WO2012120989A1 - Method for forming sheet material, sheet material forming apparatus, method for determining forming conditions for sheet material forming apparatus, and device for determining forming conditions for sheet material forming apparatus - Google Patents

Method for forming sheet material, sheet material forming apparatus, method for determining forming conditions for sheet material forming apparatus, and device for determining forming conditions for sheet material forming apparatus Download PDF

Info

Publication number
WO2012120989A1
WO2012120989A1 PCT/JP2012/053717 JP2012053717W WO2012120989A1 WO 2012120989 A1 WO2012120989 A1 WO 2012120989A1 JP 2012053717 W JP2012053717 W JP 2012053717W WO 2012120989 A1 WO2012120989 A1 WO 2012120989A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate material
heating
curvature
plate
molding
Prior art date
Application number
PCT/JP2012/053717
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 広明
孝洋 橘
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012120989A1 publication Critical patent/WO2012120989A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D25/00Working sheet metal of limited length by stretching, e.g. for straightening
    • B21D25/02Working sheet metal of limited length by stretching, e.g. for straightening by pulling over a die

Definitions

  • the present invention relates to a plate material forming method, a plate material forming device, a forming condition determining method for a plate material forming device, and a forming condition determining device for a plate material forming device, in which a plate material is formed by locally heating.
  • the local thermoforming technique is different from the conventional hot working in which the whole plate material is thermoformed, and the plate material is locally heated to form a target shape.
  • a heating source that is movable and can heat the plate material in a dot shape or a relatively small circular shape is used. This technology is cheaper in equipment cost and jig cost than conventional hot working, and can be processed in a short time.
  • Patent Document 1 describes basic specifications regarding a local heat forming apparatus.
  • Titanium alloy has low thermal conductivity, and the temperature gradient increases at the boundary between the heating region irradiated by the heating source and the non-heating region other than the heating region. Therefore, the thermal expansion of the heating region is constrained to the surrounding non-heating region, which is at a lower temperature than the heating region, and an out-of-plane deformation as shown in FIG. 1 occurs. That is, the plate member 10 is not formed into a shape along the mold 2 due to thermal expansion of the portion irradiated by the heating source 4.
  • strain mismatch occurs at the boundary between the high temperature heating region and the low temperature non-heating region, and residual stress is generated at the boundary after molding. Furthermore, while the heating source is moving, the stress distribution of the material changes, causing non-uniform distortion in the moving direction of the heat source.
  • the local heating technique using the local heating molding apparatus such as Patent Document 1 does not describe specific molding conditions, and there is a cause for the reduction in shape accuracy as described above, and the molding conditions must be adjusted. It is not pointed out that high-precision molding cannot be performed. Therefore, it has been difficult to form a plate material with high accuracy by the molding method using the local heat molding apparatus according to the prior art.
  • the present invention has been made in view of such circumstances, and a plate material forming method, a plate material forming apparatus, and a plate material that can accurately process a plate material when the plate material is locally heated and formed. It is an object of the present invention to provide a molding condition determination method for a molding apparatus and a molding condition determination apparatus for a sheet material molding apparatus.
  • the plate material forming method, the plate material forming apparatus, the molding condition determining method for the plate material forming apparatus, and the molding condition determining device for the plate material forming apparatus of the present invention employ the following means. That is, in the plate material forming method according to the first aspect of the present invention, in a state in which a tensile force is applied to a plate made of titanium or a titanium alloy, a molded portion of the plate material loaded with the tensile force is set to a curvature of the forming target. A pressing step for pressing against the mold having the heating step, and a heating step for heating at least a molded portion of the plate material continuously or intermittently on a plurality of parallel lines.
  • a tensile force is applied to a plate made of titanium or a titanium alloy, and a mold having a molding target curvature is pressed against a formed portion of the plate applied with the tensile force. Then, at least a molded portion of the plate material is continuously or intermittently heated on a plurality of lines parallel to each other.
  • transforms with heating and a board
  • Titanium or a titanium alloy has a lower thermal conductivity than aluminum or an aluminum alloy, and the temperature gradient increases at the boundary between a heated region heated by the heating unit and a non-heated region that is not heated. Therefore, the thermal expansion of the heating region is constrained by the non-heating region, and the heating region is deformed out of plane by the thermal expansion.
  • the plate is heated continuously or intermittently on one line, and is heated on a plurality of lines parallel to each other. For this reason, in the plate material, the molded portion against which the mold is pressed is not entirely heated or only by one line, but the heated portion is at least two lines, and the heating region is controlled. Therefore, it is easy to mold the plate material to the curvature of the molding target as compared with the case where the entire surface is heated or the case where it is heated only by one line.
  • the amount of elongation can be reduced and lifting can be suppressed compared to the case where the plate material is heated continuously on one line. Can be improved.
  • the heating of the plate material may be such that the heating unit can move relative to the plate material, and the heating unit heats the plate material continuously or intermittently in one direction, and then moves on the adjacent line.
  • a black body paint may be applied to the surface of the plate material and the heating unit may be heated uniformly with respect to the plate material.
  • the portion to which the black body paint is applied has a higher absorption capacity than the metallic luster portion and is easily heated.
  • the portion where the black body paint is applied does not change the emissivity due to oxidation due to heating, and can be heated to a stable temperature.
  • the heating unit may be configured to have a shape in which a heating pattern is formed, and the plate material may be heated in a heating pattern shape by a single heating.
  • the plate material it is desirable to heat at least a molded portion of the plate material at 500 ° C. or higher.
  • Titanium or a titanium alloy usually has a strength lower than 500 ° C., that is, yield stress decreases. Therefore, according to the present invention, it becomes easier to give plastic deformation to the plate material than in the case of normal temperature, and the amount of elastic deformation is reduced by lowering the yield stress of the plate material, so the amount of springback after forming is also reduced. As a result, it is easy to process the plate material into a shape along the mold.
  • the pitch between adjacent lines in the heating step may be a length determined according to the curvature of the forming target of the plate material.
  • the pitch between the lines is determined according to the curvature of the forming target of the plate material, the interval between the heating region and the non-heating region is adjusted in the plate material. As a result, since the thermal expansion in the plate material is adjusted, the plate material can be accurately molded to the desired curvature.
  • the heating temperature of the heating unit in the heating step may be determined according to the curvature of the forming target of the plate material.
  • the heating temperature is determined in accordance with the curvature of the forming target of the plate material, the expansion length generated by the thermal expansion in the plate material is adjusted. As a result, it is possible to accurately mold the plate material to the desired curvature.
  • the heating temperature may be adjusted by the set temperature of the heating unit, or may be adjusted by heating the same scanning line a plurality of times.
  • the tensile force applied in the loading step may be determined according to the curvature of the forming target of the plate material.
  • the tensile force is appropriately set according to the curvature of the forming target of the plate material, the strain generated in the plate material is adjusted. As a result, it is possible to accurately mold the plate material to the desired curvature.
  • a movable light source may be used as a heating source, and the heating area may be controlled in accordance with the curvature of the plate material forming target.
  • the plate is heated by the movable light source.
  • the heating area by the heating source is controlled by the curvature of the forming target of the plate material.
  • the light source is, for example, a lamp using light energy such as a halogen lamp, or various lasers. Further, as long as the amount of heat input and temperature can be controlled, it is generally possible to use a flame associated with combustion of an arc or gas generally used in welding, or heating by high frequency. In this case, it is desirable that the temperature can be controlled and the heat source can be moved.
  • the plate material when a gap is generated between the plate material and the mold due to heating, the plate material may be heated and molded in a state where no gap is generated between the plate material and the mold.
  • the mold and the plate material are adjusted by adjusting the position of the mold or the tension direction of the plate material.
  • the plate material is heated while maintaining the close contact state.
  • the plate material floats from the mold, the plate material is likely to be deformed out of plane, but this can be prevented.
  • the heat input during heating and the temperature control may be performed by changing the emissivity between the heating region and the non-heating region of the plate material.
  • the plate material is titanium or a titanium alloy
  • the light absorption rate is usually poor on the surface of the plate material.
  • the heating step for example, by applying black body paint or oxidizing treatment at a required portion, by changing the emissivity between the heating area and the non-heating area on the surface of the plate material, Heat input and temperature control can be performed.
  • the temperature of the portion heated by the plate material may be measured by a radiation thermometer.
  • the temperature of the portion where the radiation thermometer is heated by the plate material is measured, and the output of the heating source is controlled based on the measured temperature.
  • the temperature of the heating section By controlling the temperature of the heating section, process reproducibility can be improved and material deterioration due to overheating can be prevented.
  • the radiation thermometer may be movable with the heating source.
  • the heating distance or non-heating distance on one scanning line is determined according to the curvature of the forming target of the plate material.
  • the length may be the same.
  • the heating distance or non-heating distance on one scanning line is determined according to the curvature of the forming target of the plate material. Therefore, the area
  • the heating unit may heat the plate material other than the molded portion.
  • the non-heated region becomes a region deviated from the molded portion.
  • a non-heated region that is not heated by the heating unit may be removed from the plate material.
  • the non-heated region that is not heated by the heating unit in the plate material is removed from the formed plate material after the forming by the heating step.
  • region can be reduced.
  • the residual stress can be removed and the molding accuracy can be improved by cutting the material on the heating region side of the boundary.
  • the plate material forming apparatus includes a load portion that applies a tensile force to a plate material made of titanium or a titanium alloy, and a formed portion of the plate material that is loaded with the tensile force, with a curvature of a forming target. And a heating section that heats at least a molded portion of the plate material continuously or intermittently on a plurality of parallel lines.
  • the tensile force is applied to the plate made of titanium or titanium alloy by the load portion, and the formed portion of the plate material to which the tensile force is loaded by the pressing portion has a forming target curvature.
  • the mold is pressed. Then, at least a molded portion of the plate material is continuously or intermittently heated on a plurality of lines parallel to each other.
  • the plate material is continuously or intermittently heated on one line and heated on a plurality of lines parallel to each other. For this reason, in the plate material, the molded portion against which the mold is pressed is not entirely heated or only by one line, but the heated portion is at least two lines, and the heating region is controlled. For this reason, it is easier to mold the plate material to the molding target curvature as compared to the case where the entire surface is heated or the case where the plate material is heated only by one line. In addition, when the plate material is heated intermittently on one line, the amount of elongation can be reduced or the lifting can be suppressed compared to the case where the plate material is heated continuously on one line. Accuracy can be improved.
  • the heating unit may use a movable light source as a heating source, and the heating area may be controlled in accordance with the curvature of the forming target of the plate material.
  • the plate is heated by the movable light source.
  • the heating area by the heating source is controlled by the curvature of the forming target of the plate material.
  • the temperature of the portion heated by the plate material may be measured by a radiation thermometer.
  • the temperature of the portion where the radiation thermometer is heated by the plate material is measured, and the output of the heating source is controlled based on the measured temperature. If the heating source is movable, the radiation thermometer may be movable with the heating source.
  • the molding condition determination method of the plate material molding apparatus includes a load portion that applies a tensile force to a titanium or titanium alloy plate material, and a molded portion of the plate material that is loaded with the tensile force.
  • Forming a plate forming apparatus comprising: a pressing portion that presses against a mold having a curvature of a forming target; and a heating portion that continuously or intermittently heats at least a forming portion of the plate on a plurality of parallel lines.
  • a method for determining conditions, in which a pitch between adjacent lines, a heating temperature for heating a plate material, and a setting step for setting a tensile force applied to the plate material, and the plate material is heated by the set pitch, heating temperature and tensile force The calculation step of calculating the curvature of the plate material obtained from time to time based on the strength change and thermal expansion of the material due to heating of the plate material, the curvature of the forming target, and the calculated curvature of the plate material And compare, and a determining step of determining pitch, the heating temperature and the tensile force in the actual sheet molding.
  • the pitch between adjacent lines, the heating temperature for heating the plate material, and the tensile force applied to the plate material are set, and then the set pitch, heating temperature, and tensile force are set.
  • the curvature of the plate material obtained when the plate material is heated by is calculated based on the change in strength of the material (for example, softening of the material) and thermal expansion due to the heating of the plate material.
  • the calculated curvature of the plate material is compared with a predetermined curvature of a forming target, and a pitch, a heating temperature, and a tensile force when actually forming are determined based on the comparison result. Therefore, appropriate molding conditions in the above-described plate material forming apparatus can be estimated and determined in advance, and the plate material can be formed with high accuracy.
  • a molding condition determination device for a plate material forming apparatus includes a load portion for applying a tensile force to a plate material made of titanium or a titanium alloy, and a formed portion of the plate material to which the tensile force is applied.
  • Forming a plate forming apparatus comprising: a pressing portion that presses against a mold having a curvature of a forming target; and a heating portion that continuously or intermittently heats at least a forming portion of the plate on a plurality of parallel lines.
  • the pitch between adjacent lines, the heating temperature for heating the plate material, and the tensile force applied to the plate material are set by the setting unit.
  • the curvature of the plate obtained when the plate is heated by the set pitch, heating temperature, and tensile force is calculated by the calculation unit, and the strength change (for example, softening of the material) and thermal expansion due to the heating of the plate Is calculated based on
  • the calculated curvature of the plate material is compared with the curvature of the molding target determined in advance, and the pitch, heating temperature, and tensile force when actually forming are determined based on the comparison result.
  • the plate material when the plate material is locally heated and molded, the plate material can be processed with high accuracy.
  • the plate material forming by the plate material forming apparatus is, for example, a plate material made of titanium or a titanium alloy.
  • a plate material made of titanium or a titanium alloy By forming the plate material, for example, an aircraft fuselage outer plate, a wing leading edge, a metal cover of a helicopter blade, and the like can be obtained.
  • the titanium alloy is an alloy containing titanium as a main component, and contains aluminum, iron, tin, molybdenum, vanadium, and the like as additive elements.
  • the plate material forming apparatus 1 includes a mold 2, a hydraulic cylinder 3 for moving the mold 2, a heating source 4, a clamp 5, a hinge 6, and a clamp And a hydraulic cylinder 7 for moving 5.
  • the mold 2 is arranged between the two clamps 5.
  • Two clamps 5, hinges 6 and hydraulic cylinders 7 are provided.
  • a hydraulic cylinder is used, but an electrically driven cylinder or a cylinder using air pressure may be used as long as the length and load can be adjusted.
  • the mold 2 is a mold for making the plate material 10 a target shape, and is fixed to the hydraulic cylinder 3.
  • the hydraulic cylinder 3 can move the mold 2, and can bring the mold 2 close to the plate material 10 to be molded or can separate the mold 2 from the plate material 10.
  • the hydraulic cylinder 3 is an example of a pressing portion, and presses the mold 2 against a molded portion of the plate material 10.
  • the heating source 4 is an example of a heating unit, for example, a lamp using light energy such as a condensing halogen lamp, or a light source such as various lasers.
  • the heating source 4 is movable and can heat the plate 10 in a dot shape or a relatively small circular shape.
  • the heating source 4 continuously or intermittently heats at least a molded portion of the plate material 10 on a plurality of lines parallel to each other.
  • plate material may be measured with a radiation thermometer (not shown). At this time, the radiation thermometer measures the temperature of the portion heated by the plate member 10, and the output of the heating source 4 is controlled based on the measured temperature. If the heating source 4 is movable, the radiation thermometer may be movable together with the heating source 4.
  • the clamp 5 grips the plate material 10 and releases the grip of the plate material 10.
  • the clamp 5 fixes the plate 10 by, for example, screwing or a hydraulic mechanism.
  • the hinge 6 has one end connected to the clamp 5 and the other end connected to the hydraulic cylinder 7.
  • the clamp 5 can be rotated with respect to the hydraulic cylinder 7 to change the direction of the clamp 5.
  • the hinge 6 preferably has a function of adjusting the angle with respect to the hydraulic cylinder 7.
  • the hydraulic cylinder 7 can move the clamp 5 and can move the clamp 5 closer to the mold 2 side or away from the mold 2.
  • the hydraulic cylinder 7 can apply a tensile force to the plate material 10 by moving the clamp 5 in a direction away from the mold 2.
  • molding apparatus of this embodiment is demonstrated.
  • the plate 10 that is a material to be molded is restrained by the clamp 5 in a state where the mold 2 is lowered (step S ⁇ b> 1).
  • the position of the clamp 5 is adjusted while raising the mold 2 (step S2). That is, as the mold 2 moves up, the hydraulic cylinder 7 operates so that the clamp 5 is brought closer to the mold 2 side. At this time, the plate 10 is brought into close contact with the mold 2 by the rotation of the hinge 6.
  • step S3 the hydraulic cylinder 7 applies a tensile force to the plate material 10 (step S3).
  • a soft plate material made of aluminum or aluminum alloy instead of titanium or titanium alloy, molding is completed in the state up to step S3 of the present embodiment.
  • titanium and titanium alloys have high yield stress, and spring back occurs after forming at room temperature, so that a sufficient shape cannot be imparted.
  • a plate material made of titanium or a titanium alloy is used as a material to be molded, and therefore the surface of the plate material 10 is heated by the heating source 4 while maintaining the state of step S3.
  • the heating source 4 is arranged at the heating position (step S4). And the required part of the board
  • the plate material 10 is heated using the heating source 4 until the plate material 10 to which the tensile force is applied is in a temperature range in which plastic deformation is applied to the plate material 10.
  • the temperature range where plastic deformation is applied is the temperature range when the strength is increased to about half of the strength at room temperature. If it is a material which has a characteristic as shown in FIG. 3, the board
  • the heating source 4 When the plate 10 is heated to a predetermined temperature by heating, the heating source 4 is moved in the longitudinal direction of the plate 10 or in the direction perpendicular to the longitudinal direction. At this time, the heating source 4 heats the plate 10 continuously or intermittently on the line. When the predetermined heating area is covered by the movement of the heating source 4, the heating is finished. In addition, when the phenomenon which the board
  • step S6 the external force that restrains the plate 10 that has been molded by heating to become a molded product is removed. That is, the tensile force generated by the hydraulic cylinders 3 and 7 is released. And as shown in FIG. 8, the metal mold
  • step S5 in order to obtain a target shape when the plate material 10 is heated and molded, not only the shape of the mold 2 but also the setting of the portion (heating region) where the heating source 2 irradiates the material, Set the heating temperature and tensile force.
  • the curvature radius R1 of the cross section of the molded product by the plate 10 shown in FIG. 10 and the curvature radius R2 in the width direction vary depending on the heating range, heating temperature, and tensile force.
  • the heating range is a continuous straight line 14 in the width direction, and is heated intermittently with a predetermined interval (heating pitch) in the direction perpendicular to the width direction.
  • the heating pitch may be narrowed as shown in FIG. 15A or widened as shown in FIG.
  • the heating temperature is set to a relatively low temperature and the heating pitch is wide, the radius of curvature R1 of the cross section of the molded product by the obtained plate material 10 becomes large. Furthermore, the warp in the width direction of the material 10 becomes larger when the heating temperature is set to a relatively high temperature and the heating pitch is narrowed. Furthermore, the warpage in the width direction of the material 10 increases as the heating temperature is set to a relatively high temperature and the tensile force is increased.
  • the boundary between the portion 12 that is irradiated by the heating source 4 and becomes high temperature and the portion that is not irradiated at all and remains at a low temperature is outside the part obtained by molding (mold 2).
  • the part portion can be improved in shape accuracy and the residual stress can be reduced by cutting on the irradiation part (heating region, high temperature portion) side from the boundary.
  • the deformation amount per time due to the movement of the heat source may be suppressed, and the deformation amount may be imparted so as to obtain a target shape by heating the same heating region a plurality of times. As a result, it is possible to prevent uneven distortion from occurring in the direction of movement of the heat source.
  • the plate material 10 can be formed into a target shape by setting an appropriate heating region (heating pitch), heating temperature, and tensile force.
  • the heating region (heating pitch), heating temperature, and tensile force are determined by numerical analysis that estimates the curvature of the plate 10 after forming in consideration of preliminary tests or strength change characteristics and thermal expansion characteristics due to heating of the plate 10. Done.
  • the relationship between the radius of curvature and the irradiation rate is, for example, a graph as shown in FIG.
  • the relationship between the radius of curvature and the irradiation rate can be derived by a preliminary test or numerical analysis.
  • the irradiation rate is determined by the heating radius (L1) and the heating pitch (L) as shown in FIG.
  • the heating radius (L1) is the width of a region that can be uniformly heated by a heating source (diameter in the case of a circle), and the heating pitch (L) is the distance between the irradiation centers (L1 / L). ) Is 1, the entire surface is heated, and when the irradiation rate (L1 / L) is larger than 1, a portion to be heated repeatedly is generated. When the irradiation rate (L1 / L) is smaller than 1, The part which is not heated arises.
  • the heating temperature is set to a relatively low temperature and the heating pitch is widened to reduce the irradiation rate, the curvature radius in the width direction of the obtained plate member 10 is increased.
  • the target shape can be achieved by setting the heating temperature to 650 ° C. and the irradiation rate to 0.46.
  • the relationship between the radius of curvature and the heating temperature is, for example, a graph as shown in FIG.
  • the relationship between the radius of curvature and the heating temperature can be derived by a preliminary test or numerical analysis.
  • the curvature radius R1 of the cross-section of the molded article by the obtained plate member 10 becomes larger when the heating temperature is set to a relatively low temperature.
  • the target shape can be achieved by setting the heating temperature to 680 ° C.
  • the thermal expansion of is calculated.
  • molding is derived
  • FIG. 13 By changing the heating temperature among the set conditions, for example, the relationship between the curvature radius and the heating temperature as shown in FIG. 13 can be obtained.
  • the relationship between the curvature radius R1 and the tensile stress is, for example, a graph as shown in FIG.
  • the relationship between the radius of curvature R1 and the tensile stress can be derived by a preliminary test or numerical analysis.
  • the curvature radius R1 in the width direction of the obtained plate member 10 is increased.
  • the target shape can be achieved by setting the tensile stress to 100 MPa.
  • a determination method when the radius of curvature R1 is not constant will be described.
  • the heating pitch is not fixed, but the mold center. The heating pitch is changed in accordance with the distance from.
  • FIG. 17 and FIG. 18 are graphs showing the shapes formed according to the heating conditions.
  • 17 indicates the shape when the heating temperature is 650 ° C. and the heating pitch is 70 mm
  • the solid line b in FIG. 17 indicates the shape when the heating temperature is 650 ° C. and the heating pitch is 35 mm
  • 18 indicates the shape when the heating temperature is 600 ° C. and the heating pitch is 35 mm
  • the dotted line d in FIG. 18 indicates the shape when the heating temperature is 700 ° C. and the heating pitch is 35 mm.
  • the thin line e indicates the shape when the heating temperature is 650 ° C. and the heating pitch is 35 mm.
  • plate material 10 by providing a heating pitch, heating the board
  • a plurality of heating sources may be arranged continuously or intermittently so that a portion necessary for heating can be irradiated at once.
  • FIG. 7 shows a state in which the plate material 10 is heated by a plurality of heating sources 4. As a result, the amount of movement of the heating source can be reduced, the portion necessary for heating can be efficiently or continuously heated, and the plate material can be formed into a target shape.
  • the amount of heat incident on the plate 10 may be changed by changing the radiation rate on the plate 10 side.
  • a complicated heating pattern can be realized by applying a black body paint to the surface of the plate material and heating it with a constant output by the halogen lamp.
  • the plate material 10 is a metal member made of titanium or a titanium alloy, and the surface is glossy and has a low emissivity.
  • the emissivity is, for example, 0.3 or less at room temperature. Therefore, the plate 10 has a poor light absorption rate such as a lamp or a laser.
  • the applied portion has a radiation rate of 0.9 or more, and heat absorption is good.
  • the oxidized portion has a radiation rate of about 0.7 and relatively good heat absorption.
  • the coating material is applied to the portion to be heated of the plate 10 prior to heating for molding, or is subjected to oxidation treatment, and then the processing portion is heated at a constant speed, so that the heating source 4 described above is used.
  • the plate 10 can be heated.
  • the material 10 is titanium, the surface is oxidized by heating and the emissivity is changed. Therefore, when an optical heat source is used, stable heating is difficult. By performing the treatment, stable heating becomes possible.
  • the light source is described as being a lamp or various lasers, for example, but the present invention is not limited to this example.
  • the plate material may be heated and molded by a flame accompanying the combustion of an arc or gas generally used in welding, a high frequency, or the like.
  • molding by these methods it is desirable to be able to control temperature and to move a heat source.
  • ⁇ Determining the molding conditions includes a preliminary analysis and a numerical analysis method, which can be executed by an information processing device such as a personal computer.
  • the information processing apparatus heats a plate by a setting unit that sets a pitch between adjacent lines, a heating temperature for heating the plate, and a tensile force applied to the plate, and a set pitch, heating temperature, and tensile force. Comparing the curvature of the obtained plate material based on the strength change and thermal expansion of the material due to heating of the plate material, the curvature of the molding target and the calculated curvature of the plate material, A determining unit that determines a pitch, a heating temperature, and a tensile force in molding.
  • appropriate molding conditions in the above-described plate material forming apparatus can be estimated and determined in advance, and the plate material can be formed with high accuracy.

