the timing relationship between the subframe and the downlink subframe for performing ACK/NACK feedback is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration; or
  • the at least one downlink subframe includes a downlink subframe for PDSCH transmission, and the at least one uplink subframe includes an uplink subframe for performing ACK/NACK feedback on the PDSCH transmission, and the downlink for PDSCH transmission
  • the timing relationship between the subframe and the uplink subframe for performing ACK/NACK feedback is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration; or
  • the at least one uplink subframe includes an uplink subframe for PUSCH transmission, and the at least one uplink subframe further includes an uplink subframe for retransmitting the PUSCH transmission, where the uplink subframe for PUSCH transmission
  • the timing relationship between the frame and the uplink subframe for retransmitting the PUSCH transmission is the same as the timing relationship corresponding to the first uplink and downlink subframe configuration.
  • the second uplink and downlink subframe configuration may be obtained by the base station according to the service load and the first uplink and downlink subframe configuration, or may be selected by the base station from the uplink and downlink subframe configuration set;
  • the uplink and downlink subframe configuration set is preset, or the uplink and downlink subframe configuration set is obtained by the base station according to the service load and the first uplink and downlink subframe configuration.
  • information and data can be represented by using any technology, for example, data, instructions, commands, information, signals.
  • Bits, Symbols, and Chips can pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or optical particles, or any combination of the above.
  • the various illustrative logic blocks, units, and steps listed in the embodiments of the present invention can be implemented by electronic hardware, computer software, or a combination of the two. To clearly demonstrate the interchangeability of hardware and software, the various illustrative components, units, and steps described above have generally described their functionality. Whether such functionality is implemented by hardware or software depends on the design requirements of the particular application and the overall system. A person skilled in the art can implement the described functions using various methods for each specific application, but such implementation should not be construed as being beyond the scope of the embodiments of the present invention.
  • the various illustrative logic blocks, or units, described in the embodiments of the invention may be implemented by general purpose processors, digital signal processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic.
  • the device, discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the functions described.
  • the general purpose processor may be a microprocessor, which may alternatively be any conventional processor, controller, microcontroller or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software module executed by a processor, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be disposed in the ASIC, and the ASIC can be disposed in the user terminal. Alternatively, the processor and the storage medium may also be provided in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium, or transmitted in a form or code, on a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another. Save The storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote resource through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in a defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

用于时分双工系统的通信方法和装置 本申请要求申请日为 2011年 3月 11 日,申请号为 201110059168.6 的中国申请的优先权。 技术领域
本发明涉及通信技术领域, 尤其涉及一种用于时分双工 (Time division duplex, TDD ) 系统的通信方法和装置。
背景技术
