WO2012121210A1 - 生体利用可能なガラス繊維用ガラス組成物 - Google Patents

生体利用可能なガラス繊維用ガラス組成物 Download PDF

Info

Publication number
WO2012121210A1
WO2012121210A1 PCT/JP2012/055551 JP2012055551W WO2012121210A1 WO 2012121210 A1 WO2012121210 A1 WO 2012121210A1 JP 2012055551 W JP2012055551 W JP 2012055551W WO 2012121210 A1 WO2012121210 A1 WO 2012121210A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass fiber
hydroxyapatite
composition
glass composition
Prior art date
Application number
PCT/JP2012/055551
Other languages
English (en)
French (fr)
Inventor
和明 南
将司 大澤
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to JP2013503537A priority Critical patent/JP5884821B2/ja
Publication of WO2012121210A1 publication Critical patent/WO2012121210A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass

Definitions

  • the present invention relates to a glass composition for glass fiber that is bioavailable, glass fiber, glass fiber coated with hydroxyapatite, and a method for producing hydroxyapatite-coated glass fiber.
  • bioactive glass fiber As the biomaterial, it is considered that it is possible to provide a material having sufficient strength and flexibility without the need for excision surgery.
  • SiO 2 is 40 to 60 mol%
  • CaO is 10 to 21 mol%
  • P 2 O 5 is 0 to 4 mol%
  • Na 2 O is at least 19 mol%
  • Al 2 O 3 those containing more than 0.2 mol%
  • the conventional glass fiber having bioactivity is not suitable for continuous production of fibers because of its poor spinnability of the composition, and the glass fiber itself is not strong enough to reinforce the affected area, and is practically usable. No bioactive glass fiber has been obtained. Therefore, a glass fiber having bioactivity, flexibility, and high strength is desired.
  • JP 2002-143290 A Japanese National Patent Publication No. 11-506948
  • An object of the present invention is to provide a glass composition that can form hydroxyapatite on a surface thereof in a biological fluid or a simulated body fluid and spin glass fibers that can be used as a biological material.
  • Another object of the present invention is to provide a glass fiber that can be used as a biomaterial, a glass fiber coated with hydroxyapatite, and a method for producing the same.
  • a biological glass composition for glass fiber available present invention the SiO 2 65 ⁇ 93 wt%, and wherein the Na 2 O 7 ⁇ 30 wt%, a part of Na 2 O May be replaced by K 2 O or Li 2 O, and the balance is an acceptable material for the glass composition, and is characterized by not containing Al 2 O 3 and P 2 O 5 .
  • “does not include Al 2 O 3 and P 2 O 5" means that no added Al 2 O 3 and P 2 O 5, of substantially Al 2 O 3 and P 2 O 5 It means that the concentration is 0 to 0.1% by mass.
  • a glass fiber having sufficient strength can be spun.
  • the glass composition of the present invention contains 65 to 93% by mass of SiO 2 as a component that becomes the main skeleton of glass.
  • SiO 2 is less than 65% by mass, the required mechanical strength cannot be obtained in the glass fiber when the glass fiber is obtained from the glass composition. If the content of SiO 2 exceeds 93 wt%, the melting temperature of the glass composition becomes high, making it impossible to obtain a glass fiber.
  • the glass composition of the present invention contains 7 to 30% by mass of one or more alkali metal oxides containing Na 2 O.
  • the oxide of one or more alkali metals containing Na 2 O contained in the glass composition of the present invention is less than 7% by mass, when glass fibers are obtained from the glass composition, Ca 2+ and HPO 4 2-
  • the surface of the glass cannot be made alkaline in a biological fluid containing or in a simulated body fluid. Therefore, it cannot be coated with hydroxyapatite. If the content of such Na 2 O exceeds 30 mass%, when obtaining the glass fiber from the glass composition, it is impossible to obtain the required mechanical strength in the glass fibers.
  • glass composition for glass fiber of the present invention is substantially free of P 2 O 5, Al 2 O 3.
  • the glass composition of the present invention does not substantially contain P 2 O 5 , a low liquidus temperature, a wide working temperature range, and a spinnable viscosity can be realized at the same time.
  • the glass composition of the present invention since it does not contain Al 2 O 3 substantially makes it possible to obtain a glass fiber available biological.
  • K 2 O or Li 2 O which is an alkali metal oxide similar to Na 2 O, elutes K + or Li + in the solution containing Ca 2+ and HPO 4 2 ⁇ .
  • the glass fiber surface can be made alkaline. Accordingly, in the glass composition of the present invention, a portion of the Na 2 O may be replaced by K 2 O or Li 2 O.
  • the glass fiber glass composition of the present embodiment has a total of 7 to 30 masses of Na 2 O, K 2 O, and Li 2 O. % Is preferable.
  • K 2 O is preferably contained in the range of 0 to 10% by mass. This is because the melting temperature and the spinnability are improved because the melting temperature can be lowered by containing 10% by mass or less of K 2 O.
  • the glass composition for glass fiber of the present invention preferably contains 0 to 10% by mass of Li 2 O. This is because the inclusion of 10% by mass or less of Li 2 O can lower the melting temperature and the viscosity.
  • CaO or MgO is preferably contained in the range of 0 to 27% by mass.
  • hydroxyapatite can be uniformly formed on the surface of the glass fibers in the treatment solution containing Ca 2+ and HPO 4 2 ⁇ . Because it can.
  • the glass composition preferably contains CaO in a range of 2 to 20% by mass. This is because when the glass composition contains 2 to 20% by mass of CaO, hydroxyapatite can be uniformly deposited on the glass surface when glass fibers are obtained from the glass composition.
  • the glass composition preferably contains MgO in a range of 0 to 7 mass%. This is because, by adding MgO, the glass composition can suppress the phase separation phenomenon (phase separation phenomenon of glass), which is a bias of components in the glass, so that the effect of improving the meltability and spinnability can be obtained. .
  • the bioavailable glass fiber of the present invention is characterized in that it is a glass fiber having a hydroxyapatite-forming ability made of the bioavailable glass fiber glass composition.
  • the glass fiber obtained from the glass composition of the present invention contains one or more alkali metal oxides containing Na 2 O in its composition, for example, Ca 2+ such as biological fluid or simulated body fluid, and HPO 4 2-
  • Ca 2+ such as biological fluid or simulated body fluid
  • Na + can be eluted in the solution to make the glass fiber surface alkaline.
  • Ca 2+ in the solution reacts with HPO 4 2 ⁇ and OH ⁇ to produce hydroxyapatite, and hydroxyapatite precipitates on the surface of the glass fiber. Therefore, a glass fiber whose surface is coated with hydroxyapatite can be obtained.
  • the simulated body fluid is an aqueous solution having an inorganic ion composition close to that of human plasma.
  • the hydroxyapatite-coated glass fiber of the present invention is characterized in that the glass fiber having the hydroxyapatite-forming ability is coated with hydroxyapatite.
  • Examples of the form of the glass fiber of the present invention include chopped strand, yarn, roving, mat, cloth, milled fiber, knitted fabric, and glass powder.
  • the filament diameter of the glass fiber of the present invention is not particularly limited but is 3 to 30 ⁇ m.
  • the hydroxyapatite-coated glass fiber of the present invention contains at least 2.5 to 20.0 mM of Ca 2+ and 1.0 to 10.0 mM of HPO 4 2 ⁇ and has a pH of the glass fiber having the ability to form hydroxyapatite.
  • a process for depositing hydroxyapatite on the surface of the glass fiber by immersing it in a treatment solution of 5.0 to 7.5 at a temperature in the range of 0 to 90 ° C. for 5 minutes to 1 week Can be produced more advantageously.
  • the treatment liquid contains 2.5 to 20.0 mM of Ca 2+ and 1.0 to 10.0 mM of HPO 4 2 ⁇ , hydroxyapatite can be uniformly generated on the glass fiber surface. Is not generated excessively in the liquid as a precipitate.
  • the treatment temperature is 0 to 90 ° C., and the time is 5 minutes to 1 week.
  • apatite can be rapidly formed by high-temperature treatment.
  • FIG. 1 is a diagram showing a mechanism for forming hydroxyapatite.
  • FIG. 2 is a diagram showing the results of the hydroxyapatite precipitation test of Example 1 of the present invention.
  • FIG. 3 is a diagram showing the results of a hydroxyapatite precipitation test of Example 2 of the present invention.
  • FIG. 4 is a view showing the results of a hydroxyapatite precipitation test of E glass fiber.
  • FIG. 5 is a diagram showing the effect of glass cloth on rat bone regeneration.
  • the glass composition for glass fiber of the present embodiment contains 65 to 90% by mass of SiO 2 . Further, the glass composition for glass fiber of the present embodiment preferably contains 70 to 87% by mass of SiO 2 . This is because a glass fiber composition having a high mechanical strength is easily obtained when the SiO 2 content is 70% by mass or more. In addition, if the content of SiO 2 exceeds 87% by mass, the meltability may be deteriorated depending on the composition, for example, it takes a long time for melting.
  • the glass composition for glass fiber of the present embodiment contains 72 to 80% by mass of SiO 2 .
