WO2012120718A1 - ヒータ及びヒートポンプシステム - Google Patents

ヒータ及びヒートポンプシステム Download PDF

Info

Publication number
WO2012120718A1
WO2012120718A1 PCT/JP2011/073121 JP2011073121W WO2012120718A1 WO 2012120718 A1 WO2012120718 A1 WO 2012120718A1 JP 2011073121 W JP2011073121 W JP 2011073121W WO 2012120718 A1 WO2012120718 A1 WO 2012120718A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heat
cylindrical portion
flow path
heater
Prior art date
Application number
PCT/JP2011/073121
Other languages
English (en)
French (fr)
Inventor
浩四郎 田口
渡辺 浩
Original Assignee
カシン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カシン工業株式会社 filed Critical カシン工業株式会社
Priority to JP2013503329A priority Critical patent/JP6106078B2/ja
Publication of WO2012120718A1 publication Critical patent/WO2012120718A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/081Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using electric energy supply
    • F24H3/085The tubes containing an electrically heated intermediate fluid, e.g. water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • F24H9/1827Positive temperature coefficient [PTC] resistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2268Constructional features
    • B60H2001/2271Heat exchangers, burners, ignition devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the present invention relates to a heater and a heat pump system in which a PTC (Positive Temperature Coefficient) element is used as a heat source.
  • PTC Positive Temperature Coefficient
  • a hot water heater that heats air by using exhaust heat of engine cooling water is used as a main heat source for heating the interior of a conventional automobile room, but the temperature of the engine cooling water is low when the engine is started, etc.
  • Electric heaters are also used as auxiliary heat sources. In addition, it is thought that the mounting of the electric heater will be promoted with the spread of the electric car in the future.
  • Patent Document 1 discloses that a PTC element is used as a heating element in an electric heater.
  • a fluid heating device using a PTC element is disposed at an inlet of a heater core, and the PTC element faces a flow path of engine cooling water through a partition wall, and the fluid passing through the flow path is PTC A structure for heating with a device is disclosed.
  • the present invention has been made in view of the above problems, and it is possible to heat the fluid more efficiently, and to realize a heater and a heat pump system which are excellent in practical use reliability, safety, weight reduction, space saving and cost reduction. provide.
  • the present invention is a metal main body having a flow path through which a fluid flows and a tubular portion provided outside the flow path and containing a heat generation unit, wherein the flow path and the barrel
  • the heat generating unit includes a portion between the portion and a main body in which the cylindrical portion is integrally continuous with the same metal material, and a sealing body closing an end of the cylindrical portion,
  • a positive temperature coefficient (PTC) element having an electrode plate, an electrode plate bonded to the electrode surface, an insulator provided between the electrode plate and an inner wall of the cylindrical portion and superimposed on the electrode plate;
  • the heat generating unit is narrowed between the inner walls of the cylindrical portion, there is no gap between the flow passage and the heat generating unit, and a portion of the main body is integrally interposed by the same continuous material
  • a heater is provided.
  • FIG. 5 is a schematic plan view of a heat generating unit in a tubular portion.
  • (A)-(c) is a schematic cross section showing the other specific example of a flow path.
  • FIG. 3 is a cross-sectional view showing another specific example of the portion shown in FIG. 2;
  • (A) And (b) is a schematic diagram which shows the electrode extraction part of the heater of embodiment.
  • the model side view of the heater of embodiment. BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the heat pump system using the heater of embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the heat pump system using the heater of embodiment.
  • FIG.1 (a) is an external appearance perspective view of the heater 1 of embodiment
  • FIG.1 (b) is a side view of the heater 1.
  • FIG. 2 is an enlarged sectional view taken along the line AA in FIG. 1 (b).
  • the heater 1 has a main body 11 and sealing bodies 23 provided at both ends in the longitudinal direction in which the main body 11 extends.
  • the main body 11 is made of metal such as aluminum, for example.
  • the sealing body 23 is, for example, a cap of resin or the like.
  • a flow passage 50 is formed in the vicinity of the central axis of the main body 11.
  • the flow channel 50 is formed along the longitudinal direction of the main body 11 so as to penetrate the longitudinal direction.
  • An inlet 21 and an outlet 22 are provided integrally with the main body 11 at both ends in the longitudinal direction of the main body 11, respectively.
  • the inlet 21 and the outlet 22 respectively project outside the sealing body 23.
  • the inlet portion 21 is formed in a tubular shape, and the inside thereof communicates with the flow path 50.
  • the outlet 22 is also formed in a tubular shape, and the inside thereof communicates with the flow path 50.
  • a cylindrical portion 12 is provided on the side of the main body 11. As shown in FIG. 2, the cylindrical portion 12 is integrally provided outside the flow path 50. Around the flow path 50, for example, four cylindrical portions 12 are provided at 90 ° intervals.
  • the main body 11 including the inlet 21 and the outlet 22 is integrally formed, for example, by extrusion molding.
  • a hollow portion 35 having a rectangular cross section is formed inside the cylindrical portion 12.
  • the hollow portion 35 extends in the longitudinal direction of the main body 11 similarly to the flow path 50.
  • the heat generating unit 10 is accommodated in the hollow portion 35.
  • FIG. 3 shows a cross-sectional view of the heat generating unit 10 housed in one certain cylindrical portion 12.
  • FIG. 4 corresponds to a plan view of the cylindrical portion 12 as viewed from below in FIG.
  • the heat generation unit 10 has a PTC (Positive Temperature Coefficient) element 16 as a heat generation element.
  • the PTC element 16 is a ceramic element having a positive temperature characteristic, and when the temperature becomes a temperature higher than the Curie point, the resistance rapidly increases and the temperature rise further is limited.
  • the PTC element 16 is formed, for example, in a square thin plate piece, and an electrode surface 16a made of a metal such as silver or aluminum is formed on both the front and back sides. A plurality of PTC elements 16 are disposed along the longitudinal direction of the cylindrical portion 12 inside the cylindrical portion 12.
  • Electrode plates 41 and 42 are bonded to the pair of electrode surfaces 16 a of the PTC element 16, respectively.
  • the PTC element 16 is sandwiched between a pair of electrode plates 41 and 42. Voltages of opposite polarities are applied to the pair of electrode plates 41 and 42, respectively.
  • the electrode plates 41 and 42 are superimposed on the electrode surface 16 a of the PTC element 16 inside the cylindrical portion 12.
  • the electrode plates 41 and 42 and the electrode surface 16a are bonded by, for example, a silicone-based adhesive excellent in thermal conductivity.
  • the electrode surface 16 a is formed by applying, for example, silver paste to the front and back surfaces of the PTC element 16.
  • the electrode surface 16 a is formed by spraying aluminum. Therefore, fine irregularities are formed on the electrode surface 16a.
  • the electrode plates 41 and 42 and the PTC element 16 sandwiched therebetween are wrapped in an insulating sheet 21.
  • the insulating sheet 21 has flexibility, thermal conductivity and electrical insulation, and is, for example, a polyimide film.
  • the end edges 21 a and 21 b of the insulating sheet 21 are superimposed on each other, and the insulating sheet 21 covers the electrode plates 41 and 42 bonded to the PTC element 16.
  • the cylindrical portion 12 has an inner inner wall 31 provided on the flow path 50 side and an outer inner wall 32 provided on the opposite side.
  • the PTC element 16 has one electrode surface 16a directed to the inner inner wall 31 side, that is, the flow path 50 side, and the other electrode surface 16a directed to the outer inner wall 32 side.
  • One electrode plate 41 is interposed between the inner inner wall 31 and one electrode surface 16 a, and the other electrode 42 is interposed between the other electrode surface 16 a and the outer inner wall 32.
  • the end edges 21 a and 21 b of the insulating sheet 21 are overlapped not on the electrode surface 16 a of the PTC element 16 and the inner inner wall 31 but on the back side of the side surface 12 b of the cylindrical portion 12. Thereby, the fall of the heat transfer efficiency from PTC element 16 to channel 50 can be controlled.
  • the cylindrical portion 12 is formed in a flat shape having an inner inner wall 31 and an outer inner wall 32 opposed to each other, and a pair of side surfaces 12 b formed substantially at right angles to them and opposed to each other.