在无线通信系统中, 基站在下行链路上给用户设备 UE ( User Equipment ) 发射数据和控制信息, 并在上行链路上接收用户设备的 数据和控制信息。 类似的, 用户设备在上行链路上为基站传输数据和 控制信息, 并在下行链路上接收基站的数据和控制信息。 其中, 基站 和 UE之间可以采用 TDD的方式进行通信。对于 TDD无线通信系统, 下行传输和上行传输使用同一个载波,但是下行传输和上行传输是在 不同的时隙(或子帧)上, 即下行传输和上行传输是时分复用的。 时分 双工的优势是能灵活的进行上下行子帧的配置,使系统适应上行和下 行数据传输的业务变化需求。 例如, 随着上行数据量的增加, 基站可 以将更多的时隙资源分配给上行链路, 当上行数据量减少时, 基站可 以减少上行链路所用的时隙资源。
在长期演进 LTE( Long Term Evolution )/增强的长期演进 LTE-A ( LTE Advanced ) 的 TDD无线通信系统中, 每个无线帧包含了 10 个子帧。根据子帧的业务使用,子帧类型可以为下行子帧、上行子帧、 特殊子帧。 基站通过系统消息将上下行子帧配置通知给 UE, UE 获 知了上下行子帧配置, 就获知了每个无线帧内的各个子帧的类型。
为了提高 LTE/LTE-A TDD 系统的性能和灵活性, 基站可对系统 的上下行子帧配置进行动态调整。 对于仅能依据系统消息确定上下行 子帧配置的 UE, 例如 LTE版本 8/9/10 ( Release 8/9/10 ) 中的 UE, 系 统消息是半静态更新的, 且系统消息的更新周期较长, 因此, 若基站 进行了上下行子帧配置的动态调整, 这些 UE 无法实时获知基站动态 调整后的上下行子帧配置, 将继续按照通过系统消息确定的上下行子 帧配置进行数据的接收和传输, 因此, 基站对上下行子帧配置的动态 调整, 将可能导致 UE与基站之间无法正常进行通信。
发明内容
本发明的实施例提供一种用于 TDD系统的通信方法和装置, 能 够有效保证 UE与基站之间的正常通信。
本发明的实施例采用如下技术方案:
一种用于 TDD系统的通信方法, 包括:
将第一上下行子帧配置调整为第二上下行子帧配置, 所述第二上 下行子帧配置对应的子帧与所述第一上下行子帧配置对应的子帧存 在交集,所述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集中包括至少一个上行子帧和至少一个下行子帧;
根据与所述第一上下行子帧配置对应的定时关系相同的定时关 系, 在所述交集包括的至少一个上行子帧和至少一个下行子帧中与 UE进行通信。 一种用于 TDD系统的通信方法, 包括:
UE根据第一上下行子帧配置与基站进行通信;
所述 UE在所述第一上下行子帧配置调整为第二上下行子帧配置 后, 根据与所述第一上下行子帧配置对应的定时关系相同的定时关 系,在所述第二上下行子帧配置对应的子帧与所述第一上下行子帧配 置对应的子帧存在的交集包含的子帧中与所述基站进行通信,所述交 集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集中包 括至少一个上行子帧和至少一个下行子帧。 一种基站, 包括:
配置调整单元, 用于将第一上下行子帧配置调整为第二上下行子 帧配置, 所述第二上下行子帧配置对应的子帧与所述第一上下行子帧 配置对应的子帧存在交集, 所述交集为具有相同子帧索引、 相同子帧 类型的子帧的集合, 所述交集中包括至少一个上行子帧和至少一个下 行子帧;
通信单元, 用于根据与所述第一上下行子帧配置对应的定时关系 相同的定时关系, 在所述交集包括的至少一个上行子帧和至少一个下 行子帧中与 UE进行通信。 一种 UE, 包括:
配置确定单元, 用于获知第一上下行子帧配置;
通信单元,用于在所述第一上下行子帧配置调整为第二上下行子 帧配置后,根据与所述第一上下行子帧配置对应的定时关系相同的定 时关系,在所述第二上下行子帧配置对应的子帧与所述第一上下行子 帧配置对应的子帧存在的交集包含的子帧中与所述基站进行通信,所 述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集 中包括至少一个上行子帧和至少一个下行子帧。
采用上述技术方案后, 本发明实施例提供的用于 TDD系统的通 信方法和装置, 一方面, 可以对通信系统的上下行子帧配置进行动态 调整, 因此, 有效提高了系统的性能和灵活性。 另一方面, 虽然 TDD 系统的上下行子帧配置发生了改变,由于第二上下行子帧配置与第一 上下行子帧配置具有所述交集,而未能实时获得调整后的第二上下行 子帧配置的 UE可以依据之前的获知的第一上下行子帧配置对应的子 帧类型和定时关系, 因此, 基站和该 UE之间可以按照第一上下行子 帧配置对应的定时关系, 使用所述交集内的子帧进行通信, 该 UE不 会获知上下行子帧配置进行了调整,且上下行子帧配置的调整不影响 该 UE与基站之间的数据传输, 即第二上下行子帧配置对于 UE是透 明的, 能够有效保证该 UE与基站之间的正常通信。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例 中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图确定其他的附图。
图 1为本发明实施例的用于 TDD的通信方法的一种流程图; 图 2为本发明实施例的用于 TD D的通信方法的一种流程图; 图 3为本发明实施例的用于 TDD的通信方法的一种流程图; 图 4为图 3所示通信方法中所确定的一种第二上下行子帧配置示 意图;
图 5为本发明实施例的基站的结构框图;
图 6为本发明实施例的用户设备的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整地描述。
应当明确, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有 做出创造性劳动前提下所确定的所有其他实施例,都属于本发明保护 的范围。
在本发明实施例中, 基站可以为演进基站 (evolved Node B , eNB ) , Node B , 接入点 (Access Point ) 等。 每个基站可以提供为 特定地理区域提供通信覆盖。 术语 "小区 (Cell ) ,, 可以为基站的覆 盖区域, 和 /或基站子系统服务的覆盖区域, 取决于该术语所使用的 上下文。 基站可以为宏小区、 皮小区 (Pico Cell ) 、 毫微微蜂窝小区 ( Femto Cell ) , 和 /或其它类型的小区提供通信覆盖。
在本发明实施例中, UE 可以分布于整个无线网络中, 每个 UE 可以是静态的或移动的。 UE可以称为终端( Terminal ),移动台( Mobile Station , MS ) , 用户单元 ( Subscriber Unit ) , 站台 (Station ) 等。 UE可以为蜂窝电话( Cellular Phone ) ,个人数字助理( Personal Digital Assistant, PDA ) , 无线调制解调器 (Modem ) , 无线通信设备, 手 持设备 ( Handheld ) , 膝上型电脑 (Laptop computer ) , 无绳电话 ( Cordless Phone ) , 无线本地环路 ( Wireless Local Loop , WLL ) 台 等。 UE可以与宏基站、 Pico基站, Femto基站等进行通信。
为了使本领域的技术人员更好的理解本发明的技术方案,首先对 LTE T D D系统中的上下行子帧配置和定时关系进行筒要介绍。
LTE TDD系统具体的上下行子帧配置如表一所示, LTE TDD系 统可以支持配置 0至配置 6七种不同的上下行子帧配置,每种上下行 子帧配置对应一种无线帧的配置, 每个无线帧均包括子帧索引 (也称 为子帧号) 为 0至 9的 10个子帧, 也即一种上下行子帧配置对应子 帧索引为 0至 9的 10个子帧。 每个子帧具有对应的子帧类型, 子帧 类型可以为上行子帧、 下行子帧或特殊子帧。 例如, 如表一所示为 LTE TDD 系统的上下行子帧配置, D表示子帧为下行子帧, S表示 子帧为特殊子帧, U表示子帧为上行子帧。下行子帧只用于下行传输, 上行子帧只用于上行传输, 特殊子帧由三部分组成, 即下行导频时隙 DwPTS ( Downlink Pilot Time Slot ) , 保护周期 GP ( Guard period ) 和上行导频时隙 UpPTS(Uplink Pilot Time Slot ) , DwPTS用于下行 传输, GP是下行传输和上行传输之间的保护间隔, UpPTS用于上行 传输。
LTE TDD系统的上下行子帧配置
Figure imgf000007_0001
在 LTE TDD 系统中, 基站通过物理下行控制信道 PDCCH
