WO2012120653A1 - Production method for semiconductor device and semiconductor device - Google Patents

Production method for semiconductor device and semiconductor device Download PDF

Info

Publication number
WO2012120653A1
WO2012120653A1 PCT/JP2011/055408 JP2011055408W WO2012120653A1 WO 2012120653 A1 WO2012120653 A1 WO 2012120653A1 JP 2011055408 W JP2011055408 W JP 2011055408W WO 2012120653 A1 WO2012120653 A1 WO 2012120653A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
layer
region
insulating layer
forming
Prior art date
Application number
PCT/JP2011/055408
Other languages
French (fr)
Japanese (ja)
Inventor
舛岡 富士雄
原田 望
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2011/055408 priority Critical patent/WO2012120653A1/en
Priority to PCT/JP2012/052777 priority patent/WO2012120951A1/en
Priority to JP2012521405A priority patent/JP5114608B2/en
Priority to CN2012800004124A priority patent/CN102792452A/en
Priority to KR1020127015784A priority patent/KR101350577B1/en
Priority to TW101107287A priority patent/TW201242003A/en
Publication of WO2012120653A1 publication Critical patent/WO2012120653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device and a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure, and the semiconductor device.
  • Solid-state imaging devices such as CCD and CMOS type are widely used for video cameras, stale cameras and the like. Further, there is a demand for improved performance such as higher resolution, higher speed operation, and higher sensitivity of the solid-state imaging device.
  • a solid-state imaging device in which one pixel is configured in one columnar semiconductor 110 is known (see, for example, Patent Document 1).
  • an N + type silicon layer 51 that functions as a signal line of a solid-state imaging device is formed on a semiconductor substrate.
  • the columnar semiconductor 110 is connected to the N + type silicon layer 51.
  • the columnar semiconductor 110 is formed with a MOS transistor for removing accumulated charges, which includes a P-type silicon layer 52, insulating films 53a and 53b, and gate conductor layers 54a and 54b.
  • the columnar semiconductor 110 is formed with a photodiode that is connected to the MOS transistor and accumulates charges generated by irradiation with light (electromagnetic energy wave).
  • This photodiode is composed of a P-type silicon layer 52 and N-type silicon layers 58a and 58b.
  • a P + type silicon layer 56 and an N + type silicon layer formed on the P type semiconductor 52 surrounded by the photodiode as a channel, the photodiode as a gate, and the photodiode are connected to the pixel selection lines 57a and 57b.
  • Junction transistors are formed using the P-type silicon layer 52 in the vicinity of 51 as a source and a drain, respectively.
  • the basic operation of this solid-state imaging device includes a signal charge accumulation operation in which signal charges (electrons in this case) generated by light irradiation are accumulated in a photodiode, and a P-type silicon layer 52 and P + in the vicinity of the N + -type silicon layer 51.
  • a signal read operation for modulating the source / drain current flowing between the silicon layer 56 and the gate voltage by the photodiode voltage corresponding to the above-mentioned accumulated signal charge and reading this as a signal current, and completion of this signal read operation Thereafter, the signal charge accumulated in the photodiode is reset to remove the N + -type silicon layer 51 by applying an ON voltage to the gate conductor layers 54a and 54b of the MOS transistor.
  • the pixels shown in FIG. 14 are two-dimensionally arranged in the photosensitive area.
  • the signal reading operation is performed by transmitting a pixel signal (signal current) to an output circuit provided around the photosensitive region via the N + type silicon layer 51.
  • the reset operation is also performed through electrical transmission between the pixel and the peripheral circuit of the photosensitive region.
  • the bonding metal layer 59 formed on the silicon substrate 60 Possible structures are possible. As a result, the electric resistance of the signal line is almost determined by the metal layer 59, so that the high-speed operation of the signal reading operation described above is realized. However, it is difficult to form the metal layer 59 bonded to the N + type silicon layer 51 from the viewpoint of the affinity of bonding between the metal material and the silicon material.
  • the following method can be considered to form the metal layer 59 on the silicon substrate 60. That is, as shown in FIG. 15B, a silicon oxide layer 62 is formed on the semiconductor substrate 61, and a metal layer 59 is formed on the silicon oxide layer 62. Then, the semiconductor substrate 61 on which the metal layer 59 is formed and the semiconductor substrate 64 are bonded. Thereafter, pixels are formed in the portion of the semiconductor substrate 64 indicated by the broken line in FIG. 15B.
  • a dot-dash line D-D ′ shown in FIG. 15B shows a state in which the semiconductor substrate 64 is formed to a predetermined height by polishing, etching, or other separation methods of the semiconductor substrate 64.
  • the side surface of a columnar semiconductor having a columnar structure is used as a channel region, and a vertical MOS transistor having a structure in which a gate electrode surrounds the channel region is an SGT (Surrounding Gate Transistor).
  • SGT Square Gate Transistor
  • a planar silicon film 67 is formed on the buried oxide film substrate 66, and a columnar structure is formed by the planar silicon film 67 and the PMOS columnar silicon layer 68. .
  • a P + -type silicon diffusion layer 69 that functions as a drain is formed in the planar silicon film 67.
  • a P + -type silicon diffusion layer 70 functioning as a source is formed on the PMOS columnar silicon layer 68, and a gate insulating layer 71 is formed on the outer periphery of the PMOS columnar silicon layer 68.
  • a gate electrode 72 is formed on the outer periphery of the gate insulating layer 71.
  • a silicon nitride (SiN) film 73 and a silicon oxide (SiO 2 ) film 74 are formed so as to surround the gate electrode 72, the P + -type silicon diffusion layer 70, and the P + -type silicon diffusion layer 69.
  • a contact hole 75 is formed in the silicon oxide layer 74, and the P + -type silicon diffusion layer 70 is connected to the source metal wiring 76 through the contact hole 75.
  • one MOS transistor is formed in a columnar structure.
  • the P + -type silicon diffusion layer 69 shown in FIG. 16 is connected to a metal wiring (not shown) at a predetermined portion where the planar silicon film 67 extends on the same plane.
  • the connection between the P + -type silicon diffusion layer 69 and the metal wiring is as in the P + -type silicon diffusion layer 70. It is required to be performed at a short distance.
  • a pixel signal (signal current) is provided around the photosensitive region and transmitted to an external circuit via the N + type silicon layer 51 functioning as a signal line. Is done.
  • the reset operation is also performed through electrical transmission between the pixel and an external circuit in the photosensitive area. The responsiveness of this electrical transmission is greatly influenced by the electrical resistance and parasitic capacitance of the wiring connecting the pixel and the peripheral circuit. In order to increase the number of pixels of the solid-state imaging device or the number of readout screens per unit time, it is necessary to reduce the electrical resistance of such wiring.
  • such an electric resistance is substantially determined by the electric resistance of the N + type silicon layer 51.
  • N + -type silicon layer 51 is formed a donor impurity in silicon (Si) semiconductor, such as phosphorus (P), arsenic (As) by ion doping (ion implantation), electrical of the N + -type silicon layer 51
  • Si silicon
  • P phosphorus
  • As arsenic
  • ion doping ion implantation
  • the resistance value cannot be made smaller than the electrical resistance value of a metal used in a normal semiconductor device such as aluminum (Al), copper (Cu), tungsten (W), nickel (Ni).
  • the solid-state imaging device shown in FIG. 14 has a problem inferior in high-speed operation characteristics as compared with a solid-state imaging device that performs electrical connection between a pixel and a peripheral circuit by a metal wiring.
  • the P + -type silicon diffusion layer 69 is connected to the metal wiring at the portion where the planar silicon film 67 is extended.
  • Such means by connecting the P + -type silicon diffusion layer 69 and the metal wiring cannot be connected to the metal wiring at a short distance as in the P + -type silicon diffusion layer 70, so that the metal wiring and the SGT channel are not connected.
  • a considerable electrical resistance is present up to the end of the closest P + -type silicon diffusion layer 69. For this reason, in the semiconductor device having SGT, it is necessary to reduce this electric resistance in order to realize further high-speed signal reading operation.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a semiconductor device capable of realizing high integration and high speed operation.
  • a method of manufacturing a semiconductor device includes: A first insulating layer forming step of forming a first insulating layer on the semiconductor substrate; An insulating layer removing step of removing a predetermined portion of the first insulating layer to form an insulating layer removal region; A first semiconductor layer forming step of forming a first semiconductor layer containing a donor impurity or an acceptor impurity on the semiconductor substrate so as to cover at least the insulating layer removal region; A conductive layer forming step of forming a conductive layer on the first semiconductor layer; A molding step of molding the conductive layer and the first semiconductor layer into a predetermined shape; A second insulating layer forming step of forming a second insulating layer so as to cover the conductive layer and the first semiconductor layer formed in the predetermined shape; A planarization step of planarizing the surface of the second insulating layer; An adhesion step of adhering a substrate to the flattened surface of the second insulating layer;
  • the circuit element forming step includes Forming a third insulating layer on the outer periphery of the columnar semiconductor and forming a gate conductor layer on the outer periphery of the third insulating layer; Forming a fourth semiconductor region having the same conductivity type as the first semiconductor region in a portion above the gate conductor layer and in a surface layer portion of the columnar semiconductor;
  • the columnar semiconductor includes a step of forming a third semiconductor region having a conductivity type opposite to that of the first semiconductor region in an upper portion of the third insulating layer.
  • the circuit element forming step includes Forming a third insulating layer on the outer periphery of the columnar semiconductor and forming a gate conductor layer on the outer periphery of the third insulating layer; And forming a fifth semiconductor region having the same conductivity type as that of the first semiconductor region at a position above the third insulating layer in the columnar semiconductor.
  • the circuit element forming step includes Preferably, the method includes a step of forming a sixth semiconductor region having a conductivity type opposite to that of the first semiconductor region in an upper portion of the columnar semiconductor.
  • the first semiconductor layer forming step includes a step of forming a second semiconductor layer functioning as an electric resistance in the same layer as the first semiconductor layer.
  • the first semiconductor layer forming step includes a step of forming an insulating film functioning as a capacitor insulating film in a predetermined region on the first semiconductor layer functioning as a capacitor electrode;
  • the conductive layer forming step preferably includes a step of forming a conductive layer functioning as a capacitor electrode together with the first semiconductor layer on the insulating film.
  • the first insulating layer forming step forms a fourth insulating layer together with the first insulating layer on the semiconductor substrate, and has a thickness larger than that of the fourth insulating layer in a preset capacitance forming region.
  • Forming a thin fifth insulating layer functioning as a capacitive insulating film includes a step of forming a conductive layer functioning as a capacitor electrode on the fifth insulating layer,
  • the insulating layer removing step preferably includes a capacitor forming step of forming an impurity layer having a donor impurity or an acceptor impurity in the capacitor forming region and functioning as a capacitor electrode.
  • a mask alignment mark formation region setting step for setting a mask alignment mark formation region on the semiconductor substrate; Forming a mask alignment hole in the mask alignment mark formation region to expose at least one of the insulating layer removal region, the first insulating layer, and the conductive layer; A mask alignment mark forming step of forming a mask alignment mark comprising at least one of the insulating layer removal region, the first insulating layer, and the conductive layer through the mask alignment hole; It is preferable that the method further includes a mask alignment step of performing mask alignment of the photomask with the mask alignment mark as a reference.
  • a mask alignment mark comprising at least one of the insulating layer removal region, the first insulating layer, and the conductive layer is formed through the transparent insulator,
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
  • the columnar semiconductor is A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
  • a diode that accumulates signal charges generated by irradiation of electromagnetic energy waves from the second semiconductor region and the fourth semiconductor region is formed, The diode functions as a gate, one of the first semiconductor region and the third semiconductor region functions as a source, the other functions as a drain, and a channel formed in the second semiconductor region.
  • a junction transistor is formed that is capable of taking out a current that flows and changes in accordance with the amount of signal charge accumulated in the diode by a signal taking-out means,
  • the gate conductor layer functions as a gate, and a voltage is applied to the gate conductor layer by a MOS transistor in which one of the first semiconductor region and the fourth semiconductor region functions as a source and the other functions as a drain.
  • signal charge removing means for removing the signal charge accumulated in the diode in the first semiconductor region is formed.
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
  • the columnar semiconductor is A second semiconductor region formed on the first semiconductor region and having a conductivity type opposite to that of the first semiconductor region or an intrinsic semiconductor;
  • the gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain. To do.
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
  • the columnar semiconductor is Between the first semiconductor region and the sixth semiconductor region, a second semiconductor region made of a conductive type or a specific semiconductor opposite to the first semiconductor region is provided, A diode is formed from the second semiconductor region and the sixth semiconductor region.
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention, A plurality of the columnar semiconductors are formed on the first semiconductor layer;
  • the plurality of columnar semiconductors include a plurality of first columnar semiconductors in which the first semiconductor region is doped with an acceptor impurity, and a plurality of second columnar semiconductors in which the first semiconductor region is doped with a donor impurity. It consists of a semiconductor.
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention, A plurality of the columnar semiconductors are formed on the first semiconductor layer; In the plurality of columnar semiconductors, both or one of the plurality of first semiconductor regions and the plurality of conductive layers are connected to each other.
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention, A plurality of the columnar semiconductors are formed on the first semiconductor layer; Each of the columnar semiconductors is A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor; A fifth semiconductor region formed on the second semiconductor region; A third insulating layer formed on the outer periphery of the second semiconductor region; A gate conductor layer formed on the outer periphery of the third insulating layer, The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain.
  • the first semiconductor layer is formed so as to be continuously connected over the plurality of columnar semiconductors, and the first semiconductor layer formed so as to be connected is a contact formed on an insulating layer. It is connected to a wiring layer for connecting to an external circuit through a hole.
  • a semiconductor device is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention, A plurality of the columnar semiconductors are formed on the first semiconductor layer; Each of the columnar semiconductors is A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor; A fifth semiconductor region formed on the second semiconductor region; A third insulating layer formed on the outer periphery of the second semiconductor region; A gate conductor layer formed on the outer periphery of the third insulating layer, The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain.
  • the first semiconductor layer is formed so as to be continuously connected over the plurality of columnar semiconductors, and the first semiconductor layer is connected to a predetermined hole via a contact hole formed in the insulating layer. It is connected to a wiring layer for connecting to the gate of the transistor.
  • FIG. 20 is a circuit plan view for explaining a two-stage CMOS inverter circuit according to a tenth embodiment.
  • (First embodiment) 1A to 1L show a method for manufacturing a solid-state imaging device according to the first embodiment of the present invention.
  • high-concentration hydrogen ions H +
  • a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed (see Non-Patent Document 2).
  • a first silicon oxide layer 3 that is an insulating film is formed on the first semiconductor substrate 1 by thermal oxidation or CVD (Chemical Vapor Deposition).
  • the first semiconductor substrate 1 may be a unique semiconductor (i-type silicon) that does not substantially contain impurities, instead of P-type silicon.
  • the hole 4 is formed by removing silicon oxide (SiO 2 ) corresponding to the portion where the signal line drain of the solid-state imaging device is formed in the first silicon oxide layer 3. To do.
  • the region (hole 4) from which the silicon oxide has been removed becomes the silicon oxide layer removal region 48 (see FIGS. 11A and 13A).
  • a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3 and the first semiconductor substrate 1 by the CVD method so as to cover the hole 4.
  • the polycrystalline silicon layer 5 is ion-doped with a donor impurity such as phosphorus (P) or arsenic (As), thereby the first semiconductor substrate 1 and the first silicon oxide.
  • a donor impurity such as phosphorus (P) or arsenic (As)
  • P phosphorus
  • As arsenic
  • tungsten (W), tungsten silicide (WSi), nickel (Ni), nickel silicide (NiSi) is deposited on the N + polycrystalline silicon layer 5a by vapor deposition or CVD. Or a metal layer 7 formed by laminating a plurality of these layers.
  • N + polysilicon layer 5a and the metal layer 7 are part that embeds the hole 4 remaining, N + polycrystalline silicon layer
  • the 5a and the metal layer 7 are formed into a predetermined shape.
  • the source or drain of the junction transistor in the pixel of the solid-state imaging device is formed.
  • a second silicon oxide layer 8 that is an insulating film is formed by a CVD method so as to cover the N + polycrystalline silicon layer 5a, the metal layer 7, and the first silicon oxide layer 3. . Then, the surface of the second silicon oxide layer 8 is planarized by CMP (Chemical Mechanical Polishing).
  • a second semiconductor substrate 9 made of silicon (Si) and having a planarized surface is prepared, and the planarized surface of the second semiconductor substrate 9 and the second silicon oxide are prepared.
  • the planarized surfaces of the layer 8 are bonded together by pressure bonding. In this bonding process, the difference in thermal expansion coefficient between the silicon layer in the second semiconductor substrate 9 and the silicon layer in the second silicon oxide layer 8 are bonded to each other. Due to the difference, it is possible to obtain a laminated structure in which warpage, cracking and peeling are unlikely to occur.
  • the N + polycrystalline silicon layer 5a corresponds to the N + type silicon layer 51 shown in FIG. 14, and in this embodiment, the N + polycrystalline silicon layer 5a includes all of its formation regions.
  • the metal layer 7 is joined over the entire area.
  • the silicon layer in the region other than the silicon layer in the region directly above so that the silicon layer in the region immediately above the N + polycrystalline silicon layer 5 a remains. Are removed by etching. Thereby, a silicon (Si) pillar 1a having a pillar structure is formed.
  • the silicon pillar 1a becomes a P-type silicon layer 30 shown in FIGS. 1K, 1L and the like.
  • heat treatment is performed to thermally diffuse the donor impurity from the N + polycrystalline silicon layer 5a to the silicon pillar 1a, thereby forming the N + diffusion layer 6a in the lower part of the silicon pillar 1a.
  • thermal oxidation is performed to form third silicon oxide layers 10a and 10b that are insulators on the outer periphery of the silicon pillar 1a.
  • gate conductor layers 11a and 11b are formed on the outer peripheral portions of the third silicon oxide layers 10a and 10b by vapor deposition or CVD.
  • an N-type is formed by ion-doping a donor impurity such as phosphorus (P) or arsenic (As) in the upper portion of the gate conductor layers 11a and 11b and the surface layer portion of the silicon pillar 1a.
  • Silicon layers 12a and 12b are formed.
  • the N-type silicon layers 12a and 12b and the silicon pillar 1a (P-type silicon layer 30) form a photodiode as signal charge storage means for storing signal charges (electrons in this case) corresponding to incident light. Is done.
  • the signal charge is accumulated in the silicon pillar 1a (P-type silicon layer 30) between the N + diffusion layer 6a and the P + -type silicon layer 13a.
  • an upper portion of the third silicon oxide layers 10a and 10b is ion-doped with an acceptor impurity such as boron (B) to thereby form a P + -type silicon layer 13a.
  • an acceptor impurity such as boron (B)
  • a third oxide which is an insulator is formed by thermal oxidation on the outer periphery of the silicon pillar 1b constituting another pixel and adjacent to the silicon pillar 1a constituting the pixel of the solid-state imaging device. Silicon layers 10c and 10d are formed.
  • the silicon pillar 1b is formed by the steps shown in FIGS. 1A to 1K, similarly to the silicon pillar 1a.
  • gate conductor layers 11c and 11d are formed on the outer periphery of the third silicon oxide layers 10c and 10d by vapor deposition or CVD.
  • the upper portion of the gate conductor layers 11c and 11d and the surface layer portion of the silicon pillar 1a are ion-doped with a donor impurity such as phosphorus (P) or arsenic (As).
  • Silicon layers 12c and 12d are formed.
  • the N-type silicon layers 12c and 12d and the silicon pillar 1b form a photodiode as signal charge storage means for storing signal charges (electrons in this case) corresponding to incident light.
  • the signal charge is accumulated in the silicon pillar 1b (P-type silicon layer 30) between the N + diffusion layer 6ab and the P + -type silicon layer 13b.
  • the N + diffusion layer 6a in the silicon pillar 1a is thermally diffused from the N + polycrystalline silicon layer 5a to the silicon pillar 1a by heat treatment. Formed.
  • the N + diffusion layer 6a is not limited to this, and the N + diffusion layer 6a is formed from the N + polycrystalline silicon layer 5a to the first semiconductor substrate by heat treatment at an arbitrary stage after the N + polycrystalline silicon layer 5a shown in FIG. 1C is formed. It can also be formed by diffusing donor impurities in 1. That is, after the step of forming the N + polycrystalline silicon layer 5a shown in FIG.
  • the impurities are diffused from the N + polycrystalline silicon layer 5a including the donor impurity, thereby the N + diffusion layer 6a is formed in the silicon pillar 1a.
  • the N + diffusion layer 6a may be formed by performing heat treatment on the silicon pillar 1a (P-type silicon layer 30) in the stage shown in FIG. 1K. Further, the heat treatment for forming such an N + diffusion layer 6a may be performed only once or may be performed in a plurality of times.
  • the solid-state imaging device is formed by the processes shown in FIGS. 1A to 1L. In addition, pixels of the solid-state imaging device are formed on each of the silicon pillars 1a and 1b.
  • N + polycrystalline silicon layer 5a and metal layer 7 formed below silicon pillars 1a and 1b and joined to each other constitute a signal line of the solid-state imaging device.
  • the N + diffusion layers 6a and 6ab in the two silicon pillars 1a and 1b are electrically connected to each other.
  • junction transistors are formed in the silicon pillars 1a and 1b.
  • a photodiode constituted by N-type silicon layers 12a and 12b (12c and 12d) and a silicon pillar 1a (P-type silicon layer 30) is a gate
  • P + -type silicon layers 13a and 13b are drains
  • N + The diffusion layers 6a and 6ab function as sources.
  • the junction transistor channel is formed in the silicon pillars 1a and 1b.
  • an external circuit serving as a signal extraction unit that flows as channels through the channels in the silicon pillars 1a and 1b by the junction transistor and extracts a current that changes according to the amount of signal charge accumulated in the photodiode as an electric signal. (Not shown) is provided.
  • the silicon pillars 1a and 1b shown in FIG. 1L are formed on the silicon pillars 1a and 1b (P-type silicon layer 30) between the N + diffusion layers 6a and 6ab and the P + -type silicon layers 13a and 13b by the photodiode.
  • MOS transistors are formed as signal charge removing means for removing the signal charges accumulated in the N + diffusion layers 6a and 6ab.
  • gate conductor layers 11a, 11b, 11c formed on the outer peripheral surfaces of the third silicon oxide layers 10a, 10b, 10c, 10d so as to surround the silicon pillars 1a, 1b (P-type silicon layer 30).
  • 11d functions as a gate
  • N + diffusion layers 6a and 6ab function as a drain
  • N-type silicon layers 12a, 12b, 12c, and 12d function as a source, respectively.
  • the channel of this MOS transistor is formed in the silicon pillars 1a and 1b.
  • the silicon layer of the second semiconductor substrate 9 and the second silicon oxide layer 8 on the first semiconductor substrate 1 are bonded to each other on the planarized surfaces. Is done.
  • the first semiconductor substrate 1 (second silicon oxide layer 8) and the second semiconductor substrate 9 are bonded to each other over the entire surfaces of the first semiconductor substrate 1 and the second semiconductor substrate 9. Since this is performed between the Si (silicon) surface and the SiO 2 (silicon oxide) surface having a high affinity, it is possible to obtain a laminated structure in which warpage, cracking, and peeling are unlikely to occur.
  • the metal layer 7 is bonded to the N + polycrystalline silicon layer 5a constituting the signal line in the pixel of the solid-state imaging device, the electrical resistance between the pixel and the peripheral circuit of the pixel Can be lowered.
  • the solid-state imaging device can be operated at a higher speed even when the number of pixels is increased or the number of readout screens per unit time is increased as compared with the conventional solid-state imaging device.
  • a PN junction (photodiode) composed of a P-type silicon layer 30 and N-type silicon layers 12a and 12b, and a P-type silicon layer 30 and N + diffusion are used.
  • the PN junction composed of the layer 6a is formed in the silicon pillar 1a made of single crystal silicon. Since the PN junction is thus formed in single crystal silicon, a pixel of a solid-state imaging device with low leakage current is configured.
  • the silicon pillar 1a which is a photoelectric conversion region and is reflected by the metal layer 7.
  • the optical path length in the silicon pillar 1a increases, and the sensitivity of the solid-state imaging device is improved.
  • the solid-state imaging device can be easily manufactured while obtaining the same sensitivity as that of the conventional example. An effect is also obtained.
  • N + polycrystal is formed by CVD so as to fill (cover) the hole 4 on the first silicon oxide layer 3 and the first semiconductor substrate 1.
  • a polycrystalline silicon layer 5 to be a silicon layer 5a was formed.
  • a single crystalline silicon layer may be formed by epitaxial growth.
  • a single crystal silicon layer can be formed also on the first silicon oxide layer 3, and thereafter, a solid-state imaging device is formed in the same manner as the steps shown in FIGS. 1C to 1K. Can do.
  • the first semiconductor substrate 1 is thinned to a predetermined thickness by removing the lower part of the first semiconductor substrate 1 by using a heat treatment at 400 to 600 ° C. with the separation layer 2 as a boundary. did.
  • the first semiconductor substrate 1 is not limited to this, but the first semiconductor substrate 1 is formed of a P + -type substrate and a P-type silicon layer formed by epitaxial growth on the P + -type substrate. Can also be performed by etching and CMP.
  • the gate insulating layers 15a and 15b are formed on the outer periphery of the silicon pillar 1a by the oxidation method or the CVD method, and the gate insulating layers 15a and 15b are formed.
  • Gate conductor layers 16a and 16b functioning as gates of SGTs (MOS transistors) are formed on the outer periphery of the gate electrode.
  • an upper portion of the gate conductor layers 16a and 16b is ion-doped with a donor impurity such as phosphorus (P) or arsenic (As), thereby functioning as an NGT functioning as a source of SGT (MOS transistor).
  • a donor impurity such as phosphorus (P) or arsenic (As)
  • P phosphorus
  • As arsenic
  • a + type silicon layer 17a is formed.
  • a metal wiring layer 18a is formed on the N + type silicon layer 17a by vapor deposition and pattern etching.
  • an SGT specifically, an N-channel SGT is formed on the second semiconductor substrate 9.
  • the N + polycrystalline silicon layer 55a functioning as the drain of the N channel type SGT may function as a source in the N channel type SGT
  • the N + type silicon layer 17a functioning as the source may be the N channel type SGT. , It may function as a drain.
  • the metal layer 7 is bonded to the entire back surface of the N + polycrystalline silicon layer 55a that functions as a drain. With this configuration, the electrical resistance from the metal layer 7 to the N + diffusion layer 6a is reduced, so that an SGT with high speed operation is obtained.
  • an N channel type SGT formation region 1n is an N channel type SGT
  • a P channel type SGT formation region 1p is a P channel type.
  • Each SGT is formed.
  • the N-channel SGT in the N-channel SGT formation region 1n is formed in the same manner as the steps shown in FIGS. 1A to 1J of the first embodiment and FIG. 2 of the second embodiment.
  • the P-channel SGT in the P-channel SGT formation region 1p is formed in substantially the same manner as the steps shown in FIGS. 1A to 1J of the first embodiment and FIG. 2 of the second embodiment.
  • the step corresponding to FIG. 1C instead of forming the N + polycrystalline silicon layer 55a that functions as the drain of the N channel type SGT, boron (B ) Or the like is ion-doped to form a P + polycrystalline silicon layer 55b that functions as a source of the P-channel SGT.
  • an N channel type SGT constituted by the silicon pillar 1a and a silicon pillar 1b are formed.
  • a P channel type SGT is formed.
  • the N-type silicon layer 30a is formed by ion doping a P-channel SGT silicon pillar 1b (P-type silicon) with a donor impurity such as phosphorus (P) or arsenic (As).
  • the gate insulating layers 15a, 15b, 15c, and 15d are formed on the outer peripheral portions of the silicon pillars 1a and 1b by thermal oxidation or CVD, and the gate insulating layers 15a, 15b, and 15c are formed. , 15d, gate conductor layers 16a, 16b, 16c, 16d are formed by CVD (see FIG. 3B).
  • donor impurities and acceptor impurities are ion-doped in the upper portions of the gate conductor layers 16a, 16b, 16c, and 16d, respectively.
  • An N + type silicon layer 17a that functions as a source and a P + type silicon layer 17b that functions as a source of a P-channel type SGT are formed.
  • the N channel type SGT and the P channel type SGT are formed on the second semiconductor substrate 9.
  • any one of the N + polycrystalline silicon layer 55a and the N + diffusion layer 6a in the silicon pillar 1a in the N channel type SGT and the N + type silicon layer 17a is a drain, and the other is Act as a source.
  • any one of the P + polycrystalline silicon layer 55b and the P + diffusion layer 6b and the P + type silicon layer 17b in the silicon pillar 1b in the P channel type SGT is a drain, the other functions as a source.
  • the N-channel SGT and the P-channel SGT can be easily formed on the second semiconductor substrate 9.
  • the P-channel SGT silicon pillar 1b (P-type silicon) is formed with phosphorus (P), arsenic (As), or the like.
  • the N-type silicon layer 30a was formed by ion doping of the donor impurities.
  • the first semiconductor substrate 1 in FIG. 1A is replaced with i-type silicon, which is a unique semiconductor, instead of P-type silicon. In the process corresponding to FIG.
  • the silicon pillar 1a in the type SGT is ion-doped with an acceptor impurity such as boron (B) to form a P-type silicon layer 30, and the silicon pillar 1a in the P-channel type SGT has phosphorus (P) or arsenic (As). It is also possible to form the N-type silicon layer 30a by ion doping with a donor impurity such as
  • an N channel type SGT and a P channel type SGT are formed on the second semiconductor substrate 9, which is the same semiconductor substrate, in substantially the same manner as in the first and third embodiments (FIGS. 1A to 1D). 1J, see FIGS. 3A and 3B).
  • N + polycrystalline silicon layers 55a functioning as sources and P + many functioning as drains.
  • the crystalline silicon layers 55b are electrically connected to each other by the metal layers 7aa and 7bb, the first connection metal layer 7a, and the second connection metal layer 7b.
  • the metal layer 7 is formed by vapor deposition and etching so as to cover the silicon layers to be the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b. . Then, the metal layer 7, the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b are formed into a predetermined shape by etching. Thereby, as shown in FIG. 4, an N + polycrystalline silicon layer 55a, a P + polycrystalline silicon layer 55b, metal layers 7aa and 7bb, and a first connection metal layer 7a are formed.
  • a silicon oxide layer 20 is formed on the first connection metal layer 7a, and a contact hole 21c is formed in the silicon oxide layer 20.
  • the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b and the external metal wiring layer 22c formed on the silicon oxide layer 20 through the contact hole 21c and the first connection metal layer 7a.
  • a second connection metal layer 7b is formed in a portion extending from the first connection metal layer 7a, and the second connection metal layer 7b is used to electrically connect from a predetermined location through a contact hole (not shown). Take out the contact.
  • metal layers 7aa and 7bb are bonded to the entire back surfaces of N + polycrystalline silicon layers 55a and 55b that function as drains of the N-channel SGT, respectively.
  • the N + diffusion layers 6a and 6b and the plurality of metal layers 7aa and 7bb which are one of the plurality of metal layers 7aa and 7bb are connected to each other.
  • both of the N + diffusion layers 6a and 6b and the plurality of metal layers 7aa and 7bb may be connected to each other.
  • the N + polycrystalline silicon layer 55a functions as an N-channel SGT source
  • the P + polycrystalline silicon layer 55b functions as a P-channel SGT drain.
  • the present invention is not limited to this, and the N + polycrystalline silicon layer 55a can also function as an N-channel SGT drain and the P + polycrystalline silicon layer 55b can function as a P-channel SGT source. Further, both the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b may function as a source or a drain.
  • the source and drain constituted by the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b are arranged on the upper surface of the silicon oxide layer 20.
  • the metal wiring layers 22a, 22b, and 22c are electrically connected to each other by the first connection metal layer 7a without being connected after being drawn out through a contact hole or the like. Thereby, the integration degree of the circuit element which has SGT can be raised.
  • the semiconductor device manufacturing method according to the present embodiment can be applied to a solid-state imaging device manufacturing method.
  • the drains of the pixels are connected to each other by the first connection metal layer 7a. Connect with.
  • the drain and source of each pixel need not be connected to each other after being connected to another metal wiring in the upper layer portion via a contact hole or the like. For this reason, further high integration of the pixels of the solid-state imaging device is realized.
  • FIGS. 5A to 5C a method for forming an electrical resistance in a semiconductor device according to a fifth embodiment of the present invention will be described with reference to FIGS. 5A to 5C.
  • the manufacturing process of the semiconductor device according to the present embodiment and the modification thereof is the same as that of the first embodiment except for the case specifically described below.
  • an electrical resistance which is a circuit element of the semiconductor device is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
  • a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1.
  • a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
  • a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3, and in the process shown in FIG. 1C, phosphorus (P) or The N + polycrystalline silicon layer 5a is formed by ion doping with a donor impurity such as arsenic (As).
  • a donor impurity such as arsenic (As).
  • N + polycrystalline silicon layers 23a and 23b are formed by ion doping with a donor impurity such as) at a predetermined concentration.
  • the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23 in which the donor impurity is not ion-doped reduce the electric resistance value in a predetermined region (polycrystalline silicon layer 23) of the polycrystalline silicon layer 5 and A resistance is formed.
  • the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23 are formed from the polycrystalline silicon layer 5 (see FIG. 1B) in the same manner as the N + polycrystalline silicon layer 5a (see FIG. 1C). Therefore, it is located in the same layer as the N + polycrystalline silicon layer 5a.
  • metal wiring layers 24a and 24b located in the same layer as the metal layer 7 are formed in the same manner as the metal layer 7 on the N + polycrystalline silicon layers 23a and 23b.
  • a predetermined region of the polycrystalline silicon layer 5 is ion-doped with a donor impurity having a predetermined concentration, so that N + polycrystalline silicon layers 23a and 23b having a predetermined electric resistance value, polycrystalline silicon Layer 23 is formed.
  • the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23 are formed in the same layer as the N + polycrystalline silicon layer 5a.
  • the polycrystalline silicon layer 25 is formed in the step shown in FIG. 1B and formed into a predetermined shape by etching
  • the polycrystalline silicon layer is formed by vapor deposition or CVD.
  • Metal wiring layers 26 a and 26 b connected to the layer 25 are formed. In this way, electrical resistance in the semiconductor device is also formed by the polycrystalline silicon layer 25.
  • the second silicon oxide layer 8 is formed on the second semiconductor substrate 9, and the N + is formed on the second silicon oxide layer 8 by the method described above.
  • Polycrystalline silicon layers 23a and 23b and a polycrystalline silicon layer 23 are formed.
  • the first silicon oxide layer 3 is formed on the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23, and the silicon oxide layer 20 (see FIG. 4) is formed on the first silicon oxide layer 3. It is also possible to do.
  • the electrical resistance shown in FIG. 5A is formed from the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23.
  • a circuit element or metal wiring having SGT is formed on the first silicon oxide layer 3. Further, in the modification shown in FIG. 5C, the polycrystalline silicon layer 23 constituting the electric resistance is formed below the first silicon oxide layer 3 which is an insulator.
  • the upper and lower sides of the SiO 2 layer (first silicon oxide layer 3) are shown in FIG. 4 so as to overlap with the polycrystalline silicon layer 23 constituting the electric resistance.
  • the metal wiring layers 22a, 22b and 22c of the circuit element can be formed. Thereby, further high integration of the semiconductor device (circuit element) having electric resistance is realized.
  • FIGS. 6A to 6C a method of forming a capacitor in a semiconductor device according to a sixth embodiment of the present invention will be described with reference to FIGS. 6A to 6C.
  • the manufacturing process of the semiconductor device according to the present embodiment is the same as that of the first embodiment, except as described below.
  • a capacitor which is a circuit element of a semiconductor device, is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
  • a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1.
  • a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
  • a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3, and in the process shown in FIG. 1C, phosphorus (P) or The N + polycrystalline silicon layer 5a is formed by ion doping with a donor impurity such as arsenic (As).
  • a donor impurity such as arsenic (As).
  • capacitive silicon oxide layer 27 is formed on the surface layer portion of N + polycrystalline silicon layer 5a by thermal oxidation or CVD.
  • the capacitor silicon oxide layer 27 functioning as a capacitor insulating film is formed into a predetermined shape in the capacitor region where the capacitor is formed by etching using a mask.
  • a metal layer 28 that functions as a capacitor electrode is formed on the capacitor silicon oxide layer 27 formed in a predetermined shape by vapor deposition or CVD.
  • the metal layer 28 is formed in the same layer as the metal layer 7 of the first embodiment.
  • a laminated structure as shown in FIG. 6C is formed. That is, a second silicon oxide layer 8 is formed on the second semiconductor substrate 9, and inside the second silicon oxide layer 8, a metal layer 28 functioning as a capacitor electrode is formed in a capacitor region where a capacitor is formed, and A capacitive silicon oxide layer 27 that is stacked on the metal layer 28 and functions as a capacitive insulating film is disposed. Then, the N + polycrystalline silicon layer 5a, the first silicon oxide layer 3 and the silicon oxide layer 29 (silicon oxide layer 20) are stacked in this order on the capacitive silicon oxide layer 27 and the second silicon oxide layer 8. Is obtained. In this structure, the metal layer 28 and the N + polycrystalline silicon layer 5a function as a capacitor electrode, and a capacitor in which the capacitor silicon oxide layer 27 functions as a capacitor insulating film is formed.
  • the process of forming the insulating layer 27 on the surface layer of the N + polycrystalline silicon layer 5a (see FIG. 6A).
  • a step of forming the capacitive silicon oxide layer 27 and the metal layer 28 see FIG. 6B.
  • a method of forming a capacitor in a semiconductor device according to a seventh embodiment of the present invention will be described.
  • the manufacturing process of the semiconductor device according to the present embodiment is the same as that of the first embodiment, except as described below.
  • a capacitor which is a circuit element of a semiconductor device, is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
  • a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1.
  • a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
  • the capacitance forming region 100 shown in FIG. 7A is set on the first silicon oxide layer 3, and the capacitance forming region 100 in this capacitance forming region 100 is set.
  • a concave silicon oxide layer removal region is formed. That is, in the step shown in FIG. 1B, as shown in FIG. 7A, the silicon oxide layers 101a and 101b are left around the silicon oxide layer removal region, and the silicon oxide layer removal region has a silicon oxide layer.
  • a silicon oxide layer 103 having a thickness smaller than those of 101a and 101b is left.
  • acceptor impurities such as boron (B) are ion-doped or thermally diffused, whereby the surface layer of the first semiconductor substrate 1 in the capacitor formation region 100 through the silicon oxide layer 103.
  • the P + diffusion layer 102 is formed.
  • a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3 so as to embed a silicon oxide layer removal region.
  • the polysilicon layer 5 is ion-doped with a donor impurity such as phosphorus (P) or arsenic (As) to form an N + polycrystalline silicon layer 104 (see FIG. 1C). (See FIG. 7A).
  • a donor impurity such as phosphorus (P) or arsenic (As)
  • a metal layer 105 is formed on the N + polycrystalline silicon layer 104 by vapor deposition or CVD (see FIG. 7A).
  • the metal layer 105 is formed in the same layer as the metal layer 7 in the first embodiment.
  • the N + polycrystalline silicon layer 104 and the N + polycrystalline silicon layer 104 are formed and function as a capacitor electrode.
  • the metal layer 105 to be formed is formed into a predetermined shape.
  • the P + diffusion layer 102 is left in the silicon pillar 1a, and the P + diffusion layer 102 and the oxidation layer are oxidized.
  • a silicon oxide layer 107 is formed so as to cover the silicon layers 101a and 101b.
  • a contact hole 108 is formed in the silicon oxide layer 107, and the metal wiring layer 109 and the P + diffusion layer 102 on the silicon oxide layer 107 are electrically connected via the contact hole 108. Connect to.
  • the N + polycrystalline silicon layer 104, the metal layer 105, and the P + diffusion layer 102 function as a capacitor electrode in the capacitor formation region 100 (see FIG. 7A).
  • a capacitor is formed in which the silicon oxide layer 103 between 101a and 101b functions as a capacitor insulating film.
  • the P + diffusion layer 102 is formed by ion doping or thermal diffusion of acceptor impurities such as boron (B) into the first semiconductor substrate 1 using the silicon oxide layers 101a and 101b as a mask.
  • acceptor impurities such as boron (B)
  • the P + diffusion layer 102 performs ion doping with a high acceleration voltage on the first silicon oxide layer 3 (see FIG. 1A) having a uniform thickness before the silicon oxide layers 101a and 101b are formed. Thus, it can be formed in a predetermined region other than the capacitance forming region 100.
  • the contact hole 108 enables connection between capacitors and extraction of an electric signal to an external circuit from an arbitrary location of the semiconductor device. As a result, further integration of circuit elements can be realized.
  • FIGS. 8A to 8C a method for forming a diode in a semiconductor device according to an eighth embodiment of the present invention will be described with reference to FIGS. 8A to 8C.
  • the manufacturing process of the semiconductor device according to the present embodiment and the modification thereof is the same as that of the first embodiment except for the case specifically described below.
  • a diode which is a circuit element of a semiconductor device is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
  • the second silicon oxide layer 8 is formed on the second semiconductor substrate 9 as shown in FIG. 8A through the steps shown in FIGS. 1A to 1I of the first embodiment.
  • the metal layer 7, the N + polycrystalline silicon layer 5a, and the silicon pillar 1a are formed in this order from below.
  • a first silicon oxide layer 3 is formed around the N + polycrystalline silicon layer 5a.
  • an ion impurity is doped with an acceptor impurity such as boron (B) to thereby form a P-type silicon layer shown in FIG. 8B. 30 is formed.
  • acceptor impurity such as boron (B)
  • N + diffusion layer 6a is formed.
  • ion implantation of acceptor impurities such as boron (B) is formed on the upper portion of the P-type silicon layer 30 (silicon pillar 1 a), thereby forming a P + -type silicon layer 31.
  • the metal layer 32 is formed on the P + type silicon layer 31 by vapor deposition and etching.
  • a silicon oxide layer 33 is formed so as to cover the P-type silicon layer 30 and the metal layer 32.
  • contact holes 34, The metal wiring layer 35 is formed in this order. Thereby, the metal wiring layer 35 and the metal layer 32 are electrically connected via the contact hole 34.
  • a pn junction diode is formed by the P + type silicon layer 31 and the P type silicon layer 30.
  • a diode circuit element
  • a semiconductor device such as SGT
  • FIG. 8C shows a modification of this embodiment in which a PIN photodiode is formed on the silicon pillar 1a.
  • an i-type silicon layer 30b which is a unique semiconductor, is formed on the silicon pillar 1a shown in the eighth embodiment instead of the P-type silicon layer 30.
  • a P + type silicon layer 31 is formed on the i type silicon layer 30b.
  • a PIN photodiode is formed by the i-type silicon layer 30 b and the P + -type silicon layer 31.
  • the depletion layer is formed in the entire i-type silicon layer 30b or in a wide area, so that a wide photoelectric conversion area can be secured and the thickness of the capacitance formation area can be increased. Since the thickness of the corresponding depletion layer is increased, the capacity can be reduced.
  • the PIN photodiode is formed as an optical connection light receiving element on the same semiconductor substrate as the circuit element of the semiconductor device.
  • the PIN photodiode of this modification functions as an optical switch, there is no RC delay due to the resistance / capacitance of the input circuit wiring, and the speed of the circuit input section and the speed of the entire circuit can be increased.
  • a PIN photodiode (circuit element) can be formed on the same semiconductor substrate together with a pixel of a solid-state imaging device, a semiconductor device such as SGT, and the manufacturing process can be simplified. become.
  • FIG. 9A shows a CMOS inverter circuit used in this embodiment.
  • a P-channel MOS transistor 37a and an N-channel MOS transistor 37b are connected in series.
  • the gates of the P-channel MOS transistor 37a and the N-channel MOS transistor 37b are connected through a gate connection wiring 38, and the gate connection wiring 38 is connected to the input terminal wiring Vi.
  • the source of the P-channel MOS transistor 37a is connected to the power supply terminal wiring Vdd.
  • the drain of the P-channel MOS transistor 37a and the drain of the N-channel transistor 37b are connected to the output terminal wiring Vo via the drain connection wiring 39, and the source of the N-channel MOS transistor 37b is at the ground potential. It is connected to the ground terminal wiring Vss.
  • FIG. 9B shows a plan layout of this CMOS inverter circuit. As shown in FIG. 9B, the contact hole 41c, the silicon pillar 40a, the contact hole 41a, the contact hole 41b, and the contact hole 41d are arranged in a straight line.
  • the input terminal wiring Vi is for inputting an electric signal (gate voltage) from the contact hole 41c.
  • the power supply terminal wiring Vdd is for supplying a power supply voltage from the contact hole 41a.
  • the ground terminal wiring Vss is for connecting to the ground via the contact hole 41b.
  • the output terminal wiring Vo is for outputting an electrical signal from the contact hole 41d.
  • the contact hole 41c is formed on the gate connection wiring 38 that connects the gates of the P-channel MOS transistor 37a and the N-channel MOS transistor 37b.
  • the silicon pillar 40a constitutes a P channel type MOS transistor 37a.
  • the contact hole 41a is formed on the silicon pillar 40a.
  • the silicon pillar 40b constitutes an N channel type MOS transistor 37b.
  • the contact hole 41b is formed on the silicon pillar 40b.
  • the contact hole 41d is formed on a drain connection wiring 39 that connects the drain of the P-channel MOS transistor 37a and the drain of the N-channel MOS transistor 37b to each other.
  • the input terminal wiring Vi, the power supply terminal wiring Vdd, the ground terminal wiring Vss, and the output terminal wiring Vo are arranged so as to extend in the row direction orthogonal to the column direction of the contact holes 41b and 41d, respectively. (See FIG. 9A).
  • FIG. 9C is a sectional structural view taken along line B-B ′ of FIG. 9B.
  • a method of forming the above-described CMOS inverter circuit will be described with reference to FIG. 9C.
  • the process of forming the CMOS inverter circuit is the same as that of the first embodiment, except as specifically described below.
  • the CMOS inverter circuit having the P-channel MOS transistor 37a and the N-channel MOS transistor 37b shown in FIG. 9C is the same as the N-channel MOS transistor and the P-channel type in the CMOS inverter circuit shown in FIG. 3B.
  • the left and right positional relationship with the MOS transistor is switched, it is formed in the same manner as the third embodiment shown in FIGS. 3A and 3B.
  • the description of the parts indicated by the same or corresponding symbols as those of the above embodiment will be omitted.
  • a drain connection wiring 39 is formed below the P + polycrystalline silicon layer 55b functioning as the drain in the P-channel MOS transistor 37a and the N + polycrystalline silicon layer 55a functioning as the drain in the N-channel MOS transistor 37b.
  • a drain connection wiring 39 is formed.
  • a drain connection wiring 39 is bonded to the lower surfaces of the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b.
  • the N + polycrystalline silicon layer 55 a and the P + polycrystalline silicon layer 55 b are connected via the drain connection wiring 39.
  • the drain connection wiring 39 is formed on the insulating layer 43 b and is connected to the output terminal wiring layer Vo through a contact hole 41 d penetrating the silicon oxide layer 45.
  • the gate conductor layers 16ba and 16bb of the P-channel MOS transistor 37a and the gate conductor layers 16aa and 16ab of the N-channel MOS transistor 37b are connected through a gate connection wiring 38 formed on the insulating layer 43a. ing.
  • the metal wiring layer 18a and the drain connection wiring 39 formed above are input terminal wirings formed on the silicon oxide layer 45 through contact holes 41c, 41a, 41b and 41d penetrating the silicon oxide layer 45, respectively.
  • the layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vo are connected.
  • the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vo are wired in parallel to each other (see FIG. 9C).
  • the P + polycrystalline silicon layer 55b functioning as a drain in the P-channel MOS transistor 37a and the N + polycrystalline silicon layer 55a functioning as a drain in the N-channel MOS transistor 37b are close to each other.
  • the drain connection wiring 39 having a low electric resistance is electrically connected.
  • FIG. 10A shows a CMOS inverter circuit having a two-stage structure used in this embodiment.
  • P-channel MOS transistors 37a and 37c and N-channel MOS transistors 37b and 37d are connected in series at the first and second stages, respectively.
  • the gates of the first-stage P-channel MOS transistor 37a and N-channel MOS transistor 37b are connected to the input terminal wiring Vi through the gate connection wiring 38a.
  • the gates of the second-stage P-channel MOS transistor 37c and N-channel MOS transistor 37d are connected to the first-stage output terminal wiring Vo through the gate connection wiring 38b.
  • the drains of the first-stage and second-stage P-channel MOS transistors 37a and 37c are connected to the power supply terminal wiring Vdd.
  • the sources of the first-stage and second-stage P-channel MOS transistors 37b and 37d are connected to the ground terminal wiring Vss.
  • the drain of the P-channel MOS transistor 37a and the drain of the N-channel transistor 37b are connected to the first-stage output terminal wiring Vo via the drain connection wiring 39a.
  • the drain of the P-channel transistor 37c and the drain of the N-channel transistor 37d are connected to the output terminal wiring Vout via the drain connection wiring 39b.
  • FIG. 10B shows a plan layout of this CMOS inverter circuit.
  • a contact hole 41c is formed on the gate connection wiring 38a formed on the silicon pillar 40a constituting the first-stage P-channel MOS transistor 37a and the silicon pillar 40b constituting the N-channel MOS transistor 37b.
  • the contact hole 41c is connected to the input terminal wiring Vi.
  • the gate connection wiring 38a connects the gates of the P-channel MOS transistor 37a and the N-channel MOS transistor 37b.
  • the drain of the P-channel MOS transistor 37a and the drain of the N-channel MOS transistor 37b are connected via the first-stage drain connection wiring 39a.
  • a contact hole 41e is formed on the gate connection wiring 38b formed in the silicon pillar 40c constituting the second-stage P-channel MOS transistor 37c and the silicon pillar 40d constituting the N-channel MOS transistor 37d. It is connected to the first-stage output terminal wiring Vo (see FIG. 10A).
  • the first-stage drain connection wiring 39a is connected to the gate connection wiring 38b through the contact hole 41e (see FIG. 10C).
  • the gate connection wiring 38b connects the gates of the second-stage P-channel MOS transistor 37c and N-channel MOS transistor 37d.
  • Contact holes 41a and 41c are formed on the silicon pillars 40a and 40c of the first-stage and second-stage P-channel MOS transistors 37a and 37c, respectively.
  • the contact holes 41a and 41c are both connected to the power supply terminal wiring layer Vdd.
  • Contact holes 41b and 41d are formed on the silicon pillars 40b and 40d of the first-stage and second-stage P-channel MOS transistors 37b and 37d, respectively, and both of the contact holes 41b and 41d are connected to the ground terminal wiring layer Vss. Has been.
  • a contact hole 41f is formed on the second-stage drain connection wiring 39b, and the contact hole 41f is connected to the output terminal wiring layer Vout.
  • the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout are wired in parallel to each other.
  • FIG. 10C is a cross-sectional structural view taken along the line C-C ′ of FIG. 10B.
  • the above-described two-stage CMOS inverter circuit will be described with reference to FIG. 10C.
  • the two-stage CMOS inverter circuit is formed in the same manner as in the first embodiment.
  • CMOS inverter circuit having the P-channel MOS transistor 37a and the N-channel MOS transistor 37b shown in FIG. 10C is the same as the CMOS inverter circuit shown in FIG. 3B in terms of the left and right sides of the N-channel MOS transistor and the P-channel MOS transistor. However, they are formed in the same manner as the third embodiment shown in FIGS. 3A and 3B.
  • the conductor layers 16aa and 16ab are connected via the gate connection wiring 38a.
  • a contact hole 41b connected to the metal wiring layer 18a on the N-channel MOS transistor 37b is formed in the silicon oxide layer 45 formed on the gate connection wiring 38a.
  • the contact hole 41b is connected to the ground terminal wiring Vss of the N channel type MOS transistor 37b.
  • a silicon oxide layer 43 is formed between the first silicon oxide layer 3 and the gate connection wiring 38a.
  • the N + polycrystalline silicon layer 55a functioning as the drain is electrically connected to each other through the metal wiring layer 42 which is the first-stage drain connection wiring 39a.
  • the metal wiring layer 42 is connected via a gate connection wiring 38b that connects the gates of the second-stage P-channel MOS transistor 37c and the N-channel MOS transistor 37d, and a contact hole 41e formed in the silicon oxide layer 45. Are connected (see FIGS. 10A and 10B).
  • a contact hole 41a is formed on the silicon pillar 40a of the first-stage P-channel MOS transistor 37a, and the contact hole 41a is connected to the power supply terminal wiring layer Vdd.
  • a contact hole 41b is formed on the silicon pillar 40b of the first-stage N-channel MOS transistor 37b, and the contact hole 41b is connected to the ground terminal wiring layer Vss.
  • a contact hole 41f is formed on the second-stage drain connection wiring 39b, and the output terminal wiring layer Vout is connected to the contact hole 41f on the silicon oxide layer 45 (see FIGS. 10A and 10B). Further, the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout are wired in parallel to each other (see FIG. 10B).
  • the metal wiring layer 42 functioning as the drain connection wiring 39a of the first-stage P-channel MOS transistor 37a and N-channel MOS transistor 37b is replaced with the second-stage P-channel MOS transistor 37c and N-channel MOS transistor 37c.
  • the channel type MOS transistor 37d is directly connected to the gate connection wiring 38b via the contact hole 41e.
  • the metal wiring layer 42 (39a) is connected to the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout through the contact holes formed in the silicon oxide layer 45 (FIG. 10B), it is not necessary to pull up to the same layer as that, so that high integration of circuit elements is realized.
  • FIGS. 11A and 11B a method for forming a mask alignment mark on a semiconductor substrate according to an eleventh embodiment of the present invention will be described with reference to FIGS. 11A and 11B.
  • the process shown in FIG. 11A corresponds to the process shown in FIG. 1H in the first embodiment.
  • the other steps are the same as those in the first embodiment except for the case specifically described below.
  • a second silicon oxide layer 8 is formed on the second semiconductor substrate 9.
  • the first silicon oxide layer 3 and the first semiconductor substrate 1 are formed in this order.
  • a mask alignment mark formation region 47a for mask alignment and a circuit formation region 47b for forming a circuit are set at predetermined positions on the first semiconductor substrate 1.
  • a silicon oxide layer removal region 48 is formed in the first silicon oxide layer 3 (see FIG. 1B). At the center of the silicon oxide layer removal region 48, a mark metal layer 49a and a mark polycrystalline silicon layer 49b are formed in a laminated state.
  • the silicon oxide layer removal region 48 is formed simultaneously with the hole 4 in which the source or drain of the junction transistor in the pixel of the solid-state imaging device is formed.
  • a metal layer 7 and an N + polycrystalline silicon layer 5a are formed in a laminated state in the center of the circuit formation region 47b (see FIG. 1H).
  • a mask alignment hole 50 is formed at a predetermined position as shown in FIG. 11B.
  • the mark metal layer 49 a, the mark polycrystalline silicon layer 49 b, and the silicon oxide layer removal region 48 are exposed through the mask alignment hole 50.
  • the mask alignment of the photomask is performed using any one of the mark metal layer 49a, the mark polycrystalline silicon layer 49b, and the silicon oxide layer removal region 48 in the mask alignment hole 50 as a reference mask alignment mark. Do.
  • a photomask is overlaid on the region where the photoresist is formed, and light is irradiated to transfer the circuit.
  • the first semiconductor substrate 1 is covered with a photoresist, and the mark metal layer 49a and the mark polycrystalline silicon layer located below the first semiconductor substrate 1 are covered.
  • Mask alignment is performed using either of 49b and the silicon oxide layer removal region 48 as a mark.
  • the first semiconductor substrate 1 is made of silicon and absorbs blue light and ultraviolet light. Therefore, red wavelength light or infrared light having high transmittance is used for mask alignment. For this reason, the resolution of the mark image is lowered and the mask alignment accuracy is lowered.
  • the mask alignment mark formation region 47a does not include a silicon layer that absorbs a large amount of blue light and ultraviolet light, so the mark metal layer 49a, the mark polycrystalline silicon layer 49b, the oxidation layer A photoresist can be formed directly on the silicon layer removal region 48. For this reason, a high-resolution mark image is obtained, and the mask alignment accuracy is improved.
  • the photoresist is directly formed on the silicon oxide layer removal region 48, the alignment accuracy between the N + polycrystalline silicon layer 5a and the silicon pillar 1a shown in FIG. .
  • a transparent insulating layer 50a that transmits blue light or ultraviolet light is embedded in the mask alignment hole 50 shown in FIG. 11B.
  • An SiO 2 film is used for the transparent insulating layer 50a. Thereafter, the SiO 2 film and the surface of the first semiconductor substrate 1 are planarized by CMP. The step of filling the mask alignment hole 50 with the SiO 2 film is performed before the silicon pillar 1a on which the junction transistor is formed is formed with reference to FIG. 1I.
  • the transparent insulating layer 50a in the mask alignment hole 50 can make the photoresist covering the mask alignment mark formation region 47a and the circuit formation region 47b thin and uniform. Compared with the embodiment, the mask alignment accuracy is further improved.
  • FIG. 13A corresponds to the step shown in FIG. 1B in the first embodiment.
  • the other steps are the same as those in the first embodiment except for the case specifically described below.
  • the separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1.
  • a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
  • holes 4 are formed in the first silicon oxide layer 3 by removing silicon oxide (SiO 2 ) in a predetermined region.
  • polycrystalline silicon is formed on the first silicon oxide layer 3 and the first semiconductor substrate 1 by the CVD method so as to fill the hole 4 (silicon oxide layer removal region 48).
  • Layer 111 is formed. This polycrystalline silicon layer 111 is not doped with donor impurities or acceptor impurities.
  • an N + polycrystalline silicon layer 106 doped with donor impurities is formed on the polycrystalline silicon layer 111 by CVD and ion doping of donor impurities.
  • a metal layer 7 is formed on the N + polycrystalline silicon layer 106 in the same manner as the step shown in FIG. 1D. Further, a semiconductor device is formed in the same manner as the steps shown in FIGS. 1E to 1L.
  • the polycrystalline silicon layer 111 which is not doped with impurities is formed between the first semiconductor substrate 1 and the N + polycrystalline silicon layer 106. Due to the presence of the polycrystalline silicon layer 111, the diffusion depth of the donor impurity to the silicon pillar 1a when the N + polycrystalline silicon layer 106 is used as a diffusion source by the heat treatment in the step shown in FIG. 1J can be adjusted. it can.
  • the donor impurity is diffused from the N + polycrystalline silicon layer 106 by heat treatment, so that the polycrystalline silicon layer 111 becomes an N + polycrystalline silicon layer. Then, by diffusing donor impurities by heat treatment of N + polysilicon layer 111 in the silicon pillar 1a to form the N + diffusion layer 6a.
  • the polycrystalline silicon layer 111 not doped with donor impurities by heat treatment into an N + polycrystalline silicon layer, the diffusion performance of donor impurities from the N + polycrystalline silicon layer 106 to the outside is reduced.
  • N 2 is changed depending on the heat treatment conditions (temperature, time) after bonding the second semiconductor substrate 9 and the second silicon oxide layer 8 on the first semiconductor substrate 1.
  • the + diffusion layer 6a is assumed to diffuse beyond a desired depth, this is effective for suppressing the diffusion depth.
  • a P + polycrystalline silicon layer can be used in place of the N + polycrystalline silicon layer 106. Even if the polycrystalline silicon layer 111 that is not doped with donor impurities or acceptor impurities contains a small amount of impurities even if they are not actively doped, the effect of this embodiment is not affected.
  • the first silicon oxide layer 3 is formed by thermal oxidation, anodization, CVD (Chemical Vapor Deposition), or the like. Formed.
  • CVD Chemical Vapor Deposition
  • the present invention is not limited to this, and a multilayer structure with another insulating film such as a silicon nitride (SiN) film may be used.
  • the present invention is not limited to the embodiments described in the first to twelfth embodiments described above, and various modifications can be made.
  • the first semiconductor substrate 1 is P-type conductivity.
  • the first semiconductor substrate 1 is not limited to this, and may be i-type (intrinsic type) which is a unique semiconductor. Further, depending on the circuit element formed on the first semiconductor substrate 1, an N-type conductivity type may be used.
  • the channel of the P-channel MOS transistor is formed in the N-type silicon layer 30a, and the channel of the N-channel MOS transistor is the P-type silicon layer.
  • the channel of the N-channel MOS transistor may be formed on i-type silicon which is a unique semiconductor.
  • the N + polycrystalline silicon layer 5a, the metal layer 7, and the N + diffusion layer 6a are used as individual material layers.
  • the metal layer 7 is reacted with the metal material (Ni, W, etc.) of the metal layer 7 and a part of the N + polycrystalline silicon layer 5a or the N + diffusion layer 6a. 7.
  • All or part of the N + polycrystalline silicon layer 5a or the N + diffusion layer 6a may be changed to a silicide layer (NiSi, WSi, etc.).
  • the temperature is 400 to 600 ° C.
  • the first semiconductor substrate 1 was separated into a top and bottom by heat treatment, and the first semiconductor substrate 1 was thinned to a predetermined thickness.
  • a method of forming a porous layer in the separation layer 2 shown in Non-Patent Document 3 may be employed to reduce the thickness of the first semiconductor substrate 1 to a predetermined thickness.
  • a method of separating the first semiconductor substrate 1 vertically can be employed.
  • the second semiconductor substrate 9 may be a semiconductor different from silicon, for example, a compound semiconductor such as silicon carbide (SiC), an insulator, or an organic resin body. Also with this configuration, the circuit elements formed on the first semiconductor substrate 1 can be held.
  • the second silicon oxide layer 8 and the silicon oxide layers 20, 29, 45 may have a multilayer structure with other insulating films such as a silicon nitride (SiN) film.
  • SiN silicon nitride
  • the N + polycrystalline silicon layers 5a and 55a and the P + polycrystalline silicon layer 55b were formed by ion doping.
  • the present invention is not limited to this, and it may be formed by thermal diffusion of impurities or a doped polycrystalline silicon layer mixed with impurities.
  • the polycrystalline silicon layer 5 was formed by a CVD method.
  • the present invention is not limited to this, and the polycrystalline silicon layer 5 may be formed by epitaxial growth.
  • a single crystal silicon layer is grown on the first semiconductor substrate 1, and a polycrystalline silicon layer is formed on the first silicon oxide layer 3 depending on the growth conditions.
  • the single crystal silicon layer becomes a diffusion source to the silicon pillar 1a of the donor or acceptor.
  • the silicon layer can be prevented from being formed on the first silicon oxide layer 3 depending on the growth conditions (temperature, etc.) of the single crystal silicon layer.
  • the second semiconductor substrate 9 made of silicon and the second silicon oxide layer 8 flattened by CMP are bonded together, and an oxide layer is formed on the surface of the second semiconductor substrate 9 by oxidation or CVD.
  • the second semiconductor substrate 9 and the second silicon oxide layer 8 can be bonded after the insulating layer is formed.
  • the drain connection wiring 39 and the output terminal wiring Vo are connected via the contact hole 41d.
  • the drain connection wiring 39 and the output terminal wiring Vo can be connected so that the bottom of the contact hole 41 d is in contact with the N + polycrystalline silicon layer 55 a on the drain connection wiring 39. Also with this configuration, the electrical resistance of the N + polycrystalline silicon layer 55a is sufficiently small, so that high-speed operation of the circuit element is realized.
  • the metal wiring layer 42 (39a) functioning as the drain connection wiring and the second-stage gate connection wiring 38b are connected via the contact hole 41e.
  • the connection is not limited to this, and the contact hole 41 e can be connected so that the bottom thereof is in contact with the N + polycrystalline silicon layer 55 a on the metal wiring layer 42. Also with this configuration, the electrical resistance of the N + polycrystalline silicon layer 55a is sufficiently small, so that high-speed operation of the circuit element is realized.
  • gate conductor layers 11a, 11b, 11c, 11d, 16a, 16b, 16c, 16d, and gate connection wirings 38, 38a, as shown in FIG. 10C, as shown in FIG. 1L, FIG. 2, and FIG. 38b was formed by a vapor deposition method or a CVD method.
  • the present invention is not limited to this, and a single layer or a plurality of different types of metal layers, a polycrystalline silicon layer doped with impurities, or a multilayer configuration of the polycrystalline silicon layer and the metal layer may be used.
  • the gate connection wirings 38, 38a, and 38b may use different materials for the N channel type and the P channel type.
  • the two-stage CMOS inverter circuit shown in FIGS. 10B and 10C can be configured as follows. That is, the P + -type silicon layer 17b and the N + -type silicon layer 17a in the upper part of the silicon pillar 40a of the P-channel MOS transistor 37a and the silicon pillar 40b of the N-channel MOS transistor 37b are formed in the silicon oxide layer 45. It is connected to the first-stage output terminal wiring layer Vout through the formed contact holes 41a and 41b.
  • the metal layer 46b connected to the P + polycrystalline silicon layer 55b and the P + diffusion layer 6b below the silicon pillar 40a of the P channel MOS transistor 37a is used as a power supply terminal wiring layer Vdd, and N channel
  • the metal layer 46a connected to the N + polycrystalline silicon layer 55a and the N + diffusion layer 6a below the silicon pillar 40b of the type MOS transistor 37b is defined as a ground terminal wiring layer Vss. Also in this structure, the same effect as the structure shown in FIG. 10C can be obtained.
  • arsenic is formed after the gate conductor layers 11a and 11b are formed in order to perform self-alignment between the gate conductor layers 11a and 11b and the N + diffusion layer 6a serving as a signal line.
  • the N + -type silicon layer may be formed in the silicon pillar 1a between the gate conductor layers 11a and 11b and the N + diffusion layer 6a by using the ion doping or the deposited As-doped silicon oxide layer as a diffusion source.
  • the first semiconductor substrate 1 is etched to the surface of the first silicon oxide layer 3 to form the silicon pillar 1a. It may be stopped before reaching the surface of the layer 3.
  • an N + type silicon layer may be formed by doping a remaining silicon layer without being etched with a donor impurity.
  • arsenic (As) ion doping or deposition As doping is performed in order to perform self-alignment between the gate conductor layers 16a and 16b and the N + diffusion layer 6a serving as the source or drain.
  • An N + type silicon layer may be formed in the silicon pillar 1a between the gate conductor layers 16a and 16b and the N + diffusion layer 6a using the silicon oxide layer as a diffusion source.
  • the third silicon oxide layer 10a on the outer peripheral portion of the N-type silicon layers 12a and 12b constituting the photodiode, A conductor layer that reflects light through 10b may be formed. This prevents color mixing. Further, by forming a P + -type silicon layer connected to the P + -type silicon layer 13 a in the silicon pillar 1 a on the outer periphery of the N-type silicon layers 12 a and 12 b, it is possible to realize a low afterimage and low noise. Good. As described above, a structure in which the function of the solid-state imaging device is further enhanced can be appropriately formed in the silicon pillar 1a.
  • the present invention can be applied to a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure.

Abstract

A production method for a semiconductor device having: a step in which a conductive layer (7) and a first semiconductor layer (5a) including donor impurities or acceptor impurities are formed upon a first semiconductor substrate; a step in which a second insulating layer (8) is formed so as to cover the first semiconductor layer (5a); a step in which the thickness of the first semiconductor substrate (9) is reduced to a prescribed thickness; a step in which a columnar semiconductor (1a) having a columnar structure is formed from the first semiconductor substrate upon the first semiconductor layer (5a); a step in which a first semiconductor area (6a) is formed on the columnar semiconductor (1a) by scattering impurities from the first semiconductor layer (5a); and a step in which pixels for a solid-state imaging device are formed using the columnar semiconductor (1a) after the impurities have been scattered.

Description

半導体装置の製造方法、及び、半導体装置Semiconductor device manufacturing method and semiconductor device
 本発明は、半導体装置の製造方法、及び、半導体装置に関し、特に、柱状構造を有する半導体内にチャネル領域が形成されているトランジスタを備える半導体装置の製造方法、及び、半導体装置に関する。 The present invention relates to a method for manufacturing a semiconductor device and a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure, and the semiconductor device.
 CCD及びCMOS型などの固体撮像装置はビデオカメラ、ステールカメラなどに広く用いられている。そして、固体撮像装置の高解像度化、高速動作化、及び高感度化などの性能向上が求められている。 Solid-state imaging devices such as CCD and CMOS type are widely used for video cameras, stale cameras and the like. Further, there is a demand for improved performance such as higher resolution, higher speed operation, and higher sensitivity of the solid-state imaging device.
 図14に示されるように、1つの画素が1つの柱状半導体110内に構成されている固体撮像装置が知られている(例えば、特許文献1を参照)。
 この画素構造においては、半導体基板上に固体撮像装置の信号線として機能するN型シリコン層51が形成されている。また、N型シリコン層51に柱状半導体110が接続されている。その柱状半導体110には、P型シリコン層52、絶縁膜53a、53b、ゲート導体層54a、54bからなる、蓄積電荷を除去するためのMOSトランジスタが形成されている。さらに、柱状半導体110には、このMOSトランジスタに接続され、光(電磁エネルギー波)の照射によって発生する電荷を蓄積するフォトダイオードが形成されている。このフォトダイオードは、P型シリコン層52とN型シリコン層58a、58bとから構成される。また、このフォトダイオードで囲まれたP型半導体52をチャネル、フォトダイオードをゲート、フォトダイオード上に形成され、画素選択線57a、57bに接続されたP型シリコン層56、N型シリコン層51近傍のP型シリコン層52を、それぞれ、ソース、ドレインとした接合トランジスタが形成されている。
As shown in FIG. 14, a solid-state imaging device in which one pixel is configured in one columnar semiconductor 110 is known (see, for example, Patent Document 1).
In this pixel structure, an N + type silicon layer 51 that functions as a signal line of a solid-state imaging device is formed on a semiconductor substrate. Further, the columnar semiconductor 110 is connected to the N + type silicon layer 51. The columnar semiconductor 110 is formed with a MOS transistor for removing accumulated charges, which includes a P-type silicon layer 52, insulating films 53a and 53b, and gate conductor layers 54a and 54b. Further, the columnar semiconductor 110 is formed with a photodiode that is connected to the MOS transistor and accumulates charges generated by irradiation with light (electromagnetic energy wave). This photodiode is composed of a P-type silicon layer 52 and N- type silicon layers 58a and 58b. In addition, a P + type silicon layer 56 and an N + type silicon layer formed on the P type semiconductor 52 surrounded by the photodiode as a channel, the photodiode as a gate, and the photodiode are connected to the pixel selection lines 57a and 57b. Junction transistors are formed using the P-type silicon layer 52 in the vicinity of 51 as a source and a drain, respectively.
 この固体撮像装置の基本動作は、光照射により発生した信号電荷(この場合は電子)をフォトダイオードに蓄積する信号電荷蓄積動作と、N型シリコン層51近傍のP型シリコン層52とP型シリコン層56との間に流れるソース・ドレイン電流を、前述の蓄積信号電荷に応じたフォトダイオード電圧によるゲート電圧により変調し、これを信号電流として読み出す信号読み出し動作と、この信号読み出し動作の完了後、フォトダイオードに蓄積されている信号電荷を、MOSトランジスタのゲート導体層54a、54bにオン電圧を印加してN型シリコン層51に除去するリセット動作とからなる。 The basic operation of this solid-state imaging device includes a signal charge accumulation operation in which signal charges (electrons in this case) generated by light irradiation are accumulated in a photodiode, and a P-type silicon layer 52 and P + in the vicinity of the N + -type silicon layer 51. A signal read operation for modulating the source / drain current flowing between the silicon layer 56 and the gate voltage by the photodiode voltage corresponding to the above-mentioned accumulated signal charge and reading this as a signal current, and completion of this signal read operation Thereafter, the signal charge accumulated in the photodiode is reset to remove the N + -type silicon layer 51 by applying an ON voltage to the gate conductor layers 54a and 54b of the MOS transistor.
 2次元固体撮像装置においては、図14に示される画素が感光領域に2次元状に配列されている。そして、信号読み出し動作は、N型シリコン層51を介して、画素信号(信号電流)が感光領域の周辺に設けられた出力回路に伝達されることにより行われる。また、リセット動作も、画素と感光領域の周辺回路との電気的伝送を介して行われる。そして、固体撮像装置の画素数、又は単位時間当たりの読出し画面数を増加させるには、信号読み出し動作の高速動作化が必要となる。このため、信号線であるN型シリコン層51の電気抵抗の低減が求められる。 In the two-dimensional solid-state imaging device, the pixels shown in FIG. 14 are two-dimensionally arranged in the photosensitive area. The signal reading operation is performed by transmitting a pixel signal (signal current) to an output circuit provided around the photosensitive region via the N + type silicon layer 51. The reset operation is also performed through electrical transmission between the pixel and the peripheral circuit of the photosensitive region. In order to increase the number of pixels of the solid-state imaging device or the number of readout screens per unit time, it is necessary to increase the speed of the signal readout operation. For this reason, a reduction in electrical resistance of the N + type silicon layer 51 which is a signal line is required.
 このようなN型シリコン層51の低電気抵抗化を実現するために、図15Aに示されるように、N型シリコン層51の裏面に、シリコン基板60上に形成した金属層59を接合させた構造が考えられる。これにより信号線の電気抵抗は、金属層59によってほぼ決定されるので、前述した信号読出し動作の高速動作化が実現される。しかし、N型シリコン層51に接合させた金属層59を形成することは、金属材料とシリコン材料との接合の親和性の観点から困難である。 To achieve the low electrical resistance of such N + -type silicon layer 51, as shown in FIG. 15A, on the rear surface of the N + -type silicon layer 51, the bonding metal layer 59 formed on the silicon substrate 60 Possible structures are possible. As a result, the electric resistance of the signal line is almost determined by the metal layer 59, so that the high-speed operation of the signal reading operation described above is realized. However, it is difficult to form the metal layer 59 bonded to the N + type silicon layer 51 from the viewpoint of the affinity of bonding between the metal material and the silicon material.
 また、シリコン基板60上に金属層59を形成するには、以下の方法が考えられる。即ち、図15Bに示されるように、半導体基板61上に酸化シリコン層62を形成し、その酸化シリコン層62上に金属層59を形成する。そして、金属層59が形成された半導体基板61と半導体基板64とを接着する。その後、半導体基板64において、図15Bにおいて破線で示した部分に画素を形成する。図15Bに示される一点鎖線D-D’は半導体基板64の研磨、エッチング、又は他の分離方法により、半導体基板64を所定の高さに成形した状態を示している。 Also, the following method can be considered to form the metal layer 59 on the silicon substrate 60. That is, as shown in FIG. 15B, a silicon oxide layer 62 is formed on the semiconductor substrate 61, and a metal layer 59 is formed on the silicon oxide layer 62. Then, the semiconductor substrate 61 on which the metal layer 59 is formed and the semiconductor substrate 64 are bonded. Thereafter, pixels are formed in the portion of the semiconductor substrate 64 indicated by the broken line in FIG. 15B. A dot-dash line D-D ′ shown in FIG. 15B shows a state in which the semiconductor substrate 64 is formed to a predetermined height by polishing, etching, or other separation methods of the semiconductor substrate 64.
 しかしながら、このような製造方法では、金属層59と半導体基板64とが直接接着されるので、金属層59と半導体基板64との熱膨張係数の異なりによって、半導体基板61、64にソリ、クラック、又はハガレが発生してしまう。図15Aに示されるように、信号読出し動作の高速動作化のため、N型シリコン層51の裏面に、ソリ、クラック、又はハガレの発生なく金属層59を直接貼り合わせる方法を開発することには大きな技術的意義がある。 However, in such a manufacturing method, since the metal layer 59 and the semiconductor substrate 64 are directly bonded, due to the difference in thermal expansion coefficient between the metal layer 59 and the semiconductor substrate 64, the semiconductor substrates 61 and 64 are warped, cracked, Or peeling occurs. As shown in FIG. 15A, a method for directly bonding the metal layer 59 to the back surface of the N + -type silicon layer 51 without causing warpage, cracks, or peeling to increase the speed of the signal reading operation will be developed. Has great technical significance.
 そして、このような課題を解決することで、固体撮像装置以外の半導体装置や、半導体装置に設けられる回路素子の高集積化、高性能化を実現することが強く求められている。 Further, by solving such a problem, there is a strong demand to realize high integration and high performance of semiconductor devices other than solid-state imaging devices and circuit elements provided in the semiconductor devices.
 また、信号読出し動作の高速動作化のため、柱状構造を有する柱状半導体の側面をチャネル領域とするとともに、ゲート電極が当該チャネル領域を取り囲む構造を有する縦型のMOSトランジスタであるSGT(Surrounding Gate Transistor)(以下、単に「SGT」と省略する。)がある(例えば、特許文献2を参照)。 In addition, in order to increase the speed of signal readout operation, the side surface of a columnar semiconductor having a columnar structure is used as a channel region, and a vertical MOS transistor having a structure in which a gate electrode surrounds the channel region is an SGT (Surrounding Gate Transistor). (Hereinafter simply referred to as “SGT”) (see, for example, Patent Document 2).
 このようなSGTでは、図16に示されるように、埋め込み酸化膜基板66上に平面状シリコン膜67が形成され、平面状シリコン膜67とPMOS柱状シリコン層68とによって柱状構造が形成されている。平面状シリコン膜67にはドレインとして機能するP型シリコン拡散層69が形成されている。PMOS柱状シリコン層68の上部にはソースとして機能するP型シリコン拡散層70が形成され、PMOS柱状シリコン層68の外周部にはゲート絶縁層71が形成されている。このゲート絶縁層71の外周部にはゲート電極72が形成されている。これにより、P型シリコン拡散層69とP型シリコン拡散層70との間のPMOS柱状シリコン層68をチャネルとしたP型チャネルSGTが形成されている。 In such an SGT, as shown in FIG. 16, a planar silicon film 67 is formed on the buried oxide film substrate 66, and a columnar structure is formed by the planar silicon film 67 and the PMOS columnar silicon layer 68. . In the planar silicon film 67, a P + -type silicon diffusion layer 69 that functions as a drain is formed. A P + -type silicon diffusion layer 70 functioning as a source is formed on the PMOS columnar silicon layer 68, and a gate insulating layer 71 is formed on the outer periphery of the PMOS columnar silicon layer 68. A gate electrode 72 is formed on the outer periphery of the gate insulating layer 71. As a result, a P-type channel SGT is formed using the PMOS columnar silicon layer 68 as a channel between the P + -type silicon diffusion layer 69 and the P + -type silicon diffusion layer 70.
 また、ゲート電極72、P型シリコン拡散層70、及びP型シリコン拡散層69を囲むように、窒化シリコン(SiN)膜73と酸化シリコン(SiO)膜74とが形成されている。酸化シリコン層74内にコンタクトホール75が形成され、このコンタクトホール75を介して、P型シリコン拡散層70がソース金属配線76に接続されている。これにより、1個のMOSトランジスタが柱状構造に形成されている。 Further, a silicon nitride (SiN) film 73 and a silicon oxide (SiO 2 ) film 74 are formed so as to surround the gate electrode 72, the P + -type silicon diffusion layer 70, and the P + -type silicon diffusion layer 69. A contact hole 75 is formed in the silicon oxide layer 74, and the P + -type silicon diffusion layer 70 is connected to the source metal wiring 76 through the contact hole 75. Thereby, one MOS transistor is formed in a columnar structure.
 図16に示されるP型シリコン拡散層69は、平面状シリコン膜67が同一平面上で延長された所定の部位で図示しない金属配線と接続されている。SGTを有する半導体装置において、更なる信号読出し動作の高速動作化を実現するには、このP型シリコン拡散層69と上記金属配線との接続が、P型シリコン拡散層70のように、短い距離で行われることが要求される。 The P + -type silicon diffusion layer 69 shown in FIG. 16 is connected to a metal wiring (not shown) at a predetermined portion where the planar silicon film 67 extends on the same plane. In a semiconductor device having SGT, in order to realize further high-speed signal readout operation, the connection between the P + -type silicon diffusion layer 69 and the metal wiring is as in the P + -type silicon diffusion layer 70. It is required to be performed at a short distance.
 しかしながら、図16に示されるSGTでは、上記金属配線とP型シリコン拡散層69との間、又は、P型シリコン拡散層69においてSGTのチャネルのドレイン端までの距離に相当する電気抵抗が存在するようになる。このため、SGTを有する半導体装置においても、固体撮像装置と同様に、信号読出し動作の高速動作化を実現するには、P型シリコン拡散層69の裏面に直接的に金属層を接合して電気抵抗の低下を図ることが必要になる。 However, in the SGT shown in FIG. 16, there is an electric resistance corresponding to the distance between the metal wiring and the P + -type silicon diffusion layer 69 or the drain end of the SGT channel in the P + -type silicon diffusion layer 69. It comes to exist. For this reason, even in a semiconductor device having SGT, as in the solid-state imaging device, in order to realize a high-speed signal reading operation, a metal layer is directly bonded to the back surface of the P + -type silicon diffusion layer 69. It is necessary to reduce the electrical resistance.
国際公開第2009/034623号International Publication No. 2009/034623
米国特許出願公開第2010/0213539(A1)号明細書US Patent Application Publication No. 2010/0213539 (A1)
 2次元固体撮像装置においては、上述したとおり、信号読み出し動作は、信号線として機能するN型シリコン層51を介して、画素信号(信号電流)が感光領域の周辺に設けられ外部回路に伝達されることにより行われる。また、リセット動作も、画素と感光領域の外部回路との電気的伝送を介して行われる。この電気的伝送の応答性は、画素と周辺回路間とを接続する配線の電気抵抗と寄生容量とに大きく影響される。固体撮像装置の画素数、又は単位時間当たりの読出し画面数を増加させるには、そのような配線の電気抵抗の低減が求められる。 In the two-dimensional solid-state imaging device, as described above, in the signal readout operation, a pixel signal (signal current) is provided around the photosensitive region and transmitted to an external circuit via the N + type silicon layer 51 functioning as a signal line. Is done. The reset operation is also performed through electrical transmission between the pixel and an external circuit in the photosensitive area. The responsiveness of this electrical transmission is greatly influenced by the electrical resistance and parasitic capacitance of the wiring connecting the pixel and the peripheral circuit. In order to increase the number of pixels of the solid-state imaging device or the number of readout screens per unit time, it is necessary to reduce the electrical resistance of such wiring.
 図14に示される固体撮像装置においては、そのような電気抵抗は、N型シリコン層51の電気抵抗によってほぼ決定される。N型シリコン層51はシリコン(Si)半導体にリン(P)やヒ素(As)などのドナー不純物をイオンドーピング(イオン注入)することで形成されるため、このN型シリコン層51の電気抵抗値は、アルミニウム(Al)、銅(Cu)、タングステン(W)、ニッケル(Ni)など通常の半導体装置に使用されている金属の電気抵抗値よりも小さくすることができない。このため、図14に示される固体撮像装置では、金属配線によって画素と周辺回路との間の電気的接続を行う固体撮像装置と比較して、高速動作特性に劣る問題がある。 In the solid-state imaging device shown in FIG. 14, such an electric resistance is substantially determined by the electric resistance of the N + type silicon layer 51. Since N + -type silicon layer 51 is formed a donor impurity in silicon (Si) semiconductor, such as phosphorus (P), arsenic (As) by ion doping (ion implantation), electrical of the N + -type silicon layer 51 The resistance value cannot be made smaller than the electrical resistance value of a metal used in a normal semiconductor device such as aluminum (Al), copper (Cu), tungsten (W), nickel (Ni). For this reason, the solid-state imaging device shown in FIG. 14 has a problem inferior in high-speed operation characteristics as compared with a solid-state imaging device that performs electrical connection between a pixel and a peripheral circuit by a metal wiring.
 また、画素内でN多結晶シリコン層を横方向に拡張するとともに、この拡張領域に形成されたコンタクトホールを用いて構成した金属配線によって画素と周辺回路との電気的接続を行う画素構造では、画素の集積度が低下するようになる。 In addition, in the pixel structure in which the N + polycrystalline silicon layer is expanded in the horizontal direction in the pixel and the pixel and the peripheral circuit are electrically connected by the metal wiring formed using the contact hole formed in the extended region. As a result, the degree of integration of the pixels decreases.
 また、上述したように、図16に示されるSGTにおいても、P型シリコン拡散層69は平面状シリコン膜67が延長された部位で金属配線と接続される。このようなP型シリコン拡散層69と金属配線との接続による手段では、P型シリコン拡散層70のように金属配線と短い距離で接続することができないので、金属配線とSGTのチャネルに最も近接したP型シリコン拡散層69の端部までに相当の電気抵抗が存在するようになる。このため、SGTを有する半導体装置において、更なる信号読出し動作の高速動作化を実現するには、この電気抵抗を低減することが必要になる。 Further, as described above, also in the SGT shown in FIG. 16, the P + -type silicon diffusion layer 69 is connected to the metal wiring at the portion where the planar silicon film 67 is extended. Such means by connecting the P + -type silicon diffusion layer 69 and the metal wiring cannot be connected to the metal wiring at a short distance as in the P + -type silicon diffusion layer 70, so that the metal wiring and the SGT channel are not connected. A considerable electrical resistance is present up to the end of the closest P + -type silicon diffusion layer 69. For this reason, in the semiconductor device having SGT, it is necessary to reduce this electric resistance in order to realize further high-speed signal reading operation.
 本発明は、上述した事情に鑑みてなされたものであり、高集積、高速動作が実現される半導体装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a semiconductor device capable of realizing high integration and high speed operation.
 上記目的を達成するため、本発明の第1の観点に係る半導体装置の製造方法は、
 半導体基板上に第1の絶縁層を形成する第1絶縁層形成工程と、
 前記第1の絶縁層の所定の部分を除去し、絶縁層除去領域を形成する絶縁層除去工程と、
 少なくとも前記絶縁層除去領域を覆うように、前記半導体基板上にドナー不純物又はアクセプタ不純物を含む第1の半導体層を形成する第1半導体層形成工程と、
 前記第1の半導体層上に導電層を形成する導電層形成工程と、
 前記導電層及び前記第1の半導体層を所定の形状に成形する成形工程と、
 前記所定の形状に形成した導電層及び第1の半導体層を覆うように、第2の絶縁層を形成する第2絶縁層形成工程と、
 前記第2の絶縁層の表面を平坦化する平坦化工程と、
 前記平坦化された前記第2の絶縁層の表面に、基板を接着する接着工程と、
 前記半導体基板を所定の厚さまで薄くする薄膜化工程と、
 前記第1の半導体層上に、前記半導体基板から柱状構造を有する柱状半導体を形成する柱状半導体形成工程と、
 前記柱状半導体に前記回路素子を形成する回路素子形成工程と、を備え、
 少なくとも前記第1半導体層形成工程以後に、前記ドナー不純物又はアクセプタ不純物を含む前記第1の半導体層から当該不純物を拡散させることで前記柱状半導体に第1の半導体領域を形成する第1半導体領域形成工程をさらに備える、
 ことを特徴とする半導体装置の製造方法。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the first aspect of the present invention includes:
A first insulating layer forming step of forming a first insulating layer on the semiconductor substrate;
An insulating layer removing step of removing a predetermined portion of the first insulating layer to form an insulating layer removal region;
A first semiconductor layer forming step of forming a first semiconductor layer containing a donor impurity or an acceptor impurity on the semiconductor substrate so as to cover at least the insulating layer removal region;
A conductive layer forming step of forming a conductive layer on the first semiconductor layer;
A molding step of molding the conductive layer and the first semiconductor layer into a predetermined shape;
A second insulating layer forming step of forming a second insulating layer so as to cover the conductive layer and the first semiconductor layer formed in the predetermined shape;
A planarization step of planarizing the surface of the second insulating layer;
An adhesion step of adhering a substrate to the flattened surface of the second insulating layer;
A thinning process for thinning the semiconductor substrate to a predetermined thickness;
Forming a columnar semiconductor having a columnar structure from the semiconductor substrate on the first semiconductor layer; and
A circuit element forming step of forming the circuit element on the columnar semiconductor,
Forming a first semiconductor region in the columnar semiconductor by diffusing the impurity from the first semiconductor layer containing the donor impurity or acceptor impurity at least after the first semiconductor layer forming step The process further includes
A method for manufacturing a semiconductor device.
 前記回路素子形成工程は、
 前記柱状半導体の外周部に第3の絶縁層を形成するとともに、前記第3の絶縁層の外周部にゲート導体層を形成する工程と、
 前記ゲート導体層の上方部位かつ前記柱状半導体の表層部に、前記第1の半導体領域と同一導電型である第4の半導体領域を形成する工程と、
 前記柱状半導体において、前記第3の絶縁層の上方部位に、前記第1の半導体領域と反対導電型の第3の半導体領域を形成する工程と、を含む、ことが好ましい。
The circuit element forming step includes
Forming a third insulating layer on the outer periphery of the columnar semiconductor and forming a gate conductor layer on the outer periphery of the third insulating layer;
Forming a fourth semiconductor region having the same conductivity type as the first semiconductor region in a portion above the gate conductor layer and in a surface layer portion of the columnar semiconductor;
Preferably, the columnar semiconductor includes a step of forming a third semiconductor region having a conductivity type opposite to that of the first semiconductor region in an upper portion of the third insulating layer.
 前記回路素子形成工程は、
 前記柱状半導体の外周部に第3の絶縁層を形成するとともに、前記第3の絶縁層の外周部にゲート導体層を形成する工程と、
 前記柱状半導体における前記第3の絶縁層の上方部位に、前記第1の半導体領域と同一導電型の第5の半導体領域を形成する工程と、を含む、ことが好ましい。
The circuit element forming step includes
Forming a third insulating layer on the outer periphery of the columnar semiconductor and forming a gate conductor layer on the outer periphery of the third insulating layer;
And forming a fifth semiconductor region having the same conductivity type as that of the first semiconductor region at a position above the third insulating layer in the columnar semiconductor.
 前記回路素子形成工程は、
 前記柱状半導体の上方部位に、前記第1の半導体領域と反対導電型の第6の半導体領域を形成する工程を含む、ことが好ましい。
The circuit element forming step includes
Preferably, the method includes a step of forming a sixth semiconductor region having a conductivity type opposite to that of the first semiconductor region in an upper portion of the columnar semiconductor.
 前記第1半導体層形成工程は、前記第1の半導体層と同層に、電気抵抗として機能する第2の半導体層を形成する工程を含む、ことが好ましい。 Preferably, the first semiconductor layer forming step includes a step of forming a second semiconductor layer functioning as an electric resistance in the same layer as the first semiconductor layer.
 前記第1半導体層形成工程は、容量電極として機能する前記第1の半導体層上の所定の領域に容量絶縁膜として機能する絶縁膜を形成する工程を含み、
 前記導電層形成工程は、前記絶縁膜上に、前記第1の半導体層と共に容量電極として機能する導電層を形成する工程を含む、ことが好ましい。
The first semiconductor layer forming step includes a step of forming an insulating film functioning as a capacitor insulating film in a predetermined region on the first semiconductor layer functioning as a capacitor electrode;
The conductive layer forming step preferably includes a step of forming a conductive layer functioning as a capacitor electrode together with the first semiconductor layer on the insulating film.
 前記第1絶縁層形成工程は、前記半導体基板上に、第1の絶縁層と共に第4の絶縁層を形成するとともに、予め設定した容量形成領域に、前記第4の絶縁層よりも厚さが薄く、容量絶縁膜として機能する第5の絶縁層を形成する工程を含み、
 前記導電層形成工程は、前記第5の絶縁層上に、容量電極として機能する導電層を形成する工程を含み、
 前記絶縁層除去工程は、前記容量形成領域に、ドナー不純物又はアクセプタ不純物を有し、容量電極として機能する不純物層を形成する容量形成工程を含む、ことが好ましい。
The first insulating layer forming step forms a fourth insulating layer together with the first insulating layer on the semiconductor substrate, and has a thickness larger than that of the fourth insulating layer in a preset capacitance forming region. Forming a thin fifth insulating layer functioning as a capacitive insulating film,
The conductive layer forming step includes a step of forming a conductive layer functioning as a capacitor electrode on the fifth insulating layer,
The insulating layer removing step preferably includes a capacitor forming step of forming an impurity layer having a donor impurity or an acceptor impurity in the capacitor forming region and functioning as a capacitor electrode.
 前記半導体基板上にマスク合わせマーク形成領域を設定するマスク合わせマーク形成領域設定工程と、
 前記マスク合わせマーク形成領域に、マスク合わせ孔を形成し、前記絶縁層除去領域、前記第1の絶縁層及び前記導電層の少なくとも一つを露出させる工程と、
 前記マスク合わせ孔を通して、前記絶縁層除去領域、前記第1の絶縁層及び前記導電層の内の少なくとも一つからなるマスク合わせマークを形成するマスク合わせマーク形成工程と、
 前記マスク合わせマークを基準として、フォトマスクのマスク合わせを行うマスク合わせ工程と、をさらに備える、ことが好ましい。
A mask alignment mark formation region setting step for setting a mask alignment mark formation region on the semiconductor substrate;
Forming a mask alignment hole in the mask alignment mark formation region to expose at least one of the insulating layer removal region, the first insulating layer, and the conductive layer;
A mask alignment mark forming step of forming a mask alignment mark comprising at least one of the insulating layer removal region, the first insulating layer, and the conductive layer through the mask alignment hole;
It is preferable that the method further includes a mask alignment step of performing mask alignment of the photomask with the mask alignment mark as a reference.
 前記マスク合わせ孔に透明絶縁体を埋め込む工程をさらに備え、
 前記マスク合わせマーク形成工程では、前記透明絶縁体を通して、前記絶縁層除去領域、前記第1の絶縁層及び前記導電層の内の少なくとも一つからなるマスク合わせマークを形成し、
 前記マスク合わせ工程では、前記マスク合わせマークを基準として、フォトマスクのマスク合わせを行う、ことが好ましい。
A step of embedding a transparent insulator in the mask alignment hole;
In the mask alignment mark forming step, a mask alignment mark comprising at least one of the insulating layer removal region, the first insulating layer, and the conductive layer is formed through the transparent insulator,
In the mask alignment step, it is preferable that mask alignment of a photomask is performed using the mask alignment mark as a reference.
 前記絶縁層除去工程と、前記第1半導体層形成工程との間に、前記絶縁層除去領域を覆うように、ドナー不純物及びアクセプタ不純物がドープされていない第2の半導体層を形成する工程をさらに備える、ことが好ましい。 Forming a second semiconductor layer not doped with donor impurities and acceptor impurities so as to cover the insulating layer removal region between the insulating layer removing step and the first semiconductor layer forming step; It is preferable to provide.
 本発明の第2の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記柱状半導体は、
 前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型の半導体又は固有半導体からなる第2の半導体領域を備え、
 前記第2の半導体領域と前記第4の半導体領域とから電磁エネルギー波の照射により発生する信号電荷を蓄積するダイオードが形成され、
 前記ダイオードがゲートとして機能し、前記第1の半導体領域と前記第3の半導体領域のいずれか一方がソース、他方がドレインとしてそれぞれ機能し、かつ、前記第2の半導体領域に形成されたチャネルを流れるとともに前記ダイオードに蓄積された信号電荷量に応じて変化する電流を信号取り出し手段によって取り出し可能とされた接合トランジスタが形成され、
 前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第4の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタによって、前記ゲート導体層に電圧が印加されることで、前記ダイオードに蓄積された信号電荷を前記第1の半導体領域に除去する信号電荷除去手段が形成されている、ことを特徴とする。
A semiconductor device according to a second aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
The columnar semiconductor is
A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
A diode that accumulates signal charges generated by irradiation of electromagnetic energy waves from the second semiconductor region and the fourth semiconductor region is formed,
The diode functions as a gate, one of the first semiconductor region and the third semiconductor region functions as a source, the other functions as a drain, and a channel formed in the second semiconductor region. A junction transistor is formed that is capable of taking out a current that flows and changes in accordance with the amount of signal charge accumulated in the diode by a signal taking-out means,
The gate conductor layer functions as a gate, and a voltage is applied to the gate conductor layer by a MOS transistor in which one of the first semiconductor region and the fourth semiconductor region functions as a source and the other functions as a drain. Thus, signal charge removing means for removing the signal charge accumulated in the diode in the first semiconductor region is formed.
 本発明の第3の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記柱状半導体は、
 前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型又は固有半導体からなる第2の半導体領域を備え、
 前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第5の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタが形成されている、ことを特徴とする。
A semiconductor device according to a third aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
The columnar semiconductor is
A second semiconductor region formed on the first semiconductor region and having a conductivity type opposite to that of the first semiconductor region or an intrinsic semiconductor;
The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain. To do.
 本発明の第4の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記柱状半導体は、
 前記第1の半導体領域と第6の半導体領域との間に、前記第1の半導体領域と反対導電型又は固有半導体からなる第2の半導体領域を備え、
 前記第2の半導体領域と、前記第6の半導体領域と、からダイオードが形成されている、ことを特徴とする。
A semiconductor device according to a fourth aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
The columnar semiconductor is
Between the first semiconductor region and the sixth semiconductor region, a second semiconductor region made of a conductive type or a specific semiconductor opposite to the first semiconductor region is provided,
A diode is formed from the second semiconductor region and the sixth semiconductor region.
 本発明の第5の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記第1の半導体層上に複数の前記柱状半導体が形成されており、
 前記複数の柱状半導体は、前記第1の半導体領域にアクセプタ不純物がドープされている複数の第1の柱状半導体と、前記第1の半導体領域にドナー不純物がドープされている複数の第2の柱状半導体とからなる、ことを特徴とする。
A semiconductor device according to a fifth aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
A plurality of the columnar semiconductors are formed on the first semiconductor layer;
The plurality of columnar semiconductors include a plurality of first columnar semiconductors in which the first semiconductor region is doped with an acceptor impurity, and a plurality of second columnar semiconductors in which the first semiconductor region is doped with a donor impurity. It consists of a semiconductor.
 本発明の第6の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記第1の半導体層上に複数の前記柱状半導体が形成されており、
 前記複数の柱状半導体における、複数の前記第1の半導体領域、及び、複数の前記導電層の内の両方、又は、一方が互いに接続されている、ことを特徴とする。
A semiconductor device according to a sixth aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
A plurality of the columnar semiconductors are formed on the first semiconductor layer;
In the plurality of columnar semiconductors, both or one of the plurality of first semiconductor regions and the plurality of conductive layers are connected to each other.
 本発明の第7の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記第1の半導体層上に複数の前記柱状半導体が形成されており、
 前記各柱状半導体は、
 前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型の半導体又は固有半導体からなる第2の半導体領域と、
 前記第2の半導体領域上に形成された第5の半導体領域と、
 前記第2の半導体領域の外周部に形成された第3の絶縁層と、
 前記第3の絶縁層の外周部に形成されたゲート導体層と、を備え、
 前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第5の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタが形成され、
 前記第1の半導体層は、前記複数の柱状半導体に亘って連続して繋がるように形成されているとともに、前記繋がるように形成された前記第1の半導体層は、絶縁層に形成されたコンタクトホールを介して、外部回路に接続するための配線層に接続されている、ことを特徴とする。
A semiconductor device according to a seventh aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
A plurality of the columnar semiconductors are formed on the first semiconductor layer;
Each of the columnar semiconductors is
A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
A fifth semiconductor region formed on the second semiconductor region;
A third insulating layer formed on the outer periphery of the second semiconductor region;
A gate conductor layer formed on the outer periphery of the third insulating layer,
The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain.
The first semiconductor layer is formed so as to be continuously connected over the plurality of columnar semiconductors, and the first semiconductor layer formed so as to be connected is a contact formed on an insulating layer. It is connected to a wiring layer for connecting to an external circuit through a hole.
 本発明の第8の観点に係る半導体装置は、本発明の第1の観点に係る半導体装置の製造方法によって製造される半導体装置であって、
 前記第1の半導体層上に複数の前記柱状半導体が形成されており、
 前記各柱状半導体は、
 前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型の半導体又は固有半導体からなる第2の半導体領域と、
 前記第2の半導体領域上に形成された第5の半導体領域と、
 前記第2の半導体領域の外周部に形成された第3の絶縁層と、
 前記第3の絶縁層の外周部に形成されたゲート導体層と、を備え、
 前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第5の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタが形成され、
 前記第1の半導体層は、前記複数の柱状半導体に亘って連続して繋がるように形成されているとともに、前記第1の半導体層は、絶縁層に形成されたコンタクトホールを介して、所定のトランジスタのゲートに接続するための配線層に接続されていることを特徴とする。
A semiconductor device according to an eighth aspect of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention,
A plurality of the columnar semiconductors are formed on the first semiconductor layer;
Each of the columnar semiconductors is
A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
A fifth semiconductor region formed on the second semiconductor region;
A third insulating layer formed on the outer periphery of the second semiconductor region;
A gate conductor layer formed on the outer periphery of the third insulating layer,
The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain.
The first semiconductor layer is formed so as to be continuously connected over the plurality of columnar semiconductors, and the first semiconductor layer is connected to a predetermined hole via a contact hole formed in the insulating layer. It is connected to a wiring layer for connecting to the gate of the transistor.
 本発明によれば、高集積化、高速動作化が実現される半導体装置を提供することができる。 According to the present invention, it is possible to provide a semiconductor device in which high integration and high speed operation are realized.
本発明の第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment of this invention. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 本発明の第2実施形態に係るNチャネル型SGTの構造を示す断面図である。It is sectional drawing which shows the structure of N channel type | mold SGT which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る、Nチャネル型SGTとPチャネル型SGTとを同一基板上に形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form N channel type | mold SGT and P channel type | mold SGT on the same board | substrate based on 3rd Embodiment of this invention. 第3実施形態に係る、Nチャネル型SGTとPチャネル型SGTとを同一基板上に形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form N channel type SGT and P channel type SGT on the same board | substrate based on 3rd Embodiment. 本発明の第4実施形態に係る、複数のSGTが金属配線層で接続される構造を有する半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which has the structure where several SGT is connected by a metal wiring layer based on 4th Embodiment of this invention. 本発明の第5実施形態に係る、半導体装置に電気抵抗を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form an electrical resistance in the semiconductor device based on 5th Embodiment of this invention. 第5実施形態に係る、半導体装置に電気抵抗を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form an electrical resistance in the semiconductor device based on 5th Embodiment. 第5実施形態に係る、半導体装置に電気抵抗を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form an electrical resistance in the semiconductor device based on 5th Embodiment. 本発明の第6実施形態に係る、半導体装置に容量を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a capacity | capacitance in the semiconductor device based on 6th Embodiment of this invention. 第6実施形態に係る、半導体装置に容量を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a capacity | capacitance in the semiconductor device based on 6th Embodiment. 第6実施形態に係る、半導体装置に容量を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a capacity | capacitance in the semiconductor device based on 6th Embodiment. 本発明の第7実施形態に係る、半導体装置に容量を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a capacity | capacitance in the semiconductor device based on 7th Embodiment of this invention. 第7実施形態に係る、半導体装置に容量を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a capacity | capacitance in the semiconductor device based on 7th Embodiment. 本発明の第8実施形態に係る、半導体装置にダイオードを形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a diode in the semiconductor device based on 8th Embodiment of this invention. 第8実施形態に係る、半導体装置にダイオードを形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a diode in the semiconductor device based on 8th Embodiment. 第8実施形態の変形例に係る、半導体装置にPINダイオードを形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a PIN diode in the semiconductor device based on the modification of 8th Embodiment. 本発明の第9実施形態に係るCMOSインバータ回路を説明するための回路図である。It is a circuit diagram for demonstrating the CMOS inverter circuit which concerns on 9th Embodiment of this invention. 第9実施形態に係るCMOSインバータ回路を説明するための回路平面配置図である。It is a circuit plane layout for demonstrating the CMOS inverter circuit which concerns on 9th Embodiment. 第9実施形態に係る、半導体装置にCMOSインバータ回路を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a CMOS inverter circuit in the semiconductor device based on 9th Embodiment. 本発明の第10実施形態に係る、2段構造のCMOSインバータ回路を説明するための回路図である。It is a circuit diagram for demonstrating the CMOS inverter circuit of the 2 step | paragraph structure based on 10th Embodiment of this invention. 第10実施形態に係る、2段構造のCMOSインバータ回路を説明するための回路平面配置図である。FIG. 20 is a circuit plan view for explaining a two-stage CMOS inverter circuit according to a tenth embodiment. 第10実施形態に係る、2段構造のCMOSインバータ回路を形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method of forming the CMOS inverter circuit of the 2 step | paragraph structure based on 10th Embodiment. 本発明の第11実施形態に係る、シリコン柱の位置精度を高める方法を説明するための断面図である。It is sectional drawing for demonstrating the method to improve the positional accuracy of a silicon pillar based on 11th Embodiment of this invention. 第11実施形態に係る、半導体基板にマスク合わせマークを形成する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to form a mask alignment mark in the semiconductor substrate based on 11th Embodiment. 第11実施形態の変形例に係る、シリコン柱の位置精度を高める製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method which raises the position accuracy of a silicon pillar based on the modification of 11th Embodiment. 本発明の第12実施形態に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on 12th Embodiment of this invention. 第12実施形態に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on 12th Embodiment. 従来例の固体撮像装置の画素の構造を示す断面図である。It is sectional drawing which shows the structure of the pixel of the solid-state imaging device of a prior art example. 従来例の固体撮像装置を高速動作させる画素の断面図である。It is sectional drawing of the pixel which operates the solid-state imaging device of a prior art example at high speed. 従来例の固体撮像装置を高速動作させる画素を得るための半導体基板の接着工程を説明するための図である。It is a figure for demonstrating the adhesion process of the semiconductor substrate for obtaining the pixel which operates the solid-state imaging device of a prior art example at high speed. 従来例のSGTを有する画素の断面図である。It is sectional drawing of the pixel which has SGT of a prior art example.
 以下、本発明の実施形態に係る半導体装置の製造方法について、図1~図13の図面を参照しながら説明する。 Hereinafter, a method of manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings of FIGS.
(第1実施形態)
 図1A~図1Lに、本発明の第1実施形態に係る、固体撮像装置の製造方法を示す。
 本実施形態に係る固体撮像装置の製造方法においては、図1Aに示されるように、P型シリコンからなる第1の半導体基板1の所定の深さに、高濃度水素イオン(H)をイオンドープすることによって、第1の半導体基板1を上下の2つの部分に分離するための分離層2を形成する(非特許文献2参照)。また、第1の半導体基板1上に、熱酸化又はCVD(Chemical Vapor Deposition)法によって、絶縁膜である第1酸化シリコン層3を形成する。なお、第1の半導体基板1は、P型シリコンの代わりに、実質的に不純物を含まない固有半導体(i型シリコン)であってもよい。
(First embodiment)
1A to 1L show a method for manufacturing a solid-state imaging device according to the first embodiment of the present invention.
In the method for manufacturing a solid-state imaging device according to the present embodiment, as shown in FIG. 1A, high-concentration hydrogen ions (H + ) are ionized at a predetermined depth of the first semiconductor substrate 1 made of P-type silicon. By doping, a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed (see Non-Patent Document 2). A first silicon oxide layer 3 that is an insulating film is formed on the first semiconductor substrate 1 by thermal oxidation or CVD (Chemical Vapor Deposition). The first semiconductor substrate 1 may be a unique semiconductor (i-type silicon) that does not substantially contain impurities, instead of P-type silicon.
 続いて、図1Bに示されるように、第1酸化シリコン層3において、固体撮像装置の信号線用ドレインが形成される部分に相当する酸化シリコン(SiO)を除去することで孔4を形成する。この酸化シリコンが除去された領域(孔4)は、酸化シリコン層除去領域48となる(図11A、図13A参照)。 Subsequently, as shown in FIG. 1B, the hole 4 is formed by removing silicon oxide (SiO 2 ) corresponding to the portion where the signal line drain of the solid-state imaging device is formed in the first silicon oxide layer 3. To do. The region (hole 4) from which the silicon oxide has been removed becomes the silicon oxide layer removal region 48 (see FIGS. 11A and 13A).
 続いて、図1Bに示されるように、この孔4を覆うように、第1酸化シリコン層3及び第1の半導体基板1の上に、CVD法によって多結晶シリコン層5を形成する。 Subsequently, as shown in FIG. 1B, a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3 and the first semiconductor substrate 1 by the CVD method so as to cover the hole 4.
 続いて、図1Cに示されるように、この多結晶シリコン層5に、リン(P)又はヒ素(As)などのドナー不純物をイオンドープすることで、第1の半導体基板1及び第1酸化シリコン層3上に、固体撮像装置の信号線となるN多結晶シリコン層5aを形成する。 Subsequently, as shown in FIG. 1C, the polycrystalline silicon layer 5 is ion-doped with a donor impurity such as phosphorus (P) or arsenic (As), thereby the first semiconductor substrate 1 and the first silicon oxide. On the layer 3, an N + polycrystalline silicon layer 5 a serving as a signal line of the solid-state imaging device is formed.
 続いて、図1Dに示されるように、N多結晶シリコン層5a上に、蒸着法又はCVD法によって、タングステン(W)、タングステン・シリサイド(WSi)、ニッケル(Ni)、ニッケルシリサイド(NiSi)などからなる単層、又は、これらの層が複数積層されてなる金属層7を形成する。 Subsequently, as shown in FIG. 1D, tungsten (W), tungsten silicide (WSi), nickel (Ni), nickel silicide (NiSi) is deposited on the N + polycrystalline silicon layer 5a by vapor deposition or CVD. Or a metal layer 7 formed by laminating a plurality of these layers.
 続いて、図1Eに示されるように、マスクを用いたエッチング処理によって、N多結晶シリコン層5a及び金属層7において孔4を埋め込んでいる部分が残存するように、N多結晶シリコン層5a及び金属層7を所定の形状に成形する。このN多結晶シリコン層5a上には、固体撮像装置の画素における接合トランジスタのソース又はドレインが形成される。 Subsequently, as shown in FIG. 1E, by an etching process using a mask, as in N + polysilicon layer 5a and the metal layer 7 is part that embeds the hole 4 remaining, N + polycrystalline silicon layer The 5a and the metal layer 7 are formed into a predetermined shape. On the N + polycrystalline silicon layer 5a, the source or drain of the junction transistor in the pixel of the solid-state imaging device is formed.
 続いて、図1Fに示されるように、N多結晶シリコン層5a、金属層7及び第1酸化シリコン層3を覆うように、CVD法によって絶縁膜である第2酸化シリコン層8を形成する。そして、その第2酸化シリコン層8の表面をCMP(Chemical Mechanical Polishing;化学機械的研磨)によって平坦化する。 Subsequently, as shown in FIG. 1F, a second silicon oxide layer 8 that is an insulating film is formed by a CVD method so as to cover the N + polycrystalline silicon layer 5a, the metal layer 7, and the first silicon oxide layer 3. . Then, the surface of the second silicon oxide layer 8 is planarized by CMP (Chemical Mechanical Polishing).
 続いて、図1Gに示されるように、シリコン(Si)からなり、表面が平坦化された第2半導体基板9を用意し、その第2半導体基板9の平坦化された表面と第2酸化シリコン層8の平坦化された表面同士を圧着によって接着する。この接着処理では、互いの熱膨張率の差異が小さい、第2半導体基板9におけるシリコン層と、第2酸化シリコン層8におけるシリコン層とが互いに接着されるので、両接着部材の熱膨張係数の異なりによる、ソリ、クラック、ハガレが発生しにくい積層構造が得られる。 Subsequently, as shown in FIG. 1G, a second semiconductor substrate 9 made of silicon (Si) and having a planarized surface is prepared, and the planarized surface of the second semiconductor substrate 9 and the second silicon oxide are prepared. The planarized surfaces of the layer 8 are bonded together by pressure bonding. In this bonding process, the difference in thermal expansion coefficient between the silicon layer in the second semiconductor substrate 9 and the silicon layer in the second silicon oxide layer 8 are bonded to each other. Due to the difference, it is possible to obtain a laminated structure in which warpage, cracking and peeling are unlikely to occur.
 続いて、図1Hに示されるように、400~600℃の熱処理によって、第1の半導体基板1において、分離層2を境界として下方の部分を除去して第1の半導体基板1を所定の厚さまで薄くする(図1Hでは、図1A~図1Gと図面の上下関係を反転表示している。)。ここで、N多結晶シリコン層5aは、図14に示されるN型シリコン層51に対応するものであり、本実施形態では、N多結晶シリコン層5aには、その全ての形成領域に亘って金属層7が接合されている。 Subsequently, as shown in FIG. 1H, by heat treatment at 400 to 600 ° C., the lower portion of the first semiconductor substrate 1 with the separation layer 2 as a boundary is removed to remove the first semiconductor substrate 1 to a predetermined thickness. (In FIG. 1H, the vertical relationship between FIGS. 1A to 1G and the drawing is highlighted.) Here, the N + polycrystalline silicon layer 5a corresponds to the N + type silicon layer 51 shown in FIG. 14, and in this embodiment, the N + polycrystalline silicon layer 5a includes all of its formation regions. The metal layer 7 is joined over the entire area.
 続いて、図1Iに示されるように、第1の半導体基板1において、N多結晶シリコン層5aの直上領域のシリコン層が残存するように、当該直上領域におけるシリコン層以外の領域のシリコン層をエッチングによって除去する。これにより、柱状構造を有するシリコン(Si)柱1aを形成する。このシリコン柱1aは、図1K、図1Lなどに示されるP型シリコン層30となる。 Subsequently, as shown in FIG. 1I, in the first semiconductor substrate 1, the silicon layer in the region other than the silicon layer in the region directly above so that the silicon layer in the region immediately above the N + polycrystalline silicon layer 5 a remains. Are removed by etching. Thereby, a silicon (Si) pillar 1a having a pillar structure is formed. The silicon pillar 1a becomes a P-type silicon layer 30 shown in FIGS. 1K, 1L and the like.
 続いて、図1Jに示されるように、熱処理を行い、N多結晶シリコン層5aからシリコン柱1aにドナー不純物を熱拡散させ、シリコン柱1aの下方部分にN拡散層6aを形成する。 Subsequently, as shown in FIG. 1J, heat treatment is performed to thermally diffuse the donor impurity from the N + polycrystalline silicon layer 5a to the silicon pillar 1a, thereby forming the N + diffusion layer 6a in the lower part of the silicon pillar 1a.
 続いて、図1Kに示されるように、熱酸化を行い、シリコン柱1aの外周部に、絶縁体である第3酸化シリコン層10a、10bを形成する。さらに、蒸着法又はCVD法によって、第3酸化シリコン層10a、10bの外周部にゲート導体層11a、11bを形成する。 Subsequently, as shown in FIG. 1K, thermal oxidation is performed to form third silicon oxide layers 10a and 10b that are insulators on the outer periphery of the silicon pillar 1a. Further, gate conductor layers 11a and 11b are formed on the outer peripheral portions of the third silicon oxide layers 10a and 10b by vapor deposition or CVD.
 続いて、図1Kに示されるように、ゲート導体層11a、11bの上方部位かつシリコン柱1aの表層部に、リン(P)やヒ素(As)などのドナー不純物をイオンドーピングすることでN型シリコン層12a、12bを形成する。このN型シリコン層12a、12bと、シリコン柱1a(P型シリコン層30)とから、入射した光に応じた信号電荷(この場合は電子)を蓄積する信号電荷蓄積手段としてのフォトダイオードが形成される。信号電荷は、N拡散層6aとP型シリコン層13aとの間におけるシリコン柱1a(P型シリコン層30)に蓄積される。 Subsequently, as shown in FIG. 1K, an N-type is formed by ion-doping a donor impurity such as phosphorus (P) or arsenic (As) in the upper portion of the gate conductor layers 11a and 11b and the surface layer portion of the silicon pillar 1a. Silicon layers 12a and 12b are formed. The N-type silicon layers 12a and 12b and the silicon pillar 1a (P-type silicon layer 30) form a photodiode as signal charge storage means for storing signal charges (electrons in this case) corresponding to incident light. Is done. The signal charge is accumulated in the silicon pillar 1a (P-type silicon layer 30) between the N + diffusion layer 6a and the P + -type silicon layer 13a.
 続いて、図1Kに示されるように、シリコン柱1aにおいて、第3酸化シリコン層10a、10bの上方部位に、ボロン(B)などのアクセプタ不純物をイオンドーピングすることによって、P型シリコン層13aを形成する。そして、このP型シリコン層13aを画素選択金属配線14a、14bに電気的に接続する。 Subsequently, as shown in FIG. 1K, in the silicon pillar 1a, an upper portion of the third silicon oxide layers 10a and 10b is ion-doped with an acceptor impurity such as boron (B) to thereby form a P + -type silicon layer 13a. Form. The P + -type silicon layer 13a is electrically connected to the pixel selection metal wirings 14a and 14b.
 また、図1Lに示されるように、固体撮像装置の画素を構成するシリコン柱1aに隣接し、別の画素を構成するシリコン柱1bの外周部に、熱酸化によって、絶縁体である第3酸化シリコン層10c、10dを形成する。このシリコン柱1bは、シリコン柱1aと同様に、図1A~図1Kに示される工程で形成されたものである。 Further, as shown in FIG. 1L, a third oxide which is an insulator is formed by thermal oxidation on the outer periphery of the silicon pillar 1b constituting another pixel and adjacent to the silicon pillar 1a constituting the pixel of the solid-state imaging device. Silicon layers 10c and 10d are formed. The silicon pillar 1b is formed by the steps shown in FIGS. 1A to 1K, similarly to the silicon pillar 1a.
 続いて、図1Lに示されるように、第3酸化シリコン層10c、10dの外周部に、蒸着法又はCVD法によって、ゲート導体層11c、11dを形成する。 Subsequently, as shown in FIG. 1L, gate conductor layers 11c and 11d are formed on the outer periphery of the third silicon oxide layers 10c and 10d by vapor deposition or CVD.
 続いて、図1Lに示されるように、ゲート導体層11c、11dの上方部位かつシリコン柱1aの表層部に、リン(P)やヒ素(As)などのドナー不純物をイオンドーピングすることでN型シリコン層12c、12dを形成する。このN型シリコン層12c、12dと、シリコン柱1bと、によって、入射した光に応じた信号電荷(この場合は電子)を蓄積する信号電荷蓄積手段としてのフォトダイオードが形成される。信号電荷は、N拡散層6abとP型シリコン層13bとの間におけるシリコン柱1b(P型シリコン層30)に蓄積される。 Subsequently, as shown in FIG. 1L, the upper portion of the gate conductor layers 11c and 11d and the surface layer portion of the silicon pillar 1a are ion-doped with a donor impurity such as phosphorus (P) or arsenic (As). Silicon layers 12c and 12d are formed. The N-type silicon layers 12c and 12d and the silicon pillar 1b form a photodiode as signal charge storage means for storing signal charges (electrons in this case) corresponding to incident light. The signal charge is accumulated in the silicon pillar 1b (P-type silicon layer 30) between the N + diffusion layer 6ab and the P + -type silicon layer 13b.
 続いて、図1Lに示されるように、シリコン柱1aにおいて、第3酸化シリコン層10c、10dの上方部位に、ボロン(B)などのアクセプタ不純物をシリコン柱1bにイオンドーピングすることによって、P型シリコン層13bを形成する。
 そして、このP型シリコン層13a、13bを画素選択金属配線14c、14dに電気的に接続する。以上の工程により、固体撮像装置における複数の画素が形成される。
Subsequently, as shown in FIG. 1L, the silicon pillar 1a, the third silicon oxide layer 10c, the upper part of the 10d, by ion doping in the silicon pillar 1b the acceptor impurities such as boron (B), P + A mold silicon layer 13b is formed.
Then, the P + type silicon layers 13a and 13b are electrically connected to the pixel selection metal wirings 14c and 14d. Through the above steps, a plurality of pixels in the solid-state imaging device are formed.
 なお、本実施形態では、図1Jに示される工程において、熱処理によって、シリコン柱1a内のN拡散層6aは、N多結晶シリコン層5aからシリコン柱1aにドナー不純物を熱拡散させることで形成した。これに限られず、N拡散層6aは、図1Cに示されるN多結晶シリコン層5aが形成された後の任意の段階における熱処理によって、N多結晶シリコン層5aから第1の半導体基板1内にドナー不純物を拡散させることで形成することもできる。即ち、図1Cに示される、N多結晶シリコン層5aを形成した工程以後に、ドナー不純物を含むN多結晶シリコン層5aから当該不純物を拡散させることでシリコン柱1aにN拡散層6aを形成することもできる。例えば、N拡散層6aは、図1Kで示す段階において、シリコン柱1a(P型シリコン層30)に熱処理を行って形成してもよい。さらに、このようなN拡散層6aを形成するための熱処理は、1回のみでもよいし、複数回に分けて行うこともできる。 In this embodiment, in the step shown in FIG. 1J, the N + diffusion layer 6a in the silicon pillar 1a is thermally diffused from the N + polycrystalline silicon layer 5a to the silicon pillar 1a by heat treatment. Formed. The N + diffusion layer 6a is not limited to this, and the N + diffusion layer 6a is formed from the N + polycrystalline silicon layer 5a to the first semiconductor substrate by heat treatment at an arbitrary stage after the N + polycrystalline silicon layer 5a shown in FIG. 1C is formed. It can also be formed by diffusing donor impurities in 1. That is, after the step of forming the N + polycrystalline silicon layer 5a shown in FIG. 1C, the impurities are diffused from the N + polycrystalline silicon layer 5a including the donor impurity, thereby the N + diffusion layer 6a is formed in the silicon pillar 1a. Can also be formed. For example, the N + diffusion layer 6a may be formed by performing heat treatment on the silicon pillar 1a (P-type silicon layer 30) in the stage shown in FIG. 1K. Further, the heat treatment for forming such an N + diffusion layer 6a may be performed only once or may be performed in a plurality of times.
 以上の図1A~図1Lに示される工程によって、本実施形態に係る固体撮像装置が形成される。また、各シリコン柱1a、1bには、固体撮像装置の画素が形成される。 The solid-state imaging device according to this embodiment is formed by the processes shown in FIGS. 1A to 1L. In addition, pixels of the solid-state imaging device are formed on each of the silicon pillars 1a and 1b.
 本実施形態では、図1Lを参照して、シリコン柱1a、1bの下方に形成され、互いに接合されているN多結晶シリコン層5a及び金属層7は、固体撮像装置の信号線を構成するとともに、2つのシリコン柱1a、1bにおけるN拡散層6a、6abを互いに電気的に接続している。これにより、N多結晶シリコン層5a及び金属層7から構成される信号線が低電気抵抗化され、固体撮像装置の高速駆動化が実現される。 In this embodiment, referring to FIG. 1L, N + polycrystalline silicon layer 5a and metal layer 7 formed below silicon pillars 1a and 1b and joined to each other constitute a signal line of the solid-state imaging device. In addition, the N + diffusion layers 6a and 6ab in the two silicon pillars 1a and 1b are electrically connected to each other. Thereby, the signal line composed of the N + polycrystalline silicon layer 5a and the metal layer 7 is reduced in electrical resistance, and high-speed driving of the solid-state imaging device is realized.
 本実施形態では、シリコン柱1a、1b内において、接合トランジスタが形成されている。この接合トランジスタでは、N型シリコン層12a、12b(12c、12d)及びシリコン柱1a(P型シリコン層30)によって構成されるフォトダイオードがゲート、P型シリコン層13a、13bがドレイン、N拡散層6a、6abがソースとしてそれぞれ機能する。そして、シリコン柱1a、1b内には、この接合トランジスタのチャネルが形成されている。 In the present embodiment, junction transistors are formed in the silicon pillars 1a and 1b. In this junction transistor, a photodiode constituted by N-type silicon layers 12a and 12b (12c and 12d) and a silicon pillar 1a (P-type silicon layer 30) is a gate, P + -type silicon layers 13a and 13b are drains, and N + The diffusion layers 6a and 6ab function as sources. The junction transistor channel is formed in the silicon pillars 1a and 1b.
 また、本実施形態では、接合トランジスタによってシリコン柱1a、1b内のチャネルを流れるとともに、上記フォトダイオードに蓄積された信号電荷量に応じて変化する電流を電気信号として取り出す信号取り出し手段としての外部回路(図示せず)が設けられている。 In the present embodiment, an external circuit serving as a signal extraction unit that flows as channels through the channels in the silicon pillars 1a and 1b by the junction transistor and extracts a current that changes according to the amount of signal charge accumulated in the photodiode as an electric signal. (Not shown) is provided.
 さらに、図1Lに示すシリコン柱1a、1bには、上記フォトダイオードによってN拡散層6a、6abとP型シリコン層13a、13bとの間におけるシリコン柱1a、1b(P型シリコン層30)に蓄積された信号電荷を、N拡散層6a、6abに除去する信号電荷除去手段としてのMOSトランジスタが形成されている。 Further, the silicon pillars 1a and 1b shown in FIG. 1L are formed on the silicon pillars 1a and 1b (P-type silicon layer 30) between the N + diffusion layers 6a and 6ab and the P + -type silicon layers 13a and 13b by the photodiode. MOS transistors are formed as signal charge removing means for removing the signal charges accumulated in the N + diffusion layers 6a and 6ab.
 このMOSトランジスタでは、シリコン柱1a、1b(P型シリコン層30)を囲むように、第3酸化シリコン層10a、10b、10c、10dの外周面に形成されたゲート導体層11a、11b、11c、11dがゲート、N拡散層6a、6abがドレイン、N型シリコン層12a、12b、12c、12dがソースとしてそれぞれ機能する。そして、シリコン柱1a、1b内には、このMOSトランジスタのチャネルが形成される。 In this MOS transistor, gate conductor layers 11a, 11b, 11c formed on the outer peripheral surfaces of the third silicon oxide layers 10a, 10b, 10c, 10d so as to surround the silicon pillars 1a, 1b (P-type silicon layer 30). 11d functions as a gate, N + diffusion layers 6a and 6ab function as a drain, and N- type silicon layers 12a, 12b, 12c, and 12d function as a source, respectively. The channel of this MOS transistor is formed in the silicon pillars 1a and 1b.
 本実施形態では、図1Gに示されるように、第2半導体基板9のシリコン層と、第1の半導体基板1上の第2酸化シリコン層8とが、平坦化された互いの表面同士で接着される。このように本実施形態では、第1の半導体基板1(第2酸化シリコン層8)と第2半導体基板9との接着が、第1の半導体基板1と第2半導体基板9の全面において、接着の親和性が高いSi(シリコン)面とSiO(酸化シリコン)面との間で行われるので、ソリ、クラック、ハガレが発生しにくい積層構造が得られる。 In this embodiment, as shown in FIG. 1G, the silicon layer of the second semiconductor substrate 9 and the second silicon oxide layer 8 on the first semiconductor substrate 1 are bonded to each other on the planarized surfaces. Is done. As described above, in this embodiment, the first semiconductor substrate 1 (second silicon oxide layer 8) and the second semiconductor substrate 9 are bonded to each other over the entire surfaces of the first semiconductor substrate 1 and the second semiconductor substrate 9. Since this is performed between the Si (silicon) surface and the SiO 2 (silicon oxide) surface having a high affinity, it is possible to obtain a laminated structure in which warpage, cracking, and peeling are unlikely to occur.
 また、本実施形態では、固体撮像装置の画素において信号線を構成するN多結晶シリコン層5aには金属層7が接合されているので、画素と該画素の周辺回路との間の電気抵抗を下げることができる。これにより、従来例の固体撮像装置と比較して、画素数の増加、又は単位時間あたりの読出し画面数の増加に際しても、固体撮像装置の高速動作化が実現できる。 In the present embodiment, since the metal layer 7 is bonded to the N + polycrystalline silicon layer 5a constituting the signal line in the pixel of the solid-state imaging device, the electrical resistance between the pixel and the peripheral circuit of the pixel Can be lowered. As a result, the solid-state imaging device can be operated at a higher speed even when the number of pixels is increased or the number of readout screens per unit time is increased as compared with the conventional solid-state imaging device.
 また、本実施形態では、図1Kを参照して、P型シリコン層30とN型シリコン層12a、12bとから構成されるPN接合部(フォトダイオード)と、P型シリコン層30とN拡散層6aとから構成されるPN接合部は、いずれも単結晶シリコンからなるシリコン柱1a内に形成される。このようにPN接合部が単結晶シリコン内で形成されるため、リーク電流が低い固体撮像装置の画素が構成される。 In this embodiment, referring to FIG. 1K, a PN junction (photodiode) composed of a P-type silicon layer 30 and N-type silicon layers 12a and 12b, and a P-type silicon layer 30 and N + diffusion are used. The PN junction composed of the layer 6a is formed in the silicon pillar 1a made of single crystal silicon. Since the PN junction is thus formed in single crystal silicon, a pixel of a solid-state imaging device with low leakage current is configured.
 さらに、本実施形態では、画素を構成するシリコン柱1a、1b(図1L参照)の上方部から入射した光は、光電変換領域であるシリコン柱1aに到達し、金属層7で反射されるので、シリコン柱1a内での光路長が増加し、固体撮像装置の感度向上が実現される。また、本実施形態では、シリコン柱1a、1bの高さを低くしても、従来例と同じ感度を得ることができるので、従来例と同じ感度を得ながら固体撮像装置の製造が容易になる効果も得られる。 Furthermore, in this embodiment, light incident from the upper part of the silicon pillars 1a and 1b (see FIG. 1L) constituting the pixel reaches the silicon pillar 1a which is a photoelectric conversion region and is reflected by the metal layer 7. The optical path length in the silicon pillar 1a increases, and the sensitivity of the solid-state imaging device is improved. In the present embodiment, even if the height of the silicon pillars 1a and 1b is lowered, the same sensitivity as that of the conventional example can be obtained. Therefore, the solid-state imaging device can be easily manufactured while obtaining the same sensitivity as that of the conventional example. An effect is also obtained.
 なお、本実施形態においては、図1Bに示されるように、第1酸化シリコン層3及び第1の半導体基板1上に、孔4を埋め込む(覆う)ように、CVD法によって、N多結晶シリコン層5aとなる多結晶シリコン層5を形成した。このようにCVD法によって多結晶シリコン層5を形成する代わりに、エピタキシャル成長により単結晶シリコン層を形成してもよい。エピタキシャル成長を用いる場合には、第1酸化シリコン層3上にも単結晶シリコン層を形成することができるので、その後、図1C~図1Kに示される工程と同様にして固体撮像装置を形成することができる。 In the present embodiment, as shown in FIG. 1B, N + polycrystal is formed by CVD so as to fill (cover) the hole 4 on the first silicon oxide layer 3 and the first semiconductor substrate 1. A polycrystalline silicon layer 5 to be a silicon layer 5a was formed. Thus, instead of forming the polycrystalline silicon layer 5 by the CVD method, a single crystalline silicon layer may be formed by epitaxial growth. When epitaxial growth is used, a single crystal silicon layer can be formed also on the first silicon oxide layer 3, and thereafter, a solid-state imaging device is formed in the same manner as the steps shown in FIGS. 1C to 1K. Can do.
 また、図1Hにおいては、第1の半導体基板1において、分離層2を境界とし、400~600℃の熱処理によって下方の部分を除去することで、第1の半導体基板1を所定の厚さまで薄くした。これに限られず、第1の半導体基板1の薄膜化は、第1の半導体基板1として、P型基板と、このP型基板にエピタキシャル成長で形成したP型シリコン層とから構成される基板を用いて、エッチングとCMPによって行うこともできる。 Further, in FIG. 1H, the first semiconductor substrate 1 is thinned to a predetermined thickness by removing the lower part of the first semiconductor substrate 1 by using a heat treatment at 400 to 600 ° C. with the separation layer 2 as a boundary. did. The first semiconductor substrate 1 is not limited to this, but the first semiconductor substrate 1 is formed of a P + -type substrate and a P-type silicon layer formed by epitaxial growth on the P + -type substrate. Can also be performed by etching and CMP.
(第2実施形態)
 以下、図2を参照して、本発明の第2実施形態に係る、SGT(MOSトランジスタ)を有する半導体装置の製造方法を説明する。
 本実施形態では、第1実施形態の図1A~図1Lで示される工程において、図1A~図1Jで示される工程までは、図1Jにおいて信号線を構成するN多結晶シリコン層5aを、SGT(MOSトランジスタ)においてドレインとして機能するN多結晶シリコン層55aに置き換えるものとする。第1実施形態(図1J参照)と同様に、N多結晶シリコン層55aには金属層7が接合されており、N多結晶シリコン層55aからのドナー不純物の熱拡散によってシリコン柱1a内にN拡散層6aが形成されている。
(Second Embodiment)
Hereinafter, with reference to FIG. 2, the manufacturing method of the semiconductor device which has SGT (MOS transistor) based on 2nd Embodiment of this invention is demonstrated.
In the present embodiment, in the steps shown in FIGS. 1A to 1L of the first embodiment, until the steps shown in FIGS. 1A to 1J, the N + polycrystalline silicon layer 5a constituting the signal line in FIG. It is assumed that it is replaced with an N + polycrystalline silicon layer 55a that functions as a drain in the SGT (MOS transistor). Similar to the first embodiment (see FIG. 1 J), N + numerous to crystalline silicon layer 55a and the metal layer 7 is bonded, the silicon pillar in 1a by thermal diffusion of donor impurities from the N + polysilicon layer 55a N + diffusion layer 6a is formed.
 本実施形態では、図1Jに続いて、図2に示される工程において、酸化法又はCVD法によって、シリコン柱1aの外周部にゲート絶縁層15a、15bを形成するとともに、ゲート絶縁層15a、15bの外周部に、SGT(MOSトランジスタ)のゲートとして機能するゲート導体層16a、16bを形成する。 In the present embodiment, subsequent to FIG. 1J, in the step shown in FIG. 2, the gate insulating layers 15a and 15b are formed on the outer periphery of the silicon pillar 1a by the oxidation method or the CVD method, and the gate insulating layers 15a and 15b are formed. Gate conductor layers 16a and 16b functioning as gates of SGTs (MOS transistors) are formed on the outer periphery of the gate electrode.
 続いて、シリコン柱1aにおいて、ゲート導体層16a、16bの上方部位に、リン(P)やヒ素(As)などのドナー不純物をイオンドーピングすることによって、SGT(MOSトランジスタ)のソースとして機能するN型シリコン層17aを形成する。 Subsequently, in the silicon pillar 1a, an upper portion of the gate conductor layers 16a and 16b is ion-doped with a donor impurity such as phosphorus (P) or arsenic (As), thereby functioning as an NGT functioning as a source of SGT (MOS transistor). A + type silicon layer 17a is formed.
 続いて、そのN型シリコン層17a上に、蒸着法とパターンエッチングによって金属配線層18aを形成する。
 以上により、第2半導体基板9上にSGT、詳しくは、第2半導体基板9上にNチャネル型SGTが形成される。ここで、Nチャネル型SGTのドレインとして機能するN多結晶シリコン層55aは、Nチャネル型SGTにおいてソースとして機能してもよく、ソースとして機能するN型シリコン層17aは、Nチャネル型SGTにおいて、ドレインとして機能してもよい。
Subsequently, a metal wiring layer 18a is formed on the N + type silicon layer 17a by vapor deposition and pattern etching.
As a result, an SGT, specifically, an N-channel SGT is formed on the second semiconductor substrate 9. Here, the N + polycrystalline silicon layer 55a functioning as the drain of the N channel type SGT may function as a source in the N channel type SGT, and the N + type silicon layer 17a functioning as the source may be the N channel type SGT. , It may function as a drain.
 本実施形態によれば、SGT(Nチャネル型SGT)において、ドレインとして機能するN多結晶シリコン層55aの裏面全体に金属層7が接合されている。この構成により、金属層7からN拡散層6aまでの電気抵抗が低減するので、高速動作化が実現されたSGTが得られる。 According to the present embodiment, in the SGT (N-channel SGT), the metal layer 7 is bonded to the entire back surface of the N + polycrystalline silicon layer 55a that functions as a drain. With this configuration, the electrical resistance from the metal layer 7 to the N + diffusion layer 6a is reduced, so that an SGT with high speed operation is obtained.
(第3実施形態)
 以下、図3A、図3Bを参照して、本発明の第3実施形態に係る、SGT(MOSトランジスタ)を有する半導体装置の製造方法を説明する。本実施形態では、Nチャネル型SGTとPチャネル型SGTとを同一の半導体基板上に形成する。本実施形態及びその変形例における半導体装置の製造工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
(Third embodiment)
Hereinafter, with reference to FIGS. 3A and 3B, a method of manufacturing a semiconductor device having an SGT (MOS transistor) according to a third embodiment of the present invention will be described. In this embodiment, the N channel type SGT and the P channel type SGT are formed on the same semiconductor substrate. The manufacturing process of the semiconductor device according to the present embodiment and the modification thereof is the same as that of the first embodiment except for the case specifically described below.
 本実施形態では、図3A、図3Bを参照して、第1の半導体基板1上において、Nチャネル型SGT形成領域1nにはNチャネル型SGT、Pチャネル型SGT形成領域1pにはPチャネル型SGTをそれぞれ形成する。
 Nチャネル型SGT形成領域1nにおけるNチャネル型SGTは、第1実施形態の図1A~図1J、第2実施形態の図2に示される工程と同様にして形成する。
In the present embodiment, referring to FIGS. 3A and 3B, on the first semiconductor substrate 1, an N channel type SGT formation region 1n is an N channel type SGT, and a P channel type SGT formation region 1p is a P channel type. Each SGT is formed.
The N-channel SGT in the N-channel SGT formation region 1n is formed in the same manner as the steps shown in FIGS. 1A to 1J of the first embodiment and FIG. 2 of the second embodiment.
 一方、Pチャネル型SGT形成領域1pにおけるPチャネル型SGTは、第1実施形態の図1A~図1J、第2実施形態の図2に示される工程とほぼ同様にして形成する。但し、図1Cに対応する工程では、Nチャネル型SGTのドレインとして機能するN多結晶シリコン層55aを形成する代わりに、Pチャネル型SGT形成領域1pにおける多結晶シリコン層5に、ボロン(B)などのアクセプタ不純物をイオンドーピングすることによって、Pチャネル型SGTのソースとして機能するP多結晶シリコン層55bを形成する。 On the other hand, the P-channel SGT in the P-channel SGT formation region 1p is formed in substantially the same manner as the steps shown in FIGS. 1A to 1J of the first embodiment and FIG. 2 of the second embodiment. However, in the step corresponding to FIG. 1C, instead of forming the N + polycrystalline silicon layer 55a that functions as the drain of the N channel type SGT, boron (B ) Or the like is ion-doped to form a P + polycrystalline silicon layer 55b that functions as a source of the P-channel SGT.
 続いて、図1D~図1Jに対応する工程、図2に対応する工程を経て、図3Bに示されるように、シリコン柱1aによって構成されるNチャネル型SGTと、シリコン柱1bによって構成されるPチャネル型SGTとが形成される。なお、シリコン柱1bでは、Pチャネル型SGTのシリコン柱1b(P型シリコン)に、リン(P)やヒ素(As)などのドナー不純物をイオンドーピングすることでN型シリコン層30aを形成する。 Subsequently, through steps corresponding to FIGS. 1D to 1J and steps corresponding to FIG. 2, as shown in FIG. 3B, an N channel type SGT constituted by the silicon pillar 1a and a silicon pillar 1b are formed. A P channel type SGT is formed. In the silicon pillar 1b, the N-type silicon layer 30a is formed by ion doping a P-channel SGT silicon pillar 1b (P-type silicon) with a donor impurity such as phosphorus (P) or arsenic (As).
 ここで、図1Jに対応する工程では、熱処理によって、シリコン柱1a、1b中にN多結晶シリコン層55a、P多結晶シリコン層55bからドナー不純物、アクセプタ不純物をそれぞれ熱拡散させ、N拡散層6a、P拡散層6bを形成する。 Here, in the step corresponding to FIG. 1 J, by heat treatment, the silicon pillar 1a, N + polycrystalline silicon layer 55a during 1b, P + polycrystalline silicon layer 55b from the donor impurities, respectively and thermally diffusing the acceptor impurity, N + Diffusion layer 6a and P + diffusion layer 6b are formed.
 また、図2に対応する工程では、熱酸化又はCVD法によって、シリコン柱1a、1bの外周部に、ゲート絶縁層15a、15b、15c、15dを形成するとともに、ゲート絶縁層15a、15b、15c、15dの外周部に、CVD法によってゲート導体層16a、16b、16c、16dを形成する(図3B参照)。 In the process corresponding to FIG. 2, the gate insulating layers 15a, 15b, 15c, and 15d are formed on the outer peripheral portions of the silicon pillars 1a and 1b by thermal oxidation or CVD, and the gate insulating layers 15a, 15b, and 15c are formed. , 15d, gate conductor layers 16a, 16b, 16c, 16d are formed by CVD (see FIG. 3B).
 そして、図3Bに示される工程では、シリコン柱1a、1bにおいて、ゲート導体層16a、16b、16c、16dの上方部位に、ドナー不純物、アクセプタ不純物をそれぞれイオンドーピングすることによって、Nチャネル型SGTのソースとして機能するN型シリコン層17a、Pチャネル型SGTのソースとして機能するP型シリコン層17bをそれぞれ形成する。 In the step shown in FIG. 3B, in the silicon pillars 1a and 1b, donor impurities and acceptor impurities are ion-doped in the upper portions of the gate conductor layers 16a, 16b, 16c, and 16d, respectively. An N + type silicon layer 17a that functions as a source and a P + type silicon layer 17b that functions as a source of a P-channel type SGT are formed.
 続いて、図3Bに示される工程において、Nチャネル型SGTにおけるN+型シリコン層17a、Pチャネル型SGTにおけるP型シリコン層17bに電気的に接続されるように、例えば蒸着法及びエッチングによって金属配線層18a、18bを形成する。
 以上により、第2半導体基板9上にNチャネル型SGT及びPチャネル型SGTが形成される。
Subsequently, in the step shown in FIG. 3B, for example, by vapor deposition and etching so as to be electrically connected to the N + type silicon layer 17a in the N channel type SGT and the P + type silicon layer 17b in the P channel type SGT. Metal wiring layers 18a and 18b are formed.
Thus, the N channel type SGT and the P channel type SGT are formed on the second semiconductor substrate 9.
 本実施形態では、Nチャネル型SGTにおけるシリコン柱1a内のN多結晶シリコン層55a及びN拡散層6aと、N型シリコン層17aとは、いずれか一方がドレインであれば、他方はソースとして機能する。また、Pチャネル型SGTにおけるシリコン柱1b内のP多結晶シリコン層55b及びP拡散層6bと、P型シリコン層17bとは、いずれか一方がドレインであれば、他方はソースとして機能する。
 本実施形態によれば、第2半導体基板9上に、Nチャネル型SGTとPチャネル型SGTとを容易に形成することができる。
In the present embodiment, any one of the N + polycrystalline silicon layer 55a and the N + diffusion layer 6a in the silicon pillar 1a in the N channel type SGT and the N + type silicon layer 17a is a drain, and the other is Act as a source. In addition, if any one of the P + polycrystalline silicon layer 55b and the P + diffusion layer 6b and the P + type silicon layer 17b in the silicon pillar 1b in the P channel type SGT is a drain, the other functions as a source. To do.
According to this embodiment, the N-channel SGT and the P-channel SGT can be easily formed on the second semiconductor substrate 9.
 本実施形態では、Nチャネル型SGTのシリコン柱1a(P型シリコン層30)を形成した後、Pチャネル型SGTのシリコン柱1b(P型シリコン)に、リン(P)やヒ素(As)などのドナー不純物をイオンドーピングすることでN型シリコン層30aを形成した。これに限られず、本実施形態の変形例として、図1Aにおける第1の半導体基板1を、P型シリコンに代えて固有半導体であるi型シリコンとし、図1Iに対応する工程においては、Nチャネル型SGTにおけるシリコン柱1aにはボロン(B)などのアクセプタ不純物をイオンドーピングしてP型シリコン層30を形成するとともに、Pチャネル型SGTにおけるシリコン柱1aには、リン(P)やヒ素(As)などのドナー不純物をイオンドーピングすることでN型シリコン層30aを形成することも可能である。 In this embodiment, after forming the N-channel SGT silicon pillar 1a (P-type silicon layer 30), the P-channel SGT silicon pillar 1b (P-type silicon) is formed with phosphorus (P), arsenic (As), or the like. The N-type silicon layer 30a was formed by ion doping of the donor impurities. As a modification of this embodiment, the first semiconductor substrate 1 in FIG. 1A is replaced with i-type silicon, which is a unique semiconductor, instead of P-type silicon. In the process corresponding to FIG. The silicon pillar 1a in the type SGT is ion-doped with an acceptor impurity such as boron (B) to form a P-type silicon layer 30, and the silicon pillar 1a in the P-channel type SGT has phosphorus (P) or arsenic (As). It is also possible to form the N-type silicon layer 30a by ion doping with a donor impurity such as
(第4実施形態)
 以下、図4を参照して、本発明の第4実施形態に係る、複数のSGTを有する半導体装置の製造方法を説明する。
 本実施形態では、第3実施形態と同様にして、Nチャネル型SGT形成領域1nにはNチャネル型SGT、Pチャネル型SGT形成領域1pにはPチャネル型SGTをそれぞれ形成する(図3A、図3B参照)。
(Fourth embodiment)
Hereinafter, with reference to FIG. 4, the manufacturing method of the semiconductor device which has several SGT based on 4th Embodiment of this invention is demonstrated.
In this embodiment, as in the third embodiment, an N-channel SGT is formed in the N-channel SGT formation region 1n, and a P-channel SGT is formed in the P-channel SGT formation region 1p (FIG. 3A, FIG. 3). 3B).
 本実施形態では、第1及び第3実施形態とほぼ同様にして、Nチャネル型SGTとPチャネル型SGTとを、同一の半導体基板である第2半導体基板9上に形成する(図1A~図1J、図3A、図3B参照)。但し、図1Eに対応する工程では、図4に示されるように、複数のNチャネル型SGT、Pチャネル型SGTにおいて、ソースとして機能するN多結晶シリコン層55a、ドレインとして機能するP多結晶シリコン層55b同士を金属層7aa、7bb、第1接続用金属層7a、第2接続用金属層7bによって電気的に接続する。 In the present embodiment, an N channel type SGT and a P channel type SGT are formed on the second semiconductor substrate 9, which is the same semiconductor substrate, in substantially the same manner as in the first and third embodiments (FIGS. 1A to 1D). 1J, see FIGS. 3A and 3B). However, in the step corresponding to FIG. 1E, as shown in FIG. 4, in a plurality of N channel type SGTs and P channel type SGTs, N + polycrystalline silicon layers 55a functioning as sources and P + many functioning as drains. The crystalline silicon layers 55b are electrically connected to each other by the metal layers 7aa and 7bb, the first connection metal layer 7a, and the second connection metal layer 7b.
 即ち、本実施形態では、図1Dに対応する工程において、N多結晶シリコン層55a、P多結晶シリコン層55bとなるシリコン層を覆うように、蒸着法とエッチングによって金属層7を形成する。そして、エッチングによって、金属層7、N多結晶シリコン層55a及びP多結晶シリコン層55bを、所定の形状に成形する。これにより、図4に示されるように、N多結晶シリコン層55a、P多結晶シリコン層55b、金属層7aa、7bb、第1接続用金属層7aをそれぞれ形成する。 That is, in the present embodiment, in the step corresponding to FIG. 1D, the metal layer 7 is formed by vapor deposition and etching so as to cover the silicon layers to be the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b. . Then, the metal layer 7, the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b are formed into a predetermined shape by etching. Thereby, as shown in FIG. 4, an N + polycrystalline silicon layer 55a, a P + polycrystalline silicon layer 55b, metal layers 7aa and 7bb, and a first connection metal layer 7a are formed.
 本実施形態では、図3Bに対応する工程に続いて、図4を参照して、第1接続用金属層7a上に酸化シリコン層20を形成し、当該酸化シリコン層20にコンタクトホール21cを形成する。次に、コンタクトホール21c及び第1接続用金属層7aを介して、N多結晶シリコン層55a及びP多結晶シリコン層55bと、酸化シリコン層20の上部に形成された外部金属配線層22cとを接続する。また、第1接続用金属層7aを延長した部位に第2接続用金属層7bを形成し、この第2接続用金属層7bを用いて、所定の場所から図示しないコンタクトホールを介して電気的接点を取り出すようにする。 In the present embodiment, following the step corresponding to FIG. 3B, referring to FIG. 4, a silicon oxide layer 20 is formed on the first connection metal layer 7a, and a contact hole 21c is formed in the silicon oxide layer 20. To do. Next, the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b and the external metal wiring layer 22c formed on the silicon oxide layer 20 through the contact hole 21c and the first connection metal layer 7a. And connect. Further, a second connection metal layer 7b is formed in a portion extending from the first connection metal layer 7a, and the second connection metal layer 7b is used to electrically connect from a predetermined location through a contact hole (not shown). Take out the contact.
 また、本実施形態では、図4を参照して、Nチャネル型SGTのドレインとして機能するN多結晶シリコン層55a、55bの裏面全体にそれぞれ金属層7aa、7bbが接合されている。そして、複数のシリコン柱1a、1bにおいて、N拡散層6a、6b、及び、複数の金属層7aa、7bbの内の一方である複数の金属層7aa、7bb同士が互いに接続されている。ここで、N拡散層6a、6b、及び、複数の金属層7aa、7bbの内の両方が互いに接続されていてもよい。 In the present embodiment, referring to FIG. 4, metal layers 7aa and 7bb are bonded to the entire back surfaces of N + polycrystalline silicon layers 55a and 55b that function as drains of the N-channel SGT, respectively. In the plurality of silicon pillars 1a and 1b, the N + diffusion layers 6a and 6b and the plurality of metal layers 7aa and 7bb which are one of the plurality of metal layers 7aa and 7bb are connected to each other. Here, both of the N + diffusion layers 6a and 6b and the plurality of metal layers 7aa and 7bb may be connected to each other.
 なお、本実施形態において、図4では、N多結晶シリコン層55aがNチャネル型SGTのソース、P多結晶シリコン層55bがPチャネル型SGTのドレインとしてそれぞれ機能した。これに限られず、N多結晶シリコン層55aがNチャネル型SGTのドレイン、P多結晶シリコン層55bがPチャネル型SGTのソースとして機能することもできる。さらには、N多結晶シリコン層55a、P多結晶シリコン層55bがいずれもソース又はドレインとして機能してもよい。 In this embodiment, in FIG. 4, the N + polycrystalline silicon layer 55a functions as an N-channel SGT source, and the P + polycrystalline silicon layer 55b functions as a P-channel SGT drain. However, the present invention is not limited to this, and the N + polycrystalline silicon layer 55a can also function as an N-channel SGT drain and the P + polycrystalline silicon layer 55b can function as a P-channel SGT source. Further, both the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b may function as a source or a drain.
 上述したように、本実施形態によれば、複数のSGTにおいて、N多結晶シリコン層55a、P多結晶シリコン層55bによって構成されるソース、ドレイン同士が、酸化シリコン層20の上表面において金属配線層22a、22b、22cが形成されている領域にコンタクトホールなどを介して引き出された上で接続されることなく、第1接続用金属層7aによって互いに電気的に接続される。これによりSGTを有する回路素子の集積度を高めることができる。 As described above, according to the present embodiment, in the plurality of SGTs, the source and drain constituted by the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b are arranged on the upper surface of the silicon oxide layer 20. The metal wiring layers 22a, 22b, and 22c are electrically connected to each other by the first connection metal layer 7a without being connected after being drawn out through a contact hole or the like. Thereby, the integration degree of the circuit element which has SGT can be raised.
 また、本実施形態に係る半導体装置の製造方法は、固体撮像装置の製造方法に適用することができる。この場合、例えば、非特許文献1に記載されている複数の画素信号を1個の増幅用のMOSトランジスタで読み出す構成の固体撮像装置において、各画素におけるドレイン同士を互いに第1接続用金属層7aで接続する。この場合も、各画素のドレイン、ソースは、コンタクトホールなどを介して上層部の別の金属配線に接続させた上で互いに接続する必要がない。このため、固体撮像装置の画素の更なる高集積化が実現される。 The semiconductor device manufacturing method according to the present embodiment can be applied to a solid-state imaging device manufacturing method. In this case, for example, in the solid-state imaging device configured to read out a plurality of pixel signals described in Non-Patent Document 1 with a single amplification MOS transistor, the drains of the pixels are connected to each other by the first connection metal layer 7a. Connect with. Also in this case, the drain and source of each pixel need not be connected to each other after being connected to another metal wiring in the upper layer portion via a contact hole or the like. For this reason, further high integration of the pixels of the solid-state imaging device is realized.
(第5実施形態)
 以下、図5A~5Cを参照して、本発明の第5実施形態に係る、半導体装置に電気抵抗を形成する方法を説明する。本実施形態及びその変形例における半導体装置の製造工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
 本実施形態では、図1Bに示される、第1の半導体基板1上に形成された多結晶シリコン層5を用いることで、半導体装置の回路素子である電気抵抗を形成する。
(Fifth embodiment)
Hereinafter, a method for forming an electrical resistance in a semiconductor device according to a fifth embodiment of the present invention will be described with reference to FIGS. 5A to 5C. The manufacturing process of the semiconductor device according to the present embodiment and the modification thereof is the same as that of the first embodiment except for the case specifically described below.
In this embodiment, an electrical resistance which is a circuit element of the semiconductor device is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
 本実施形態では、図1Aに示される工程では、第1の半導体基板1の所定の深さに、この第1の半導体基板1を上下の2つの部分に分離するための分離層2を形成するとともに、第1の半導体基板1上に、絶縁体である第1酸化シリコン層3を形成する。 In the present embodiment, in the step shown in FIG. 1A, a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1. At the same time, a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
 続いて、図1Bに示される工程では、その第1酸化シリコン層3上に多結晶シリコン層5を形成し、図1Cに示される工程では、この多結晶シリコン層5に、リン(P)又はヒ素(As)などのドナー不純物をイオンドープすることで、N多結晶シリコン層5aを形成する。 1B, a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3, and in the process shown in FIG. 1C, phosphorus (P) or The N + polycrystalline silicon layer 5a is formed by ion doping with a donor impurity such as arsenic (As).
 本実施形態では、図1B、図1Cに示される工程において、図5Aに示されるように、第1酸化シリコン層3上の多結晶シリコン層5の所定領域に、リン(P)又はヒ素(As)などのドナー不純物を所定の濃度でイオンドープすることでN多結晶シリコン層23a、23bを形成する。このN多結晶シリコン層23a、23b、ドナー不純物がイオンドープされていない多結晶シリコン層23によって、多結晶シリコン層5の所定領域(多結晶シリコン層23)における電気抵抗値が低下し、電気抵抗が形成される。このように、N多結晶シリコン層23a、23b、多結晶シリコン層23は、N多結晶シリコン層5a(図1C参照)と同様に、多結晶シリコン層5(図1B参照)から形成されるので、N多結晶シリコン層5aと同層に位置する。 In this embodiment, in the steps shown in FIGS. 1B and 1C, phosphorus (P) or arsenic (As) is formed in a predetermined region of the polycrystalline silicon layer 5 on the first silicon oxide layer 3 as shown in FIG. 5A. N + polycrystalline silicon layers 23a and 23b are formed by ion doping with a donor impurity such as) at a predetermined concentration. The N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23 in which the donor impurity is not ion-doped reduce the electric resistance value in a predetermined region (polycrystalline silicon layer 23) of the polycrystalline silicon layer 5 and A resistance is formed. As described above, the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23 are formed from the polycrystalline silicon layer 5 (see FIG. 1B) in the same manner as the N + polycrystalline silicon layer 5a (see FIG. 1C). Therefore, it is located in the same layer as the N + polycrystalline silicon layer 5a.
 続いて、図1Dに示される工程では、N多結晶シリコン層23a、23b上に、金属層7と同層に位置する金属配線層24a、24bを、金属層7と同様にして形成する。 1D, metal wiring layers 24a and 24b located in the same layer as the metal layer 7 are formed in the same manner as the metal layer 7 on the N + polycrystalline silicon layers 23a and 23b.
 本実施形態によれば、多結晶シリコン層5の所定領域に、所定の濃度のドナー不純物をイオンドープすることで、所定の電気抵抗値を有するN多結晶シリコン層23a、23b、多結晶シリコン層23が形成される。また、N多結晶シリコン層23a、23b、多結晶シリコン層23は、N多結晶シリコン層5aと同層に形成される。これにより、同一の半導体基板上に、固体撮像装置、SGTなどの半導体装置と共に電気抵抗(回路素子)を作成することができるだけでなく、製造工程が簡略化されるようになる。 According to the present embodiment, a predetermined region of the polycrystalline silicon layer 5 is ion-doped with a donor impurity having a predetermined concentration, so that N + polycrystalline silicon layers 23a and 23b having a predetermined electric resistance value, polycrystalline silicon Layer 23 is formed. The N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23 are formed in the same layer as the N + polycrystalline silicon layer 5a. As a result, not only can an electrical resistance (circuit element) be created on the same semiconductor substrate together with a semiconductor device such as a solid-state imaging device or SGT, but also the manufacturing process is simplified.
 また、本実施形態では、図5Bを参照して、図1Bに示される工程で多結晶シリコン層25を形成し、エッチングによって所定の形状とした後、蒸着法又はCVD法によって、その多結晶シリコン層25に接続する金属配線層26a、26bを形成する。このようにして、多結晶シリコン層25によっても半導体装置における電気抵抗が形成される。 Further, in the present embodiment, referring to FIG. 5B, after the polycrystalline silicon layer 25 is formed in the step shown in FIG. 1B and formed into a predetermined shape by etching, the polycrystalline silicon layer is formed by vapor deposition or CVD. Metal wiring layers 26 a and 26 b connected to the layer 25 are formed. In this way, electrical resistance in the semiconductor device is also formed by the polycrystalline silicon layer 25.
 また、本実施形態の変形例では、図5Cを参照して、第2半導体基板9上に第2酸化シリコン層8を形成し、その第2酸化シリコン層8上に、上述した方法によってN多結晶シリコン層23a、23b及び多結晶シリコン層23を形成する。その後、N多結晶シリコン層23a、23b及び多結晶シリコン層23上に第1酸化シリコン層3を形成し、その第1酸化シリコン層3上に、酸化シリコン層20(図4参照)を形成することも可能である。なお、図5Cでは、N多結晶シリコン層23a、23b及び多結晶シリコン層23から図5Aに示される電気抵抗が形成されている。 In the modification of the present embodiment, referring to FIG. 5C, the second silicon oxide layer 8 is formed on the second semiconductor substrate 9, and the N + is formed on the second silicon oxide layer 8 by the method described above. Polycrystalline silicon layers 23a and 23b and a polycrystalline silicon layer 23 are formed. Thereafter, the first silicon oxide layer 3 is formed on the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23, and the silicon oxide layer 20 (see FIG. 4) is formed on the first silicon oxide layer 3. It is also possible to do. In FIG. 5C, the electrical resistance shown in FIG. 5A is formed from the N + polycrystalline silicon layers 23a and 23b and the polycrystalline silicon layer 23.
 また、本実施形態及び図5Cに示される変形例では、図4を参照して、第1酸化シリコン層3上には、SGTを有する回路素子又は金属配線が形成されている。
 さらに、図5Cに示される変形例では、電気抵抗を構成する多結晶シリコン層23は、絶縁体である第1酸化シリコン層3の下方に形成されている。
In the present embodiment and the modification shown in FIG. 5C, referring to FIG. 4, a circuit element or metal wiring having SGT is formed on the first silicon oxide layer 3.
Further, in the modification shown in FIG. 5C, the polycrystalline silicon layer 23 constituting the electric resistance is formed below the first silicon oxide layer 3 which is an insulator.
 本変形例によれば、図5Cに示されるように、SiO層(第1酸化シリコン層3)の上下において、電気抵抗を構成する多結晶シリコン層23と重なるように、図4に示される回路素子の金属配線層22a、22b、22cを形成することができる。これによって、電気抵抗を有する半導体装置(回路素子)の更なる高集積化が実現される。 According to this modification, as shown in FIG. 5C, the upper and lower sides of the SiO 2 layer (first silicon oxide layer 3) are shown in FIG. 4 so as to overlap with the polycrystalline silicon layer 23 constituting the electric resistance. The metal wiring layers 22a, 22b and 22c of the circuit element can be formed. Thereby, further high integration of the semiconductor device (circuit element) having electric resistance is realized.
(第6実施形態)
 以下、図6A~図6Cを参照して、本発明の第6実施形態に係る、半導体装置に容量を形成する方法を説明する。本実施形態における半導体装置の製造工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
 本実施形態では、図1Bに示される、第1の半導体基板1上に形成された多結晶シリコン層5を用いることで、半導体装置の回路素子である容量を形成する。
(Sixth embodiment)
Hereinafter, a method of forming a capacitor in a semiconductor device according to a sixth embodiment of the present invention will be described with reference to FIGS. 6A to 6C. The manufacturing process of the semiconductor device according to the present embodiment is the same as that of the first embodiment, except as described below.
In this embodiment, a capacitor, which is a circuit element of a semiconductor device, is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
 本実施形態では、図1Aに示される工程では、第1の半導体基板1の所定の深さに、この第1の半導体基板1を上下の2つの部分に分離するための分離層2を形成するとともに、第1の半導体基板1上に、絶縁体である第1酸化シリコン層3を形成する。 In the present embodiment, in the step shown in FIG. 1A, a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1. At the same time, a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
 続いて、図1Bに示される工程では、その第1酸化シリコン層3上に多結晶シリコン層5を形成し、図1Cに示される工程では、この多結晶シリコン層5に、リン(P)又はヒ素(As)などのドナー不純物をイオンドープすることで、N多結晶シリコン層5aを形成する。 1B, a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3, and in the process shown in FIG. 1C, phosphorus (P) or The N + polycrystalline silicon layer 5a is formed by ion doping with a donor impurity such as arsenic (As).
 ここで、図1Cに示される工程に続いては、図6Aを参照して、熱酸化又はCVD法によって、N多結晶シリコン層5aの表層部に容量酸化シリコン層27を形成する。 Here, following the step shown in FIG. 1C, referring to FIG. 6A, capacitive silicon oxide layer 27 is formed on the surface layer portion of N + polycrystalline silicon layer 5a by thermal oxidation or CVD.
 続いて、図6Bを参照して、マスクを用いたエッチングによって、容量が形成される容量領域において、容量絶縁膜として機能する容量酸化シリコン層27を所定の形状に成形する。
 そして、図1Dに示される工程では、所定形状に成形された容量酸化シリコン層27上に、蒸着法又はCVD法によって、容量電極として機能する金属層28を形成する。この金属層28は、第1実施形態の金属層7と同層に形成する。
Subsequently, referring to FIG. 6B, the capacitor silicon oxide layer 27 functioning as a capacitor insulating film is formed into a predetermined shape in the capacitor region where the capacitor is formed by etching using a mask.
In the step shown in FIG. 1D, a metal layer 28 that functions as a capacitor electrode is formed on the capacitor silicon oxide layer 27 formed in a predetermined shape by vapor deposition or CVD. The metal layer 28 is formed in the same layer as the metal layer 7 of the first embodiment.
 続いて、図1E~図1H、図4に示される各工程を経ることにより、図6Cに示されるような積層構造が形成される。即ち、第2半導体基板9上に第2酸化シリコン層8が形成され、この第2酸化シリコン層8の内部において、容量が形成される容量領域に、容量電極として機能する金属層28、及び、金属層28に積層され、容量絶縁膜として機能する容量酸化シリコン層27が配置されている。そして、容量酸化シリコン層27及び第2酸化シリコン層8上に、N多結晶シリコン層5a、第1酸化シリコン層3及び酸化シリコン層29(酸化シリコン層20)がこの順で積層された構造が得られる。この構造では、金属層28及びN多結晶シリコン層5aが容量電極として機能するとともに、容量酸化シリコン層27が容量絶縁膜として機能する容量が形成されている。 Subsequently, through the respective steps shown in FIGS. 1E to 1H and FIG. 4, a laminated structure as shown in FIG. 6C is formed. That is, a second silicon oxide layer 8 is formed on the second semiconductor substrate 9, and inside the second silicon oxide layer 8, a metal layer 28 functioning as a capacitor electrode is formed in a capacitor region where a capacitor is formed, and A capacitive silicon oxide layer 27 that is stacked on the metal layer 28 and functions as a capacitive insulating film is disposed. Then, the N + polycrystalline silicon layer 5a, the first silicon oxide layer 3 and the silicon oxide layer 29 (silicon oxide layer 20) are stacked in this order on the capacitive silicon oxide layer 27 and the second silicon oxide layer 8. Is obtained. In this structure, the metal layer 28 and the N + polycrystalline silicon layer 5a function as a capacitor electrode, and a capacitor in which the capacitor silicon oxide layer 27 functions as a capacitor insulating film is formed.
 本実施形態では、第1実施形態に係る固体撮像装置の製造方法の図1D~図1Hに示される工程において、N多結晶シリコン層5aの表層に絶縁層27を形成する工程(図6A参照)と、容量酸化シリコン層27、金属層28を形成する工程(図6B参照)とが追加される。これにより、同一の半導体基板上に、固体撮像装置の画素、SGTなどの半導体装置と共に容量(回路素子)を形成することができるだけでなく、製造工程が簡略化されるようになる。 In the present embodiment, in the process shown in FIGS. 1D to 1H of the method for manufacturing the solid-state imaging device according to the first embodiment, the process of forming the insulating layer 27 on the surface layer of the N + polycrystalline silicon layer 5a (see FIG. 6A). ) And a step of forming the capacitive silicon oxide layer 27 and the metal layer 28 (see FIG. 6B). Thereby, not only can a capacitor (circuit element) be formed on the same semiconductor substrate together with a pixel of a solid-state imaging device, a semiconductor device such as SGT, but also the manufacturing process is simplified.
(第7実施形態)
 以下、図7A、図7Bを参照して、本発明の第7実施形態に係る、半導体装置に容量を形成する方法を説明する。本実施形態における半導体装置の製造工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
 本実施形態では、図1Bに示される、第1の半導体基板1上に形成された多結晶シリコン層5を用いることで、半導体装置の回路素子である容量を形成する。
(Seventh embodiment)
Hereinafter, with reference to FIGS. 7A and 7B, a method of forming a capacitor in a semiconductor device according to a seventh embodiment of the present invention will be described. The manufacturing process of the semiconductor device according to the present embodiment is the same as that of the first embodiment, except as described below.
In this embodiment, a capacitor, which is a circuit element of a semiconductor device, is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
 本実施形態では、図1Aに示される工程では、第1の半導体基板1の所定の深さに、この第1の半導体基板1を上下の2つの部分に分離するための分離層2を形成するとともに、第1の半導体基板1上に、絶縁体である第1酸化シリコン層3を形成する。 In the present embodiment, in the step shown in FIG. 1A, a separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1. At the same time, a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
 続いて、図1Bに示される工程では、多結晶シリコン層5を形成する前に、第1酸化シリコン層3上に図7Aに示される容量形成領域100を設定するとともに、この容量形成領域100における酸化シリコンをエッチングにより除去することで、凹形状の酸化シリコン層除去領域を形成する。即ち、図1Bに示される工程では、図7Aに示されるように、当該酸化シリコン層除去領域の周囲に酸化シリコン層101a、101bを残存させるとともに、この酸化シリコン層除去領域には、酸化シリコン層101a、101bよりも厚さが薄い酸化シリコン層103を残存させる。そして、その酸化シリコン層101a、101bをマスクとして用い、ボロン(B)などのアクセプタ不純物をイオンドーピング又は熱拡散することで、酸化シリコン層103を通して容量形成領域100における第1の半導体基板1の表層にP拡散層102を形成する。そして、図1Bを参照して、その第1酸化シリコン層3上に、酸化シリコン層除去領域を埋め込むように多結晶シリコン層5を形成する。 Subsequently, in the step shown in FIG. 1B, before forming the polycrystalline silicon layer 5, the capacitance forming region 100 shown in FIG. 7A is set on the first silicon oxide layer 3, and the capacitance forming region 100 in this capacitance forming region 100 is set. By removing the silicon oxide by etching, a concave silicon oxide layer removal region is formed. That is, in the step shown in FIG. 1B, as shown in FIG. 7A, the silicon oxide layers 101a and 101b are left around the silicon oxide layer removal region, and the silicon oxide layer removal region has a silicon oxide layer. A silicon oxide layer 103 having a thickness smaller than those of 101a and 101b is left. Then, using the silicon oxide layers 101a and 101b as a mask, acceptor impurities such as boron (B) are ion-doped or thermally diffused, whereby the surface layer of the first semiconductor substrate 1 in the capacitor formation region 100 through the silicon oxide layer 103. Then, the P + diffusion layer 102 is formed. Then, referring to FIG. 1B, a polycrystalline silicon layer 5 is formed on the first silicon oxide layer 3 so as to embed a silicon oxide layer removal region.
 続いて、図1Cに示される工程では、この多結晶シリコン層5に、リン(P)又はヒ素(As)などのドナー不純物をイオンドープすることで、N多結晶シリコン層104を形成する(図7A参照)。 1C, the polysilicon layer 5 is ion-doped with a donor impurity such as phosphorus (P) or arsenic (As) to form an N + polycrystalline silicon layer 104 (see FIG. 1C). (See FIG. 7A).
 続いて、図1Dに示される工程では、蒸着法又はCVD法によって、N多結晶シリコン層104上に金属層105を形成する(図7A参照)。この金属層105は、第1実施形態における金属層7と同層に形成する。 1D, a metal layer 105 is formed on the N + polycrystalline silicon layer 104 by vapor deposition or CVD (see FIG. 7A). The metal layer 105 is formed in the same layer as the metal layer 7 in the first embodiment.
 続いて、図1Eに示される工程と同様にして、容量が形成される容量形成領域100において、N多結晶シリコン層104と、N多結晶シリコン層104上に形成され、容量電極として機能する金属層105とを所定の形状に成形する。 Subsequently, in the same manner as the process shown in FIG. 1E, in the capacitor formation region 100 where a capacitor is formed, the N + polycrystalline silicon layer 104 and the N + polycrystalline silicon layer 104 are formed and function as a capacitor electrode. The metal layer 105 to be formed is formed into a predetermined shape.
 続いて、第1実施形態の図1F~図1Iに示される工程を経た後、図7Bを参照して、シリコン柱1aにおいてP拡散層102を残存させるとともに、そのP拡散層102及び酸化シリコン層101a、101bを覆うように酸化シリコン層107を形成する。 Subsequently, after the steps shown in FIGS. 1F to 1I of the first embodiment, referring to FIG. 7B, the P + diffusion layer 102 is left in the silicon pillar 1a, and the P + diffusion layer 102 and the oxidation layer are oxidized. A silicon oxide layer 107 is formed so as to cover the silicon layers 101a and 101b.
 続いて、図7Bを参照して、酸化シリコン層107にコンタクトホール108を形成し、そのコンタクトホール108を介して、酸化シリコン層107上の金属配線層109とP拡散層102とを電気的に接続する。 7B, a contact hole 108 is formed in the silicon oxide layer 107, and the metal wiring layer 109 and the P + diffusion layer 102 on the silicon oxide layer 107 are electrically connected via the contact hole 108. Connect to.
 以上によって、図7Bに示されるように、容量形成領域100(図7A参照)に、N多結晶シリコン層104、金属層105、及びP拡散層102が容量電極として機能し、酸化シリコン層101a、101b間の酸化シリコン層103が容量絶縁膜として機能する容量が形成される。 As described above, as shown in FIG. 7B, the N + polycrystalline silicon layer 104, the metal layer 105, and the P + diffusion layer 102 function as a capacitor electrode in the capacitor formation region 100 (see FIG. 7A). A capacitor is formed in which the silicon oxide layer 103 between 101a and 101b functions as a capacitor insulating film.
 本実施形態では、P拡散層102は、酸化シリコン層101a、101bをマスクとして用い、ボロン(B)などのアクセプタ不純物を第1の半導体基板1にイオンドーピング又は熱拡散することで形成した。これに限られず、P拡散層102は、酸化シリコン層101a、101bを形成する前に、均一な厚さの第1酸化シリコン層3(図1A参照)上から高加速電圧によるイオンドーピングを行うことで容量形成領域100以外の所定の領域内に形成することもできる。 In this embodiment, the P + diffusion layer 102 is formed by ion doping or thermal diffusion of acceptor impurities such as boron (B) into the first semiconductor substrate 1 using the silicon oxide layers 101a and 101b as a mask. Without being limited thereto, the P + diffusion layer 102 performs ion doping with a high acceleration voltage on the first silicon oxide layer 3 (see FIG. 1A) having a uniform thickness before the silicon oxide layers 101a and 101b are formed. Thus, it can be formed in a predetermined region other than the capacitance forming region 100.
 本実施形態によれば、図7Bに示される構造によって、コンタクトホール108によって、半導体装置の任意の場所から各容量間の接続や外部回路への電気信号の取り出しが可能となる。これにより、回路素子の更なる高集積化が実現されるようになる。 7B, according to the structure shown in FIG. 7B, the contact hole 108 enables connection between capacitors and extraction of an electric signal to an external circuit from an arbitrary location of the semiconductor device. As a result, further integration of circuit elements can be realized.
(第8実施形態)
 以下、図8A~図8Cを参照して、本発明の第8実施形態に係る、半導体装置にダイオードを形成する方法を説明する。本実施形態及びその変形例における半導体装置の製造工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
 本実施形態では、図1Bに示される、第1の半導体基板1上に形成された多結晶シリコン層5を用いることで、半導体装置の回路素子であるダイオードを形成する。
(Eighth embodiment)
Hereinafter, a method for forming a diode in a semiconductor device according to an eighth embodiment of the present invention will be described with reference to FIGS. 8A to 8C. The manufacturing process of the semiconductor device according to the present embodiment and the modification thereof is the same as that of the first embodiment except for the case specifically described below.
In this embodiment, a diode which is a circuit element of a semiconductor device is formed by using the polycrystalline silicon layer 5 formed on the first semiconductor substrate 1 shown in FIG. 1B.
 本実施形態では、第1実施形態の図1A~図1Iに示される工程を経ることで、図8Aに示されるように、第2半導体基板9上に第2酸化シリコン層8が形成されるとともに、ダイオード形成領域100aに、金属層7、N多結晶シリコン層5a、シリコン柱1aが下方からこの順で形成される。また、第2酸化シリコン層8上において、N多結晶シリコン層5aの周囲には第1酸化シリコン層3が形成されている。 In the present embodiment, the second silicon oxide layer 8 is formed on the second semiconductor substrate 9 as shown in FIG. 8A through the steps shown in FIGS. 1A to 1I of the first embodiment. In the diode formation region 100a, the metal layer 7, the N + polycrystalline silicon layer 5a, and the silicon pillar 1a are formed in this order from below. On the second silicon oxide layer 8, a first silicon oxide layer 3 is formed around the N + polycrystalline silicon layer 5a.
 続いて、図8Aに示される構造において、シリコン柱1aが真性シリコンで形成されている場合には、ボロン(B)などのアクセプタ不純物をイオンドーピングすることで、図8Bに示されるP型シリコン層30を形成する。なお、シリコン柱1aが第1実施形態のようにP型に形成されている場合には、アクセプタ不純物のイオンドーピングは不要である。 Subsequently, in the structure shown in FIG. 8A, when the silicon pillar 1a is made of intrinsic silicon, an ion impurity is doped with an acceptor impurity such as boron (B) to thereby form a P-type silicon layer shown in FIG. 8B. 30 is formed. When the silicon pillar 1a is formed in the P-type as in the first embodiment, ion doping of acceptor impurities is not necessary.
 続いて、図8Bを参照して、熱処理を行い、N多結晶シリコン層5aからP型シリコン層30中にドナー不純物を熱拡散させ、P型シリコン層30(シリコン柱1a)の下方部位にN拡散層6aを形成する。 Subsequently, referring to FIG. 8B, heat treatment is performed to thermally diffuse donor impurities from the N + polycrystalline silicon layer 5a into the P-type silicon layer 30 and to form a portion below the P-type silicon layer 30 (silicon pillar 1a). N + diffusion layer 6a is formed.
 続いて、図8Bを参照して、P型シリコン層30(シリコン柱1a)の上方部位に、ボロン(B)などのアクセプタ不純物をイオンドーピングすることにより、P型シリコン層31を形成するとともに、蒸着法及びエッチングによって、P型シリコン層31上に金属層32を形成する。 Subsequently, referring to FIG. 8B, ion implantation of acceptor impurities such as boron (B) is formed on the upper portion of the P-type silicon layer 30 (silicon pillar 1 a), thereby forming a P + -type silicon layer 31. Then, the metal layer 32 is formed on the P + type silicon layer 31 by vapor deposition and etching.
 続いて、図8Bを参照して、P型シリコン層30及び金属層32を覆うように、酸化シリコン層33を形成し、その酸化シリコン層33において、金属層32上の領域にコンタクトホール34、金属配線層35をこの順に形成する。これにより、金属配線層35と金属層32とをコンタクトホール34を介して電気的に接続する。 8B, a silicon oxide layer 33 is formed so as to cover the P-type silicon layer 30 and the metal layer 32. In the silicon oxide layer 33, contact holes 34, The metal wiring layer 35 is formed in this order. Thereby, the metal wiring layer 35 and the metal layer 32 are electrically connected via the contact hole 34.
 本実施形態では、P型シリコン層31とP型シリコン層30とによってpn接合ダイオードが形成されている。 In this embodiment, a pn junction diode is formed by the P + type silicon layer 31 and the P type silicon layer 30.
 本実施形態によれば、同一の半導体基板上に、固体撮像装置の画素、SGTなどの半導体装置と共にダイオード(回路素子)を形成することができるだけでなく、製造工程が簡略化されるようになる。 According to the present embodiment, not only a diode (circuit element) can be formed on the same semiconductor substrate together with a pixel of a solid-state imaging device and a semiconductor device such as SGT, but also the manufacturing process is simplified. .
 図8Cに、シリコン柱1aにPINフォトダイオードが形成されている本実施形態の変形例を示す。この変形例では、第8実施形態に示されるシリコン柱1aには、P型シリコン層30に代えて、固有半導体であるi型シリコン層30bが形成されている。そして、i型シリコン層30b上には、P型シリコン層31が形成されている。そして、i型シリコン層30bと、P型シリコン層31とによってPINフォトダイオードが形成されている。 FIG. 8C shows a modification of this embodiment in which a PIN photodiode is formed on the silicon pillar 1a. In this modification, an i-type silicon layer 30b, which is a unique semiconductor, is formed on the silicon pillar 1a shown in the eighth embodiment instead of the P-type silicon layer 30. A P + type silicon layer 31 is formed on the i type silicon layer 30b. A PIN photodiode is formed by the i-type silicon layer 30 b and the P + -type silicon layer 31.
 このPINフォトダイオードにおいては、図8Cを参照して、P型シリコン層31の上部から光が入射する。このため、その光の入射を妨害しないように、P型シリコン層31と外部回路とを接続するための金属層32が、P型シリコン層31の外周領域に形成されている。 In this PIN photodiode, referring to FIG. 8C, light enters from the upper part of the P + -type silicon layer 31. Therefore, the so incident light does not interfere, the metal layer 32 for connecting the P + -type silicon layer 31 and the external circuit are formed on the outer peripheral region of the P + -type silicon layer 31.
 本変形例のPINフォトダイオードによれば、i型シリコン層30bの全体又は広範囲の領域に空乏層が形成されるので、広い光電変換領域を確保することができるとともに、容量形成領域の厚さに相当する空乏層の厚さが大きくなるため、低容量化が図られる。そして、このPINフォトダイオードは、光コネクション受光素子として、半導体装置の回路素子と同一の半導体基板上に形成すされる。 According to the PIN photodiode of this modification, the depletion layer is formed in the entire i-type silicon layer 30b or in a wide area, so that a wide photoelectric conversion area can be secured and the thickness of the capacitance formation area can be increased. Since the thickness of the corresponding depletion layer is increased, the capacity can be reduced. The PIN photodiode is formed as an optical connection light receiving element on the same semiconductor substrate as the circuit element of the semiconductor device.
 本変形例のPINフォトダイオードは、光スイッチとして機能するため、入力回路配線の抵抗・容量によるRC遅延がなく、回路入力部の高速化及び、回路全体の高速化が実現される。 Since the PIN photodiode of this modification functions as an optical switch, there is no RC delay due to the resistance / capacitance of the input circuit wiring, and the speed of the circuit input section and the speed of the entire circuit can be increased.
 本変形例によれば、同一の半導体基板上に、固体撮像装置の画素、SGTなどの半導体装置と共にPINフォトダイオード(回路素子)を形成することができるだけでなく、製造工程が簡略化されるようになる。 According to this modification, a PIN photodiode (circuit element) can be formed on the same semiconductor substrate together with a pixel of a solid-state imaging device, a semiconductor device such as SGT, and the manufacturing process can be simplified. become.
(第9実施形態)
 以下、図9A~図9Cを参照して、本発明の第9実施形態に係る、CMOSインバータ回路について説明する。
 図9Aに、本実施形態で用いるCMOSインバータ回路を示す。図9Aに示されるように、Pチャネル型MOSトランジスタ37aとNチャネル型MOSトランジスタ37bとが直列に接続されている。Pチャネル型MOSトランジスタ37aとNチャネル型MOSトランジスタ37bのゲート同士がゲート接続配線38を介して接続され、ゲート接続配線38は入力端子配線Viに接続されている。Pチャネル型MOSトランジスタ37aのソースは、電源端子配線Vddに接続されている。Pチャネル型MOSトランジスタ37aのドレインとNチャネル型トランジスタ37bのドレインとはドレイン接続配線39を介して出力端子配線Voに接続されるとともに、Nチャネル型MOSトランジスタ37bのソースはグランド電位となっているグランド端子配線Vssに接続されている。
(Ninth embodiment)
A CMOS inverter circuit according to the ninth embodiment of the present invention will be described below with reference to FIGS. 9A to 9C.
FIG. 9A shows a CMOS inverter circuit used in this embodiment. As shown in FIG. 9A, a P-channel MOS transistor 37a and an N-channel MOS transistor 37b are connected in series. The gates of the P-channel MOS transistor 37a and the N-channel MOS transistor 37b are connected through a gate connection wiring 38, and the gate connection wiring 38 is connected to the input terminal wiring Vi. The source of the P-channel MOS transistor 37a is connected to the power supply terminal wiring Vdd. The drain of the P-channel MOS transistor 37a and the drain of the N-channel transistor 37b are connected to the output terminal wiring Vo via the drain connection wiring 39, and the source of the N-channel MOS transistor 37b is at the ground potential. It is connected to the ground terminal wiring Vss.
 図9Bに、このCMOSインバータ回路の平面配置図を示す。
 図9Bに示されるように、コンタクトホール41c、シリコン柱40a、コンタクトホール41a、コンタクトホール41b、及びコンタクトホール41d、が直線状に並んで配置されている。
FIG. 9B shows a plan layout of this CMOS inverter circuit.
As shown in FIG. 9B, the contact hole 41c, the silicon pillar 40a, the contact hole 41a, the contact hole 41b, and the contact hole 41d are arranged in a straight line.
 入力端子配線Viは、コンタクトホール41cから電気信号(ゲート電圧)を入力するためのものである。電源端子配線Vddは、コンタクトホール41aから電源電圧を供給するためのものである。グランド端子配線Vssは、コンタクトホール41bを介してグランドに接続するためのものである。出力端子配線Voは、コンタクトホール41dから電気信号を出力するためのものである。 The input terminal wiring Vi is for inputting an electric signal (gate voltage) from the contact hole 41c. The power supply terminal wiring Vdd is for supplying a power supply voltage from the contact hole 41a. The ground terminal wiring Vss is for connecting to the ground via the contact hole 41b. The output terminal wiring Vo is for outputting an electrical signal from the contact hole 41d.
 コンタクトホール41cは、Pチャネル型MOSトランジスタ37aとNチャネル型MOSトランジスタ37bのゲート同士を接続するゲート接続配線38上に形成されている。シリコン柱40aは、Pチャネル型MOSトランジスタ37aを構成している。コンタクトホール41aは、シリコン柱40a上に形成されている。シリコン柱40bは、Nチャネル型MOSトランジスタ37bを構成している。コンタクトホール41bはシリコン柱40b上に形成されている。コンタクトホール41dは、Pチャネル型MOSトランジスタ37aのドレインとNチャネル型MOSトランジスタ37bのドレインとを互いに接続したドレイン接続配線39上に形成されている。 The contact hole 41c is formed on the gate connection wiring 38 that connects the gates of the P-channel MOS transistor 37a and the N-channel MOS transistor 37b. The silicon pillar 40a constitutes a P channel type MOS transistor 37a. The contact hole 41a is formed on the silicon pillar 40a. The silicon pillar 40b constitutes an N channel type MOS transistor 37b. The contact hole 41b is formed on the silicon pillar 40b. The contact hole 41d is formed on a drain connection wiring 39 that connects the drain of the P-channel MOS transistor 37a and the drain of the N-channel MOS transistor 37b to each other.
 そして、このコンタクトホール41b及びコンタクトホール41dの列方向と直交する行方向に延びるように、それぞれ、入力端子配線Vi、電源端子配線Vdd、グランド端子配線Vss、及び出力端子配線Voが配置されている(図9A参照)。 The input terminal wiring Vi, the power supply terminal wiring Vdd, the ground terminal wiring Vss, and the output terminal wiring Vo are arranged so as to extend in the row direction orthogonal to the column direction of the contact holes 41b and 41d, respectively. (See FIG. 9A).
 図9Cは、図9BのB-B’線での断面構造図である。以下、図9Cを参照して、上述したCMOSインバータ回路を形成する方法を説明する。本実施形態において、CMOSインバータ回路の形成工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。 FIG. 9C is a sectional structural view taken along line B-B ′ of FIG. 9B. Hereinafter, a method of forming the above-described CMOS inverter circuit will be described with reference to FIG. 9C. In the present embodiment, the process of forming the CMOS inverter circuit is the same as that of the first embodiment, except as specifically described below.
 本実施形態において、図9Cに示される、Pチャネル型MOSトランジスタ37a、Nチャネル型MOSトランジスタ37bを有するCMOSインバータ回路は、図3Bに示されるCMOSインバータ回路における、Nチャネル型MOSトランジスタとPチャネル型MOSトランジスタとの左右の位置関係が入れ替わっているが、図3A、図3Bに示される第3実施形態と同様にして形成される。以下、上記実施形態と共通又は対応する符号で示される部分の説明は省略する。 In this embodiment, the CMOS inverter circuit having the P-channel MOS transistor 37a and the N-channel MOS transistor 37b shown in FIG. 9C is the same as the N-channel MOS transistor and the P-channel type in the CMOS inverter circuit shown in FIG. 3B. Although the left and right positional relationship with the MOS transistor is switched, it is formed in the same manner as the third embodiment shown in FIGS. 3A and 3B. Hereinafter, the description of the parts indicated by the same or corresponding symbols as those of the above embodiment will be omitted.
 図9Cに示されるように、Pチャネル型MOSトランジスタ37aにおいてドレインとして機能するP多結晶シリコン層55bと、Nチャネル型MOSトランジスタ37bにおいてドレインとして機能するN多結晶シリコン層55aとの下方にドレイン接続配線39が形成されている。N多結晶シリコン層55a及びP多結晶シリコン層55bの下面にはドレイン接続配線39が接合されている。N多結晶シリコン層55a及びP多結晶シリコン層55bは、ドレイン接続配線39を介して接続されている。そして、ドレイン接続配線39は、絶縁層43b上に形成され、酸化シリコン層45を貫通するコンタクトホール41dを介して出力端子配線層Voに接続されている。 As shown in FIG. 9C, below the P + polycrystalline silicon layer 55b functioning as the drain in the P-channel MOS transistor 37a and the N + polycrystalline silicon layer 55a functioning as the drain in the N-channel MOS transistor 37b. A drain connection wiring 39 is formed. A drain connection wiring 39 is bonded to the lower surfaces of the N + polycrystalline silicon layer 55a and the P + polycrystalline silicon layer 55b. The N + polycrystalline silicon layer 55 a and the P + polycrystalline silicon layer 55 b are connected via the drain connection wiring 39. The drain connection wiring 39 is formed on the insulating layer 43 b and is connected to the output terminal wiring layer Vo through a contact hole 41 d penetrating the silicon oxide layer 45.
 また、Pチャネル型MOSトランジスタ37aのゲート導体層16ba、16bbと、Nチャネル型MOSトランジスタ37bのゲート導体層16aa、16abとは、絶縁層43a上に形成されたゲート接続配線38を介して接続されている。 The gate conductor layers 16ba and 16bb of the P-channel MOS transistor 37a and the gate conductor layers 16aa and 16ab of the N-channel MOS transistor 37b are connected through a gate connection wiring 38 formed on the insulating layer 43a. ing.
 また、ゲート接続配線38と、Pチャネル型MOSトランジスタ37aのドレインとなるP型シリコン層17b上に形成された金属配線層18b、Nチャネル型MOSトランジスタ37bのドレインとなるN型シリコン層17a上に形成された金属配線層18a、ドレイン接続配線39は、それぞれ、酸化シリコン層45を貫通するコンタクトホール41c、41a、41b、41dを介して、酸化シリコン層45上に形成された入力端子配線層Vi、電源端子配線層Vdd、グランド端子配線層Vss、出力端子配線層Voに接続されている。入力端子配線層Vi、電源端子配線層Vdd、グランド端子配線層Vss、出力端子配線層Voとは、互いに平行に配線されている(図9C参照)。 Further, the gate connection wiring 38, the metal wiring layer 18b formed on the P + type silicon layer 17b serving as the drain of the P channel type MOS transistor 37a, and the N + type silicon layer 17a serving as the drain of the N channel type MOS transistor 37b. The metal wiring layer 18a and the drain connection wiring 39 formed above are input terminal wirings formed on the silicon oxide layer 45 through contact holes 41c, 41a, 41b and 41d penetrating the silicon oxide layer 45, respectively. The layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vo are connected. The input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vo are wired in parallel to each other (see FIG. 9C).
 本実施形態によれば、Pチャネル型MOSトランジスタ37aにおいてドレインとして機能するP多結晶シリコン層55bと、Nチャネル型MOSトランジスタ37bにおいてドレインとして機能するN多結晶シリコン層55aとが、互いに近接した状態で接続されるとともに、低い電気抵抗を有するドレイン接続配線39によって電気的に接続されている。この構造によって、高速かつ高集積度が実現されたCMOSインバータ回路を有する集積回路が得られる。 According to this embodiment, the P + polycrystalline silicon layer 55b functioning as a drain in the P-channel MOS transistor 37a and the N + polycrystalline silicon layer 55a functioning as a drain in the N-channel MOS transistor 37b are close to each other. In addition, the drain connection wiring 39 having a low electric resistance is electrically connected. With this structure, an integrated circuit having a CMOS inverter circuit that achieves high speed and high integration can be obtained.
(第10実施形態)
 以下、図10A~図10Dを参照して、本発明の第10実施形態に係る2段構造のCMOSインバータ回路について説明する。以下、上記第9実施形態と共通又は対応する符号で示される部分及び構造の説明は省略する。
 図10Aに、本実施形態で用いる2段構造のCMOSインバータ回路を示す。
 図10Aに示されるように、Pチャネル型MOSトランジスタ37a、37cと、Nチャネル型MOSトランジスタ37b、37dとが、それぞれ、1段目、2段目において直列に接続されている。1段目のPチャネル型MOSトランジスタ37aとNチャネル型MOSトランジスタ37bの各ゲートは、ゲート接続配線38aを介して入力端子配線Viに接続されている。2段目のPチャネル型MOSトランジスタ37cとNチャネル型MOSトランジスタ37dの各ゲートは、ゲート接続配線38bを介して1段目の出力端子配線Voに接続されている。1段目及び2段目のPチャネル型MOSトランジスタ37a、37cの各ドレインは、電源端子配線Vddに接続されている。1段目及び2段目のPチャネル型MOSトランジスタ37b、37dの各ソースは、グランド端子配線Vssに接続されている。
(10th Embodiment)
A two-stage CMOS inverter circuit according to a tenth embodiment of the present invention will be described below with reference to FIGS. 10A to 10D. Hereinafter, description of portions and structures indicated by reference numerals common or corresponding to those of the ninth embodiment will be omitted.
FIG. 10A shows a CMOS inverter circuit having a two-stage structure used in this embodiment.
As shown in FIG. 10A, P- channel MOS transistors 37a and 37c and N- channel MOS transistors 37b and 37d are connected in series at the first and second stages, respectively. The gates of the first-stage P-channel MOS transistor 37a and N-channel MOS transistor 37b are connected to the input terminal wiring Vi through the gate connection wiring 38a. The gates of the second-stage P-channel MOS transistor 37c and N-channel MOS transistor 37d are connected to the first-stage output terminal wiring Vo through the gate connection wiring 38b. The drains of the first-stage and second-stage P- channel MOS transistors 37a and 37c are connected to the power supply terminal wiring Vdd. The sources of the first-stage and second-stage P- channel MOS transistors 37b and 37d are connected to the ground terminal wiring Vss.
 1段目において、Pチャネル型MOSトランジスタ37aのドレインとNチャネル型トランジスタ37bのドレインとは、ドレイン接続配線39aを介して1段目の出力端子配線Voに接続されている。
 2段目において、Pチャネル型トランジスタ37cのドレインとNチャネル型トランジスタ37dのドレインとは、ドレイン接続配線39bを介して出力端子配線Voutに接続されている。
In the first stage, the drain of the P-channel MOS transistor 37a and the drain of the N-channel transistor 37b are connected to the first-stage output terminal wiring Vo via the drain connection wiring 39a.
In the second stage, the drain of the P-channel transistor 37c and the drain of the N-channel transistor 37d are connected to the output terminal wiring Vout via the drain connection wiring 39b.
 図10Bに、このCMOSインバータ回路の平面配置図を示す。
 図10Bに示されるように、1段目のPチャネル型MOSトランジスタ37aを構成するシリコン柱40a及びNチャネル型MOSトランジスタ37bを構成するシリコン柱40bに形成されたゲート接続配線38a上にコンタクトホール41cが形成され、コンタクトホール41cは、入力端子配線Viと接続されている。ゲート接続配線38aは、Pチャネル型MOSトランジスタ37a及びNチャネル型MOSトランジスタ37bのゲート同士を接続する。
FIG. 10B shows a plan layout of this CMOS inverter circuit.
As shown in FIG. 10B, a contact hole 41c is formed on the gate connection wiring 38a formed on the silicon pillar 40a constituting the first-stage P-channel MOS transistor 37a and the silicon pillar 40b constituting the N-channel MOS transistor 37b. The contact hole 41c is connected to the input terminal wiring Vi. The gate connection wiring 38a connects the gates of the P-channel MOS transistor 37a and the N-channel MOS transistor 37b.
 1段目において、Pチャネル型MOSトランジスタ37aのドレインとNチャネル型MOSトランジスタ37bのドレインとは、1段目のドレイン接続配線39aを介して接続されている。 In the first stage, the drain of the P-channel MOS transistor 37a and the drain of the N-channel MOS transistor 37b are connected via the first-stage drain connection wiring 39a.
 2段目のPチャネル型MOSトランジスタ37cを構成するシリコン柱40c及びNチャネル型MOSトランジスタ37dを構成するシリコン柱40dに形成されたゲート接続配線38b上にコンタクトホール41eが形成され、コンタクトホール41eは、1段目の出力端子配線Vo(図10A参照)に接続されている。 A contact hole 41e is formed on the gate connection wiring 38b formed in the silicon pillar 40c constituting the second-stage P-channel MOS transistor 37c and the silicon pillar 40d constituting the N-channel MOS transistor 37d. It is connected to the first-stage output terminal wiring Vo (see FIG. 10A).
 1段目のドレイン接続配線39aは、コンタクトホール41e(図10C参照)を介してゲート接続配線38bと接続されている。ゲート接続配線38bは、2段目のPチャネル型MOSトランジスタ37cとNチャネル型MOSトランジスタ37dのゲート同士を接続する。 The first-stage drain connection wiring 39a is connected to the gate connection wiring 38b through the contact hole 41e (see FIG. 10C). The gate connection wiring 38b connects the gates of the second-stage P-channel MOS transistor 37c and N-channel MOS transistor 37d.
 1段目及び2段目のPチャネル型MOSトランジスタ37a、37cのシリコン柱40a、40c上にそれぞれコンタクトホール41a、41cが形成されている。コンタクトホール41a、41cは、いずれも電源端子配線層Vddに接続されている。 Contact holes 41a and 41c are formed on the silicon pillars 40a and 40c of the first-stage and second-stage P- channel MOS transistors 37a and 37c, respectively. The contact holes 41a and 41c are both connected to the power supply terminal wiring layer Vdd.
 1段目及び2段目のPチャネル型MOSトランジスタ37b、37dのシリコン柱40b、40d上にそれぞれコンタクトホール41b、41dが形成され、コンタクトホール41b、41dは、いずれもグランド端子配線層Vssに接続されている。 Contact holes 41b and 41d are formed on the silicon pillars 40b and 40d of the first-stage and second-stage P- channel MOS transistors 37b and 37d, respectively, and both of the contact holes 41b and 41d are connected to the ground terminal wiring layer Vss. Has been.
 2段目のドレイン接続配線39b上にコンタクトホール41fが形成され、コンタクトホール41fは、出力端子配線層Voutに接続されている。
 また、入力端子配線層Vi、電源端子配線層Vdd、グランド端子配線層Vss、出力端子配線層Voutは、互いに平行に配線されている。
A contact hole 41f is formed on the second-stage drain connection wiring 39b, and the contact hole 41f is connected to the output terminal wiring layer Vout.
The input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout are wired in parallel to each other.
 図10Cは、図10BのC-C’線での断面構造図であり、以下、図10Cを参照して、上述した2段構造のCMOSインバータ回路について説明する。本実施形態において、2段構造のCMOSインバータ回路は、第1実施形態と同様にして形成されたものである。 FIG. 10C is a cross-sectional structural view taken along the line C-C ′ of FIG. 10B. Hereinafter, the above-described two-stage CMOS inverter circuit will be described with reference to FIG. 10C. In the present embodiment, the two-stage CMOS inverter circuit is formed in the same manner as in the first embodiment.
 図10Cに示される、Pチャネル型MOSトランジスタ37a、Nチャネル型MOSトランジスタ37bを有するCMOSインバータ回路は、図3Bに示されるCMOSインバータ回路における、Nチャネル型MOSトランジスタとPチャネル型MOSトランジスタとの左右の位置関係が入れ替わっているが、図3A、図3Bに示される第3実施形態と同様にして形成される。 The CMOS inverter circuit having the P-channel MOS transistor 37a and the N-channel MOS transistor 37b shown in FIG. 10C is the same as the CMOS inverter circuit shown in FIG. 3B in terms of the left and right sides of the N-channel MOS transistor and the P-channel MOS transistor. However, they are formed in the same manner as the third embodiment shown in FIGS. 3A and 3B.
 図10Cに示されるように、1段目において、Pチャネル型MOSトランジスタ37aのシリコン柱40aの外周を囲むゲート導体層16ba、16bbと、Nチャネル型MOSトランジスタ37bのシリコン柱40bの外周を囲むゲート導体層16aa、16abとが、ゲート接続配線38aを介して接続されている。ゲート接続配線38a上に形成された酸化シリコン層45に、Nチャネル型MOSトランジスタ37b上の金属配線層18aと接続されたコンタクトホール41bが形成されている。コンタクトホール41bは、Nチャネル型MOSトランジスタ37bのグランド端子配線Vssに接続されている。なお、図10Cでは、第1酸化シリコン層3とゲート接続配線38aとの間に酸化シリコン層43が形成されている。 As shown in FIG. 10C, in the first stage, gate conductor layers 16ba and 16bb surrounding the outer periphery of the silicon column 40a of the P-channel MOS transistor 37a and the gate surrounding the outer periphery of the silicon column 40b of the N-channel MOS transistor 37b. The conductor layers 16aa and 16ab are connected via the gate connection wiring 38a. A contact hole 41b connected to the metal wiring layer 18a on the N-channel MOS transistor 37b is formed in the silicon oxide layer 45 formed on the gate connection wiring 38a. The contact hole 41b is connected to the ground terminal wiring Vss of the N channel type MOS transistor 37b. In FIG. 10C, a silicon oxide layer 43 is formed between the first silicon oxide layer 3 and the gate connection wiring 38a.
 1段目において、Pチャネル型MOSトランジスタ37aのシリコン柱40aの下端部に形成され、ドレインとして機能するP多結晶シリコン層55bと、Nチャネル型MOSトランジスタ37bのシリコン柱40bの下端部に形成され、ドレインとして機能するN多結晶シリコン層55aとは、1段目のドレイン接続配線39aである金属配線層42を介して互いに電気的に接続されている。 In the first stage, formed at the lower end portion of the silicon column 40a of the P-channel MOS transistor 37a and formed at the lower end portion of the P + polycrystalline silicon layer 55b functioning as the drain and the silicon column 40b of the N-channel MOS transistor 37b. The N + polycrystalline silicon layer 55a functioning as the drain is electrically connected to each other through the metal wiring layer 42 which is the first-stage drain connection wiring 39a.
 そして、金属配線層42は、2段目のPチャネル型MOSトランジスタ37cとNチャネル型MOSトランジスタ37dのゲート同士を接続するゲート接続配線38bと、酸化シリコン層45に形成されたコンタクトホール41eを介して接続されている(図10A、図10B参照)。 The metal wiring layer 42 is connected via a gate connection wiring 38b that connects the gates of the second-stage P-channel MOS transistor 37c and the N-channel MOS transistor 37d, and a contact hole 41e formed in the silicon oxide layer 45. Are connected (see FIGS. 10A and 10B).
 1段目のPチャネル型MOSトランジスタ37aのシリコン柱40a上にコンタクトホール41aが形成され、コンタクトホール41aは電源端子配線層Vddに接続されている。1段目のNチャネル型MOSトランジスタ37bのシリコン柱40b上にコンタクトホール41bが形成され、コンタクトホール41bはグランド端子配線層Vssに接続されている。 A contact hole 41a is formed on the silicon pillar 40a of the first-stage P-channel MOS transistor 37a, and the contact hole 41a is connected to the power supply terminal wiring layer Vdd. A contact hole 41b is formed on the silicon pillar 40b of the first-stage N-channel MOS transistor 37b, and the contact hole 41b is connected to the ground terminal wiring layer Vss.
 2段目のドレイン接続配線39b上にコンタクトホール41fが形成され、酸化シリコン層45上において、コンタクトホール41fに出力端子配線層Voutが接続されている(図10A、図10B参照)。
 また、入力端子配線層Vi、電源端子配線層Vdd、グランド端子配線層Vss、出力端子配線層Voutは互いに平行に配線されている(図10B参照)。
A contact hole 41f is formed on the second-stage drain connection wiring 39b, and the output terminal wiring layer Vout is connected to the contact hole 41f on the silicon oxide layer 45 (see FIGS. 10A and 10B).
Further, the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout are wired in parallel to each other (see FIG. 10B).
 本実施形態によれば、1段目のPチャネル型MOSトランジスタ37a及びNチャネル型MOSトランジスタ37bのドレイン接続配線39aとして機能する金属配線層42が、2段目のPチャネル型MOSトランジスタ37c及びNチャネル型MOSトランジスタ37dのゲート接続配線38bに、コンタクトホール41eを介して直接的に接続される。この構成では、金属配線層42(39a)は、酸化シリコン層45に形成したコンタクトホールを介して入力端子配線層Vi、電源端子配線層Vdd、グランド端子配線層Vss、出力端子配線層Vout(図10B参照)と同層まで引き上げる必要がないので、回路素子の高集積度化が実現される。 According to the present embodiment, the metal wiring layer 42 functioning as the drain connection wiring 39a of the first-stage P-channel MOS transistor 37a and N-channel MOS transistor 37b is replaced with the second-stage P-channel MOS transistor 37c and N-channel MOS transistor 37c. The channel type MOS transistor 37d is directly connected to the gate connection wiring 38b via the contact hole 41e. In this configuration, the metal wiring layer 42 (39a) is connected to the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout through the contact holes formed in the silicon oxide layer 45 (FIG. 10B), it is not necessary to pull up to the same layer as that, so that high integration of circuit elements is realized.
(第11実施形態)
 以下、図11A、図11Bを参照して、本発明の第11実施形態に係る、半導体基板にマスク合わせマークを形成する方法を説明する。
 図11Aで示される工程は、第1実施形態における図1Hで示される工程に対応するものである。その他の工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
(Eleventh embodiment)
Hereinafter, a method for forming a mask alignment mark on a semiconductor substrate according to an eleventh embodiment of the present invention will be described with reference to FIGS. 11A and 11B.
The process shown in FIG. 11A corresponds to the process shown in FIG. 1H in the first embodiment. The other steps are the same as those in the first embodiment except for the case specifically described below.
 図11Aに示されるように、第2半導体基板9上には、第2酸化シリコン層8が形成されている。第2酸化シリコン層8上には、第1酸化シリコン層3、第1の半導体基板1がこの順で形成されている。 As shown in FIG. 11A, a second silicon oxide layer 8 is formed on the second semiconductor substrate 9. On the second silicon oxide layer 8, the first silicon oxide layer 3 and the first semiconductor substrate 1 are formed in this order.
 図11Aに示されるように、第1の半導体基板1上の所定の位置に、マスク合わせのためのマスク合わせマーク形成領域47aと、回路を形成するための回路形成領域47bとを設定する。 As shown in FIG. 11A, a mask alignment mark formation region 47a for mask alignment and a circuit formation region 47b for forming a circuit are set at predetermined positions on the first semiconductor substrate 1.
 図11Aに示されるマスク合わせマーク形成領域47aにおいては、第1酸化シリコン層3に酸化シリコン層除去領域48が形成されている(図1B参照)。酸化シリコン層除去領域48の中央部には、マーク金属層49a、マーク多結晶シリコン層49bが積層状態で形成されている。 In the mask alignment mark formation region 47a shown in FIG. 11A, a silicon oxide layer removal region 48 is formed in the first silicon oxide layer 3 (see FIG. 1B). At the center of the silicon oxide layer removal region 48, a mark metal layer 49a and a mark polycrystalline silicon layer 49b are formed in a laminated state.
 酸化シリコン層除去領域48は、図1Bに示されるように、固体撮像装置の画素における接合トランジスタのソース又はドレインが形成される孔4と同時に形成される。 As shown in FIG. 1B, the silicon oxide layer removal region 48 is formed simultaneously with the hole 4 in which the source or drain of the junction transistor in the pixel of the solid-state imaging device is formed.
 一方、図11Aに示されるように、回路形成領域47bの中央部には、金属層7、N多結晶シリコン層5aが積層状態で形成されている(図1H参照)。 On the other hand, as shown in FIG. 11A, a metal layer 7 and an N + polycrystalline silicon layer 5a are formed in a laminated state in the center of the circuit formation region 47b (see FIG. 1H).
 図11Aに示される状態から、マスク合わせマーク形成領域47aにおける第1の半導体基板1をエッチングすることにより、図11Bに示されるように、所定の位置にマスク合わせ孔50を形成する。これにより、マスク合わせ孔50を通して、マーク金属層49a、マーク多結晶シリコン層49b及び酸化シリコン層除去領域48が露出する。
 続いて、マスク合わせ孔50内における、マーク金属層49a、マーク多結晶シリコン層49b及び酸化シリコン層除去領域48の内のいずれか1つを基準となるマスク合わせマークとして、フォトマスクのマスク合わせを行う。
 続いて、フォトレジストが形成された領域にフォトマスクを重ねて光を照射し、回路を転写する。
By etching the first semiconductor substrate 1 in the mask alignment mark formation region 47a from the state shown in FIG. 11A, a mask alignment hole 50 is formed at a predetermined position as shown in FIG. 11B. As a result, the mark metal layer 49 a, the mark polycrystalline silicon layer 49 b, and the silicon oxide layer removal region 48 are exposed through the mask alignment hole 50.
Subsequently, the mask alignment of the photomask is performed using any one of the mark metal layer 49a, the mark polycrystalline silicon layer 49b, and the silicon oxide layer removal region 48 in the mask alignment hole 50 as a reference mask alignment mark. Do.
Subsequently, a photomask is overlaid on the region where the photoresist is formed, and light is irradiated to transfer the circuit.
 これに対し、マスク合わせ孔50が存在しない場合には、第1の半導体基板1上にフォトレジストを被覆し、第1の半導体基板1の下方に位置するマーク金属層49a、マーク多結晶シリコン層49b、酸化シリコン層除去領域48のいずれかをマークとしてマスク合わせを行うことになる。この場合には、第1の半導体基板1は、シリコンからなり、青色光、紫外線光の吸収が大きいので、マスク合わせには透過率の高い赤色波長光又は赤外線光が用いられる。このため、マーク像の解像度が低下するとともに、マスク合わせ精度が低下する。 On the other hand, when the mask alignment hole 50 does not exist, the first semiconductor substrate 1 is covered with a photoresist, and the mark metal layer 49a and the mark polycrystalline silicon layer located below the first semiconductor substrate 1 are covered. Mask alignment is performed using either of 49b and the silicon oxide layer removal region 48 as a mark. In this case, the first semiconductor substrate 1 is made of silicon and absorbs blue light and ultraviolet light. Therefore, red wavelength light or infrared light having high transmittance is used for mask alignment. For this reason, the resolution of the mark image is lowered and the mask alignment accuracy is lowered.
 これに対して、本実施形態によれば、マスク合わせマーク形成領域47aには、青色光、紫外線光の吸収が大きいシリコン層が存在しないので、マーク金属層49a、マーク多結晶シリコン層49b、酸化シリコン層除去領域48上に直接フォトレジストを形成することができる。このため、高い解像度のマーク像が得られ、マスク合わせ精度が向上する。 On the other hand, according to the present embodiment, the mask alignment mark formation region 47a does not include a silicon layer that absorbs a large amount of blue light and ultraviolet light, so the mark metal layer 49a, the mark polycrystalline silicon layer 49b, the oxidation layer A photoresist can be formed directly on the silicon layer removal region 48. For this reason, a high-resolution mark image is obtained, and the mask alignment accuracy is improved.
 また、本実施形態によれば、酸化シリコン層除去領域48上に直接フォトレジストが形成されるので、図1Iに示されるN多結晶シリコン層5aとシリコン柱1aとの位置合わせ精度が高められる。 In addition, according to the present embodiment, since the photoresist is directly formed on the silicon oxide layer removal region 48, the alignment accuracy between the N + polycrystalline silicon layer 5a and the silicon pillar 1a shown in FIG. .
 以下、図12を参照して、図11A~図11Bに示される態様と比較して、フォトマスクのマスク合わせ精度をさらに向上させる本実施形態の変形例について説明する。以下に特に説明する場合を除いて、第11実施形態と同様とする。 Hereinafter, with reference to FIG. 12, a modification of the present embodiment that further improves the mask alignment accuracy of the photomask as compared with the mode shown in FIGS. 11A to 11B will be described. The process is the same as that of the eleventh embodiment except for the case specifically described below.
 図12に示されるように、図11Bに示されるマスク合わせ孔50内に青色光又は紫外線光を透過する透明絶縁層50aを埋め込む。この透明絶縁層50aには、SiO膜を用いる。
 その後、CMPによって、そのSiO膜及び第1の半導体基板1の表面を平坦化する。このマスク合わせ孔50のSiO膜による埋め込み工程は、図1Iを参照して、接合トランジスタが形成されるシリコン柱1aが形成される前に行われる。
As shown in FIG. 12, a transparent insulating layer 50a that transmits blue light or ultraviolet light is embedded in the mask alignment hole 50 shown in FIG. 11B. An SiO 2 film is used for the transparent insulating layer 50a.
Thereafter, the SiO 2 film and the surface of the first semiconductor substrate 1 are planarized by CMP. The step of filling the mask alignment hole 50 with the SiO 2 film is performed before the silicon pillar 1a on which the junction transistor is formed is formed with reference to FIG. 1I.
 この変形例によれば、マスク合わせ孔50内の透明絶縁層50aによって、マスク合わせマーク形成領域47aと回路形成領域47bとに被覆するフォトレジストを薄く均一なものとすることができるので、第11実施形態と比較して、マスク合わせ精度がさらに向上するようになる。 According to this modification, the transparent insulating layer 50a in the mask alignment hole 50 can make the photoresist covering the mask alignment mark formation region 47a and the circuit formation region 47b thin and uniform. Compared with the embodiment, the mask alignment accuracy is further improved.
(第12実施形態)
 以下、図13A、図13Bを参照して、本発明の第12実施形態に係る半導体装置の製造方法を説明する。
 図13Aは、第1実施形態における図1Bに示される工程に対応するものである。その他の工程は、以下に特に説明する場合を除いて、第1実施形態と同様である。
(Twelfth embodiment)
A method for manufacturing a semiconductor device according to the twelfth embodiment of the present invention will be described below with reference to FIGS. 13A and 13B.
FIG. 13A corresponds to the step shown in FIG. 1B in the first embodiment. The other steps are the same as those in the first embodiment except for the case specifically described below.
 本実施形態では、図13Aに示される工程では、第1の半導体基板1の所定の深さに、この第1の半導体基板1を上下の2つの部分に分離するための分離層2を形成するとともに、第1の半導体基板1上に、絶縁体である第1酸化シリコン層3を形成する。 In the present embodiment, in the step shown in FIG. 13A, the separation layer 2 for separating the first semiconductor substrate 1 into two upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1. At the same time, a first silicon oxide layer 3 as an insulator is formed on the first semiconductor substrate 1.
 続いて、図13Aに示されるように、第1酸化シリコン層3において、所定の領域の酸化シリコン(SiO)を除去することで孔4を形成する。 Subsequently, as shown in FIG. 13A, holes 4 are formed in the first silicon oxide layer 3 by removing silicon oxide (SiO 2 ) in a predetermined region.
 続いて、図13Aに示されるように、この孔4(酸化シリコン層除去領域48)を埋め込むように、第1酸化シリコン層3及び第1の半導体基板1の上に、CVD法によって多結晶シリコン層111を形成する。この多結晶シリコン層111にはドナー不純物又はアクセプタ不純物がドープされていない。 Subsequently, as shown in FIG. 13A, polycrystalline silicon is formed on the first silicon oxide layer 3 and the first semiconductor substrate 1 by the CVD method so as to fill the hole 4 (silicon oxide layer removal region 48). Layer 111 is formed. This polycrystalline silicon layer 111 is not doped with donor impurities or acceptor impurities.
 続いて、図13Bに示されるように、多結晶シリコン層111上に、CVD法及びドナー不純物のイオンドープによって、ドナー不純物がドープされたN多結晶シリコン層106を形成する。 Subsequently, as shown in FIG. 13B, an N + polycrystalline silicon layer 106 doped with donor impurities is formed on the polycrystalline silicon layer 111 by CVD and ion doping of donor impurities.
 続いて、このN多結晶シリコン層106上に、図1Dに示される工程と同様にして金属層7を形成する。さらに、図1E~1Lで示された工程と同様にして半導体装置を形成する。 Subsequently, a metal layer 7 is formed on the N + polycrystalline silicon layer 106 in the same manner as the step shown in FIG. 1D. Further, a semiconductor device is formed in the same manner as the steps shown in FIGS. 1E to 1L.
 本実施形態によれば、第1の半導体基板1とN多結晶シリコン層106の間に、不純物がドープされていない多結晶シリコン層111が形成されている。この多結晶シリコン層111の存在により、図1Jに示される工程における熱処理によってN多結晶シリコン層106を拡散源とした場合における、シリコン柱1aへのドナー不純物の拡散深さを調整することができる。 According to the present embodiment, the polycrystalline silicon layer 111 which is not doped with impurities is formed between the first semiconductor substrate 1 and the N + polycrystalline silicon layer 106. Due to the presence of the polycrystalline silicon layer 111, the diffusion depth of the donor impurity to the silicon pillar 1a when the N + polycrystalline silicon layer 106 is used as a diffusion source by the heat treatment in the step shown in FIG. 1J can be adjusted. it can.
 即ち、まず、熱処理によって、N多結晶シリコン層106からドナー不純物を拡散させ、多結晶シリコン層111をN多結晶シリコン層にする。その後、N多結晶シリコン層111からシリコン柱1a内に熱処理によってドナー不純物を拡散してN拡散層6aを形成する。このように熱処理によってドナー不純物がドープされていない多結晶シリコン層111をN多結晶シリコン層とすることで、N多結晶シリコン層106から外部へのドナー不純物の拡散性能が減弱される。 That is, first, the donor impurity is diffused from the N + polycrystalline silicon layer 106 by heat treatment, so that the polycrystalline silicon layer 111 becomes an N + polycrystalline silicon layer. Then, by diffusing donor impurities by heat treatment of N + polysilicon layer 111 in the silicon pillar 1a to form the N + diffusion layer 6a. Thus, by making the polycrystalline silicon layer 111 not doped with donor impurities by heat treatment into an N + polycrystalline silicon layer, the diffusion performance of donor impurities from the N + polycrystalline silicon layer 106 to the outside is reduced.
 これにより、図1Gに示される工程において、第1の半導体基板1上で、第2の半導体基板9と第2酸化シリコン層8とを接着した後の熱処理の条件(温度、時間)によって、N拡散層6aが所望の深さを超えて拡散することが想定される場合に、かかる拡散の深さを抑制するために有効となる。 Thereby, in the process shown in FIG. 1G, N 2 is changed depending on the heat treatment conditions (temperature, time) after bonding the second semiconductor substrate 9 and the second silicon oxide layer 8 on the first semiconductor substrate 1. When the + diffusion layer 6a is assumed to diffuse beyond a desired depth, this is effective for suppressing the diffusion depth.
 一方、アプセプタ不純物を拡散させる場合は、N多結晶シリコン層106に代えてP多結晶シリコン層を用いることができる。ドナー不純物又はアクセプタ不純物がドープされていない多結晶シリコン層111には、積極的に不純物がドープされていなくとも微量の不純物は含有されていることは、本実施形態の効果に影響しない。 On the other hand, in the case of diffusing the acceptor impurity, a P + polycrystalline silicon layer can be used in place of the N + polycrystalline silicon layer 106. Even if the polycrystalline silicon layer 111 that is not doped with donor impurities or acceptor impurities contains a small amount of impurities even if they are not actively doped, the effect of this embodiment is not affected.
 なお、第1実施形態と、第1実施形態に関連する実施形態では、第1酸化シリコン層3は、第1酸化シリコン層3は、熱酸化、陽極酸化、又はCVD(Chemical Vapor Deposition)などで形成した。これに限られず、窒化シリコン(SiN)膜など他の絶縁膜との多層構造で構成してもよい。 In the first embodiment and the embodiment related to the first embodiment, the first silicon oxide layer 3 is formed by thermal oxidation, anodization, CVD (Chemical Vapor Deposition), or the like. Formed. However, the present invention is not limited to this, and a multilayer structure with another insulating film such as a silicon nitride (SiN) film may be used.
 なお、本発明は上述した第1~第12実施形態で説明した実施態様に限定されず、種種の変形が可能である。
 上記実施形態では、第1の半導体基板1はP型の導電型とした。これに限られず、第1の半導体基板1は、固有半導体であるi型(イントリンシック型)でもよい。また、第1の半導体基板1に形成する回路素子に応じて、N型の導電型とすることもできる。
The present invention is not limited to the embodiments described in the first to twelfth embodiments described above, and various modifications can be made.
In the above embodiment, the first semiconductor substrate 1 is P-type conductivity. The first semiconductor substrate 1 is not limited to this, and may be i-type (intrinsic type) which is a unique semiconductor. Further, depending on the circuit element formed on the first semiconductor substrate 1, an N-type conductivity type may be used.
 同様に、図3B,図4、図9C、図10Cを用いた実施形態では、Pチャネル型MOSトランジスタのチャネルはN型シリコン層30aに形成され、Nチャネル型MOSトランジスタのチャネルはP型シリコン層30に形成されるものとしたが、いずれも固有半導体であるi型シリコンに形成されてもよい。 Similarly, in the embodiment using FIGS. 3B, 4, 9C, and 10C, the channel of the P-channel MOS transistor is formed in the N-type silicon layer 30a, and the channel of the N-channel MOS transistor is the P-type silicon layer. However, it may be formed on i-type silicon which is a unique semiconductor.
 上記実施形態では、図1Kにおいて、シリコン柱1aに形成した固体撮像装置の画素において、N多結晶シリコン層5a、金属層7、N拡散層6aを個別の材料層としているが、図1D~図1Kの間の工程で行う熱処理によって、金属層7の金属材料(Ni,Wなど)と、N多結晶シリコン層5a、又はN拡散層6aの一部との反応により、金属層7、N多結晶シリコン層5a、又はN拡散層6aの全部又は一部がシリサイド層(NiSi、WSiなど)に変化していてもよい。また、図1L、図2、図3B、図4、図8A、図8B、図8C、図9C、図10C、図11B、図12で示される各工程での熱処理によって、金属層7の金属材料とN多結晶シリコン層5a、又はN拡散層6aの一部との反応により、金属層7、N多結晶シリコン層5a、又はN拡散層6aの全部又は一部がシリサイド層(NiSi、WSiなど)に変化していてもよい。これらによっても、信号線(電気配線)となる部分の電気抵抗値が低下する効果が得られる。 In the above embodiment, in FIG. 1K, in the pixel of the solid-state imaging device formed on the silicon pillar 1a, the N + polycrystalline silicon layer 5a, the metal layer 7, and the N + diffusion layer 6a are used as individual material layers. Through the heat treatment performed in the steps between FIG. 1K, the metal layer 7 is reacted with the metal material (Ni, W, etc.) of the metal layer 7 and a part of the N + polycrystalline silicon layer 5a or the N + diffusion layer 6a. 7. All or part of the N + polycrystalline silicon layer 5a or the N + diffusion layer 6a may be changed to a silicide layer (NiSi, WSi, etc.). 1L, 2, 3B, 4, 8A, 8B, 8C, 9C, 10C, 11B, and 12 by the heat treatment in each step shown in FIG. And the N + polycrystalline silicon layer 5a or a part of the N + diffusion layer 6a, the metal layer 7, the N + polycrystalline silicon layer 5a, or the N + diffusion layer 6a all or part of the silicide layer ( NiSi, WSi, etc.). Also by these, the effect that the electrical resistance value of the part used as a signal line (electrical wiring) falls is acquired.
 上記実施形態では、図1Hに示されるように、第1の半導体基板1の所定の深さに高濃度水素イオン(H)をイオン注入して形成した分離層2から、400~600℃の熱処理により、第1の半導体基板1を上下に分離し、第1の半導体基板1を所定の厚さまで薄くした。これに限られず、第1の半導体基板1を所定の厚さまで薄くするには、例えば、非特許文献3に示される分離層2に多孔質層を形成する方法を採用してもよい。その他、第1の半導体基板1を上下に分離する方法も採用できる。 In the above embodiment, as shown in FIG. 1H, from the separation layer 2 formed by ion-implanting high-concentration hydrogen ions (H + ) to a predetermined depth of the first semiconductor substrate 1, the temperature is 400 to 600 ° C. The first semiconductor substrate 1 was separated into a top and bottom by heat treatment, and the first semiconductor substrate 1 was thinned to a predetermined thickness. For example, a method of forming a porous layer in the separation layer 2 shown in Non-Patent Document 3 may be employed to reduce the thickness of the first semiconductor substrate 1 to a predetermined thickness. In addition, a method of separating the first semiconductor substrate 1 vertically can be employed.
 また、第2半導体基板9は、シリコンとは異種の半導体、例えば、炭化シリコン(SiC)などの化合物半導体、絶縁体又は有機樹脂体であってもよい。この構成によっても、第1の半導体基板1に形成される回路素子を保持することができる。 The second semiconductor substrate 9 may be a semiconductor different from silicon, for example, a compound semiconductor such as silicon carbide (SiC), an insulator, or an organic resin body. Also with this configuration, the circuit elements formed on the first semiconductor substrate 1 can be held.
 また、第2酸化シリコン層8、酸化シリコン層20、29、45は、窒化シリコン(SiN)膜などその他の絶縁膜との多層構成であってもよい。 Further, the second silicon oxide layer 8 and the silicon oxide layers 20, 29, 45 may have a multilayer structure with other insulating films such as a silicon nitride (SiN) film.
 また、N多結晶シリコン層5a、55a、P多結晶シリコン層55bは、イオンドープによって形成した。これに限られず、不純物の熱拡散、不純物を混入したドープド多結晶シリコン層によって形成してもよい。 The N + polycrystalline silicon layers 5a and 55a and the P + polycrystalline silicon layer 55b were formed by ion doping. However, the present invention is not limited to this, and it may be formed by thermal diffusion of impurities or a doped polycrystalline silicon layer mixed with impurities.
 また、図1Bにおいて、多結晶シリコン層5は、CVD法によって形成した。これに限られず、多結晶シリコン層5は、エピタキシャル成長によって形成してもよい。この場合、第1の半導体基板1上には単結晶シリコン層が成長し、その成長条件により第1酸化シリコン層3上には多結晶シリコン層が形成される。この場合、単結晶シリコン層がドナー又はアクセプタのシリコン柱1aへの拡散源となる。また、単結晶シリコン層の成長条件(温度など)により第1酸化シリコン層3上にはシリコン層が形成されないようにすることもできる。 In FIG. 1B, the polycrystalline silicon layer 5 was formed by a CVD method. However, the present invention is not limited to this, and the polycrystalline silicon layer 5 may be formed by epitaxial growth. In this case, a single crystal silicon layer is grown on the first semiconductor substrate 1, and a polycrystalline silicon layer is formed on the first silicon oxide layer 3 depending on the growth conditions. In this case, the single crystal silicon layer becomes a diffusion source to the silicon pillar 1a of the donor or acceptor. Further, the silicon layer can be prevented from being formed on the first silicon oxide layer 3 depending on the growth conditions (temperature, etc.) of the single crystal silicon layer.
 また、図1Gにおいて、シリコンからなる第2半導体基板9と、CMPで平坦化した第2酸化シリコン層8とを貼り合わせたが、第2半導体基板9の表面に、酸化又はCVD法によって酸化層又は絶縁層を形成した後に第2半導体基板9と第2酸化シリコン層8とを貼り合わせることもできる。 In FIG. 1G, the second semiconductor substrate 9 made of silicon and the second silicon oxide layer 8 flattened by CMP are bonded together, and an oxide layer is formed on the surface of the second semiconductor substrate 9 by oxidation or CVD. Alternatively, the second semiconductor substrate 9 and the second silicon oxide layer 8 can be bonded after the insulating layer is formed.
 また、図9Cにおいて、ドレイン接続配線39と出力端子配線Voとはコンタクトホール41dを介して接続した。これに限られず、ドレイン接続配線39と出力端子配線Voとは、コンタクトホール41dの底部がドレイン接続配線39上のN多結晶シリコン層55aに接するようにして接続することもできる。この構成によっても、N多結晶シリコン層55aの電気抵抗は十分に小さいので、回路素子の高速動作が実現される。 In FIG. 9C, the drain connection wiring 39 and the output terminal wiring Vo are connected via the contact hole 41d. The drain connection wiring 39 and the output terminal wiring Vo can be connected so that the bottom of the contact hole 41 d is in contact with the N + polycrystalline silicon layer 55 a on the drain connection wiring 39. Also with this configuration, the electrical resistance of the N + polycrystalline silicon layer 55a is sufficiently small, so that high-speed operation of the circuit element is realized.
 また、図10Cにおいて、ドレイン接続配線として機能する金属配線層42(39a)と2段目のゲート接続配線38bとは、コンタクトホール41eを介して接続した。これに限られず、コンタクトホール41eの底部が金属配線層42上のN多結晶シリコン層55aに接するようにして接続することもできる。この構成によっても、N多結晶シリコン層55aの電気抵抗は十分に小さいので、回路素子の高速動作が実現される。 In FIG. 10C, the metal wiring layer 42 (39a) functioning as the drain connection wiring and the second-stage gate connection wiring 38b are connected via the contact hole 41e. The connection is not limited to this, and the contact hole 41 e can be connected so that the bottom thereof is in contact with the N + polycrystalline silicon layer 55 a on the metal wiring layer 42. Also with this configuration, the electrical resistance of the N + polycrystalline silicon layer 55a is sufficiently small, so that high-speed operation of the circuit element is realized.
 また、図1L、図2、図3Bに示されるような、ゲート導体層11a、11b、11c、11d、16a、16b、16c、16d、図10Cに示されるような、ゲート接続配線38、38a、38bは、蒸着法又はCVD法によって形成した。これに限られず、単層又は異なる種類の複数の金属層から構成したり、不純物をドープした多結晶シリコン層又はその多結晶シリコン層と金属層との多層構成とすることもできる。または、ゲート接続配線38、38a、38bは、Nチャネル型とPチャネル型で異なる材料を使用してもよい。 Further, gate conductor layers 11a, 11b, 11c, 11d, 16a, 16b, 16c, 16d, and gate connection wirings 38, 38a, as shown in FIG. 10C, as shown in FIG. 1L, FIG. 2, and FIG. 38b was formed by a vapor deposition method or a CVD method. However, the present invention is not limited to this, and a single layer or a plurality of different types of metal layers, a polycrystalline silicon layer doped with impurities, or a multilayer configuration of the polycrystalline silicon layer and the metal layer may be used. Alternatively, the gate connection wirings 38, 38a, and 38b may use different materials for the N channel type and the P channel type.
 また、図10B、図10Cに示される2段CMOSインバータ回路において、以下のように構成することも可能である。即ち、Pチャネル型MOSトランジスタ37aのシリコン柱40aと、Nチャネル型MOSトランジスタ37bのシリコン柱40bのそれぞれの上方部位のP型シリコン層17b、N型シリコン層17aを、酸化シリコン層45に形成したコンタクトホール41a、41bを介して1段目の出力端子配線層Voutに接続する。そして、Pチャネル型MOSトランジスタ37aのシリコン柱40aの下方部位のP多結晶シリコン層55bと、P拡散層6bとに接続された金属層46bを電源端子配線層Vddとするとともに、Nチャネル型MOSトランジスタ37bのシリコン柱40bの下方部位のN多結晶シリコン層55aと、N拡散層6aとに接続された金属層46aをグランド端子配線層Vssとする。この構造においても、図10Cで示した構造と同様な効果が得られる。 Further, the two-stage CMOS inverter circuit shown in FIGS. 10B and 10C can be configured as follows. That is, the P + -type silicon layer 17b and the N + -type silicon layer 17a in the upper part of the silicon pillar 40a of the P-channel MOS transistor 37a and the silicon pillar 40b of the N-channel MOS transistor 37b are formed in the silicon oxide layer 45. It is connected to the first-stage output terminal wiring layer Vout through the formed contact holes 41a and 41b. The metal layer 46b connected to the P + polycrystalline silicon layer 55b and the P + diffusion layer 6b below the silicon pillar 40a of the P channel MOS transistor 37a is used as a power supply terminal wiring layer Vdd, and N channel The metal layer 46a connected to the N + polycrystalline silicon layer 55a and the N + diffusion layer 6a below the silicon pillar 40b of the type MOS transistor 37b is defined as a ground terminal wiring layer Vss. Also in this structure, the same effect as the structure shown in FIG. 10C can be obtained.
 また、図1Kに示される画素構造において、ゲート導体層11a、11bと信号線となるN拡散層6aとの自己整合を行うために、ゲート導体層11a、11bを形成した後に、ヒ素(As)のイオンドーピング、又は、堆積Asドープ酸化シリコン層を拡散源として、ゲート導体層11a,11bとN拡散層6a間のシリコン柱1a内にN型シリコン層を形成してもよい。 Further, in the pixel structure shown in FIG. 1K, arsenic (As) is formed after the gate conductor layers 11a and 11b are formed in order to perform self-alignment between the gate conductor layers 11a and 11b and the N + diffusion layer 6a serving as a signal line. The N + -type silicon layer may be formed in the silicon pillar 1a between the gate conductor layers 11a and 11b and the N + diffusion layer 6a by using the ion doping or the deposited As-doped silicon oxide layer as a diffusion source.
 また、図1Iの第1の実施形態において、第1の半導体基板1を第1酸化シリコン層3の表面までエッチングしてシリコン柱1aを形成しているが、このエッチング処理は、第1酸化シリコン層3の表面に至る前で停止するようにしてもよい。例えば、図14Aに示されるように、エッチングされずに残存したシリコン層にドナー不純物をドープすることでN型シリコン層を形成してもよい。 In addition, in the first embodiment of FIG. 1I, the first semiconductor substrate 1 is etched to the surface of the first silicon oxide layer 3 to form the silicon pillar 1a. It may be stopped before reaching the surface of the layer 3. For example, as shown in FIG. 14A, an N + type silicon layer may be formed by doping a remaining silicon layer without being etched with a donor impurity.
 また、図2に示されるSGTにおいても、ゲート導体層16a,16bとソース又はドレインとなるN拡散層6aとの自己整合を行うために、ヒ素(As)のイオンドーピング、又は、堆積Asドープ酸化シリコン層を拡散源として、ゲート導体層16a,16bとN拡散層6a間のシリコン柱1a内にN型シリコン層を形成してもよい。 Also in the SGT shown in FIG. 2, arsenic (As) ion doping or deposition As doping is performed in order to perform self-alignment between the gate conductor layers 16a and 16b and the N + diffusion layer 6a serving as the source or drain. An N + type silicon layer may be formed in the silicon pillar 1a between the gate conductor layers 16a and 16b and the N + diffusion layer 6a using the silicon oxide layer as a diffusion source.
 また、図1Kに示される第1の実施形態の製造方法で形成された固体撮像装置の画素にはフォトダイオードを構成するN型シリコン層12a、12bの外周部に、第3酸化シリコン層10a、10bを介して光を反射する導体層が形成されてもよい。これにより混色が防止される。また、N型シリコン層12a、12bの外周部のシリコン柱1a内にP型シリコン層13aと接続されたP型シリコン層を形成することで低残像・低ノイズが実現される構造としてもよい。このように、シリコン柱1aに固体撮像装置の機能がより高められる構造を適宜形成することができる。 Further, in the pixel of the solid-state imaging device formed by the manufacturing method of the first embodiment shown in FIG. 1K, the third silicon oxide layer 10a, on the outer peripheral portion of the N-type silicon layers 12a and 12b constituting the photodiode, A conductor layer that reflects light through 10b may be formed. This prevents color mixing. Further, by forming a P + -type silicon layer connected to the P + -type silicon layer 13 a in the silicon pillar 1 a on the outer periphery of the N-type silicon layers 12 a and 12 b, it is possible to realize a low afterimage and low noise. Good. As described above, a structure in which the function of the solid-state imaging device is further enhanced can be appropriately formed in the silicon pillar 1a.
 また、本発明の技術的思想は、同一基板上に1つの実施形態における回路素子だけでなく、複数の実施形態における回路素子が形成されるものにも適用されることは言うまでもない。また、各実施形態における各製造工程は、同一の構成が製造される場合には、順序を適宜変更することができる。 Further, it goes without saying that the technical idea of the present invention is applied not only to the circuit elements in one embodiment but also to those in which circuit elements in a plurality of embodiments are formed on the same substrate. Further, the order of the manufacturing steps in each embodiment can be appropriately changed when the same configuration is manufactured.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。 It should be noted that the present invention can be variously modified and modified without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining an example of the present invention, and does not limit the scope of the present invention.
 本発明は、柱状構造を有する半導体内にチャネル領域が形成されているトランジスタを備える半導体装置に適用できる。 The present invention can be applied to a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure.
 1 第1の半導体基板
 1a、1b、40a、40b、40c、40d シリコン柱
 1n Nチャネル型SGT形成領域
 1p Pチャネル型SGT形成領域
 2 分離層
 3 第1酸化シリコン層
 4 孔
 5、23 多結晶シリコン層
 5a、5b、23a、23b、55a、104 N多結晶シリコン層
 55b P多結晶シリコン層
 6a、6ab N拡散層
 6b、102 P拡散層
 7、28、32、59、105 金属層
 7a、7b、7aa、7bb 第1接続用金属層
 8 第2酸化シリコン層
 9 第2半導体基板
 10a、10b 第3酸化シリコン層
 11a、11b、11c、11d、16a、16b、16c、16d、16aa、16ab、16ba、16bb、54a、54b ゲート導体層
 12a、12b、12c、12d N型シリコン層
 13a、13b、17b、31、56 P型シリコン層
 14a、14b、14c、14d 画素選択金属配線層
 15a、15b、15c、15d、71 ゲート絶縁層
 17a、51 N型シリコン層
 18a、18b、22a、22b、22c、24a、24b、26a、26b、35、42、109 金属配線層
 20、29、33、43、45、62、101a、101b、103、107 酸化シリコン層
 21c、34、41a、41b、41c、41d、41e、41f、75、108 コンタクトホール
 27 容量酸化シリコン層
 30、52 P型シリコン層
 30a、58a、58b N型シリコン層
 30b i型シリコン層
 37a、37c Pチャネル型MOSトランジスタ
 37b、37d Nチャネル型MOSトランジスタ
 38、38a、38b ゲート接続配線
 39、39a、39b ドレイン接続配線
 47a マスク合わせマーク形成領域
 47b 回路形成領域
 48 酸化シリコン層除去領域
 49a マーク金属層
 49b マーク多結晶シリコン層
 50 マスク合わせ孔
 50a 透明絶縁層
 53a、53b 絶縁膜
 57a、57b 画素選択線
 60 基板
 61、64 半導体基板
 66 埋め込み酸化膜基板
 67 平面状シリコン膜
 68 PMOS柱状シリコン層
 69、70 P型シリコン拡散層
 71 ゲート絶縁層
 72 ゲート電極
 73 窒化シリコン(SiN)膜
 74 酸化シリコン(SiO)膜
 76 ソース金属配線
 100 容量形成領域
 106 (ドナー不純物がドープされた)N多結晶シリコン層
 110 柱状半導体
 111 (ドナー不純物又はアクセプタ不純物がドープされていない)多結晶シリコン層
 Vi 入力端子配線(層)
 Vdd 電源端子配線(層)
 Vss グランド端子配線(層)
 Vo、Vout 出力端子配線(層)
DESCRIPTION OF SYMBOLS 1 1st semiconductor substrate 1a, 1b, 40a, 40b, 40c, 40d Silicon pillar 1n N channel type SGT formation region 1p P channel type SGT formation region 2 Separation layer 3 First silicon oxide layer 4 Hole 5, 23 Polycrystalline silicon layers 5a, 5b, 23a, 23b, 55a, 104 N + polycrystalline silicon layer 55b P + polycrystalline silicon layer 6a, 6ab N + diffusion layer 6b, 102 P + diffusion layer 7,28,32,59,105 metal layer 7a, 7b, 7aa, 7bb First connection metal layer 8 Second silicon oxide layer 9 Second semiconductor substrate 10a, 10b Third silicon oxide layer 11a, 11b, 11c, 11d, 16a, 16b, 16c, 16d, 16aa, 16ab, 16ba, 16bb, 54a, 54b Gate conductor layer 12a, 12b, 12c, 12d N-type silicon layer 1 a, 13b, 17b, 31,56 P + -type silicon layer 14a, 14b, 14c, 14d pixel selection metal wiring layers 15a, 15b, 15c, 15d, 71 a gate insulating layer 17a, 51 N + -type silicon layer 18a, 18b, 22a, 22b, 22c, 24a, 24b, 26a, 26b, 35, 42, 109 Metal wiring layer 20, 29, 33, 43, 45, 62, 101a, 101b, 103, 107 Silicon oxide layer 21c, 34, 41a, 41b, 41c, 41d, 41e, 41f, 75, 108 Contact hole 27 Capacitance silicon oxide layer 30, 52 P-type silicon layer 30a, 58a, 58b N-type silicon layer 30b i-type silicon layer 37a, 37c P-channel MOS transistor 37b 37d N-channel MOS transistors 38, 38a 38b Gate connection wiring 39, 39a, 39b Drain connection wiring 47a Mask alignment mark formation region 47b Circuit formation region 48 Silicon oxide layer removal region 49a Mark metal layer 49b Mark polycrystalline silicon layer 50 Mask alignment hole 50a Transparent insulating layer 53a, 53b Insulation Films 57a, 57b Pixel selection line 60 Substrate 61, 64 Semiconductor substrate 66 Embedded oxide film substrate 67 Planar silicon film 68 PMOS columnar silicon layer 69, 70 P + type silicon diffusion layer 71 Gate insulating layer 72 Gate electrode 73 Silicon nitride (SiN) ) film 74 of silicon oxide (SiO 2) film 76 source metal wiring 100 capacitor forming region 106 (donor impurities are doped) N + polycrystalline silicon layer 110 columnar semiconductor 111 (donor impurity or an acceptor impurity doping of I have not) polycrystalline silicon layer Vi input terminal wiring (layer)
Vdd Power supply terminal wiring (layer)
Vss ground terminal wiring (layer)
Vo, Vout Output terminal wiring (layer)

Claims (17)

  1.  半導体基板上に第1の絶縁層を形成する第1絶縁層形成工程と、
     前記第1の絶縁層の所定の部分を除去し、絶縁層除去領域を形成する絶縁層除去工程と、
     少なくとも前記絶縁層除去領域を覆うように、前記半導体基板上にドナー不純物又はアクセプタ不純物を含む第1の半導体層を形成する第1半導体層形成工程と、
     前記第1の半導体層上に導電層を形成する導電層形成工程と、
     前記導電層及び前記第1の半導体層を所定の形状に成形する成形工程と、
     前記所定の形状に形成した導電層及び第1の半導体層を覆うように、第2の絶縁層を形成する第2絶縁層形成工程と、
     前記第2の絶縁層の表面を平坦化する平坦化工程と、
     前記平坦化された前記第2の絶縁層の表面に、基板を接着する接着工程と、
     前記半導体基板を所定の厚さまで薄くする薄膜化工程と、
     前記第1の半導体層上に、前記半導体基板から柱状構造を有する柱状半導体を形成する柱状半導体形成工程と、
     前記柱状半導体に前記回路素子を形成する回路素子形成工程と、を備え、
     少なくとも前記第1半導体層形成工程以後に、前記ドナー不純物又はアクセプタ不純物を含む前記第1の半導体層から当該不純物を拡散させることで前記柱状半導体に第1の半導体領域を形成する第1半導体領域形成工程をさらに備える、
     ことを特徴とする半導体装置の製造方法。
    A first insulating layer forming step of forming a first insulating layer on the semiconductor substrate;
    An insulating layer removing step of removing a predetermined portion of the first insulating layer to form an insulating layer removal region;
    A first semiconductor layer forming step of forming a first semiconductor layer containing a donor impurity or an acceptor impurity on the semiconductor substrate so as to cover at least the insulating layer removal region;
    A conductive layer forming step of forming a conductive layer on the first semiconductor layer;
    A molding step of molding the conductive layer and the first semiconductor layer into a predetermined shape;
    A second insulating layer forming step of forming a second insulating layer so as to cover the conductive layer and the first semiconductor layer formed in the predetermined shape;
    A planarization step of planarizing the surface of the second insulating layer;
    An adhesion step of adhering a substrate to the flattened surface of the second insulating layer;
    A thinning process for thinning the semiconductor substrate to a predetermined thickness;
    Forming a columnar semiconductor having a columnar structure from the semiconductor substrate on the first semiconductor layer; and
    A circuit element forming step of forming the circuit element on the columnar semiconductor,
    Forming a first semiconductor region in the columnar semiconductor by diffusing the impurity from the first semiconductor layer containing the donor impurity or acceptor impurity at least after the first semiconductor layer forming step The process further includes
    A method for manufacturing a semiconductor device.
  2.  前記回路素子形成工程は、
     前記柱状半導体の外周部に第3の絶縁層を形成するとともに、前記第3の絶縁層の外周部にゲート導体層を形成する工程と、
     前記ゲート導体層の上方部位かつ前記柱状半導体の表層部に、前記第1の半導体領域と同一導電型である第4の半導体領域を形成する工程と、
     前記柱状半導体において、前記第3の絶縁層の上方部位に、前記第1の半導体領域と反対導電型の第3の半導体領域を形成する工程と、を含む、ことを特徴とする請求項1に記載の半導体装置の製造方法。
    The circuit element forming step includes
    Forming a third insulating layer on the outer periphery of the columnar semiconductor and forming a gate conductor layer on the outer periphery of the third insulating layer;
    Forming a fourth semiconductor region having the same conductivity type as the first semiconductor region in a portion above the gate conductor layer and in a surface layer portion of the columnar semiconductor;
    Forming a third semiconductor region having a conductivity type opposite to that of the first semiconductor region in an upper portion of the third insulating layer in the columnar semiconductor. The manufacturing method of the semiconductor device of description.
  3.  前記回路素子形成工程は、
     前記柱状半導体の外周部に第3の絶縁層を形成するとともに、前記第3の絶縁層の外周部にゲート導体層を形成する工程と、
     前記柱状半導体における前記第3の絶縁層の上方部位に、前記第1の半導体領域と同一導電型の第5の半導体領域を形成する工程と、を含む、ことを特徴とする請求項1に記載の半導体装置の製造方法。
    The circuit element forming step includes
    Forming a third insulating layer on the outer periphery of the columnar semiconductor and forming a gate conductor layer on the outer periphery of the third insulating layer;
    Forming a fifth semiconductor region having the same conductivity type as that of the first semiconductor region at a position above the third insulating layer in the columnar semiconductor. Semiconductor device manufacturing method.
  4.  前記回路素子形成工程は、
     前記柱状半導体の上方部位に、前記第1の半導体領域と反対導電型の第6の半導体領域を形成する工程を含む、ことを特徴とする請求項1に記載の半導体装置の製造方法。
    The circuit element forming step includes
    2. The method of manufacturing a semiconductor device according to claim 1, comprising a step of forming a sixth semiconductor region having a conductivity type opposite to that of the first semiconductor region in an upper portion of the columnar semiconductor.
  5.  前記第1半導体層形成工程は、前記第1の半導体層と同層に、電気抵抗として機能する第2の半導体層を形成する工程を含む、ことを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置の製造方法。 5. The method according to claim 1, wherein the first semiconductor layer forming step includes a step of forming a second semiconductor layer functioning as an electric resistance in the same layer as the first semiconductor layer. 2. A method for manufacturing a semiconductor device according to item 1.
  6.  前記第1半導体層形成工程は、容量電極として機能する前記第1の半導体層上の所定の領域に容量絶縁膜として機能する絶縁膜を形成する工程を含み、
     前記導電層形成工程は、前記絶縁膜上に、前記第1の半導体層と共に容量電極として機能する導電層を形成する工程を含む、ことを特徴とする請求項1乃至5のいずれか1項に記載の半導体装置の製造方法。
    The first semiconductor layer forming step includes a step of forming an insulating film functioning as a capacitor insulating film in a predetermined region on the first semiconductor layer functioning as a capacitor electrode;
    The said conductive layer formation process includes the process of forming the conductive layer which functions as a capacitive electrode with the said 1st semiconductor layer on the said insulating film, The any one of Claim 1 thru | or 5 characterized by the above-mentioned. The manufacturing method of the semiconductor device of description.
  7.  前記第1絶縁層形成工程は、前記半導体基板上に、第1の絶縁層と共に第4の絶縁層を形成するとともに、予め設定した容量形成領域に、前記第4の絶縁層よりも厚さが薄く、容量絶縁膜として機能する第5の絶縁層を形成する工程を含み、
     前記導電層形成工程は、前記第5の絶縁層上に、容量電極として機能する導電層を形成する工程を含み、
     前記絶縁層除去工程は、前記容量形成領域に、ドナー不純物又はアクセプタ不純物を有し、容量電極として機能する不純物層を形成する容量形成工程を含む、ことを特徴とする請求項1乃至6のいずれか1項に記載の半導体装置の製造方法。
    The first insulating layer forming step forms a fourth insulating layer together with the first insulating layer on the semiconductor substrate, and has a thickness larger than that of the fourth insulating layer in a preset capacitance forming region. Forming a thin fifth insulating layer functioning as a capacitive insulating film,
    The conductive layer forming step includes a step of forming a conductive layer functioning as a capacitor electrode on the fifth insulating layer,
    The said insulating layer removal process includes the capacity | capacitance formation process which forms the impurity layer which has a donor impurity or an acceptor impurity in the said capacity | capacitance formation area | region, and functions as a capacity | capacitance electrode. A method for manufacturing a semiconductor device according to claim 1.
  8.  前記半導体基板上にマスク合わせマーク形成領域を設定するマスク合わせマーク形成領域設定工程と、
     前記マスク合わせマーク形成領域に、マスク合わせ孔を形成し、前記絶縁層除去領域、前記第1の絶縁層及び前記導電層の少なくとも一つを露出させる工程と、
     前記マスク合わせ孔を通して、前記絶縁層除去領域、前記第1の絶縁層及び前記導電層の内の少なくとも一つからなるマスク合わせマークを形成するマスク合わせマーク形成工程と、
     前記マスク合わせマークを基準として、フォトマスクのマスク合わせを行うマスク合わせ工程と、をさらに備える、ことを特徴とする請求項1乃至7のいずれか1項に記載の半導体装置の製造方法。
    A mask alignment mark formation region setting step for setting a mask alignment mark formation region on the semiconductor substrate;
    Forming a mask alignment hole in the mask alignment mark formation region to expose at least one of the insulating layer removal region, the first insulating layer, and the conductive layer;
    A mask alignment mark forming step of forming a mask alignment mark comprising at least one of the insulating layer removal region, the first insulating layer, and the conductive layer through the mask alignment hole;
    The method of manufacturing a semiconductor device according to claim 1, further comprising: a mask alignment step of performing mask alignment of a photomask with the mask alignment mark as a reference.
  9.  前記マスク合わせ孔に透明絶縁体を埋め込む工程をさらに備え、
     前記マスク合わせマーク形成工程では、前記透明絶縁体を通して、前記絶縁層除去領域、前記第1の絶縁層及び前記導電層の内の少なくとも一つからなるマスク合わせマークを形成し、
     前記マスク合わせ工程では、前記マスク合わせマークを基準として、フォトマスクのマスク合わせを行う、ことを特徴とする請求項8に記載の半導体装置の製造方法。
    A step of embedding a transparent insulator in the mask alignment hole;
    In the mask alignment mark forming step, a mask alignment mark comprising at least one of the insulating layer removal region, the first insulating layer, and the conductive layer is formed through the transparent insulator,
    9. The method of manufacturing a semiconductor device according to claim 8, wherein in the mask alignment step, mask alignment of a photomask is performed with reference to the mask alignment mark.
  10.  前記絶縁層除去工程と、前記第1半導体層形成工程との間に、前記絶縁層除去領域を覆うように、ドナー不純物及びアクセプタ不純物がドープされていない第2の半導体層を形成する工程をさらに備える、ことを特徴とする請求項1乃至9のいずれか1項に記載の半導体装置の製造方法。 Forming a second semiconductor layer not doped with donor impurities and acceptor impurities so as to cover the insulating layer removal region between the insulating layer removing step and the first semiconductor layer forming step; The method for manufacturing a semiconductor device according to claim 1, wherein the method is provided.
  11.  請求項2に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記柱状半導体は、
     前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型の半導体又は固有半導体からなる第2の半導体領域を備え、
     前記第2の半導体領域と前記第4の半導体領域とから電磁エネルギー波の照射により発生する信号電荷を蓄積するダイオードが形成され、
     前記ダイオードがゲートとして機能し、前記第1の半導体領域と前記第3の半導体領域のいずれか一方がソース、他方がドレインとしてそれぞれ機能し、かつ、前記第2の半導体領域に形成されたチャネルを流れるとともに前記ダイオードに蓄積された信号電荷量に応じて変化する電流を信号取り出し手段によって取り出し可能とされた接合トランジスタが形成され、
     前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第4の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタによって、前記ゲート導体層に電圧が印加されることで、前記ダイオードに蓄積された信号電荷を前記第1の半導体領域に除去する信号電荷除去手段が形成されている、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 2,
    The columnar semiconductor is
    A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
    A diode that accumulates signal charges generated by irradiation of electromagnetic energy waves from the second semiconductor region and the fourth semiconductor region is formed,
    The diode functions as a gate, one of the first semiconductor region and the third semiconductor region functions as a source, the other functions as a drain, and a channel formed in the second semiconductor region. A junction transistor is formed that is capable of taking out a current that flows and changes in accordance with the amount of signal charge accumulated in the diode by a signal taking-out means,
    The gate conductor layer functions as a gate, and a voltage is applied to the gate conductor layer by a MOS transistor in which one of the first semiconductor region and the fourth semiconductor region functions as a source and the other functions as a drain. Thus, a signal charge removing means for removing signal charges accumulated in the diode in the first semiconductor region is formed.
  12.  請求項3に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記柱状半導体は、
     前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型又は固有半導体からなる第2の半導体領域を備え、
     前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第5の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタが形成されている、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 3,
    The columnar semiconductor is
    A second semiconductor region formed on the first semiconductor region and having a conductivity type opposite to that of the first semiconductor region or an intrinsic semiconductor;
    The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain. Semiconductor device.
  13.  請求項4に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記柱状半導体は、
     前記第1の半導体領域と第6の半導体領域との間に、前記第1の半導体領域と反対導電型又は固有半導体からなる第2の半導体領域を備え、
     前記第2の半導体領域と、前記第6の半導体領域と、からダイオードが形成されている、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 4,
    The columnar semiconductor is
    Between the first semiconductor region and the sixth semiconductor region, a second semiconductor region made of a conductive type or a specific semiconductor opposite to the first semiconductor region is provided,
    2. A semiconductor device, wherein a diode is formed from the second semiconductor region and the sixth semiconductor region.
  14.  請求項1又は3に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記第1の半導体層上に複数の前記柱状半導体が形成されており、
     前記複数の柱状半導体は、前記第1の半導体領域にアクセプタ不純物がドープされている複数の第1の柱状半導体と、前記第1の半導体領域にドナー不純物がドープされている複数の第2の柱状半導体とからなる、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 1 or 3,
    A plurality of the columnar semiconductors are formed on the first semiconductor layer;
    The plurality of columnar semiconductors include a plurality of first columnar semiconductors in which the first semiconductor region is doped with an acceptor impurity, and a plurality of second columnar semiconductors in which the first semiconductor region is doped with a donor impurity. A semiconductor device comprising a semiconductor.
  15.  請求項1乃至3のいずれか1項に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記第1の半導体層上に複数の前記柱状半導体が形成されており、
     前記複数の柱状半導体における、複数の前記第1の半導体領域、及び、複数の前記導電層の内の両方、又は、一方が互いに接続されている、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 1,
    A plurality of the columnar semiconductors are formed on the first semiconductor layer;
    In the plurality of columnar semiconductors, both or one of the plurality of first semiconductor regions and the plurality of conductive layers are connected to each other.
  16.  請求項3に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記第1の半導体層上に複数の前記柱状半導体が形成されており、
     前記各柱状半導体は、
     前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型の半導体又は固有半導体からなる第2の半導体領域と、
     前記第2の半導体領域上に形成された第5の半導体領域と、
     前記第2の半導体領域の外周部に形成された第3の絶縁層と、
     前記第3の絶縁層の外周部に形成されたゲート導体層と、を備え、
     前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第5の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタが形成され、
     前記第1の半導体層は、前記複数の柱状半導体に亘って連続して繋がるように形成されているとともに、前記繋がるように形成された前記第1の半導体層は、絶縁層に形成されたコンタクトホールを介して、外部回路に接続するための配線層に接続されている、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 3,
    A plurality of the columnar semiconductors are formed on the first semiconductor layer;
    Each of the columnar semiconductors is
    A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
    A fifth semiconductor region formed on the second semiconductor region;
    A third insulating layer formed on the outer periphery of the second semiconductor region;
    A gate conductor layer formed on the outer periphery of the third insulating layer,
    The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain.
    The first semiconductor layer is formed so as to be continuously connected over the plurality of columnar semiconductors, and the first semiconductor layer formed so as to be connected is a contact formed on an insulating layer. A semiconductor device which is connected to a wiring layer for connecting to an external circuit through a hole.
  17.  請求項3に記載の半導体装置の製造方法によって製造される半導体装置であって、
     前記第1の半導体層上に複数の前記柱状半導体が形成されており、
     前記各柱状半導体は、
     前記第1の半導体領域上に形成された当該第1の半導体領域と反対導電型の半導体又は固有半導体からなる第2の半導体領域と、
     前記第2の半導体領域上に形成された第5の半導体領域と、
     前記第2の半導体領域の外周部に形成された第3の絶縁層と、
     前記第3の絶縁層の外周部に形成されたゲート導体層と、を備え、
     前記ゲート導体層がゲートとして機能するとともに、前記第1の半導体領域及び前記第5の半導体領域の一方がソースとして機能し、他方がドレインとして機能するMOSトランジスタが形成され、
     前記第1の半導体層は、前記複数の柱状半導体に亘って連続して繋がるように形成されているとともに、前記第1の半導体層は、絶縁層に形成されたコンタクトホールを介して、所定のトランジスタのゲートに接続するための配線層に接続されている、ことを特徴とする半導体装置。
    A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 3,
    A plurality of the columnar semiconductors are formed on the first semiconductor layer;
    Each of the columnar semiconductors is
    A second semiconductor region made of a semiconductor having a conductivity type opposite to that of the first semiconductor region formed on the first semiconductor region or an intrinsic semiconductor;
    A fifth semiconductor region formed on the second semiconductor region;
    A third insulating layer formed on the outer periphery of the second semiconductor region;
    A gate conductor layer formed on the outer periphery of the third insulating layer,
    The gate conductor layer functions as a gate, and a MOS transistor is formed in which one of the first semiconductor region and the fifth semiconductor region functions as a source and the other functions as a drain.
    The first semiconductor layer is formed so as to be continuously connected over the plurality of columnar semiconductors, and the first semiconductor layer is connected to a predetermined hole via a contact hole formed in the insulating layer. A semiconductor device, wherein the semiconductor device is connected to a wiring layer for connecting to a gate of a transistor.
PCT/JP2011/055408 2011-03-08 2011-03-08 Production method for semiconductor device and semiconductor device WO2012120653A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/055408 WO2012120653A1 (en) 2011-03-08 2011-03-08 Production method for semiconductor device and semiconductor device
PCT/JP2012/052777 WO2012120951A1 (en) 2011-03-08 2012-02-07 Production method for semiconductor device and semiconductor device
JP2012521405A JP5114608B2 (en) 2011-03-08 2012-02-07 Semiconductor device manufacturing method and semiconductor device
CN2012800004124A CN102792452A (en) 2011-03-08 2012-02-07 Production method for semiconductor device and semiconductor device
KR1020127015784A KR101350577B1 (en) 2011-03-08 2012-02-07 Method for producing semiconductor device and semicondurctor device
TW101107287A TW201242003A (en) 2011-03-08 2012-03-05 Method for producing semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055408 WO2012120653A1 (en) 2011-03-08 2011-03-08 Production method for semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2012120653A1 true WO2012120653A1 (en) 2012-09-13

Family

ID=46797656

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/055408 WO2012120653A1 (en) 2011-03-08 2011-03-08 Production method for semiconductor device and semiconductor device
PCT/JP2012/052777 WO2012120951A1 (en) 2011-03-08 2012-02-07 Production method for semiconductor device and semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052777 WO2012120951A1 (en) 2011-03-08 2012-02-07 Production method for semiconductor device and semiconductor device

Country Status (4)

Country Link
KR (1) KR101350577B1 (en)
CN (1) CN102792452A (en)
TW (1) TW201242003A (en)
WO (2) WO2012120653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709360A1 (en) * 2019-03-13 2020-09-16 Koninklijke Philips N.V. Photodetector for imaging applications

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184612A (en) * 2015-03-25 2016-10-20 富士通株式会社 Method for mounting semiconductor device
US10622402B2 (en) 2015-03-31 2020-04-14 Hamamatsu Photonics K.K. Semiconductor device
JP6578930B2 (en) * 2015-12-18 2019-09-25 セイコーエプソン株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectric conversion device
TWI694569B (en) * 2016-04-13 2020-05-21 日商濱松赫德尼古斯股份有限公司 Semiconductor device
CN107819036B (en) * 2017-10-31 2019-11-22 沈阳工业大学 Source and drain symmetrically interchangeable double bracket shape grid-control tunneling transistor and its manufacturing method
CN107768430B (en) * 2017-10-31 2019-10-15 沈阳工业大学 Source and drain symmetrically interchangeable bidirectional tunneling field effect transistor and its manufacturing method
CN107808905B (en) * 2017-10-31 2019-10-15 沈阳工业大学 Bilateral folds the double tunnelling type bidirectionally conductive transistors of grid-control source and drain and its manufacturing method
WO2020070767A1 (en) * 2018-10-01 2020-04-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Production method for columnar semiconductor device
WO2020093228A1 (en) * 2018-11-06 2020-05-14 Shenzhen Xpectvision Technology Co., Ltd. Packaging methods of semiconductor devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026366A (en) * 2003-06-30 2005-01-27 Toshiba Corp Semiconductor memory device and semiconductor integrated circuit
WO2009034623A1 (en) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. Solid-state image sensor
JP2009164589A (en) * 2007-12-12 2009-07-23 Elpida Memory Inc Semiconductor device and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127957A (en) * 2002-09-30 2004-04-22 Fujitsu Ltd Process for fabricating semiconductor device, and semiconductor device
KR20090111481A (en) * 2008-04-22 2009-10-27 주식회사 하이닉스반도체 Method for manufacturing columnar poly silicon gate and method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026366A (en) * 2003-06-30 2005-01-27 Toshiba Corp Semiconductor memory device and semiconductor integrated circuit
WO2009034623A1 (en) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. Solid-state image sensor
JP2009164589A (en) * 2007-12-12 2009-07-23 Elpida Memory Inc Semiconductor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709360A1 (en) * 2019-03-13 2020-09-16 Koninklijke Philips N.V. Photodetector for imaging applications
WO2020182588A1 (en) 2019-03-13 2020-09-17 Koninklijke Philips N.V. Photodetector for imaging applications

Also Published As

Publication number Publication date
KR101350577B1 (en) 2014-01-10
WO2012120951A1 (en) 2012-09-13
CN102792452A (en) 2012-11-21
TW201242003A (en) 2012-10-16
KR20120123278A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2012120653A1 (en) Production method for semiconductor device and semiconductor device
US7355229B2 (en) Masked spacer etching for imagers
TWI326124B (en) Cmos image sensor having double gate insulator therein and method for manufacturing the same
US8669601B2 (en) Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor
US20070020795A1 (en) Solid-state imaging device and its manufacturing method
KR102418456B1 (en) Manufacturing method of semiconductor device
US8476699B2 (en) Method for producing semiconductor device and semiconductor device
US11961864B2 (en) Imaging device with improved layout of reading circuit transistors
US10068941B2 (en) Image pickup device and method for manufacturing the same
EP3646381A1 (en) Wafer bonded back illuminated imager
WO2021084959A1 (en) Imaging device and electronic device
WO2021010024A1 (en) Semiconductor device and imaging device
JP4654623B2 (en) Method for manufacturing solid-state imaging device
CN104051329A (en) Interconnection structure used for stacked device and method
US10056420B2 (en) Semiconductor device and manufacturing method thereof
US7884400B2 (en) Image device and method of fabricating the same
CN113169197A (en) Photoelectric conversion element, solid-state imaging device, and electronic apparatus
JP5114608B2 (en) Semiconductor device manufacturing method and semiconductor device
US11257857B2 (en) Image sensors including photoelectric conversion devices, trench, supporter, and isolation layer
KR20210143765A (en) imaging device
US20240021631A1 (en) Solid-state imaging device and electronic device
WO2022097427A1 (en) Imaging device, method for manufacturing imaging device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11860639

Country of ref document: EP

Kind code of ref document: A1