  • the inner inner wall 31 and the outer inner wall 32 are wider than the side surface 12 b and larger in area.
  • the PTC element 16 and the electrode plates 41 and 42 are housed inside the cylindrical portion 12 in a state of being covered by the insulating sheet 21. Between the one electrode surface 16 a and the inner inner wall 31, the electrode plate 41 and the insulating sheet 21 are compressed. The electrode plate 42 and the insulating sheet 21 are narrowed between the other electrode surface 16 a and the outer inner wall 32.
  • a groove or recess is formed in the side surface 12 b of the cylindrical portion 12 along the longitudinal direction, so that the side surface 12 b can be prevented from expanding outward when the cylindrical portion 12 is crushed.
  • a sealing body 23 having electrical insulation, waterproofness, and heat resistance is provided at the openings at both ends of the cylindrical portion 12.
  • the gap between the cylindrical portion 12 and the sealing body 23 is filled with, for example, a silicone-based sealing material having electrical insulation, waterproofness, and heat resistance. This prevents the liquid from entering the inside of the cylindrical portion 12.
  • An electric cable to be described later is connected to one end of each of the electrode plates 41 and 42, and the electric cable penetrates the sealing body 23 and is led to the outside.
  • the electrical cable led to the outside is connected to the power supply.
  • the portion through which the electrical cable penetrates the sealing body 23 is filled with, for example, a silicone-based sealing material having electrical insulation, waterproofness and heat resistance.
  • the sealing body for closing the end portion of the cylindrical portion 12 in the embodiment includes the sealing body 23, a sealing material of, for example, silicone type filled in the gap between the cylindrical portion 12 and the sealing body 23, and And a silicone-based sealant, for example, in which the cable is filled in a portion passing through the sealant 23.
  • the heater 1 of the present embodiment can be mounted, for example, on an automobile and used as a heater for heating the interior of the vehicle. Then, the power from the battery mounted on the vehicle is supplied to the PTC element 16 through the electric cable and the electrode plates 41 and 42, and the PTC element 16 generates heat.
  • This heat is transmitted to the metal main body 11 through the electrode plates 41 and 42 and the insulating sheet 21 and is further transmitted to the liquid flowing in the flow path 50.
  • a liquid such as water or antifreeze liquid is introduced. The liquid flows into the flow path 50 from the inlet 21 and flows in the flow path 50.
  • the liquid flowing through the flow path 50 is heated by heat exchange with the portion 33 between the flow path 50 and the cylindrical portion 12 in the main body 11 heated by the heat generation unit 10, and flows out from the outlet 22 as warm water.
  • the main body 11 having the flow path 50 and the cylindrical portion 12 is, for example, an integral body formed by extrusion molding, and the portion 33 between the flow path 50 and the cylindrical portion 12 and the cylindrical portion 12 are integrally made of the same metal material. It is continuous. Further, the flow passage 50 is not provided with a pipe separate from the main body 11. Therefore, an integral metal of the same material is continuously interposed between the inner inner wall 31 and the flow passage 50. Further, the heat generating unit 10 is narrowed in the cylindrical portion 12, and the heat generating unit 10 is in close contact with the inner inner wall 31 without an air layer. Therefore, the heat of the heat generating unit 10 can be efficiently transmitted to the liquid flowing in the flow path 50.
  • the PTC element 16 has a characteristic of releasing energy as it cools. Therefore, the heat of the heat generating unit 10 is efficiently deprived from the side of the flow path 50 through which the liquid having a lower temperature flows, and as a result, the amount of heat escaping from the outer inner wall 32 of the cylindrical portion 12 to the opposite side of the flow path 50 is suppressed .
  • the volume of the portion 33 between the flow passage 50 and the inner inner wall 31 is larger than the volume of the outer portion 34 than the outer inner wall 32. For this reason, as indicated by arrow A in FIG. 2, the heat transferred to the portion 34 on the opposite side of the flow passage 50 in the main body 11 passes through the portion 33 where the cross-sectional area of the path toward the flow passage 50 is increased. It can be efficiently transmitted to the flow path 50.
  • the inventors conducted the following experiment using the heater 1 of the embodiment.
  • the inlet water temperature of the flowing water was 9.0 ° C.
  • the environmental temperature was 18 ° C.
  • the flowing water amount was 10 liters / minute.
  • the outlet water temperature of the running water became 13.6 ° C. in a state where electric power was supplied to the heat generating unit 10 with an applied voltage of 350 V DC, a current value of 9.2 A, and an electric energy of 3220 W.
  • the heat generated from the heat generating unit 10 can be obtained by securing a large volume of the portion 33 while utilizing the characteristics of the PTC element 16 instead of securing a large contact area. It was realized to efficiently transfer to the liquid.
  • the heater 1 is housed, for example, in a metal case 60.
  • the case 60 may be made of resin.
  • the sealing body 23 or the inlet 21 and the outlet 22 at both ends thereof are supported at both sides of the wall of the case 60. That is, both ends of the heater 1 are supported by the case 60, and the main body 11 floats in the internal space of the case 60. Therefore, the outer surface of the main body 11 does not contact the inner wall of the case 60, and a gap is present between the main body 11 and the inner wall of the case 60.
  • the heat of the main body 11 hardly escapes to the case 60 and the outside thereof. Further, by covering the main body 11 with the case 60, it is possible to prevent a person or a thing from touching the surface of the heated main body 11, and it is possible to enhance the safety.
  • air may be interposed between the main body 11 and the case 60, or a gas having a higher heat insulating property such as fluorocarbon gas may be interposed.
  • the outer surface of the main body 11 may be covered with a sponge-like heat insulating material 70 of, for example, silicone.
  • the case 60 may be omitted.
  • the PTC element 16 and the electrode plates 41 and 42 in contact with the PTC element 16 are accommodated inside the cylindrical portion 12 sealed by the sealing body 23 and are not exposed to the outside. Further, since the insulating sheet 21 is interposed between the electrode plates 41 and 42 and the inner wall of the cylindrical portion 12, the cylindrical portion 12 is not energized. High safety and reliability can be obtained while obtaining high heat exchange efficiency.
  • FIG. 5 is a schematic view showing the on-vehicle hot water heater system of the embodiment.
  • FIG. 5 shows a specific example in which the heater 1 described above is attached to a vehicle such as a car.
  • the inlet 21 and the outlet 22 are connected to the circulation passage 6.
  • the circulation passage 6 has conduits 6a to 6d.
  • the conduit 6 a connects the outlet 22 and the heater core 2.
  • the conduit 6 b connects the heater core 2 and the hydraulic pump 3.
  • the conduit 6 c connects the hydraulic pump 3 and the three-way valve 4.
  • the conduit 6 d connects the three-way valve 4 and the inlet 21.
  • circulation passage 6 and the heater 1 are also connected to the engine 5 via the conduits 7a and 7b.
  • the hydraulic pump 3 is driven in a state in which the three-way valve 4 shuts off between the conduit 6c and the conduit 7a and causes the conduit 6c and the conduit 6d to communicate with each other,
  • the liquid circulates in the circulation path 6 in the direction indicated by the white arrow in FIG.
  • Hot water supplied to the heater core 2 flows through a pipe provided in the heater core 2. Gas (air) is blown from the blower 8 to the heater core 2. The heat of the hot water flowing through the tube of the heater core 2 is transferred to the gas blown from the blower 8 through a heat transfer surface such as a fin provided on the heater core 2. Thus, the warm air is blown into the car.
  • This mode is selected when exhaust heat of the engine 5 can not be used, for example, at the start of the engine 5.
  • the three-way valve 4 is switched to connect the pipe line 6c and the pipe line 7a and to shut off the pipe line 6c and the pipe line 6d. Act as.
  • the flow of the liquid at this time is represented by a black arrow in FIG.
  • Hot water passing through the engine 5 and warmed by heat exchange with the engine 5 is supplied to the heater core 2 through the conduits 7b and 6d, the inflow portion 51, the inside of the flow passage 50, the outlet portion 22 and the conduit 6a. Therefore, in this mode, the hot water can be supplied to the heater core 2 without energizing (generating heat) the heat generating unit 10, and the hot air can be sent into the vehicle by driving the blower 8.
  • the contact area between the inner wall and the liquid can be increased to further enhance the heat exchange efficiency.