( Physical Downlink Control Channel )对 UE进行调度, PDCCH可以 是用于下行调度授权的下行授权 DL grant或上行调度授权的上行授 权 UL grant, PDCCH承载了指示物理下行共享信道 PDSCH( physical downlink shared channel ) 或物理上行共享信道 PUSCH ( physical uplink shared channel ) 的时频资源分配等调度信息。 UE接收并解码 PDCCH后, 会根据 PDCCH承载的调度信息, 接收 PDSCH承载的下 行数据或者发送 PUSCH承载的上行数据, UE会对下行接收的数据 在上行进行肯定确认 ACK ( ACKnowledge ) /否定确认 NACK ( Non ACKnowledge )反馈, 其中, 反馈 ACK表示 PDSCH接收成功, 反 馈 NACK表示 PDSCH接收失败。 类似的, 基站接收到上行数据后, 也会对上行数据在下行进行 ACK/NACK 反馈。 另外, 当系统支持 是 NACK, 则基站或 UE会进行重传。
在 LTE TDD系统中, 对于每种上下行子帧配置中子帧之间都存 在定时关系 (即该上下行子帧配置对应的定时关系) 。 这些定时关系 包括: 用于调度 PUSCH 传输的 UL grant 的传输时刻(或子帧)和 PUSCH 传输时刻之间的定时关系 、 PUSCH 传输时刻和下行 ACK/NACK反馈时刻之间的定时关系、 PUSCH初传时刻和 PUSCH 重传时刻之间的定时关系, 或者下行 PDSCH 传输时刻和上行 ACK/NACK反馈时刻之间的定时关系。 基站和 UE要按照该上下行 子帧配置对应的定时关系进行数据的调度、 发送、 接收、 反馈或重传 等。
可见, LTE TDD系统的每种上下行子帧配置不仅指明了在该上 下行子帧配置下每个无线帧的子帧类型,同时也指明了在该上下行子 帧配置对应的定时关系, 包括 PUSCH和 UL grant调度之间、 PUSCH 初传和 PUSCH重传之间、 PUSCH传输和下行 ACK/NACK应答之间, 或 PDSCH传输和上行 ACK/NACK应答之间的定时关系等。 如图 1所示, 本发明的实施例提供了一种用于 TDD 系统的通信 方法, 基于基站, 包括:
步骤 101 , 将第一上下行子帧配置调整为第二上下行子帧配置。 在实际的通信系统中, 上行业务和下行业务具有不对称性, 且系 统的业务负载可以是时间变化的。 例如, 在一个时刻, 用户要大量上 传业务时, 上行负载量大幅的增加; 在另一个时刻, 用户要大量下载 业务时, 下行负载量大幅增加。 为了满足业务负载等需要, 本发明实施例中,基站可随时根据业 务负载等变化, 对系统中当前使用的上下行子帧配置进行动态调整, 也即将原来的第一上下行子帧配置调整为第二上下行子帧配置。 例 如,基站可根据业务负载的变化, 当上行业务量、即上行负载增加时, 增加无线帧中上行子帧的数量,即对上下行子帧配置的子帧类型进行 调整。 同理, 当下行业务量、 即下行负载增加时, 增加无线帧中下行 子帧的数量, 即对上下行子帧配置的子帧类型进行调整。 除对子帧类 型进行调整外, 基站还可以对上下行子帧配置的定时关系进行调整。
需要说明的是, 本发明实施例中,对上下行子帧配置的动态调整 与通过系统消息对上下行子帧配置的半静态调整为彼此独立的过程, 互不影响。
由于通信系统中,对于仅依照于系统消息确定系统的上下行子帧 配置 UE, 当基站调整了上下行子帧配置且调整后的上下行子帧配置 与系统消息配置的上下行子帧配置不同时, 该 UE无法实时获知基站 调整后的上下行子帧配置。
为了保证该 UE和基站之间正常进行通信,基站可以根据系统消 息配置的第一上下行子帧配置, 确定出调整后的第二上下行子帧配 置。
在本发明实施例中,第一上下行子帧配置可以为系统消息配置的 上下行子帧配置;第二上下行子帧配置对应的子帧类型和定时关系与 第一上下行子帧配置对应的子帧类型和定时关系中的至少一种可以 不同;第二上下行子帧配置对应子帧和第一上下行子帧配置对应的子 帧存在交集,该交集是第一上下行子帧配置对应的子帧和第二上下行 子帧配置对应的子帧中具有相同子帧索引、且相同子帧类型的子帧的 集合。 所述交集中包括至少一个上行子帧和至少一个下行子帧。
其中,第二上下行子帧配置可以是表一中所示的上下行子帧配置 之一, 也可以与表一中所示的上下行子帧配置不同的上下行子帧配 置。
可选的, 在本发明实施例中, 所述交集中包含的至少一个上行子 帧包括用于 PUSCH传输的上行子帧, 所述至少一个下行子帧包括用 于承载调度所述 PUSCH 传输的 UL grant 的下行子帧, 所述用于 PUSCH传输的上行子帧和所述承载 UL grant的下行子帧之间的定时 关系和所述第一上下行子帧配置对应的定时关系相同,以有效保证基 站和 UE之间正常进行 PUSCH的调度和传输。 例如, 第一上下行子 帧配置对应的子帧中, 用于 PUSCH传输的上行子帧为子帧 n, 用于 承载调度该 PUSCH传输的 UL grant的下行子帧为子帧 n-k, 则所述 交集中包括用于 PUSCH传输的、 子帧索引为 n的上行子帧, 并且, 交集中包括承载调度子帧 n的 PUSCH传输的 UL grant的下行子帧, 其子帧索引为 n-k。
可选的, 所述交集中包含的所述至少一个上行子帧包括用于 PUSCH 传输的上行子帧, 所述至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反馈的下行子帧, 所述用于 PUSCH传 输的上行子帧和所述用于进行 ACK/N ACK反馈的下行子帧之间的定 时关系和所述第一上下行子帧配置对应的定时关系相同,以有效保证 基站和 UE之间正常进行 PUSCH的传输。 例如, 第一上下行子帧配 置对应的子帧中, 用于 PUSCH 传输的上行子帧为子帧 n, 用于对 PUSCH传输进行 ACK/NACK反馈的下行子帧为 n+1, 则所述交集中 包括用于 PUSCH传输、 子帧索引为 n的上行子帧, 并且, 交集中包 括用于对子帧 n的 PUSCH传输进行 ACK/NACK反馈的下行子帧, 其子帧索引为 n+l。
可选的, 所述交集中包含的所述至少一个下行子帧包括用于 PDSCH 传输的下行子帧, 所述至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反馈的上行子帧, 所述用于 PDSCH传 输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定 时关系和所述第一上下行子帧配置对应的定时关系相同,以有效保证 基站和 UE之间正常进行 PDSCH的传输。 例如, 在第一上下行子帧 配置对应的子帧中, 用于 PDSCH传输的下行子帧为 n, 用于对所述 PDSCH传输进行 ACK/NACK反馈的上行子帧为 n+p,则所述交集中 包括用于 PDSCH传输、 子帧索引为 n的下行子帧, 并且, 交集中包 括用于对子帧 n的 PDSCH传输进行 ACK/NACK反馈的上行子帧, 其子帧索引为 n+p。
可选的, 所述交集中包含的所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子帧, 所述用于 PUSCH传输的上行子 帧和所述用于对所述 P U S C H传输进行重传的上行子帧之间的定时关 系和所述第一上下行子帧配置对应的定时关系相同,以有效保证基站 和 UE之间正常进行 PUSCH的重传。 例如, 第一上下行子帧配置对 应的子帧中, 用于 PUSCH传输的上行子帧为 n, 用于对所述 PUSCH 传输进行重传的上行子帧为 n+q , 则在所述交集中包括用于传输 PUSCH, 子帧索引为 n的上行子帧, 并且, 交集中包括用于对子帧 n 的 PUSCH传输进行重传的上行子帧, 其子帧索引为 n+q。
在本发明实施例中, 上述 n, k, 1, p和 q均为整数, 若一个无 线帧中包含的子帧的子帧索引为 0至 9, 则 n可以为 0至 9中的任一 整数, 若 n+1, n+p或 n+q的值超出了 9, 则表示在下一个无线帧中 的相应子帧上进行传输。 同样, 若 n-k小于 0, 则表示在上一个无线 帧中的相应子帧上进行传输。
另外, 可选的, 第二上下行子帧配置可以是基站根据业务负载和 第一上下行子帧配置获得,还可以是基站从上下行子帧配置集合中选 择得到;所述上下行子帧配置集合为预先设定或是基站根据所述业务 负载和第一上下行子帧配置获得。
其中, 可选的, 所述业务负载可以是基站进行检测所获知的, 也 可以是 UE上报给基站的, 本发明实施例对此不做限定。
还需要说明的是, 当基站对上下行子帧配置进行动态调整时, 系 统正在使用的上下行子帧配置可以是系统消息配置的第一上下行子 帧配置, 也可为与第一上下行子帧配置不同的其它上下行子帧配置。
步骤 102, 根据与所述第一上下行子帧配置对应的定时关系相同 的定时关系,在所述交集包括的至少一个上行子帧和至少一个下行子 帧中与 UE进行通信。
例如, 基站在与 UE进行通信时, 在所述交集包括的至少一个上 行子帧和至少一个下行子帧中, 在下行子帧 n-k上承载调度 PUSCH 传输的 UL grant, 在上行子帧 n上进行 PUSCH, 上行子帧 n与下行 子帧 n-k 之间的定时关系和第一上下行子帧配置对应的定时关系相 同。 或者, 在上行子帧 n上进行 PUSCH传输, 在下行子帧 n+1上进 行对该 PUSCH传输进行 ACK/NACK反馈, 上行子帧 n和下行子帧 n + 1之间的定时关系和第一上下行子帧配置对应的定时关系相同。 或 者, 在下行子帧 n上进行 PDSCH传输, 在上行子帧 n+p对 PDSCH 传输进行 ACK/NACK反馈, 所述下行子帧 n和所述上行子帧 n+p之 间的定时关系和所述第一上下行子帧配置对应的定时关系相同。 或 者, 在上行子帧 n上进行 PUSCH传输, 在上行子帧 n+q上进行对所 述 PUSCH进行重传, 所述上行子帧 n和所述上行子帧 n+q之间的定 时关系和所述第一上下行子帧配置之间的定时关系相同。
