WO2012120747A1 - Cement compositions and process for producing same - Google Patents
Cement compositions and process for producing same Download PDFInfo
- Publication number
- WO2012120747A1 WO2012120747A1 PCT/JP2011/079223 JP2011079223W WO2012120747A1 WO 2012120747 A1 WO2012120747 A1 WO 2012120747A1 JP 2011079223 W JP2011079223 W JP 2011079223W WO 2012120747 A1 WO2012120747 A1 WO 2012120747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- content
- cement
- cement composition
- clinker
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
- C04B7/06—Portland cement using alkaline raw materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
- C04B7/153—Mixtures thereof with other inorganic cementitious materials or other activators
- C04B7/17—Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
- C04B7/19—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/26—Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/28—Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/345—Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Definitions
- the present invention relates to a cement composition and a method for producing the same.
- the cement composition reacts with the components contained in the cement composition and water to form a hydrate and develop strength.
- the strength of mortar or concrete increases as the amount of hydrate produced increases.
- Non-Patent Document 1 As a method for improving the strength development property of concrete, means such as “increase the fineness (brane specific surface area)” and “increase the C 3 S content” are used (for example, Non-Patent Document 1). .
- Non-Patent Document 1 concrete or the like can be obtained by means of changing the fineness and mineral composition of the cement composition such as “fineness of fineness (brane specific surface area)” and “increasing the C 3 S content”.
- fineness of fineness brane specific surface area
- C 3 S content increases the limestone basic unit as a raw material, and CO 2 emission by decarboxylation of limestone and This also leads to an increase in energy for clinker firing, and in either case, the amount of CO 2 generated in cement production is increased, which is not preferable in terms of environment.
- the present invention has been made in view of the above circumstances, and improves the strength expression of a cured body such as mortar or concrete while maintaining appropriate fresh properties (standard soft water content, setting time) of mortar and concrete. It is an object of the present invention to provide a cement composition that can be produced and a method for producing the same.
- a cement composition is used in order to improve the strength development of a cured body such as mortar or concrete while maintaining the fresh properties of mortar or concrete.
- the inventors have found that it is effective to control the content of vanadium soot (V) therein, and have completed the present invention.
- the present invention relates to a cement composition having a V content of 0.0063 to 0.012% by mass.
- the present invention relates to the above cement composition, wherein the Sr content is 0.035 to 0.08% by mass.
- the present invention relates to the above cement composition, wherein the Mo content is 0.0002 to 0.007% by mass and the MgO content is 1 to 3% by mass.
- the present invention relates to the above cement composition comprising a cement clinker having an SO 3 content of 0.2 to 1.2% by mass.
- the present invention relates to the above-mentioned cement composition having an SO 3 content of 1.6 to 2.5% by mass.
- the present invention relates to the above cement composition having an R 2 O content of 0.3 to 0.6% by mass.
- the present invention has a C 3 S content of 45 to 70% by mass, a C 2 S content of 5 to 25% by mass, a C 3 A content of 6 to 15% by mass and a C 4 AF content of 7 to 15% by mass. % Of the cement composition.
- the present invention provides limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source so that the V content of the cement composition is 0.0063 to 0.012% by mass. Adjusting the raw material intensity of a raw material selected from the group consisting of: (A) producing a cement clinker by firing the adjusted raw material; and (B) pulverizing the cement clinker, gypsum and mixed material.
- the present invention relates to a method for producing a cement composition.
- the present invention in order to maintain the proper fresh properties of cement paste, mortar or concrete, while maintaining the standard soft water amount (water amount necessary for obtaining a certain softness) and setting time of cement paste. Further, it is possible to provide a cement composition capable of maintaining and improving the strength development property (for example, the strength development property of a material age of 28 days) of a cured body such as mortar or concrete and a method for producing the same.
- the cement composition according to this embodiment is characterized in that the V content is 0.0063 to 0.012% by mass.
- Vanadium (V) is a trace component contained in the cement composition.
- the present inventors have determined that the V content in the cement composition affects the strength development of a cement paste, mortar, or concrete hardened body using the cement composition, and the V content of the cement composition. Has been found to improve the strength development of these hardened bodies while maintaining the proper fresh properties (standard soft water content, setting time) of cement paste, mortar or concrete It was.
- the V content of the cement composition is the content ratio (% by mass) with respect to the total mass of the cement composition, and cement by the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating atomic absorption spectroscopic analysis method” It can be measured according to the "quantitative method of trace components in”.
- the V content in the cement composition is 0.0063 to 0.012% by mass, preferably 0.0070 to 0.012% by mass, more preferably 0.0080 to 0.0115% by mass. More preferably, the content is 0.0090 to 0.0105% by mass.
- the V content in the cement composition is less than 0.063% by mass or more than 0.012% by mass, the strength development of a cured body such as mortar or concrete using the cement composition according to the present embodiment is appropriately achieved. It may not be maintained.
- the cement composition according to the present embodiment has a strontium (Sr) content of preferably 0.035 to 0.08% by mass, more preferably an Sr content of 0.04 to 0.075% by mass, and still more preferably. It is 0.041 to 0.07% by mass, particularly preferably 0.042 to 0.06% by mass.
- Sr content in the cement composition is within the above range, the strength properties of a hardened body such as mortar or concrete can be maintained while maintaining the fresh properties (standard soft water content and setting time) of the cement composition. Can be maintained and improved.
- the Sr content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is determined by the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating type” It can be measured according to the “quantification method of trace components in cement by atomic absorption analysis”.
- the cement composition according to the present embodiment has a molybdenum (Mo) content of preferably 0.0002 to 0.007 mass%, more preferably 0.0002 to 0.0065 mass%, and still more preferably 0.0002 to 0.0002 mass%.
- the amount is 0.0064% by mass, particularly preferably 0.0002 to 0.0063% by mass.
- the Mo content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is determined by the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating type” It can be measured according to the “quantification method of trace components in cement by atomic absorption analysis”.
- the MgO content is preferably 1 to 3% by mass, more preferably 1 to 2.5% by mass, still more preferably 1 to 2% by mass, and particularly preferably 1 to 1.% by mass. 5% by mass.
- the MgO content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio should be measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. Can do.
- the cement composition according to the present embodiment is preferably formed using a cement clinker having an SO 3 content of 0.2 to 1.2.
- the SO 3 content of the cement clinker is more preferably 0.25 to 0.90% by mass, still more preferably 0.3 to 0.70% by mass.
- the SO 3 content of the cement clinker is within the above range, it becomes easy to adjust the SO 3 content of the cement composition obtained by pulverizing the cement clinker, gypsum, and the mixture to a predetermined range. preferable.
- the cement composition according to the present embodiment has an R 2 O content of preferably 0.3 to 0.6% by mass, more preferably 0.35 to 0.6% by mass, and still more preferably 0.35. To 0.55% by mass, particularly preferably 0.4 to 0.5% by mass.
- the R 2 O content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. can do.
- the R 2 O (alkali) content of the cement composition refers to an amount represented by the following formula (I).
- R 2 O content of cement composition Na 2 O content + 0.658 ⁇ K 2 O content (I)
- the cement composition according to the present embodiment has an SO 3 content of preferably 1.6 to 2.5% by mass, more preferably 1.7 to 2.5% by mass, and still more preferably 1.8 to 2.5% by mass. 2.48% by mass.
- the SO 3 content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. be able to.
- the mineral composition of the cement composition according to the present embodiment preferably has a C 3 S content of 45 to 70% by mass, a C 2 S content of 5 to 25% by mass, and a C 3 A content of 6 to 15% by mass.
- C 4 AF content is 7 to 15% by mass, more preferably C 3 S content is 48 to 65% by mass, C 2 S content is 10 to 25% by mass, and C 3 A content is 8 to 8%.
- 13 mass% and C 4 AF content is 8-12 mass%, more preferably C 3 S content is 50-64 mass%, C 2 S content is 11-20 mass%, C 3 A content.
- the C 4 AF content is 8 to 11% by mass, and particularly preferably, the C 3 S content is 53 to 60% by mass, the C 2 S content is 11 to 18% by mass, and C 3 The A content is 9 to 11% by mass, and the C 4 AF content is 8 to 10% by mass. If the mineral composition of the cement composition is within the above range, the strength development of hardened bodies such as mortar or concrete can be easily maintained while maintaining the fresh properties of mortar and concrete (standard soft water content, setting time). Can be improved.
- C 3 S content (alite phase), C 2 S content (belite phase), C 3 A content (aluminate phase), C 4 AF content (ferrite phase) in the cement composition Is calculated by the following Borg equations [1] to [4].
- CaO content”, SiO 2 content”, “Al 2 O 3 content” and “Fe 2 O 3 content” in the formula are respectively CaO, SiO 2 and Al 2 O 3 in the cement composition. a content (mass%) and for the entire mass of the cement composition of Fe 2 O 3. These content ratios can be measured by JIS R 5202 “Method for chemical analysis of Portland cement” or JIS R 5204 “Method for fluorescent X-ray analysis of cement”.
- Examples of raw materials for cement clinker in step (A) include limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source.
- Coal ash is generated from a coal-fired power plant or the like, and includes cinder ash, fly ash, clinker ash, and bottom ash.
- Examples of construction generated soil include residual soil, mud soil, waste soil, etc., which are generated as a result of construction work.
- Examples of sewage sludge include sludge, dry pulverized limestone, and incineration residues.
- Hydrocake is a by-product generated in the process of adding a small amount of calcium hydroxide to seawater when removing seawater magnesia clinker, and removing carbon dioxide in seawater.
- the thing which has a salt as a main component is mentioned.
- the iron source include copper tangling and blast furnace dust.
- it is a raw material which contains V to some extent, it may be other than said limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source.
- the raw material unit of the cement clinker raw material in the step (A) is limestone 700 to 1400 kg / t-clinker, meteorite 20 to 150 kg / t on a dry basis (in a state not containing moisture) per ton (t) of cement clinker.
- -Clinker coal ash 0-300kg / t-clinker, clay 0-100kg / t-clinker, blast furnace slag 0-100kg / t-clinker, construction generated soil 10-150kg / t-clinker, sewage sludge 0-100kg / t It is preferred to use clinker, hydrocake 0-100 kg / t-clinker and iron source 30-80 kg / t-clinker.
- step (A) as a raw material for cement clinker, limestone 800 to 1300 kg / t-clinker, meteorite 20 to 100 kg / t-clinker, coal ash 10 to 250 kg / t-clinker, clay 0 to 80 kg / t-clinker, blast furnace slag 5-50 kg / t-clinker, construction generated soil 20-150 kg / t-clinker, sewage sludge 0-70 kg / t-clinker, hydrocake 20-80 kg / t-clinker and iron source 30- More preferably, 60 kg / t-clinker is used. More preferably, the coal ash is 20 to 250 kg / t-clinker on a dry basis.
- the V content of each cement clinker raw material is measured, and the raw material intensity of the cement clinker raw material containing a large amount of V is mainly adjusted.
- the raw material basic unit is adjusted so that the V content of the composition is 0.0063 to 0.012 mass%.
- a method of adjusting the raw material unit of the cement clinker raw material specifically, a previously prepared cement composition is sampled, the V content in the cement composition is measured, and the V content in the cement composition is determined.
- a method using a cement clinker obtained by adjusting the raw material basic unit of the cement clinker raw material so that it becomes 0.0063 to 0.012 mass% and firing this raw material can be mentioned.
- the “raw material basic unit” means the mass (kg / t-clinker) of each raw material used for producing 1 ton of cement clinker.
- it may be other than said limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source.
- the use amount (raw material basic unit) of coal ash, construction generated soil, clay, iron source (copper tangled, blast furnace dust), etc. has a great influence on the V content of the cement composition.
- the raw material unit of the cement clinker raw material it is preferable to adjust the raw material unit of the cement clinker raw material so that the Sr content of the cement composition is 0.035 to 0.08 mass%.
- the raw material unit of the cement clinker raw material it is preferable to adjust the raw material unit of the cement clinker raw material so that the Mo content of the cement composition is 0.0002 to 0.007% by mass.
- the raw material unit of the cement clinker raw material so that the MgO content of the cement composition is 1 to 3% by mass.
- the raw material unit of the cement clinker raw material so that the R 2 O content of the cement composition is 0.3 to 0.6% by mass.
- the cement composition prepared in advance is sampled, and the Sr content and Mo content in the cement composition are sampled.
- the MgO content and the R 2 O content are measured, and the raw material raw material of the cement clinker raw material is set so that the Sr content, Mo content, MgO content and R 2 O content in the cement composition are specific amounts.
- the raw material unit of the cement clinker raw material it is preferable to adjust the raw material unit of the cement clinker raw material so that the SO 3 content of the cement clinker is 0.2 to 1.2% by mass.
- V content in the raw materials, Sr content, Mo content, MgO content and R 2 O content is content (wt%) for each entire raw material (100 wt%).
- the V content is preferably 0.0001 to 0.002% by mass, more preferably 0.0001 to 0.0015% by mass, still more preferably 0.0002 to 0.0012% by mass, particularly preferably. 0.0002 to 0.001% by mass is used.
- the Sr content is preferably 0.005 to 0.07% by mass, more preferably 0.005 to 0.06% by mass, still more preferably 0.01 to 0.06% by mass, and particularly preferably 0.015 to 0.055 mass is used.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less.
- the MgO content is preferably 0.1 to 1.5% by mass or less, more preferably 0.2 to 1.3% by mass or less, still more preferably 0.25 to 1.1% by mass or less, particularly preferably 0. Use 3 to 1.0% by mass.
- the R 2 O content is preferably 0.05% by mass or less, more preferably 0.001 to 0.04% by mass, still more preferably 0.005 to 0.03% by mass, and particularly preferably 0.005 to 0%. 0.02% by mass is used.
- the V content is preferably 0.001 to 0.01% by mass, more preferably 0.001 to 0.008% by mass, still more preferably 0.002 to 0.007% by mass, particularly preferably. 0.003 to 0.006% by mass is used.
- the Sr content is preferably 0.001 to 0.04% by mass, more preferably 0.001 to 0.03% by mass, still more preferably 0.001 to 0.025% by mass, and particularly preferably 0.001 to 0.04% by mass. Use 0.02 mass%.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0004% by mass or less.
- the MgO content is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.8% by mass, still more preferably 0.1 to 0.6% by mass, particularly preferably 0.1 to 0% by mass. Use 5% by mass.
- the R 2 O content is preferably 0.1 to 4.0% by mass, more preferably 0.1 to 3.0% by mass, still more preferably 0.3 to 2.5% by mass, and particularly preferably 0.8. 3 to 2.0% by mass is used.
- the coal ash has a V content of preferably 0.01 to 0.1% by mass, more preferably 0.01 to 0.08% by mass, still more preferably 0.015 to 0.07% by mass, particularly preferably. Is 0.035 to 0.06% by mass.
- V content preferably 0.01 to 0.1% by mass, more preferably 0.01 to 0.08% by mass, still more preferably 0.015 to 0.07% by mass, particularly preferably. Is 0.035 to 0.06% by mass.
- the Sr content is preferably 0.02 to 0.2% by mass, more preferably 0.02 to 0.15% by mass, still more preferably 0.02 to 0.13% by mass, and particularly preferably 0.02 to 0.2% by mass. A 0.12 mass% thing is used.
- the Mo content is preferably 0.004% by mass or less, more preferably 0.003% by mass or less, still more preferably 0.002% by mass or less, and particularly preferably 0.0015% by mass or less.
- the MgO content is preferably 0.2 to 3.0% by mass, more preferably 0.4 to 3.0% by mass, still more preferably 0.4 to 2.5% by mass, and particularly preferably 0.4 to 3.0% by mass. 2.3% by mass is used.
- the R 2 O content is preferably 0.1 to 3.5% by mass, more preferably 0.2 to 3.0% by mass, still more preferably 0.3 to 2.5% by mass, and particularly preferably 0. 5 to 2.0% by mass is used.
- the V content is preferably 0.001 to 0.02% by mass, more preferably 0.001 to 0.015% by mass, still more preferably 0.003 to 0.012% by mass, and particularly preferably. Is 0.004 to 0.01% by mass.
- the Sr content is preferably 0.02 to 0.08% by mass, more preferably 0.02 to 0.07% by mass, still more preferably 0.02 to 0.06% by mass, and particularly preferably 0.02 to 0.08% by mass. Use 0.05 mass% or less.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less.
- the MgO content is preferably 3.0 to 10% by mass, more preferably 3.0 to 8.0% by mass, still more preferably 3.0 to 7.0% by mass, and particularly preferably 4.0 to 7.% by mass. Use 0% by weight.
- the R 2 O content is preferably 0.02 to 1.0% by mass, more preferably 0.04 to 0.8% by mass, still more preferably 0.06 to 0.6% by mass, and particularly preferably 0.8. Use the one of 08 to 0.5% by mass.
- the V content is preferably 0.005 to 0.05% by mass, more preferably 0.005 to 0.03% by mass, still more preferably 0.01 to 0.025% by mass, and particularly preferably.
- the Sr content is preferably 0.001 to 0.03% by mass, more preferably 0.003 to 0.025% by mass, still more preferably 0.003 to 0.02% by mass, and particularly preferably 0.004 to 0.04% by mass.
- a thing of 0.015 mass% or less is used.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0004% by mass or less.
- the MgO content is preferably 0.3 to 6.0% by mass, more preferably 0.3 to 5.0% by mass, still more preferably 0.3 to 4.0% by mass, and particularly preferably 0.5%. Use 4.0% by mass.
- the R 2 O content is preferably 0.5 to 4.0% by mass, more preferably 0.7 to 3.5% by mass, still more preferably 1.0 to 3.0% by mass, Preferably 1.2 to 2.8% by mass is used.
- the V content is preferably 0.0001 to 0.03% by mass, more preferably 0.0001 to 0.025% by mass, still more preferably 0.005 to 0.02% by mass, and particularly Preferably, 0.007 to 0.02 mass% is used.
- the Sr content is preferably 0.01 to 0.4% by mass, more preferably 0.01 to 0.3% by mass, still more preferably 0.01 to 0.2% by mass, particularly preferably 0.015 to Use 0.1% by mass.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0004% by mass or less.
- the MgO content is preferably 0.5 to 6.0% by mass, more preferably 0.5 to 5.5% by mass, still more preferably 1.0 to 5.0% by mass, and particularly preferably 1.0 to 5.0% by mass. Use 4.0% by weight.
- the R 2 O content is preferably 0.5 to 4.5% by mass, more preferably 0.7 to 4.0% by mass, still more preferably 1.0 to 3.5% by mass, and particularly preferably 1. 2 to 3.0% by mass is used.
- the sewage sludge has a V content of preferably 0.0001 to 0.01% by mass, more preferably 0.0001 to 0.007% by mass, still more preferably 0.0005 to 0.005% by mass, and particularly preferably. Is 0.0007 to 0.004% by mass.
- the Sr content is preferably 0.001 to 0.1% by mass, more preferably 0.001 to 0.07% by mass, still more preferably 0.001 to 0.05% by mass, and particularly preferably 0.001 to Use 0.04 mass%.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.0015% by mass or less, still more preferably 0.0012% by mass or less, and 0.0011% by mass or less.
- the MgO content is preferably 0.05 to 4.0% by mass, more preferably 0.1 to 4.0% by mass, still more preferably 0.1 to 3.0% by mass, and particularly preferably 0.1 to 4.0% by mass. Use 2.5% by mass.
- the R 2 O content is preferably 0.4 to 3.5% by mass, more preferably 0.6 to 3.0% by mass, still more preferably 0.8 to 2.5% by mass, and particularly preferably 1. Use 0 to 2.0% by mass.
- the hydrocake has a V content of preferably 0.001 to 0.1% by mass, more preferably 0.01 to 0.08% by mass, still more preferably 0.01 to 0.06% by mass, particularly preferably. Is 0.01 to 0.05% by mass.
- the Sr content is preferably 0.1 to 0.8% by mass, more preferably 0.1 to 0.7% by mass, still more preferably 0.1 to 0.6% by mass, and particularly preferably 0.1 to 0.7% by mass. Use 0.5% by weight.
- the Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less.
- the MgO content is preferably 5 to 30% by mass, more preferably 5 to 25% by mass, still more preferably 10 to 25% by mass, and particularly preferably 10 to 20% by mass.
- the R 2 O content is preferably 0.02 to 1.5% by mass, more preferably 0.04 to 1.2% by mass, still more preferably 0.06 to 1.0% by mass, and particularly preferably 0.8. The one with 08 to 0.8% by mass is used.
- the V content is preferably 0.001 to 0.05% by mass, more preferably 0.003 to 0.03% by mass, and still more preferably 0.005 to 0.03% by mass. %, 0.005 to 0.02 mass%.
- the Sr content is preferably 0.005 to 0.05% by mass, more preferably 0.005 to 0.04% by mass, still more preferably 0.005 to 0.03% by mass, and particularly preferably 0.005 to 0.05% by mass.
- the Mo content is preferably 0.0002 to 0.8% by mass, more preferably 0.0002 to 0.6% by mass, still more preferably 0.0002 to 0.4% by mass, and particularly preferably 0.0002 to Use 0.3% by mass.
- the MgO content is preferably 0.5 to 3.0% by mass, more preferably 0.5 to 2.5% by mass, still more preferably 0.6 to 2.0% by mass, and particularly preferably 0.7 to 3.0% by mass. Use 1.5% by mass.
- the R 2 O content is preferably 0.04 to 2% by mass, more preferably 0.06 to 1.8% by mass, still more preferably 0.08 to 1.6% by mass, and particularly preferably 1 to 1.% by mass. Use 4% by weight.
- the V content is preferably 0.001 to 0.03% by mass, more preferably 0.003 to 0.02% by mass, and still more preferably 0.005 to 0.02% by mass. %, Particularly preferably 0.008 to 0.015% by mass.
- the Sr content is preferably 0.001 to 0.03% by mass, more preferably 0.001 to 0.02% by mass, still more preferably 0.002 to 0.015% by mass, and particularly preferably 0.002 to 0.02% by mass.
- the Mo content is preferably 0.004% by mass or less, more preferably 0.003% by mass or less, still more preferably 0.002% by mass or less, and particularly preferably 0.001% by mass or less.
- the MgO content is preferably 0.1 to 3.0% by mass, more preferably 0.15 to 2.0% by mass, still more preferably 0.15 to 1.5% by mass, particularly preferably 0.2 to Use 1.5% by mass.
- the R 2 O content is preferably 0.002 to 1.0% by mass, more preferably 0.004 to 0.8% by mass, still more preferably 0.006 to 0.6% by mass, and particularly preferably 0.8. Use 008 to 0.4 mass%.
- the V content is preferably 0.05 to 0.5% by mass, more preferably 0.08 to 0.5% by mass, and still more preferably 0.1 to 0.4% by mass. Soot, deiron slag, or the like can be selected and used as a raw material for controlling the V content in the cement composition.
- the cement clinker can be manufactured using an existing cement manufacturing facility such as an SP system (multistage cyclone preheating system) or an NSP system (multistage cyclone preheating system equipped with a calcining furnace).
- SP system multistage cyclone preheating system
- NSP system multistage cyclone preheating system equipped with a calcining furnace
- a quality control sample is collected during cement clinker firing, the V content of this sample is measured, and the use of each raw material is based on the V content in each raw material.
- the ratio (raw material basic unit) is adjusted so that the V content in the cement clinker is 0.0063 to 0.012% by mass.
- step (A) (firing step) of the present invention an example in which a cement clinker is manufactured using an existing cement manufacturing facility of the NSP method will be described.
- each raw material of the cement clinker is not particularly limited, but it is preferable to pulverize and mix with a raw material pulverization mill or the like, and further to mix with a blending silo.
- the cement clinker raw material that has been pulverized and mixed can be further fired using a suspension preheater and a rotary kiln, which are existing equipment.
- a cement clinker having a V content of 0.0063 to 0.012% by mass can also be produced by adjusting the firing conditions such as the firing temperature and firing time of the cement clinker.
- the firing temperature of the cement clinker is not particularly limited, but when an NSP type cement production facility is used, the temperature of the cement clinker in the vicinity of the rotary kiln outlet is preferably 800 to 1700 ° C, more preferably 900 to 1600 ° C. More preferably, it is 1000 to 1500 ° C.
- the firing time is 20 minutes to 2 hours, more preferably 30 minutes to 2 hours, and still more preferably 45 minutes to 1.5 hours.
- the obtained cement clinker is preferably cooled to about 100 to 200 ° C., for example, by a clinker cooler provided on the downstream side of the rotary kiln.
- the cooling rate is preferably 10 to 60 ° C./min, more preferably 15 to 45 ° C./min, and further preferably 15 to 30 ° C./min.
- the cooling rate is in the range of 10 to 60 ° C./min, it is possible to produce a cement clinker from which a cement composition capable of producing mortar and concrete having excellent strength development properties can be obtained.
- step (B) pulverization step
- a step of pulverizing the cement clinker, gypsum and the mixed material will be described.
- the cement composition can be produced by mixing and pulverizing a cement clinker having a V content of 0.0063 to 0.012% by mass and gypsum.
- the gypsum desirably satisfies the quality specified in JIS R 9151 “Natural gypsum for cement”. Specifically, dihydrate gypsum, hemihydrate gypsum, and insoluble anhydrous gypsum are preferably used.
- the SO 3 content in the cement composition is 1.6 to 2.5% by mass with respect to the cement clinker having a V content of 0.0063 to 0.012% by mass. It is preferable to mix and grind gypsum so that it is more preferably 1.7 to 2.5% by mass, and still more preferably 1.8 to 2.48% by mass.
- pulverization method The method of using classifiers, such as grinders, such as a ball mill, and a separator, is mentioned.
- the cement clinker content is 95 to 97% by mass with respect to the total mass of the cement composition, and the gypsum content is 3 to 5% by mass. It is preferable.
- the cement composition may further contain a mixed material.
- a mixed material blast furnace slag specified by JIS R 5211 “Blast Furnace Cement”, siliceous mixed material specified by JIS R 5212 “Silica Cement”, fly ash specified by JIS A 6201 “Fly Ash for Concrete”. Limestone fine powder can be used.
- the total content (% by mass) of the mixed material is preferably 5% by mass or less with respect to the total mass of the cement composition.
- the brane specific surface area of the cement composition according to this embodiment is preferably 2800 to 4000 cm 2 / g. When the brain specific surface area is within the above range, it is possible to produce mortar or concrete having further excellent strength development.
- the brane specific surface area of the cement composition is more preferably 3000 to 3800 cm 2 / g, and still more preferably 3000 to 3500 cm 2 / g.
- cement clinker ingredients As cement clinker raw material, the V content of limestone, silica stone, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust) is measured in advance, and the raw material of the above raw material The basic unit was adjusted so that the V content of the cement clinker was 0.0063 to 0.012% by mass. Further, the Sr content is 0.035 to 0.08 mass%, the Mo content is 0.0002 to 0.007 mass%, the MgO content is 1 to 3 mass%, and the R 2 O content is 0.3 to 0.3 mass%.
- the use ratio (raw material basic unit) of each raw material was adjusted so that a cement clinker of 0.6% by mass was obtained. Also, dihydrate gypsum was used to adjust the amount of SO 3 in the cement composition.
- Sr content, Mo content The amounts, MgO content and R 2 O content are listed in Table 1.
- the chemical components and raw material basic units shown below are dry base (water-free state) raw material basic units. In Table 1, “ ⁇ 0.00025” indicates that the Mo content is 0.00025% by mass or less.
- V, Sr, Mo, MgO and R 2 O in the raw materials are determined by the Cement Association standard test method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”. It measured according to.
- cement clinker ingredients The basic unit of each raw material used as a cement clinker raw material was limestone 800-1300 kg / t-clinker, silica 20-150 kg / t-clinker, coal ash 10-250 kg / t-clinker, clay 0-100 kg / t-clinker, Blast furnace slag 0-100 kg / t-clinker, construction generated soil 20-150 kg / t-clinker, sewage sludge 0-100 kg / t-clinker, hydrocake 0-100 kg / t-clinker and iron source 30-80 kg / t-clinker (5 to 50 kg / t-clinker from copper tangled, 25 to 55 kg / t-clinker from blast furnace dust).
- the cement clinker raw material was prepared, and the prepared raw material was baked in an NSP kiln at a maximum temperature of 1200 to 1500 ° C. to produce a cement clinker.
- the temperature of the cement clinker in the vicinity of the NSP kiln outlet was 1000-1500 ° C.
- the cement clinker was cooled from 1000-1400 ° C. to 100-200 ° C. at a cooling rate of 10-60 ° C./min with a clinker cooler provided on the downstream side of the rotary kiln.
- the obtained cement clinker is blended with dihydrate gypsum so that the content of SO 3 in the cement composition is 2% by mass, and further mixed material (limestone, blast furnace slag) is 4% by mass of limestone and 1% by mass of blast furnace slag. And pulverized with an actual mill so that the specific surface area of the brain was 3100 to 3400 cm 2 / g to obtain a cement composition.
- the color tone b value of the cement composition is shown in Table 4 as a result of measurement using a colorimetric color difference meter (Spectro Color Meter Se2000 manufactured by Nippon Denshoku Industries Co., Ltd.).
- the measurement method is as follows. 500 g of cement composition is put in a kneading bowl, water is added and kneaded, cement paste is put into a container, the surface is smoothed, the standard bar is lowered, and the standard bar is 30 seconds later.
- FIG. 1 The relationship between the V content of the cement composition and the 28-day compressive strength is shown in FIG. As shown in FIG. 1, when the V content of the cement composition is 0.0063 to 0.012 mass% (Examples 1 to 4, the symbol “ ⁇ ” in FIG. 1), a certain strength development property (The mortar compressive strength at the age of 28 days can be maintained and improved at 60 N / mm 2 or more. On the other hand, when the V content of the cement composition was less than 0.0063% by mass (Comparative Example 1, symbol “ ⁇ ” in FIG. 1), strength development was reduced.
- a cement composition having a V content of 0.0063 to 0.012% by mass and preferably an Sr content of 0.035 to 0.08% by mass has a large difference in the standard soft water amount compared to the cement composition (Comparative Example 1) in which the V content of the cement composition is less than 0.0063% by mass while maintaining and improving a certain strength development.
- the setting time since the setting time is longer, it can be confirmed that the freshness (standard soft water amount, setting time) is maintained.
- the cement composition having a cement composition having a V content of 0.0063 to 0.012% by mass, preferably an Sr content of 0.035 to 0.08% by mass While maintaining the fresh properties of concrete (standard soft water content, setting time), strength development can be maintained and improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Provided are: cement compositions which can keep or improve the strength development of cement paste, mortar or concrete while keeping the properties of cement paste, mortar or concrete in the fresh state; and a process for producing the same. A cement composition having a V content of 0.0063 to 0.012 mass%; a cement composition as described above, which has an Sr content of 0.035 to 0.08 mass%; and a process for producing cement compositions which comprises a step (A) of adjusting the unit requirements of raw materials selected from the group consisting of limestone, silica stone, coal ash, clay, blast furnace slag, soil generated by construction works, sewage sludge, hydrocakes, and iron sources so as to yield a cement composition having a V content of 0.0063 to 0.012 mass%, and firing the raw materials thus adjusted to form a cement clinker and a step (B) of pulverizing the cement clinker, gypsum, and an admixture together.
Description
本発明は、セメント組成物及びその製造方法に関する。
The present invention relates to a cement composition and a method for producing the same.
セメント組成物は、セメント組成物に含まれる成分と水とが反応して水和物を生成し、強度を発現する。一般的には、水和物の生成量が多くなるにつれて、モルタル又はコンクリートの強度は上昇する。
The cement composition reacts with the components contained in the cement composition and water to form a hydrate and develop strength. In general, the strength of mortar or concrete increases as the amount of hydrate produced increases.
セメントユーザーからは、コンクリートの流動性や凝結時間を損なわずに、強度発現性に優れたコンクリートを得ることが可能なセメント組成物が求められている。
Cement users are demanding a cement composition capable of obtaining concrete having excellent strength development without impairing the fluidity and setting time of the concrete.
コンクリートの強度発現性を向上させる方法としては、「粉末度(ブレーン比表面積)を細かくする」、「C3S含有量を増加させる」等の手段が用いられている(例えば非特許文献1)。
As a method for improving the strength development property of concrete, means such as “increase the fineness (brane specific surface area)” and “increase the C 3 S content” are used (for example, Non-Patent Document 1). .
しかしながら、非特許文献1のように「粉末度(ブレーン比表面積)を細かくする」、「C3S含有量を増加させる」等のセメント組成物の粉末度や鉱物組成を変える手段によってコンクリート等の硬化体の強度発現性を向上させると、凝結時間が短縮し、流動性が低下してしまうという事情があった。また、「粉末度を細かくする」ことはセメントの粉砕エネルギーを増加し、「C3S含有量を増加させる」ことは原料として石灰石原単位を増やすこととなり、石灰石の脱炭酸によるCO2排出およびクリンカー焼成用のエネルギー増加にも繋がり、いずれの場合もセメント製造におけるCO2発生量の増加になるため、環境面でも好ましいことではない。
However, as in Non-Patent Document 1, concrete or the like can be obtained by means of changing the fineness and mineral composition of the cement composition such as “fineness of fineness (brane specific surface area)” and “increasing the C 3 S content”. When the strength development property of the cured body is improved, the setting time is shortened and the fluidity is lowered. In addition, “to make the fineness finer” increases the grinding energy of the cement, and “to increase the C 3 S content” increases the limestone basic unit as a raw material, and CO 2 emission by decarboxylation of limestone and This also leads to an increase in energy for clinker firing, and in either case, the amount of CO 2 generated in cement production is increased, which is not preferable in terms of environment.
本発明は、上記事情に鑑みてなされたものであり、モルタルやコンクリートの適正なフレッシュ性状(標準軟度水量、凝結時間)を維持しつつ、モルタル又はコンクリート等の硬化体の強度発現性を向上させることが可能なセメント組成物及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and improves the strength expression of a cured body such as mortar or concrete while maintaining appropriate fresh properties (standard soft water content, setting time) of mortar and concrete. It is an object of the present invention to provide a cement composition that can be produced and a method for producing the same.
本発明者らは、上記の目的を達成すべく鋭意検討した結果、モルタルやコンクリートのフレッシュ性状を維持しつつ、モルタル又はコンクリート等の硬化体の強度発現性を向上させるためには、セメント組成物中のバナジウム (V)含有量を制御することが有効であることを見出し、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have found that a cement composition is used in order to improve the strength development of a cured body such as mortar or concrete while maintaining the fresh properties of mortar or concrete. The inventors have found that it is effective to control the content of vanadium soot (V) therein, and have completed the present invention.
すなわち、本発明は、V含有量が0.0063~0.012質量%であるセメント組成物に関する。本発明は、Sr含有量が0.035~0.08質量%である、上記セメント組成物に関する。本発明は、Mo含有量が0.0002~0.007質量%であり、MgO含有量が1~3質量%である、上記セメント組成物に関する。本発明は、SO3含有量が0.2~1.2質量%であるセメントクリンカーを用いてなる、上記セメント組成物に関する。本発明は、SO3含有量が1.6~2.5質量%である、上記セメント組成物に関する。本発明は、R2O含有量が0.3~0.6質量%である、上記セメント組成物に関する。本発明は、C3S含有量が45~70質量%、C2S含有量が5~25質量%、C3A含有量が6~15質量%及びC4AF含有量が7~15質量%である、上記セメント組成物に関する。
That is, the present invention relates to a cement composition having a V content of 0.0063 to 0.012% by mass. The present invention relates to the above cement composition, wherein the Sr content is 0.035 to 0.08% by mass. The present invention relates to the above cement composition, wherein the Mo content is 0.0002 to 0.007% by mass and the MgO content is 1 to 3% by mass. The present invention relates to the above cement composition comprising a cement clinker having an SO 3 content of 0.2 to 1.2% by mass. The present invention relates to the above-mentioned cement composition having an SO 3 content of 1.6 to 2.5% by mass. The present invention relates to the above cement composition having an R 2 O content of 0.3 to 0.6% by mass. The present invention has a C 3 S content of 45 to 70% by mass, a C 2 S content of 5 to 25% by mass, a C 3 A content of 6 to 15% by mass and a C 4 AF content of 7 to 15% by mass. % Of the cement composition.
本発明は、セメント組成物のV含有量が0.0063~0.012質量%となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源からなる群より選ばれる原料の原料原単位を調整し、調整した原料を焼成してセメントクリンカーを製造する工程(A)と、上記セメントクリンカーと石膏と混合材とを粉砕する工程(B)とを含む、セメント組成物の製造方法に関する。
The present invention provides limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source so that the V content of the cement composition is 0.0063 to 0.012% by mass. Adjusting the raw material intensity of a raw material selected from the group consisting of: (A) producing a cement clinker by firing the adjusted raw material; and (B) pulverizing the cement clinker, gypsum and mixed material. The present invention relates to a method for producing a cement composition.
本発明によれば、セメントペースト、モルタル又はコンクリートの適正なフレッシュ性状を維持するために、セメントペーストの標準軟度水量(一定の軟度を得るために必要な水量)及び凝結時間を維持しつつ、モルタル又はコンクリート等の硬化体の強度発現性(例えば材齢28日の強度発現性)を維持・向上させることが可能なセメント組成物及びその製造方法を提供することができる。
According to the present invention, in order to maintain the proper fresh properties of cement paste, mortar or concrete, while maintaining the standard soft water amount (water amount necessary for obtaining a certain softness) and setting time of cement paste. Further, it is possible to provide a cement composition capable of maintaining and improving the strength development property (for example, the strength development property of a material age of 28 days) of a cured body such as mortar or concrete and a method for producing the same.
以下、本発明の好適な実施形態について説明する。
Hereinafter, preferred embodiments of the present invention will be described.
本実施形態に係るセメント組成物は、V含有量が0.0063~0.012質量%であることを特徴とする。
The cement composition according to this embodiment is characterized in that the V content is 0.0063 to 0.012% by mass.
バナジウム(V)はセメント組成物に含有される微量成分である。本発明者らは、セメント組成物中のV含有量が、セメント組成物を用いたセメントペースト、モルタル又はコンクリートの硬化体の強度発現性に影響を及ぼすことを突き止め、セメント組成物のV含有量が適性範囲となるようにすることにより、セメントペースト、モルタル又はコンクリートの適正なフレッシュ性状(標準軟度水量、凝結時間)を維持しつつ、それらの硬化体の強度発現性を向上することを見出した。セメント組成物のV含有量は、セメント組成物の全体質量に対する含有割合(質量%)であり、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電機加熱式原子吸光分析方法によるセメント中の微量成分の定量方法」に準じて測定することができる。
Vanadium (V) is a trace component contained in the cement composition. The present inventors have determined that the V content in the cement composition affects the strength development of a cement paste, mortar, or concrete hardened body using the cement composition, and the V content of the cement composition. Has been found to improve the strength development of these hardened bodies while maintaining the proper fresh properties (standard soft water content, setting time) of cement paste, mortar or concrete It was. The V content of the cement composition is the content ratio (% by mass) with respect to the total mass of the cement composition, and cement by the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating atomic absorption spectroscopic analysis method” It can be measured according to the "quantitative method of trace components in".
セメント組成物中のV含有量は、0.0063~0.012質量%であり、好ましくは0.0070~0.012質量%であり、より好ましくは0.0080~0.0115質量%であり、更に好ましくは0.0090~0.0105質量%である。セメント組成物中のV含有量が0.063質量%未満または0.012質量%を超えると、本実施形態に係るセメント組成物を用いたモルタル又はコンクリート等の硬化体の強度発現性が適正に維持できない場合がある。
The V content in the cement composition is 0.0063 to 0.012% by mass, preferably 0.0070 to 0.012% by mass, more preferably 0.0080 to 0.0115% by mass. More preferably, the content is 0.0090 to 0.0105% by mass. When the V content in the cement composition is less than 0.063% by mass or more than 0.012% by mass, the strength development of a cured body such as mortar or concrete using the cement composition according to the present embodiment is appropriately achieved. It may not be maintained.
本実施形態に係るセメント組成物は、ストロンチウム(Sr)含有量が、好ましくは0.035~0.08質量%、より好ましくはSr含有量が0.04~0.075質量%、更に好ましくは0.041~0.07質量%、特に好ましくは0.042~0.06質量%である。セメント組成物中のSr含有量が、上記範囲内であると、セメント組成物のフレッシュ性状(標準軟度水量、凝結時間)を適度に維持しつつ、モルタル又はコンクリート等の硬化体の強度発現性を維持・向上させることができる。セメント組成物中のSr含有量は、セメント組成物の全体質量に対する含有割合(質量%)であり、この含有割合は、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電機加熱式原子吸光分析方法によるセメント中の微量成分の定量方法」に準じて測定することができる。
The cement composition according to the present embodiment has a strontium (Sr) content of preferably 0.035 to 0.08% by mass, more preferably an Sr content of 0.04 to 0.075% by mass, and still more preferably. It is 0.041 to 0.07% by mass, particularly preferably 0.042 to 0.06% by mass. When the Sr content in the cement composition is within the above range, the strength properties of a hardened body such as mortar or concrete can be maintained while maintaining the fresh properties (standard soft water content and setting time) of the cement composition. Can be maintained and improved. The Sr content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is determined by the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating type” It can be measured according to the “quantification method of trace components in cement by atomic absorption analysis”.
本実施形態に係るセメント組成物は、モリブデン(Mo)含有量が、好ましくは0.0002~0.007質量%、より好ましくは0.0002~0.0065質量%、更に好ましくは0.0002~0.0064質量%、特に好ましくは0.0002~0.0063質量%である。セメント組成物中のMo含有量が、上記範囲内であると、セメント組成物のフレッシュ性状(標準軟度水量、凝結時間)を適度に維持しつつ、モルタルやコンクリート等の硬化体の強度発現性を維持・向上させることができる。セメント組成物中のMo含有量は、セメント組成物の全体質量に対する含有割合(質量%)であり、この含有割合は、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電機加熱式原子吸光分析方法によるセメント中の微量成分の定量方法」に準じて測定することができる。
The cement composition according to the present embodiment has a molybdenum (Mo) content of preferably 0.0002 to 0.007 mass%, more preferably 0.0002 to 0.0065 mass%, and still more preferably 0.0002 to 0.0002 mass%. The amount is 0.0064% by mass, particularly preferably 0.0002 to 0.0063% by mass. When the Mo content in the cement composition is within the above range, the strength properties of the hardened body such as mortar and concrete can be maintained while maintaining the fresh properties (standard soft water content, setting time) of the cement composition. Can be maintained and improved. The Mo content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is determined by the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating type” It can be measured according to the “quantification method of trace components in cement by atomic absorption analysis”.
本実施形態に係るセメント組成物では、MgO含有量が、好ましくは1~3質量%、より好ましくは1~2.5質量%、更に好ましくは1~2質量%、特に好ましくは1~1.5質量%である。セメント組成物中のMgO含有量が、上記範囲内であると、セメント組成物のフレッシュ性状(標準軟度水量、凝結時間)を適度に維持しつつ、モルタルやコンクリート等の硬化体の強度発現性を更に向上させることができる。セメント組成物中のMgO含有量は、セメント組成物の全体質量に対する含有割合(質量%)であり、この含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定することができる。
In the cement composition according to this embodiment, the MgO content is preferably 1 to 3% by mass, more preferably 1 to 2.5% by mass, still more preferably 1 to 2% by mass, and particularly preferably 1 to 1.% by mass. 5% by mass. When the MgO content in the cement composition is within the above range, the strength properties of the hardened body such as mortar and concrete can be maintained while maintaining the fresh properties (standard soft water content, setting time) of the cement composition. Can be further improved. The MgO content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio should be measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. Can do.
本実施形態に係るセメント組成物は、SO3含有量が0.2~1.2であるセメントクリンカーを用いてなるものであることが好ましい。セメントクリンカーのSO3含有量は、より好ましくは0.25~0.90質量%、更に好ましくは0.3~0.70質量%である。セメントクリンカーのSO3含有量が上記範囲内であると、このセメントクリンカーと、石膏と、混合材とを粉砕して得られるセメント組成物のSO3含有量を所定の範囲に調整しやすくなるため好ましい。
The cement composition according to the present embodiment is preferably formed using a cement clinker having an SO 3 content of 0.2 to 1.2. The SO 3 content of the cement clinker is more preferably 0.25 to 0.90% by mass, still more preferably 0.3 to 0.70% by mass. When the SO 3 content of the cement clinker is within the above range, it becomes easy to adjust the SO 3 content of the cement composition obtained by pulverizing the cement clinker, gypsum, and the mixture to a predetermined range. preferable.
また、本実施形態に係るセメント組成物は、R2O含有量が、好ましくは0.3~0.6質量%、より好ましくは0.35~0.6質量%、更に好ましくは0.35~0.55質量%、特に好ましくは0.4~0.5質量%である。セメント組成物中のR2O含有量が、上記範囲内であると、セメント組成物のフレッシュ性状(標準軟度水量、凝結時間)を適度に維持しつつ、モルタルやコンクリート等の硬化体の強度発現性を維持・向上させることができる。セメント組成物中のR2O含有量は、セメント組成物の全体質量に対する含有割合(質量%)であり、この含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定することができる。セメント組成物のR2O(アルカリ)含有量は、下記式(I)で示される量をいう。
セメント組成物のR2O含有量=Na2O含有量+0.658×K2O含有量 (I) The cement composition according to the present embodiment has an R 2 O content of preferably 0.3 to 0.6% by mass, more preferably 0.35 to 0.6% by mass, and still more preferably 0.35. To 0.55% by mass, particularly preferably 0.4 to 0.5% by mass. When the R 2 O content in the cement composition is within the above range, the strength of the hardened body such as mortar or concrete can be maintained while maintaining the fresh properties (standard soft water content, setting time) of the cement composition. The expression can be maintained and improved. The R 2 O content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. can do. The R 2 O (alkali) content of the cement composition refers to an amount represented by the following formula (I).
R 2 O content of cement composition = Na 2 O content + 0.658 × K 2 O content (I)
セメント組成物のR2O含有量=Na2O含有量+0.658×K2O含有量 (I) The cement composition according to the present embodiment has an R 2 O content of preferably 0.3 to 0.6% by mass, more preferably 0.35 to 0.6% by mass, and still more preferably 0.35. To 0.55% by mass, particularly preferably 0.4 to 0.5% by mass. When the R 2 O content in the cement composition is within the above range, the strength of the hardened body such as mortar or concrete can be maintained while maintaining the fresh properties (standard soft water content, setting time) of the cement composition. The expression can be maintained and improved. The R 2 O content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. can do. The R 2 O (alkali) content of the cement composition refers to an amount represented by the following formula (I).
R 2 O content of cement composition = Na 2 O content + 0.658 × K 2 O content (I)
また、本実施形態に係るセメント組成物は、SO3含有量が、好ましくは1.6~2.5質量%、より好ましくは1.7~2.5質量%、更に好ましくは1.8~2.48質量%である。セメント組成物中のSO3含有量が、上記範囲内であると、セメント組成物のフレッシュ性状(標準軟度水量、凝結時間)を適度に維持しつつ、モルタルやコンクリート等の硬化体の強度発現性を維持・向上させることができる。セメント組成物中のSO3含有量は、セメント組成物の全体質量に対する含有割合(質量%)であり、この含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定することができる。
Further, the cement composition according to the present embodiment has an SO 3 content of preferably 1.6 to 2.5% by mass, more preferably 1.7 to 2.5% by mass, and still more preferably 1.8 to 2.5% by mass. 2.48% by mass. When the content of SO 3 in the cement composition is within the above range, the strength of the hardened body such as mortar and concrete is exhibited while maintaining the fresh properties (standard soft water content, setting time) of the cement composition. Maintain and improve the performance. The SO 3 content in the cement composition is the content ratio (mass%) with respect to the total mass of the cement composition, and this content ratio is measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. be able to.
本実施形態に係るセメント組成物の鉱物組成は、好ましくはC3S含有量が45~70質量%、C2S含有量が5~25質量%、C3A含有量が6~15質量%及びC4AF含有量が7~15質量%であり、より好ましくはC3S含有量が48~65質量%、C2S含有量が10~25質量%、C3A含有量が8~13質量%及びC4AF含有量が8~12質量%であり、更に好ましくはC3S含有量が50~64質量%、C2S含有量が11~20質量%、C3A含有量が9~12質量%及びC4AF含有量が8~11質量%であり、特に好ましくはC3S含有量が53~60質量%、C2S含有量が11~18質量%、C3A含有量が9~11質量%、C4AF含有量が8~10質量%である。セメント組成物の鉱物組成が上記範囲内であると、モルタル及びコンクリートのフレッシュ性状(標準軟度水量、凝結時間)を維持しつつ、モルタル又はコンクリート等の硬化体の強度発現性を容易に維持・向上させることができる。
The mineral composition of the cement composition according to the present embodiment preferably has a C 3 S content of 45 to 70% by mass, a C 2 S content of 5 to 25% by mass, and a C 3 A content of 6 to 15% by mass. And C 4 AF content is 7 to 15% by mass, more preferably C 3 S content is 48 to 65% by mass, C 2 S content is 10 to 25% by mass, and C 3 A content is 8 to 8%. 13 mass% and C 4 AF content is 8-12 mass%, more preferably C 3 S content is 50-64 mass%, C 2 S content is 11-20 mass%, C 3 A content. Is 9 to 12% by mass and the C 4 AF content is 8 to 11% by mass, and particularly preferably, the C 3 S content is 53 to 60% by mass, the C 2 S content is 11 to 18% by mass, and C 3 The A content is 9 to 11% by mass, and the C 4 AF content is 8 to 10% by mass. If the mineral composition of the cement composition is within the above range, the strength development of hardened bodies such as mortar or concrete can be easily maintained while maintaining the fresh properties of mortar and concrete (standard soft water content, setting time). Can be improved.
ここで、セメント組成物中のC3S含有量(エーライト相)、C2S含有量(ビーライト相)、C3A含有量(アルミネート相)、C4AF含有量(フェライト相)は、下記のボーグ式[1]~[4]により算出する。
Here, C 3 S content (alite phase), C 2 S content (belite phase), C 3 A content (aluminate phase), C 4 AF content (ferrite phase) in the cement composition Is calculated by the following Borg equations [1] to [4].
C3S含有量(質量%)=4.07×CaO含有量(質量%)-7.60×SiO2含有量(質量%)-6.72×Al2O3含有量(質量%)-1.43×Fe2O3含有量(質量%)-2.85×SO3含有量(質量%) ・・・[1]
C2S含有量(質量%)=2.87×SiO2含有量(質量%)-0.754×C3S含有量(質量%) ・・・[2]
C3A含有量(質量%)=2.65×Al2O3含有量(質量%)-1.69×Fe2O3含有量(質量%) ・・・[3]
C4AF含有量(質量%)=3.04×Fe2O3含有量(質量%) ・・・[4] C 3 S content (mass%) = 4.07 × CaO content (mass%) − 7.60 × SiO 2 content (mass%) − 6.72 × Al 2 O 3 content (mass%) − 1.43 × Fe 2 O 3 content (mass%) − 2.85 × SO 3 content (mass%) [1]
C 2 S content (mass%) = 2.87 × SiO 2 content (mass%) − 0.754 × C 3 S content (mass%)... [2]
C 3 A content (mass%) = 2.65 × Al 2 O 3 content (mass%) − 1.69 × Fe 2 O 3 content (mass%)... [3]
C 4 AF content (mass%) = 3.04 × Fe 2 O 3 content (mass%) (4)
C2S含有量(質量%)=2.87×SiO2含有量(質量%)-0.754×C3S含有量(質量%) ・・・[2]
C3A含有量(質量%)=2.65×Al2O3含有量(質量%)-1.69×Fe2O3含有量(質量%) ・・・[3]
C4AF含有量(質量%)=3.04×Fe2O3含有量(質量%) ・・・[4] C 3 S content (mass%) = 4.07 × CaO content (mass%) − 7.60 × SiO 2 content (mass%) − 6.72 × Al 2 O 3 content (mass%) − 1.43 × Fe 2 O 3 content (mass%) − 2.85 × SO 3 content (mass%) [1]
C 2 S content (mass%) = 2.87 × SiO 2 content (mass%) − 0.754 × C 3 S content (mass%)... [2]
C 3 A content (mass%) = 2.65 × Al 2 O 3 content (mass%) − 1.69 × Fe 2 O 3 content (mass%)... [3]
C 4 AF content (mass%) = 3.04 × Fe 2 O 3 content (mass%) (4)
式中の「CaO含有量」、「SiO2含有量」、「Al2O3含有量」及び「Fe2O3含有量」は、それぞれ、セメント組成物におけるCaO、SiO2、Al2O3及びFe2O3のセメント組成物の全体質量に対する含有割合(質量%)である。これらの含有割合は、JIS R 5202「ポルトランドセメントの化学分析方法」あるいはJIS R 5204「セメントの蛍光X線分析方法」により測定することができる。
“CaO content”, “SiO 2 content”, “Al 2 O 3 content” and “Fe 2 O 3 content” in the formula are respectively CaO, SiO 2 and Al 2 O 3 in the cement composition. a content (mass%) and for the entire mass of the cement composition of Fe 2 O 3. These content ratios can be measured by JIS R 5202 “Method for chemical analysis of Portland cement” or JIS R 5204 “Method for fluorescent X-ray analysis of cement”.
次に、本発明のセメント組成物の製造方法の実施形態について説明する。
本実施形態に係るセメント組成物の製造方法は、セメント組成物のV含有量が0.0063~0.012質量%となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト等)からなる群より選ばれる原料の原料原単位を調整し、調整した原料を焼成してセメントクリンカーを製造する工程(A)と、上記セメントクリンカーと石膏と混合材とを粉砕する工程(B)とを含む。 Next, an embodiment of a method for producing a cement composition of the present invention will be described.
In the method for producing a cement composition according to the present embodiment, limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, so that the V content of the cement composition is 0.0063 to 0.012% by mass. Adjusting the raw material intensity of the raw material selected from the group consisting of sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust, etc.), and firing the adjusted raw material to produce a cement clinker (A); A step (B) of pulverizing the cement clinker, gypsum, and mixed material.
本実施形態に係るセメント組成物の製造方法は、セメント組成物のV含有量が0.0063~0.012質量%となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト等)からなる群より選ばれる原料の原料原単位を調整し、調整した原料を焼成してセメントクリンカーを製造する工程(A)と、上記セメントクリンカーと石膏と混合材とを粉砕する工程(B)とを含む。 Next, an embodiment of a method for producing a cement composition of the present invention will be described.
In the method for producing a cement composition according to the present embodiment, limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, so that the V content of the cement composition is 0.0063 to 0.012% by mass. Adjusting the raw material intensity of the raw material selected from the group consisting of sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust, etc.), and firing the adjusted raw material to produce a cement clinker (A); A step (B) of pulverizing the cement clinker, gypsum, and mixed material.
(A)工程におけるセメントクリンカーの原料としては、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源等が挙げられる。石炭灰は、石炭火力発電所等から発生するものであり、シンダアッシュ、フライアッシュ、クリンカアッシュ及びボトムアッシュが挙げられる。建設発生土は、建設工事の施工に伴い副次的に発生する残土や泥土、廃土等が挙げられる。下水汚泥としては、汚泥単味のほか、これに石灰石を加えて乾粉化したものや、焼却残渣等が挙げられる。ハイドロケーキとしては、海水マグネシアクリンカーを製造する際の、海水に少量の水酸化カルシウムを加え、海水中の炭酸ガスを除去する工程で発生する副産物であり、カルシウム及びマグネシウムそれぞれの水酸化物及び炭酸塩を主成分とするものが挙げられる。鉄源としては、銅からみ、高炉ダスト等が挙げられる。なお、Vをある程度含有する原料であれば、上記の石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源以外であっても良い。
(A) Examples of raw materials for cement clinker in step (A) include limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source. Coal ash is generated from a coal-fired power plant or the like, and includes cinder ash, fly ash, clinker ash, and bottom ash. Examples of construction generated soil include residual soil, mud soil, waste soil, etc., which are generated as a result of construction work. Examples of sewage sludge include sludge, dry pulverized limestone, and incineration residues. Hydrocake is a by-product generated in the process of adding a small amount of calcium hydroxide to seawater when removing seawater magnesia clinker, and removing carbon dioxide in seawater. The thing which has a salt as a main component is mentioned. Examples of the iron source include copper tangling and blast furnace dust. In addition, as long as it is a raw material which contains V to some extent, it may be other than said limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source.
(A)工程におけるセメントクリンカー原料の原料原単位としては、セメントクリンカー1トン(t)あたり、ドライベース(水分を含まない状態)で、石灰石700~1400kg/t-クリンカー、硅石20~150kg/t-クリンカー、石炭灰0~300kg/t-クリンカー、粘土0~100kg/t-クリンカー、高炉スラグ0~100kg/t-クリンカー、建設発生土10~150kg/t-クリンカー、下水汚泥0~100kg/t-クリンカー、ハイドロケーキ0~100kg/t-クリンカー及び鉄源30~80kg/t-クリンカーを使用することが好ましい。また、工程(A)では、セメントクリンカー原料として、ドライベースで、石灰石800~1300kg/t-クリンカー、硅石20~100kg/t-クリンカー、石炭灰10~250kg/t-クリンカー、粘土0~80kg/t-クリンカー、高炉スラグ5~50kg/t-クリンカー、建設発生土20~150kg/t-クリンカー、下水汚泥0~70kg/t-クリンカー、ハイドロケーキを20~80kg/t-クリンカー及び鉄源30~60kg/t-クリンカーを使用することがより好ましい。石炭灰は、ドライベースで20~250kg/t-クリンカーであることが更に好ましい。
The raw material unit of the cement clinker raw material in the step (A) is limestone 700 to 1400 kg / t-clinker, meteorite 20 to 150 kg / t on a dry basis (in a state not containing moisture) per ton (t) of cement clinker. -Clinker, coal ash 0-300kg / t-clinker, clay 0-100kg / t-clinker, blast furnace slag 0-100kg / t-clinker, construction generated soil 10-150kg / t-clinker, sewage sludge 0-100kg / t It is preferred to use clinker, hydrocake 0-100 kg / t-clinker and iron source 30-80 kg / t-clinker. In the step (A), as a raw material for cement clinker, limestone 800 to 1300 kg / t-clinker, meteorite 20 to 100 kg / t-clinker, coal ash 10 to 250 kg / t-clinker, clay 0 to 80 kg / t-clinker, blast furnace slag 5-50 kg / t-clinker, construction generated soil 20-150 kg / t-clinker, sewage sludge 0-70 kg / t-clinker, hydrocake 20-80 kg / t-clinker and iron source 30- More preferably, 60 kg / t-clinker is used. More preferably, the coal ash is 20 to 250 kg / t-clinker on a dry basis.
(A)工程におけるセメントクリンカー原料の原料原単位を調整する方法としては、各セメントクリンカー原料のV含有量を測定し、Vを多く含むセメントクリンカー原料の原料原単位を主に調整して、セメント組成物のV含有量が0.0063~0.012質量%となるよう原料原単位を調整する。セメントクリンカー原料の原料原単位を調整する方法として、具体的には、予め製造したセメント組成物をサンプリングして、セメント組成物中のV含有量を測定し、セメント組成物中のV含有量が0.0063~0.012質量%となるように、セメントクリンカー原料の原料原単位を調整し、この原料を焼成して得られたセメントクリンカーを用いる方法が挙げられる。このような方法によって、V含有量が特定の範囲であり、強度発現性(例えば材齢28日の強度発現性)を維持・向上させたセメント組成物を製造することができる。ここで「原料原単位」とは、セメントクリンカーを1トン製造するにあたり使用される各原料の質量(kg/t-クリンカー)をいう。なお、Vをある程度含有する原料であれば、上記の石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源以外であっても良い。
As a method of adjusting the raw material intensity of the cement clinker raw material in the step (A), the V content of each cement clinker raw material is measured, and the raw material intensity of the cement clinker raw material containing a large amount of V is mainly adjusted. The raw material basic unit is adjusted so that the V content of the composition is 0.0063 to 0.012 mass%. As a method of adjusting the raw material unit of the cement clinker raw material, specifically, a previously prepared cement composition is sampled, the V content in the cement composition is measured, and the V content in the cement composition is determined. A method using a cement clinker obtained by adjusting the raw material basic unit of the cement clinker raw material so that it becomes 0.0063 to 0.012 mass% and firing this raw material can be mentioned. By such a method, it is possible to produce a cement composition having a V content within a specific range and maintaining and improving strength development (for example, strength development on the age of 28 days). Here, the “raw material basic unit” means the mass (kg / t-clinker) of each raw material used for producing 1 ton of cement clinker. In addition, as long as it is a raw material which contains V to some extent, it may be other than said limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source.
セメントクリンカー原料の中でも、石炭灰、建設発生土、粘土、鉄源(銅からみ、高炉ダスト)等の使用量(原料原単位)が、セメント組成物のV含有量に与える影響が大きい。セメント組成物のV含有量を調整するには、V含有量に与える影響が大きい上記原料の原料原単位を調整してなるセメントクリンカーを用いて、セメント組成物を製造することが好ましい。
Among the cement clinker raw materials, the use amount (raw material basic unit) of coal ash, construction generated soil, clay, iron source (copper tangled, blast furnace dust), etc. has a great influence on the V content of the cement composition. In order to adjust the V content of the cement composition, it is preferable to produce the cement composition using a cement clinker obtained by adjusting the raw material basic unit of the raw material having a large influence on the V content.
本実施形態に係るセメント組成物の製造方法において、セメント組成物のSr含有量が0.035~0.08質量%となるように、セメントクリンカー原料の原料原単位を調整することが好ましい。また、セメント組成物の製造方法において、セメント組成物のMo含有量が0.0002~0.007質量%となるように、セメントクリンカー原料の原料原単位を調整することが好ましい。また、セメント組成物の製造方法において、セメント組成物のMgO含有量が1~3質量%となるようにセメントクリンカー原料の原料原単位を調整することが好ましい。さらに、セメント組成物の製造方法において、セメント組成物のR2O含有量が0.3~0.6質量%となるように、セメントクリンカー原料の原料原単位を調整することが好ましい。セメント組成物のSr含有量、Mo含有量、MgO含有量及びR2O含有量を調整するには、予め製造したセメント組成物をサンプリングして、セメント組成物中のSr含有量、Mo含有量、MgO含有量及びR2O含有量を測定し、セメント組成物中のSr含有量、Mo含有量、MgO含有量及びR2O含有量が特定量となるように、セメントクリンカー原料の原料原単位を調整し、この原料を焼成して得られたセメントクリンカーを用いる方法が挙げられる。
In the method for producing a cement composition according to the present embodiment, it is preferable to adjust the raw material unit of the cement clinker raw material so that the Sr content of the cement composition is 0.035 to 0.08 mass%. In the method for producing a cement composition, it is preferable to adjust the raw material unit of the cement clinker raw material so that the Mo content of the cement composition is 0.0002 to 0.007% by mass. In the method for producing a cement composition, it is preferable to adjust the raw material unit of the cement clinker raw material so that the MgO content of the cement composition is 1 to 3% by mass. Furthermore, in the method for producing a cement composition, it is preferable to adjust the raw material unit of the cement clinker raw material so that the R 2 O content of the cement composition is 0.3 to 0.6% by mass. To adjust the Sr content, Mo content, MgO content and R 2 O content of the cement composition, the cement composition prepared in advance is sampled, and the Sr content and Mo content in the cement composition are sampled. The MgO content and the R 2 O content are measured, and the raw material raw material of the cement clinker raw material is set so that the Sr content, Mo content, MgO content and R 2 O content in the cement composition are specific amounts. There is a method of using a cement clinker obtained by adjusting the unit and firing this raw material.
本実施形態に係るセメント組成物の製造方法において、セメントクリンカーのSO3含有量が0.2~1.2質量%となるようにセメントクリンカー原料の原料原単位を調整することが好ましい。
In the method for producing a cement composition according to the present embodiment, it is preferable to adjust the raw material unit of the cement clinker raw material so that the SO 3 content of the cement clinker is 0.2 to 1.2% by mass.
セメントクリンカー原料として、各原料中のV含有量、Sr含有量、Mo含有量、MgO含有量及びR2O含有量が、以下の範囲のものを使用することが好ましい。なお、各原料中のV含有量、Sr含有量、Mo含有量、MgO含有量及びR2O含有量は、各原料全体(100質量%)に対する含有割合(質量%)である。
As a cement clinker raw material, it is preferable to use those having the following ranges for the V content, Sr content, Mo content, MgO content and R 2 O content in each raw material. Incidentally, V content in the raw materials, Sr content, Mo content, MgO content and R 2 O content is content (wt%) for each entire raw material (100 wt%).
石灰石としては、V含有量が、好ましくは0.0001~0.002質量%、より好ましくは0.0001~0.0015質量%、更に好ましくは0.0002~0.0012質量%、特に好ましくは0.0002~0.001質量%のものを使用する。Sr含有量が、好ましくは0.005~0.07質量%、より好ましくは0.005~0.06質量%、更に好ましくは0.01~0.06質量%、特に好ましくは0.015~0.055質量のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.001質量%以下、更に好ましくは0.0005質量%以下、特に好ましくは0.0003質量%以下のものを使用する。MgO含有量が、好ましくは0.1~1.5質量%以下、より好ましくは0.2~1.3質量%以下、更に好ましくは0.25~1.1質量%以下、特に好ましくは0.3~1.0質量%のものを使用する。R2O含有量が、好ましくは0.05質量%以下、より好ましくは0.001~0.04質量%、更に好ましくは0.005~0.03質量%、特に好ましくは0.005~0.02質量%のものを使用する。
As the limestone, the V content is preferably 0.0001 to 0.002% by mass, more preferably 0.0001 to 0.0015% by mass, still more preferably 0.0002 to 0.0012% by mass, particularly preferably. 0.0002 to 0.001% by mass is used. The Sr content is preferably 0.005 to 0.07% by mass, more preferably 0.005 to 0.06% by mass, still more preferably 0.01 to 0.06% by mass, and particularly preferably 0.015 to 0.055 mass is used. The Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less. The MgO content is preferably 0.1 to 1.5% by mass or less, more preferably 0.2 to 1.3% by mass or less, still more preferably 0.25 to 1.1% by mass or less, particularly preferably 0. Use 3 to 1.0% by mass. The R 2 O content is preferably 0.05% by mass or less, more preferably 0.001 to 0.04% by mass, still more preferably 0.005 to 0.03% by mass, and particularly preferably 0.005 to 0%. 0.02% by mass is used.
硅石としては、V含有量が、好ましくは0.001~0.01質量%、より好ましくは0.001~0.008質量%、更に好ましくは0.002~0.007質量%、特に好ましくは0.003~0.006質量%のものを使用する。Sr含有量が、好ましくは0.001~0.04質量%、より好ましくは0.001~0.03質量%、更に好ましくは0.001~0.025質量%、特に好ましくは0.001~0.02質量%のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.001質量%以下、更に好ましくは0.0005質量%以下、特に好ましくは0.0004質量%以下のものを使用する。MgO有量が、好ましくは0.05~1.0質量%、より好ましくは0.1~0.8質量%、更に好ましくは0.1~0.6質量%、特に好ましく0.1~0.5質量%のものを使用する。R2O含有量が、好ましくは0.1~4.0質量%、より好ましくは0.1~3.0質量%、更に好ましくは0.3~2.5質量%、特に好ましくは0.3~2.0質量%のものを使用する。
As the meteorite, the V content is preferably 0.001 to 0.01% by mass, more preferably 0.001 to 0.008% by mass, still more preferably 0.002 to 0.007% by mass, particularly preferably. 0.003 to 0.006% by mass is used. The Sr content is preferably 0.001 to 0.04% by mass, more preferably 0.001 to 0.03% by mass, still more preferably 0.001 to 0.025% by mass, and particularly preferably 0.001 to 0.04% by mass. Use 0.02 mass%. The Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0004% by mass or less. The MgO content is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.8% by mass, still more preferably 0.1 to 0.6% by mass, particularly preferably 0.1 to 0% by mass. Use 5% by mass. The R 2 O content is preferably 0.1 to 4.0% by mass, more preferably 0.1 to 3.0% by mass, still more preferably 0.3 to 2.5% by mass, and particularly preferably 0.8. 3 to 2.0% by mass is used.
石炭灰としては、V含有量が、好ましくは0.01~0.1質量%、より好ましくは0.01~0.08質量%、更に好ましくは0.015~0.07質量%、特に好ましくは0.035~0.06質量%のものを使用する。なお、セメント組成物中のV含有量を制御するには、出来るだけV含有量の多い石炭灰を選択して用いることが好ましい。Sr含有量が、好ましくは0.02~0.2質量%、より好ましくは0.02~0.15質量%、更に好ましくは0.02~0.13質量%、特に好ましくは0.02~0.12質量%のものを使用する。Mo含有量が、好ましくは0.004質量%以下、より好ましくは0.003質量%以下、更に好ましくは0.002質量%以下、特に好ましくは0.0015質量%以下のものを使用する。MgO有量が、好ましくは0.2~3.0質量%、より好ましくは0.4~3.0質量%、更に好ましくは0.4~2.5質量%、特に好ましくは0.4~2.3質量%のものを使用する。R2O含有量が、好ましくは0.1~3.5質量%、より好ましくは0.2~3.0質量%、更に好ましくは0.3~2.5質量%、特に好ましくは0.5~2.0質量%のものを使用する。
The coal ash has a V content of preferably 0.01 to 0.1% by mass, more preferably 0.01 to 0.08% by mass, still more preferably 0.015 to 0.07% by mass, particularly preferably. Is 0.035 to 0.06% by mass. In addition, in order to control V content in a cement composition, it is preferable to select and use coal ash with as much V content as possible. The Sr content is preferably 0.02 to 0.2% by mass, more preferably 0.02 to 0.15% by mass, still more preferably 0.02 to 0.13% by mass, and particularly preferably 0.02 to 0.2% by mass. A 0.12 mass% thing is used. The Mo content is preferably 0.004% by mass or less, more preferably 0.003% by mass or less, still more preferably 0.002% by mass or less, and particularly preferably 0.0015% by mass or less. The MgO content is preferably 0.2 to 3.0% by mass, more preferably 0.4 to 3.0% by mass, still more preferably 0.4 to 2.5% by mass, and particularly preferably 0.4 to 3.0% by mass. 2.3% by mass is used. The R 2 O content is preferably 0.1 to 3.5% by mass, more preferably 0.2 to 3.0% by mass, still more preferably 0.3 to 2.5% by mass, and particularly preferably 0. 5 to 2.0% by mass is used.
高炉スラグとしては、V含有量が、好ましくは0.001~0.02質量%、より好ましくは0.001~0.015質量%、更に好ましくは0.003~0.012質量%、特に好ましくは0.004~0.01質量%のものを使用する。Sr含有量が、好ましくは0.02~0.08質量%、より好ましくは0.02~0.07質量%、更に好ましくは0.02~0.06質量%、特に好ましくは0.02~0.05質量%以下のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.001質量%以下、更に好ましくは0.0005質量%以下、特に好ましくは0.0003質量%以下のものを使用する。MgO有量が、好ましくは3.0~10質量%、より好ましくは3.0~8.0質量%、更に好ましくは3.0~7.0質量%、特に好ましくは4.0~7.0質量%のものを使用する。R2O含有量が、好ましくは0.02~1.0質量%、より好ましくは0.04~0.8質量%、更に好ましくは0.06~0.6質量%、特に好ましくは0.08~0.5質量%のものを使用する。
As the blast furnace slag, the V content is preferably 0.001 to 0.02% by mass, more preferably 0.001 to 0.015% by mass, still more preferably 0.003 to 0.012% by mass, and particularly preferably. Is 0.004 to 0.01% by mass. The Sr content is preferably 0.02 to 0.08% by mass, more preferably 0.02 to 0.07% by mass, still more preferably 0.02 to 0.06% by mass, and particularly preferably 0.02 to 0.08% by mass. Use 0.05 mass% or less. The Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less. The MgO content is preferably 3.0 to 10% by mass, more preferably 3.0 to 8.0% by mass, still more preferably 3.0 to 7.0% by mass, and particularly preferably 4.0 to 7.% by mass. Use 0% by weight. The R 2 O content is preferably 0.02 to 1.0% by mass, more preferably 0.04 to 0.8% by mass, still more preferably 0.06 to 0.6% by mass, and particularly preferably 0.8. Use the one of 08 to 0.5% by mass.
粘土としては、V含有量が、好ましくは0.005~0.05質量%、より好ましくは0.005~0.03質量%、更に好ましくは0.01~0.025質量%、特に好ましくは0.015~0.02質量%のものを使用する。Sr含有量が、好ましくは0.001~0.03質量%、より好ましくは0.003~0.025質量%、更に好ましくは0.003~0.02質量%、特に好ましくは0.004~0.015質量%以下のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.001質量%以下、更に好ましくは0.0005質量%以下、特に好ましくは0.0004質量%以下のものを使用する。MgO有量が、好ましくは0.3~6.0質量%、より好ましくは0.3~5.0質量%、更に好ましくは0.3~4.0質量%以下、特に好ましくは0.5~4.0質量%のものを使用する。粘土としては、R2O含有量が、好ましくは0.5~4.0質量%、より好ましくは0.7~3.5質量%、更に好ましくは1.0~3.0質量%、特に好ましくは1.2~2.8質量%のものを使用する。
As the clay, the V content is preferably 0.005 to 0.05% by mass, more preferably 0.005 to 0.03% by mass, still more preferably 0.01 to 0.025% by mass, and particularly preferably. Use 0.015-0.02 mass%. The Sr content is preferably 0.001 to 0.03% by mass, more preferably 0.003 to 0.025% by mass, still more preferably 0.003 to 0.02% by mass, and particularly preferably 0.004 to 0.04% by mass. A thing of 0.015 mass% or less is used. The Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0004% by mass or less. The MgO content is preferably 0.3 to 6.0% by mass, more preferably 0.3 to 5.0% by mass, still more preferably 0.3 to 4.0% by mass, and particularly preferably 0.5%. Use 4.0% by mass. As the clay, the R 2 O content is preferably 0.5 to 4.0% by mass, more preferably 0.7 to 3.5% by mass, still more preferably 1.0 to 3.0% by mass, Preferably 1.2 to 2.8% by mass is used.
建設発生土としては、V含有量が、好ましくは0.0001~0.03質量%、より好ましくは0.0001~0.025質量%、更に好ましくは0.005~0.02質量%、特に好ましくは0.007~0.02質量%のものを使用する。Sr含有量が、好ましくは0.01~0.4質量%、より好ましくは0.01~0.3質量%、更に好ましくは0.01~0.2質量%、特に好ましくは0.015~0.1質量%のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.001質量%以下、更に好ましくは0.0005質量%以下、特に好ましくは0.0004質量%以下のものを使用する。MgO有量が、好ましくは0.5~6.0質量%、より好ましくは0.5~5.5質量%、更に好ましくは1.0~5.0質量%、特に好ましくは1.0~4.0質量%のものを使用する。R2O含有量が、好ましくは0.5~4.5質量%、より好ましくは0.7~4.0質量%、更に好ましくは1.0~3.5質量%、特に好ましくは1.2~3.0質量%のものを使用する。
As construction-generated soil, the V content is preferably 0.0001 to 0.03% by mass, more preferably 0.0001 to 0.025% by mass, still more preferably 0.005 to 0.02% by mass, and particularly Preferably, 0.007 to 0.02 mass% is used. The Sr content is preferably 0.01 to 0.4% by mass, more preferably 0.01 to 0.3% by mass, still more preferably 0.01 to 0.2% by mass, particularly preferably 0.015 to Use 0.1% by mass. The Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0004% by mass or less. The MgO content is preferably 0.5 to 6.0% by mass, more preferably 0.5 to 5.5% by mass, still more preferably 1.0 to 5.0% by mass, and particularly preferably 1.0 to 5.0% by mass. Use 4.0% by weight. The R 2 O content is preferably 0.5 to 4.5% by mass, more preferably 0.7 to 4.0% by mass, still more preferably 1.0 to 3.5% by mass, and particularly preferably 1. 2 to 3.0% by mass is used.
下水汚泥としては、V含有量が、好ましくは0.0001~0.01質量%、より好ましくは0.0001~0.007質量%、更に好ましくは0.0005~0.005質量%、特に好ましくは0.0007~0.004質量%のものを使用する。Sr含有量が、好ましくは0.001~0.1質量%、より好ましくは0.001~0.07質量%、更に好ましくは0.001~0.05質量%、特に好ましくは0.001~0.04質量%のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.0015質量%以下、更に好ましくは0.0012質量%以下、0.0011質量%以下のものを使用する。MgO有量が、好ましくは0.05~4.0質量%、より好ましくは0.1~4.0質量%、更に好ましくは0.1~3.0質量%、特に好ましくは0.1~2.5質量%のものを使用する。R2O含有量が、好ましくは0.4~3.5質量%、より好ましくは0.6~3.0質量%、更に好ましくは0.8~2.5質量%、特に好ましくは1.0~2.0質量%のものを使用する。
The sewage sludge has a V content of preferably 0.0001 to 0.01% by mass, more preferably 0.0001 to 0.007% by mass, still more preferably 0.0005 to 0.005% by mass, and particularly preferably. Is 0.0007 to 0.004% by mass. The Sr content is preferably 0.001 to 0.1% by mass, more preferably 0.001 to 0.07% by mass, still more preferably 0.001 to 0.05% by mass, and particularly preferably 0.001 to Use 0.04 mass%. The Mo content is preferably 0.002% by mass or less, more preferably 0.0015% by mass or less, still more preferably 0.0012% by mass or less, and 0.0011% by mass or less. The MgO content is preferably 0.05 to 4.0% by mass, more preferably 0.1 to 4.0% by mass, still more preferably 0.1 to 3.0% by mass, and particularly preferably 0.1 to 4.0% by mass. Use 2.5% by mass. The R 2 O content is preferably 0.4 to 3.5% by mass, more preferably 0.6 to 3.0% by mass, still more preferably 0.8 to 2.5% by mass, and particularly preferably 1. Use 0 to 2.0% by mass.
ハイドロケーキとしては、V含有量が、好ましくは0.001~0.1質量%、より好ましくは0.01~0.08質量%、更に好ましくは0.01~0.06質量%、特に好ましくは0.01~0.05質量%のものを使用する。Sr含有量が、好ましくは0.1~0.8質量%、より好ましくは0.1~0.7質量%、更に好ましくは0.1~0.6質量%、特に好ましくは0.1~0.5質量%のものを使用する。Mo含有量が、好ましくは0.002質量%以下、より好ましくは0.001質量%以下、更に好ましくは0.0005質量%以下、特に好ましくは0.0003質量%以下のものを使用する。MgO有量が、好ましくは5~30質量%、より好ましくは5~25質量%、更に好ましくは10~25質量%、特に好ましくは10~20質量%のものを使用する。R2O含有量が、好ましくは0.02~1.5質量%、より好ましくは0.04~1.2質量%、更に好ましくは0.06~1.0質量%、特に好ましくは0.08~0.8質量%のものを使用する。
The hydrocake has a V content of preferably 0.001 to 0.1% by mass, more preferably 0.01 to 0.08% by mass, still more preferably 0.01 to 0.06% by mass, particularly preferably. Is 0.01 to 0.05% by mass. The Sr content is preferably 0.1 to 0.8% by mass, more preferably 0.1 to 0.7% by mass, still more preferably 0.1 to 0.6% by mass, and particularly preferably 0.1 to 0.7% by mass. Use 0.5% by weight. The Mo content is preferably 0.002% by mass or less, more preferably 0.001% by mass or less, still more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less. The MgO content is preferably 5 to 30% by mass, more preferably 5 to 25% by mass, still more preferably 10 to 25% by mass, and particularly preferably 10 to 20% by mass. The R 2 O content is preferably 0.02 to 1.5% by mass, more preferably 0.04 to 1.2% by mass, still more preferably 0.06 to 1.0% by mass, and particularly preferably 0.8. The one with 08 to 0.8% by mass is used.
鉄源である銅からみとしては、V含有量が、好ましくは0.001~0.05質量%、より好ましくは0.003~0.03質量%、更に好ましくは0.005~0.03質量%、0.005~0.02質量%のものを使用する。Sr含有量が、好ましくは0.005~0.05質量%、より好ましくは0.005~0.04質量%、更に好ましくは0.005~0.03質量%、特に好ましくは0.005~0.02質量%のものを使用する。Mo含有量が、好ましくは0.0002~0.8質量%、より好ましくは0.0002~0.6質量%、更に好ましくは0.0002~0.4質量%、特に好ましくは0.0002~0.3質量%のものを使用する。MgO有量が、好ましくは0.5~3.0質量%、より好ましくは0.5~2.5質量%、更に好ましくは0.6~2.0質量%、特に好ましくは0.7~1.5質量%のものを使用する。R2O含有量が、好ましくは0.04~2質量%、より好ましくは0.06~1.8質量%、更に好ましくは0.08~1.6質量%、特に好ましくは1~1.4質量%のものを使用する。
From the viewpoint of copper as an iron source, the V content is preferably 0.001 to 0.05% by mass, more preferably 0.003 to 0.03% by mass, and still more preferably 0.005 to 0.03% by mass. %, 0.005 to 0.02 mass%. The Sr content is preferably 0.005 to 0.05% by mass, more preferably 0.005 to 0.04% by mass, still more preferably 0.005 to 0.03% by mass, and particularly preferably 0.005 to 0.05% by mass. Use 0.02 mass%. The Mo content is preferably 0.0002 to 0.8% by mass, more preferably 0.0002 to 0.6% by mass, still more preferably 0.0002 to 0.4% by mass, and particularly preferably 0.0002 to Use 0.3% by mass. The MgO content is preferably 0.5 to 3.0% by mass, more preferably 0.5 to 2.5% by mass, still more preferably 0.6 to 2.0% by mass, and particularly preferably 0.7 to 3.0% by mass. Use 1.5% by mass. The R 2 O content is preferably 0.04 to 2% by mass, more preferably 0.06 to 1.8% by mass, still more preferably 0.08 to 1.6% by mass, and particularly preferably 1 to 1.% by mass. Use 4% by weight.
鉄源である高炉ダストとしては、V含有量が、好ましくは0.001~0.03質量%、より好ましくは0.003~0.02質量%、更に好ましくは0.005~0.02質量%、特に好ましくは0.008~0.015質量%のものを使用する。Sr含有量が、好ましくは0.001~0.03質量%、より好ましくは0.001~0.02質量%、更に好ましくは0.002~0.015質量%、特に好ましくは0.002~0.01質量%のものを使用する。Mo含有量が、好ましくは0.004質量%以下、より好ましくは0.003質量%以下、更に好ましくは0.002質量%以下、特に好ましくは0.001質量%以下のものを使用する。MgO有量が、好ましくは0.1~3.0質量%、より好ましくは0.15~2.0質量%、更に好ましくは0.15~1.5質量%、特に好ましくは0.2~1.5質量%のものを使用する。R2O含有量が、好ましくは0.002~1.0質量%、より好ましくは0.004~0.8質量%、更に好ましくは0.006~0.6質量%、特に好ましくは0.008~0.4質量%のものを使用する。
As the blast furnace dust which is an iron source, the V content is preferably 0.001 to 0.03% by mass, more preferably 0.003 to 0.02% by mass, and still more preferably 0.005 to 0.02% by mass. %, Particularly preferably 0.008 to 0.015% by mass. The Sr content is preferably 0.001 to 0.03% by mass, more preferably 0.001 to 0.02% by mass, still more preferably 0.002 to 0.015% by mass, and particularly preferably 0.002 to 0.02% by mass. Use 0.01% by weight. The Mo content is preferably 0.004% by mass or less, more preferably 0.003% by mass or less, still more preferably 0.002% by mass or less, and particularly preferably 0.001% by mass or less. The MgO content is preferably 0.1 to 3.0% by mass, more preferably 0.15 to 2.0% by mass, still more preferably 0.15 to 1.5% by mass, particularly preferably 0.2 to Use 1.5% by mass. The R 2 O content is preferably 0.002 to 1.0% by mass, more preferably 0.004 to 0.8% by mass, still more preferably 0.006 to 0.6% by mass, and particularly preferably 0.8. Use 008 to 0.4 mass%.
鉄源として、V含有量が好ましくは0.05~0.5質量%、より好ましくは0.08~0.5質量%、更に好ましくは0.1~0.4質量%である、転炉滓、脱鉄スラグ等を、セメント組成物中のV含有量の制御原料として選択して用いることもできる。
As an iron source, the V content is preferably 0.05 to 0.5% by mass, more preferably 0.08 to 0.5% by mass, and still more preferably 0.1 to 0.4% by mass. Soot, deiron slag, or the like can be selected and used as a raw material for controlling the V content in the cement composition.
セメントクリンカーの製造は、SP方式(多段サイクロン予熱方式)又はNSP方式(仮焼炉を併設した多段サイクロン予熱方式)等の既存のセメント製造設備を用いて製造することができる。
The cement clinker can be manufactured using an existing cement manufacturing facility such as an SP system (multistage cyclone preheating system) or an NSP system (multistage cyclone preheating system equipped with a calcining furnace).
なお、工業スケールの製造においては、例えば、セメントクリンカー焼成時に品質管理用のサンプルを採取し、このサンプルのV含有量を測定して、各原料中のV含有量に基づいて、各原料の使用比率(原料原単位)を調整し、セメントクリンカー中のV含有量が0.0063~0.012質量%となるようにする。
In industrial scale production, for example, a quality control sample is collected during cement clinker firing, the V content of this sample is measured, and the use of each raw material is based on the V content in each raw material. The ratio (raw material basic unit) is adjusted so that the V content in the cement clinker is 0.0063 to 0.012% by mass.
次に、本発明の工程(A)(焼成工程)の一実施形態として、NSP方式の既存のセメント製造設備を用いて、セメントクリンカーを製造する例を説明する。
Next, as an embodiment of the step (A) (firing step) of the present invention, an example in which a cement clinker is manufactured using an existing cement manufacturing facility of the NSP method will be described.
セメントクリンカーの各原料の混合方法は、特に限定されないが、例えば原料粉砕ミル等で粉砕混合し、更にはブレンディングサイロで混合することが好ましい。
The mixing method of each raw material of the cement clinker is not particularly limited, but it is preferable to pulverize and mix with a raw material pulverization mill or the like, and further to mix with a blending silo.
粉砕混合されたセメントクリンカー原料は、さらに既存の設備であるサスペンションプレヒータ及びロータリーキルンを用いて焼成することができる。セメントクリンカーの焼成温度、焼成時間等の焼成条件を調整することによっても、V含有量が0.0063~0.012質量%であるセメントクリンカーを製造することができる。
The cement clinker raw material that has been pulverized and mixed can be further fired using a suspension preheater and a rotary kiln, which are existing equipment. A cement clinker having a V content of 0.0063 to 0.012% by mass can also be produced by adjusting the firing conditions such as the firing temperature and firing time of the cement clinker.
セメントクリンカーの焼成温度は、特に限定されないが、NSP方式のセメント製造設備を用いた場合には、ロータリーキルンの出口付近におけるセメントクリンカーの温度が、好ましくは800~1700℃、より好ましくは900~1600℃、更に好ましくは1000~1500℃である。焼成時間は、20分間~2時間、より好ましくは30分間~2時間、更に好ましくは45分~1.5時間である。
The firing temperature of the cement clinker is not particularly limited, but when an NSP type cement production facility is used, the temperature of the cement clinker in the vicinity of the rotary kiln outlet is preferably 800 to 1700 ° C, more preferably 900 to 1600 ° C. More preferably, it is 1000 to 1500 ° C. The firing time is 20 minutes to 2 hours, more preferably 30 minutes to 2 hours, and still more preferably 45 minutes to 1.5 hours.
焼成後、得られたセメントクリンカーは、ロータリーキルンの下流側に設けられたクリンカークーラーによって、例えば100~200℃程度まで冷却されることが好ましい。冷却速度は、好ましくは10~60℃/分であり、より好ましくは15~45℃/分であり、更に好ましくは15~30℃/分である。冷却速度が10~60℃/分の範囲であると、優れた強度発現性を有するモルタルやコンクリートの製造が可能となるセメント組成物が得られるセメントクリンカーを製造することができる。
After calcination, the obtained cement clinker is preferably cooled to about 100 to 200 ° C., for example, by a clinker cooler provided on the downstream side of the rotary kiln. The cooling rate is preferably 10 to 60 ° C./min, more preferably 15 to 45 ° C./min, and further preferably 15 to 30 ° C./min. When the cooling rate is in the range of 10 to 60 ° C./min, it is possible to produce a cement clinker from which a cement composition capable of producing mortar and concrete having excellent strength development properties can be obtained.
次に、本発明の工程(B)(粉砕工程)の一実施形態として、セメントクリンカーと石膏と混合材とを粉砕する工程を説明する。
Next, as an embodiment of the step (B) (pulverization step) of the present invention, a step of pulverizing the cement clinker, gypsum and the mixed material will be described.
セメント組成物は、V含有量が0.0063~0.012質量%であるセメントクリンカーと石膏とを混合して粉砕することによって製造することができる。石膏は、JIS R 9151「セメント用天然せっこう」に規定される品質を満足することが望ましく、具体的には、二水石膏、半水石膏、不溶性無水石膏が好適に用いられる。
The cement composition can be produced by mixing and pulverizing a cement clinker having a V content of 0.0063 to 0.012% by mass and gypsum. The gypsum desirably satisfies the quality specified in JIS R 9151 “Natural gypsum for cement”. Specifically, dihydrate gypsum, hemihydrate gypsum, and insoluble anhydrous gypsum are preferably used.
工程(B)(粉砕工程)において、V含有量が0.0063~0.012質量%であるセメントクリンカーに対して、セメント組成物中のSO3含有量が1.6~2.5質量%、より好ましくは1.7~2.5質量%、更に好ましくは1.8~2.48質量%となるように石膏を配合して粉砕することが好ましい。粉砕方法としては、特に制限されないが、ボールミル等の粉砕機、セパレータ等の分級機を用いる方法が挙げられる。なお、セメントクリンカーと石膏とを含有するセメント組成物では、セメントクリンカーの含有量がセメント組成物の全体質量に対して95~97質量%であり且つ石膏の含有量が3~5質量%であることが好ましい。
In the step (B) (grinding step), the SO 3 content in the cement composition is 1.6 to 2.5% by mass with respect to the cement clinker having a V content of 0.0063 to 0.012% by mass. It is preferable to mix and grind gypsum so that it is more preferably 1.7 to 2.5% by mass, and still more preferably 1.8 to 2.48% by mass. Although it does not restrict | limit especially as a grinding | pulverization method, The method of using classifiers, such as grinders, such as a ball mill, and a separator, is mentioned. In the cement composition containing cement clinker and gypsum, the cement clinker content is 95 to 97% by mass with respect to the total mass of the cement composition, and the gypsum content is 3 to 5% by mass. It is preferable.
粉砕工程(B)において、セメント組成物は、さらに混合材を含有してもよい。混合材としては、JIS R 5211「高炉セメント」で規定される高炉スラグ、JIS R 5212「シリカセメント」で規定されるシリカ質混合材、JIS A 6201「コンクリート用フライアッシュ」で規定されるフライアッシュ、石灰石微粉末を利用することができる。混合材の合計含有割合(質量%)は、セメント組成物の全体質量に対して5質量%以下であることが好ましい。
In the pulverization step (B), the cement composition may further contain a mixed material. As the mixed material, blast furnace slag specified by JIS R 5211 “Blast Furnace Cement”, siliceous mixed material specified by JIS R 5212 “Silica Cement”, fly ash specified by JIS A 6201 “Fly Ash for Concrete”. Limestone fine powder can be used. The total content (% by mass) of the mixed material is preferably 5% by mass or less with respect to the total mass of the cement composition.
本実施形態に係るセメント組成物のブレーン比表面積は、好ましくは2800~4000cm2/gである。ブレーン比表面積が上記範囲内であると、更に優れた強度発現性を有するモルタルやコンクリートの製造が可能となる。セメント組成物のブレーン比表面積は、より好ましくは3000~3800cm2/gであり、更に好ましくは3000~3500cm2/gである。
The brane specific surface area of the cement composition according to this embodiment is preferably 2800 to 4000 cm 2 / g. When the brain specific surface area is within the above range, it is possible to produce mortar or concrete having further excellent strength development. The brane specific surface area of the cement composition is more preferably 3000 to 3800 cm 2 / g, and still more preferably 3000 to 3500 cm 2 / g.
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1~4、比較例1)
[セメントクリンカーの原料]
セメントクリンカー原料としては、石灰石、珪石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト)のV含有量を予め測定し、上記原料の原料原単位を調整して、セメントクリンカーのV含有量が0.0063~0.012質量%となるように調整した。更に、Sr含有量が0.035~0.08質量%、Mo含有量が0.0002~0.007質量%、MgO含有量が1~3質量%、R2O含有量が0.3~0.6質量%であるセメントクリンカーが得られるように各原料の使用比率(原料原単位)を調整した。また、セメント組成物のSO3量を調整するために、二水石膏を使用した。実施例及び比較例で使用した石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト)のV含有量、Sr含有量、Mo含有量、MgO含有量及びR2O含有量を表1に記載する。なお、以下に示す化学成分および原料原単位は、ドライベース(水分を含まない状態)の原料原単位である。また、表1中、「<0.00025」は、Mo含有量が0.00025質量%以下であることを示す。 (Examples 1 to 4, Comparative Example 1)
[Cement clinker ingredients]
As cement clinker raw material, the V content of limestone, silica stone, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust) is measured in advance, and the raw material of the above raw material The basic unit was adjusted so that the V content of the cement clinker was 0.0063 to 0.012% by mass. Further, the Sr content is 0.035 to 0.08 mass%, the Mo content is 0.0002 to 0.007 mass%, the MgO content is 1 to 3 mass%, and the R 2 O content is 0.3 to 0.3 mass%. The use ratio (raw material basic unit) of each raw material was adjusted so that a cement clinker of 0.6% by mass was obtained. Also, dihydrate gypsum was used to adjust the amount of SO 3 in the cement composition. Limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust) used in Examples and Comparative Examples, Sr content, Mo content The amounts, MgO content and R 2 O content are listed in Table 1. The chemical components and raw material basic units shown below are dry base (water-free state) raw material basic units. In Table 1, “<0.00025” indicates that the Mo content is 0.00025% by mass or less.
[セメントクリンカーの原料]
セメントクリンカー原料としては、石灰石、珪石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト)のV含有量を予め測定し、上記原料の原料原単位を調整して、セメントクリンカーのV含有量が0.0063~0.012質量%となるように調整した。更に、Sr含有量が0.035~0.08質量%、Mo含有量が0.0002~0.007質量%、MgO含有量が1~3質量%、R2O含有量が0.3~0.6質量%であるセメントクリンカーが得られるように各原料の使用比率(原料原単位)を調整した。また、セメント組成物のSO3量を調整するために、二水石膏を使用した。実施例及び比較例で使用した石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト)のV含有量、Sr含有量、Mo含有量、MgO含有量及びR2O含有量を表1に記載する。なお、以下に示す化学成分および原料原単位は、ドライベース(水分を含まない状態)の原料原単位である。また、表1中、「<0.00025」は、Mo含有量が0.00025質量%以下であることを示す。 (Examples 1 to 4, Comparative Example 1)
[Cement clinker ingredients]
As cement clinker raw material, the V content of limestone, silica stone, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust) is measured in advance, and the raw material of the above raw material The basic unit was adjusted so that the V content of the cement clinker was 0.0063 to 0.012% by mass. Further, the Sr content is 0.035 to 0.08 mass%, the Mo content is 0.0002 to 0.007 mass%, the MgO content is 1 to 3 mass%, and the R 2 O content is 0.3 to 0.3 mass%. The use ratio (raw material basic unit) of each raw material was adjusted so that a cement clinker of 0.6% by mass was obtained. Also, dihydrate gypsum was used to adjust the amount of SO 3 in the cement composition. Limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust) used in Examples and Comparative Examples, Sr content, Mo content The amounts, MgO content and R 2 O content are listed in Table 1. The chemical components and raw material basic units shown below are dry base (water-free state) raw material basic units. In Table 1, “<0.00025” indicates that the Mo content is 0.00025% by mass or less.
原料中のV、Sr、Mo、MgO及びR2O含有量は、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した。
The contents of V, Sr, Mo, MgO and R 2 O in the raw materials are determined by the Cement Association standard test method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”. It measured according to.
[セメントクリンカーの原料]
セメントクリンカー原料として使用した各原料の原単位は、石灰石800~1300kg/t-クリンカー、珪石20~150kg/t-クリンカー、石炭灰10~250kg/t-クリンカー、粘土0~100kg/t-クリンカー、高炉スラグ0~100kg/t-クリンカー、建設発生土20~150kg/t-クリンカー、下水汚泥0~100kg/t-クリンカー、ハイドロケーキ0~100kg/t-クリンカー及び鉄源30~80kg/t-クリンカー(銅からみ5~50kg/t-クリンカー、高炉ダスト25~55kg/t-クリンカー)であった。 [Cement clinker ingredients]
The basic unit of each raw material used as a cement clinker raw material was limestone 800-1300 kg / t-clinker, silica 20-150 kg / t-clinker, coal ash 10-250 kg / t-clinker, clay 0-100 kg / t-clinker, Blast furnace slag 0-100 kg / t-clinker, construction generated soil 20-150 kg / t-clinker, sewage sludge 0-100 kg / t-clinker, hydrocake 0-100 kg / t-clinker and iron source 30-80 kg / t-clinker (5 to 50 kg / t-clinker from copper tangled, 25 to 55 kg / t-clinker from blast furnace dust).
セメントクリンカー原料として使用した各原料の原単位は、石灰石800~1300kg/t-クリンカー、珪石20~150kg/t-クリンカー、石炭灰10~250kg/t-クリンカー、粘土0~100kg/t-クリンカー、高炉スラグ0~100kg/t-クリンカー、建設発生土20~150kg/t-クリンカー、下水汚泥0~100kg/t-クリンカー、ハイドロケーキ0~100kg/t-クリンカー及び鉄源30~80kg/t-クリンカー(銅からみ5~50kg/t-クリンカー、高炉ダスト25~55kg/t-クリンカー)であった。 [Cement clinker ingredients]
The basic unit of each raw material used as a cement clinker raw material was limestone 800-1300 kg / t-clinker, silica 20-150 kg / t-clinker, coal ash 10-250 kg / t-clinker, clay 0-100 kg / t-clinker, Blast furnace slag 0-100 kg / t-clinker, construction generated soil 20-150 kg / t-clinker, sewage sludge 0-100 kg / t-clinker, hydrocake 0-100 kg / t-clinker and iron source 30-80 kg / t-clinker (5 to 50 kg / t-clinker from copper tangled, 25 to 55 kg / t-clinker from blast furnace dust).
[セメントクリンカーの製造]
上記セメントクリンカー原料を調合し、調合した原料をNSPキルンで最高温度1200~1500℃で焼成し、セメントクリンカーを製造した。NSPキルン出口付近におけるセメントクリンカーの温度は1000~1500℃であった。このセメントクリンカーを、ロータリーキルンの下流側に設けられたクリンカークーラーで、1000~1400℃から100~200℃まで、10~60℃/分の冷却速度で冷却した。 [Manufacture of cement clinker]
The cement clinker raw material was prepared, and the prepared raw material was baked in an NSP kiln at a maximum temperature of 1200 to 1500 ° C. to produce a cement clinker. The temperature of the cement clinker in the vicinity of the NSP kiln outlet was 1000-1500 ° C. The cement clinker was cooled from 1000-1400 ° C. to 100-200 ° C. at a cooling rate of 10-60 ° C./min with a clinker cooler provided on the downstream side of the rotary kiln.
上記セメントクリンカー原料を調合し、調合した原料をNSPキルンで最高温度1200~1500℃で焼成し、セメントクリンカーを製造した。NSPキルン出口付近におけるセメントクリンカーの温度は1000~1500℃であった。このセメントクリンカーを、ロータリーキルンの下流側に設けられたクリンカークーラーで、1000~1400℃から100~200℃まで、10~60℃/分の冷却速度で冷却した。 [Manufacture of cement clinker]
The cement clinker raw material was prepared, and the prepared raw material was baked in an NSP kiln at a maximum temperature of 1200 to 1500 ° C. to produce a cement clinker. The temperature of the cement clinker in the vicinity of the NSP kiln outlet was 1000-1500 ° C. The cement clinker was cooled from 1000-1400 ° C. to 100-200 ° C. at a cooling rate of 10-60 ° C./min with a clinker cooler provided on the downstream side of the rotary kiln.
得られたセメントクリンカーに二水石膏をセメント組成物中のSO3含有量が2質量%となるように配合し、さらに混合材(石灰石、高炉スラグ)を石灰石4質量%と高炉スラグ1質量%で添加し、実機ミルでブレーン比表面積が3100~3400cm2/gになるように粉砕し、セメント組成物を得た。
The obtained cement clinker is blended with dihydrate gypsum so that the content of SO 3 in the cement composition is 2% by mass, and further mixed material (limestone, blast furnace slag) is 4% by mass of limestone and 1% by mass of blast furnace slag. And pulverized with an actual mill so that the specific surface area of the brain was 3100 to 3400 cm 2 / g to obtain a cement composition.
[セメント組成物の化学成分]
得られたセメント組成物中のSiO2、Al2O3、Fe2O3、CaO、MgO、R2O及びSO3とクリンカー中のSO3について、全体質量に対する含有割合(質量%)を測定した。これらの含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定した。また、セメント組成物中のSr含有量を、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した結果を表2に示す。 [Chemical composition of cement composition]
SiO 2 of the resulting cement composition, Al 2 O 3, Fe 2 O 3, CaO, MgO, for R 2 O and SO 3 and SO 3 in the clinker, determine the content to the total mass ratio (wt%) did. These content ratios were measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. In addition, the Sr content in the cement composition was measured according to the Cement Association Standard Test Method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”. Is shown in Table 2.
得られたセメント組成物中のSiO2、Al2O3、Fe2O3、CaO、MgO、R2O及びSO3とクリンカー中のSO3について、全体質量に対する含有割合(質量%)を測定した。これらの含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定した。また、セメント組成物中のSr含有量を、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した結果を表2に示す。 [Chemical composition of cement composition]
SiO 2 of the resulting cement composition, Al 2 O 3, Fe 2 O 3, CaO, MgO, for R 2 O and SO 3 and SO 3 in the clinker, determine the content to the total mass ratio (wt%) did. These content ratios were measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”. In addition, the Sr content in the cement composition was measured according to the Cement Association Standard Test Method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”. Is shown in Table 2.
[セメント組成物の鉱物組成及び物性]
<セメント組成物の鉱物組成>
得られたセメント組成物の鉱物組成(C3S量、C2S量、C3A量及びC4AF量)を、ボーグ式[1]~[4]に基づいて測定した。結果を表3に示す。
<セメント組成物の粉末特性>
セメントの粉末特性(ブレーン比表面積及び45μm残分)について、JIS R 5201:1997「セメントの物理試験方法」に準じて測定した。結果を表4に示す。
<色調b値>
セメント組成物の色調b値は、測色色差計(日本電色工業社製Spectro Color Meter Se2000)を用いて測定した結果を表4に示す。
<標準軟度水量>
標準軟度水量は、セメントペーストの軟らかさ(軟度)を一定にするために必要な水量のことであり、これが多いほどセメントの流動性が悪いこととなる。測定方法は、セメント組成物500gを練り鉢に入れ、水を加えて練り混ぜた後、セメントペーストを容器に投入し、表面を平滑にした後、標準棒を降下させて、30秒後に標準棒の先端と底板との間隔を測定し、これが6±1mm(標準軟度)となる水量を測定し、標準軟度水量とする。
<凝結(始発、終結)、モルタル圧縮強さ>
凝結時間(始発、終結)は、得られたセメント組成物を用いて、JIS R5201:1997「セメントの物理試験方法」に準じて測定した。結果を表4に示す。 [Mineral composition and physical properties of cement composition]
<Mineral composition of cement composition>
The mineral composition (C 3 S content, C 2 S content, C 3 A content and C 4 AF content) of the obtained cement composition was measured based on the Borg equation [1] to [4]. The results are shown in Table 3.
<Powder characteristics of cement composition>
The powder characteristics (brane specific surface area and 45 μm residue) of the cement were measured according to JIS R 5201: 1997 “Cement physical test method”. The results are shown in Table 4.
<Color tone b value>
The color tone b value of the cement composition is shown in Table 4 as a result of measurement using a colorimetric color difference meter (Spectro Color Meter Se2000 manufactured by Nippon Denshoku Industries Co., Ltd.).
<Standard soft water volume>
The standard soft water amount is the amount of water necessary for making the softness (softness) of the cement paste constant, and the larger the amount, the worse the fluidity of the cement. The measurement method is as follows. 500 g of cement composition is put in a kneading bowl, water is added and kneaded, cement paste is put into a container, the surface is smoothed, the standard bar is lowered, and the standard bar is 30 seconds later. The distance between the tip and the bottom plate is measured, and the amount of water that becomes 6 ± 1 mm (standard softness) is measured to obtain the standard soft water amount.
<Condensation (start and end), mortar compressive strength>
The setting time (starting and finishing) was measured according to JIS R5201: 1997 “Physical testing method of cement” using the obtained cement composition. The results are shown in Table 4.
<セメント組成物の鉱物組成>
得られたセメント組成物の鉱物組成(C3S量、C2S量、C3A量及びC4AF量)を、ボーグ式[1]~[4]に基づいて測定した。結果を表3に示す。
<セメント組成物の粉末特性>
セメントの粉末特性(ブレーン比表面積及び45μm残分)について、JIS R 5201:1997「セメントの物理試験方法」に準じて測定した。結果を表4に示す。
<色調b値>
セメント組成物の色調b値は、測色色差計(日本電色工業社製Spectro Color Meter Se2000)を用いて測定した結果を表4に示す。
<標準軟度水量>
標準軟度水量は、セメントペーストの軟らかさ(軟度)を一定にするために必要な水量のことであり、これが多いほどセメントの流動性が悪いこととなる。測定方法は、セメント組成物500gを練り鉢に入れ、水を加えて練り混ぜた後、セメントペーストを容器に投入し、表面を平滑にした後、標準棒を降下させて、30秒後に標準棒の先端と底板との間隔を測定し、これが6±1mm(標準軟度)となる水量を測定し、標準軟度水量とする。
<凝結(始発、終結)、モルタル圧縮強さ>
凝結時間(始発、終結)は、得られたセメント組成物を用いて、JIS R5201:1997「セメントの物理試験方法」に準じて測定した。結果を表4に示す。 [Mineral composition and physical properties of cement composition]
<Mineral composition of cement composition>
The mineral composition (C 3 S content, C 2 S content, C 3 A content and C 4 AF content) of the obtained cement composition was measured based on the Borg equation [1] to [4]. The results are shown in Table 3.
<Powder characteristics of cement composition>
The powder characteristics (brane specific surface area and 45 μm residue) of the cement were measured according to JIS R 5201: 1997 “Cement physical test method”. The results are shown in Table 4.
<Color tone b value>
The color tone b value of the cement composition is shown in Table 4 as a result of measurement using a colorimetric color difference meter (Spectro Color Meter Se2000 manufactured by Nippon Denshoku Industries Co., Ltd.).
<Standard soft water volume>
The standard soft water amount is the amount of water necessary for making the softness (softness) of the cement paste constant, and the larger the amount, the worse the fluidity of the cement. The measurement method is as follows. 500 g of cement composition is put in a kneading bowl, water is added and kneaded, cement paste is put into a container, the surface is smoothed, the standard bar is lowered, and the standard bar is 30 seconds later. The distance between the tip and the bottom plate is measured, and the amount of water that becomes 6 ± 1 mm (standard softness) is measured to obtain the standard soft water amount.
<Condensation (start and end), mortar compressive strength>
The setting time (starting and finishing) was measured according to JIS R5201: 1997 “Physical testing method of cement” using the obtained cement composition. The results are shown in Table 4.
セメント組成物のV含有量と材齢28日圧縮強さとの関係を図1に示す。図1に示すように、セメント組成物のV含有量が0.0063~0.012質量%(実施例1~4、図1中の記号「●」)であれば、一定の強度発現性(材齢28日のモルタル圧縮強さが60N/mm2以上)を維持・向上させることができる。一方、セメント組成物のV含有量が0.0063質量%未満であると(比較例1、図1中の記号「□」)、強度発現性は低下した。また、表4に示すように、V含有量が0.0063~0.012質量%であり、好ましくはSr含有量が0.035~0.08質量%であるセメント組成物(実施例1~4)は、一定の強度発現性を維持・向上させながら、セメント組成物のV含有量が0.0063質量%未満のセメント組成物(比較例1)と比べて、標準軟度水量に大差がなく、凝結時間は却って長くなっていることから、フレッシュ性(標準軟度水量、凝結時間)が維持されていることが確認できる。
The relationship between the V content of the cement composition and the 28-day compressive strength is shown in FIG. As shown in FIG. 1, when the V content of the cement composition is 0.0063 to 0.012 mass% (Examples 1 to 4, the symbol “●” in FIG. 1), a certain strength development property ( The mortar compressive strength at the age of 28 days can be maintained and improved at 60 N / mm 2 or more. On the other hand, when the V content of the cement composition was less than 0.0063% by mass (Comparative Example 1, symbol “□” in FIG. 1), strength development was reduced. Further, as shown in Table 4, a cement composition having a V content of 0.0063 to 0.012% by mass and preferably an Sr content of 0.035 to 0.08% by mass (Examples 1 to 4) has a large difference in the standard soft water amount compared to the cement composition (Comparative Example 1) in which the V content of the cement composition is less than 0.0063% by mass while maintaining and improving a certain strength development. However, since the setting time is longer, it can be confirmed that the freshness (standard soft water amount, setting time) is maintained.
以上に示す結果から、セメント組成物のV含有量が0.0063~0.012質量%であり、好ましくはSr含有量が0.035~0.08質量%であるセメント組成物は、モルタルやコンクリートのフレッシュ性状(標準軟度水量、凝結時間)を維持しつつ、強度発現性を維持・向上させることができる。
From the results shown above, the cement composition having a cement composition having a V content of 0.0063 to 0.012% by mass, preferably an Sr content of 0.035 to 0.08% by mass, While maintaining the fresh properties of concrete (standard soft water content, setting time), strength development can be maintained and improved.
Claims (8)
- V含有量が0.0063~0.012質量%であることを特徴とするセメント組成物。 A cement composition having a V content of 0.0063 to 0.012 mass%.
- Sr含有量が0.035~0.08質量%である、請求項1記載のセメント組成物。 The cement composition according to claim 1, wherein the Sr content is 0.035 to 0.08 mass%.
- Mo含有量が0.0002~0.007質量%であり、MgO含有量が1~3質量%である、請求項1又は2記載のセメント組成物。 The cement composition according to claim 1 or 2, wherein the Mo content is 0.0002 to 0.007 mass% and the MgO content is 1 to 3 mass%.
- SO3含有量が0.2~1.2質量%であるセメントクリンカーを用いてなる、請求項1~3のいずれか1項記載のセメント組成物。 The cement composition according to any one of claims 1 to 3, comprising a cement clinker having an SO 3 content of 0.2 to 1.2% by mass.
- SO3含有量が1.6~2.5質量%である、請求項1~4のいずれか1項記載のセメント組成物。 The cement composition according to any one of claims 1 to 4, wherein the SO 3 content is 1.6 to 2.5 mass%.
- R2O含有量が0.3~0.6質量%である、請求項1~5のいずれか1項記載のセメント組成物。 The cement composition according to any one of claims 1 to 5, wherein the R 2 O content is 0.3 to 0.6 mass%.
- C3S含有量が45~70質量%、C2S含有量が5~25質量%、C3A含有量が6~15質量%及びC4AF含有量が7~15質量%である、請求項1~6のいずれか1項記載のセメント組成物。 The C 3 S content is 45 to 70% by mass, the C 2 S content is 5 to 25% by mass, the C 3 A content is 6 to 15% by mass, and the C 4 AF content is 7 to 15% by mass. The cement composition according to any one of claims 1 to 6.
- セメント組成物のV含有量が0.0063~0.012質量%となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源からなる群より選ばれる原料の原料原単位を調整し、調整した原料を焼成してセメントクリンカーを製造する工程(A)と、上記セメントクリンカーと石膏と混合材とを粉砕する工程(B)とを含むことを特徴とするセメント組成物の製造方法。 From the group consisting of limestone, meteorite, coal ash, clay, blast furnace slag, construction soil, sewage sludge, hydrocake and iron source so that the V content of the cement composition is 0.0063 to 0.012 mass%. Adjusting the raw material intensity of the selected raw material, firing the adjusted raw material to produce a cement clinker (A), and crushing the cement clinker, gypsum and mixed material (B) A method for producing a cement composition.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137026253A KR101828120B1 (en) | 2011-03-09 | 2011-12-16 | Cement compositions and process for producing same |
SG2013067160A SG193341A1 (en) | 2011-03-09 | 2011-12-16 | Cement compositions and process for producing same |
CN201180069078.3A CN103415483B (en) | 2011-03-09 | 2011-12-16 | Cement composition and manufacture method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011051725A JP5029768B1 (en) | 2011-03-09 | 2011-03-09 | Cement composition and method for producing the same |
JP2011-051725 | 2011-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012120747A1 true WO2012120747A1 (en) | 2012-09-13 |
Family
ID=46797728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079223 WO2012120747A1 (en) | 2011-03-09 | 2011-12-16 | Cement compositions and process for producing same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5029768B1 (en) |
KR (1) | KR101828120B1 (en) |
CN (1) | CN103415483B (en) |
SG (1) | SG193341A1 (en) |
WO (1) | WO2012120747A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017171519A (en) * | 2016-03-22 | 2017-09-28 | 住友大阪セメント株式会社 | Cement clinker composition and blast furnace cement composition |
JP2017171518A (en) * | 2016-03-22 | 2017-09-28 | 住友大阪セメント株式会社 | Cement clinker composition and portland cement composition |
CN116573869A (en) * | 2023-05-26 | 2023-08-11 | 安徽建筑大学 | Method for producing cement clinker by using slag waste |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6061080B2 (en) * | 2012-12-28 | 2017-01-18 | 三菱マテリアル株式会社 | Hydraulic composition containing cerium and method for suppressing strength reduction thereof |
JP6112900B2 (en) * | 2013-02-21 | 2017-04-12 | 株式会社トクヤマ | Method for producing raw material particles for producing cement clinker |
JP5907440B1 (en) * | 2014-11-13 | 2016-04-26 | 住友大阪セメント株式会社 | Cement clinker and cement composition |
JP5907439B1 (en) * | 2014-11-13 | 2016-04-26 | 住友大阪セメント株式会社 | Cement clinker and cement composition |
CN104844091B (en) * | 2015-05-05 | 2017-07-28 | 中国建筑材料科学研究总院 | A kind of raw-soil suitable for raw-soil building block builds binding material and preparation method thereof by laying bricks or stones |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007514634A (en) * | 2003-12-18 | 2007-06-07 | ラファルジュ | Hydraulic inorganic composition, method for producing the same, and cement product and hydraulic binder containing such a composition |
JP4811534B1 (en) * | 2010-06-01 | 2011-11-09 | 宇部興産株式会社 | CEMENT COMPOSITION AND METHOD FOR PRODUCING CEMENT COMPOSITION |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1785878A (en) * | 2004-12-12 | 2006-06-14 | 攀钢集团钢城企业总公司废旧物资分公司 | Method of using vanadium titanium rotary furnace steel slag as cement iron correction material |
DE102007035257B3 (en) * | 2007-07-27 | 2008-11-13 | Forschungszentrum Karlsruhe Gmbh | Single-phase hydraulic binder, process for its preparation and building material produced with this binder |
JP2011020890A (en) * | 2009-07-15 | 2011-02-03 | Ube Industries Ltd | Method for reducing hydration heat of cement composition and method for producing the cement composition |
-
2011
- 2011-03-09 JP JP2011051725A patent/JP5029768B1/en active Active
- 2011-12-16 SG SG2013067160A patent/SG193341A1/en unknown
- 2011-12-16 WO PCT/JP2011/079223 patent/WO2012120747A1/en active Application Filing
- 2011-12-16 CN CN201180069078.3A patent/CN103415483B/en active Active
- 2011-12-16 KR KR1020137026253A patent/KR101828120B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007514634A (en) * | 2003-12-18 | 2007-06-07 | ラファルジュ | Hydraulic inorganic composition, method for producing the same, and cement product and hydraulic binder containing such a composition |
JP4811534B1 (en) * | 2010-06-01 | 2011-11-09 | 宇部興産株式会社 | CEMENT COMPOSITION AND METHOD FOR PRODUCING CEMENT COMPOSITION |
WO2011152248A1 (en) * | 2010-06-01 | 2011-12-08 | 宇部興産株式会社 | Cement composition and process for producing cement composition |
Non-Patent Citations (2)
Title |
---|
KAGAKU BUNSEKI SENMON IINKAI HOKOKU I-8 CEMENT OYOBI CEMENT GENRYO CHU NO BIRYO SEIBUN NO TEIRYO, March 1981 (1981-03-01), pages 15 - 22 * |
L. CUSSINO: "INFLUENZA DELL'ANIDRIDE VANADICA SULL'IDRATAZIONE DEL CEMENTO", CEMENTO, April 1986 (1986-04-01), pages 435 - 444 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017171519A (en) * | 2016-03-22 | 2017-09-28 | 住友大阪セメント株式会社 | Cement clinker composition and blast furnace cement composition |
JP2017171518A (en) * | 2016-03-22 | 2017-09-28 | 住友大阪セメント株式会社 | Cement clinker composition and portland cement composition |
CN116573869A (en) * | 2023-05-26 | 2023-08-11 | 安徽建筑大学 | Method for producing cement clinker by using slag waste |
CN116573869B (en) * | 2023-05-26 | 2024-05-28 | 安徽建筑大学 | Method for producing cement clinker by using slag waste |
Also Published As
Publication number | Publication date |
---|---|
CN103415483B (en) | 2015-09-30 |
CN103415483A (en) | 2013-11-27 |
JP2012188308A (en) | 2012-10-04 |
KR20140015442A (en) | 2014-02-06 |
JP5029768B1 (en) | 2012-09-19 |
KR101828120B1 (en) | 2018-02-09 |
SG193341A1 (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011152248A1 (en) | Cement composition and process for producing cement composition | |
JP4968390B1 (en) | Cement composition and method for producing the same | |
WO2012120747A1 (en) | Cement compositions and process for producing same | |
JP2012246190A (en) | Method for producing cement composition | |
JP2011132045A (en) | Method for reducing heat of hydration of cement composition | |
JP2013103865A (en) | Method of manufacturing cement paste | |
JP2015010009A (en) | Mixed cement | |
JP2011020890A (en) | Method for reducing hydration heat of cement composition and method for producing the cement composition | |
JP2010228926A (en) | Cement composition and method for producing the same | |
JP4775495B1 (en) | Cement composition and method for producing the same | |
JP4494743B2 (en) | Method for producing cement composition | |
JP2010001196A (en) | Cement composition | |
JP6036167B2 (en) | Low carbon type cement paste composition | |
JP5932478B2 (en) | Cement composition and method for producing the same | |
JP2013023422A (en) | Method of manufacturing burned product | |
JP2023131119A (en) | cement composition | |
JP4842211B2 (en) | Sintered product for cement additive, cement additive and cement composition | |
JP6981481B2 (en) | Cement composition and its manufacturing method | |
JP2012246189A (en) | Method for producing cement composition | |
JP2013107780A (en) | Cement clinker and cement composition | |
JP2012201520A (en) | Cement composition, and method for producing the same | |
JP6676999B2 (en) | Cement composition and method for producing the same | |
JP2014185042A (en) | Cement composition | |
JP6217305B2 (en) | Low hydration thermal cement composition and method for producing the same | |
JP2013087036A (en) | Low hydration heat cement clinker and low hydration heat cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11860626 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137026253 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11860626 Country of ref document: EP Kind code of ref document: A1 |