  • the content of SiO 2 is in the above range, good meltability can be obtained, and sufficient mechanical strength is obtained when glass fibers are obtained from the glass fiber glass composition of the present embodiment. be able to.
  • glass composition for glass fiber of the present invention is substantially free of P 2 O 5, Al 2 O 3.
  • the glass composition of the present invention does not substantially contain P 2 O 5 , a low liquidus temperature, a wide working temperature range, and a spinnable viscosity can be realized at the same time.
  • the glass composition the melt viscosity was significantly reduced when containing P 2 O 5, it becomes impossible to obtain a glass fiber.
  • P 2 O 5 is known to remarkably lower the melting temperature of the glass, and the inventors' study has revealed that it is not essential for the formation of hydroxyapatite in the glass fiber.
  • the glass composition of the present invention since it does not contain Al 2 O 3 substantially makes it possible to obtain a glass fiber available biological.
  • the glass composition contains Al 2 O 3 , Al 2 O 3 cannot be assimilated into the living body. Therefore, when the obtained glass fiber is used in the living body, sufficient osteoconductivity cannot be imparted.
  • the treatment solution containing Ca 2+ and HPO 4 2 ⁇ the elution of alkali components is inhibited, so that the glass fiber surface is inhibited from becoming alkaline, and the hydroxyapatite forming ability is lowered.
  • the glass composition of the present embodiment contains 7 to 30% by mass of one or more alkali metal oxides containing Na 2 O.
  • the glass composition for glass fiber of the present embodiment preferably contains 10 to 25% by mass of Na 2 O.
  • the content of Na 2 O is less than 10% by mass, when glass fiber is obtained from the glass composition for glass fiber of the present embodiment, the glass is contained in the treatment solution containing Ca 2+ and HPO 4 2 ⁇ . The effect of making the surface alkaline is difficult to obtain. Further, when the content of Na 2 O exceeds 25 mass%, when the glass composition for glass fiber of the present embodiment to obtain a glass fiber, a sufficient mechanical strength can not be obtained.
  • the glass composition for glass fiber of the present embodiment further preferably contains 15 to 22% by mass of Na 2 O.
  • the content of Na 2 O is within the above range, when glass fiber is obtained from the glass composition for glass fiber of the present embodiment, sufficient mechanical strength can be obtained, and the Ca 2+ and HPO are obtained.
  • a treatment solution containing 4 2- the glass surface can be surely made alkaline.
  • the glass composition for glass fiber of the present embodiment preferably contains 10 to 25% by mass in total of Na 2 O and K 2 O and / or Li 2 O, and more preferably contains 15 to 22% by mass. .
  • the glass composition for glass fiber according to the present embodiment contains Na 2 O in the above-mentioned range in total, K 2 O and / or Li 2 O, and when the glass fiber is obtained from the glass composition, In the treatment solution containing Ca 2+ and HPO 4 2 ⁇ , the glass surface can be surely made alkaline. Moreover, when glass fiber is obtained from the glass composition for glass fiber of this embodiment, both chemical resistance and strength characteristics can be achieved.
  • K 2 O is preferably contained in the range of 0 to 10% by mass. At this time, since the glass composition can lower the melting temperature by containing 10% by mass or less of K 2 O, the meltability and spinnability can be improved. However, if the content of K 2 O exceeds 10% by mass, the melting temperature may be too low and fiberization may be difficult.
  • the glass composition for glass fiber of the present embodiment preferably contains 5% by mass or less of K 2 O. Glass fiber glass composition of the present embodiment, by including K 2 O in the range, it is possible to improve the meltability.
  • Glass composition for glass fiber of the present embodiment further preferably comprises a K 2 O of less than 2 wt%.
  • Glass fiber glass composition of the present embodiment by including K 2 O in the range, it is possible to improve the meltability, when obtaining the glass fiber from the glass composition, and the Ca 2+ In a treatment solution containing HPO 4 2- , the glass surface can be surely made alkaline.
  • the glass composition for glass fiber in the present embodiment Li 2 O has an effect of reducing the degradation and viscosity of the melt temperature.
  • the glass composition for glass fiber of the present embodiment preferably contains 0 to 10% by mass of Li 2 O in order to obtain the above effect.
  • the glass composition by including 10 mass% of Li 2 O, it is possible to reduce the deterioration and the viscosity of the melt temperature.
  • the content of Li 2 O exceeds 10% by mass, the components of the glass are difficult to mix uniformly, and thus the components are biased, and as a result, vitrification may be difficult.
  • the glass fiber glass composition of this embodiment preferably contain 5 wt% or less of Li 2 O.
  • the glass composition for glass fiber of the present embodiment has a low melt viscosity, can be easily fiberized, and contains Ca 2+ and HPO 4 2 ⁇ .
  • the glass surface can be surely made alkaline in the treatment solution.
  • Glass fiber glass composition of this embodiment further preferably includes a 3 mass% of Li 2 O.
  • Glass fiber glass composition of the present embodiment by including Li 2 O in the range, melt viscosity and can reduce the temperature at which crystal deposition, with very easily fiberized, and the Ca 2+ This is a suitable amount for forming hydroxyapatite more efficiently in a treatment solution containing HPO 4 2- .
  • the glass composition for glass fiber of the present invention is characterized by containing 0 to 27% by mass in total of either or both of CaO and MgO.
  • the glass composition for glass fiber of the present embodiment more preferably contains 2 to 20% by mass, and more preferably 4 to 10% by mass of CaO and MgO.
  • the glass composition for glass fiber of the present embodiment contains CaO and MgO in the above range, so that when glass fiber is obtained from the glass composition, the glass composition in the treatment solution containing Ca 2+ and HPO 4 2 ⁇ The hydroxyapatite can be uniformly formed on the glass fiber surface.
  • the glass composition preferably contains CaO in a range of 2 to 20% by mass.
  • the glass composition contains 2 to 20% by mass of CaO, hydroxyapatite can be uniformly deposited on the glass surface when glass fibers are obtained from the glass composition.
  • the meltability of the glass composition for glass fiber of the present embodiment is lowered, or when a glass fiber is obtained from the glass composition, sufficient hydroxyapatite forming ability is obtained. It may not be possible.
  • the glass composition for glass fiber of the present embodiment further preferably contains 4 to 10% by mass of CaO.
  • the glass composition for glass fiber of the present embodiment contains hydroxyapatite uniformly on the surface of the glass fiber when the glass fiber is obtained from the glass composition for glass fiber of the present embodiment by containing CaO in the above range. Can be formed.
  • the glass composition preferably contains MgO in a range of 0 to 7 mass%. Since the glass composition can suppress a phase separation phenomenon (phase separation phenomenon of glass) which is a bias of components in the glass by adding MgO, an effect of improving meltability and spinnability can be obtained. When the content of MgO exceeds 7% by mass, it may cause a deterioration in spinnability due to an increase in melting temperature or an increase in viscosity.
  • the glass composition for glass fiber of the present embodiment preferably contains 0 to 5% by mass of MgO.
  • the glass composition for glass fiber of this embodiment can improve meltability by including MgO in the above range.
  • the glass composition for glass fiber of the present embodiment further preferably contains 0 to 2% by mass of MgO.
  • the glass composition for glass fiber of this embodiment can improve meltability by containing MgO in the above range, and when glass fiber is obtained from the glass composition, the Ca 2+ and HPO 4 are used. In a treatment solution containing 2- , the ability to form hydroxyapatite can be improved.
  • the glass composition for glass fiber of the present embodiment contains 65 to 93% by mass of SiO 2 and 7 to 30% by mass of one or more alkali metal oxides containing Na 2 O, and is substantially Al 2 O 3. And P 2 O 5 is not contained.
  • does not include Al 2 O 3 and P 2 O 5" means that no added Al 2 O 3 and P 2 O 5, of substantially Al 2 O 3 and P 2 O 5 It means that the concentration is 0 to 0.1% by mass.
  • CaO and MgO form hydroxyapatite more efficiently in the treatment solution containing Ca 2+ and HPO 4 2 ⁇ when glass fiber is obtained from the glass composition for glass fiber of the present embodiment. Is a suitable component.
  • the liquidus temperature (the lowest temperature at which crystals do not precipitate in the molten glass) is sufficiently low, and the liquidus temperature and the temperature at which the glass melt viscosity becomes 100 Pa ⁇ sec. Since the working temperature range which is the difference is wide, the glass composition can be melted and glass fiber can be easily spun. Moreover, by using the glass composition for glass fiber according to the present embodiment, it is possible to obtain a bioavailable glass fiber capable of precipitating hydroxyapatite on the glass surface.