在本发明实施例中,由于第二上下行子帧配置与第一上下行子帧 配置具有所述交集,而未能实时获得调整后的第二上下行子帧配置的 UE可以依据之前的系统消息获知的第一上下行子帧配置对应的子帧 类型和定时关系, 因此, 基站和该 UE之间可以按照第一上下行子帧 配置对应的定时关系, 使用所述交集内的子帧进行通信, 该 UE不会 获知上下行子帧配置进行了调整,且上下行子帧配置的调整不影响该 UE与基站之间的数据传输, 即第二上下行子帧配置对于 UE是透明 的, 能够有效保证该 UE与基站之间的正常通信。
在本发明实施例中,对于可以实时获取调整后的第二上下行子帧 配置的 UE, 该 UE可以实时获得该第二上下行子帧配置对应的子帧 的子帧类型, 以及该第二上下行子帧配置对应的定时关系, 因此, 基 站和可以实时获取调整后的第二上下行子帧配置 U E之间可使用第二 上下行子帧配置进行通信, 提高了通信系统的灵活性和性能。 与图 1所示的通信方法相对应,如图 2所示, 本发明的实施例又 提供了一种用于 TDD系统的通信方法, 基于 UE, 包括:
步骤 201 , UE根据第一上下行子帧配置与基站进行通信。
在本发明实施例中,第一上下行子帧配置可以为系统消息配置的 上下行子帧配置。
步骤 202, UE在所述第一上下行子帧配置调整为第二上下行子 帧配置后,根据与所述第一上下行子帧配置对应的定时关系相同的定 时关系,在所述第二上下行子帧配置对应的子帧与所述第一上下行子 帧配置对应的子帧存在的交集包含的子帧中与所述基站进行通信,所 述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集 中包括至少一个上行子帧和至少一个下行子帧。
可选的, 在本发明实施例中, 所述交集中包含的至少一个上行子 帧包括用于 PUSCH传输的上行子帧, 所述至少一个下行子帧包括用 于承载调度所述 PUSCH 传输的 UL grant 的下行子帧, 所述用于 PUSCH传输的上行子帧和所述承载 UL grant的下行子帧之间的定时 关系和所述第一上下行子帧配置对应的定时关系相同,以有效保证基 站和 UE之间正常进行 PUS CH的调度和传输。
可选的, 所述交集中包含的所述至少一个上行子帧包括用于 PUSCH 传输的上行子帧, 所述至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反馈的下行子帧, 所述用于 PUSCH传 输的上行子帧和所述用于进行 ACK/N ACK反馈的下行子帧之间的定 时关系和所述第一上下行子帧配置对应的定时关系相同,以有效保证 基站和 UE之间正常进行 PUSCH的传输。
可选的, 所述交集中包含的所述至少一个下行子帧包括用于 PDSCH 传输的下行子帧, 所述至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反馈的上行子帧, 所述用于 PDSCH传 输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定 时关系和所述第一上下行子帧配置对应的定时关系相同,以有效保证 基站和 UE之间正常进行 PDSCH的传输。
可选的, 所述交集中包含的所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子帧, 所述用于 PUSCH传输的上行子 帧和所述用于对所述 P U S C H传输进行重传的上行子帧之间的定时关 系和所述第一上下行子帧配置对应的定时关系相同,以有效保证基站 和 UE之间正常进行 PUSCH的重传。
另外,第二上下行子帧配置可以是基站根据业务负载和第一上下 行子帧配置获得, 还可以是基站从上下行子帧配置集合中选择得到; 所述上下行子帧配置集合为预先设定或是基站根据所述业务负载和 第一上下行子帧配置获得。
在本发明实施例中,由于第二上下行子帧配置与第一上下行子帧 配置具有所述交集,而未能实时获得调整后的第二上下行子帧配置的 UE可以依据之前的系统消息获知的第一上下行子帧配置对应的子帧 类型和定时关系, 因此, 基站和该 UE之间可以按照第一上下行子帧 配置对应的定时关系, 使用所述交集内的子帧进行通信, 该 UE不会 获知上下行子帧配置进行了调整,且上下行子帧配置的调整不影响该
UE与基站之间的数据传输, 即第二上下行子帧配置对于 UE是透明 的, 能够有效保证该 UE与基站之间的正常通信。
在本发明实施例中,对于可以实时获取调整后的第二上下行子帧 配置的 UE, 该 UE可以实时获得该第二上下行子帧配置对应的子帧 的子帧类型, 以及该第二上下行子帧配置对应的定时关系, 因此, 基 站和可以实时获取调整后的第二上下行子帧配置 U E之间可使用第二 上下行子帧配置进行通信, 提高了通信系统的灵活性和性能。 下面通过具体的实施例对本发明用于 TDD系统的通信方法进行 进一步的详细说明。 如图 3所示, 本实施例的用于 TDD系统的通信 方法, 包括:
步骤 301 , UE确定第一上下行子帧配置。
该 UE可以根据系统消息获取第一上下行子帧配置,从而可以获 知该第一上下行子帧配置对应的无线帧,即获知该第一上下行子帧配 置对应的子帧的子帧类型以及子帧之间的定时关系。
步骤 302, 基站和该 UE根据第一上下行子帧配置进行通信。 步骤 303 ,基站将第一上下行子帧配置调整为第二上下行子帧配 置。
具体的,基站可以根据业务负载、 系统消息配置的第一上下行子 帧配置, 生成第二上下行子帧配置, 将第一上下行子帧配置调整为第 二上下行子帧配置;
在本发明实施例中,基站可以进一步根据子帧配置更改原则确定 第二上下行子帧配置。子帧配置更改原则可以包括子帧类型更改原则 和定时关系更改原则中的至少一种,子帧类型更改原则指定了哪些子 帧的子帧类型可以更改及如何更改,定时关系更改原则指定了哪些定 时关系可以更改及如何更改。
由前述表一可知, 在 LTE TDD系统的各种上下行子帧配置中, 0, 5号子帧总是下行子帧, 1号子帧总是特殊子帧, 6号子帧只能是 特殊子帧或者下行子帧, 2号子帧总是上行子帧。 由于 5号子帧要承 载调度系统消息, 0, 1 , 5 , 6 号子帧要承载调度寻呼消息, 因此基 站在更改上下行子帧配置时, 需要保持 0、 5号子帧的类型, 即 0、 5 号子帧只能是下行子帧; 同时, 考虑到和 LTE 系统的上下行子帧配 置保持一致性,且系统至少需要 1个特殊子帧支持从下行子帧到上行 子帧的转换(即特殊子帧的前一个子帧总是下行子帧, 特殊子帧的后 一个子帧总是上行子帧), 1 号子帧可总是作为特殊子帧, 相应的 2 号子帧总是上行子帧。对于 6号子帧,当 6号子帧类型是特殊子帧时, 基站可以将 6号子帧的类型更改为下行子帧, 此时, 因为没有了下行 到上行的转换间隔, 可以将 6号子帧之后的(7、 8、 9号子帧)子帧内 的上行子帧都配置为下行子帧。 基于此, 可选的, 本实施例中, 子帧 配置更改原则如表二所示。
步骤 304,基站判断第二上下行子帧配置对应的子帧与第一上下 行子帧配置对应的子帧之间是否有交集, 该交集为具有相同子帧索 引、相同子帧类型的子帧的集合, 且交集中至少包含一个上行子帧和 一个下行子帧。
若是, 则执行步骤 305 , 若否, 则返回步骤 303 , 基站重新生成 另一种第二上下行子帧配置。
步骤 305 , 基站判断在所述交集中的至少一个上行子帧中, 是否 存有上行子帧 n, 且 7 载调度上行子帧 n中的 PUSCH的 UL grant的 下行子帧在所述交集中的至少一个下行子帧中; 同时, 对上行子帧 n 中的 PUSCH进行 ACK/NACK反馈的下行子帧在所述交集中的至少 一个下行子帧中。 其中, n为子帧索引。
若 TDD 系统配置为支持 PUSCH的重传, 本步骤中, 对上行子 帧 n中的 PUSCH进行重传的上行子帧在所述交集中的至少一个上行 子帧中。
若是, 则执行步骤 306, 若否, 则返回步骤 303 , 基站重新生成 另一种第二上下行子帧配置。
表二: 子帧索引号 是否能动态更改子帧类型
0 不能, 只能是下行子帧类型;
1 不能, 只能是特殊子帧类型;
2 不能, 只能是上行子帧类型;
3 可以, 可以是上行或下行子帧类型;
4 可以, 可以是上行或下行子帧类型;
5 不能, 只能是下行子帧类型;
6 可以, 只能是特殊或下行子帧类型
7 可以, 可以是上行或下行子帧类型
8 可以, 可以是上行或下行子帧类型
9 可以, 可以是上行或下行子帧类型
步骤 306 , 基站判断在所述交集中的至少一个下行子帧中, 是否 存有下行子帧 m, 且对下行子帧 m中的 PDSCH进行 ACK/NACK反 馈的上行子帧在所述交集中的至少一个上行子帧中。 其中, m为子帧 索引。
若是, 则执行步骤 307 , 若否, 则返回步骤 303 , 重新生成另一 种第二上下行子帧配置。