  • FIG. 6A shows a flow path 51 in which a star-shaped unevenness is formed on the inner wall.
  • FIG.6 (b) represents the flow path 52 which formed the unevenness
  • the channel 53 may be cross-shaped in cross section to increase the contact area with the liquid.
  • the cylinder part 12 may be elliptical or circular shape not only in the rectangular-tube-shaped flat shape. As the distance between the PTC element 16 and the inner inner wall 31 is shorter, the heat transfer efficiency to the portion 33 of the main body 11 can be increased.
  • each of the cylindrical portion 12 and the heat generating unit 10 is not limited to four, and is arbitrary according to the size and output of the heater 1 to be obtained.
  • the combination of the cylindrical portion 12 and the heating unit 10 may be two.
  • the cylindrical portion 12 and the heat generating unit 10 are provided at positions opposite to each other across the flow path 50 in the main body 71.
  • the heater 1 of the embodiment can be widely applied to applications other than in-vehicle use, and in any application, it is possible to efficiently heat the liquid and generate warm water with a small, simple and low-cost configuration.
  • Fig.9 (a) is an end elevation of the outer side of one (it represents with the code
  • the outlet portion 22 described above in the main body 11 penetrates the center of the sealing body (first sealing body) 23 a and protrudes to the outside.
  • a silicone-based sealing material 91 having electrical insulation, waterproofness and heat resistance is provided.
  • a continuous electrode connection plate 72 is provided on the outer peripheral side of the end face of the sealing body 23a.
  • Four slits 74 are formed on the inner side (central side) of the electrode connection plate 72 on the end face of the sealing body 23 a.
  • the four slits 74 are formed at positions corresponding to the positions of the four cylindrical portions 12 respectively.
  • An electrode terminal 43 protrudes from each slit 74.
  • the electrode terminal 43 is integrally provided at an end portion of one of the pair of electrode plates 41 and 42 of the heat generating unit 10 (for example, the negative electrode plate).
  • Each electrode terminal 43 is bent to the electrode connection plate 72 side, and is stacked under the electrode connection plate 72.
  • the electrode terminal 43 and the electrode connection plate 72 are fastened and fixed to the sealing body 23 a by a screw 81.
  • the negative electrode plates of each of the four heat generating units 10 are electrically connected to the common electrode connection plate 72. Furthermore, one end 85 a of the electric cable 85 is also screwed to one of the four screwing portions. Therefore, the negative electrode plate of each of the four heat generating units 10 is electrically connected to the common electric cable 85.
  • FIG. 9 (b) is an end view of the outside of the sealing body (second sealing body) 23b provided at the end opposite to the sealing body 23a (the side opposite to the longitudinal direction of the flow path 50) It is.
  • the inlet portion 21 described above in the main body 11 penetrates the center of the sealing body 23 b and protrudes to the outside.
  • a silicone-based sealing material 92 having electrical insulation, waterproofness and heat resistance is provided.
  • Two electrode connection plates 77 and 78 are provided on the outer peripheral side of the end face of the sealing body 23b.
  • the two electrode connection plates 77, 78 are neither spatially nor electrically connected.
  • slits 75 are formed on the inner side (central side) of the electrode connection plates 77 and 78.
  • the four slits 75 are formed at positions corresponding to the positions of the four cylindrical portions 12 respectively.
  • An electrode terminal 44 protrudes from each slit 75.
  • the electrode terminal 44 is integrally provided at the end of the other electrode plate (for example, the positive electrode plate) of the pair of electrode plates 41 and 42 of the heating unit 10.
  • Two of the four electrode terminals 44 are bent to the electrode connection plate 77 side and stacked under the electrode connection plate 77.
  • the electrode terminal 44 and the electrode connection plate 77 are fastened and fixed to the sealing body 23 a by a screw 82.
  • the other two of the four electrode terminals 44 are bent toward the electrode connection plate 78 and superimposed under the electrode connection plate 78.
  • the electrode terminal 44 and the electrode connection plate 78 are fastened and fixed to the sealing body 23 a by a screw 82.
  • two of the positive electrode plates of each of the four heat generating units 10 are electrically connected to the electrode connection plate 77.
  • the other two positive electrode plates are electrically connected to the electrode connection plate 78.
  • One end 86 a of the electric cable 86 is also screwed to one of the two screwing portions of the electrode connection plate 77. Therefore, two of the positive electrode plates of each of the four heat generating units 10 are electrically connected to the electric cable 86.
  • One end 87 a of the electric cable 87 is also screwed to one of the two screwing portions of the electrode connection plate 78. Therefore, the other two positive electrode plates are electrically connected to the electric cable 87.
  • the four positive electrode plates may be combined into one as in the negative electrode side.
  • power to be supplied can be made different among the plurality of heat generating units 10. That is, depending on the situation, it is possible to control to heat only a part of the heat generation units 10 or to increase or decrease the heat generation amount of some of the heat generation units 10 more than others.
  • the electrical cable 85 on the negative electrode side shown in FIG. 9A is led out to the side of the main body 11 through the through hole 73 formed in the end face of the sealing body 23a.
  • the cylindrical cable guide 100 is provided in the side surface of the main body 11.
  • the cable guide 100 has electrical insulation and heat resistance, and is, for example, a quartz tube.
  • the electric cable 85 is passed through the inside of the cable guide 100 and guided to the end face side of the sealing body 23b through the through hole 76 formed in the end face of the other sealing body 23b shown in FIG. 9B. .
  • the positive electrode side electrode connection plates 77 and 78 are provided at one end of the main body 11 in the longitudinal direction, and the negative electrode side electrode connection plate 72 is provided at the other longitudinal end of the main body 11.
  • this electrode extraction structure can increase the creepage distance between the positive and negative electrodes, and high safety can be ensured.
  • the electrode extraction structure of the embodiment can reduce the area of the electrode extraction portion at the end of the main body 11 as compared with the structure in which the electrode connection plate of positive and negative electrodes is provided at the same end of the main body 11. Can be miniaturized.
  • FIG. 11 is a schematic view of the heat pump system.
  • the heat pump system includes two heat exchangers 101 and 105, an expansion valve 103, a compressor 107, and the heater 1 of the embodiment described above.
  • a refrigerant circulates in this system.
  • the refrigerant is compressed by the compressor 107 and is sent to the heat exchanger 101 through the pipe 108 in the state of high-temperature high-pressure gas. Then, the refrigerant is condensed by heat exchange with the fluid (air or liquid) to be heated in the heat exchanger 101, and is sent to the expansion valve 103 through the pipe 102 in the state of a high-temperature high-pressure liquid.
  • the refrigerant expanded by the expansion valve is sent to the heat exchanger 105 through the pipe 104 in the form of a low temperature and low pressure liquid.
  • the refrigerant is evaporated and sent to the compressor 107 through the pipe 106 in the state of low-temperature low-pressure gas, and the cycle described above is repeated.
  • the heater 1 is connected to a pipe 108 between the compressor 107 and the heat exchanger 101, and heats the compressed gas sent from the compressor 107 to the heat exchanger 101. That is, the heater 1 assists the refrigerant heating in the path between the compressor 107 and the heat exchanger 101.
  • the compressed gas flows in the above-described flow path 50 of the heater 1, and the gas is heated by the heat generation unit 10. That is, the heater 1 is effective not only for the liquid but also for heating the gas.
  • the heater 1 may be connected to the pipe 102 between the heat exchanger 101 and the expansion valve 103 to heat the liquid flowing through the pipe 102.
  • SYMBOLS 1 Heater, 10 ... Heating unit, 11 ... Main body, 12 ... Cylinder part, 16 ... PTC element, 16a ... Electrode surface, 21 ... Insulation sheet, 31 ... Inner inner wall, 32 ... Outer inner wall, 41 ... Electrode plate, 50- 53 ... channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 ヒータは、流体が流れる流路と、流路の外側に設けられ、発熱ユニットが収容された筒部とを有する金属製の本体であって、流路と筒部との間の部分、および筒部が同じ金属材料で一体に連続している本体と、筒部の端部を閉塞する封止体とを備えている。発熱ユニットは、電極面を有するPTC素子と、電極面に接着された電極板と、電極板と筒部の内壁との間に設けられ電極板に重ね合わされた絶縁体とを有する。発熱ユニットは筒部の内壁間に狭圧され、流路と発熱ユニットとの間に隙間がなく、本体の一部が連続した同じ材料で一体に介在している。

Description

ヒータ及びヒートポンプシステム
 本発明は、PTC(Positive Temperature Coefficient)素子を発熱源に用いたヒータ及びヒートポンプシステムに関する。
 従来の自動車室内の暖房用の主熱源としては、エンジン冷却水の排熱を利用して空気を加熱する温水式ヒータが用いられているが、エンジン始動時はエンジン冷却水の温度が低いことなどから補助熱源として電気式ヒータも使われる。また、今後、電気自動車の普及が進むのに伴い電気式ヒータの搭載が促進されるものと思われる。
 電気式ヒータにおける発熱体としてPTC素子を用いたものが例えば特許文献1に開示されている。特許文献1では、PTC素子を用いた流体加熱装置がヒータコアの流入口に配設され、PTC素子は仕切壁を介してエンジン冷却水の流路に向き合い、その流路内を通過する流体をPTC素子で加熱する構造が開示されている。
特開2008-7106号公報
 特許文献1に開示された、流路を通過する液体をPTC素子で加熱する構造の場合、熱効率が悪く、液体が流れるタンクを構成する部品点数が多くなり、結果として重くなり、省スペース化、コストダウンが難しくなる。また、電気的に導通している部分が液体中に浸漬している状態になるので、漏電の可能性も懸念される。
 そこで、液体が流れるパイプ部分と、電気的に導通しているPTC発熱ユニットが完全に分離されている形での加熱装置が望ましい。しかしながら、従来知られているようなパイプ側面にPTC発熱素子を単純に貼り付けただけでは、効率の良い熱伝導が得られない。
 本発明は上述の問題に鑑みてなされ、より効率よく流体を加熱でき、且つ実使用上の信頼性、安全性に優れ、軽量化、省スペース化、コストダウンを可能としたヒータ及びヒートポンプシステムを提供する。
 本発明の一態様によれば、流体が流れる流路と、前記流路の外側に設けられ、発熱ユニットが収容された筒部とを有する金属製の本体であって、前記流路と前記筒部との間の部分、および前記筒部が同じ金属材料で一体に連続している本体と、前記筒部の端部を閉塞する封止体と、を備え、前記発熱ユニットは、電極面を有するPTC(Positive Temperature Coefficient)素子と、前記電極面に接着された電極板と、前記電極板と、前記筒部の内壁との間に設けられ、前記電極板に重ね合わされた絶縁体と、を有し、前記発熱ユニットは前記筒部の内壁間に狭圧され、前記流路と前記発熱ユニットとの間に、隙間がなく、前記本体の一部が連続した同じ材料で一体に介在していることを特徴とするヒータが提供される。
 本発明によれば、より効率よく流体を加熱でき、且つ実使用上の信頼性、安全性に優れ、軽量化、省スペース化、コストダウンが可能となる。
(a)及び(b)は、実施形態のヒータの外観図。 図1におけるA-A拡大断面図。 図2における要部の拡大図。 筒部内の発熱ユニットの模式平面図。 実施形態のヒータを用いた車載温水ヒータシステムの模式図。 (a)~(c)は、流路の他の具体例を表す模式断面図。 図2に示す部分の他の具体例を示す断面図。 実施形態のヒータの変形例の模式断面図。 (a)及び(b)は、実施形態のヒータの電極取出部を示す模式図。 実施形態のヒータの模式側面図。 実施形態のヒータを用いたヒートポンプシステムの模式図。 実施形態のヒータを用いたヒートポンプシステムの模式図。
 以下、図面を参照し、本発明の実施形態について説明する。なお、各図面中、同じ要素には同じ符号を付している。
 図1(a)は実施形態のヒータ1の外観斜視図であり、図1(b)はそのヒータ1の側面図である。 
 図2は、図1(b)におけるA-A拡大断面図である。
 ヒータ1は、本体11と、本体11が延びる長手方向の両端部に設けられた封止体23とを有する。本体11は、例えばアルミニウムなどの金属製である。封止体23は、例えば樹脂等のキャップである。
 本体11の中心軸近傍には、図2に示すように、流路50が形成されている。流路50は、本体11の長手方向に沿って、その長手方向を貫通して形成されている。
 本体11の長手方向の両端部には、それぞれ、入口部21と出口部22が本体11に一体に設けられている。入口部21及び出口部22はそれぞれ封止体23の外部に突出している。
 入口部21は筒状に形成され、その内部は流路50に通じている。出口部22も筒状に形成され、その内部は流路50に通じている。
 本体11の側面側には、筒部12が設けられている。図2に示すように、筒部12は、流路50の外側に一体に設けられている。流路50のまわりに、例えば90°置きに4つの筒部12が設けられている。
 入口部21及び出口部22も含めて本体11は、例えば押し出し成形にて一体に形成される。
 筒部12の内部には断面矩形状の中空部35が形成されている。中空部35は、流路50と同様に、本体11の長手方向に延びている。中空部35には、発熱ユニット10が収容されている。
 図3は、ある1つの筒部12内に収容された発熱ユニット10の断面図を表す。図4は、図3において下方から見た筒部12の平面図に対応する。
 発熱ユニット10は、発熱素子としてPTC(Positive Temperature Coefficient)素子16を有する。PTC素子16は、正温度特性をもったセラミック素子であり、キューリー点以上の温度になると急激に抵抗が増加してそれ以上の温度上昇が制限される。
 PTC素子16は、例えば四角い薄板片状に形成され、その表裏両面には、例えば銀やアルミニウムなどの金属からなる電極面16aが形成されている。複数のPTC素子16が、筒部12の内部で筒部12の長手方向に沿って配置されている。
 PTC素子16の一対の電極面16aには、それぞれ、電極板41、42が接着されている。PTC素子16は、一対の電極板41、42に挟み込まれている。一対の電極板41、42には、それぞれ逆極性の電圧が印加される。
 電極板41、42は、筒部12の内部でPTC素子16の電極面16aに重ね合わされている。電極板41、42と電極面16aとは、熱伝導性に優れた例えばシリコーン系接着剤によって接着されている。
 PTC素子16の表裏面に、例えばアルミニウムを溶射することで電極面16aが形成される。あるいは、PTC素子16の表裏面に、例えば銀ペーストを塗布することで、電極面16aが形成される。または、PTC素子16の表裏面に銀ペーストを塗布した後に、アルミニウムを溶射することで、電極面16aが形成される。このため、電極面16aには微細な凹凸が形成される。
 したがって、電極面16aと電極板41、42とを接着するための接着剤が絶縁性であっても、電極面16aの凹凸における凸部が接着剤を突き抜けて電極板41、42に接し、PTC素子16と電極板41、42との導通は確保できる。なお、接触抵抗の低減には、アルミニウムの溶射がより望ましい。
 電極板41、42及びこれらに挟まれたPTC素子16は、絶縁シート21に包まれている。絶縁シート21は、可撓性、熱伝導性及び電気絶縁性を有し、例えばポリイミドフィルムである。絶縁シート21の両端縁部21a、21bは互いに重ね合わされ、絶縁シート21は、PTC素子16に接着された電極板41、42を覆っている。
 筒部12は、流路50側に設けられた内側内壁31と、その反対側に設けられた外側内壁32とを有する。PTC素子16は、一方の電極面16aを内側内壁31側、すなわち流路50側に向け、他方の電極面16aを外側内壁32側に向けている。
 一方の電極板41は、内側内壁31と一方の電極面16aとの間に介在され、他方の電極42は、他方の電極面16aと外側内壁32との間に介在されている。
 絶縁シート21の両端縁部21a、21bを、PTC素子16の電極面16aと、内側内壁31との間ではなく、筒部12の側面12bの裏側で重なり合うようにしている。これにより、PTC素子16から流路50への熱伝達効率の低下を抑制できる。
 筒部12は、互いに対向する内側内壁31及び外側内壁32と、それらに対して略直角に形成され、互いに対向する一対の側面12bとを有する扁平形状に形成されている。内側内壁31及び外側内壁32の方が側面12bより幅が広く面積が大きい。
 PTC素子16及び電極板41、42は、絶縁シート21で周囲を覆われた状態で、筒部12の内部に収容される。一方の電極面16aと内側内壁31との間には、電極板41と絶縁シート21が狭圧されている。他方の電極面16aと外側内壁32との間には、電極板42と絶縁シート21が狭圧されている。
 絶縁シート21で包んだPTC素子16及び電極板41、42を筒部12の中に挿入した後、内側内壁31と外側内壁32とを結ぶ方向に機械的圧力を加えて筒部12を押しつぶす。これにより、PTC素子16、電極板41、42及び絶縁シート21は、内側内壁31と外側内壁32との間で狭圧された状態となり、筒部12内で固定される。
 したがって、PTC素子16の電極面16aと、流路50との間には隙間が形成されず、金属製の本体11の一部33が一体に介在される。このため、PTC素子16と流路50を流れる液体との間に、空気層が介在しない熱伝達経路を広い面積にわたって確保することができ、熱伝達効率を向上できる。
 筒部12の側面12bには、長手方向に沿って溝、もしくはくぼみが形成されているため、筒部12を押しつぶしたときに側面12bが外側に膨らんでしまうのを防ぐことができる。
 図1(a)及び(b)に示すように、筒部12の両端部の開口には、電気絶縁性、防水性及び耐熱性を有する封止体23が設けられる。また、筒部12と封止体23との間の隙間には、電気絶縁性、防水性及び耐熱性を有する例えばシリコーン系の封止材が充填される。これにより、筒部12の内部への液体の浸入が防止される。
 電極板41、42のそれぞれの一端部には後述する電気ケーブルが接続され、その電気ケーブルは封止体23を貫通して外部に導出される。外部に導出された電気ケーブルは、電源と接続される。電気ケーブルが封止体23を貫通する部分には、電気絶縁性、防水性及び耐熱性を有する例えばシリコーン系の封止材が充填される。
 実施形態における筒部12の端部を閉塞する封止体は、封止体23と、筒部12と封止体23との間の隙間に充填される例えばシリコーン系の封止材と、電気ケーブルが封止体23を貫通する部分に充填される例えばシリコーン系の封止材と、を含む。
 本実施形態のヒータ1は、例えば自動車に搭載して、車内暖房用のヒータとして用いることができる。そして、自動車に搭載されたバッテリからの電力が、電気ケーブル及び電極板41、42を介して、PTC素子16に供給され、PTC素子16が発熱する。
 この熱は、電極板41、42及び絶縁シート21を介して、金属製の本体11へと伝わり、さらに流路50を流れる液体に伝わる。流路50内には、例えば水、不凍液などの液体が導入される。液体は、入口部21から流路50内に流入して、流路50を流れる。
 流路50を流れる液体は、発熱ユニット10によって加熱された本体11における流路50と筒部12との間の部分33との熱交換により加熱され、出口部22から温水として外部に流出する。
 流路50及び筒部12を有する本体11は、例えば押し出し成形で形成された一体物であり、流路50と筒部12との間の部分33、および筒部12は同じ金属材料で一体に連続している。また、流路50には、本体11と別体のパイプは設けられていない。したがって、内側内壁31と流路50との間には同じ材料の一体の金属が連続して介在している。また、発熱ユニット10は、筒部12内で狭圧され、発熱ユニット10は内側内壁31に対して空気層を介在させずに密着している。そのため、発熱ユニット10の熱を効率よく、流路50を流れる液体に伝達することができる。
 PTC素子16は冷えれば冷えるほどエネルギーを放出するという特性を有する。そのため、より温度が低い液体が流れる流路50側から効率的に発熱ユニット10の熱が奪われ、結果として、筒部12の外側内壁32側から流路50の反対側に逃げる熱量は抑えられる。
 また、本体11において、流路50と内側内壁31との間の部分33の体積は、外側内壁32よりも外側の部分34の体積よりも大きい。このため、図2において矢印Aで表すように、本体11において流路50の反対側の部分34に伝わった熱は、流路50に向かう経路の断面積がより大きくされた部分33を介して効率よく流路50に伝わることができる。
 以上説明したPTC素子16の特性、および本体11の構造の工夫により、発熱ユニット10が流路50の外側に位置していても、発熱ユニット10のエネルギーのほとんどは、内側の流路50側に向かって伝達する。すなわち、流路50の反対側に逃げる熱を抑えつつ、効率よく液体を加熱することができる。
 本発明者等は、実施形態のヒータ1を使って以下の実験を行った。
 発熱ユニット10に電力を供給する前の初期状態において、流水の入口水温は9.0℃、環境温度は18℃、流水量は10リットル/分であった。
 そして、印加電圧を直流350V、電流値を9.2A、電力量を3220Wとして、発熱ユニット10に電力を供給した状態で、流水の出口水温は13.6℃になった。
 熱量(J)=4.2×水の質量(g)×水の上昇温度(℃)であるため、熱量(J)は、4.2×10000(g)×4.6(℃)=193200(J)となる。 
 また、電力量(J)=電力(W)×時間(秒)であるため、193200(J)/60秒(分)=3220(W)となる。
 すなわち、3220Wの電気エネルギーを3220Wの熱量に変換できたことになり、効率は100%となる。
 従来、発熱体を収容した金属から、液体などの媒体に熱を伝達するには、放熱板などを取り付けて、接触面積を大きくすることが行われていた。これに対して、本実施形態では、接触面積を大きく確保するのではなく、PTC素子16の特性を利用しつつ、上記部分33の体積を大きく確保することにより、発熱ユニット10から発生した熱を効率的に液体に伝達することを実現した。
 液体が効率よく熱を奪うことで、1枚あたりのPTC素子16の出力を極限まで取り出すことが可能となる。したがって、使用するPTC素子16の数の低減を図れる。この結果、ヒータ全体の軽量化、省スペース化、低コスト化が可能となり、社会に大きく貢献できる。
 図2に示すように、ヒータ1は、例えば金属製のケース60内に収容される。あるいは、ケース60は樹脂製であってもよい。
 ヒータ1は、その両端部の封止体23もしくは入口部21及び出口部22が、ケース60の壁部に両持ち支持される。すなわち、ヒータ1の両端部がケース60に支えられて、本体11はケース60の内部空間に浮いた状態となっている。したがって、本体11の外側表面は、ケース60の内壁と接触せず、本体11とケース60の内壁との間には、隙間が存在する。
 このため、本体11の熱がケース60及びその外側に逃げにくい。また、本体11がケース60で覆われることで、加熱された本体11の表面に人や物が触れてしまうことを防ぐことができ、安全性を高めることができる。
 本体11とケース60との間には、断熱層として、空気を介在させてもよいし、あるいは例えばフロンガスなどのより断熱性が高いガスを介在させてもよい。
 あるいは、図7に示すように、本体11の外側表面を、例えばシリコーン系のスポンジ状の断熱材70で覆ってもよい。この場合、ケース60はなくてもよい。
 また、本実施形態では、PTC素子16及びPTC素子16に接する電極板41、42は、封止体23によって密閉される筒部12内部に収容され、外部に露出していない。また、電極板41、42と筒部12の内壁との間には絶縁シート21が介在されているので、筒部12は通電されない。高い熱交換効率を得つつ、なおかつ高い安全性及び信頼性が得られる。
 次に、図5は、実施形態の車載温水ヒータシステムを示す模式図である。
 図5は、前述したヒータ1を自動車等の車両に取り付けた具体例を表す。入口部21及び出口部22は、循環路6に接続される。
 循環路6は管路6a~6dを有する。管路6aは、出口部22とヒータコア2とを接続する。管路6bは、ヒータコア2と液圧ポンプ3とを接続する。管路6cは、液圧ポンプ3と三方弁4とを接続する。管路6dは、三方弁4と入口部21とを接続する。
 また、循環路6及びヒータ1は、管路7a、7bを介してエンジン5とも接続されている。三方弁4が管路6cと管路7aとの間を遮断し、管路6cと管路6dとの間を連通させた状態のとき、液圧ポンプ3が駆動されると、ヒータ1内及び循環路6を、図5において白矢印で示す方向に液体が循環する。
 このとき、車両に搭載されたバッテリーから、ヒータ1の発熱ユニット10に電力を供給することで発熱ユニット10が発熱し、流路50内の液体が加熱される。この加熱により生成された温水は出口部22及び管路6aを通ってヒータコア2に供給される。
 ヒータコア2に供給された温水はヒータコア2に具備された管を流れる。ヒータコア2には送風装置8から気体(空気)が送風される。ヒータコア2の管を流れる温水の熱は、ヒータコア2に具備されたフィンなどの熱伝達面を介して、送風装置8から送風された気体に伝達される。これにより、車内に温風が送風される。このモードは、例えばエンジン5の始動時など、エンジン5の排熱を利用できない場合に選択される。
 エンジン5が始動後、三方弁4を切り替えて、管路6cと管路7aとを連通させ、管路6cと管路6dとを遮断すれば、液体はエンジン5に供給されエンジン5の冷却水として機能する。このときの液体の流れを図5において黒矢印で表す。エンジン5を通過しエンジン5との熱交換により温められた温水は管路7b、6d、流入部51、流路50内、出口部22および管路6aを介してヒータコア2に供給される。したがって、このモードの場合には発熱ユニット10を通電(発熱)させなくてもヒータコア2に温水を供給でき、送風装置8を駆動させることで、車内に温風を送ることができる。