  • the glass composition for glass fiber having each composition described above can be produced by a method for producing glass known to those skilled in the art. That is, the raw materials are weighed, mixed and then sent to a melting furnace to be melted to obtain molten glass. The molten glass is bubbled with a bubbler, clarified in a clarification tank, and then passed through a platinum nozzle in a work tank. A cooling plate is installed in the vicinity of the platinum nozzle, and the glass passing through the nozzle is coated with a sizing agent while being rapidly cooled, and is wound up by a spinning machine. As a result, glass fiber can be obtained.
  • the glass fiber of the present embodiment obtained as described above is immersed in a treatment solution containing supersaturated HPO 4 2 ⁇ and Ca 2+ , for example, so that Na + , K + or Li + melts out, and hydroxyapatite can be deposited on the glass fiber surface.
  • the treatment solution preferably contains, for example, 2.5 to 20.0 mM Ca 2+ and 1.0 to 10.0 mM HPO 4 2 ⁇ .
  • the pH is preferably 5.0 to 7.5. More preferably, the treatment solution contains Ca 2+ 2.5 to 10.0 mM and HPO 4 2 ⁇ 1.0 to 6.0 mM.
  • a general acid / alkali can be used, but considering the influence on the formation of hydroxyapatite, the acid is 1M hydrochloric acid (1M-HCl), The alkali is preferably 28% aqueous ammonia (NH 4 OH).
  • the treatment solution may contain ions that do not impair the ability to form hydroxyapatite as the treatment solution and do not adversely affect the living body when entering the body.
  • ions include chlorine ions (Cl ⁇ ), carbonate ions (HCO 3 ⁇ ), phosphate ions (HPO 4 2 ⁇ ), sulfate ions (SO 4 2 ⁇ ), sodium ions (Na + ), potassium Examples include ions (K + ), magnesium ions (Mg 2+ ), calcium ions (Ca 2+ ), and ammonia ions (NH 4 + ).
  • the treatment solution may be a biological fluid or a simulated body fluid, for example.
  • FIG. 1 schematically shows the mechanism of hydroxyapatite formation.
  • the simulated body fluid includes 2.5 to 20.0 mM Ca 2+ and 1.0 to 10.0 mM HPO 4 2 ⁇ , Cl ⁇ , HCO 3 ⁇ , Na + and SO 4 2.
  • the pH is adjusted in the range of 5.0 to 7.5.
  • glass fibers shown simply as “glass” in FIG. 1) contain 65 to 93% by mass of SiO 2 and 7 to 30% by mass of Na 2 O. It is thought that SiO 2 forms a main skeleton, and Na and Ca, which are components other than SiO 2 in the glass fiber composition, exist between the main skeleton as Na + and Ca 2+ .
  • Na + contained in the glass has a smaller force to attract oxygen than Ca 2+ or the like, which is an alkaline earth metal.
  • the bond with oxygen is ionic bond and the bond strength is weak
  • the bond with the oxygen atom of SiO 2 which is the main skeleton is weak, and it is easily eluted in the solvent.
  • the increase in supersaturation of calcium ions due to elution of calcium ions in the glass composition into the simulated body fluid and the presence of Si—OH groups on the glass surface induce nucleation of hydroxyapatite, and the nuclei are Si on the material surface. It is selectively generated at the position of the —OH group.
  • the mechanism of hydroxyapatite formation is considered to be the same for any treatment solution as long as it contains at least 2.5 to 20.0 mM of Ca 2+ and 1.0 to 10.0 mM of HPO 4 2 ⁇ . It is done.
  • the ratio of Ca / P is not limited to 1.67.
  • the temperature for precipitating hydroxyapatite on the surface of the glass fiber may be 0 to 90 ° C., and more preferably 30 to 80 ° C. More preferably, it is 36 to 60 ° C.
  • hydroxyapatite can be precipitated in a treatment solution in vitro. Therefore, the reaction can be carried out at a temperature higher than the internal environment, and hydroxyapatite can be precipitated in a shorter time.
  • the time for immersing the glass fiber in the treatment solution is not particularly limited, but may be about 5 minutes to 1 week depending on temperature conditions.
  • the time for immersing the glass fiber in the treatment solution is preferably 30 minutes to 24 hours.
  • Examples of the form of the glass fiber coated with hydroxyapatite include, but are not limited to, chopped strands, yarns, rovings, mats, cloths, milled fibers, knitted fabrics, and glass powders.
  • the thickness of the glass fiber is preferably 3 to 30 ⁇ m.
  • Example 1 First, a batch prepared so as to have the glass composition of each sample shown in Table 1 was placed in a platinum crucible and melted in an electric furnace at 1400-1600 ° C. for 8 hours with stirring. Next, this molten glass was poured out onto a carbon plate to produce a glass cullet. In any glass composition, there was no precipitation of crystals or undissolved residue, and glass could be obtained. The results are shown in Table 1 as “vitrification”.
  • the glass cullet was put into a glass fiber production furnace, melted at 1080 to 1200 ° C., and spun to obtain fibers having a diameter of 3 to 30 ⁇ m. In any of the glass compositions, there was no cutting due to the precipitation of the crystal or variation in the fiber diameter, and fiber formation was easy. The results are shown in Table 1 as “fibrosis”.
  • hydroxyapatite precipitation experiment 1 2 g of the glass fiber was immersed in 100 mL of simulated body fluid (SBF) having the composition shown in Table 2 and having a pH in the range of 7.3 to 7.4, and kept at 37 ° C. for 24 hours. The presence or absence of precipitation of hydroxyapatite was evaluated (hydroxyapatite precipitation experiment 1).
  • SBF simulated body fluid
  • FIG. 2 shows an SEM photograph of the glass fiber surface coated with hydroxyapatite by the method of hydroxyapatite precipitation experiment 1 on the glass fiber obtained from the glass composition of Example 1.
  • covered with the hydroxyapatite precipitation method by the method of the hydroxyapatite precipitation experiment 1 is shown in FIG.
  • HA represents hydroxyapatite
  • the temperature is in degrees Celsius (° C.)
  • the tensile strength is in GPa.
  • Comparative Examples 4 to 8 that were vitrified, the produced glass cullet was put into a glass fiber production furnace, melted at 1080 to 1400 ° C., and spun to obtain fibers.
  • Comparative Example 7 both vitrification and fiberization were possible, but in Comparative Examples 4 to 6, a temperature of 100 Pa ⁇ sec, which is the optimum viscosity for the spinning operation (shown as “1000 poise temperature” in Table 4).
  • a temperature of 100 Pa ⁇ sec which is the optimum viscosity for the spinning operation (shown as “1000 poise temperature” in Table 4).
  • it is close to the liquidus temperature at which crystals are precipitated, and crystals are precipitated during spinning it is very difficult to obtain fibers continuously, and fibers cannot be obtained.
  • the results are shown in Table 4 as “fibrosis”.
  • hydroxyapatite precipitation experiments 1 and 2 were conducted in exactly the same manner as in Examples 1 to 15 except that the glass fiber obtained in Comparative Example 7 was used. Observation was performed in exactly the same way as in -15, and surface elemental analysis was performed.
  • FIG. 4 shows an SEM photograph of the glass fiber surface in which the glass fiber obtained from the glass composition of Comparative Example 7 was tried to be coated with hydroxyapatite by the method of hydroxyapatite precipitation experiment 1.
  • cytotoxicity evaluation using cultured cells was performed.
  • a glass cloth was prepared using the glass fibers of Example 2 and Comparative Example 7, and 1 g of glass cloth per 10 mL was immersed in the medium for 24 hours. Using this medium, a Chinese hamster-derived cell line V79 was cultured, and 6 days later, the presence or absence of toxicity was evaluated based on whether the cells had colony-forming ability.
  • the culture medium in which the glass cloth is not immersed is used as a control medium, and the number of colonies formed in the glass cloth immersion medium is expressed as a ratio of the number of colonies formed in the control medium (colony number ratio%). Even in the medium in which the glass cloth of Example 2 and Comparative Example 7 was immersed, the number of colonies equal to or higher than that of the control medium was observed. Therefore, no cytotoxicity was observed in both Examples and Comparative Examples, and it was confirmed that the glass fiber of the present invention can be used safely in vivo.
  • the glass cloths of Example 2 and Comparative Example 7 in which the above-mentioned biotoxicity was not observed were implanted in rats, and the effects on bone regeneration and surrounding cells were examined. Examined.
  • a through hole having a diameter of 2 mm was formed in the tibia of both hind legs of an 11-week-old rat.
  • the glass cloth of Example 2 was used for the right hind leg bone defect part, and the glass cloth of Comparative Example 7 was used for the left hind leg bone defect part. It installed so that a hole might be covered. Two weeks after the insertion of the glass cloth, the test part was removed, sliced, cell stained, and observed with an optical microscope. 5A to 5C show examples, and FIGS. 5D to 5F show comparative examples.
  • the glass fiber according to the present invention is excellent in biocompatibility and can be used for the purpose of reinforcing the affected part as a biomaterial because it forms hydroxyapatite in vivo. .
  • the glass fiber according to the present invention has sufficient strength, excellent spinnability, and has biocompatibility because it forms hydroxyapatite on its surface in biological fluid or simulated body fluid. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Materials For Medical Uses (AREA)

Abstract

【解決手段】 本発明によれば、ヒドロキシアパタイトで被覆可能で、液相温度が低く、紡糸可能な粘度を有し、広い作業温度を有するガラス繊維用ガラス組成物、生体活性のあるヒドロキシアパタイト被覆ガラス繊維が提供される。また、本発明によれば、前記ガラス繊維上にヒドロキシアパタイトを析出する方法が提供される。

Description

生体利用可能なガラス繊維用ガラス組成物
 本発明は、生体利用可能なガラス繊維用ガラス組成物、ガラス繊維、ヒドロキシアパタイトで被覆されたガラス繊維及びヒドロキシアパタイト被覆ガラス繊維の製造方法に関する。
 人工靭帯や人工軟骨、メンブレン等の生体材料に用いられている材料として、シリコーン樹脂、ポリウレタン等の合成樹脂フィルムやコラーゲン、ポリ乳酸、ポリグリコール酸等の天然高分子が知られている(特許文献1)。
 これらの材料には、生体活性と柔軟性が求められる。しかし、合成樹脂フィルムは生体活性を有せず、生体になじまないために完治後摘出手術が必要である。一方、天然高分子は生体活性を有するが、完治前に吸収されやすい。また、これら合成樹脂フィルム、天然高分子とも患部を補強するには機械的強度が低いという問題点があった。そこで患部を十分に補強できる強度を持つ生体材料が求められている。
 前記生体材料として、生体活性を有するガラス繊維を得ることができれば、摘出手術の必要も無く、十分な強度と柔軟性を備える材料を提供することが可能になると考えられる。
 人工骨としてリンやカルシウムを含み,生体液中でヒドロキシアパタイトを形成することができるバイオガラスや、水酸化アパタイト焼結体を生体材料に応用する試みが図られている。しかし、バイオガラスや水酸化アパタイト焼結体は紡糸して繊維化することが非常に困難なことから、人工靭帯や人工軟骨、メンブレン等の用途として、現在実用化されているガラス繊維製品はない。
 従来、生体活性を持つガラス繊維として、SiOを40~60モル%、CaOを10~21モル%、Pを0~4モル%、NaOを少なくとも19モル%、及びAlを0.2モル%を超えて含むものが、知られている(特許文献2)。
 しかしながら、前記従来の生体活性を持つガラス繊維は、その組成の紡糸性が悪く繊維を連続生産するには不向きであり、ガラス繊維自体患部を補強するのに十分な強度ではなく、実用に耐えるレベルの生体活性ガラス繊維は得られていない。そこで生体活性を持ち、柔軟で、強度の高いガラス繊維が望まれる。
特開2002-143290号公報 特表平11-506948号公報
 本発明は、生体液又は疑似体液中においてその表面にヒドロキシアパタイトを形成し、生体材料として用いることが可能なガラス繊維を紡糸することができるガラス組成物を提供することを目的とする。
 また、本発明の目的は、生体材料として用いることが可能なガラス繊維、ヒドロキシアパタイトで被覆されたガラス繊維及びその製造方法を提供することにもある。
 前記目的を達成するために、本発明の生体利用可能なガラス繊維用ガラス組成物は、SiOを65~93質量%、及びNaOを7~30質量%含み、NaOの一部をKO又はLiOで代替してもよく、残部はガラス組成物に許容される材料であり、Al及びPを含まないことを特徴とする。ここで、「Al及びPを含まない」とは、Al及びPを添加しないことを意味し、実質的にAl及びPの濃度が、0~0.1質量%であることを意味する。
 本発明のガラス組成物によれば、十分な強度のガラス繊維を紡糸することができる。
 本発明のガラス組成物は、ガラスの主骨格となる成分として、65~93質量%のSiOを含む。SiOの含有量が65質量%未満では、該ガラス組成物からガラス繊維を得たときに、該ガラス繊維において所要の機械的強度を得ることができない。また、SiOの含有量が93質量%を超えると、前記ガラス組成物の溶融温度が高くなり、ガラス繊維を得ることができなくなる。
 また、本発明のガラス組成物は、NaOを含む1以上のアルカリ金属の酸化物を7~30質量%含む。
 本発明のガラス組成物に含まれるNaOを含む1以上のアルカリ金属の酸化物が、7質量%未満では、該ガラス組成物からガラス繊維を得たときに、Ca2+とHPO 2-とを含む生体液中、又は疑似体液中において、該ガラス表面をアルカリ性にすることができない。したがって、ヒドロキシアパタイトによって被覆することができない。また、NaO等の含有量が30質量%を超えると、前記ガラス組成物からガラス繊維を得たときに、該ガラス繊維において所要の機械的強度を得ることができない。
 また、本発明のガラス繊維用ガラス組成物は、実質的にP、Alを含まない。
 本発明のガラス組成物は、Pを実質的に含まないことから、低い液相温度、広い作業温度範囲及び紡糸可能な粘度を同時に実現することができる。
 さらに、本発明のガラス組成物は、Alを実質的に含まないことから、生体に利用可能なガラス繊維を得ることができる。
 また、NaOと同様のアルカリ金属の酸化物であるKO又はLiOは、Ca2+とHPO 2-とを含む溶液中において、該溶液中にK又はLiを溶出させ、ガラス繊維表面をアルカリ性とすることができる。そこで、本発明のガラス組成物において、前記NaOの一部をKO又はLiOで代替するようにしてもよい。
 前記NaOの一部をKO又はLiOで代替する場合、本実施形態のガラス繊維用ガラス組成物は、NaO、KO及びLiOを合計で7~30質量%含むことが好ましい。
 また、本発明のガラス繊維用ガラス組成物において、KOが0~10質量%の範囲で含まれていることが好ましい。10質量%以下のKOを含むことにより溶融温度を下げることができるため溶融性、紡糸性が向上するからである。
 本発明のガラス繊維用ガラス組成物において、0~10質量%のLiOを含むことが好ましい。10質量%以下のLiOを含むことにより、溶融温度の低下と粘度を低下させることができるからである。
 また、本発明のガラス組成物においては、CaO又はMgOが0~27質量%の範囲で含まれていることが好ましい。
 CaO又はMgOを含むことにより、該ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、ガラス繊維表面にヒドロキシアパタイトを均一に形成させることができるからである。
 また、このとき、前記ガラス組成物は、CaOを2~20質量%の範囲で含むことが好ましい。前記ガラス組成物は、CaOを2~20質量%含むことにより、該ガラス組成物からガラス繊維を得たときに、該ガラス表面に均一にヒドロキシアパタイトを析出することができるからである。
 また、このとき、前記ガラス組成物は、MgOを0~7質量%の範囲で含むことが好ましい。前記ガラス組成物は、MgOを加えることでガラス中の成分の偏りである分相現象(ガラスの相分離現象)を抑えることができるため溶融性・紡糸性の向上という効果が得られるからである。
 さらに、本発明の生体利用可能なガラス繊維は、前記生体利用可能なガラス繊維用ガラス組成物からなるヒドロキシアパタイト形成能を有するガラス繊維であることを特徴とする。
 本発明のガラス組成物から得られたガラス繊維は、組成にNaOを含む1以上のアルカリ金属の酸化物を含むことから、例えば生体液又は疑似体液等のCa2+とHPO 2-とを含む溶液中において、該溶液中にNaを溶出させ、ガラス繊維表面をアルカリ性とすることができる。この結果、前記溶液中のCa2+が、HPO 2-及びOHと反応してヒドロキシアパタイトを生成し、前記ガラス繊維の表面にヒドロキシアパタイトが析出する。従って、その表面がヒドロキシアパタイトにより被覆されたガラス繊維を得ることができる。
 なお、前記疑似体液とは、ヒトの血漿に近い無機イオン組成を有する水溶液である。
 本発明のヒドロキシアパタイト被覆ガラス繊維は、前記ヒドロキシアパタイト形成能を有するガラス繊維にヒドロキシアパタイトを被覆したことを特徴とする。
 これによれば、ヒドロキシアパタイトで被覆されていることによりヒドロキシアパタイトと骨が結合する骨伝導性を付与することができるため、より生体適合性が高いガラス繊維が得られる。
 本発明のガラス繊維の形態としては、チョップドストランド、ヤーン、ロービング、マット、クロス、ミルドファイバー、編物、ガラスパウダー等が挙げられる。本発明のガラス繊維のフィラメント径としては、特に制限は無いが、3~30μmで使用される。
 本発明のヒドロキシアパタイト被覆ガラス繊維は、前記ヒドロキシアパタイト形成能を有するガラス繊維を、少なくともCa2+を2.5~20.0mM、かつHPO 2-を1.0~10.0mM含み、pHが5.0~7.5である処理液に0~90℃の範囲の温度で、5分~1週間の間浸漬させることによりヒドロキシアパタイトを該ガラス繊維表面に析出させることを特徴とする製造方法により有利に製造することができる。
 前記処理液は、Ca2+を2.5~20.0mM、HPO 2-を1.0~10.0mM含むことにより、前記ガラス繊維表面に均一にヒドロキシアパタイトを生成させることができ、ヒドロキシアパタイトを沈殿物として液中に過剰に生成させることがない。処理温度は0~90℃、時間は5分~1週間である。
 前記製造方法によれば、生体外で処理することができるので、高温処理により迅速にアパタイトを形成させることが可能である。
図1はヒドロキシアパタイト形成メカニズムを示す図である。 図2は本発明の実施例1のヒドロキシアパタイト析出試験の結果を示す図である。 図3は本発明の実施例2のヒドロキシアパタイト析出試験の結果を示す図である。 図4はEガラス繊維のヒドロキシアパタイト析出試験の結果を示す図である。 図5はラットの骨再生におけるガラスクロスの効果を示す図である。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 本実施形態のガラス繊維用ガラス組成物は65~90質量%のSiOを含む。さらに、本実施形態のガラス繊維用ガラス組成物は、好ましくは70~87質量%のSiOを含む。SiOの含有量が70質量%以上の方が機械的強度の強いガラス繊維組成物を得やすいからである。また、SiOの含有量が87質量%を超えると溶融に長時間を要するなど、組成によって溶融性が悪くなる場合がある。
 本実施形態のガラス繊維用ガラス組成物は、さらに好ましくは、72~80質量%のSiOを含む。SiOの含有量が前記範囲であることにより、良好な溶融性を得ることができると共に、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、十分な機械的強度を得ることができる。
 また、本発明のガラス繊維用ガラス組成物は、実質的にP、Alを含まない。
 本発明のガラス組成物は、Pを実質的に含まないことから、低い液相温度、広い作業温度範囲及び紡糸可能な粘度を同時に実現することができる。前記ガラス組成物は、Pを含むときには溶融粘度が著しく低下し、ガラス繊維を得ることができなくなる。
 また、Pは、ガラスの溶融温度を著しく低下させることが知られており、本発明者らの検討により、ガラス繊維におけるヒドロキシアパタイト形成に必須ではないことが明らかとなった。
 さらに、本発明のガラス組成物は、Alを実質的に含まないことから、生体に利用可能なガラス繊維を得ることができる。前記ガラス組成物は、Alを含むときには、Alが生体に同化できないことから、得られたガラス繊維を生体に利用した場合、十分な骨伝導性を付与することができない。また、前記Ca2+とHPO 2-とを含む処理溶液中において、アルカリ成分の溶出を阻害するため、ガラス繊維表面がアルカリ性となることを阻害し、ヒドロキシアパタイト形成能を低下させる。
 また、本実施形態のガラス組成物は、NaOを含む1以上のアルカリ金属の酸化物を7~30質量%含む。
 本実施形態のガラス繊維用ガラス組成物は、好ましくは10~25質量%のNaOを含む。NaOの含有量が10質量%未満では、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、該ガラス表面をアルカリ性にする作用が得られにくくなる。また、NaOの含有量が25質量%を超えると、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、十分な機械的強度が得られない場合がある。
 本実施形態のガラス繊維用ガラス組成物は、さらに好ましくは15~22質量%のNaOを含む。NaOの含有量が前記範囲であることにより、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、十分な機械的強度を得ることができると共に、前記Ca2+とHPO 2-とを含む処理溶液中において、該ガラス表面を確実にアルカリ性にすることができる。
 本実施形態のガラス繊維用ガラス組成物は、NaOと、KO及び/又はLiOを合計で10~25質量%含むことがより好ましく、15~22質量%含むことがさらに好ましい。本実施形態のガラス繊維用ガラス組成物は、合計で前記範囲のNaOと、KO及び/又はLiOを含むことにより、該ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、該ガラス表面を確実にアルカリ性にすることができる。また、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、対薬品性および強度特性を両立させることができる。
 また、本実施形態のガラス繊維用ガラス組成物において、KOが0~10質量%の範囲で含まれていることが好ましい。このとき、前記ガラス組成物は、10質量%以下のKOを含むことにより溶融温度を下げることができるため溶融性、紡糸性が向上できる。ただし、KOの含有量が10質量%を超えると、溶融温度が下がりすぎてしまい繊維化が困難となる場合がある。
 本実施形態のガラス繊維用ガラス組成物は、好ましくは5質量%以下のKOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のKOを含むことにより、溶融性を向上させることができる。
 本実施形態のガラス繊維用ガラス組成物は、さらに好ましくは2質量%以下のKOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のKOを含むことにより、溶融性を向上させることができると共に、該ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、該ガラス表面を確実にアルカリ性にすることができる。
 また、本実施形態のガラス繊維用ガラス組成物において、LiOは、溶融温度の低下と粘度を低下させるという効果がある。本実施形態のガラス繊維用ガラス組成物は、前記効果を得るために、好ましくは0~10質量%のLiOを含む。このとき、前記ガラス組成物は、10質量%以下のLiOを含むことにより、溶融温度の低下と粘度を低下させることができる。ただし、LiOの含有量が10質量%を超えると、ガラスの成分が均一に混ざりにくくなることから、成分に偏りが出てしまい、結果的にガラス化が困難となることがある。
 また、本実施形態のガラス繊維用ガラス組成物は、好ましくは5質量%以下のLiOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のLiOを含むことにより、溶融粘度が低くなり、繊維化をしやすくすることができると共に、前記Ca2+とHPO 2-とを含む処理溶液中において、該ガラス表面を確実にアルカリ性にすることができる。
 本実施形態のガラス繊維用ガラス組成物は、さらに好ましくは3質量%以下のLiOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のLiOを含むことにより、溶融粘度及び、結晶析出する温度を低下することができ、非常に繊維化しやすくなると共に、前記Ca2+とHPO 2-とを含む処理溶液中において、より効率的にヒドロキシアパタイトを形成するために好適な量である。
 本発明のガラス繊維用ガラス組成物は、CaO又はMgOのどちらか一方もしくは両方を、合計して0~27質量%含むことを特徴とする。本実施形態のガラス繊維用ガラス組成物は、より好ましくは、2~20質量%、さらに好ましくは4~10質量%のCaO及びMgOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のCaO及びMgOを含むことにより、該ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、ガラス繊維表面にヒドロキシアパタイトを均一に形成させることができる。
 このとき、前記ガラス組成物は、CaOを2~20質量%の範囲で含むことが好ましい。前記ガラス組成物は、CaOを2~20質量%含むことにより、該ガラス組成物からガラス繊維を得たときに、該ガラス表面に均一にヒドロキシアパタイトを析出することができる。
 CaOの含有量が2質量%未満では、本実施形態のガラス繊維用ガラス組成物の溶融性が低下したり、該ガラス組成物からガラス繊維を得たときに、十分なヒドロキシアパタイト形成能が得られなくなる場合がある。
 一方、CaOの含有量が20質量%を超えるときにはヒドロキシアパタイトの形成量が多すぎ、表面状態の平滑性が損なわれたり、欠陥が増加したりすることで、屈曲に対して弱くなるため、ガラス繊維の持つ柔軟性が損なわれることがある。
 本実施形態のガラス繊維用ガラス組成物は、さらに好ましくは4~10質量%のCaOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のCaOを含むことにより、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、該ガラス繊維表面に均一にヒドロキシアパタイトを形成することができる。
 また、このとき、前記ガラス組成物は、MgOを0~7質量%の範囲で含むことが好ましい。前記ガラス組成物は、MgOを加えることでガラス中の成分の偏りである分相現象(ガラスの相分離現象)を抑えることができるため溶融性・紡糸性の向上という効果が得られる。MgOの含有量が7質量%を超えるときには、溶融温度の上昇や粘度の上昇による紡糸性の悪化の原因となることがある。
 本実施形態のガラス繊維用ガラス組成物は、好ましくは0~5質量%のMgOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のMgOを含むことにより、溶融性を向上させることができる。
 本実施形態のガラス繊維用ガラス組成物は、さらに好ましくは0~2質量%のMgOを含む。本実施形態のガラス繊維用ガラス組成物は、前記範囲のMgOを含むことにより、溶融性を向上させることができると共に、該ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、ヒドロキシアパタイト形成能を向上させることができる。
 本実施形態のガラス繊維用ガラス組成物は、SiOを65~93質量%、及びNaOを含む1以上のアルカリ金属の酸化物を7~30質量%含み、実質的にAl及びPを含まないことを特徴とする。ここで、「Al及びPを含まない」とは、Al及びPを添加しないことを意味し、実質的にAl及びPの濃度が、0~0.1質量%であることを意味する。
 ガラスにNaOを含ませることにより、Ca2+とHPO 2-とを含む処理溶液、例えば生体液又は疑似体液中にNaが溶出し、ガラス表面がアルカリ性となり、処理溶液中のCa2+とHPO 2-がガラス表面で反応することによりヒドロキシアパタイトが形成されると考えられる(図1)。
 CaO及びMgOは、本実施形態のガラス繊維用ガラス組成物からガラス繊維を得たときに、前記Ca2+とHPO 2-とを含む処理溶液中において、より効率的にヒドロキシアパタイトを形成するために好適な成分である。
 本実施形態のガラス繊維用ガラス組成物によれば、液相温度(溶融ガラス中に結晶が析出しない最低温度)が十分低く、液相温度とガラスの溶融粘度が100Pa・秒となる温度との差である作業温度の範囲が広いので、該ガラス組成物を溶融して容易にガラス繊維を紡糸することができる。また、本実施形態のガラス繊維用ガラス組成物を用いることにより、ヒドロキシアパタイトをガラス表面に析出させることができる、生体利用可能なガラス繊維を得ることができる。
 上記の各組成のガラス繊維用ガラス組成物は当業者に公知のガラスの製造方法により製造することができる。すなわち、原料を計量し、混合後、溶融炉に送って溶融させて溶融ガラスとする。前記溶融ガラスをバブラーによりバブリングし、清澄槽で清澄化した後、作業槽で白金ノズルを通す。前記白金ノズル近傍には冷却プレートが設置してあり、ノズルを通ったガラスは急冷されながら集束剤が塗布され、紡糸機により巻き取られる。この結果、ガラス繊維を得ることができる。
 前述のようにして得られた本実施形態のガラス繊維は、例えば、過飽和のHPO 2-とCa2+を含有する処理溶液中に浸漬することにより、該ガラス繊維表面からNa、K又はLiが溶け出し、該ガラス繊維表面にヒドロキシアパタイトを析出させることができる。
 前記処理溶液は、例えば、Ca2+を2.5~20.0mM、HPO 2-を1.0~10.0mMを含むことが好ましい。pHは5.0~7.5が好ましい。前記処理溶液は、より好ましくは、Ca2+2.5~10.0mM、HPO 2-1.0~6.0mMを含む。
 pHを5.0~7.5に調整するには、一般的な酸・アルカリを使用することができるが、ヒドロキシアパタイト形成への影響を考えると、酸は1Mの塩酸(1M-HCl)、アルカリは28%アンモニア水(NHOH)を使用することが好ましい。
 前記処理溶液中には、処理溶液としてヒドロキシアパタイト形成能を損うことがなく、体内に入ったときに、生体に悪影響を示すことのないイオンが含まれていてもよい。このようなイオンとして、例えば、塩素イオン(Cl)、炭酸イオン(HCO )、リン酸イオン(HPO 2-)、硫酸イオン(SO 2-)、ナトリウムイオン(Na)、カリウムイオン(K)、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)、アンモニアイオン(NH )等を挙げることができる。
 前記処理溶液は、例えば生体液であってもよく、疑似体液であってもよい。
 次に、図1を参照して、前記処理溶液として疑似体液を用いたときに、該擬似体液中でヒドロキシアパタイトがガラス繊維上に析出するメカニズムについて説明する。図1はヒドロキシアパタイト生成のメカニズムを模式的に表したものである。
 図1において、前記疑似体液は、2.5~20.0mMのCa2+と、1.0~10.0mMのHPO 2-との他、Cl、HCO 、Na、SO 2-を含んでおり、pHは5.0~7.5の範囲に調整されている。一方、ガラス繊維(図1には単に「ガラス」として示す)は、65~93質量%のSiOと、7~30質量%のNaOとを含んでいる。SiOは主骨格を形成し、ガラス繊維組成物中のSiO以外の他の成分である、NaやCaはNa+、Ca2+して主骨格の間に存在すると考えられている。
 ここで、図1に示すように、ガラス中に含まれるNaはアルカリ土類金属であるCa2+等よりも、酸素を引きつける力が小さい。また電気陰性度が小さく、酸素との結合は、イオン結合的であり、結合力が弱いため、主骨格であるSiOの酸素原子との結合が弱く、溶媒中に容易に溶出する。ガラスに含まれるNaが溶出することによって、ガラス表面にSi-OH基が形成され、ガラス表面はアルカリ性となる。
 また、ガラス組成中のカルシウムイオンの擬似体液中への溶出によるカルシウムイオンの過飽和度の上昇と、ガラス表面のSi-OH基の存在がヒドロキシアパタイトの核形成を誘起し、核が材料表面のSi-OH基の位置に選択的に生成される。
 ヒドロキシアパタイト生成のメカニズムは、少なくともCa2+を2.5~20.0mM、HPO 2-を1.0~10.0mM含む処理溶液であれば、どのような処理溶液であっても同様と考えられる。
 また、このヒドロキシアパタイトの組成は、主としてCa10(PO(OH)(Ca/P=1.67)である。しかしながら、体液、あるいは疑似体液の組成によって、Caの一部がMgに置換されているものや、PO 2-の一部がCO 2-に置き換わったもの等も存在し、例えば、CaMg(PO(OH)のような組成でも存在するものと考えられる。また、Ca/Pの比も1.67に限らない。例えば、Ca(PO(OH)のような組成が存在していても良く、疑似体液中でヒドロキシアパタイトを生成させる場合には、Ca/P=1.60~1.74の範囲になるように、疑似体液を調整すればよい。
 前記処理溶液中で、ガラス繊維の表面にヒドロキシアパタイトを析出させる温度は、0~90℃であればよく、30~80℃がより好ましい。更に好ましくは36~60℃である。
 従来のバイオガラスは生体中でヒドロキシアパタイトを析出させていたため、生体で可能な温度範囲でしか析出させることができなかった。しかし、本発明においては、生体外の処理溶液中でヒドロキシアパタイトを析出させることができる。したがって、体内環境よりも高温で反応させることもでき、より短時間でヒドロキシアパタイトを析出させることができる。
 本実施形態において、前記ガラス繊維を前記処理溶液に浸漬する時間は、特に限定は無いが、温度条件によって5分~1週間程度であればよい。前記ガラス繊維を前記処理溶液に浸漬する時間は、好ましくは30分~24時間である。
 ヒドロキシアパタイトで被覆するガラス繊維の形態としては、例えば、チョップドストランド、ヤーン、ロービング、マット、クロス、ミルドファイバー、編物、ガラスパウダー等が挙げられるがこれらに限られない。ガラス繊維の太さとしては、3~30μmが好ましい。
 次に、本発明の実施例を示す。
 〔実施例1~15〕
 まず、表1に示す各試料のガラス組成になるように調合したバッチを、白金ルツボに入れ電気炉中で1400~1600℃で8時間の条件で、攪拌を加えながら溶融した。次にこの溶融ガラスをカーボン板に流し出し、ガラスカレットを作製した。いずれのガラス組成においても、結晶物の析出や溶け残りは無く、ガラスを得ることができた。結果を「ガラス化」として、表1に示す。
 次に、前記ガラスカレットをガラス繊維製造炉に投入し、1080~1200℃で溶融し、紡糸を行なうことで3~30μmの径を有する繊維を得た。いずれのガラス組成においても、結晶物の析出による切断や繊維径のばらつきは見られず、容易に繊維化することできた。結果を「繊維化」として、表1に示す。
 次に、前記ガラス繊維2gを、表2に示す組成を備え、pHが7.3~7.4の範囲である擬似体液(SBF)に100mLに浸漬し、37℃で24時間保温することにより、ヒドロキシアパタイトの析出の有無を評価した(ヒドロキシアパタイト析出実験1)。
 次に、前記ガラス繊維2gを、表3に示す組成を備え、pHが5.5~5.8の範囲である、硝酸カルシウム(Ca(NO)及びリン酸二水素アンモニウム(NHPO)を含む溶液(CP溶液)100mLに浸漬し、60℃で30分間保温することにより、ヒドロキシアパタイトの析出の有無を評価した(ヒドロキシアパタイト析出実験2)。
 次に、前記ヒドロキシアパタイト析出実験により得られたガラス繊維の表面を、走査型電子顕微鏡(SEM)(株式会社日立ハイテクノロジーズ製;商品名S-3400N)により、観察した。また、エネルギー分散型分光分析装置(EDS)(株式会社堀場製作所製;商品名EMAX)にて表面元素分析を行った。
 SEMの表面分析の結果、析出物が付着していることが確認できる。また、EDSによりこの付着物の元素分析を行なったところ、ガラス組成物には含まれないP原子の存在が確認できたことからヒドロキシアパタイトがガラス繊維表面に析出していることが確認された。結果を表1、HAp析出実験の欄に、ヒドロキシアパタイトが析出したものを○で示す。
 また、実施例1のガラス組成物から得られたガラス繊維に対して、ヒドロキシアパタイト析出実験1の方法によりヒドロキシアパタイトが被覆されたガラス繊維表面のSEM写真を、図2に示す。実施例2のガラス組成物から得られたガラス繊維に対して、ヒドロキシアパタイト析出実験1の方法によりヒドロキシアパタイトが被覆されたガラス繊維表面のSEM写真を、図3に示す。
 図2、3の表面には、疑似体液に浸漬前には観察されない微小な析出物が付着しているのが確認される。
Figure JPOXMLDOC01-appb-T000001
 なお、表中HAはヒドロキシアパタイト示し、温度は摂氏(℃)、引張強度はGPaを単位としている。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〔比較例1~10〕
 表4に示す各試料のガラス組成になるように調合したバッチを用いた以外は、実施例1~15と全く同一にして、ガラスカレットを作製した。比較例1~3、9、10においては、溶け残りのあるものや、結晶析出するものがあり、ガラス化することができなかった。結果を「ガラス化」として、表4に示す。
 ガラス化できた比較例4~8について、作製したガラスカレットをガラス繊維製造炉に投入後、1080~1400℃で溶融し、紡糸を行なうことで繊維を得た。比較例7においてはガラス化、繊維化とも可能であったが、比較例4~6においては、紡糸作業に最適な粘度である100Pa・秒の温度(表4に「1000ポイズ温度」として示す)が、結晶が析出する温度である液相温度に近く、紡糸中に結晶の析出が起こるため連続的に繊維を得ることは非常に困難であり、繊維化することができなかった。結果を「繊維化」として、表4に示す。
 次に、比較例7で得られたガラス繊維を用いた以外は、実施例1~15と全く同一にしてヒドロキシアパタイトの析出実験1,2を行い、得られたガラス繊維の表面を実施例1~15と全く同一にして観察すると共に、表面元素分析を行った。
 SEMによる表面分析の結果、析出物は確認されなかった。また、EDSによりガラス繊維表面の元素分析を行なったが、検出された元素はガラス組成元素のみであり、ヒドロキシアパタイトの析出は確認することができなかった。結果を表4に示す。
 また、比較例7のガラス組成物から得られたガラス繊維に対して、ヒドロキシアパタイト析出実験1の方法によりヒドロキシアパタイトの被覆を試みたガラス繊維表面のSEM写真を、図4に示す。
 ヒドロキシアパタイトが析出していることが確認された図2、3のガラス繊維表面と比較して、図4のガラス繊維表面は平滑なままであり、ヒドロキシアパタイトの析出が観察されない。
Figure JPOXMLDOC01-appb-T000004
 次に細胞毒性を解析した。生体内で用いるためには、ガラス繊維が毒性を持たないことが必要条件である。そこで、生体活性を解析する前に、培養細胞を用いた細胞毒性評価を行った。
 実施例2及び比較例7のガラス繊維を用いてガラスクロスを作成し、10mLあたり1gのガラスクロスを培地に24時間浸漬した。この培地を用いてチャイニーズハムスター由来細胞株V79を培養し、6日後に細胞がコロニー形成能を有するか否かにより、毒性の有無の評価を行った。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 ガラスクロスを浸漬していない培地をコントロール培地とし、ガラスクロス浸漬培地で形成されたコロニー数を、コントロール培地で形成されたコロニー数の割合(コロニー数比%)として表している。実施例2、比較例7のガラスクロスを浸漬した培地でも、コントロール培地と同程度以上のコロニー数が観察された。したがって、実施例、比較例ともに細胞毒性は認められず、本願発明のガラス繊維は生体内でも安全に使用可能であることが確かめられた。
 さらに、これらガラス繊維の生体活性を解析するために、ラットに、上記生体毒性の見られなかった実施例2、比較例7のガラスクロスを埋入し、骨再生及び周囲の細胞への影響を調べた。
 11週齢のラットの両後脚の脛骨に直径2mmの貫通孔を開け、右後脚骨欠損部には実施例2のガラスクロス、左後脚骨欠損部には比較例7のガラスクロスを孔を覆うように設置した。ガラスクロス埋入から2週間経過後、被験部を摘出し、切片を作成し、細胞染色を行い光学顕微鏡により観察した。図5の(A)~(C)は実施例を、(D)~(F)は比較例を示す。
 図5に示すように、実施例2のガラスクロスを巻いた骨は、新生骨の形成が見られるとともに、骨形成を促す赤色骨髄が豊富であることが観察された。それに対し、比較例7のガラスクロスを巻いた骨は、新生骨の形成がほとんど見られなかった。図(A)、(B)(D)、(E)中、矢印で示したのは、骨欠損部である。骨欠損から2週間経過後も、比較例のガラスクロスを埋入したものでは、骨の再生が見られないのに対し、実施例2のガラスクロスを用いたものでは、骨が再生しているのが観察される。さらに、拡大して観察すると、実施例のガラスクロスを埋入したものでは(図5(C))、骨形成骨髄である赤色骨髄が観察されるのに対し、比較例のガラスクロスを埋入したものでは(図5(F))、線維性組織が観察されることから、ガラスクロスを異物として認識しているものと考えられる(各図矢印で示した箇所)。
 ラット埋入試験の結果からも、生体内でもヒドロキシアパタイトを形成することから、本願発明によるガラス繊維は生体適合性に優れ、生体材料として患部を補強する目的で使用可能であることが確認された。
 上述のように、本願発明によるガラス繊維は、十分な強度を有し、紡糸性に優れ、また、生体液又は疑似体液中においてその表面にヒドロキシアパタイトを形成することから、生体適合性を有するものである。

Claims (9)

  1.  SiOを65~93質量%、及びNaOを含む1以上のアルカリ金属の酸化物を7~30質量%含み、残部はガラス組成物に許容される材料であり、Al及びPを含まないことを特徴とする生体利用可能なガラス繊維用ガラス組成物。
  2.  アルカリ金属の酸化物としてNaOと、KO又はLiOのどちらか一方もしくは両方を7~30質量%含むことを特徴とする請求項1記載の生体利用可能なガラス繊維用ガラス組成物。
  3.  アルカリ金属の酸化物として、NaOに加え、KOとLiOを合わせて0~10質量%含むことを特徴とする請求項2記載の生体利用可能なガラス繊維用ガラス組成物。
  4.  CaO又はMgOのどちらか一方もしくは両方を、合計して0~27質量%含むことを特徴とする請求項1~3記載の生体利用可能なガラス繊維用ガラス組成物。
  5.  CaOを2~20質量%含むことを特徴とする請求項1~4記載の生体利用可能なガラス繊維用ガラス組成物。
  6.  MgOを0~7質量%含むことを特徴とする請求項1~5のいずれか1項に記載の生体利用可能なガラス繊維用ガラス組成物。
  7.  請求項1~6のいずれか1項に記載の生体利用可能なガラス繊維用ガラス組成物からなることを特徴とするヒドロキシアパタイト形成能を有する生体利用可能なガラス繊維。
  8.  請求項7に記載の生体利用可能なガラス繊維にヒドロキシアパタイトを被覆したことを特徴とするヒドロキシアパタイト被覆ガラス繊維。
  9.  請求項7に記載の生体利用可能なガラス繊維を、少なくともCa2+を2.5~20.0mM、かつHPO 2-を1.0~10.0mM含み、pHが5.0~7.5である処理溶液に、0~90℃の範囲の温度で、5分~1週間の間浸漬させることにより、ヒドロキシアパタイトを該ガラス繊維表面に析出させることを特徴とするヒドロキシアパタイト被覆ガラス繊維の製造方法。
PCT/JP2012/055551 2011-03-08 2012-03-05 生体利用可能なガラス繊維用ガラス組成物 WO2012121210A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503537A JP5884821B2 (ja) 2011-03-08 2012-03-05 生体材料用ガラス繊維、ヒドロキシアパタイト被覆ガラス繊維製品及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-049868 2011-03-08
JP2011049868 2011-03-08

Publications (1)

Publication Number Publication Date
WO2012121210A1 true WO2012121210A1 (ja) 2012-09-13

Family

ID=46798171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055551 WO2012121210A1 (ja) 2011-03-08 2012-03-05 生体利用可能なガラス繊維用ガラス組成物

Country Status (2)

Country Link
JP (1) JP5884821B2 (ja)
WO (1) WO2012121210A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129926A (zh) * 2014-08-08 2014-11-05 太仓派欧技术咨询服务有限公司 一种表面具有生物相容性羟基磷灰石的玻璃纤维
CN104178916A (zh) * 2014-08-18 2014-12-03 苏州宏久航空防热材料科技有限公司 一种表面具有生物相容性羟基磷灰石的玻璃纤维的制备方法
CN105731830A (zh) * 2016-02-01 2016-07-06 济南大学 一种羟基磷灰石修饰的玻璃纤维的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141645A (ja) * 1984-11-30 1986-06-28 ピーピージー・インダストリーズ・インコーポレーテツド 固定化された生化学的に活性な材料を有する多孔性ガラス繊維およびその製法
JPH06327757A (ja) * 1993-05-20 1994-11-29 Nippon Sherwood Kk 生体インプラント複合材及び生体適合性複合材
JPH10512227A (ja) * 1995-01-13 1998-11-24 ブリンク,マリア 新規な生物活性ガラス及びそれらの使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141645A (ja) * 1984-11-30 1986-06-28 ピーピージー・インダストリーズ・インコーポレーテツド 固定化された生化学的に活性な材料を有する多孔性ガラス繊維およびその製法
JPH06327757A (ja) * 1993-05-20 1994-11-29 Nippon Sherwood Kk 生体インプラント複合材及び生体適合性複合材
JPH10512227A (ja) * 1995-01-13 1998-11-24 ブリンク,マリア 新規な生物活性ガラス及びそれらの使用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129926A (zh) * 2014-08-08 2014-11-05 太仓派欧技术咨询服务有限公司 一种表面具有生物相容性羟基磷灰石的玻璃纤维
CN104178916A (zh) * 2014-08-18 2014-12-03 苏州宏久航空防热材料科技有限公司 一种表面具有生物相容性羟基磷灰石的玻璃纤维的制备方法
CN105731830A (zh) * 2016-02-01 2016-07-06 济南大学 一种羟基磷灰石修饰的玻璃纤维的制备方法

Also Published As

Publication number Publication date
JPWO2012121210A1 (ja) 2014-07-17
JP5884821B2 (ja) 2016-03-15

Similar Documents

Publication Publication Date Title
Abou Neel et al. Bioactive functional materials: a perspective on phosphate-based glasses
Diba et al. Magnesium‐containing bioactive glasses for biomedical applications
US4735857A (en) Fiber glass mainly composed of calcium phosphate
Quintero et al. Laser spinning of bioactive glass nanofibers
Ning et al. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method
Bellucci et al. An overview of the effects of thermal processing on bioactive glasses
Yuan et al. Formation of bone‐like apatite on poly (L‐lactic acid) fibers by a biomimetic process
CN105819697B (zh) 一种生物相容磷酸盐基连续玻璃纤维及由其制备的织物
Erasmus et al. In vitro evaluation of porous borosilicate, borophosphate and phosphate bioactive glasses scaffolds fabricated using foaming agent for bone regeneration
JP2012531377A (ja) 多成分ガラス
JP5884821B2 (ja) 生体材料用ガラス繊維、ヒドロキシアパタイト被覆ガラス繊維製品及びその製造方法
US4820573A (en) Fiber glass mainly composed of calcium phosphate
CN105818492A (zh) 一种生物活性磷酸盐基连续玻璃纤维纺织复合材料及其用途
Pang et al. High performing additively manufactured bone scaffolds based on copper substituted diopside
HUT61899A (en) Bioactive glass composition for bone-supplying, fibres, fibre-bunch and granules produced from the same and method for producing such fibres
Li et al. Effect of ZrO2 addition on in-vitro bioactivity and mechanical properties of SiO2–Na2O–CaO–P2O5 bioactive glass-ceramic
Oliveira et al. Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based process
JPS6212322B2 (ja)
Adam et al. Effect of varying phosphate content on the structure and properties of sol-gel derived SiO2-CaO-P2O5 bio-glass
EP1150727B1 (en) Biodegradable composite material for tissue repair
CA2500823A1 (en) Composition, use and manufacture of bioactive glass
Cheng et al. Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles
Yang et al. A study on in vitro and in vivo bioactivity of nano hydroxyapatite/polymer biocomposite
Paiva et al. In vitro studies of bioactive glass/polyhydroxybutyrate composites
Mulchandani et al. Bioactive Glasses: Prospects in Bone Tissue Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754493

Country of ref document: EP

Kind code of ref document: A1