步骤 307 ,基站根据与所述第一上下行子帧配置对应的定时关系 相同的定时关系,在所述交集包括的至少一个上行子帧和至少一个下 行子帧中与 UE进行通信。
在本发明实施例中, 对于可以实时获取第二上下行子帧配置的 UE, 基站可以通过第二上下行子帧配置确定的子帧类型和定时关系 和该 UE进行通信。
当然, 系统的业务负载不是固定不变的, 本实施例中, 可选的, 在步骤 307之后, 基站可以根据业务负载变化, 动态地对上下行子帧 配置进行再次或多次调整。
下面举例对本实施例的用于 TDD系统的通信方法进行进一步的 详细说明。 4叚设系统消息(如系统信息块 1 ( System Information Block 1, SIB1)中指示 TDD子帧配置,即第一上下行子帧配置为 0号上下行 子帧配置, 其中, 0号上下行子帧配置详见表一。 在步骤 303中, 基 站根据业务负载、 0号上下行子帧配置以及子帧配置更改原则 (表二 所示), 将 0号上下行子帧配置中的 9号上行子帧的子帧类型更改为 下行子帧, 生成第二上下行子帧配置 X。 其中, 第二上下行子帧配置 X如图 4所示。 在步骤 304中, 基站判断出所生成的第二上下行子帧 配置 X对应的子帧类型所确定的子帧与 0号第一上下行子帧配置对 应的子帧类型所确定的子帧之间具有交集,且交集至少包含一个上行 子帧和一个下行子帧。该交集是第一上下行子帧配置对应的子帧和第 二上下行子帧配置对应的子帧中具有相同子帧索引、且相同子帧类型 的子帧的集合。 具体的, 根据表一和图 4可知, 在 0号上下行子帧配 置对应的子帧中, 子帧索引为 0和 5的子帧的子帧类型为下行子帧, 子帧索引为 1和 6的子帧的子帧类型为特殊子帧, 子帧索引为 2、 3、 4、 7、 8和 9的子帧的子帧类型为上行子帧。 在图 4所示的第二上下 行子帧配置对应的子帧中, 子帧索引子帧索引为 0、 5和 9的子帧的 子帧类型为下行子帧,子帧索引为 1和 6的子帧的子帧类型为特殊子 帧, 子帧索引为 2、 3、 4、 7和 8的子帧的子帧类型为上行子帧。 因 此,在 0号上下行子帧配置对应的子帧和图 4所示的第二上下行子帧 配置对应的子帧中, 具有相同子帧索引、且相同子帧子帧类型的子帧 为子帧索引为 0至 8这 9个子帧, 因此, 在本实施例中, 第二上下行 子帧配置 X和第一上下行子帧配置的交集 A为:
{ D(0)、 S(l)、 U(2)、 U(3)、 U(4)、 D(5)、 S(6)、 U(7)、 U(8) } 在步骤 305中,基站判断出在交集 A中,存有上行子帧 2、 7、 8 , 按照 0号上下行子帧配置的定时关系, 满足承载调度上行子帧 2、 7、 8的 PUSCH的 UL grant的下行子帧在交集 A中, 对上行子帧 2、 7、 8的 PUSCH进行 ACK/NACK反馈的下行子帧在交集 A中。 在步骤 306中, 基站判断出在交集 A中, 存有下行子帧 0、 1、 6, 按照 0号 上下行子帧配置的定时关系, 满足对下行子帧 0、 1、 6的 PDSCH进 行 ACK/NACK反馈的上行子帧在交集 A中。 在步骤 307中, 基站将 根据与 0号上下行子帧配置对应的定时关系相同的定时关系,在交集 A中的子帧与未实时获得第二上下行子帧配置的 UE进行通信。另夕卜, 还可以使用第二上下行子帧配置 X 与可以实时获得第二上下行子帧 配置的 UE进行通信。
需要说明的是, 本实施例中, 第二上下行配置是基站根据业务负 载和第一上下行配置所获得, 但本发明实施例中不限于此, 可预先设 定上下行配置集合,该集合中包括若干个满足第二上下行配置条件的 上下行子帧配置, 当需要进行上下行子帧配置调整时,基站直接从上 下行子帧配置集合中选择得到第二上下行子帧配置, 或者,基站可预 先或者需要进行上下行子帧配置调整时,根据业务负载和第一上下行 配置获得上下行配置集合,该集合中包括若干个满足第二上下行配置 条件的上下行子帧配置, 并从集合中选择得到第二上下行子帧配置。
与前述的通信方法相对应, 本发明实施例还提供了一种基站, 本 例。 如图 5所示, 包括:
配置调整单元 10, 用于将第一上下行子帧配置调整为第二上下 行子帧配置,所述第二上下行子帧配置对应的子帧与所述第一上下行 子帧配置对应的子帧存在交集, 所述交集为具有相同子帧索引、相同 子帧类型的子帧的集合,所述交集中包括至少一个上行子帧和至少一 个下行子帧;
通信单元 11 , 用于根据与所述第一上下行子帧配置对应的定时 关系相同的定时关系,在所述交集包括的至少一个上行子帧和至少一 个下行子帧中与 UE进行通信。
在本发明实施例中基站的配置调整单元 10调整第二上下行子帧 配置的方法, 以及通信单元 11与 UE进行通信的方法可以参考本发 明实施例提供的方法实施例中基站进行调整第二上下行子帧配置的 方法, 以及基站与 UE进行通信的方法。 在本发明实施例提供的基站 实施例中,第一上下行子帧配置和第二上下行子帧配置可以和本发明 实施例提供的方法实施例中的第一上下行子帧配置和第二上下行子 帧配置相同。
本发明实施例提供的基站,由于第二上下行子帧配置与第一上下 行子帧配置具有所述交集,而未能实时获得调整后的第二上下行子帧 配置的 UE可以依据之前的系统消息获知的第一上下行子帧配置对应 的子帧类型和定时关系, 因此, 基站和该 UE之间可以按照第一上下 行子帧配置对应的定时关系, 使用所述交集内的子帧进行通信, 该
UE不会获知上下行子帧配置进行了调整, 且上下行子帧配置的调整 不影响该 UE 与基站之间的数据传输, 即第二上下行子帧配置对于 UE是透明的, 能够有效保证该 UE与基站之间的正常通信。
另外, 对于可以实时获取调整后的第二上下行子帧配置的 UE, 该 U E可以实时获得该第二上下行子帧配置对应的子帧的子帧类型, 以及该第二上下行子帧配置对应的定时关系,本发明实施例提供的基 站可使用第二上下行子帧配置和可以实时获取调整后的第二上下行 子帧配置 UE之间置进行通信, 提高了通信系统的灵活性和性能。
可选的, 在配置调整单元 10调整的所述第二上下行子帧配置对 应的子帧与所述第一上下行子帧配置对应的子帧存在的交集中: 所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于承载调度所述 PUSCH传输的 UL grant的 下行子帧,所述用于 PUSCH传输的上行子帧和所述 7 载 UL grant的 下行子帧之间的定时关系和所述第一上下行子帧配置对应的定时关 系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反 馈的下行子帧, 所述用于 PUSCH 传输的上行子帧和所述用于进行 ACK/NACK反馈的下行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个下行子帧包括用于 PDSCH传输的下行子帧, 所述 至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反 馈的上行子帧, 所述用于 PDSCH 传输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子 帧, 所述用于 PUSCH传输的上行子帧和所述用于对所述 PUSCH传 输进行重传的上行子帧之间的定时关系和所述第一上下行子帧配置 对应的定时关系相同。
另外, 配置调整单元 10可以具体用于根据业务负载和所述第一 上下行子帧配置获得所述第二上下行子帧配置或者从上下行子帧配 置集合中选择得到所述第二上下行子帧配置, 其中, 所述上下行子帧 配置集合为预先设定或者为所述配置调整单元 10根据所述业务负载 和所述第一上下行子帧配置获得的。
相应的, 本发明的实施例还提供了一种 UE, 本发明实施例提供 包括:
配置确定单元 20, 用于获知第一上下行子帧配置;
通信单元 21 , 用于用于在所述第一上下行子帧配置调整为第二 上下行子帧配置后,根据与所述第一上下行子帧配置对应的定时关系 相同的定时关系,在所述第二上下行子帧配置对应的子帧与所述第一 上下行子帧配置对应的子帧存在的交集包含的子帧中与所述基站进 行通信,所述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集中包括至少一个上行子帧和至少一个下行子帧。
在本发明实施例提供的 UE的实施例中, 第一上下行子帧配置和 第二上下行子帧配置可以和本发明实施例提供的方法实施例中的第 一上下行子帧配置和第二上下行子帧配置相同。
本发明实施例提供的 UE, 由于第二上下行子帧配置与第一上下 行子帧配置具有所述交集,而未能实时获得调整后的第二上下行子帧 配置的 UE可以依据之前的系统消息获知的第一上下行子帧配置对应 的子帧类型和定时关系, 因此, 基站和该 UE之间可以按照第一上下 行子帧配置对应的定时关系, 使用所述交集内的子帧进行通信, 该 UE不会获知上下行子帧配置进行了调整, 且上下行子帧配置的调整 不影响该 UE 与基站之间的数据传输, 即第二上下行子帧配置对于 UE是透明的, 能够有效保证该 UE与基站之间的正常通信。