 流路50の内壁に凹凸を形成することで、その内壁と液体との接触面積を大きくして、熱交換効率をより高めることができる。
 例えば、図6(a)は、星形形状の凹凸を内壁に形成した流路51を表す。また、図6(b)は、波形形状の凹凸を内壁に形成した流路52を表す。
 あるいは、図6(c)に示すように、断面が十字状の流路53にして、液体との接触面積を増大させてもよい。
 また、筒部12は、角筒状の扁平形状に限らず、楕円もしくは円形状であってもよい。PTC素子16と内側内壁31との間の距離が短いほど、本体11の部分33への熱伝達効率を高くすることができる。
 筒部12及び発熱ユニット10のそれぞれの数は4つに限らず、求められるヒータ1の大きさや出力に応じて任意である。例えば、図8に示すように、筒部12及び発熱ユニット10の組み合わせは2つでもよい。図8に示す例では、本体71において流路50を挟んで対向する位置に筒部12及び発熱ユニット10が設けられている。
 実施形態のヒータ1は、車載以外の用途にも広く適用でき、いずれの用途にしても、小型、シンプル且つ低コストな構成にて、効率良く液体を加熱して、温水を生成できる。
 次に、電極板41、42の取出構造について説明する。
 図9(a)は、図1(a)及び(b)に示す一対の封止体23のうちの一方(図9(a)においては符号23aで表す)の外側の端面図である。
 本体11における例えば前述した出口部22が、封止体(第1の封止体)23aの中央を貫通して外部に突出している。その出口部22が封止体23aを貫通する部分には、電気絶縁性、防水性及び耐熱性を有する例えばシリコーン系の封止材91が設けられている。
 封止体23aの端面の外周側には、ひとつながりの電極連結プレート72が設けられている。封止体23aの端面において、電極連結プレート72よりも内側(中央側)には、4つのスリット74が形成されている。4つのスリット74はそれぞれ4つの筒部12の位置に対応する位置に形成されている。
 各スリット74からは、電極端子43が突出している。電極端子43は、発熱ユニット10が有する一対の電極板41、42のいずれか一方の電極板(例えば負極側電極板)の端部に一体に設けられている。
 各電極端子43は、電極連結プレート72側に折り曲げられて、電極連結プレート72の下に重ね合わされている。そして、電極端子43と電極連結プレート72とは、ネジ81によって、封止体23aに対して共締め固定されている。
 したがって、4つの発熱ユニット10のそれぞれの負極側電極板は、共通の電極連結プレート72に電気的に接続されている。さらに、4つのネジ止め部のうちの一つには、電気ケーブル85の一端部85aもネジ止めされている。したがって、4つの発熱ユニット10のそれぞれの負極側電極板は、共通の電気ケーブル85に電気的に接続されている。
 図9(b)は、封止体23aとは反対側(流路50の長手方向の反対側)の端部に設けられた封止体(第2の封止体)23bの外側の端面図である。
 本体11における例えば前述した入口部21が、封止体23bの中央を貫通して外部に突出している。その入口部21が封止体23bを貫通する部分には、電気絶縁性、防水性及び耐熱性を有する例えばシリコーン系の封止材92が設けられている。
 封止体23bの端面の外周側には、2つの電極連結プレート77、78が設けられている。2つの電極連結プレート77、78は空間的にも電気的にもつながっていない。
 封止体23bの端面において、電極連結プレート77、78よりも内側(中央側)には、4つのスリット75が形成されている。4つのスリット75はそれぞれ4つの筒部12の位置に対応する位置に形成されている。
 各スリット75からは、電極端子44が突出している。電極端子44は、発熱ユニット10が有する一対の電極板41、42の他方の電極板(例えば正極側電極板)の端部に一体に設けられている。
 4つの電極端子44のうち2つは、電極連結プレート77側に折り曲げられて、電極連結プレート77の下に重ね合わされている。そして、電極端子44と電極連結プレート77とは、ネジ82によって、封止体23aに対して共締め固定されている。
 4つの電極端子44のうち他の2つは、電極連結プレート78側に折り曲げられて、電極連結プレート78の下に重ね合わされている。そして、電極端子44と電極連結プレート78とは、ネジ82によって、封止体23aに対して共締め固定されている。
 すなわち、4つの発熱ユニット10のそれぞれの正極側電極板のうち2つは、電極連結プレート77に電気的に接続されている。他の2つの正極側電極板は、電極連結プレート78に電気的に接続されている。
 電極連結プレート77における2つのネジ止め部のうちの一つには、電気ケーブル86の一端部86aもネジ止めされている。したがって、4つの発熱ユニット10のそれぞれの正極側電極板のうち2つは、電気ケーブル86に電気的に接続されている。
 電極連結プレート78における2つのネジ止め部のうちの一つには、電気ケーブル87の一端部87aもネジ止めされている。したがって、他の2つの正極側電極板は、電気ケーブル87に電気的に接続されている。
 なお、4つの正極側電極板も、負極側と同様に、1つにまとめてもよい。
 正極側電極板を複数系統に分けると、複数の発熱ユニット10間で与える電力を異ならせることができる。すなわち、状況に応じて一部の発熱ユニット10だけを発熱させたり、一部の発熱ユニット10の発熱量を他よりも上げるまたは下げる制御が可能になる。
 図9(a)に示す負極側の電気ケーブル85は、封止体23aの端面に形成された貫通孔73を通じて、本体11の側面側に導出される。
 そして、図10に示すように、本体11の側面には筒状のケーブルガイド100が設けられている。ケーブルガイド100は、電気絶縁性及び耐熱性を有し、例えば石英管である。
 電気ケーブル85は、そのケーブルガイド100の内部を通されて、図9(b)に示す他方の封止体23bの端面に形成された貫通孔76を通じて、封止体23bの端面側に導かれる。
 したがって、すべての電気ケーブル85、86、87を、同じ端面側から本体11の外部に導出させることができる。また、前述した電極連結プレート72、77、78を使うことで、外部に引き出される電気ケーブルの本数を少なくすることができる。したがって、実施形態によれば、電気ケーブル85、86、87と外部電源との接続作業が容易になる。
 また、正極側の電極連結プレート77、78を本体11における長手方向の一方の端部に設け、負極側の電極連結プレート72を本体11における長手方向の他方の端部に設けている。この電極取出構造は、正負両極の電極連結プレートを本体11の同じ端部に設けた構造に比べて、正負の電極間の沿面距離を長くでき、高い安全性が確保できる。また、実施形態の電極取出構造は、正負両極の電極連結プレートが本体11の同じ端部に設けられた構造に比べて、本体11の端部における電極取出部の面積を小さくでき、ヒータ1全体の小型化を図れる。
 次に、実施形態のヒータ1をヒートポンプシステムに適用した具体例について説明する。
 図11は、そのヒートポンプシステムの模式図である。このヒートポンプシステムは、2つの熱交換器101、105と、膨張弁103と、圧縮機107と、前述した実施形態のヒータ1とを含む。
 このシステム内を冷媒が循環する。冷媒は、圧縮機107で圧縮されて、高温高圧ガスの状態で配管108を通じて熱交換器101に送られる。そして、熱交換器101における、加熱対象の流体(空気や液体)との熱交換により、上記冷媒は凝縮され、高温高圧の液体の状態で、配管102を通じて膨張弁103に送られる。
 膨張弁で膨張された冷媒は、低温低圧の液体の状態で、配管104を通じて熱交換器105に送られる。熱交換器105における大気などとの熱交換により、上記冷媒は蒸発され、低温低圧ガスの状態で、配管106を通じて圧縮機107に送られ、以上説明したサイクルが繰り返される。
 ヒータ1は、圧縮機107と熱交換器101との間の配管108に接続され、圧縮機107から熱交換器101に送られる圧縮ガスを加熱する。すなわち、ヒータ1は、圧縮機107と熱交換器101との間の経路における冷媒加熱を補助する。
 ヒータ1の前述した流路50内を圧縮ガスが流れ、そのガスは発熱ユニット10によって加熱される。すなわち、ヒータ1は、液体に限らず、気体の加熱にも有効である。
 また、ヒータ1は、図12に示すように、熱交換器101と膨張弁103との間の配管102に接続して、その配管102を流れる液体を加熱してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…ヒータ、10…発熱ユニット、11…本体、12…筒部、16…PTC素子、16a…電極面、21…絶縁シート、31…内側内壁、32…外側内壁、41…電極板、50~53…流路

Claims (6)

  1.  流体が流れる流路と、前記流路の外側に設けられ、発熱ユニットが収容された筒部とを有する金属製の本体であって、前記流路と前記筒部との間の部分、および前記筒部が同じ金属材料で一体に連続している本体と、
     前記筒部の端部を閉塞する封止体と、
     を備え、
     前記発熱ユニットは、
     電極面を有するPTC(Positive Temperature Coefficient)素子と、
     前記電極面に接着された電極板と、
     前記電極板と、前記筒部の内壁との間に設けられ、前記電極板に重ね合わされた絶縁体と、
     を有し、
     前記発熱ユニットは前記筒部の内壁間に狭圧され、前記流路と前記発熱ユニットとの間に、隙間がなく、前記本体の一部が連続した同じ材料で一体に介在していることを特徴とするヒータ。
  2.  前記PTC素子は、前記電極面を前記流路側に向けていることを特徴とする請求項1記載のヒータ。
  3.  前記筒部は、前記流路側に設けられた内側内壁と、前記内側内壁の反対側に設けられた外側内壁とを有し、
     前記本体において、前記流路と前記内側内壁との間の部分の体積は、前記外側内壁よりも外側の部分の体積よりも大きいことを特徴とする請求項1記載のヒータ。
  4.  前記筒部及び前記筒部内に収容された前記発熱ユニットは、それぞれ複数設けられ、
     前記封止体の端面に電極連結プレートが設けられ、
     前記複数の発熱ユニットのそれぞれが有する同極性の前記電極板が、前記電極連結プレートに共通に接続されていることを特徴とする請求項1記載のヒータ。
  5.  前記封止体は、前記流路の長手方向の一端側に設けられた第1の封止体と、他端側に設けられた第2の封止体とを有し、
     前記第1の封止体の端面に負極側の前記電極連結プレートが設けられ、前記第2の封止体の端面に正極側の前記電極連結プレートが設けられていることを特徴とする請求項4記載のヒータ。
  6.  冷媒を圧縮する圧縮機と、
     前記圧縮機で圧縮された前記冷媒が送られ、前記冷媒が凝縮される熱交換器と、
     前記熱交換器で凝縮された前記冷媒が送られ、前記冷媒が膨張される膨張弁と、
     前記圧縮機と前記熱交換器との間、または前記熱交換器と前記膨張弁との間の配管に接続された請求項1記載のヒータと、
     を備えたことを特徴とするヒートポンプシステム。
PCT/JP2011/073121 2011-03-04 2011-10-06 ヒータ及びヒートポンプシステム WO2012120718A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503329A JP6106078B2 (ja) 2011-03-04 2011-10-06 ヒータ及びヒートポンプシステム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-048354 2011-03-04
JP2011048354 2011-03-04
JPPCT/JP2011/069176 2011-08-25
PCT/JP2011/069176 WO2012120708A1 (ja) 2011-03-04 2011-08-25 液体加熱ヒータ