Abstract

Provided are a method for forming sheet material, a sheet material forming apparatus, a method for determining forming conditions for the sheet material forming apparatus, and a device for determining forming conditions for the sheet material forming apparatus that can process sheet material with excellent precision when locally heating and forming the sheet material. This method for forming sheet material includes a pressing step that presses a part of a sheet material (10) being formed, which is loaded with a tensile force in a state where the tensile force load has been applied to the sheet material (10), which is formed from titanium or a titanium alloy, to a metal mold (2) that has a curvature for the molding objective and a heating step for continuously heating or intermittently heating at least the part of the sheet material (10) being formed on a plurality of lines parallel to each other.

Description

板材成形方法、板材成形装置、板材成形装置の成形条件決定方法および板材成形装置の成形条件決定装置Sheet material forming method, sheet material forming apparatus, forming condition determining method for sheet material forming apparatus, and forming condition determining apparatus for sheet material forming apparatus
 本発明は、板材を局所的に加熱して成形する板材成形方法、板材成形装置、板材成形装置の成形条件決定方法および板材成形装置の成形条件決定装置に関するものである。 The present invention relates to a plate material forming method, a plate material forming device, a forming condition determining method for a plate material forming device, and a forming condition determining device for a plate material forming device, in which a plate material is formed by locally heating.
 チタン合金を冷間加工すると、スプリングバックや割れが発生しやすい。また、冷間加工では、成形後に生じる残留応力除去が必須である。このため、チタン合金の板材加工では、残留応力除去が不要で、成形性のよい熱間加工が行われている。しかし、熱間加工は、加熱や加工のための専用設備が必要であり、高温に対して強度を有する金型等の設備や治具にかかるコストが高価である。また、熱間加工では、加熱時間や保持時間が必要であり、加工時間が長いという問題がある。 When titanium alloy is cold worked, springback and cracking are likely to occur. Further, in cold working, it is essential to remove residual stress generated after molding. For this reason, in the plate processing of a titanium alloy, the residual stress removal is unnecessary and hot forming with good formability is performed. However, hot processing requires dedicated equipment for heating and processing, and the cost of equipment and jigs such as a mold having strength against high temperatures is expensive. Moreover, in hot processing, heating time and holding time are required, and there is a problem that processing time is long.
 一方、局所加熱成形技術は、板材全体を加熱成形する従来の熱間加工とは異なり、局所的に板材を加熱して目標形状となるように成形する。局所的な加熱には、例えば、移動可能であって、点状又は比較的小さな円形状に板材を加熱できる加熱源を使用する。この技術は、従来の熱間加工に比べて、設備費・治具費が安価であり、短時間での加工が可能である。 On the other hand, the local thermoforming technique is different from the conventional hot working in which the whole plate material is thermoformed, and the plate material is locally heated to form a target shape. For the local heating, for example, a heating source that is movable and can heat the plate material in a dot shape or a relatively small circular shape is used. This technology is cheaper in equipment cost and jig cost than conventional hot working, and can be processed in a short time.
 特許文献1では、局所加熱成形装置に関する基本的な仕様が記載されている。 Patent Document 1 describes basic specifications regarding a local heat forming apparatus.
米国特許第6601426号明細書US Pat. No. 6,601,426
 チタン合金は、熱伝導性が低く、加熱源によって照射された加熱領域と、加熱領域以外の非加熱領域との境界で温度勾配が大きくなる。そのため、加熱領域の熱膨張は、加熱領域に比べて低温である周囲の非加熱領域に拘束されて、図1に示すような面外変形が生じる。すなわち、板材10は、加熱源4によって照射された部分が熱膨張して、金型2に沿った形状に成形されない。 Titanium alloy has low thermal conductivity, and the temperature gradient increases at the boundary between the heating region irradiated by the heating source and the non-heating region other than the heating region. Therefore, the thermal expansion of the heating region is constrained to the surrounding non-heating region, which is at a lower temperature than the heating region, and an out-of-plane deformation as shown in FIG. 1 occurs. That is, the plate member 10 is not formed into a shape along the mold 2 due to thermal expansion of the portion irradiated by the heating source 4.
 また、高温の加熱領域と低温の非加熱領域の境界で歪みの不整合が生じ、成形後その境界に残留応力が発生する。さらに、加熱源が移動している間に、材料の応力分布が変化し、熱源の移動方向に不均一な歪みが生じる。 Also, strain mismatch occurs at the boundary between the high temperature heating region and the low temperature non-heating region, and residual stress is generated at the boundary after molding. Furthermore, while the heating source is moving, the stress distribution of the material changes, causing non-uniform distortion in the moving direction of the heat source.
 一方、特許文献1等の局所加熱成形装置を用いた局所加熱技術は、具体的な成形条件が記載されておらず、上記のような形状精度低下要因が存在することや、成形条件を整えなければ精度の高い成形を行うことができないことは指摘されていない。したがって、従来技術による局所加熱成形装置による成形方法では、精度良く板材を成形することは困難であった。 On the other hand, the local heating technique using the local heating molding apparatus such as Patent Document 1 does not describe specific molding conditions, and there is a cause for the reduction in shape accuracy as described above, and the molding conditions must be adjusted. It is not pointed out that high-precision molding cannot be performed. Therefore, it has been difficult to form a plate material with high accuracy by the molding method using the local heat molding apparatus according to the prior art.
 本発明は、このような事情に鑑みてなされたものであって、板材を局所的に加熱して成形する際に、板材を精度良く加工することが可能な板材成形方法、板材成形装置、板材成形装置の成形条件決定方法および板材成形装置の成形条件決定装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a plate material forming method, a plate material forming apparatus, and a plate material that can accurately process a plate material when the plate material is locally heated and formed. It is an object of the present invention to provide a molding condition determination method for a molding apparatus and a molding condition determination apparatus for a sheet material molding apparatus.
 上記課題を解決するために、本発明の板材成形方法、板材成形装置、板材成形装置の成形条件決定方法および板材成形装置の成形条件決定装置は以下の手段を採用する。
 すなわち、本発明の第1の態様に係る板材成形方法は、チタン製またはチタン合金製の板材に引張り力を負荷した状態で、引張り力が負荷された板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧ステップと、板材のうち少なくとも成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱ステップとを含む。
In order to solve the above problems, the plate material forming method, the plate material forming apparatus, the molding condition determining method for the plate material forming apparatus, and the molding condition determining device for the plate material forming apparatus of the present invention employ the following means.
That is, in the plate material forming method according to the first aspect of the present invention, in a state in which a tensile force is applied to a plate made of titanium or a titanium alloy, a molded portion of the plate material loaded with the tensile force is set to a curvature of the forming target. A pressing step for pressing against the mold having the heating step, and a heating step for heating at least a molded portion of the plate material continuously or intermittently on a plurality of parallel lines.
 前記第1の態様によれば、引張り力がチタン製またはチタン合金製の板材に負荷され、引張り力が負荷された板材の成形部分に、成形目標の曲率を有する金型が押し当てられる。そして、板材のうち少なくとも成形部分が、互いに平行な複数のライン上で連続的または断続的に加熱される。なお、加熱に伴い板材が変形して、金型から板材が浮くこともあるが、板材が金型から浮くと、板材が面外変形を起こしやすくなる。そのため、板材が金型から浮く場合には、金型の位置または板材の引張り方向等を調整して、金型と板材が密着した状態を維持しながら板材の加熱を行うことが望ましい。 According to the first aspect, a tensile force is applied to a plate made of titanium or a titanium alloy, and a mold having a molding target curvature is pressed against a formed portion of the plate applied with the tensile force. Then, at least a molded portion of the plate material is continuously or intermittently heated on a plurality of lines parallel to each other. In addition, although a board | plate material deform | transforms with heating and a board | plate material may float from a metal mold | die, when a board | plate material floats from a metal mold | die, it will become easy to raise | generate an out-of-plane deformation. Therefore, when the plate material floats from the mold, it is desirable to adjust the position of the mold or the pulling direction of the plate material to heat the plate material while keeping the mold and the plate material in close contact with each other.
 チタンまたはチタン合金は、アルミニウムまたはアルミニウム合金に比べて熱伝導性が低く、加熱部によって加熱された加熱領域と、加熱されない非加熱領域の境界で温度勾配が大きくなる。よって、加熱領域の熱膨張は非加熱領域によって拘束され、加熱領域は熱膨張によって面外に変形する。前記第1の態様においては、板材は、一ライン上ではそれぞれ連続的または断続的に加熱され、互いに平行な複数のライン上で加熱される。そのため、板材は、金型が押し当てられた成形部分が全面的または一ラインのみで加熱されるのではなく、加熱される部分が少なくとも2ラインであり、かつ加熱領域が制御されている。したがって、全面的に加熱される場合や一ラインのみで加熱される場合に比べて、板材を成形目標の曲率に成形し易い。 Titanium or a titanium alloy has a lower thermal conductivity than aluminum or an aluminum alloy, and the temperature gradient increases at the boundary between a heated region heated by the heating unit and a non-heated region that is not heated. Therefore, the thermal expansion of the heating region is constrained by the non-heating region, and the heating region is deformed out of plane by the thermal expansion. In the first aspect, the plate is heated continuously or intermittently on one line, and is heated on a plurality of lines parallel to each other. For this reason, in the plate material, the molded portion against which the mold is pressed is not entirely heated or only by one line, but the heated portion is at least two lines, and the heating region is controlled. Therefore, it is easy to mold the plate material to the curvature of the molding target as compared with the case where the entire surface is heated or the case where it is heated only by one line.
 また、板材が一ライン上で断続的に加熱される場合、一ライン上で連続的に加熱される場合に比べて、伸び量を軽減したり、浮き上がりを抑制することができるため、成形精度を向上させることができる。 In addition, when the plate material is heated intermittently on one line, the amount of elongation can be reduced and lifting can be suppressed compared to the case where the plate material is heated continuously on one line. Can be improved.
 なお、板材の加熱は、加熱部が板材に対して相対移動可能であり、加熱部が一方向に連続的または断続的に板材を加熱し、その後、隣接するライン上に移動するようにしてもよい。また、板材表面に黒体塗料を塗布し加熱部を板材に対して均一に加熱するようにしてもよい。黒体塗料を塗布した部分は、金属光沢部分に比べて吸収能が高く、加熱されやすい。また、黒体塗料を塗布した部分は、加熱に伴う酸化による輻射率の変化も発生しないため、安定した温度に加熱できる。さらに、加熱部を加熱パターンが形成された形状を有するように構成して、一度の加熱で加熱パターン状に板材を加熱するようにしてもよい。 Note that the heating of the plate material may be such that the heating unit can move relative to the plate material, and the heating unit heats the plate material continuously or intermittently in one direction, and then moves on the adjacent line. Good. Alternatively, a black body paint may be applied to the surface of the plate material and the heating unit may be heated uniformly with respect to the plate material. The portion to which the black body paint is applied has a higher absorption capacity than the metallic luster portion and is easily heated. In addition, the portion where the black body paint is applied does not change the emissivity due to oxidation due to heating, and can be heated to a stable temperature. Furthermore, the heating unit may be configured to have a shape in which a heating pattern is formed, and the plate material may be heated in a heating pattern shape by a single heating.
 前記第1の態様において、板材のうち少なくとも成形部分を500℃以上で加熱することが望ましい。 In the first aspect, it is desirable to heat at least a molded portion of the plate material at 500 ° C. or higher.
 チタンまたはチタン合金は、通常500℃以上になることによって、強度が低下する、すなわち、降伏応力が下がる。したがって、この発明によれば、常温の場合に比べて板材に対して塑性変形を与えやすくなり、かつ板材の降伏応力の低下によって弾性変形量が減るため、成形後のスプリングバック量も小さくなる。その結果、板材を金型に沿った形状に加工しやすい。 Titanium or a titanium alloy usually has a strength lower than 500 ° C., that is, yield stress decreases. Therefore, according to the present invention, it becomes easier to give plastic deformation to the plate material than in the case of normal temperature, and the amount of elastic deformation is reduced by lowering the yield stress of the plate material, so the amount of springback after forming is also reduced. As a result, it is easy to process the plate material into a shape along the mold.
 前記第1の態様において、加熱ステップにおける隣接するライン間のピッチは、板材の成形目標の曲率に応じて決定された長さでもよい。 In the first aspect, the pitch between adjacent lines in the heating step may be a length determined according to the curvature of the forming target of the plate material.
 前記第1の態様によれば、ライン間のピッチが、板材の成形目標の曲率に応じて決定されるため、板材において加熱領域と非加熱領域の間隔が調整される。その結果、板材における熱膨張が調整されるため、精度良く板材を成形目標の曲率に成形できる。 According to the first aspect, since the pitch between the lines is determined according to the curvature of the forming target of the plate material, the interval between the heating region and the non-heating region is adjusted in the plate material. As a result, since the thermal expansion in the plate material is adjusted, the plate material can be accurately molded to the desired curvature.
 前記第1の態様において、加熱ステップにおける加熱部の加熱温度は、板材の成形目標の曲率に応じて決定されてもよい。 In the first aspect, the heating temperature of the heating unit in the heating step may be determined according to the curvature of the forming target of the plate material.
 前記第1の態様によれば、加熱温度が、板材の成形目標の曲率に応じて決定されるため、板材において熱膨張によって生ずる膨張長さが調整される。その結果、精度良く板材を成形目標の曲率に成形できる。なお、加熱温度は、加熱部の設定温度で調整してもよいし、同じ走査ライン上を複数回加熱することで調整してもよい。 According to the first aspect, since the heating temperature is determined in accordance with the curvature of the forming target of the plate material, the expansion length generated by the thermal expansion in the plate material is adjusted. As a result, it is possible to accurately mold the plate material to the desired curvature. The heating temperature may be adjusted by the set temperature of the heating unit, or may be adjusted by heating the same scanning line a plurality of times.
 前記第1の態様において、負荷ステップにおいて負荷する引張り力は、板材の成形目標の曲率に応じて決定されてもよい。 In the first aspect, the tensile force applied in the loading step may be determined according to the curvature of the forming target of the plate material.
 前記第1の態様によれば、引張り力が、板材の成形目標の曲率に応じて適正に設定されるため、板材において生ずるひずみが調整される。その結果、精度良く板材を成形目標の曲率に成形できる。 According to the first aspect, since the tensile force is appropriately set according to the curvature of the forming target of the plate material, the strain generated in the plate material is adjusted. As a result, it is possible to accurately mold the plate material to the desired curvature.
 前記第1の態様において、加熱ステップでは、加熱源として移動可能な光源が用いられ、加熱源は板材の成形目標の曲率に応じて加熱領域が制御されてもよい。 In the first aspect, in the heating step, a movable light source may be used as a heating source, and the heating area may be controlled in accordance with the curvature of the plate material forming target.
 前記第1の態様によれば、板材は移動可能な光源によって加熱される。このとき、加熱源による加熱領域は、板材の成形目標の曲率によって制御される。光源は、例えばハロゲンランプ等の光エネルギーを利用したランプ、または各種レーザー等である。また、入熱量や温度を制御できれば、一般に溶接で使用されるアークやガスの燃焼に伴う火炎や、高周波等による加熱でもよい。なお、この場合、温度の制御ができ、熱源が移動できることが望ましい。 According to the first aspect, the plate is heated by the movable light source. At this time, the heating area by the heating source is controlled by the curvature of the forming target of the plate material. The light source is, for example, a lamp using light energy such as a halogen lamp, or various lasers. Further, as long as the amount of heat input and temperature can be controlled, it is generally possible to use a flame associated with combustion of an arc or gas generally used in welding, or heating by high frequency. In this case, it is desirable that the temperature can be controlled and the heat source can be moved.
 前記第1の態様において、加熱に伴い板材と金型の間に隙間が生じた場合、板材と金型の間に隙間が生じないようにした状態で、板材を加熱し成形してもよい。 In the first aspect, when a gap is generated between the plate material and the mold due to heating, the plate material may be heated and molded in a state where no gap is generated between the plate material and the mold.
 前記第1の態様によれば、板材が金型から浮くことによって、板材と金型の間に隙間が生じる場合、金型の位置または板材の引張り方向等を調整して、金型と板材が密着した状態を維持しながら板材の加熱を行う。板材が金型から浮くと板材が面外変形を起こしやすくなるが、これを防止できる。 According to the first aspect, when a gap is generated between the plate material and the mold due to the plate material floating from the mold, the mold and the plate material are adjusted by adjusting the position of the mold or the tension direction of the plate material. The plate material is heated while maintaining the close contact state. When the plate material floats from the mold, the plate material is likely to be deformed out of plane, but this can be prevented.
 前記第1の態様において、板材の加熱領域と非加熱領域で輻射率を変化させて、加熱時の入熱や温度の制御を行ってもよい。 In the first aspect, the heat input during heating and the temperature control may be performed by changing the emissivity between the heating region and the non-heating region of the plate material.
 前記第1の態様によれば、板材がチタンまたはチタン合金であるため、通常、板材の表面において光の吸収率が悪い。一方、加熱ステップの前に、所要部分にて例えば黒体塗料を塗布したり酸化処理を施したりして、板材の表面の加熱領域と非加熱領域で輻射率を変化させることによって、加熱時の入熱や温度制御を行うことができる。 According to the first aspect, since the plate material is titanium or a titanium alloy, the light absorption rate is usually poor on the surface of the plate material. On the other hand, before the heating step, for example, by applying black body paint or oxidizing treatment at a required portion, by changing the emissivity between the heating area and the non-heating area on the surface of the plate material, Heat input and temperature control can be performed.
 前記第1の態様において、板材にて加熱されている部分の温度は、放射温度計によって測定されてもよい。 In the first aspect, the temperature of the portion heated by the plate material may be measured by a radiation thermometer.
 前記第1の態様によれば、放射温度計が板材にて加熱されている部分の温度を測定し、測定された温度に基づいて加熱源の出力が制御される。加熱部の温度を制御することによって、プロセスの再現性を高めることと、過熱による材料の劣化を防止することができる。加熱源が移動可能である場合、放射温度計は加熱源と共に移動できるようにしてもよい。 According to the first aspect, the temperature of the portion where the radiation thermometer is heated by the plate material is measured, and the output of the heating source is controlled based on the measured temperature. By controlling the temperature of the heating section, process reproducibility can be improved and material deterioration due to overheating can be prevented. If the heating source is movable, the radiation thermometer may be movable with the heating source.
 前記第1の態様において、加熱ステップにて加熱部が板材を移動方向に断続的に加熱する場合、一走査ライン上での加熱距離または非加熱距離は、板材の成形目標の曲率に応じて決定された長さでもよい。 In the first aspect, when the heating unit intermittently heats the plate material in the moving direction in the heating step, the heating distance or non-heating distance on one scanning line is determined according to the curvature of the forming target of the plate material. The length may be the same.
 前記第1の態様によれば、板材が移動方向に断続的に加熱されるとき、一走査ライン上での加熱距離または非加熱距離が、板材の成形目標の曲率に応じて決定される。そのため、板材において伸び量を軽減したり、浮き上がりを抑制したりする領域が調整される。その結果、精度良く板材を成形目標の曲率に成形できる。 According to the first aspect, when the plate material is intermittently heated in the moving direction, the heating distance or non-heating distance on one scanning line is determined according to the curvature of the forming target of the plate material. Therefore, the area | region which reduces elongation amount in a board | plate material or suppresses a lift is adjusted. As a result, it is possible to accurately mold the plate material to the desired curvature.
 前記第1の態様において、加熱ステップにて加熱部が板材のうち成形部分以外も加熱してもよい。 In the first aspect, in the heating step, the heating unit may heat the plate material other than the molded portion.
 前記第1の態様によれば、板材のうち成形部分だけでなく成形部分以外も加熱され、非加熱領域は、成形部分から外れた領域になる。これにより、成形部分に残留応力を残すことなく成形することが可能になり、品質が高い成形を行うことができる。 According to the first aspect, not only the molded portion but also the molded portion of the plate material is heated, and the non-heated region becomes a region deviated from the molded portion. Thereby, it becomes possible to shape | mold without leaving a residual stress in a shaping | molding part, and high quality shaping | molding can be performed.
 前記第1の態様において、加熱ステップによる成形の後、板材のうち加熱部によって加熱されていない非加熱領域を除去してもよい。 In the first aspect, after the forming by the heating step, a non-heated region that is not heated by the heating unit may be removed from the plate material.
 前記第1の態様によれば、板材のうち加熱部によって加熱されていない非加熱領域が、加熱ステップによる成形の後、成形された板材から除去される。これにより、加熱領域と非加熱領域の境界に生じる残留応力を低減できる。特に、境界よりも加熱領域側において、材料を切断することによって、残留応力の除去と成形精度を改善することが可能である。 According to the first aspect, the non-heated region that is not heated by the heating unit in the plate material is removed from the formed plate material after the forming by the heating step. Thereby, the residual stress which arises in the boundary of a heating area | region and a non-heating area | region can be reduced. In particular, the residual stress can be removed and the molding accuracy can be improved by cutting the material on the heating region side of the boundary.
 また、本発明の第2の態様に係る板材成形装置は、チタン製またはチタン合金製の板材に引張り力を負荷する負荷部と、引張り力が負荷された板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧部と、板材のうち少なくとも成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱部とを備える。 Further, the plate material forming apparatus according to the second aspect of the present invention includes a load portion that applies a tensile force to a plate material made of titanium or a titanium alloy, and a formed portion of the plate material that is loaded with the tensile force, with a curvature of a forming target. And a heating section that heats at least a molded portion of the plate material continuously or intermittently on a plurality of parallel lines.
 前記第2の態様によれば、負荷部によって、引張り力がチタン製またはチタン合金製の板材に負荷され、押圧部によって、引張り力が負荷された板材の成形部分に、成形目標の曲率を有する金型が押し当てられる。そして、板材のうち少なくとも成形部分が、互いに平行な複数のライン上で連続的または断続的に加熱される。 According to the second aspect, the tensile force is applied to the plate made of titanium or titanium alloy by the load portion, and the formed portion of the plate material to which the tensile force is loaded by the pressing portion has a forming target curvature. The mold is pressed. Then, at least a molded portion of the plate material is continuously or intermittently heated on a plurality of lines parallel to each other.
 板材は、一ライン上ではそれぞれ連続的または断続的に加熱され、互いに平行な複数のライン上で加熱される。そのため、板材は、金型が押し当てられた成形部分が全面的または一ラインのみで加熱されるのではなく、加熱される部分が少なくとも2ラインであり、かつ加熱領域が制御されている。そのため、全面的に加熱される場合や一ラインのみで加熱される場合に比べて、板材を成形目標の曲率に成形し易い。また、板材が一ライン上で断続的に加熱される場合、一ライン上で連続的に加熱される場合に比べて、伸び量を軽減したり、浮き上がりを抑制したりすることができるため、成形精度を向上させることができる。 The plate material is continuously or intermittently heated on one line and heated on a plurality of lines parallel to each other. For this reason, in the plate material, the molded portion against which the mold is pressed is not entirely heated or only by one line, but the heated portion is at least two lines, and the heating region is controlled. For this reason, it is easier to mold the plate material to the molding target curvature as compared to the case where the entire surface is heated or the case where the plate material is heated only by one line. In addition, when the plate material is heated intermittently on one line, the amount of elongation can be reduced or the lifting can be suppressed compared to the case where the plate material is heated continuously on one line. Accuracy can be improved.
 前記第2の態様において、加熱部は、加熱源として移動可能な光源が用いられ、加熱源は板材の成形目標の曲率に応じて加熱領域が制御されてもよい。 In the second aspect, the heating unit may use a movable light source as a heating source, and the heating area may be controlled in accordance with the curvature of the forming target of the plate material.
 前記第2の態様によれば、板材は移動可能な光源によって加熱される。このとき、加熱源による加熱領域は、板材の成形目標の曲率によって制御される。 According to the second aspect, the plate is heated by the movable light source. At this time, the heating area by the heating source is controlled by the curvature of the forming target of the plate material.
 前記第2の態様において、板材にて加熱されている部分の温度は、放射温度計によって測定されてもよい。 In the second aspect, the temperature of the portion heated by the plate material may be measured by a radiation thermometer.
 前記第2の態様によれば、放射温度計が板材にて加熱されている部分の温度を測定し、測定された温度に基づいて加熱源の出力が制御される。加熱源が移動可能である場合、放射温度計は加熱源と共に移動できるようにしてもよい。 According to the second aspect, the temperature of the portion where the radiation thermometer is heated by the plate material is measured, and the output of the heating source is controlled based on the measured temperature. If the heating source is movable, the radiation thermometer may be movable with the heating source.
 また、本発明の第3の態様に係る板材成形装置の成形条件決定方法は、チタン製またはチタン合金製の板材に引張り力を負荷する負荷部と、引張り力が負荷された板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧部と、板材のうち少なくとも成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱部とを備える板材成形装置の成形条件決定方法であって、隣接するライン間のピッチ、板材を加熱する加熱温度、および板材に負荷する引張り力を設定する設定ステップと、設定されたピッチ、加熱温度および引張り力によって板材を加熱したときに得られる板材の曲率を、板材の加熱による材料の強度変化と熱膨張に基づいて算出する算出ステップと、成形目標の曲率と、算出された板材の曲率とを比較して、実際の板材成形におけるピッチ、加熱温度および引張り力を決定する決定ステップとを備える。 Moreover, the molding condition determination method of the plate material molding apparatus according to the third aspect of the present invention includes a load portion that applies a tensile force to a titanium or titanium alloy plate material, and a molded portion of the plate material that is loaded with the tensile force. , Forming a plate forming apparatus comprising: a pressing portion that presses against a mold having a curvature of a forming target; and a heating portion that continuously or intermittently heats at least a forming portion of the plate on a plurality of parallel lines. A method for determining conditions, in which a pitch between adjacent lines, a heating temperature for heating a plate material, and a setting step for setting a tensile force applied to the plate material, and the plate material is heated by the set pitch, heating temperature and tensile force The calculation step of calculating the curvature of the plate material obtained from time to time based on the strength change and thermal expansion of the material due to heating of the plate material, the curvature of the forming target, and the calculated curvature of the plate material And compare, and a determining step of determining pitch, the heating temperature and the tensile force in the actual sheet molding.
 前記第3の態様によれば、まず、隣接するライン間のピッチ、板材を加熱する加熱温度、および板材に負荷する引張り力が設定され、次に、設定されたピッチ、加熱温度、および引張り力によって板材が加熱されたときに得られる板材の曲率が、板材の加熱による材料の強度変化(例えば材料の軟化)と熱膨張に基づいて算出される。そして、算出された板材の曲率は、予め決めておいた成形目標の曲率と比較されて、比較結果に基づいて実際に成形するときのピッチ、加熱温度、および引張り力が決定される。そのため、上述した板材成形装置における適切な成形条件を予め推測、決定することができ、精度良く板材を成形することができる。 According to the third aspect, first, the pitch between adjacent lines, the heating temperature for heating the plate material, and the tensile force applied to the plate material are set, and then the set pitch, heating temperature, and tensile force are set. The curvature of the plate material obtained when the plate material is heated by is calculated based on the change in strength of the material (for example, softening of the material) and thermal expansion due to the heating of the plate material. Then, the calculated curvature of the plate material is compared with a predetermined curvature of a forming target, and a pitch, a heating temperature, and a tensile force when actually forming are determined based on the comparison result. Therefore, appropriate molding conditions in the above-described plate material forming apparatus can be estimated and determined in advance, and the plate material can be formed with high accuracy.
 また、本発明の第4の態様に係る板材成形装置の成形条件決定装置は、チタン製またはチタン合金製の板材に引張り力を負荷する負荷部と、引張り力が負荷された板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧部と、板材のうち少なくとも成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱部とを備える板材成形装置の成形条件決定装置であって、隣接するライン間のピッチ、板材を加熱する加熱温度、および板材に負荷する引張り力を設定する設定部と、設定されたピッチ、加熱温度および引張り力によって板材を加熱したときに得られる板材の曲率を、板材の加熱による材料の強度変化と熱膨張に基づいて算出する算出部と、成形目標の曲率と、算出された板材の曲率とを比較して、実際の板材成形におけるピッチ、加熱温度および引張り力を決定する決定部とを備える。 In addition, a molding condition determination device for a plate material forming apparatus according to the fourth aspect of the present invention includes a load portion for applying a tensile force to a plate material made of titanium or a titanium alloy, and a formed portion of the plate material to which the tensile force is applied. , Forming a plate forming apparatus comprising: a pressing portion that presses against a mold having a curvature of a forming target; and a heating portion that continuously or intermittently heats at least a forming portion of the plate on a plurality of parallel lines. It is a condition determining device, and the plate material is heated by the setting portion for setting the pitch between adjacent lines, the heating temperature for heating the plate material, and the tensile force applied to the plate material, and the set pitch, heating temperature and tensile force. Comparing the curvature of the obtained plate material based on the strength change and thermal expansion of the material due to heating of the plate material, the molding target curvature and the calculated plate material curvature, Comprising pitch, and a determination unit that determines the heating temperature and the tensile force in the sheet molding.
 前記第4の態様によれば、まず、設定部によって、隣接するライン間のピッチ、板材を加熱する加熱温度、および板材に負荷する引張り力が設定される。次に、算出部によって、設定されたピッチ、加熱温度、および引張り力によって板材が加熱されたときに得られる板材の曲率が、板材の加熱による材料の強度変化(例えば材料の軟化)と熱膨張に基づいて算出される。そして、決定部によって、算出された板材の曲率は、予め決めておいた成形目標の曲率と比較されて、比較結果に基づいて実際に成形するときのピッチ、加熱温度、および引張り力が決定される。そのため、上述した板材成形装置における適切な成形条件を予め推測、決定することができ、精度良く板材を成形することができる。 According to the fourth aspect, first, the pitch between adjacent lines, the heating temperature for heating the plate material, and the tensile force applied to the plate material are set by the setting unit. Next, the curvature of the plate obtained when the plate is heated by the set pitch, heating temperature, and tensile force is calculated by the calculation unit, and the strength change (for example, softening of the material) and thermal expansion due to the heating of the plate Is calculated based on Then, the calculated curvature of the plate material is compared with the curvature of the molding target determined in advance, and the pitch, heating temperature, and tensile force when actually forming are determined based on the comparison result. The Therefore, appropriate molding conditions in the above-described plate material forming apparatus can be estimated and determined in advance, and the plate material can be formed with high accuracy.
 本発明によれば、板材を局所的に加熱して成形する際に、板材を精度良く加工することができる。 According to the present invention, when the plate material is locally heated and molded, the plate material can be processed with high accuracy.
局所加熱によって生じる面外変形を示すため金型と板材を示す側面図である。It is a side view which shows a metal mold | die and a board | plate material in order to show the out-of-plane deformation | transformation which arises by local heating. 局所加熱における加熱領域と部品部分を示すため金型と板材を示す上面図である。It is a top view which shows a metal mold | die and a board | plate material in order to show the heating area | region and component part in local heating. 応力と温度の関係を示すグラフである。It is a graph which shows the relationship between stress and temperature. 本発明の一実施形態に係る板材成形装置を示す側面図である。It is a side view which shows the board | plate material shaping | molding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る板材成形装置を示す側面図である。It is a side view which shows the board | plate material shaping | molding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る板材成形装置を示す側面図である。It is a side view which shows the board | plate material shaping | molding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る板材成形装置を示す側面図である。It is a side view which shows the board | plate material shaping | molding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る板材成形装置を示す側面図である。It is a side view which shows the board | plate material shaping | molding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る板材成形装置による板材成形方法を示すフローチャートである。It is a flowchart which shows the board | plate material shaping | molding method by the board | plate material shaping | molding apparatus which concerns on one Embodiment of this invention. 成形された板材の一例を示す斜視図である。It is a perspective view which shows an example of the shape | molded board | plate material. 加熱源による照射領域と加熱ピッチを示す説明図である。It is explanatory drawing which shows the irradiation area | region and heating pitch by a heat source. 成形後の板材の曲率半径と照射率の関係を示すグラフである。It is a graph which shows the relationship between the curvature radius and irradiation rate of the board | plate material after shaping | molding. 成形後の板材の曲率半径と加熱温度の関係を示すグラフである。It is a graph which shows the relationship between the curvature radius of the board | plate material after shaping | molding, and heating temperature. 成形後の板材の曲率半径と引張り応力の関係を示すグラフである。It is a graph which shows the relationship between the curvature radius of the board | plate material after shaping | molding, and tensile stress. 局所加熱における加熱ピッチを示すため金型と板材を示す上面図である。It is a top view which shows a metal mold | die and a board | plate material in order to show the heating pitch in local heating. (A)は金型の断面を示す部分断面図であり、(B)は成形後の板材の曲率半径と金型中心からの距離の関係を示すグラフである。(A) is a fragmentary sectional view which shows the cross section of a metal mold | die, (B) is a graph which shows the relationship between the curvature radius of the board | plate material after shaping | molding, and the distance from a metal mold | die center. 成形後の板材の頂点からの高さと金型中心からの距離の関係を示すグラフである。It is a graph which shows the relationship between the height from the vertex of the board | plate material after shaping | molding, and the distance from a metal mold | die center. 成形後の板材の頂点からの高さと金型中心からの距離の関係を示すグラフである。It is a graph which shows the relationship between the height from the vertex of the board | plate material after shaping | molding, and the distance from a metal mold | die center. 局所加熱における加熱ピッチを示すため金型と板材を示す上面図である。It is a top view which shows a metal mold | die and a board | plate material in order to show the heating pitch in local heating. 成形された板材の一例を示す斜視図である。It is a perspective view which shows an example of the shape | molded board | plate material. 局所加熱における照射部を示すため金型と板材を示す上面図である。It is a top view which shows a metal mold | die and a board | plate material in order to show the irradiation part in local heating. 局所加熱における照射部を示すため金型と板材を示す上面図である。It is a top view which shows a metal mold | die and a board | plate material in order to show the irradiation part in local heating. 局所加熱における照射部を示すため金型と板材を示す上面図である。It is a top view which shows a metal mold | die and a board | plate material in order to show the irradiation part in local heating. 成形後の板材の金型からの距離と板材端部からの幅方向の距離の関係を示すグラフである。It is a graph which shows the relationship between the distance from the metal mold | die of the board | plate material after shaping | molding, and the distance of the width direction from a board | plate material edge part.
 以下に、本発明に係る実施形態について、図面を参照して説明する。
 本発明の一実施形態に係る板材成形装置による板材成形は、例えばチタン製またはチタン合金製の板材を成形対象とする。板材成形によって、例えば航空機の胴体外板、翼前縁、ヘリコプターブレードの金属カバー等が得られる。チタン合金は、チタンを主成分とする合金であり、添加元素としてアルミニウム、鉄、スズ、モリブデン、バナジウムなどを含むものである。
Embodiments according to the present invention will be described below with reference to the drawings.
The plate material forming by the plate material forming apparatus according to an embodiment of the present invention is, for example, a plate material made of titanium or a titanium alloy. By forming the plate material, for example, an aircraft fuselage outer plate, a wing leading edge, a metal cover of a helicopter blade, and the like can be obtained. The titanium alloy is an alloy containing titanium as a main component, and contains aluminum, iron, tin, molybdenum, vanadium, and the like as additive elements.
 本実施形態に係る板材成形装置1は、図6に示すように、金型2と、金型2を移動させるための油圧シリンダー3と、加熱源4と、クランプ5と、ヒンジ6と、クランプ5を移動させるための油圧シリンダー7等を有する。金型2は、二つのクランプ5の間に配置される。クランプ5,ヒンジ6および油圧シリンダー7は、それぞれ二つ設けられる。なお、本実施形態では、油圧シリンダーを用いるとしているが、長さや荷重を調整できれば、電気駆動式のシリンダーや空気圧を用いたシリンダーでもよい。 As shown in FIG. 6, the plate material forming apparatus 1 according to the present embodiment includes a mold 2, a hydraulic cylinder 3 for moving the mold 2, a heating source 4, a clamp 5, a hinge 6, and a clamp And a hydraulic cylinder 7 for moving 5. The mold 2 is arranged between the two clamps 5. Two clamps 5, hinges 6 and hydraulic cylinders 7 are provided. In this embodiment, a hydraulic cylinder is used, but an electrically driven cylinder or a cylinder using air pressure may be used as long as the length and load can be adjusted.
 金型2は、板材10を目標とする形状にするための型であり、油圧シリンダー3に固定されている。油圧シリンダー3は、金型2を移動させることができ、被成形材の板材10へ金型2を近づけたり、板材10から金型2を離隔したりすることができる。また、油圧シリンダー3は、押圧部の一例であり、金型2を板材10の成形部分に押し当てる。 The mold 2 is a mold for making the plate material 10 a target shape, and is fixed to the hydraulic cylinder 3. The hydraulic cylinder 3 can move the mold 2, and can bring the mold 2 close to the plate material 10 to be molded or can separate the mold 2 from the plate material 10. The hydraulic cylinder 3 is an example of a pressing portion, and presses the mold 2 against a molded portion of the plate material 10.
 加熱源4は、加熱部の一例であり、例えば集光方式のハロゲンランプ等の光エネルギーを利用したランプ、または各種レーザー等の光源である。加熱源4は、移動可能であって、点状又は比較的小さな円形状に板材10を加熱できる。本実施形態では、加熱源4は、板材10のうち少なくとも成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する。なお、板材にて加熱されている部分の温度は、放射温度計(図示せず。)によって測定されてもよい。このとき、放射温度計が板材10にて加熱されている部分の温度を測定し、測定された温度に基づいて加熱源4の出力が制御される。加熱源4が移動可能である場合、放射温度計は加熱源4と共に移動できるようにしてもよい。 The heating source 4 is an example of a heating unit, for example, a lamp using light energy such as a condensing halogen lamp, or a light source such as various lasers. The heating source 4 is movable and can heat the plate 10 in a dot shape or a relatively small circular shape. In this embodiment, the heating source 4 continuously or intermittently heats at least a molded portion of the plate material 10 on a plurality of lines parallel to each other. In addition, the temperature of the part currently heated with the board | plate material may be measured with a radiation thermometer (not shown). At this time, the radiation thermometer measures the temperature of the portion heated by the plate member 10, and the output of the heating source 4 is controlled based on the measured temperature. If the heating source 4 is movable, the radiation thermometer may be movable together with the heating source 4.
 クランプ5は、板材10を把持したり、板材10の把持を解除したりする。クランプ5は、例えばねじ止めまたは油圧機構によって板材10を固定する。ヒンジ6は、一端がクランプ5と接続され、他端が油圧シリンダー7と接続され、油圧シリンダー7に対してクランプ5を回動させ、クランプ5の方向を変更できる。なお、図には示していないが、ヒンジ6は、油圧シリンダー7に対する角度を調整する機能を有しているほうがよい。 The clamp 5 grips the plate material 10 and releases the grip of the plate material 10. The clamp 5 fixes the plate 10 by, for example, screwing or a hydraulic mechanism. The hinge 6 has one end connected to the clamp 5 and the other end connected to the hydraulic cylinder 7. The clamp 5 can be rotated with respect to the hydraulic cylinder 7 to change the direction of the clamp 5. Although not shown in the figure, the hinge 6 preferably has a function of adjusting the angle with respect to the hydraulic cylinder 7.
 油圧シリンダー7は、クランプ5を移動させることができ、クランプ5を金型2側へ近づけたり、金型2から遠ざけたりすることができる。金型2が板材10を押圧しているとき、クランプ5を金型2から遠ざかる方向へ移動させるようにすることで、油圧シリンダー7は板材10に引張り力を負荷することができる。 The hydraulic cylinder 7 can move the clamp 5 and can move the clamp 5 closer to the mold 2 side or away from the mold 2. When the mold 2 is pressing the plate material 10, the hydraulic cylinder 7 can apply a tensile force to the plate material 10 by moving the clamp 5 in a direction away from the mold 2.
 次に、図9を参照して、本実施形態の板材成形装置による板材成形方法について説明する。
 まず、図4に示すように、金型2を下げた状態で被成形材である板材10をクランプ5によって拘束する(ステップS1)。次に、図5に示すように、金型2を上昇させつつ、クランプ5の位置を調整する(ステップS2)。すなわち、金型2の上昇に伴って、クランプ5が金型2側に寄せられるように油圧シリンダー7が動作する。このとき、ヒンジ6の回動によって板材10が金型2に密着する。
Next, with reference to FIG. 9, the board | plate material shaping | molding method by the board | plate material shaping | molding apparatus of this embodiment is demonstrated.
First, as shown in FIG. 4, the plate 10 that is a material to be molded is restrained by the clamp 5 in a state where the mold 2 is lowered (step S <b> 1). Next, as shown in FIG. 5, the position of the clamp 5 is adjusted while raising the mold 2 (step S2). That is, as the mold 2 moves up, the hydraulic cylinder 7 operates so that the clamp 5 is brought closer to the mold 2 side. At this time, the plate 10 is brought into close contact with the mold 2 by the rotation of the hinge 6.
 そして、油圧シリンダー3が金型2の位置を固定しつつ、油圧シリンダー7が板材10へ引張り力を負荷する(ステップS3)。チタン製やチタン合金製ではなく、アルミニウム製やアルミニウム合金製の軟質な板材では、本実施形態のステップS3までの状態で成形が完了する。しかし、チタンやチタン合金は、降伏応力が高く、常温では成形後にスプリングバックが生じるため、形状を十分に付与できない。本実施形態は、チタン製やチタン合金製の板材を被成形材とすることから、ステップS3の状態を維持したまま、板材10の表面を加熱源4によって加熱する。 Then, while the hydraulic cylinder 3 fixes the position of the mold 2, the hydraulic cylinder 7 applies a tensile force to the plate material 10 (step S3). With a soft plate material made of aluminum or aluminum alloy instead of titanium or titanium alloy, molding is completed in the state up to step S3 of the present embodiment. However, titanium and titanium alloys have high yield stress, and spring back occurs after forming at room temperature, so that a sufficient shape cannot be imparted. In this embodiment, a plate material made of titanium or a titanium alloy is used as a material to be molded, and therefore the surface of the plate material 10 is heated by the heating source 4 while maintaining the state of step S3.
 まず、例えば図6に示すように、加熱源4を加熱位置に配置する(ステップS4)。そして、加熱源4によって板材10の必要な部分を加熱する(ステップS5)。例えば、引張り力が負荷された板材10に対して、板材10に塑性変形が加わる温度域になるまで、加熱源4を用いて板材10を加熱する。塑性変形が加わる温度域とは、常温時の強度と比べて、半分ぐらいの強度になるまで上昇したときの温度域である。図3に示すような特性を有する材料であれば、材料強度が急激に低下し始める500℃以上に板材10を加熱する。これにより、常温の場合に比べて、板材10に対して塑性変形を与えやすくなり、かつ板材10の降伏応力の低下によって弾性変形量が減るため、成形後のスプリングバック量も小さくなる。その結果、板材10を金型2に沿った形状に加工しやすい。 First, for example, as shown in FIG. 6, the heating source 4 is arranged at the heating position (step S4). And the required part of the board | plate material 10 is heated with the heat source 4 (step S5). For example, the plate material 10 is heated using the heating source 4 until the plate material 10 to which the tensile force is applied is in a temperature range in which plastic deformation is applied to the plate material 10. The temperature range where plastic deformation is applied is the temperature range when the strength is increased to about half of the strength at room temperature. If it is a material which has a characteristic as shown in FIG. 3, the board | plate material 10 will be heated to 500 degreeC or more which material strength begins to fall rapidly. Thereby, compared with the case of normal temperature, it becomes easy to give plastic deformation with respect to the board | plate material 10, and since the amount of elastic deformation reduces by the fall of the yield stress of the board | plate material 10, the amount of springbacks after shaping | molding also becomes small. As a result, it is easy to process the plate material 10 into a shape along the mold 2.
 そして、板材10が加熱によって所定温度まで上昇したら、板材10の長手方向または長手方向に対して垂直方向に、加熱源4を移動させる。このとき、加熱源4はライン上で連続的または断続的に板材10を加熱する。加熱源4の移動によって、所定の加熱領域を網羅したところで加熱を終了する。なお、加熱に伴う変形によって、板材10が金型2より浮くような事象が生じた場合には、油圧シリンダー3及び油圧シリンダー7を駆動することで引張り力を増加させ、板材10と金型2を密着させる。そして、板材10と金型2に隙間が生じないようにした状態で、板材10を加熱し成形することで、より精度の高い部品を得ることができる。 When the plate 10 is heated to a predetermined temperature by heating, the heating source 4 is moved in the longitudinal direction of the plate 10 or in the direction perpendicular to the longitudinal direction. At this time, the heating source 4 heats the plate 10 continuously or intermittently on the line. When the predetermined heating area is covered by the movement of the heating source 4, the heating is finished. In addition, when the phenomenon which the board | plate material 10 floats from the metal mold | die 2 arises by the deformation | transformation accompanying heating, a tensile force is increased by driving the hydraulic cylinder 3 and the hydraulic cylinder 7, and the board | plate material 10 and the metal mold | die 2 are increased. Adhere. Then, in a state where no gap is generated between the plate material 10 and the mold 2, the plate material 10 is heated and molded to obtain a more accurate component.
 加熱終了後は、加熱によって成形されて成形品となった板材10を拘束している外力を取り除く(ステップS6)。すなわち、油圧シリンダー3,7によって生じている引張り力を解除する。そして、図8に示すように、金型2および成形品を取り外す(ステップS7)。これによって、成形品が得られる。なお、必要に応じて、加熱領域と非加熱領域境界に生じる残留応力を低減するために、境界よりも加熱領域側において、材料を切断することによって、部品部分は、残留応力の除去と成形精度を改善することが可能である。 After the heating is finished, the external force that restrains the plate 10 that has been molded by heating to become a molded product is removed (step S6). That is, the tensile force generated by the hydraulic cylinders 3 and 7 is released. And as shown in FIG. 8, the metal mold | die 2 and a molded product are removed (step S7). Thereby, a molded product is obtained. If necessary, in order to reduce the residual stress that occurs at the boundary between the heated area and the non-heated area, the part is made to remove residual stress and form accuracy by cutting the material on the heated area side of the boundary. It is possible to improve.
 次に、加熱源4による加熱パターンについて説明する。
 上述したステップS5において、板材10を加熱して成形する際に、目標とする形状を得るため、金型2の形状だけではなく、加熱源2が材料を照射する部分(加熱領域)の設定、加熱温度の設定、引張り力の設定をする。
Next, a heating pattern by the heating source 4 will be described.
In step S5 described above, in order to obtain a target shape when the plate material 10 is heated and molded, not only the shape of the mold 2 but also the setting of the portion (heating region) where the heating source 2 irradiates the material, Set the heating temperature and tensile force.
 図10に示す板材10による成形品断面の曲率半径R1や幅方向の曲率半径R2は、加熱範囲、加熱温度、引張り力によって変化する。例えば、加熱範囲は、図15に示すように、幅方向は連続的な直線14とし、幅方向に対して垂直方向は所定の間隔(加熱ピッチ)だけ離隔して断続的に加熱する。加熱ピッチは、図15(A)に示すように狭くしてもよいし、図15(C)に示すように広くしてもよい。 The curvature radius R1 of the cross section of the molded product by the plate 10 shown in FIG. 10 and the curvature radius R2 in the width direction vary depending on the heating range, heating temperature, and tensile force. For example, as shown in FIG. 15, the heating range is a continuous straight line 14 in the width direction, and is heated intermittently with a predetermined interval (heating pitch) in the direction perpendicular to the width direction. The heating pitch may be narrowed as shown in FIG. 15A or widened as shown in FIG.
 板材を全面的に加熱せず、隙間をあけて加熱することで、板材10の幅方向に生じるそりを抑制できる。また、加熱温度を比較的低温に設定し、加熱ピッチも広いほうが、得られる板材10による成形品断面の曲率半径R1が大きくなる。さらに、加熱温度を比較的高温に設定し、加熱ピッチを狭くしたほうが、材料10の幅方向のそりが大きくなる。またさらに、加熱温度を比較的高温に設定し、引張り力を大きくするほど、材料10の幅方向のそりが大きくなる。 It is possible to suppress warpage that occurs in the width direction of the plate 10 by heating the plate with a gap without heating the entire plate. Further, when the heating temperature is set to a relatively low temperature and the heating pitch is wide, the radius of curvature R1 of the cross section of the molded product by the obtained plate material 10 becomes large. Furthermore, the warp in the width direction of the material 10 becomes larger when the heating temperature is set to a relatively high temperature and the heating pitch is narrowed. Furthermore, the warpage in the width direction of the material 10 increases as the heating temperature is set to a relatively high temperature and the tensile force is increased.
 また、図2に示すように、加熱源4によって照射が行われ高温になる部分12と、照射がまったく行われず低温のままの部分との間の境界が、成形によって得られる部品外(金型2の範囲外)になるように加熱を行う。これによって、高温部分と低温部分の境界で生ずる残留応力を成形部品に残さないことが可能になる。成形後、境界よりも照射部(加熱領域、高温部分)側で切断することによって、部品部分は形状精度の向上と残留応力の軽減を図ることができる。 In addition, as shown in FIG. 2, the boundary between the portion 12 that is irradiated by the heating source 4 and becomes high temperature and the portion that is not irradiated at all and remains at a low temperature is outside the part obtained by molding (mold 2). This makes it possible to prevent residual stress generated at the boundary between the high temperature portion and the low temperature portion from remaining in the molded part. After molding, the part portion can be improved in shape accuracy and the residual stress can be reduced by cutting on the irradiation part (heating region, high temperature portion) side from the boundary.
 また、熱源移動による1回当りの変形量を抑制し、同じ加熱領域を複数回加熱することによって目的とする形状となるように変形量を付与するようにしてもよい。これによって、熱源移動方向に不均一なひずみが生じることを防止できる。 Further, the deformation amount per time due to the movement of the heat source may be suppressed, and the deformation amount may be imparted so as to obtain a target shape by heating the same heating region a plurality of times. As a result, it is possible to prevent uneven distortion from occurring in the direction of movement of the heat source.
 以上のように、適切な加熱領域(加熱ピッチ)、加熱温度、引張り力を設定することによって、板材10を目標とする形状に成形できる。加熱領域(加熱ピッチ)、加熱温度、引張り力の決定は、予備試験、または板材10の加熱による強度変化特性や熱膨張特性を考慮して、成形後の板材10の曲率を推定する数値解析によって行われる。 As described above, the plate material 10 can be formed into a target shape by setting an appropriate heating region (heating pitch), heating temperature, and tensile force. The heating region (heating pitch), heating temperature, and tensile force are determined by numerical analysis that estimates the curvature of the plate 10 after forming in consideration of preliminary tests or strength change characteristics and thermal expansion characteristics due to heating of the plate 10. Done.
 次に加熱パターンの決定方法について説明する。
 目標とする形状の曲率半径に応じて、加熱ピッチを変更する場合について説明する。曲率半径と照射率の関係は、例えば図12に示すようなグラフとなる。曲率半径と照射率の関係は、予備試験又は数値解析によって導出することができる。ここで、照射率は、図11に示すような加熱半径(L1)と加熱ピッチ(L)によって定められる。すなわち、加熱半径(L1)は、加熱源によって均一に加熱できる領域の幅(円のときは直径)とし、加熱ピッチ(L)は、照射中心間の距離としたとき、照射率(L1/L)が1であれば、全面加熱となり、照射率(L1/L)が1よりも大きいときは、重複して加熱される部分が生じ、照射率(L1/L)が1よりも小さいときは、加熱されない部分が生じる。
Next, a method for determining the heating pattern will be described.
A case where the heating pitch is changed according to the curvature radius of the target shape will be described. The relationship between the radius of curvature and the irradiation rate is, for example, a graph as shown in FIG. The relationship between the radius of curvature and the irradiation rate can be derived by a preliminary test or numerical analysis. Here, the irradiation rate is determined by the heating radius (L1) and the heating pitch (L) as shown in FIG. That is, the heating radius (L1) is the width of a region that can be uniformly heated by a heating source (diameter in the case of a circle), and the heating pitch (L) is the distance between the irradiation centers (L1 / L). ) Is 1, the entire surface is heated, and when the irradiation rate (L1 / L) is larger than 1, a portion to be heated repeatedly is generated. When the irradiation rate (L1 / L) is smaller than 1, The part which is not heated arises.
 図12に示すように、加熱温度を比較的低温に設定しつつ、加熱ピッチを広くして照射率を小さくしたほうが、得られる板材10の幅方向の曲率半径が大きくなる。図12の例において、目標曲率半径が600mmの場合は、加熱温度650℃、照射率0.46にすることで目標とする形状を達成できる。 As shown in FIG. 12, when the heating temperature is set to a relatively low temperature and the heating pitch is widened to reduce the irradiation rate, the curvature radius in the width direction of the obtained plate member 10 is increased. In the example of FIG. 12, when the target radius of curvature is 600 mm, the target shape can be achieved by setting the heating temperature to 650 ° C. and the irradiation rate to 0.46.
 成形後の曲率半径と照射率の関係を数値解析によって導出するためには、設定した温度、引張り力などの成形条件に基づいて、設定した加熱領域における板材10の加熱による強度変化や板材10の熱膨張を算出する。そして、板材10の全領域における形状変化を算出することで、成形によって得られる板材10の曲率半径を導出する。設定条件のうち、照射率を変えることによって、例えば図12に示すような曲率半径と照射率の関係が得られる。 In order to derive the relationship between the radius of curvature after forming and the irradiation rate by numerical analysis, based on the forming conditions such as the set temperature and tensile force, the strength change due to heating of the plate 10 in the set heating region and the plate 10 Calculate thermal expansion. And the curvature radius of the board | plate material 10 obtained by shaping | molding is derived | led-out by calculating the shape change in the whole area | region of the board | plate material 10. FIG. By changing the irradiation rate among the setting conditions, for example, the relationship between the radius of curvature and the irradiation rate as shown in FIG. 12 can be obtained.
 次に、目標とする形状の曲率半径に応じて、加熱温度を変更する場合について説明する。曲率半径と加熱温度の関係は、例えば図13に示すようなグラフになる。曲率半径と加熱温度の関係は、予備試験又は数値解析によって導出することができる。図13に示すように、加熱温度を比較的低温に設定したほうが、得られる板材10による成形品断面の曲率半径R1が大きくなる。図13の例において、目標曲率半径が500mmの場合は、加熱温度を680℃にすることで目標とする形状を達成できる。 Next, the case where the heating temperature is changed according to the radius of curvature of the target shape will be described. The relationship between the radius of curvature and the heating temperature is, for example, a graph as shown in FIG. The relationship between the radius of curvature and the heating temperature can be derived by a preliminary test or numerical analysis. As shown in FIG. 13, the curvature radius R1 of the cross-section of the molded article by the obtained plate member 10 becomes larger when the heating temperature is set to a relatively low temperature. In the example of FIG. 13, when the target radius of curvature is 500 mm, the target shape can be achieved by setting the heating temperature to 680 ° C.
 成形後の曲率半径と加熱温度の関係を数値解析によって導出するためには、設定した加熱領域、引張り力などの成形条件に基づいて、設定した加熱温度における板材10の加熱による強度変化や板材10の熱膨張を算出する。そして、板材10の全領域における形状変化を算出することで、成形によって得られる板材10の曲率半径を導出する。設定条件のうち、加熱温度を変えることによって、例えば図13に示すような曲率半径と加熱温度の関係が得られる。 In order to derive the relationship between the radius of curvature after molding and the heating temperature by numerical analysis, the strength change due to heating of the plate 10 at the set heating temperature or the plate 10 based on the molding conditions such as the set heating region and tensile force. The thermal expansion of is calculated. And the curvature radius of the board | plate material 10 obtained by shaping | molding is derived | led-out by calculating the shape change in the whole area | region of the board | plate material 10. FIG. By changing the heating temperature among the set conditions, for example, the relationship between the curvature radius and the heating temperature as shown in FIG. 13 can be obtained.
 また、目標とする形状の曲率半径R1に応じて、引張り荷重を変更する場合について説明する。曲率半径R1と引張り応力の関係は、例えば図14に示すようなグラフになる。曲率半径R1と引張り応力の関係は、予備試験又は数値解析により導出することができる。図14に示すように、引張り応力を大きくしたほうが、得られる板材10の幅方向の曲率半径R1が大きくなる。図14の例において、目標曲率半径が500mmの場合は、引張り応力を100MPaにすることで目標とする形状を達成できる。 Also, the case where the tensile load is changed according to the curvature radius R1 of the target shape will be described. The relationship between the curvature radius R1 and the tensile stress is, for example, a graph as shown in FIG. The relationship between the radius of curvature R1 and the tensile stress can be derived by a preliminary test or numerical analysis. As shown in FIG. 14, as the tensile stress is increased, the curvature radius R1 in the width direction of the obtained plate member 10 is increased. In the example of FIG. 14, when the target curvature radius is 500 mm, the target shape can be achieved by setting the tensile stress to 100 MPa.
 成形後の曲率半径と引張り応力の関係を数値解析によって導出するためには、設定した加熱領域、加熱温度などの成形条件に基づいて、設定した引張り応力における板材10の加熱による強度変化や板材10の熱膨張を算出する。そして、板材10の全領域における形状変化を算出することで、成形によって得られる板材10の曲率半径を導出する。設定条件のうち、引張り応力を変えることによって、例えば図14に示すような曲率半径と引張り応力の関係が得られる。 In order to derive the relationship between the radius of curvature after molding and the tensile stress by numerical analysis, based on the molding conditions such as the set heating region and heating temperature, the strength change due to heating of the plate 10 at the set tensile stress and the plate 10 The thermal expansion of is calculated. And the curvature radius of the board | plate material 10 obtained by shaping | molding is derived | led-out by calculating the shape change in the whole area | region of the board | plate material 10. FIG. By changing the tensile stress among the set conditions, for example, the relationship between the radius of curvature and the tensile stress as shown in FIG. 14 can be obtained.
 また、曲率半径R1が一定でない場合の決定方法について説明する。
 例えば、図16に示すような、曲率半径R1が一定ではなく、金型中心からの距離によって曲率半径R1が異なるような金型形状の場合、加熱ピッチを一定にするのではなく、金型中心からの距離に応じて加熱ピッチを変化させる。
A determination method when the radius of curvature R1 is not constant will be described.
For example, as shown in FIG. 16, in the case of a mold shape in which the curvature radius R1 is not constant and the curvature radius R1 varies depending on the distance from the mold center, the heating pitch is not fixed, but the mold center. The heating pitch is changed in accordance with the distance from.
 図17および図18は、加熱条件に応じて成形される形状を示すグラフである。図17の一点鎖線aは、加熱温度650℃、加熱ピッチ70mmとしたときの形状を示し、図17の実線bは、加熱温度650℃、加熱ピッチ35mmとしたときの形状を示す。また、図18の実線cは、加熱温度600℃、加熱ピッチ35mmとしたときの形状を示し、図18の点線dは、加熱温度700℃、加熱ピッチ35mmとしたときの形状を示し、図18の細線eは、加熱温度650℃、加熱ピッチ35mmとしたときの形状を示す。 FIG. 17 and FIG. 18 are graphs showing the shapes formed according to the heating conditions. 17 indicates the shape when the heating temperature is 650 ° C. and the heating pitch is 70 mm, and the solid line b in FIG. 17 indicates the shape when the heating temperature is 650 ° C. and the heating pitch is 35 mm. 18 indicates the shape when the heating temperature is 600 ° C. and the heating pitch is 35 mm, and the dotted line d in FIG. 18 indicates the shape when the heating temperature is 700 ° C. and the heating pitch is 35 mm. The thin line e indicates the shape when the heating temperature is 650 ° C. and the heating pitch is 35 mm.
 以上から、加熱温度600℃、加熱ピッチ35mmとしたとき(実線c)は、目標とする形状(図18の破線で示す金型形状)と比較して、成形後、頂点部近傍で曲げ不足が生ずることが分かる。そこで、図19に示すように、加熱領域として直線15を追加して、頂点部近傍で加熱ピッチを細かくし、17.5mmとすることで、金型とほぼ同一形状にすることができた。これは、加熱ピッチを細かくして塑性変形不足を補うことができたためである。このように、数値解析または実験結果に基づいて、曲率半径に応じて加熱ピッチや加熱温度などを変化させることによって、成形条件を適正化した結果、目標とする成形形状が得られることが分かる。 From the above, when the heating temperature is 600 ° C. and the heating pitch is 35 mm (solid line c), compared to the target shape (mold shape indicated by the broken line in FIG. 18), there is insufficient bending near the apex after molding. You can see that it happens. Therefore, as shown in FIG. 19, a straight line 15 was added as a heating region, the heating pitch was made fine near the apex, and the thickness was set to 17.5 mm. This is because the heating pitch was made fine to compensate for the lack of plastic deformation. Thus, based on numerical analysis or experimental results, it can be seen that the target molding shape can be obtained as a result of optimizing the molding conditions by changing the heating pitch, heating temperature, etc. according to the radius of curvature.
 次に、板材10の幅方向の曲率半径R2を考慮する必要がある場合について説明する。加熱条件によっては、板材10の幅方向にそりが生じる場合がある。そこで、そりを生じさせず、図20に示すような形状に成形する場合について説明する。すなわち、図22に示すように、板材10を直線状に加熱した場合、図24の破線aで示すように成形される板材10が金型に比べてそりを生じさせる。一方、図23に示すように、板材10を断続的に加熱した場合、図24の実線bで示すように成形される板材10のそりを低減できる。このように、適切な間隔を設定することで、板材10の幅方向にそりや凹凸のない形状に成形することが可能となる。 Next, the case where it is necessary to consider the curvature radius R2 in the width direction of the plate 10 will be described. Depending on the heating conditions, warpage may occur in the width direction of the plate 10. Therefore, a case will be described in which a warp is formed and the shape shown in FIG. 20 is formed. That is, as shown in FIG. 22, when the plate member 10 is heated linearly, the plate member 10 formed as shown by the broken line a in FIG. 24 causes warpage as compared with the mold. On the other hand, as shown in FIG. 23, when the plate member 10 is intermittently heated, warpage of the plate member 10 formed as shown by the solid line b in FIG. 24 can be reduced. In this way, by setting an appropriate interval, it is possible to form the plate member 10 into a shape having no warpage or unevenness in the width direction.
 そして、図23のように断続的に板材10を加熱しつつ、加熱ピッチを設けて板材10を加熱することによって、図21に示すように千鳥状に加熱領域16が配置されるようにしてもよい。このような加熱パターンで加熱することによって、成形精度を向上させることができる。加熱領域の間隔は、板材の幅や剛性などによって変化させて、加工精度を調整する。 And by heating the board | plate material 10 by providing a heating pitch, heating the board | plate material 10 intermittently as shown in FIG. 23, it may be made to arrange the heating area | region 16 in zigzag form as shown in FIG. Good. By heating with such a heating pattern, molding accuracy can be improved. The interval between the heating regions is changed depending on the width and rigidity of the plate material to adjust the processing accuracy.
 次に、加熱源による板材のその他の加熱方法について説明する。
 上述の説明では、ハロゲンランプやレーザーなどの光源を用いた加熱源によって、点状(または円形状)に板材10を加熱しつつ、加熱源を移動させる場合について説明したが、本発明はこの例に限定されない。
Next, the other heating method of the board | plate material by a heating source is demonstrated.
In the above description, the case where the heating source is moved while heating the plate material 10 in a dotted shape (or a circular shape) by the heating source using a light source such as a halogen lamp or a laser has been described. It is not limited to.
 例えば、加熱に必要な部分を一度に照射できるように、連続的または断続的に複数の加熱源を配置してもよい。図7は、複数の加熱源4によって板材10を加熱している状態を示している。これによって、加熱源の移動量を減らし、効率良く加熱に必要な部分を連続的又は断続的に加熱することができ、板材を目標とする形状に成形できる。 For example, a plurality of heating sources may be arranged continuously or intermittently so that a portion necessary for heating can be irradiated at once. FIG. 7 shows a state in which the plate material 10 is heated by a plurality of heating sources 4. As a result, the amount of movement of the heating source can be reduced, the portion necessary for heating can be efficiently or continuously heated, and the plate material can be formed into a target shape.
 また、板材10側の輻射率を変化させることで、板材10に入射する熱量を変化させてもよい。例えば、ハロゲンランプを用いて加熱する際、板材の表面に黒体塗料を塗布し、その上をハロゲンランプによって一定出力で加熱することによって、複雑な加熱パターンを実現することもできる。 Also, the amount of heat incident on the plate 10 may be changed by changing the radiation rate on the plate 10 side. For example, when heating using a halogen lamp, a complicated heating pattern can be realized by applying a black body paint to the surface of the plate material and heating it with a constant output by the halogen lamp.
 板材10は、チタン製またはチタン合金製の金属部材であり、表面は光沢のある状態で輻射率が低い。輻射率は、例えば常温で0.3以下である。そのため、板材10は、ランプやレーザー等の光の吸収率が悪い。しかし、板材10に黒体塗料を塗ると、塗布部分は輻射率が0.9以上となり、熱の吸収が良い。または、板材10を酸化処理すると、酸化部分は輻射率が約0.7となり、比較的熱の吸収が良い。したがって、板材10の加熱したい部分に、成形のための加熱に先立ち、塗料を塗布したり、酸化処理したりした後、処理部分を一定速度で加熱することで、上述した加熱源4のように板材10を加熱できる。材料10がチタンである場合、加熱によって表面の酸化が起こって輻射率が変化するため、光学的な熱源を用いた場合、安定した加熱が困難であるが、黒体塗料を塗布したり予め酸化処理したりすることによって安定した加熱が可能となる。 The plate material 10 is a metal member made of titanium or a titanium alloy, and the surface is glossy and has a low emissivity. The emissivity is, for example, 0.3 or less at room temperature. Therefore, the plate 10 has a poor light absorption rate such as a lamp or a laser. However, when a black body paint is applied to the plate member 10, the applied portion has a radiation rate of 0.9 or more, and heat absorption is good. Alternatively, when the plate member 10 is oxidized, the oxidized portion has a radiation rate of about 0.7 and relatively good heat absorption. Therefore, the coating material is applied to the portion to be heated of the plate 10 prior to heating for molding, or is subjected to oxidation treatment, and then the processing portion is heated at a constant speed, so that the heating source 4 described above is used. The plate 10 can be heated. When the material 10 is titanium, the surface is oxidized by heating and the emissivity is changed. Therefore, when an optical heat source is used, stable heating is difficult. By performing the treatment, stable heating becomes possible.
 また、上記説明において、光源は、例えばランプ、または各種レーザー等であるとして説明したが、本発明はこの例に限定されない。例えば、入熱量や温度を制御できれば、一般に溶接で使用されるアークやガスの燃焼に伴う火炎や、高周波等によって、板材を加熱し、成形してもよい。なお、これらの方法によって成形する場合、温度の制御ができ、熱源が移動できることが望ましい。 In the above description, the light source is described as being a lamp or various lasers, for example, but the present invention is not limited to this example. For example, as long as the heat input and temperature can be controlled, the plate material may be heated and molded by a flame accompanying the combustion of an arc or gas generally used in welding, a high frequency, or the like. In addition, when shape | molding by these methods, it is desirable to be able to control temperature and to move a heat source.
 成形条件の決定には、予備実験のほか、数値解析による方法があるが、これはパーソナルコンピューターなどの情報処理装置によって実行できる。情報処理装置は、例えば、隣接するライン間のピッチ、板材を加熱する加熱温度、および板材に負荷する引張り力を設定する設定部と、設定されたピッチ、加熱温度および引張り力によって板材を加熱したときに得られる板材の曲率を、板材の加熱による材料の強度変化と熱膨張に基づいて算出する算出部と、成形目標の曲率と、算出された板材の曲率とを比較して、実際の板材成形におけるピッチ、加熱温度および引張り力を決定する決定部とを備える。 ¡Determining the molding conditions includes a preliminary analysis and a numerical analysis method, which can be executed by an information processing device such as a personal computer. The information processing apparatus, for example, heats a plate by a setting unit that sets a pitch between adjacent lines, a heating temperature for heating the plate, and a tensile force applied to the plate, and a set pitch, heating temperature, and tensile force. Comparing the curvature of the obtained plate material based on the strength change and thermal expansion of the material due to heating of the plate material, the curvature of the molding target and the calculated curvature of the plate material, A determining unit that determines a pitch, a heating temperature, and a tensile force in molding.
 数値解析によれば、上述した板材成形装置における適切な成形条件を予め推測、決定することができ、精度良く板材を成形することができる。 According to the numerical analysis, appropriate molding conditions in the above-described plate material forming apparatus can be estimated and determined in advance, and the plate material can be formed with high accuracy.
1 板材成形装置
2 金型
3,7 油圧シリンダー
4 加熱源
5 クランプ
6 ヒンジ
10 板材
DESCRIPTION OF SYMBOLS 1 Board | plate material shaping | molding apparatus 2 Mold 3,7 Hydraulic cylinder 4 Heat source 5 Clamp 6 Hinge 10 Board material

Claims (17)

  1.  チタン製またはチタン合金製の板材に引張り力を負荷した状態で、前記引張り力が負荷された前記板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧ステップと、
     前記板材のうち少なくとも前記成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱ステップと、
    を含む板材成形方法。
    In a state where a tensile force is applied to a plate made of titanium or a titanium alloy, a pressing step of pressing a molded portion of the plate loaded with the tensile force against a mold having a curvature of a molding target;
    A heating step of heating at least the molded portion of the plate material continuously or intermittently on a plurality of parallel lines;
    The board | plate material shaping | molding method containing.
  2.  前記板材のうち少なくとも前記成形部分を500℃以上で加熱する請求項1に記載の板材成形方法。 The plate material molding method according to claim 1, wherein at least the molded portion of the plate material is heated at 500 ° C or higher.
  3.  前記加熱ステップにおける隣接するライン間のピッチは、前記板材の成形目標の曲率に応じて決定された長さである請求項1または2に記載の板材成形方法。 The plate material forming method according to claim 1 or 2, wherein a pitch between adjacent lines in the heating step is a length determined according to a curvature of a forming target of the plate material.
  4.  前記加熱ステップにおける加熱温度は、前記板材の成形目標の曲率に応じて決定される請求項1から3のいずれか1項に記載の板材成形方法。 4. The plate material forming method according to claim 1, wherein the heating temperature in the heating step is determined according to a curvature of a forming target of the plate material.
  5.  前記負荷ステップにおいて負荷する前記引張り力は、前記板材の成形目標の曲率に応じて決定される請求項1から4のいずれか1項に記載の板材成形方法。 5. The plate material forming method according to claim 1, wherein the tensile force applied in the loading step is determined according to a curvature of a forming target of the plate material.
  6.  前記加熱ステップでは、加熱源として移動可能な光源が用いられ、前記加熱源は前記板材の成形目標の曲率に応じて加熱領域が制御される請求項1から5のいずれか1項に記載の板材成形方法。 The plate material according to any one of claims 1 to 5, wherein in the heating step, a movable light source is used as a heat source, and a heating region of the heat source is controlled according to a curvature of a forming target of the plate material. Molding method.
  7.  加熱に伴い前記板材と前記金型の間に隙間が生じた場合、前記板材と前記金型の間に隙間が生じないようにした状態で、前記板材を加熱し成形する請求項1から6のいずれか1項に記載の板材成形方法。 When the clearance gap arises between the said board | plate material and the metal mold | die with heating, the said board | plate material is heated and shape | molded in the state which did not produce a clearance gap between the said board | plate material and the said metal mold | die. The board | plate material shaping | molding method of any one of Claims.
  8.  前記板材の加熱領域と非加熱領域で輻射率を変化させて、加熱時の入熱や温度の制御を行う請求項1から7のいずれか1項に記載の板材成形方法。 The plate material forming method according to any one of claims 1 to 7, wherein the heat input and the temperature are controlled during heating by changing a radiation rate between a heated region and a non-heated region of the plate material.
  9.  前記板材にて加熱されている部分の温度は、放射温度計によって測定される請求項1から8のいずれか1項に記載の板材成形方法。 The plate material forming method according to any one of claims 1 to 8, wherein a temperature of a portion heated by the plate material is measured by a radiation thermometer.
  10.  前記加熱ステップにて前記板材を移動方向に断続的に加熱する場合、一走査ライン上での加熱距離または非加熱距離は、前記板材の成形目標の曲率に応じて決定された長さである請求項1から9のいずれか1項に記載の板材成形方法。 When the plate material is intermittently heated in the moving direction in the heating step, the heating distance or non-heating distance on one scanning line is a length determined according to the curvature of the forming target of the plate material. Item 10. The plate material forming method according to any one of Items 1 to 9.
  11.  前記加熱ステップにて前記加熱部が前記板材のうち前記成形部分以外も加熱する請求項1から10のいずれか1項に記載の板材成形方法。 The plate material forming method according to any one of claims 1 to 10, wherein in the heating step, the heating unit heats the plate material other than the formed portion.
  12.  前記加熱ステップによる成形の後、前記板材のうち前記加熱部によって加熱されていない非加熱領域を除去する請求項11に記載の板材成形方法。 The plate material forming method according to claim 11, wherein after the forming by the heating step, a non-heated region that is not heated by the heating unit is removed from the plate material.
  13.  チタン製またはチタン合金製の板材に引張り力を負荷する負荷部と、
     引張り力が負荷された前記板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧部と、
     前記板材のうち少なくとも前記成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱部と、
    を備える板材成形装置。
    A load section for applying a tensile force to a plate made of titanium or a titanium alloy;
    A pressing portion that presses a molded portion of the plate material loaded with a tensile force against a mold having a molding target curvature; and
    A heating unit that heats at least the molded portion of the plate material continuously or intermittently on a plurality of parallel lines;
    A plate material forming apparatus.
  14.  前記加熱部は、加熱源として移動可能な光源が用いられ、前記加熱源は前記板材の成形目標の曲率に応じて加熱領域が制御される請求項13に記載の板材成形装置。 The plate forming apparatus according to claim 13, wherein the heating unit uses a movable light source as a heating source, and the heating source is controlled in a heating region according to a curvature of a forming target of the plate.
  15.  前記板材にて加熱されている部分の温度は、放射温度計によって測定される請求項13または14に記載の板材成形装置。 The plate material forming apparatus according to claim 13 or 14, wherein the temperature of the portion heated by the plate material is measured by a radiation thermometer.
  16.  チタン製またはチタン合金製の板材に引張り力を負荷する負荷部と、
     引張り力が負荷された前記板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧部と、
     前記板材のうち少なくとも前記成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱部と、
    を備える板材成形装置の成形条件決定方法であって、
     隣接するライン間のピッチ、前記板材を加熱する加熱温度、および前記板材に負荷する前記引張り力を設定する設定ステップと、
     設定された前記ピッチ、前記加熱温度および前記引張り力によって前記板材を加熱したときに得られる前記板材の曲率を、前記板材の加熱による材料の強度変化と熱膨張に基づいて算出する算出ステップと、
     前記成形目標の曲率と、算出された前記板材の曲率とを比較して、実際の板材成形における前記ピッチ、前記加熱温度および前記引張り力を決定する決定ステップと、
    を備える板材成形装置の成形条件決定方法。
    A load section for applying a tensile force to a plate made of titanium or a titanium alloy;
    A pressing portion that presses a molded portion of the plate material loaded with a tensile force against a mold having a molding target curvature; and
    A heating unit that heats at least the molded portion of the plate material continuously or intermittently on a plurality of parallel lines;
    A molding condition determining method for a plate material molding apparatus comprising:
    A setting step for setting a pitch between adjacent lines, a heating temperature for heating the plate material, and the tensile force applied to the plate material;
    A calculation step of calculating the curvature of the plate material obtained when the plate material is heated by the set pitch, the heating temperature, and the tensile force based on the strength change and thermal expansion of the material due to the heating of the plate material;
    A determination step of determining the pitch, the heating temperature, and the tensile force in actual plate forming by comparing the curvature of the forming target with the calculated curvature of the plate;
    A molding condition determination method for a plate material molding apparatus comprising:
  17.  チタン製またはチタン合金製の板材に引張り力を負荷する負荷部と、
     引張り力が負荷された前記板材の成形部分を、成形目標の曲率を有する金型に押し当てる押圧部と、
     前記板材のうち少なくとも前記成形部分を、互いに平行な複数のライン上で連続的または断続的に加熱する加熱部と、
    を備える板材成形装置の成形条件決定装置であって、
     隣接するライン間のピッチ、前記板材を加熱する加熱温度、および前記板材に負荷する前記引張り力を設定する設定部と、
     設定された前記ピッチ、前記加熱温度および前記引張り力によって前記板材を加熱したときに得られる前記板材の曲率を、前記板材の加熱による材料の強度変化と熱膨張に基づいて算出する算出部と、
     前記成形目標の曲率と、算出された前記板材の曲率とを比較して、実際の板材成形における前記ピッチ、前記加熱温度および前記引張り力を決定する決定部と、
    を備える板材成形装置の成形条件決定装置。
    A load section for applying a tensile force to a plate made of titanium or a titanium alloy;
    A pressing portion that presses a molded portion of the plate material loaded with a tensile force against a mold having a molding target curvature; and
    A heating unit that heats at least the molded portion of the plate material continuously or intermittently on a plurality of parallel lines;
    A molding condition determining device for a plate material molding apparatus comprising:
    A setting unit for setting a pitch between adjacent lines, a heating temperature for heating the plate material, and the tensile force applied to the plate material;
    A calculation unit that calculates the curvature of the plate material obtained when the plate material is heated by the set pitch, the heating temperature, and the tensile force based on a change in strength and thermal expansion of the material due to the heating of the plate material;
    A determining unit that compares the curvature of the molding target with the calculated curvature of the plate material and determines the pitch, the heating temperature, and the tensile force in actual plate material molding,
    A molding condition determining apparatus for a plate material molding apparatus.
PCT/JP2012/053717 2011-03-09 2012-02-16 Method for forming sheet material, sheet material forming apparatus, method for determining forming conditions for sheet material forming apparatus, and device for determining forming conditions for sheet material forming apparatus WO2012120989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011051847A JP2012187600A (en) 2011-03-09 2011-03-09 Method for forming sheet material, sheet material-forming apparatus, method for determining forming condition for sheet material-forming apparatus, and device for determining forming condition for sheet material-forming apparatus
JP2011-051847 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012120989A1 true WO2012120989A1 (en) 2012-09-13

Family

ID=46797958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053717 WO2012120989A1 (en) 2011-03-09 2012-02-16 Method for forming sheet material, sheet material forming apparatus, method for determining forming conditions for sheet material forming apparatus, and device for determining forming conditions for sheet material forming apparatus

Country Status (2)

Country Link
JP (1) JP2012187600A (en)
WO (1) WO2012120989A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054527A1 (en) * 2012-10-02 2014-04-10 三菱重工業株式会社 Plate forming method and plate forming device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120669A (en) * 1977-03-31 1978-10-21 Hitachi Ltd Tension controller for stretch bending former
JPH0252192A (en) * 1988-08-11 1990-02-21 Toshiba Corp Laser beam heat working method and laser beam heat working device
JPH05177366A (en) * 1991-12-26 1993-07-20 Okuma Mach Works Ltd Sheet metal working method
JPH08168831A (en) * 1994-09-21 1996-07-02 Electrolux:Ab Method and device for forming small part by superplastic molding
JP2003103382A (en) * 2001-09-28 2003-04-08 Babcock Hitachi Kk Setting method for laser beam irradiation position
JP2005526617A (en) * 2001-08-08 2005-09-08 ユニヴァーシティ オブ ザ ウエスト オブ イングランド ブリストル Molding method of workpiece
JP2010110821A (en) * 2008-11-10 2010-05-20 Rolls Royce Plc Forming apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120669A (en) * 1977-03-31 1978-10-21 Hitachi Ltd Tension controller for stretch bending former
JPH0252192A (en) * 1988-08-11 1990-02-21 Toshiba Corp Laser beam heat working method and laser beam heat working device
JPH05177366A (en) * 1991-12-26 1993-07-20 Okuma Mach Works Ltd Sheet metal working method
JPH08168831A (en) * 1994-09-21 1996-07-02 Electrolux:Ab Method and device for forming small part by superplastic molding
JP2005526617A (en) * 2001-08-08 2005-09-08 ユニヴァーシティ オブ ザ ウエスト オブ イングランド ブリストル Molding method of workpiece
JP2003103382A (en) * 2001-09-28 2003-04-08 Babcock Hitachi Kk Setting method for laser beam irradiation position
JP2010110821A (en) * 2008-11-10 2010-05-20 Rolls Royce Plc Forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054527A1 (en) * 2012-10-02 2014-04-10 三菱重工業株式会社 Plate forming method and plate forming device

Also Published As

Publication number Publication date
JP2012187600A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US9707608B2 (en) Method for bending a workpiece
Dearden et al. Some recent developments in two-and three-dimensional laser forming for ‘macro’and ‘micro’applications
Gisario et al. Improvements in springback control by external force laser-assisted sheet bending of titanium and aluminum alloys
Hu et al. Increasing the capability of laser peen forming to bend titanium alloy sheets with laser-assisted local heating
Kim et al. Development of irradiation strategies for free curve laser forming
Yanjin et al. Finite element modeling of laser bending of pre-loaded sheet metals
US10533234B2 (en) Method for laser beam heat treatment of press hardened components and press hardened components
JP2014233757A (en) Method and device for heating platy workpiece, and hot press molding method
KR102503714B1 (en) Heating method, heating apparatus, and fabrication method for press-molded article
CN110405042B (en) Movable heating skin stretch forming equipment and stretch forming method
Safari et al. A study on laser bending of tailor machined blanks with various irradiating schemes
Gisario et al. Laser-assisted bending of sharp angles with small fillet radius on stainless steel sheets: Analysis of experimental set-up and processing parameters
CN103111497B (en) Laser forming method for metal sheet
WO2012120989A1 (en) Method for forming sheet material, sheet material forming apparatus, method for determining forming conditions for sheet material forming apparatus, and device for determining forming conditions for sheet material forming apparatus
CN103111496B (en) Progressive bending sheet metal
CN105710183A (en) Laser forming technique for curved plate
Fauzi et al. Influence of non-conventional beam profile on edge effects in laser forming of AISI 304 stainless steel plate
WO2014054527A1 (en) Plate forming method and plate forming device
Navarrete et al. Effect of workpiece geometry using circular scan patterns in sheet laser forming processes
CN106391796B (en) A method of reducing sheet edge effect
RU2403114C1 (en) Method of plastic straightening of titanium alloy sections
Bhuyan et al. Experimental investigation on laser bending of metal sheets using parabolic irradiations
JP4409985B2 (en) Press molding apparatus, press molding method and molded product
EP2578331B1 (en) Method and equipment for shaping a cast component
CN104561869A (en) Titanium alloy profile stretch bending, forming and in-situ heat treating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754544

Country of ref document: EP

Kind code of ref document: A1