可选的, 在用于通信单元 21与基站进行通信的、 所述第二上下 行子帧配置对应的子帧与所述第一上下行子帧配置对应的子帧存在 的交集中: 所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于承载调度所述 PUSCH传输的 UL grant的 下行子帧,所述用于 PUSCH传输的上行子帧和所述 7 载 UL grant的 下行子帧之间的定时关系和所述第一上下行子帧配置对应的定时关 系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反 馈的下行子帧, 所述用于 PUSCH 传输的上行子帧和所述用于进行 ACK/NACK反馈的下行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个下行子帧包括用于 PDSCH传输的下行子帧, 所述 至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反 馈的上行子帧, 所述用于 PDSCH 传输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子 帧, 所述用于 PUSCH传输的上行子帧和所述用于对所述 PUSCH传 输进行重传的上行子帧之间的定时关系和所述第一上下行子帧配置 对应的定时关系相同。
可选的,第二上下行子帧配置可以是所述基站根据业务负载和所 述第一上下行子帧配置获得;还可以是所述基站从上下行子帧配置集 合中选择得到; 所述上下行子帧配置集合为预先设定, 或者所述上下 行子帧配置集合是所述基站根据所述业务负载和所述第一上下行子 帧配置获得。
本领域技术人员能够理解, 在本发明实施例中, 信息、 数据可以 使用任何技术来表示, 例如, 数据 (Data ) , 指令 (Instructions ) , 命令 ( Command ) ,信息 ( Information ) ,信号( Signal ) , 比特( Bit ) , 符号 (Symbol )和芯片 (Chip )可以通过电压、 电流、 电磁波、 磁场 或磁粒 ( Magnetic particles ) , 光场或光粒 ( Optical Particles ) , 或 以上的任意组合。 本领域技术人员还可以了解到本发明实施例列出的各种说明性 逻辑块 ( Illustrative Logical block ) , 单元, 和步骤可以通过电子硬 件、 电脑软件, 或两者的结合进行实现。 为清楚展示硬件和软件的可 替换 ( Interchangeability ) , 上述的各种说明性部件 ( Illustrative Components ) , 单元和步骤已经通用地描述了它们的功能。 这样的功 能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计 要求。 本领域技术人员可以对于每种特定的应用, 可以使用各种方法 实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的 范围。
本发明实施例中所描述的各种说明性的逻辑块,或单元都可以通 过通用处理器, 数字信号处理器, 专用集成电路 (ASIC ) , 现场可 编程门阵列 (FPGA )或其它可编程逻辑装置, 离散门或晶体管逻辑, 离散硬件部件, 或上述任何组合的设计来实现或操作所描述的功能。 通用处理器可以为微处理器, 可选地, 该通用处理器也可以为任何传 统的处理器、 控制器、 微控制器或状态机。 处理器也可以通过计算装 置的组合来实现, 例如数字信号处理器和微处理器, 多个微处理器, 一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的 配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、 处理器执行的软件模块、 或者这两者的结合。 软件模块可以存储于 RAM存储器、 闪存、 ROM存储器、 EPROM存储器、 EEPROM存储 器、 寄存器、 硬盘、 可移动磁盘、 CD-ROM 或本领域中其它任意形 式的存储媒介中。 示例性地, 存储媒介可以与处理器连接, 以使得处 理器可以从存储媒介中读取信息, 并可以向存储媒介存写信息。 可选 地, 存储媒介还可以集成到处理器中。 处理器和存储媒介可以设置于 ASIC中, ASIC可以设置于用户终端中。 可选地, 处理器和存储媒介 也可以设置于用户终端中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能 可以在硬件、 软件、 固件或这三者的任意组合来实现。 如果在软件中 实现, 这些功能可以存储与电脑可读的媒介上, 或以一个或多个指令 或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒 介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存 储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。 例如, 这样的电脑可读媒体可以包括但不限于 RAM、 ROM、 EEPROM、 CD-ROM 或其它光盘存储、 磁盘存储或其它磁性存储装置, 或其它 任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊 电脑、 或通用或特殊处理器读取形式的程序代码的媒介。 此外, 任何 连接都可以被适当地定义为电脑可读媒介, 例如, 如果软件是从一个 网站站点、 服务器或其它远程资源通过一个同轴电缆、 光纤电脑、 双 绞线、 数字用户线(DSL )或以例如红外、 无线和微波等无线方式传 输的也被包含在所定义的电脑可读媒介中。 所述的碟片 (Disk )和磁 盘 (Disc ) 包括压缩磁盘、 镭射盘、 光盘、 DVD、 软盘和蓝光光盘, 磁盘通常以磁性复制数据, 而碟片通常以激光进行光学复制数据。 上 述的组合也可以包含在电脑可读媒介中。
现本发明的内容, 任何基于所公开内容的修改都应该被认为是本领域 显而易见的, 本发明所描述的基本原则可以应用到其它变形中而不偏 离本发明的发明本质和范围。 因此, 本发明所公开的内容不仅仅局限 于所描述的实施例和设计, 还可以扩展到与本发明原则和所公开的新 特征一致的最大范围。

Claims

权利要求
1、 一种用于时分双工系统的通信方法, 其特征在于, 包括: 将第一上下行子帧配置调整为第二上下行子帧配置, 所述第二上 下行子帧配置对应的子帧与所述第一上下行子帧配置对应的子帧存 在交集,所述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集中包括至少一个上行子帧和至少一个下行子帧;
根据与所述第一上下行子帧配置对应的定时关系相同的定时关 系,在所述交集包括的至少一个上行子帧和至少一个下行子帧中与用 户设备进行通信。
2、 根据权利要求 1所述的通信方法, 其特征在于,
所述至少一个上行子帧包括用于物理上行共享信道 PUSCH传输 的上行子帧, 所述至少一个下行子帧包括用于承载调度所述 PUSCH 传输的上行授权 UL grant的下行子帧,所述用于 PUSCH传输的上行 子帧和所述承载 UL grant的下行子帧之间的定时关系和所述第一上 下行子帧配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于对所述 PUSCH传输进行肯定确认 ACK/ 否定确认 NACK反馈的下行子帧,所述用于 PUSCH传输的上行子帧 和所述用于进行 ACK/N ACK反馈的下行子帧之间的定时关系和所述 第一上下行子帧配置对应的定时关系相同; 或者,
所述至少一个下行子帧包括用于物理下行共享信道 PDSCH传输 的下行子帧, 所述至少一个上行子帧包括用于对所述 PDSCH传输进 行 ACK/NACK反馈的上行子帧, 所述用于 PDSCH传输的下行子帧 和所述用于进行 ACK/N ACK反馈的上行子帧之间的定时关系和所述 第一上下行子帧配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子 帧, 所述用于 PUSCH传输的上行子帧和所述用于对所述 PUSCH传 输进行重传的上行子帧之间的定时关系和所述第一上下行子帧配置 对应的定时关系相同。
3、 根据权利要求 1或 2所述的通信方法, 其特征在于, 所述第二上下行子帧配置是根据业务负载和所述第一上下行子 帧配置获得; 或者,
所述第二上下行子帧配置是从上下行子帧配置集合中选择得到; 所述上下行子帧配置集合为预先设定,或者所述上下行子帧配置集合 是根据所述业务负载和所述第一上下行子帧配置获得。
4、 一种用于时分双工系统的通信方法, 其特征在于, 包括: 用户设备根据第一上下行子帧配置与基站进行通信;
所述用户设备在所述第一上下行子帧配置调整为第二上下行子 帧配置后,根据与所述第一上下行子帧配置对应的定时关系相同的定 时关系,在所述第二上下行子帧配置对应的子帧与所述第一上下行子 帧配置对应的子帧存在的交集包含的子帧中与所述基站进行通信,所 述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集 中包括至少一个上行子帧和至少一个下行子帧。