Publications (1)

Publication Number Publication Date
WO2012120718A1 true WO2012120718A1 (ja) 2012-09-13

Family

ID=46797696

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/069176 WO2012120708A1 (ja) 2011-03-04 2011-08-25 液体加熱ヒータ
PCT/JP2011/073121 WO2012120718A1 (ja) 2011-03-04 2011-10-06 ヒータ及びヒートポンプシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069176 WO2012120708A1 (ja) 2011-03-04 2011-08-25 液体加熱ヒータ

Country Status (2)

Country Link
JP (1) JP6106078B2 (ja)
WO (2) WO2012120708A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743093A (zh) * 2014-01-02 2014-04-23 常熟市林芝电热器件有限公司 Ptc液体加热器
CN105091318A (zh) * 2015-09-08 2015-11-25 常熟市林芝电热器件有限公司 具有喷嘴防堵塞功能的ptc液体加热器
WO2017030382A1 (ko) * 2015-08-18 2017-02-23 한온시스템 주식회사 차량용 난방장치 및 이에 구비되는 냉각수 순환펌프
KR20170048764A (ko) * 2015-10-27 2017-05-10 한온시스템 주식회사 냉각수 순환 펌프
CN106641729A (zh) * 2017-02-16 2017-05-10 中国石油大学(华东) 一种井口管道半导体加热器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105318551A (zh) * 2014-06-03 2016-02-10 上海帕克热敏陶瓷有限公司 一种新型即热式ptc液体加热器
CN105444401A (zh) * 2015-12-08 2016-03-30 芜湖恒美电热器具有限公司 Ptc液体加热器
WO2018216869A1 (ko) * 2017-05-25 2018-11-29 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
CN109599641B (zh) * 2017-09-30 2022-04-15 比亚迪股份有限公司 换热管以及电池热管理系统和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275144U (ja) * 1975-12-03 1977-06-04
JPS56106393U (ja) * 1980-01-18 1981-08-19
JPS58124727U (ja) * 1982-02-17 1983-08-25 千々波 天信 流体加熱器
JPS5941988U (ja) * 1982-09-10 1984-03-17 株式会社村田製作所 パイプ加熱装置
JPH116651A (ja) * 1997-06-13 1999-01-12 Janome Sewing Mach Co Ltd 流水加熱装置
WO2007119414A1 (ja) * 2006-03-20 2007-10-25 Daikin Industries, Ltd. 冷媒加熱装置および加熱制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117343U (ja) * 1991-03-26 1992-10-21 京セラ株式会社 流体加熱装置
JP2001210765A (ja) * 2000-01-27 2001-08-03 Toyo Radiator Co Ltd 排ガス用ヒートシンクおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275144U (ja) * 1975-12-03 1977-06-04
JPS56106393U (ja) * 1980-01-18 1981-08-19
JPS58124727U (ja) * 1982-02-17 1983-08-25 千々波 天信 流体加熱器
JPS5941988U (ja) * 1982-09-10 1984-03-17 株式会社村田製作所 パイプ加熱装置
JPH116651A (ja) * 1997-06-13 1999-01-12 Janome Sewing Mach Co Ltd 流水加熱装置
WO2007119414A1 (ja) * 2006-03-20 2007-10-25 Daikin Industries, Ltd. 冷媒加熱装置および加熱制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743093A (zh) * 2014-01-02 2014-04-23 常熟市林芝电热器件有限公司 Ptc液体加热器
WO2017030382A1 (ko) * 2015-08-18 2017-02-23 한온시스템 주식회사 차량용 난방장치 및 이에 구비되는 냉각수 순환펌프
US10744851B2 (en) 2015-08-18 2020-08-18 Hanon Systems Vehicular heating device and cooling water circulating pump provided therein
CN105091318A (zh) * 2015-09-08 2015-11-25 常熟市林芝电热器件有限公司 具有喷嘴防堵塞功能的ptc液体加热器
KR20170048764A (ko) * 2015-10-27 2017-05-10 한온시스템 주식회사 냉각수 순환 펌프
KR102367211B1 (ko) * 2015-10-27 2022-02-24 한온시스템 주식회사 냉각수 순환 펌프
CN106641729A (zh) * 2017-02-16 2017-05-10 中国石油大学(华东) 一种井口管道半导体加热器

Also Published As

Publication number Publication date
WO2012120708A1 (ja) 2012-09-13
JPWO2012120718A1 (ja) 2014-07-07
JP6106078B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2012120718A1 (ja) ヒータ及びヒートポンプシステム
WO2012011295A1 (ja) 液体流路内蔵式高効率温水発生車載用ヒータ
US9506698B2 (en) Electrically operable heating device
US9863663B2 (en) Heat exchanger
US9021795B2 (en) Heat transfer device and manufacturing method
KR20100055262A (ko) 고용량 피티씨 히터
US10576805B2 (en) Electrical heating device
WO2012077266A1 (ja) 熱媒体加熱装置
CN107791786B (zh) 电加热设备
JP2010135717A (ja) Ptcロード組立体及びこれを用いた車両用ptcヒーター
US10648709B2 (en) Heat exchanger for the temperature control of a battery
CN113571795B (zh) 温控组件及电池包
EP2734007B1 (en) Electrical heating device and equipment with pluggable heating module
JP6627058B2 (ja) 高耐電圧絶縁防水型車載用ヒータおよび車載用ヒータユニット
US20130188937A1 (en) Heat medium heating apparatus and vehicle air-conditioning apparatus provided with the same
KR20050018831A (ko) Ртс 소자를 이용한 자동차용 히터
KR100831832B1 (ko) 피티씨 로드 조립체
JP2011088506A (ja) 車載温水生成ユニット
CN113571796B (zh) 温控组件及电池包
ES2257673T3 (es) Intercambiador de calor que se utiliza para fines de calefaccion con un dispositivo de calefaccion electrico.
KR100864842B1 (ko) 난방용 열교환기
KR20090098029A (ko) 밀폐형 정온도계수 서미스터 가열기
JP2010276264A (ja) 温水生成ユニット、車載温水ヒータシステム及び温水生成ユニットの組立方法
KR101640036B1 (ko) 캐니스터용 히팅유닛
WO2021162095A1 (ja) 熱媒体加熱装置及び車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860552

Country of ref document: EP

Kind code of ref document: A1