5、 根据权利要求 4所述的通信方法, 其特征在于,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于承载调度所述 PUSCH传输的 UL grant的 下行子帧,所述用于 PUSCH传输的上行子帧和所述 7 载 UL grant的 下行子帧之间的定时关系和所述第一上下行子帧配置对应的定时关 系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反 馈的下行子帧, 所述用于 PUSCH 传输的上行子帧和所述用于进行 ACK/NACK反馈的下行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个下行子帧包括用于 PDSCH传输的下行子帧, 所述 至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反 馈的上行子帧, 所述用于 PDSCH 传输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子 帧, 所述用于 PUSCH传输的上行子帧和所述用于对所述 PUSCH传 输进行重传的上行子帧之间的定时关系和所述第一上下行子帧配置 对应的定时关系相同。
6、 根据权利要求 4或 5所述的通信方法, 其特征在于, 所述第二上下行子帧配置是所述基站根据业务负载和所述第一 上下行子帧配置获得; 或者,
所述第二上下行子帧配置是所述基站从上下行子帧配置集合中 选择得到; 所述上下行子帧配置集合为预先设定, 或者所述上下行子 帧配置集合是所述基站根据所述业务负载和所述第一上下行子帧配 直狄付。
7、 一种基站, 其特征在于, 包括:
配置调整单元, 用于将第一上下行子帧配置调整为第二上下行子 帧配置, 所述第二上下行子帧配置对应的子帧与所述第一上下行子帧 配置对应的子帧存在交集, 所述交集为具有相同子帧索引、 相同子帧 类型的子帧的集合, 所述交集中包括至少一个上行子帧和至少一个下 行子帧;
通信单元, 用于根据与所述第一上下行子帧配置对应的定时关系 相同的定时关系, 在所述交集包括的至少一个上行子帧和至少一个下 行子帧中与用户设备进行通信。
8、 根据权利要求 7所述的基站, 其特征在于, 在所述配置调整 单元调整的所述第二上下行子帧配置对应的子帧与所述第一上下行 子帧配置对应的子帧存在的交集中:
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于承载调度所述 PUSCH传输的 UL grant的 下行子帧,所述用于 PUSCH传输的上行子帧和所述 7 载 UL grant的 下行子帧之间的定时关系和所述第一上下行子帧配置对应的定时关 系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反 馈的下行子帧, 所述用于 PUSCH 传输的上行子帧和所述用于进行 ACK/NACK反馈的下行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个下行子帧包括用于 PDSCH传输的下行子帧, 所述 至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反 馈的上行子帧, 所述用于 PDSCH 传输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子 帧, 所述用于 PUSCH传输的上行子帧和所述用于对所述 PUSCH传 输进行重传的上行子帧之间的定时关系和所述第一上下行子帧配置 对应的定时关系相同。
9、 根据权利要求 7或 8所述的基站, 其特征在于,
所述配置调整单元具体用于根据业务负载和所述第一上下行子 帧配置获得所述第二上下行子帧配置; 或者,
从上下行子帧配置集合中选择得到所述第二上下行子帧配置,所 述上下行子帧配置集合为预先设定,或者所述上下行子帧配置集合是 所述配置调整单元根据所述业务负载和所述第一上下行子帧配置获 付。
10、 一种用户设备, 其特征在于, 包括:
配置确定单元, 用于获知第一上下行子帧配置;
通信单元,用于在所述第一上下行子帧配置调整为第二上下行子 帧配置后,根据与所述第一上下行子帧配置对应的定时关系相同的定 时关系,在所述第二上下行子帧配置对应的子帧与所述第一上下行子 帧配置对应的子帧存在的交集包含的子帧中与所述基站进行通信,所 述交集为具有相同子帧索引、相同子帧类型的子帧的集合, 所述交集 中包括至少一个上行子帧和至少一个下行子帧。
11、 根据权利要求 10所述的用户设备, 其特征在于, 在用于所 述通信单元与基站进行通信的、所述第二上下行子帧配置对应的子帧 与所述第一上下行子帧配置对应的子帧存在的交集中:
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于承载调度所述 PUSCH传输的 UL grant的 下行子帧,所述用于 PUSCH传输的上行子帧和所述 7 载 UL grant的 下行子帧之间的定时关系和所述第一上下行子帧配置对应的定时关 系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个下行子帧包括用于对所述 PUSCH传输进行 ACK/NACK反 馈的下行子帧, 所述用于 PUSCH 传输的上行子帧和所述用于进行 ACK/NACK反馈的下行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个下行子帧包括用于 PDSCH传输的下行子帧, 所述 至少一个上行子帧包括用于对所述 PDSCH传输进行 ACK/NACK反 馈的上行子帧, 所述用于 PDSCH 传输的下行子帧和所述用于进行 ACK/NACK反馈的上行子帧之间的定时关系和所述第一上下行子帧 配置对应的定时关系相同; 或者,
所述至少一个上行子帧包括用于 PUSCH传输的上行子帧, 所述 至少一个上行子帧还包括用于对所述 PUSCH传输进行重传的上行子 帧, 所述用于 PUSCH传输的上行子帧和所述用于对所述 PUSCH传 输进行重传的上行子帧之间的定时关系和所述第一上下行子帧配置 对应的定时关系相同。
12、 根据权利要求 10或 11所述的用户设备, 其特征在于, 所述第二上下行子帧配置是所述基站根据业务负载和所述第一 上下行子帧配置获得; 或者,
所述第二上下行子帧配置是所述基站从上下行子帧配置集合中选 择得到; 所述上下行子帧配置集合为预先设定, 或者所述上下行子帧 配置集合是所述基站根据所述业务负载和所述第一上下行子帧配置获 付。
PCT/CN2012/072171 2011-03-11 2012-03-12 用于时分双工系统的通信方法和装置 WO2012122919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12757758.3A EP2685640B1 (en) 2011-03-11 2012-03-12 Communication method and device used in time division duplex system
US14/021,908 US9444513B2 (en) 2011-03-11 2013-09-09 Communication method and device for dynamic adjustment of downlink-uplink subframe configuration in a time division duplex system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110059168.6 2011-03-11
CN201110059168.6A CN102685872B (zh) 2011-03-11 2011-03-11 用于时分双工系统的通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/021,908 Continuation US9444513B2 (en) 2011-03-11 2013-09-09 Communication method and device for dynamic adjustment of downlink-uplink subframe configuration in a time division duplex system

Publications (1)

Publication Number Publication Date
WO2012122919A1 true WO2012122919A1 (zh) 2012-09-20

Family

ID=46817070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072171 WO2012122919A1 (zh) 2011-03-11 2012-03-12 用于时分双工系统的通信方法和装置

Country Status (4)

Country Link
US (1) US9444513B2 (zh)
EP (1) EP2685640B1 (zh)
CN (1) CN102685872B (zh)
WO (1) WO2012122919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122917A (zh) * 2013-01-18 2015-12-02 联发科技股份有限公司 动态tdd配置系统方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391262A (zh) * 2012-05-07 2013-11-13 北京三星通信技术研究有限公司 一种pdsch数据处理方法
WO2014075320A1 (en) * 2012-11-19 2014-05-22 Nokia Siemens Networks Oy Method and apparatus
CN104039012B (zh) * 2013-03-06 2018-12-28 索尼公司 在无线通信系统中进行动态下行配置的方法、基站和终端
US9756641B2 (en) * 2015-07-07 2017-09-05 Qualcomm Incorporated Dynamic signaling of LTE-TDD configurations in the presence of D2D transmissions
CN109275192B (zh) * 2017-07-18 2022-12-13 华为技术有限公司 用于传输信息的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651895A (zh) * 2008-08-15 2010-02-17 华为技术有限公司 长期演进的时分双工通信方法、设备、系统及无线帧结构
WO2010129295A1 (en) * 2009-04-28 2010-11-11 Zte U.S.A., Inc. Method and system for dynamic adjustment of downlink/uplink allocation ratio in lte/tdd systems
CN101926214A (zh) * 2008-03-24 2010-12-22 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472465B2 (en) * 2007-11-02 2013-06-25 China Academy Of Telecommunications Technology Method and an apparatus for determining the radio frame structure of time division duplex system
US8218509B2 (en) * 2008-01-15 2012-07-10 Apple Inc. Dynamic allocation of communication resources in a wireless system
JP5416140B2 (ja) * 2008-02-08 2014-02-12 ゼットティーイー(ユーエスエー)インコーポレーテッド Tdd無線システムにおけるダウンリンク/アップリンク割当比の動的調整
CN101262322B (zh) * 2008-03-21 2013-02-27 中兴通讯股份有限公司 时分双工系统中上下行比例信息的发送方法和装置
US9584216B2 (en) * 2008-10-31 2017-02-28 Nokia Technologies Oy Dynamic allocation of subframe scheduling for time divison duplex operation in a packet-based wireless communication system
JP5199223B2 (ja) * 2008-12-30 2013-05-15 創新音▲速▼股▲ふん▼有限公司 Ack/nackバンドリングを改善する方法及び通信装置
US9432136B2 (en) * 2011-03-01 2016-08-30 Lg Electronics Inc. Method for supporting a dynamic-time division duplex (D-TDD) downlink-uplink configuration in a wireless communication system, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101926214A (zh) * 2008-03-24 2010-12-22 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率
CN101651895A (zh) * 2008-08-15 2010-02-17 华为技术有限公司 长期演进的时分双工通信方法、设备、系统及无线帧结构
WO2010129295A1 (en) * 2009-04-28 2010-11-11 Zte U.S.A., Inc. Method and system for dynamic adjustment of downlink/uplink allocation ratio in lte/tdd systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122917A (zh) * 2013-01-18 2015-12-02 联发科技股份有限公司 动态tdd配置系统方法
EP2805559A4 (en) * 2013-01-18 2015-12-02 Mediatek Inc SYSTEM AND METHODS FOR DYNAMIC TDD CONFIGURATION
US9794803B2 (en) 2013-01-18 2017-10-17 Mediatek Inc. System and methods of dynamic TDD configurations

Also Published As

Publication number Publication date
EP2685640A4 (en) 2014-04-02
US9444513B2 (en) 2016-09-13
US20140056185A1 (en) 2014-02-27
EP2685640A1 (en) 2014-01-15
CN102685872B (zh) 2015-01-21
EP2685640B1 (en) 2019-11-13
CN102685872A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2745593B1 (en) Scheduling communications
US10455585B2 (en) Method and apparatus for carrier aggregation
CN107733620B (zh) 一种无线传输中的方法和装置
US9532356B2 (en) Component carrier configuration
CA2938056C (en) A method, apparatus and computer readable medium for controlling data transmissions in a network
TW201412166A (zh) 方法及設備
RU2625319C1 (ru) Способ отправки восходящей управляющей информации, пользовательское оборудование и базовая станция
TWI647962B (zh) 一種物理上行共用通道的傳輸方法及裝置
TW201136419A (en) Method and apparatus for supporting communication in low SNR scenario
WO2012122919A1 (zh) 用于时分双工系统的通信方法和装置
WO2016131235A1 (zh) 信息传输的方法、用户设备和基站
WO2015043243A1 (zh) 一种频谱聚合的数据发送方法及装置
WO2014032724A1 (en) Scheduling wireless communications
WO2020156002A1 (zh) 通信方法及通信装置
WO2023206416A1 (en) Methods and apparatuses for scheduling multiple physical downlink shared channel (pdsch) transmissions
WO2020098915A1 (en) Control channel combining for telecommunication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE