WO2012120604A1 - Growth regulation agent for plants, growth regulation method for plants and use of same - Google Patents

Growth regulation agent for plants, growth regulation method for plants and use of same Download PDF

Info

Publication number
WO2012120604A1
WO2012120604A1 PCT/JP2011/055135 JP2011055135W WO2012120604A1 WO 2012120604 A1 WO2012120604 A1 WO 2012120604A1 JP 2011055135 W JP2011055135 W JP 2011055135W WO 2012120604 A1 WO2012120604 A1 WO 2012120604A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant growth
plant
bacillus subtilis
gram
microorganism
Prior art date
Application number
PCT/JP2011/055135
Other languages
French (fr)
Japanese (ja)
Inventor
村田 純
Original Assignee
公益財団法人サントリー生命科学財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人サントリー生命科学財団 filed Critical 公益財団法人サントリー生命科学財団
Priority to PCT/JP2011/055135 priority Critical patent/WO2012120604A1/en
Priority to PCT/JP2012/055232 priority patent/WO2012121102A1/en
Publication of WO2012120604A1 publication Critical patent/WO2012120604A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/601,4-Diazines; Hydrogenated 1,4-diazines

Definitions

  • the present invention relates to a plant growth regulator, a plant growth control method, and use thereof.
  • Plant hormones such as auxin, cytokinin, and ethylene are known as chemical substances that control plant growth. Details of the biosynthetic pathway of these plant hormones have already been clarified, and at the same time, it has long been thought that plant hormones are exclusively biosynthesized by plants themselves. However, fungi that have been found in recent years and exhibiting the activity of directly or indirectly promoting the growth of plants, and bacteria collectively called plant growth promoting rhizobacteria (PGPR) (eg, non-patent literature) Some of them are known to control plant growth by producing plant hormones such as ethylene (see Non-Patent Document 2, for example).
  • PGPR plant growth promoting rhizobacteria
  • Patent Document 1 discloses a plant growth regulator containing 2-azahypoxanthine.
  • PGPR plant growth control activity factor derived from Bacillus subtilis (for example, GB03 strain, see Non-patent Document 3), which is a typical PGPR, only includes candidate factors. No compound necessary and sufficient for the reconstitution of the product has yet been found.
  • the present invention is highly effective for ingredients derived from natural products that are highly safe for humans and the environment, can stably exert plant growth control action, and have uniform quality and high stability. It aims at providing the plant growth control agent used as a component, the agricultural material containing this control agent, a plant growth control method, etc.
  • the inventors of the present invention have made extensive studies in view of the above-mentioned problems, and produce Gram-positive bacteria Bacillus subtilis (Bacillus subtilis) when cultured in a medium containing sugar and a carbon source other than sugar. It has been found that volatile metabolites exhibit both inhibitory and promoting activities on plant growth.
  • the growth control action of the volatile metabolite of Bacillus subtilis depends on its concentration. When the concentration of the volatile metabolite is high, the growth of the plant is suppressed. On the other hand, plant growth was promoted at low concentrations of volatile metabolites. Such a plant growth control action by the volatile metabolite of Bacillus subtilis was not observed when cultured in a medium containing only sugar using Bacillus subtilis as a carbon source.
  • the inventors of the present invention also have a gram-negative bacterium, Agrobacterium tumefacines, and Escherichia coli cultured in an organic medium in addition to Bacillus subtilis. Similarly, it has been found that it has a plant growth-controlling effect, and has come up with the idea that a volatile metabolite generated by culturing microorganisms such as Bacillus subtilis in an organic medium has a plant growth-controlling effect.
  • the present inventors further isolated components contained in volatile metabolites generated by culturing Bacillus subtilis or the like in an organic medium, and examined the growth control activity of plants for each component. It was found that 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone (acetoin), and 2-pentadecanone contained therein have plant growth control activity. So far, there has been no report on volatile components other than plant hormones such as ethylene having a plant growth control action. When the active ingredient having the plant growth control action is volatile, compared to the case where it is not volatile, for example, even if the agricultural material containing the active ingredient is not in contact with the plant, the active ingredient is uniformly distributed throughout the plant body.
  • the present invention relates to the following (1) to (15).
  • Characteristic plant growth regulator. (2) 3-methyl- produced by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar.
  • the plant growth control agent according to any one of (1) to (5), wherein the plant growth control is plant growth suppression or growth promotion.
  • the plant body, plant cultivation area or plant seed is selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone.
  • a method for controlling plant growth comprising applying at least one compound.
  • the volatile metabolite comprising at least one compound selected from the group consisting of 2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is applied as described in (8) above Plant growth control method.
  • At least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi, and fungi is included in the plant body, plant cultivation area, or plant seed, including sugar and a carbon source other than sugar.
  • a plant growth control method comprising applying a volatile metabolite generated by culturing in a medium.
  • the present invention using a substance that is safe to humans and the environment that does not cause soil degradation, environmental pollution, and the like, it is possible to stably promote plant growth in order to improve plant yield, work efficiency, etc. Can be suppressed.
  • FIG. 1 is a graph showing plant growth inhibitory activity by volatile metabolites of Bacillus subtilis.
  • FIG. 2 is a graph showing changes over time in Arabidopsis root length caused by volatile metabolites of Bacillus subtilis.
  • FIG. 3 is a diagram showing the influence of volatile metabolites of Bacillus subtilis on plant wet weight.
  • FIG. 4 is a diagram showing the analysis results of volatile metabolites of Bacillus subtilis by GC-MS.
  • FIG. 5 is a diagram showing the analysis results of volatile metabolites of Bacillus subtilis by GC-MS.
  • FIG. 1 is a graph showing plant growth inhibitory activity by volatile metabolites of Bacillus subtilis.
  • FIG. 2 is a graph showing changes over time in Arabidopsis root length caused by volatile metabolites of Bacillus subtilis.
  • FIG. 3 is a diagram showing the influence of volatile metabolites of Bacillus subtilis on plant wet weight.
  • FIG. 4 is a diagram showing the analysis results of volatile
  • FIG. 6 is a graph showing the growth inhibitory activity of Arabidopsis thaliana by 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone.
  • FIG. 7 is a diagram showing the influence of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone on the elongation of the main root of Arabidopsis thaliana.
  • FIG. 8 is a graph showing the rice growth-inhibiting activity by volatile metabolites of Bacillus subtilis.
  • FIG. 9 is a diagram showing the length of the main root of Arabidopsis thaliana when each of Bacillus subtilis (ATCC9372), Escherichia coli (DH5a) and Agrobacterium (EHA101) is cultured in an organic medium or an inorganic medium in an Arabidopsis culture system.
  • FIG. 10 is a diagram showing the growth inhibitory activity of sweet basil by a volatile metabolite of Bacillus subtilis.
  • FIG. 11 is a graph showing the growth inhibitory activity of periwinkle by a volatile metabolite of Bacillus subtilis.
  • FIG. 12 is a diagram showing rice growth-inhibiting activity by volatile metabolites of Bacillus subtilis and Agrobacterium.
  • the plant growth in the present invention is not particularly limited as long as it is a phenomenon accompanied by normal differentiation or proliferation of plant cells, and includes not only elongation and expansion of organs constituting the plant body but also germination from seeds. .
  • the plant growth regulator of the first aspect of the present invention (hereinafter also referred to as the plant growth regulator of the present invention 1) is 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2. -Containing at least one compound selected from the group consisting of butanone and 2-pentadecanone as an active ingredient. Among these, it is preferable to contain one or two of 3-methyl-2-pentanone and 2,5-dimethylpyrazine as essential. More preferably, it contains at least 3-methyl-2-pentanone.
  • a plant growth regulator containing 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is one of the preferred embodiments of the present invention 1.
  • suppression of growth includes suppression of germination.
  • Growth promotion includes germination promotion, biomass promotion, and harvest improvement.
  • the 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone, which are the active ingredients of the growth regulator of the present invention 1, are all commercially available. Can be used. Further, for example, when a microorganism such as Gram-positive bacteria, Gram-negative bacteria, fungi or mold is cultured in a medium containing sugar and a carbon source other than sugar under conditions according to the type of the microorganism, usually 3- A volatile metabolite of a microorganism containing at least one compound selected from the group consisting of methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is added to the culture system.
  • a microorganism such as Gram-positive bacteria, Gram-negative bacteria, fungi or mold is cultured in a medium containing sugar and a carbon source other than sugar under conditions according to the type of the microorganism, usually 3- A volatile
  • such volatile metabolites of microorganisms can be collected by a known technique and used as an active ingredient in the present invention 1.
  • the said compound can be obtained by isolate
  • the active ingredient is generated by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar.
  • a volatile metabolite containing at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is preferable.
  • the fact that the volatile metabolite contains the compound can be confirmed by collecting the volatile metabolite by a known method and analyzing the collected component by GC-MS or the like.
  • the microorganisms that produce the volatile metabolites are preferably soil microorganisms, among which bacteria such as Gram-positive bacteria, Gram-negative bacteria, and filamentous fungi are preferred.
  • bacteria such as Gram-positive bacteria, Gram-negative bacteria, and filamentous fungi are preferred.
  • Gram-positive bacteria Bacillus subtilis (for example, ATCC9372 strain, A001 strain, GB03 strain, etc.), Firmicutes typified by Bifidobacterium (Lactobacillus bifidus), etc .; typified by Corynebacterium Examples include Actinobacteria.
  • Examples of gram-negative bacteria include Agrobacterium (for example, EHA101 strain), E. coli (for example, DH5 ⁇ strain), and the like.
  • filamentous fungi include mycorrhizal fungi and the like.
  • the microorganism that generates a volatile metabolite is preferably Bacillus subtilis, Agrobacterium, or mycorrhizal fungus.
  • Bacillus subtilis which has been proven to be purely cultured and has been traditionally used in foods such as natto, is more preferable because it has a lower influence on the human body.
  • the microorganism may be a wild type, a naturally occurring mutant, or an artificial mutant by genetic manipulation.
  • the microorganism used for obtaining the volatile metabolite may be one kind or two or more kinds.
  • a medium containing a sugar and a carbon source other than sugar used for culturing a microorganism may be appropriately selected according to the type of microorganism.
  • the medium may be a solid medium or a liquid medium.
  • the sugar may be any sugar that is normally used for culturing microorganisms. Examples thereof include glucose, fructose, sucrose, mannose, maltose, mannitol, xylose, galactose, and the like. it can.
  • the concentration of sugar in the medium may be appropriately set according to the type of microorganism, but is usually about 0.1 to 30% by mass, preferably about 0.5 to 20% by mass, It is more preferably about 1 to 20% by mass, further preferably about 1 to 10% by mass, and particularly preferably about 2 to 8% by mass.
  • carbon sources other than sugar examples include amino acid, protein hydrolyzate, peptone, polypeptone, yeast extract, dry yeast, corn steep liquor, defatted soybean hydrochloric acid hydrolyzate and the like, and one or more are used. can do.
  • concentration of the carbon source other than sugar in the medium may be appropriately set according to the type of microorganism, for example, usually about 0.1 to 30% by mass and about 0.5 to 20% by mass. It is preferably about 1 to 20% by mass, more preferably about 1 to 10% by mass, and particularly preferably about 2 to 8% by mass.
  • the culture conditions using a medium containing sugar and a carbon source other than sugar may be those normally used according to the type of microorganism.
  • the culture temperature is usually about 5 to 50 ° C., preferably about 27 to 37 ° C. for Bacillus subtilis and the like. In the case of Escherichia coli, Agrobacterium, etc., it is usually about 16 to 37 ° C.
  • the culture temperature of E. coli is preferably about 20 to 37 ° C, more preferably about 25 to 37 ° C, still more preferably about 30 to 37 ° C, and most preferably about 37 ° C.
  • the culture temperature of Agrobacterium is preferably about 20 to 35 ° C, more preferably about 25 to 35 ° C, still more preferably about 28 to 32 ° C, and most preferably about 30 ° C. What is necessary is just to let pH of a culture medium be pH normally used according to microorganisms. For example, when a liquid medium is used for culture, it is preferable that the medium is appropriately stirred or shaken during the culture.
  • the culture time is not particularly limited, but usually, the amount of volatile metabolites generated increases after the logarithmic growth phase after the start of culture.
  • the light conditions at the time of microorganism culture are not particularly limited, and may be dark conditions or normal growth conditions for plants.
  • the light intensity is preferably about 150 to 100,000 lux, more preferably about 300 to 30000 lux, further preferably about 400 to 10,000 lux, and particularly preferably about 500 to 10,000 lux.
  • the light condition may be a dark condition or a bright condition for 24 hours, or may be a day length condition in which a plant usually grows. For example, it may be about 4 hours light condition 20 hours dark condition, or about 8 hours light condition 16 hours dark condition. Furthermore, about 12 hours light condition 12 hours dark condition, about 16 hours light condition 8 hours dark condition, about 20 hours light condition 4 hours dark condition, etc. may be sufficient.
  • the growth regulator of the present invention 1 comprises 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2, which is generated by culturing the microorganism in a medium containing sugar and a carbon source other than sugar. It preferably contains a volatile metabolite containing at least one compound selected from the group consisting of butanone and 2-pentadecanone. Such a volatile metabolite is more preferably a volatile metabolite containing at least one of 3-methyl-2-pentanone and 2,5-dimethylpyrazine, more preferably at least 3-methyl- It is a volatile metabolite containing 2-pentanone.
  • a volatile metabolite containing 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is used.
  • Such a volatile metabolite is generated, for example, by culturing the aforementioned Bacillus subtilis, Agrobacterium, Escherichia coli, filamentous fungus or the like in a medium containing sugar and a carbon source other than sugar.
  • the collection of the volatile metabolites can be performed by a known method, for example, a known volatile metabolite collector, a cold trap method using liquid nitrogen, or the like.
  • the collected volatile metabolite can be used as an active ingredient of the growth regulator of the first invention.
  • a processed product such as a diluted product or a diluted product obtained by diluting or concentrating the collected volatile metabolite can be used as an active ingredient.
  • the volatile metabolite or a processed product thereof may be subjected to a treatment such as concentration to dryness, spray drying, freeze drying, etc. and used as a dried product. Processing such as concentration can be performed by a known method.
  • the collected volatile metabolites are selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone by a known purification method. At least one compound can be isolated and purified. The isolated and purified compound can be used as the active ingredient of the present invention 1.
  • the growth control agent of the present invention 1 is applied to a plant so that a volatile active ingredient acts on the plant to suppress or promote the growth of the plant. For this reason, it is used suitably for plant growth suppression or growth promotion. Preferably, it is used for plant growth inhibition.
  • Plant growth inhibitor containing as an active ingredient at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone Is one of the preferred embodiments of Invention 1.
  • the growth control agent of the first aspect of the present invention at least one microorganism selected from the group consisting of the gram-positive bacteria, gram-negative bacteria, fungi, and molds, or a processed product of the microorganisms can also be used.
  • the microorganism is preferably a living bacterium.
  • viable microorganisms as the growth control agent of the first aspect of the present invention is preferable because the effect lasts for a long time by one application.
  • the microorganism produces the volatile metabolite containing the active ingredient in the presence of the sugar and the carbon source other than sugar as described above. Therefore, when applied to a plant as described later, the effect of the present invention is exhibited.
  • the plant growth regulator of the present invention 1 contains the microorganism, it is preferable to culture the microorganism in advance in the presence of sugar and a carbon source other than sugar.
  • a microbial solution obtained by culturing the microorganism in the presence of the aforementioned sugar and a carbon source other than sugar a culture solution, etc.
  • a cell fluid (culture solution) that can be suitably used as a control agent
  • it is preferably about 10 3 to 10 10 (viable cell count) / mL, more preferably 10 5 to 10 9.
  • Plant growth control by sterilizing (viable cell count) / mL of the cell fluid (culture solution), more preferably about 10 6 to 10 8 (viable cell count) / mL, if desired It can be used as an agent.
  • a plant growth regulator bacterial fluid
  • processed microorganisms include dry cells obtained by drying cells cultured in the presence of sugar and a carbon source other than sugar.
  • an extract of a microbial cell cultured in the presence of sugar and a carbon source other than saccharide, a disrupted solution by ultrasonic waves, a solid liquid such as filtration or centrifugation of the culture supernatant, culture solution or culture supernatant of the microbial cell A solid residue or the like separated by the separation means is also exemplified as the processed product.
  • a treated liquid obtained by removing a cell wall of a microorganism cultured in the presence of sugar and a carbon source other than sugar by an enzyme or mechanical means is also exemplified.
  • the treated product in the present invention may be obtained by further adding, for example, various chromatographic separations to the bacterial cell extract, ultrasonic disruption solution, the cell culture solution or culture supernatant. include.
  • the application amount of the plant growth control agent of the present invention 1 is, for example, an application form (for example, application, spraying, foliar application, soil application, etc.) to be described later, and the purpose of application (for example, growth inhibiting action, growth promoting action, etc.) What is necessary is just to set suitably by.
  • an application form for example, application, spraying, foliar application, soil application, etc.
  • the purpose of application for example, growth inhibiting action, growth promoting action, etc.
  • the application amount of the active ingredient to the plant may be appropriately set depending on the kind and part of the plant to be described later. Further, for example, the plant can be killed by continuously applying the plant growth regulator of the first aspect of the present invention.
  • the concentration of the active ingredient is, for example, preferably about 1 to 10,000 ⁇ M, more preferably about 2 to 1000 ⁇ M.
  • the active ingredient is also preferably about 1 to 10000 ⁇ mol / kg, more preferably about 2 to 1000 ⁇ m. It is mixed with soil so as to be mol / kg. In addition to the case where the solid is mixed with the soil, it can be applied in such an amount when it is sprayed on the foliage or the aqueous solution is irrigated on the soil.
  • the concentration of the compound contained in the volatile metabolite is set within the above range. preferable.
  • the application rate is within the above range, the growth of plant roots, bulbs, cultured roots and the like can be effectively suppressed by applying the plant growth regulator of the first aspect of the present invention.
  • the usage amount of the plant growth regulator containing the microorganism is also described later. It can be set as appropriate according to the plant type, site, application method, application purpose, and the like.
  • the application rate is preferably about 10 3 to 10 per one cell in terms of the number of living bacteria when used in a closed system mixed with room temperature fumes.
  • About 10 to 100 times (preferably about 20 times) of about 50 to 500 mL (preferably about 300 mL) of a cell solution (culture solution) of about 10 (viable bacteria) / mL is diluted, more preferably about 10 5 to It is preferable to dilute about 50 to 500 mL (preferably about 300 mL) of about 10 9 (viable cell count) / mL of the bacterial cell solution (culture solution) and to spray about 10 to 100 times (preferably about 20 times).
  • a cell solution (culture solution) of about 10 3 to 10 10 (viable cell count) / mL is diluted about 10 to 500 times (preferably about 100 times), and more preferably about
  • a bacterial cell solution (culture solution) of about 10 5 to 10 9 (viable cells) / mL is diluted about 10 to 500 times (preferably about 100 times), and 1 to 10 L per one can be used.
  • solid matter such as dried microbial cells is mixed with soil, it can be appropriately diluted as well.
  • the plant growth regulator of the second aspect of the present invention (hereinafter also referred to as the plant growth regulator of the present invention 2) is at least one selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi and molds. It contains volatile metabolites generated by culturing seed microorganisms in a medium containing sugar and a carbon source other than sugar.
  • the microorganism that produces the volatile metabolite is preferably a soil microorganism, and examples thereof include gram-positive bacteria and gram-negative bacteria.
  • Gram-positive bacteria Bacillus subtilis (for example, ATCC9372 strain, A001 strain, GB03 strain), Firmicutes typified by Bifidobacterium (Lactobacillus bifidus), etc .; radiation represented by Corynebacterium Examples include Actinobacteria.
  • Examples of gram-negative bacteria include Agrobacterium and E. coli.
  • Bacillus subtilis which has been proven to be purely cultured and has been traditionally used in foods such as natto, is more preferable because it has a lower influence on the human body.
  • the microorganism may be a wild type, a naturally occurring mutant, or an artificial mutant by genetic manipulation.
  • the microorganism used for obtaining the volatile metabolite may be one kind or two or more kinds.
  • a plant growth regulator containing a volatile metabolite generated by culturing Bacillus subtilis in a medium containing sugar and a carbon source other than sugar is a preferred embodiment of the plant growth regulator of the present invention 2.
  • the medium used for culturing microorganisms and a medium containing a carbon source other than sugar, the culture conditions, and the like are the same as the medium, the culture conditions, and the like in the plant growth regulator of the first invention described above.
  • the method for collecting the generated volatile metabolite is the same as that in the plant growth regulator of the first aspect of the present invention.
  • the collected volatile metabolite can be used as an active ingredient of the growth regulator of the present invention 2.
  • a treated product such as a diluted product or a concentrated product obtained by subjecting the collected volatile metabolite to a treatment such as dilution or concentration can be used as an active ingredient.
  • the volatile metabolite or a processed product thereof may be subjected to a treatment such as concentration to dryness, spray drying, freeze drying, etc. and used as a dried product.
  • the growth control agent of the present invention at least one kind of microorganism selected from the group consisting of the gram-positive bacteria, gram-negative bacteria, fungi and molds, or a processed product thereof can also be used.
  • the microorganism is preferably a living bacterium.
  • viable microorganisms as the growth control agent of the second aspect of the present invention is preferable because the effect lasts for a long time by one application. Since the microorganism produces a volatile metabolite containing the active ingredient in the presence of sugar and a carbon source other than sugar, the effect of the present invention is exhibited when applied to a plant as described later.
  • the growth control agent of the present invention 2 contains the microorganism, it is preferable to culture the microorganism in advance in the presence of sugar and a carbon source other than sugar.
  • the processed product of the microorganism include the same processed product of the microorganism in the above-described growth control agent of the first invention.
  • a culture solution obtained by culturing the microorganism in the presence of the aforementioned sugar and a carbon source other than sugar is suitable as a plant growth regulator.
  • a plant growth regulator for example, a culture solution obtained by culturing the microorganism in the presence of the aforementioned sugar and a carbon source other than sugar is suitable as a plant growth regulator.
  • a plant growth regulator bacterial cell solution obtained by culturing the microorganism in the presence of the aforementioned sugar and a carbon source other than sugar is suitable as a plant growth regulator.
  • a plant growth regulator bacterial fluid
  • Such plant growth regulators can be used after appropriately diluted.
  • the use of viable microorganisms as the growth control agent of the second aspect of the present invention is preferable because the effect lasts for a long time by one application. Moreover, it is preferable to sterilize and use the microorganism because the application rate can be easily controlled.
  • a volatile active ingredient acts on the plant to suppress or promote the growth of the plant. For this reason, it is used suitably for plant growth suppression or growth promotion. Preferably, it is used for promoting the growth of plants.
  • the application amount of the active ingredient to the plant may be appropriately set depending on the type of plant, site, application method, application purpose, etc. described later. There is no particular limitation.
  • the amount used is preferably one in terms of the number of viable bacteria when used in a closed system mixed with room temperature fumes.
  • About 10 3 to 10 10 (viable cell count) / mL of about 50 to 500 mL (preferably about 300 mL) of a bacterial cell solution (culture solution) is diluted about 10 to 100 times (preferably about 20 times)
  • about 50 to 500 mL (preferably about 300 mL) of about 10 5 to 10 9 (viable cell count) / mL or about 50 to 500 mL (preferably about 300 mL) is diluted about 10 to 100 times (preferably about 20 times)
  • Spraying is preferred.
  • the degree (preferably about 500 times) is preferably diluted about 500 times.
  • a cell solution (culture solution) of about 10 3 to 10 10 (viable cells) / mL is diluted about 10 to 500 times (preferably about 100 times), and more preferably about 10 times.
  • a bacterial cell solution (culture solution) of about 5 to 10 9 (viable cell count) / mL is diluted about 10 to 500 times (preferably about 100 times), and 1 to 10 L per one can be used.
  • solid matter such as dried microbial cells is mixed with soil, it can be appropriately diluted as well.
  • the plant to which the plant growth regulator of the present inventions 1 and 2 (hereinafter referred to as the plant growth regulator of the present invention) is applied may be a gymnosperm or an angiosperm.
  • angiosperms either monocotyledonous plants or dicotyledonous plants may be used, and there is no particular limitation.
  • grains such as rice, barley, corn, and wheat; vegetables such as tomato, lettuce, basil, radish, Japanese mustard spinach, spinach, cabbage, turnip, pumpkin, bell pepper; green manure plants such as alfalfa, clover, and lotus; cosmos, torenia , Chrysanthemum, gerbera, pansies, orchids, peonies, tulips and other florets; beans such as azuki bean, green beans, soybeans, peanuts, broad bean, peas; lawn grasses such as pebbles, bentgrass, pears; Etc.
  • vegetables such as tomato, lettuce, basil, radish, Japanese mustard spinach, spinach, cabbage, turnip, pumpkin, bell pepper
  • green manure plants such as alfalfa, clover, and lotus
  • cosmos, torenia Chrysanthemum, gerbera, pansies, orchids, peonies, tulips and other florets
  • beans such as azuki bean, green beans,
  • the plant in the present invention may be, for example, the whole plant body or a part of a plant body such as a plant tissue or organ, and also includes plant cells such as protoplasts and callus.
  • plant tissues or organs include seeds, germinated seeds, roots, stems, leaves, petals, fruits, bulbs and the like.
  • Plant cells include suspension cultures, embryos, division regions, callus tissues, shoots, gametes, spores, pollen, and microspores.
  • the plant growth regulator of the present invention can contain known pharmaceutical additives.
  • Known additives for pharmaceutical preparations include excipients, emulsifiers, wetting agents, disintegrants and the like.
  • the plant growth regulator of the present invention can be used by mixing with known agricultural chemicals, herbicides, nutrients and the like.
  • the form of the plant growth regulator of the present invention may be any of liquid, oil, emulsion, aqueous solvent, paste, wettable powder, flowable, granule, fine granule, powder, tablet, aerosol, film, net, sheet, etc. There is no particular limitation.
  • the plant growth regulator of the present invention is suitably used for agricultural materials and the like.
  • Agricultural materials containing the plant growth regulator of the present invention are also included in the present invention.
  • Agricultural materials include solid fertilizers, liquid fertilizers, seed coats, haze agents, herbicidal sheets, greenhouse exteriors, chills, shading films, and curing sheets.
  • Agricultural materials may contain known additives in addition to the plant growth regulator of the present invention.
  • the method for incorporating the plant growth regulator of the present invention into an agricultural material is not particularly limited.
  • a plant growth control agent is contained in a herbicidal sheet, an outer wall of a greenhouse, a cold chill, a light-shielding film, a curing sheet, etc. by kneading or applying the plant growth control agent of the present invention to the surface by a known method. Can be made.
  • the plant growth can be controlled by applying the plant growth regulator of the present invention to a plant body, a plant cultivation site or a plant seed.
  • the growth regulator of the present invention 1 is suitably used for plant growth inhibition.
  • the growth regulator of the present invention 2 is suitably used for promoting plant growth.
  • it can be applied to the plant cultivation space by spraying, haze, etc. Is also included.
  • At least one selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone for the plant body, plant cultivation site or plant seed A plant growth control method to which the above compound is applied is also one aspect of the present invention. Such a plant growth control method is also referred to as the plant growth control method of the third aspect of the present invention.
  • the above-described plant growth regulator of the present invention 1 may be applied to a plant body, a plant cultivation site or a plant seed.
  • a plant growth control method applying a volatile metabolite generated by the above is also encompassed by the present invention.
  • Such a plant growth control method is also referred to as the plant growth control method of the fourth invention.
  • the above-described plant growth regulator of the present invention 2 may be applied to a plant body, a plant cultivation site or a plant seed.
  • the method for applying the plant growth regulator of the present invention to plants is not particularly limited as long as the plant growth regulator can be applied substantially. For example, you may apply so that the plant growth regulator of this invention may contact a plant directly.
  • the growth control agent can be applied to a plant by allowing the growth control agent to coexist in a plant cultivation system in a non-contact manner with the plant. .
  • treatment to plant bodies such as foliage spraying
  • treatment to plant cultivation areas such as soil treatment
  • treatment to seeds such as seed soaking
  • application to hydroponic plants by mixing in hydroponic liquid Etc.
  • the active ingredient can be applied to the plant by co-culturing the microorganism and the plant in a non-contact manner or in contact with each other.
  • the active ingredients of various concentrations for example, about 1 ⁇ M to 0.5 M
  • the optimal concentration can be determined.
  • the supply of the active ingredient to the plant can be appropriately determined with reference to the above concentration range even when the application method is changed.
  • the plant growth regulator of the present invention is applied to plants in a closed or semi-closed system. More preferably, it is applied to the plants in a closed system (eg, greenhouse, greenhouse, plant factory, space station, etc.).
  • the application time of the plant growth regulator may be appropriately selected according to the purpose, and may be any of, for example, before sowing, sowing, seedling, growth period, flowering period, maturation period, etc., and is particularly limited. It is not something.
  • a bacterial cell solution (culture solution) of about 10 3 to 10 10 (viable bacteria) / mL is diluted to about 10 to 1000 times (preferably about 100 times), and more Preferably, about 10 5 to 10 9 (viable cell count) / mL of a cell solution (culture solution) can be used even after being diluted about 10 to 1000 times (preferably about 100 times).
  • the microorganism is cultured in a medium containing sugar and a carbon source other than sugar.
  • the culture solution can be used as it is without being sterilized or after being sterilized by a sterilizing filter or the like. Or the extract of the said microorganisms or the collected volatile substance can be used.
  • the timing of irrigation may be appropriately determined depending on the plant. For example, in leaf vegetables and the like, the soil volume is 700 to 800 g in a 15 cm pot at about 20 ° C. ⁇ 5 ° C. through growth, and about 50 mL of a 500 to 1000 times solution may be injected into one pot.
  • (B) Leaf surface spraying method Apply about 50 mL of 50-1000 times solution to the main leaf once using the solution of (a). Although depending on the plant, either of the above methods (a) and (b) may be usually performed once, but may be appropriately processed a plurality of times.
  • a bactericidal agent harmful to the living microorganism such as an organic phosphorus type or a heavy metal type It is preferable not to use such disinfectants at the same time.
  • the microbial extract or the collected volatile substance since the expected physiological activity does not depend on the living bacteria, it can be used at the same time as the fungicide, for example.
  • plant growth regulator and the plant growth control method of the present invention When the plant growth regulator and the plant growth control method of the present invention are used, plant growth can be promoted or suppressed without causing soil degradation, environmental pollution, and the like. Further, for example, by using a strain that is the same as or similar to a soil microorganism naturally present in normal farmland, the plant growth control agent and the plant growth control method of the present invention are safe and secure for consumers and producers. Technology can be provided. For example, it is suitably used as a herbicide or the like by utilizing the action of suppressing plant growth.
  • the plant growth regulator of the present invention can be used in combination with a known herbicide. Moreover, for example, when the growth of cultivated plants is promoted, the cultivation efficiency can be increased.
  • the morbidity rate can be reduced by shortening the seedling period that is generally susceptible to diseases. It is also preferable to mix the plant growth regulator of the present invention with known agricultural chemicals or nutrients and use them in crops.
  • the present invention is suitably applied to, for example, a plant factory.
  • the present invention controls plant growth of at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone. The use for doing is also included.
  • the present invention relates to a volatile metabolite generated by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar.
  • Preferred embodiments of the present invention are the same as the plant growth regulator and the plant growth control method described above.
  • % means “% by mass” unless otherwise specified.
  • Example 1 Seed Sterilization Seeds of Arabidopsis thaliana (Ecotype, Colombia) were purchased from Implanta Innovations. Rice (Oryza sativa, variety: Nihonbare) seeds were distributed by Professor Shige Prefectural University Professor Hiroshi Hasegawa. The seeds of this rice (variety name: Nipponbare) were used in Example 2, including Catharanthus. Roseus, variety name: Little Delicata, and sweet basil (Ocimum basilicum) are commercially available, and are generally available after soaking the seeds in a 1% sodium hypochlorite solution for 15 minutes before using distilled water. The rice seed was sterilized after removing the seed coat.
  • Rice Oryza sativa, variety: Nihonbare seeds were distributed by Professor Shige Prefectural University Professor Hiroshi Hasegawa. The seeds of this rice (variety name: Nipponbare) were used in Example 2, including Catharanthus. Roseus, variety name: Little Delicata, and sweet basil (Ocimum
  • Arabidopsis MS (Murashige-Skoog) Medium: 1 liter NH 4 NO 3 1,650 mg, ZnSO 4 7H 2 0 8.6 mg, KNO 3 1,900 mg, KI 0.83 mg, CaCl 2 2H 2 O 440 mg, Na 2 MoO 4 2H 2 O 0.25 mg, MgSO 4 7H 2 O 370 mg, CuSO 4 5H 2 O 0.025 mg, KH 2 PO 4 170 mg, CoCl 2 6H 2 O 0.025 mg, H 3 BO 3 6.2 mg, MnSO 4 4H 2 O 22.3 mg, FeCl 3 16.2 mg, sucrose 30 g, Phytoblend (trade name, manufactured by Caisson Laboratories) 7 g
  • Bacterial culture Bacillus subtilis standard strains Bacillus subtilis, A001 and ATCC9372
  • other Bacillus subtilis strains Bacillus subtilis strains
  • Agrobacterium EHA101
  • Escherichia coli Escherichia coli
  • TS (Tryptic Soy) Agar medium (organic medium): Tryptic Soy Agar (trade name, manufactured by Sigma, lot number 22091-500G)
  • TS liquid medium (organic medium): Bacto Tryptic Soy Broth (trade name, manufactured by Becton Dickinson, lot number 211824)
  • Synthetic agar medium (inorganic medium): per liter KH 2 PO 4 2.72 g, Na 2 HPO 4 10.75 g, MgSO 4 7H 2 O 0.10 g, NH 4 Cl 2.00 g, CaCl 2 0.01 g, vitamin B1 0.01 g, FeSO 4 7H 2 O 0.30 mg, MnSO 4 H 2 O 0.01 mg, biotin 3.00 mg, sucrose 15.5 g, Phytoblend (trade name, manufactured by Caisson Laboratories) 7 g
  • the cryopreservation stock refers to a saturated culture solution that is mixed at the above saturated culture solution with an equal amount of glycerol and stored at ⁇ 80 ° C.
  • Assay Sprouts that had been previously cultivated in the absence of bacterial co-culture were used for the assay.
  • preculture was performed for 5 days, and in the case of rice, 3 days.
  • a plant medium for assay was prepared in which a 35 mm dish was placed at one corner of the plant medium (see ad in FIG. 1).
  • a 35 mm dish was filled with a bacterial TS agar medium (organic medium) or inorganic medium, and this was placed in one corner of the plant medium to prepare a plant medium for assay (FIG. 1).
  • a to d The medium in the 35 mm dish and the plant medium are separated by the 35 mm dish and are not in contact with each other.
  • the gas phase is continuous between the 35 mm dish and the plant medium.
  • the 35 mm dish is filled with a bacterial TS agar medium (organic medium)
  • the 35 mm dish is filled with an inorganic medium.
  • Bacillus subtilis cultivated overnight (turbidity is usually measured at a wavelength of 600 nm and around 0.8) is inoculated into the medium in a 35 mm dish along with the seedling transplant, and the plant medium plate is sealed with breathable surgical tape (A in FIG. 1 and c in FIG. 1). Therefore, co-culture was performed in a closed system.
  • Arabidopsis and rice seedlings were transplanted in the same manner except that Bacillus subtilis was not inoculated. That is, the Bacillus subtilis standard strain (ATCC9372) was cultured in a 35 mm dish 1 using a bacterial TS agar medium in the plant medium plate of FIG. In the plant culture medium plate of FIG.
  • the 35 mm dish 2 is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain.
  • a Bacillus subtilis standard strain was cultured in a 35 mm dish 3 using an inorganic medium.
  • the 35 mm dish 4 is filled with an inorganic culture medium in which the Bacillus subtilis standard strain is not inoculated.
  • the plates a to d in Fig. 1 are placed on a cultivation shelf at an angle of 60-90 degrees, and are grown under long-day conditions (lighting for 16 hours, turning off lighting for 8 hours). Observed over time.
  • the standard co-culture was 5 days for both Arabidopsis and rice. Co-culture was performed at 23 ° C.
  • GC-MS was measured under the following conditions.
  • GC-MS (apparatus): 6890N GC (model number) with 5975 Inert Mass Selective Detector (model number) (quadrupole mass spectrometer manufactured by Agilent Technologies)
  • Column HP5ms capillary column (trade name), 30 m ⁇ 0.25 mm id, 0.25 ⁇ m df (Agilent Technologies)
  • Carrier gas helium methylene chloride with a head pressure of 50 KPa (constant pressure) was used as a solvent, and 1 ⁇ L of the sample was split-injected at a 1:10 ratio.
  • the injection port was 230 ° C. and the oven temperature was 40 ° C.
  • the temperature was increased at 5 ° C./minute after 10 minutes and maintained at 220 ° C. for 30 minutes.
  • the EM voltage EM voltage
  • the ionization voltage ionization voltage
  • FIG. 1b and FIG. 1d are plates obtained by cultivating Arabidopsis seedlings in the same manner as in FIG. 1a and FIG. 1c except that Bacillus subtilis was not inoculated on a 35mm plate.
  • the black bars in the plates of FIGS. 1a to 1d represent the position of the base at the time of implantation, and the dots represent the position of the root tip.
  • FIG. 2 shows the results of measuring the main root lengths of Arabidopsis cultured on the plate of FIG. 1a and Arabidopsis cultured on the plate of FIG.
  • shaft of FIG. 2 shows the length (mm) of a root.
  • FIG. 2 when the distance from Bacillus subtilis is short, 1-2 days after the start of co-culture It was already found that elongation was completely inhibited at that time (FIG. 2). It was also revealed that this root elongation inhibition was gradually reduced as the distance from the bacterial 35 mm plate was increased. In the results of FIG. 2, 5 individuals were observed per experimental group, and the standard deviation was represented by a bar.
  • FIG. 3 shows the effect of Bacillus subtilis volatile components on the wet plant weight.
  • “(A) without Bacillus subtilis” is Arabidopsis thaliana cultured on the plate of FIG. 1 b
  • “(B) with Bacillus subtilis” is Arabidopsis thaliana cultured on the plate of FIG.
  • P, M, and D indicate the distance from the 35 mm plate in FIG. 1 (P: 1-3 cm, M: 4-6 cm, D: 7-9 cm).
  • about the wet weight (mg) of Arabidopsis thaliana about an individual close to Bacillus subtilis (P in a of FIG.
  • Table 1 summarizes the effects of Bacillus subtilis volatile components on Arabidopsis thaliana growth when Bacillus subtilis and Arabidopsis were co-cultured for 5 days. At a long distance from Bacillus subtilis, root elongation was slightly suppressed as compared to the case without Bacillus subtilis, but the wet weight increased. Since the action of the volatile component of Bacillus subtilis differs depending on the plant organ, it was considered that the response mechanism itself or the sensitivity on which the volatile component of Bacillus subtilis acts differs depending on the plant organ.
  • FIGS. 4a is a GC-MS chromatogram of volatile components generated when Bacillus subtilis (ATCC9372) is cultured in an organic medium (FIG. 1a).
  • the volatile component a in FIG. 4 showed plant growth inhibitory activity. That is, the collected concentrated solution of Bacillus subtilis volatile components exhibited root elongation inhibitory activity. This indicates that the active ingredient can be concentrated and is stable for at least several days after extraction.
  • FIG. 4b is a GC-MS chromatogram of volatile components of an organic medium not containing Bacillus subtilis (FIG. 1b).
  • FIG. 4c is a GC-MS chromatogram of volatile components generated from Bacillus subtilis when Bacillus subtilis is cultured in an inorganic medium (FIG. 1c).
  • the volatile component of FIG. 4b and the volatile component of FIG. 4c did not show plant growth inhibitory activity.
  • As a result of analysis by GC-MS at least five compound peaks indicated by arrows in FIG. 4a were preferentially detected when Bacillus subtilis was cultured on an organic agar medium.
  • FIGS. 5a to 5c correspond to FIGS. 4a to 4c, respectively. That is, a in FIG. 5 is a GC-MS chromatogram of volatile components generated when Bacillus subtilis is cultured in an organic medium (a in FIG. 1).
  • FIG. 5b is a GC-MS chromatogram of the volatile components of the organic medium without Bacillus subtilis (FIG. 1b).
  • FIG. 5c is a GC-MS chromatogram of volatile components generated from Bacillus subtilis when Bacillus subtilis is cultured in an inorganic medium (FIG. 1c).
  • FIG. 7 shows the results of measuring the length of the main roots of Arabidopsis thaliana after transplanting (after culturing at 23 ° C. for 5 days).
  • the vertical axis of the graph in FIG. 7 represents the length (mm) of the main root that has been elongated after transplantation (after culturing at 23 ° C. for 5 days).
  • CTL is a control. From the results of FIG. 6 and FIG. 7, 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone all suppress the elongation of the main root through the gas phase. It was found that the plant growth inhibitory activity was exhibited.
  • FIGS. 8a to 8d show the results of examining the influence of volatile metabolites of Bacillus subtilis on the growth of rice.
  • a Bacillus subtilis standard strain was cultured in a 35 mm dish using a bacterial TS agar medium (organic medium).
  • the 35 mm dish is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain.
  • the Bacillus subtilis standard strain was cultured in a 35 mm dish using an inorganic medium.
  • the 35 mm dish is filled with an inorganic culture medium not inoculated with the Bacillus subtilis standard strain.
  • the black bars a to d in FIG. 8 represent the base of rice.
  • FIG. 9 shows the length (mm) of the main root of Arabidopsis thaliana cultured in The experiment using Escherichia coli or Agrobacterium was the same as the experiment using Bacillus subtilis standard strain and Arabidopsis thaliana except that Escherichia coli (DH5a) or Agrobacterium (EHA101) was used instead of the Bacillus subtilis standard strain. The operation was performed.
  • E. coli (DH5a) or Agrobacterium (EHA101) is transformed into (A) organic medium or (B) inorganic medium.
  • FIG. 9 shows the length (mm) of the main root of Arabidopsis thaliana cultured in The experiment using Escherichia coli or Agrobacterium was the same as the experiment using Bacillus subtilis standard strain and Arabidopsis thaliana except that Escherichia coli (DH5a) or Agrobacterium (EHA101) was used instead of the Bacillus subtilis standard strain. The operation was performed.
  • ATCC9372 represents Bacillus subtilis (standard strain, ATCC9372), DH5a represents E. coli (DH5a), and EHA101 represents Agrobacterium (EHA101).
  • DH5a represents E. coli
  • EHA101 represents Agrobacterium (EHA101).
  • “No bacteria” means that the microorganisms were not co-cultured.
  • Example 2 In the assay using Example 1-5-1 Bacillus subtilis in Example 1, seeds of sweet basil (Ocimum basilicum) and Catharanthus roseus cv. Littile Delicata were used instead of Arabidopsis seeds. The same experiment was conducted using Bacillus subtilis standard strain (A001) as The experimental conditions were based on the conditions in Example 1 using Arabidopsis except that the co-culture period was 10 days.
  • FIGS. 10a to 10d show the results of examining the influence of volatile metabolites of Bacillus subtilis on the growth of sweet basil.
  • a Bacillus subtilis standard strain A001
  • the plant medium plate of FIG. 10b the 35 mm dish is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain.
  • the plant medium plate of FIG. 10a a Bacillus subtilis standard strain (A001) was cultured using a TS agar medium for bacteria in a 35 mm dish.
  • the 35 mm dish is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain.
  • the Bacillus subtilis standard strain was cultured in a 35 mm dish using an inorganic medium.
  • the 35 mm dish is filled with an inorganic culture medium not inoculated with the Bacillus subtilis standard strain.
  • FIG. 11a to 11d show the results of examining the influence of volatile metabolites of Bacillus subtilis on the growth of periwinkle.
  • a Bacillus subtilis standard strain (A001) was cultured in a 35 mm dish using a bacterial TS agar medium.
  • the 35 mm dish is filled with a TS agar medium for bacteria that is not inoculated with a standard strain of Bacillus subtilis.
  • the Bacillus subtilis standard strain was cultured in a 35 mm dish using an inorganic medium.
  • the 35 mm dish is filled with an inorganic culture medium in which the Bacillus subtilis standard strain is not inoculated.
  • Example 3 In the same manner as in Example 1, the seed coat of rice (Oryza sativa variety: Nihonbare) was removed, sterilized, and then sown, and then cultivated for 4 days. QST-713)) or Agrobacterium (EHA101). B. subtilis Strain DB9011 and B. subtilis Strain QST-713 were obtained from Idemitsu Kosan and Meiji Seika, respectively. In order to match the growth conditions of rice, 0.5 ⁇ Hoagland No. The same operation as in the experiment in Arabidopsis thaliana in Example 1 (assay using 1-5-1 Bacillus subtilis in Example 1) was performed except that 2 medium was used and the growth temperature was 27 ° C. .
  • FIG. 12 a is a control, and the microorganism was not co-cultured.
  • FIG. 12 b, FIG. 12 d, and FIG. 12 e are cases where co-cultured with Bacillus subtilis.
  • FIG. 12c shows the case of co-culture with Agrobacterium (EHA101).
  • the Bacillus subtilis of FIG. 12b is a Bacillus subtilis standard strain (ATCC9372), and the Bacillus subtilis of FIG. 12d is B. subtilis Strain DB9011.
  • the Bacillus subtilis of e of FIG. 12 is B. subtilis Strain QST-713. As shown in FIG. 12b, FIG.
  • FIG. 12d and FIG. 12e when Bacillus subtilis is cultured in an organic medium (row (A) in FIG. 12), no matter which Bacillus subtilis is used, The volatile components inhibited rice growth. Even when Bacillus subtilis was cultured in an inorganic medium (row (B) in FIG. 12), growth inhibition of rice did not occur. From FIG. 12c, when Agrobacterium was cultured in an organic medium, the growth of rice was inhibited by its volatile components. Even when Agrobacterium was cultured in an inorganic medium (row (B) in FIG. 12), growth inhibition of rice did not occur.
  • the present invention is useful in fields such as agriculture and forestry and horticulture.

Abstract

A growth regulation agent for plants which contains, as an active ingredient, at least one kind of compound selected from the group consisting of 3-methyl-2-pentanone, 2, 5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone.

Description

植物の生長制御剤、植物の生長制御方法及びその利用Plant growth regulator, plant growth control method and use thereof
 本発明は、植物の生長制御剤、植物の生長制御方法及びその利用に関する。 The present invention relates to a plant growth regulator, a plant growth control method, and use thereof.
 植物の生長を制御する化学物質として、オーキシン、サイトカイニン、エチレンなどの植物ホルモンが知られている。これら植物ホルモンの生合成経路の詳細は既に明らかにされており、同時に植物ホルモンは専ら植物自身が生合成していると長らく考えられてきた。ところが近年見出されてきた、植物の生長を直接又は間接に促進する活性を示すカビ類、また植物生長促進リゾバクテリア(Plant Growth Promoting Rhizobacteria(PGPR))と総称される細菌類(例えば非特許文献1参照)の中には、例えばエチレンなど植物ホルモンそのものを生産することで植物生長を制御することが知られているものがある(例えば非特許文献2参照)。 Plant hormones such as auxin, cytokinin, and ethylene are known as chemical substances that control plant growth. Details of the biosynthetic pathway of these plant hormones have already been clarified, and at the same time, it has long been thought that plant hormones are exclusively biosynthesized by plants themselves. However, fungi that have been found in recent years and exhibiting the activity of directly or indirectly promoting the growth of plants, and bacteria collectively called plant growth promoting rhizobacteria (PGPR) (eg, non-patent literature) Some of them are known to control plant growth by producing plant hormones such as ethylene (see Non-Patent Document 2, for example).
 一方で、植物自体には由来せず、植物ホルモンそのものでないものの、植物の生長を調節する土壌微生物由来の化学物質も知られている。例えば特許文献1には、2-アザヒポキサンチンを含む植物生長調節剤が開示されている。 On the other hand, chemical substances derived from soil microorganisms that are not derived from plants themselves and are not plant hormones themselves but regulate plant growth are also known. For example, Patent Document 1 discloses a plant growth regulator containing 2-azahypoxanthine.
 しかしながら、代表的なPGPRであるバチルス ズブチリス(例えばGB03株、非特許文献3参照)由来の植物生長制御活性因子ですら候補因子が挙げられるに留まるなど、ほとんどのPGPRの植物生長制御活性について、活性の再構成に必要十分な化合物は未だ見出されていない。 However, most plant growth control activities of PGPR are active, such as plant growth control activity factor derived from Bacillus subtilis (for example, GB03 strain, see Non-patent Document 3), which is a typical PGPR, only includes candidate factors. No compound necessary and sufficient for the reconstitution of the product has yet been found.
 さらに、PGPRの使用方法としては、土壌への混合が一般的であるが、この方法ではPGPRの生育数を人為制御することが困難で、PGPRの効果を安定的に維持できないという問題がある。さらに、いわゆる遺伝子組み換え技術による植物ホルモン関連遺伝子の人為操作による植物生長制御の研究もされているが、ヒト等の生物に対する安全性は確立されておらず、併せて環境への潜在的影響を懸念する意見が一般消費者に根強い。このため、よりヒト等の生物に対して安全性が高く、かつ優れた生長制御作用を安定して発揮できる植物の生長制御剤及び生長制御方法が望まれている。 Furthermore, as a method of using PGPR, mixing with soil is common, but this method has a problem that it is difficult to artificially control the number of PGPR grown, and the effect of PGPR cannot be stably maintained. In addition, research on plant growth control by artificial manipulation of plant hormone-related genes using so-called genetic recombination technology has been conducted, but safety to humans and other organisms has not been established, and there is concern about the potential impact on the environment. Opinions that are deeply rooted in general consumers. For this reason, a plant growth control agent and a growth control method that are more safe for living organisms such as humans and that can stably exhibit excellent growth control action are desired.
特開2009-001558号公報JP 2009-001558 A
 本発明は、上記現状に鑑み、ヒト及び環境に対する安全性が高く、かつ植物の生長制御作用を安定して発揮することができ、しかも品質が均一で安定性が高い天然物由来の成分を有効成分とする植物生長制御剤及び該制御剤を含む農業資材、並びに植物生長制御方法等を提供することを目的とする。 In view of the present situation, the present invention is highly effective for ingredients derived from natural products that are highly safe for humans and the environment, can stably exert plant growth control action, and have uniform quality and high stability. It aims at providing the plant growth control agent used as a component, the agricultural material containing this control agent, a plant growth control method, etc.
 本発明者らは、上記課題に鑑み鋭意研究を重ね、グラム陽性菌である枯草菌(バチリス・ズブチリス(Bacillus subtilis))を、糖及び糖以外の炭素源を含む培地で培養したときに生成する揮発性代謝物が、植物の生長に対して抑制作用及び促進作用の両方の活性を示すことを見出した。この枯草菌の揮発性代謝物の生長制御作用は、その濃度に依存し、揮発性代謝物の濃度が高いと、植物の生長が抑制された。一方、揮発性代謝物が低濃度であると、植物の生長が促進された。このような枯草菌の揮発性代謝物による植物の生長制御作用は、枯草菌を炭素源として糖のみを含有する培地で培養した場合には、認められなかった。枯草菌は、植物の生育を促進させるために使用されることがあるが、枯草菌が条件によっては植物の生育を抑制することは、全く新しい知見であった。
 なお、本明細書中、「糖及び糖以外の炭素源を含む培地」を、単に「有機培地」ともいう。また、「炭素源として糖のみを含む培地」を、単に「無機培地」ともいう。
The inventors of the present invention have made extensive studies in view of the above-mentioned problems, and produce Gram-positive bacteria Bacillus subtilis (Bacillus subtilis) when cultured in a medium containing sugar and a carbon source other than sugar. It has been found that volatile metabolites exhibit both inhibitory and promoting activities on plant growth. The growth control action of the volatile metabolite of Bacillus subtilis depends on its concentration. When the concentration of the volatile metabolite is high, the growth of the plant is suppressed. On the other hand, plant growth was promoted at low concentrations of volatile metabolites. Such a plant growth control action by the volatile metabolite of Bacillus subtilis was not observed when cultured in a medium containing only sugar using Bacillus subtilis as a carbon source. Although Bacillus subtilis is sometimes used to promote plant growth, it has been a completely new finding that Bacillus subtilis inhibits plant growth depending on conditions.
In the present specification, “medium containing sugar and a carbon source other than sugar” is also simply referred to as “organic medium”. The “medium containing only sugar as a carbon source” is also simply referred to as “inorganic medium”.
 本発明者らはまた、枯草菌の代わりにグラム陰性菌であるアグロバクテリウム(Agrobacterium tumefacines)、及び大腸菌を有機培地で培養した場合にも、生成する揮発性代謝物に、枯草菌の場合と同様に植物の生長制御作用があることを見出し、枯草菌等の微生物を有機培地で培養することにより発生する揮発性代謝物に、植物の生長制御作用があることに想到した。 The inventors of the present invention also have a gram-negative bacterium, Agrobacterium tumefacines, and Escherichia coli cultured in an organic medium in addition to Bacillus subtilis. Similarly, it has been found that it has a plant growth-controlling effect, and has come up with the idea that a volatile metabolite generated by culturing microorganisms such as Bacillus subtilis in an organic medium has a plant growth-controlling effect.
 本発明者らはさらに、枯草菌等を有機培地で培養することにより発生する揮発性代謝物に含まれる成分を単離し、各成分について植物の生長制御活性を調べたところ、揮発性代謝物に含まれる3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン(アセトイン)、及び2-ペンタデカノンが、それぞれ植物の生長制御活性を有することを見出した。これまで、エチレン等の植物ホルモン以外に、揮発性成分で植物の生長制御作用を有するものは報告されていない。植物の生長制御作用を有する有効成分が揮発性の場合、揮発性で無い場合に比べて、例えば、有効成分を含有する農業資材等が植物と非接触状態でも植物体全体に均一に有効成分が植物に作用しうることなどが利点と考えられる。このため、植物の生長制御を簡便に、かつ効率的に行うことができる。このような生長制御作用を有する物質は、農林業において有用なものであり、しかももともと土壌に生育する微生物の代謝物に含まれる成分でもあることから、ヒト及環境への安全性が高いものである。また、活性成分が微生物の代謝物に含まれる成分であることから、活性成分の生産は、微生物を培養することで実現でき、また、微生物そのものを施用して植物の生長を制御することもできる。
 本発明者らは、上記知見に基づきさらに研究を重ね、本発明を完成するに至った。
The present inventors further isolated components contained in volatile metabolites generated by culturing Bacillus subtilis or the like in an organic medium, and examined the growth control activity of plants for each component. It was found that 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone (acetoin), and 2-pentadecanone contained therein have plant growth control activity. So far, there has been no report on volatile components other than plant hormones such as ethylene having a plant growth control action. When the active ingredient having the plant growth control action is volatile, compared to the case where it is not volatile, for example, even if the agricultural material containing the active ingredient is not in contact with the plant, the active ingredient is uniformly distributed throughout the plant body. It is considered to be an advantage that it can act on plants. For this reason, plant growth control can be performed simply and efficiently. Such a substance having a growth control action is useful in agriculture and forestry, and is also a component contained in the metabolite of microorganisms originally growing in the soil, so it is highly safe for humans and the environment. is there. In addition, since the active ingredient is a component contained in the metabolite of the microorganism, the production of the active ingredient can be realized by culturing the microorganism, or the growth of the plant can be controlled by applying the microorganism itself. .
The present inventors have further studied based on the above findings and have completed the present invention.
 すなわち、本発明は、以下の(1)~(15)に関する。
(1)3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を有効成分として含有することを特徴とする植物の生長制御剤。
(2)グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含有する揮発性代謝物を含有する前記(1)に記載の植物の生長制御剤。
(3)グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を含有することを特徴とする植物の生長制御剤。
(4)微生物が、グラム陽性菌、グラム陰性菌、又は糸状菌である前記(2)又は(3)に記載の植物の生長制御剤。
(5)微生物が、枯草菌、アグロバクテリウム、又は菌根菌である前記(2)~(4)のいずれか一項に記載の植物の生長制御剤。
(6)植物の生長制御が、植物の生長抑制又は生長促進である前記(1)~(5)のいずれか一項に記載の植物の生長制御剤。
(7)植物の生長制御が、植物の生長抑制である前記(1)又は(2)に記載の植物の生長制御剤。
(8)植物体、植物の栽培地又は植物の種子に、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を施用することを特徴とする植物の生長制御方法。
(9)グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含む揮発性代謝物を施用する前記(8)に記載の植物の生長制御方法。
(10)植物体、植物の栽培地又は植物の種子に、グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を施用することを特徴とする植物の生長制御方法。
(11)微生物が、グラム陽性菌、グラム陰性菌、又は糸状菌である前記(9)又は(10)に記載の植物の生長制御方法。
(12)微生物が、枯草菌、アグロバクテリウム、又は菌根菌である前記(9)~(11)のいずれか一項に記載の植物の生長制御方法。
(13)植物の生長制御が、植物の生長抑制又は生長促進である前記(8)~(12)のいずれか一項に記載の植物の生長制御方法。
(14)植物の生長制御が、植物の生長抑制である前記(8)又は(9)に記載の植物の生長制御方法。
(15)3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物の、植物の生長を制御するための使用。
That is, the present invention relates to the following (1) to (15).
(1) containing at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone as an active ingredient. Characteristic plant growth regulator.
(2) 3-methyl- produced by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar. (1) containing a volatile metabolite containing at least one compound selected from the group consisting of 2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone. The plant growth regulator as described.
(3) Volatile metabolites generated by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar. A plant growth regulator characterized by comprising.
(4) The plant growth regulator according to (2) or (3), wherein the microorganism is a gram positive bacterium, a gram negative bacterium, or a filamentous fungus.
(5) The plant growth regulator according to any one of (2) to (4), wherein the microorganism is Bacillus subtilis, Agrobacterium, or mycorrhizal fungus.
(6) The plant growth control agent according to any one of (1) to (5), wherein the plant growth control is plant growth suppression or growth promotion.
(7) The plant growth regulator according to (1) or (2), wherein the plant growth control is plant growth inhibition.
(8) The plant body, plant cultivation area or plant seed is selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone. A method for controlling plant growth, comprising applying at least one compound.
(9) 3-methyl- produced by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and fungi in a medium containing sugar and a carbon source other than sugar. The volatile metabolite comprising at least one compound selected from the group consisting of 2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is applied as described in (8) above Plant growth control method.
(10) At least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi, and fungi is included in the plant body, plant cultivation area, or plant seed, including sugar and a carbon source other than sugar. A plant growth control method comprising applying a volatile metabolite generated by culturing in a medium.
(11) The plant growth control method according to (9) or (10), wherein the microorganism is a gram positive bacterium, a gram negative bacterium, or a filamentous fungus.
(12) The plant growth control method according to any one of (9) to (11), wherein the microorganism is Bacillus subtilis, Agrobacterium, or mycorrhizal fungus.
(13) The plant growth control method according to any one of (8) to (12), wherein the plant growth control is plant growth suppression or growth promotion.
(14) The method for controlling plant growth according to (8) or (9), wherein the plant growth control is plant growth suppression.
(15) controlling plant growth of at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone Use for.
 本発明によれば、土壌劣化、環境汚染等を発生させないヒト及び環境への安全性が高い物質を用いて、植物の収量、作業効率の向上等のため、植物の生長を安定的に促進又は抑制させることができる。 According to the present invention, using a substance that is safe to humans and the environment that does not cause soil degradation, environmental pollution, and the like, it is possible to stably promote plant growth in order to improve plant yield, work efficiency, etc. Can be suppressed.
図1は、枯草菌の揮発性代謝物による植物生長抑制活性を示す図である。FIG. 1 is a graph showing plant growth inhibitory activity by volatile metabolites of Bacillus subtilis. 図2は、枯草菌の揮発性代謝物によるシロイヌナズナ根長の経日変化を示す図である。FIG. 2 is a graph showing changes over time in Arabidopsis root length caused by volatile metabolites of Bacillus subtilis. 図3は、枯草菌の揮発性代謝物の植物湿重量への影響を示す図である。FIG. 3 is a diagram showing the influence of volatile metabolites of Bacillus subtilis on plant wet weight. 図4は、GC-MSによる枯草菌の揮発性代謝物の分析結果を示す図である。FIG. 4 is a diagram showing the analysis results of volatile metabolites of Bacillus subtilis by GC-MS. 図5は、GC-MSによる枯草菌の揮発性代謝物の分析結果を示す図である。FIG. 5 is a diagram showing the analysis results of volatile metabolites of Bacillus subtilis by GC-MS. 図6は、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンによるシロイヌナズナの生長抑制活性を示す図である。FIG. 6 is a graph showing the growth inhibitory activity of Arabidopsis thaliana by 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone. 図7は、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンによるシロイヌナズナの主根の伸長への影響を示す図である。FIG. 7 is a diagram showing the influence of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone on the elongation of the main root of Arabidopsis thaliana. 図8は、枯草菌の揮発性代謝物によるイネの生長抑制活性を示す図である。FIG. 8 is a graph showing the rice growth-inhibiting activity by volatile metabolites of Bacillus subtilis. 図9は、シロイヌナズナの培養系で、枯草菌(ATCC9372)、大腸菌(DH5a)及びアグロバクテリウム(EHA101)それぞれを有機培地又は無機培地で培養した場合のシロイヌナズナの主根の長さを示す図である。FIG. 9 is a diagram showing the length of the main root of Arabidopsis thaliana when each of Bacillus subtilis (ATCC9372), Escherichia coli (DH5a) and Agrobacterium (EHA101) is cultured in an organic medium or an inorganic medium in an Arabidopsis culture system. . 図10は、枯草菌の揮発性代謝物によるスイートバジルの生長抑制活性を示す図である。FIG. 10 is a diagram showing the growth inhibitory activity of sweet basil by a volatile metabolite of Bacillus subtilis. 図11は、枯草菌の揮発性代謝物によるニチニチソウの生長抑制活性を示す図である。FIG. 11 is a graph showing the growth inhibitory activity of periwinkle by a volatile metabolite of Bacillus subtilis. 図12は、枯草菌及びアグロバクテリウムそれぞれの揮発性代謝物によるイネの生長抑制活性を示す図である。FIG. 12 is a diagram showing rice growth-inhibiting activity by volatile metabolites of Bacillus subtilis and Agrobacterium.
 本発明における植物の生長には、植物細胞の通常の分化又は増殖を伴う現象であれば特に限定されず、植物体を構成する器官の伸長、拡大のみならず、種子からの発芽なども含まれる。 The plant growth in the present invention is not particularly limited as long as it is a phenomenon accompanied by normal differentiation or proliferation of plant cells, and includes not only elongation and expansion of organs constituting the plant body but also germination from seeds. .
 本発明の第一の態様の植物の生長制御剤(以下、本発明1の植物の生長制御剤ともいう)は、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を有効成分として含有する。中でも、3-メチル-2-ペンタノン及び2,5-ジメチルピラジンの1種又は2種を必須として含有することが好ましい。より好ましくは、少なくとも3-メチル-2-ペンタノンを含有する。また、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンを含む植物の生長制御剤も、本発明1の好ましい態様の1つである。
 本明細書中、生長抑制には、発芽抑制も含まれる。生長促進には、発芽促進、バイオマス昂進、収穫向上も含まれる。
The plant growth regulator of the first aspect of the present invention (hereinafter also referred to as the plant growth regulator of the present invention 1) is 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2. -Containing at least one compound selected from the group consisting of butanone and 2-pentadecanone as an active ingredient. Among these, it is preferable to contain one or two of 3-methyl-2-pentanone and 2,5-dimethylpyrazine as essential. More preferably, it contains at least 3-methyl-2-pentanone. Also, a plant growth regulator containing 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is one of the preferred embodiments of the present invention 1.
In the present specification, suppression of growth includes suppression of germination. Growth promotion includes germination promotion, biomass promotion, and harvest improvement.
 本発明1の生長制御剤の有効成分である3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンはいずれも市販されており、市販品を利用することができる。また、例えば、グラム陽性菌、グラム陰性菌、真菌又はカビ等の微生物を、糖及び糖以外の炭素源を含む培地を用いて、当該微生物の種類に応じた条件で培養すると、通常、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含有する微生物の揮発性代謝物が培養系に生成する。
 本発明においては、このような微生物の揮発性代謝物を公知の手法により捕集し、本発明1における有効成分として使用することができる。また、捕集した揮発性代謝物を公知の手法で分離及び精製することにより、前記化合物を得ることができる。
The 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone, which are the active ingredients of the growth regulator of the present invention 1, are all commercially available. Can be used. Further, for example, when a microorganism such as Gram-positive bacteria, Gram-negative bacteria, fungi or mold is cultured in a medium containing sugar and a carbon source other than sugar under conditions according to the type of the microorganism, usually 3- A volatile metabolite of a microorganism containing at least one compound selected from the group consisting of methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is added to the culture system. Generate.
In the present invention, such volatile metabolites of microorganisms can be collected by a known technique and used as an active ingredient in the present invention 1. Moreover, the said compound can be obtained by isolate | separating and refine | purifying the collected volatile metabolite by a well-known method.
 本発明においては、有効成分として、グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含有する揮発性代謝物を好適に用いることができる。揮発性代謝物が前記化合物を含有することは、揮発性代謝物を公知の手法により捕集し、捕集した成分を、GC-MS等により分析することにより確認することができる。 In the present invention, the active ingredient is generated by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar. A volatile metabolite containing at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is preferable. Can be used. The fact that the volatile metabolite contains the compound can be confirmed by collecting the volatile metabolite by a known method and analyzing the collected component by GC-MS or the like.
 前記揮発性代謝物を生成する微生物としては、土壌微生物が好ましく、中でも、例えば、グラム陽性菌、グラム陰性菌、糸状菌などの細菌類が好ましい。グラム陽性菌として、枯草菌(Bacillus subtilis)(例えばATCC9372株、A001株、GB03株等)、ビフィズス菌(Lactobacillus bifidus)等に代表されるフィルミクテス門(Firmicutes);コリネ菌(Corynebacterium)に代表される放線菌門(Actinobacteria)等が挙げられる。グラム陰性菌として、アグロバクテリウム(例えばEHA101株等)、大腸菌(例えばDH5α株等)等が挙げられる。糸状菌として、菌根菌等が挙げられる。これらの微生物は、ATCC等から入手可能である。中でも、揮発性代謝物を生成する微生物は、枯草菌、アグロバクテリウム、又は菌根菌であることが好ましい。中でも、純粋培養が容易で、かつ納豆など食品にも伝統的に用いられてきた実績のある枯草菌が、人体への影響がより低い点でより好ましい。微生物は、本発明の効果を奏することになる限り、野生型でもよく、天然に生じる変異体であってもよく、遺伝子操作による人為的な変異体でもよい。前記揮発性代謝物を得るために使用される微生物は、1種であってもよく、2種以上であってもよい。 The microorganisms that produce the volatile metabolites are preferably soil microorganisms, among which bacteria such as Gram-positive bacteria, Gram-negative bacteria, and filamentous fungi are preferred. As Gram-positive bacteria, Bacillus subtilis (for example, ATCC9372 strain, A001 strain, GB03 strain, etc.), Firmicutes typified by Bifidobacterium (Lactobacillus bifidus), etc .; typified by Corynebacterium Examples include Actinobacteria. Examples of gram-negative bacteria include Agrobacterium (for example, EHA101 strain), E. coli (for example, DH5α strain), and the like. Examples of filamentous fungi include mycorrhizal fungi and the like. These microorganisms are available from ATCC and the like. Among them, the microorganism that generates a volatile metabolite is preferably Bacillus subtilis, Agrobacterium, or mycorrhizal fungus. Among these, Bacillus subtilis, which has been proven to be purely cultured and has been traditionally used in foods such as natto, is more preferable because it has a lower influence on the human body. As long as the effect of the present invention is exhibited, the microorganism may be a wild type, a naturally occurring mutant, or an artificial mutant by genetic manipulation. The microorganism used for obtaining the volatile metabolite may be one kind or two or more kinds.
 微生物の培養に用いられる糖及び糖以外の炭素源を含む培地は、微生物の種類に応じて適宜選択すればよい。培地は、固体培地でもよく、液体培地でもよい。糖としては、通常微生物の培養に使用される糖であればよく、例えば、グルコース、フルクトース、スクロース、マンノース、マルトース、マンニトール、キシロース、ガラクトース等が挙げられ、1種又は2種以上を用いることができる。培地中の糖の濃度としては、微生物の種類に応じて適宜設定すればよいが、例えば、通常0.1~30質量%程度であり、0.5~20質量%程度とすることが好ましく、1~20質量%程度とすることがより好ましく、1~10質量%程度とすることがさらに好ましく、2~8質量%程度とすることが特に好ましい。 A medium containing a sugar and a carbon source other than sugar used for culturing a microorganism may be appropriately selected according to the type of microorganism. The medium may be a solid medium or a liquid medium. The sugar may be any sugar that is normally used for culturing microorganisms. Examples thereof include glucose, fructose, sucrose, mannose, maltose, mannitol, xylose, galactose, and the like. it can. The concentration of sugar in the medium may be appropriately set according to the type of microorganism, but is usually about 0.1 to 30% by mass, preferably about 0.5 to 20% by mass, It is more preferably about 1 to 20% by mass, further preferably about 1 to 10% by mass, and particularly preferably about 2 to 8% by mass.
 糖以外の炭素源としては、例えば、アミノ酸、タンパク質加水分解物、ペプトン、ポリペプトン、酵母エキス、乾燥酵母、コーンスティープリカー、脱脂大豆塩酸加水分解物等が挙げられ、1種又は2種以上を使用することができる。培地中の糖以外の炭素源の濃度としては、微生物の種類に応じて適宜設定すればよく、例えば、通常0.1~30質量%程度であり、0.5~20質量%程度とすることが好ましく、1~20質量%程度とすることがより好ましく、1~10質量%程度とすることがさらに好ましく、2~8質量%程度とすることが特に好ましい。 Examples of carbon sources other than sugar include amino acid, protein hydrolyzate, peptone, polypeptone, yeast extract, dry yeast, corn steep liquor, defatted soybean hydrochloric acid hydrolyzate and the like, and one or more are used. can do. The concentration of the carbon source other than sugar in the medium may be appropriately set according to the type of microorganism, for example, usually about 0.1 to 30% by mass and about 0.5 to 20% by mass. It is preferably about 1 to 20% by mass, more preferably about 1 to 10% by mass, and particularly preferably about 2 to 8% by mass.
 糖及び糖以外の炭素源を含む培地を用いる培養の条件は、微生物の種類に応じて、通常用いられる培養条件を使用すればよい。例えば、培養温度は、枯草菌等であれば、通常約5~50℃、好ましくは約27~37℃である。大腸菌、アグロバクテリウム等であれば、通常約16~37℃である。大腸菌の培養温度は、好ましくは約20~37℃、より好ましくは約25~37℃、さらに好ましくは約30~37℃、最も好ましくは約37℃である。アグロバクテリウムの培養温度は好ましくは約20~35℃、より好ましくは約25~35℃、さらに好ましくは約28~32℃、最も好ましくは30℃前後である。培地のpHは、微生物に応じて通常使用されるpHとすればよい。例えば、培養に液体培地を用いる場合には、培養中は適宜培地を撹拌又は振とうすることが好ましい。培養時間は特に限定されないが、通常、培養開始後、対数増殖期以降に前記揮発性代謝物の発生量が増大する。また、微生物培養時の光条件は特に限定されず、暗黒条件でも、植物の通常の生育条件でもよい。例えば光の強度としては、好ましくは約150~100000ルクス、より好ましくは約300~30000ルクス、さらに好ましくは約400~10000ルクスであり、特に好ましくは約500~10000ルクスである。また光条件は、24時間暗条件又は明条件でもよく、通常植物が生育する日長条件でもよい。例えば約4時間明条件20時間暗条件、あるいは約8時間明条件16時間暗条件でもよい。さらに、約12時間明条件12時間暗条件、また約16時間明条件8時間暗条件、約20時間明条件4時間暗条件等でもよい。 The culture conditions using a medium containing sugar and a carbon source other than sugar may be those normally used according to the type of microorganism. For example, the culture temperature is usually about 5 to 50 ° C., preferably about 27 to 37 ° C. for Bacillus subtilis and the like. In the case of Escherichia coli, Agrobacterium, etc., it is usually about 16 to 37 ° C. The culture temperature of E. coli is preferably about 20 to 37 ° C, more preferably about 25 to 37 ° C, still more preferably about 30 to 37 ° C, and most preferably about 37 ° C. The culture temperature of Agrobacterium is preferably about 20 to 35 ° C, more preferably about 25 to 35 ° C, still more preferably about 28 to 32 ° C, and most preferably about 30 ° C. What is necessary is just to let pH of a culture medium be pH normally used according to microorganisms. For example, when a liquid medium is used for culture, it is preferable that the medium is appropriately stirred or shaken during the culture. The culture time is not particularly limited, but usually, the amount of volatile metabolites generated increases after the logarithmic growth phase after the start of culture. Moreover, the light conditions at the time of microorganism culture are not particularly limited, and may be dark conditions or normal growth conditions for plants. For example, the light intensity is preferably about 150 to 100,000 lux, more preferably about 300 to 30000 lux, further preferably about 400 to 10,000 lux, and particularly preferably about 500 to 10,000 lux. The light condition may be a dark condition or a bright condition for 24 hours, or may be a day length condition in which a plant usually grows. For example, it may be about 4 hours light condition 20 hours dark condition, or about 8 hours light condition 16 hours dark condition. Furthermore, about 12 hours light condition 12 hours dark condition, about 16 hours light condition 8 hours dark condition, about 20 hours light condition 4 hours dark condition, etc. may be sufficient.
 本発明1の生長制御剤は、前記微生物を糖及び糖以外の炭素源を含む培地で培養することにより発生する、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含有する揮発性代謝物を含有することが好ましい。このような揮発性代謝物は、より好ましくは、3-メチル-2-ペンタノン及び2,5-ジメチルピラジンの少なくとも1種を含有する揮発性代謝物であり、さらに好ましくは、少なくとも3-メチル-2-ペンタノンを含有する揮発性代謝物である。また、好ましくは、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンを含有する揮発性代謝物を用いる。このような揮発性代謝物は、例えば、前記枯草菌、アグロバクテリウム、大腸菌、糸状菌等を糖及び糖以外の炭素源を含む培地で培養することにより発生する。 The growth regulator of the present invention 1 comprises 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2, which is generated by culturing the microorganism in a medium containing sugar and a carbon source other than sugar. It preferably contains a volatile metabolite containing at least one compound selected from the group consisting of butanone and 2-pentadecanone. Such a volatile metabolite is more preferably a volatile metabolite containing at least one of 3-methyl-2-pentanone and 2,5-dimethylpyrazine, more preferably at least 3-methyl- It is a volatile metabolite containing 2-pentanone. Preferably, a volatile metabolite containing 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is used. Such a volatile metabolite is generated, for example, by culturing the aforementioned Bacillus subtilis, Agrobacterium, Escherichia coli, filamentous fungus or the like in a medium containing sugar and a carbon source other than sugar.
 前記揮発性代謝物の捕集は、公知の手法、例えば公知の揮発性代謝物捕集剤、あるいは液体窒素を利用したコールドトラップ法等により行うことができる。捕集した揮発性代謝物を、本発明1の生長制御剤の有効成分として用いることができる。また、本発明の効果を奏することになる限り、捕集した揮発性代謝物を希釈、濃縮等した希釈物、濃縮物等の処理物を有効成分とすることもできる。また、揮発性代謝物又はその処理物に濃縮乾固、噴霧乾燥、凍結乾燥等の処理を行い、乾燥物として用いてもよい。濃縮等の処理は、公知の手法で行うことができる。
 また、捕集した揮発性代謝物から、公知の精製方法により、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を単離及び精製することができる。単離及び精製した化合物は、本発明1の有効成分として用いることができる。
The collection of the volatile metabolites can be performed by a known method, for example, a known volatile metabolite collector, a cold trap method using liquid nitrogen, or the like. The collected volatile metabolite can be used as an active ingredient of the growth regulator of the first invention. In addition, as long as the effects of the present invention are exhibited, a processed product such as a diluted product or a diluted product obtained by diluting or concentrating the collected volatile metabolite can be used as an active ingredient. Further, the volatile metabolite or a processed product thereof may be subjected to a treatment such as concentration to dryness, spray drying, freeze drying, etc. and used as a dried product. Processing such as concentration can be performed by a known method.
The collected volatile metabolites are selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone by a known purification method. At least one compound can be isolated and purified. The isolated and purified compound can be used as the active ingredient of the present invention 1.
 本発明1の生長制御剤は、植物に施用されることにより揮発性の有効成分が植物に作用し、該植物の生長を抑制又は促進する。このため、植物の生長抑制又は生長促進に好適に用いられるものである。好ましくは、植物の生長抑制に用いられる。3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を有効成分として含有する植物の生長抑制剤は、本発明1の好ましい実施態様の1つである。 The growth control agent of the present invention 1 is applied to a plant so that a volatile active ingredient acts on the plant to suppress or promote the growth of the plant. For this reason, it is used suitably for plant growth suppression or growth promotion. Preferably, it is used for plant growth inhibition. Plant growth inhibitor containing as an active ingredient at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone Is one of the preferred embodiments of Invention 1.
 本発明1の生長制御剤として、前記グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物又は該微生物の処理物を用いることもできる。この場合、微生物は生菌であることが好ましい。本発明1の生長制御剤として前記微生物の生菌を用いると、1回の施用により効果が長期間持続することから好ましい。該微生物は、前述した糖及び糖以外の炭素源の存在下で前記有効成分を含有する揮発性代謝物を生成するため、後述するように植物に施用すると、本発明の効果を奏することになる。本発明1の植物の生長制御剤が前記微生物を含有する場合には、該微生物を、あらかじめ糖及び糖以外の炭素源の存在下で培養しておくことが好ましい。 As the growth control agent of the first aspect of the present invention, at least one microorganism selected from the group consisting of the gram-positive bacteria, gram-negative bacteria, fungi, and molds, or a processed product of the microorganisms can also be used. In this case, the microorganism is preferably a living bacterium. The use of viable microorganisms as the growth control agent of the first aspect of the present invention is preferable because the effect lasts for a long time by one application. The microorganism produces the volatile metabolite containing the active ingredient in the presence of the sugar and the carbon source other than sugar as described above. Therefore, when applied to a plant as described later, the effect of the present invention is exhibited. . When the plant growth regulator of the present invention 1 contains the microorganism, it is preferable to culture the microorganism in advance in the presence of sugar and a carbon source other than sugar.
 本発明1において、前記微生物又はその処理物を用いる場合には、例えば、前記微生物を、前述した糖及び糖以外の炭素源の存在下で培養して得られる菌体液、培養液等を植物生長制御剤として好適に用いることができる例えば、菌体液(培養液)を用いる場合であれば、好ましくは、10~1010(生菌数)/mL程度、より好ましくは、10~10(生菌数)/mL程度の菌体液(培養液)を、さらに好ましくは10~10(生菌数)/mL程度の菌体液(培養液)を所望により滅菌して、植物生長制御剤として用いることができる。このような植物の生長制御剤(菌体液)は、適宜希釈して用いることができる。 In the first aspect of the present invention, when the microorganism or a processed product thereof is used, for example, a microbial solution obtained by culturing the microorganism in the presence of the aforementioned sugar and a carbon source other than sugar, a culture solution, etc. For example, in the case of using a cell fluid (culture solution) that can be suitably used as a control agent, it is preferably about 10 3 to 10 10 (viable cell count) / mL, more preferably 10 5 to 10 9. Plant growth control by sterilizing (viable cell count) / mL of the cell fluid (culture solution), more preferably about 10 6 to 10 8 (viable cell count) / mL, if desired It can be used as an agent. Such a plant growth regulator (bacterial fluid) can be used after appropriately diluted.
 微生物の処理物としては、例えば、糖及び糖以外の炭素源の存在下で培養した菌体を乾燥させた乾燥菌体が挙げられる。また、糖及び糖以外の炭素源の存在下で培養した菌体の抽出液、超音波などによる破砕液、該菌体の培養上清、培養液又は培養上清を濾過又は遠心分離など固液分離手段によって分離した固体残渣なども処理物として挙げられる。また、糖及び糖以外の炭素源の存在下で培養した微生物の細胞壁を酵素又は機械的手段により除去した処理液等も該処理物として挙げられる。さらに、これらの濃縮物、これらの希釈物又はこれらの乾燥物なども該処理物に含まれる。また、該菌体の抽出液、超音波などによる破砕液、該細胞の培養液又は培養上清などに対し、例えば各種クロマトグラフィーによる分離などの処理をさらに加えたものも本発明における該処理物に含まれる。 Examples of processed microorganisms include dry cells obtained by drying cells cultured in the presence of sugar and a carbon source other than sugar. In addition, an extract of a microbial cell cultured in the presence of sugar and a carbon source other than saccharide, a disrupted solution by ultrasonic waves, a solid liquid such as filtration or centrifugation of the culture supernatant, culture solution or culture supernatant of the microbial cell A solid residue or the like separated by the separation means is also exemplified as the processed product. In addition, a treated liquid obtained by removing a cell wall of a microorganism cultured in the presence of sugar and a carbon source other than sugar by an enzyme or mechanical means is also exemplified. Furthermore, these concentrates, these dilutions, or these dried products are also included in the treated product. In addition, the treated product in the present invention may be obtained by further adding, for example, various chromatographic separations to the bacterial cell extract, ultrasonic disruption solution, the cell culture solution or culture supernatant. include.
 本発明1の植物生長制御剤の施用量は、例えば、後述する施用形態(例えば、塗布、噴霧、葉面散布、土壌散布など)、適用する目的(例えば、生長抑制作用、生長促進作用等)などによって適宜設定すればよい。 The application amount of the plant growth control agent of the present invention 1 is, for example, an application form (for example, application, spraying, foliar application, soil application, etc.) to be described later, and the purpose of application (for example, growth inhibiting action, growth promoting action, etc.) What is necessary is just to set suitably by.
 例えば、本発明1の植物生長制御剤を、植物の生長抑制に用いる場合、植物への有効成分の施用量は、後述する植物の種類、部位等により適宜設定すればよい。また、例えば、本発明1の植物の生長制御剤を継続的に施用することにより、植物を枯死させることもできる。例えば、水溶剤等の水溶液の形態で使用する場合には、有効成分の濃度は、例えば、好ましくは約1~10000μM、より好ましくは約2~1000μMで使用される。また、本発明の植物生長調節剤は、植物の生長抑制のために土壌中に使用される場合には、有効成分が好ましくは同様に約1~10000μモル/kg、より好ましくは約2~1000μモル/kgとなるように、土壌に混合される。固形物を土壌に混合する場合に加えて、茎葉に散布したり、前記水溶液などを土壌に灌注したり場合なども、このような量で適用できる。 For example, when the plant growth regulator of the present invention 1 is used for suppressing plant growth, the application amount of the active ingredient to the plant may be appropriately set depending on the kind and part of the plant to be described later. Further, for example, the plant can be killed by continuously applying the plant growth regulator of the first aspect of the present invention. For example, when used in the form of an aqueous solution such as an aqueous solvent, the concentration of the active ingredient is, for example, preferably about 1 to 10,000 μM, more preferably about 2 to 1000 μM. In addition, when the plant growth regulator of the present invention is used in soil for plant growth inhibition, the active ingredient is also preferably about 1 to 10000 μmol / kg, more preferably about 2 to 1000 μm. It is mixed with soil so as to be mol / kg. In addition to the case where the solid is mixed with the soil, it can be applied in such an amount when it is sprayed on the foliage or the aqueous solution is irrigated on the soil.
 本発明1の植物の生長制御剤の有効成分として、前述した微生物の揮発性代謝物を含有する場合、該揮発性代謝物に含まれる前記化合物の濃度等が前記範囲となるようにすることが好ましい。
 前記範囲の施用量であると、本発明1の植物生長制御剤を施用すると、例えば、植物の根、球根、培養根等の生長を効果的に抑制させることができる。
When the volatile metabolite of the microorganism described above is contained as an active ingredient of the plant growth regulator of the present invention 1, the concentration of the compound contained in the volatile metabolite is set within the above range. preferable.
When the application rate is within the above range, the growth of plant roots, bulbs, cultured roots and the like can be effectively suppressed by applying the plant growth regulator of the first aspect of the present invention.
 本発明1において前記グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を使用する場合、該微生物を含有する植物の生長制御剤の使用量も、後述する植物の種類、部位、施用方法、適用する目的等に応じて適宜設定することができる。例えば、前記微生物の生菌を植物の生長抑制に用いる場合、その施用量は、閉鎖系で常温煙霧に混入させて使用する場合には、生菌数で好ましくは一反あたり約10~1010(生菌数)/mL程度の菌体液(培養液)約50~500mL(好ましくは300mL程度)を10~100倍程度(好ましくは20倍程度)希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)約50~500mL(好ましくは300mL程度)を10~100倍程度(好ましくは20倍程度)希釈して、噴霧することが好ましい。茎葉などへの葉面散布の場合、一反あたり約10~1010(生菌数)/mL程度の菌体液(培養液)約20~500mL(好ましくは200mL程度)を50~1000倍程度(好ましくは500倍程度)希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)約20~500mL(好ましくは200mL程度)を50~1000倍程度(好ましくは500倍程度)希釈して使用することが好ましい。また、灌注させる場合には、10~1010(生菌数)/mL程度の菌体液(培養液)を10~500倍程度(好ましくは100倍程)度希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)を10~500倍程度(好ましくは100倍程)希釈して、一反あたり1~10Lを用いることが出来る。以上に加えて、菌体乾燥物等の固形物を土壌に混合する場合、同様に適宜希釈して用いることができる。 When at least one microorganism selected from the group consisting of the gram-positive bacteria, gram-negative bacteria, fungi, and molds is used in the first aspect of the present invention, the usage amount of the plant growth regulator containing the microorganism is also described later. It can be set as appropriate according to the plant type, site, application method, application purpose, and the like. For example, when the above-mentioned microorganisms are used to suppress the growth of plants, the application rate is preferably about 10 3 to 10 per one cell in terms of the number of living bacteria when used in a closed system mixed with room temperature fumes. About 10 to 100 times (preferably about 20 times) of about 50 to 500 mL (preferably about 300 mL) of a cell solution (culture solution) of about 10 (viable bacteria) / mL is diluted, more preferably about 10 5 to It is preferable to dilute about 50 to 500 mL (preferably about 300 mL) of about 10 9 (viable cell count) / mL of the bacterial cell solution (culture solution) and to spray about 10 to 100 times (preferably about 20 times). In the case of foliar spraying on the foliage, etc., about 10 3 to 10 10 (viable cell count) / mL of about 20 to 500 mL (preferably about 200 mL) of bacterial cell solution (culture solution) about 50 to 1000 times Dilute (preferably about 500 times), more preferably about 10 5 to 10 9 (viable cell count) / mL about 20 to 500 mL (preferably about 200 mL) of about 20 to 500 mL (preferably about 200 mL) It is preferable to use after diluting to the extent (preferably about 500 times). In the case of irrigation, a cell solution (culture solution) of about 10 3 to 10 10 (viable cell count) / mL is diluted about 10 to 500 times (preferably about 100 times), and more preferably about A bacterial cell solution (culture solution) of about 10 5 to 10 9 (viable cells) / mL is diluted about 10 to 500 times (preferably about 100 times), and 1 to 10 L per one can be used. In addition to the above, when solid matter such as dried microbial cells is mixed with soil, it can be appropriately diluted as well.
 本発明の第二の態様の植物の生長制御剤(以下、本発明2の植物の生長制御剤ともいう)は、グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を含有する。 The plant growth regulator of the second aspect of the present invention (hereinafter also referred to as the plant growth regulator of the present invention 2) is at least one selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi and molds. It contains volatile metabolites generated by culturing seed microorganisms in a medium containing sugar and a carbon source other than sugar.
 前記揮発性代謝物を生成する微生物としては、土壌微生物が好ましく、中でも、例えば、グラム陽性菌、グラム陰性菌等が挙げられる。グラム陽性菌として、枯草菌(Bacillus subtilis)(例えばATCC9372株、A001株、GB03株)、ビフィズス菌(Lactobacillus bifidus)等に代表されるフィルミクテス門(Firmicutes);コリネ菌(Corynebacterium)に代表される放線菌門(Actinobacteria)等が挙げられる。グラム陰性菌として、アグロバクテリウム、大腸菌等が挙げられる。中でも、純粋培養が容易で、かつ納豆など食品にも伝統的に用いられてきた実績のある枯草菌が、人体への影響がより低い点でより好ましい。微生物は、本発明の効果を奏することになる限り、野生型でもよく、天然に生じる変異体であってもよく、遺伝子操作による人為的な変異体でもよい。前記揮発性代謝物を得るために使用される微生物は、1種であってもよく、2種以上であってもよい。 The microorganism that produces the volatile metabolite is preferably a soil microorganism, and examples thereof include gram-positive bacteria and gram-negative bacteria. As Gram-positive bacteria, Bacillus subtilis (for example, ATCC9372 strain, A001 strain, GB03 strain), Firmicutes typified by Bifidobacterium (Lactobacillus bifidus), etc .; radiation represented by Corynebacterium Examples include Actinobacteria. Examples of gram-negative bacteria include Agrobacterium and E. coli. Among these, Bacillus subtilis, which has been proven to be purely cultured and has been traditionally used in foods such as natto, is more preferable because it has a lower influence on the human body. As long as the effect of the present invention is exhibited, the microorganism may be a wild type, a naturally occurring mutant, or an artificial mutant by genetic manipulation. The microorganism used for obtaining the volatile metabolite may be one kind or two or more kinds.
 例えば、枯草菌を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を含有する植物の生長制御剤は、本発明2の植物の生長制御剤の好ましい態様の1つである。 For example, a plant growth regulator containing a volatile metabolite generated by culturing Bacillus subtilis in a medium containing sugar and a carbon source other than sugar is a preferred embodiment of the plant growth regulator of the present invention 2. One.
 微生物の培養に用いられる糖及び糖以外の炭素源を含む培地、及び培養条件等は、前述した本発明1の植物の生長制御剤における培地、及び培養条件等と同じである。
 生成した揮発性代謝物の捕集方法等も、本発明1の植物の生長制御剤におけるものと同じである。
The medium used for culturing microorganisms and a medium containing a carbon source other than sugar, the culture conditions, and the like are the same as the medium, the culture conditions, and the like in the plant growth regulator of the first invention described above.
The method for collecting the generated volatile metabolite is the same as that in the plant growth regulator of the first aspect of the present invention.
 捕集した揮発性代謝物は、本発明2の生長制御剤の有効成分として用いることができる。また、本発明の効果を奏することになる限り、捕集した揮発性代謝物に、希釈、濃縮等の処理を行った希釈物、濃縮物等の処理物を有効成分とすることもできる。また、揮発性代謝物又はその処理物に濃縮乾固、噴霧乾燥、凍結乾燥等の処理を行い、乾燥物として用いてもよい。 The collected volatile metabolite can be used as an active ingredient of the growth regulator of the present invention 2. In addition, as long as the effects of the present invention are exhibited, a treated product such as a diluted product or a concentrated product obtained by subjecting the collected volatile metabolite to a treatment such as dilution or concentration can be used as an active ingredient. Further, the volatile metabolite or a processed product thereof may be subjected to a treatment such as concentration to dryness, spray drying, freeze drying, etc. and used as a dried product.
 本発明2の生長制御剤として、前記グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物又はその処理物を用いることもできる。この場合、微生物は生菌であることが好ましい。本発明2の生長制御剤として前記微生物の生菌を用いると、1回の施用により効果が長期間持続することから好ましい。該微生物は、糖及び糖以外の炭素源の存在下で前記有効成分を含有する揮発性代謝物を生成するため、後述するように植物に施用すると、本発明の効果を奏することになる。本発明2の生長制御剤が前記微生物を含有する場合には、該微生物を、あらかじめ糖及び糖以外の炭素源の存在下で培養しておくことが好ましい。微生物の処理物は、前述した本発明1の生長制御剤における微生物の処理物と同じものが挙げられる。 As the growth control agent of the present invention 2, at least one kind of microorganism selected from the group consisting of the gram-positive bacteria, gram-negative bacteria, fungi and molds, or a processed product thereof can also be used. In this case, the microorganism is preferably a living bacterium. The use of viable microorganisms as the growth control agent of the second aspect of the present invention is preferable because the effect lasts for a long time by one application. Since the microorganism produces a volatile metabolite containing the active ingredient in the presence of sugar and a carbon source other than sugar, the effect of the present invention is exhibited when applied to a plant as described later. When the growth control agent of the present invention 2 contains the microorganism, it is preferable to culture the microorganism in advance in the presence of sugar and a carbon source other than sugar. Examples of the processed product of the microorganism include the same processed product of the microorganism in the above-described growth control agent of the first invention.
 本発明2において、前記微生物又はその処理物を用いる場合には、例えば、前記微生物を、前述した糖及び糖以外の炭素源の存在下で培養して得られる培養液を植物生長制御剤として好適に用いることができる。好ましくは、10~1010(生菌数)/mL程度、より好ましくは、10~10(生菌数)/mL程度の菌体液(培養液)を、さらに好ましくは10~10(生菌数)/mL程度の菌体液(培養液)を所望により滅菌して、植物生長制御剤として用いることができる。このような植物の生長制御剤(菌体液)は、適宜希釈して用いることができる。このような植物の生長制御剤は、適宜希釈して用いることができる。本発明2の生長制御剤として前記微生物の生菌を用いると、1回の施用により効果が長期間持続することから好ましい。また、前記微生物を滅菌して用いると、施用量の制御が容易になることから好ましい。 In the second aspect of the present invention, when the microorganism or a processed product thereof is used, for example, a culture solution obtained by culturing the microorganism in the presence of the aforementioned sugar and a carbon source other than sugar is suitable as a plant growth regulator. Can be used. Preferably, about 10 3 to 10 10 (viable cell count) / mL, more preferably about 10 5 to 10 9 (viable cell count) / mL, or more preferably 10 6 to 10 A bacterial cell solution (culture solution) of about 8 (viable cell count) / mL can be sterilized if desired and used as a plant growth regulator. Such a plant growth regulator (bacterial fluid) can be used after appropriately diluted. Such plant growth regulators can be used after appropriately diluted. The use of viable microorganisms as the growth control agent of the second aspect of the present invention is preferable because the effect lasts for a long time by one application. Moreover, it is preferable to sterilize and use the microorganism because the application rate can be easily controlled.
 本発明2の植物の生長制御剤は、植物に施用されることにより揮発性の有効成分が植物に作用し、該植物の生長を抑制又は促進する。このため、植物の生長抑制又は生長促進に好適に用いられるものである。好ましくは、植物の生長促進に用いられる。グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を含有する植物の生長促進剤は、本発明2の好ましい実施態様の1つである。本発明2の植物の生長制御剤を、植物の生長促進に用いる場合、植物への有効成分の施用量は、後述する植物の種類、部位、施用方法、適用する目的等により適宜設定すればよく、特に限定されない。例えば、前記微生物を含有する植物の生長制御剤を植物の生長促進に使用する場合、その使用量は、閉鎖系で常温煙霧に混入させて使用する場合には、生菌数で好ましくは一反あたり約10~1010(生菌数)/mL程度の菌体液(培養液)約50~500mL(好ましくは300mL程度)を10~100倍程度(好ましくは20倍程度)希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)約50~500mL(好ましくは300mL程度)を10~100倍程度(好ましくは20倍程度)希釈して、噴霧することが好ましい。茎葉などへの葉面散布の場合、一反あたり約10~1010(生菌数)/mL程度の菌体液(培養液)約20~500mL(好ましくは200mL程度)を50~1000倍程度(好ましくは500倍程度)希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)約20~500mL(好ましくは200mL程度)を50~1000倍程度(好ましくは500倍程度)を500倍程度希釈して使用することが好ましい。また、灌注させる場合には、10~1010(生菌数)/mL程度の菌体液(培養液)を10~500倍程度(好ましくは100倍程)希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)を10~500倍程度(好ましくは100倍程)希釈して、一反あたり1~10Lを用いることが出来る。以上に加えて、菌体乾燥物等の固形物を土壌に混合する場合、同様に適宜希釈して用いることができる。 When the plant growth regulator of the present invention 2 is applied to a plant, a volatile active ingredient acts on the plant to suppress or promote the growth of the plant. For this reason, it is used suitably for plant growth suppression or growth promotion. Preferably, it is used for promoting the growth of plants. A plant containing a volatile metabolite generated by culturing at least one microorganism selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar This growth promoter is one of the preferred embodiments of the present invention 2. When the plant growth regulator of the present invention 2 is used to promote plant growth, the application amount of the active ingredient to the plant may be appropriately set depending on the type of plant, site, application method, application purpose, etc. described later. There is no particular limitation. For example, when a plant growth control agent containing the microorganism is used to promote plant growth, the amount used is preferably one in terms of the number of viable bacteria when used in a closed system mixed with room temperature fumes. About 10 3 to 10 10 (viable cell count) / mL of about 50 to 500 mL (preferably about 300 mL) of a bacterial cell solution (culture solution) is diluted about 10 to 100 times (preferably about 20 times) Preferably, about 50 to 500 mL (preferably about 300 mL) of about 10 5 to 10 9 (viable cell count) / mL or about 50 to 500 mL (preferably about 300 mL) is diluted about 10 to 100 times (preferably about 20 times), Spraying is preferred. In the case of foliar spraying on the foliage, etc., about 10 3 to 10 10 (viable cell count) / mL of about 20 to 500 mL (preferably about 200 mL) of bacterial cell solution (culture solution) about 50 to 1000 times Dilute (preferably about 500 times), more preferably about 10 5 to 10 9 (viable cell count) / mL about 20 to 500 mL (preferably about 200 mL) of about 20 to 500 mL (preferably about 200 mL) The degree (preferably about 500 times) is preferably diluted about 500 times. In the case of irrigation, a cell solution (culture solution) of about 10 3 to 10 10 (viable cells) / mL is diluted about 10 to 500 times (preferably about 100 times), and more preferably about 10 times. A bacterial cell solution (culture solution) of about 5 to 10 9 (viable cell count) / mL is diluted about 10 to 500 times (preferably about 100 times), and 1 to 10 L per one can be used. In addition to the above, when solid matter such as dried microbial cells is mixed with soil, it can be appropriately diluted as well.
 本発明1及び2の植物生長制御剤(以下、本発明の植物生長制御剤という)の適用対象となる植物は、裸子植物であってもよく、被子植物であってもよい。被子植物の場合、単子葉植物、双子葉植物のいずれでもよく、特に限定されない。例えば、イネ、オオムギ、トウモロコシ、コムギ等の穀類;トマト、レタス、バジル、ダイコン、小松菜、ホウレンソウ、キャベツ、カブ、カボチャ、ピーマン等の野菜類;アルファルファ、クローバー、レンゲ等の緑肥植物;コスモス、トレニア、キク、ガーベラ、パンジー、ラン、シャクヤク、チューリップ等の花卉類;アズキ、インゲン、大豆、落花生、ソラマメ、エンドウ等の豆類;コウライシバ、ベントグラス、ノシバ等の芝類;他にもシロイヌナズナ、ニチニチソウ、タバコ等が挙げられる。 The plant to which the plant growth regulator of the present inventions 1 and 2 (hereinafter referred to as the plant growth regulator of the present invention) is applied may be a gymnosperm or an angiosperm. In the case of angiosperms, either monocotyledonous plants or dicotyledonous plants may be used, and there is no particular limitation. For example, grains such as rice, barley, corn, and wheat; vegetables such as tomato, lettuce, basil, radish, Japanese mustard spinach, spinach, cabbage, turnip, pumpkin, bell pepper; green manure plants such as alfalfa, clover, and lotus; cosmos, torenia , Chrysanthemum, gerbera, pansies, orchids, peonies, tulips and other florets; beans such as azuki bean, green beans, soybeans, peanuts, broad bean, peas; lawn grasses such as pebbles, bentgrass, pears; Etc.
 本発明における植物とは、例えば、植物体全体でも、植物の組織又は器官等の植物体の一部でもよく、また、プロトプラスト、カルス等の植物細胞などが含まれる。植物の組織又は器官としては、種子、発芽種子、根、茎、葉、花びら、果実、球根等が挙げられる。植物細胞としては、懸濁培養物、胚、分裂領域、カルス組織、苗条、配偶体、胞子体、花粉、及び小胞子が挙げられる。 The plant in the present invention may be, for example, the whole plant body or a part of a plant body such as a plant tissue or organ, and also includes plant cells such as protoplasts and callus. Examples of plant tissues or organs include seeds, germinated seeds, roots, stems, leaves, petals, fruits, bulbs and the like. Plant cells include suspension cultures, embryos, division regions, callus tissues, shoots, gametes, spores, pollen, and microspores.
 本発明の植物生長制御剤は、公知の製剤用添加剤を含むことができる。公知の製剤用添加剤としては、賦形剤、乳化剤、湿潤剤、崩壊剤等が挙げられる。また、本発明の植物生長制御剤を、公知の農薬、除草剤、栄養剤等に混合して用いることもできる。本発明の植物生長制御剤に上述した微生物の生菌を用いる場合には、該微生物に有害な化学農薬を併用しないことが好ましい。 The plant growth regulator of the present invention can contain known pharmaceutical additives. Known additives for pharmaceutical preparations include excipients, emulsifiers, wetting agents, disintegrants and the like. Further, the plant growth regulator of the present invention can be used by mixing with known agricultural chemicals, herbicides, nutrients and the like. When using the above-mentioned living microorganism of the microorganism for the plant growth regulator of the present invention, it is preferable not to use a chemical pesticide harmful to the microorganism.
 本発明の植物生長制御剤の形態は、液剤、油剤、乳剤、水溶剤、ペースト剤、水和剤、フロアブル、粒剤、微粒剤、粉剤、錠剤、エアゾール、フィルム、網、シート等いずれでもよく、特に限定されない。 The form of the plant growth regulator of the present invention may be any of liquid, oil, emulsion, aqueous solvent, paste, wettable powder, flowable, granule, fine granule, powder, tablet, aerosol, film, net, sheet, etc. There is no particular limitation.
 本発明の植物生長制御剤は、農業資材等に好適に用いられる。本発明の植物生長制御剤を含む農業資材も、本発明に包含される。農業資材としては、固形肥料、液体肥料、種子コート、煙霧剤、防草シート、ビニールハウスの外張り、寒冷紗、遮光フィルム、養生シート等が挙げられる。農業資材は、本発明の植物生長制御剤以外に公知の添加剤等を含んでもよい。本発明の植物生長制御剤を農業資材に含有させる方法は特に限定されない。例えば、公知の方法により本発明の植物生長制御剤を練りこむ、又は表面に塗布する等により、防草シート、ビニールハウスの外張り、寒冷紗、遮光フィルム、養生シート等に植物生長制御剤を含有させることができる。 The plant growth regulator of the present invention is suitably used for agricultural materials and the like. Agricultural materials containing the plant growth regulator of the present invention are also included in the present invention. Agricultural materials include solid fertilizers, liquid fertilizers, seed coats, haze agents, herbicidal sheets, greenhouse exteriors, chills, shading films, and curing sheets. Agricultural materials may contain known additives in addition to the plant growth regulator of the present invention. The method for incorporating the plant growth regulator of the present invention into an agricultural material is not particularly limited. For example, a plant growth control agent is contained in a herbicidal sheet, an outer wall of a greenhouse, a cold chill, a light-shielding film, a curing sheet, etc. by kneading or applying the plant growth control agent of the present invention to the surface by a known method. Can be made.
 本発明の植物の生長制御剤を、植物体、植物の栽培地又は植物の種子に施用することにより、植物の生長を制御することができる。例えば、本発明1の生長制御剤は、植物の生長抑制に好適に用いられる。本発明2の生長制御剤は、植物の生長促進に好適に用いられる。植物の栽培地に施用することには、土壌、栽培用の培地又は水耕栽培における水耕液等に直接施用することに加えて、噴霧、煙霧等により植物の栽培系の空間に施用することも含まれる。 The plant growth can be controlled by applying the plant growth regulator of the present invention to a plant body, a plant cultivation site or a plant seed. For example, the growth regulator of the present invention 1 is suitably used for plant growth inhibition. The growth regulator of the present invention 2 is suitably used for promoting plant growth. In addition to applying directly to soil, culture medium or hydroponic liquid in hydroponics, etc., it can be applied to the plant cultivation space by spraying, haze, etc. Is also included.
 植物体、植物の栽培地又は植物の種子に、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を施用する植物の生長制御方法も、本発明の1つである。このような植物の生長制御方法を、本発明3の植物の生長制御方法ともいう。本発明3の方法においては、例えば、前述した本発明1の植物の生長制御剤を植物体、植物の栽培地又は植物の種子に施用すればよい。 At least one selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone for the plant body, plant cultivation site or plant seed A plant growth control method to which the above compound is applied is also one aspect of the present invention. Such a plant growth control method is also referred to as the plant growth control method of the third aspect of the present invention. In the method of the present invention 3, for example, the above-described plant growth regulator of the present invention 1 may be applied to a plant body, a plant cultivation site or a plant seed.
 植物体、植物の栽培地又は植物の種子に、グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を施用する植物の生長制御方法も、本発明に包含される。このような植物の生長制御方法を、本発明4の植物の生長制御方法ともいう。本発明4の方法においては、例えば、前述した本発明2の植物の生長制御剤を植物体、植物の栽培地又は植物の種子に施用すればよい。 Culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi, and molds in a medium containing a carbon source other than sugar on a plant body, plant cultivation site or plant seed A plant growth control method applying a volatile metabolite generated by the above is also encompassed by the present invention. Such a plant growth control method is also referred to as the plant growth control method of the fourth invention. In the method of the present invention 4, for example, the above-described plant growth regulator of the present invention 2 may be applied to a plant body, a plant cultivation site or a plant seed.
 本発明の植物の生長制御剤を植物に施用する方法としては、実質的に植物の生長制御剤が施用され得る形態であればよく、その方法は特に限定されない。例えば、本発明の植物の生長制御剤が植物に直接接触するように施用してもよい。また、本発明における有効成分は揮発性であることから、該生長制御剤を、植物の栽培系に、植物と非接触で共存させることによっても、該生長制御剤を植物に施用することができる。施用の形態として、例えば茎葉散布などの植物体への処理、土壌処理等の植物の栽培地への処理、種子浸漬等の種子への処理、水耕液への混合による水耕植物への施用等が挙げられる。具体的には、例えば、粉剤、粒剤、液剤等を土壌に散布する方法;希釈された水溶液、エアゾール剤等を葉面、茎、果実等直接植物に散布する方法;噴霧、煙霧等により植物の栽培系の空間に散布する方法;土壌中に注入する方法;水耕栽培、ロックウール、あるいは半浸透膜フィルムの袋等のように根に接触している水耕液又は供給水に希釈混合して供給する方法;植物の培養培地に塗布又は混合する方法;後述する実施例のように、植物の栽培系に前記微生物を非接触的に共培養する方法等が挙げられる。前記微生物を生長制御剤として使用する場合には、例えば、該微生物と植物とを、非接触的に又は接触させて共培養等することによっても、有効成分を植物に施用することができる。また、例えば、水耕液又は供給水に希釈混合して供給したりする場合は、各種濃度(例えば1μM~0.5M程度)の有効成分を液肥に溶かして処理し、水耕で育苗して、最適濃度を決定することができる。有効成分の植物への供給は、施用方法が変わった場合も上記濃度範囲が参考にされ適宜決定することができる。 The method for applying the plant growth regulator of the present invention to plants is not particularly limited as long as the plant growth regulator can be applied substantially. For example, you may apply so that the plant growth regulator of this invention may contact a plant directly. In addition, since the active ingredient in the present invention is volatile, the growth control agent can be applied to a plant by allowing the growth control agent to coexist in a plant cultivation system in a non-contact manner with the plant. . As application forms, for example, treatment to plant bodies such as foliage spraying, treatment to plant cultivation areas such as soil treatment, treatment to seeds such as seed soaking, application to hydroponic plants by mixing in hydroponic liquid Etc. Specifically, for example, a method of spraying powders, granules, liquids, etc. on soil; a method of spraying diluted aqueous solutions, aerosols, etc. directly on plants such as leaves, stems, fruits, etc .; plants by spraying, fumes, etc. Method of spraying in the cultivation system space; Method of pouring into the soil; Dilution mixing with hydroponics or feed water in contact with the roots such as hydroponics, rock wool, or semi-permeable membrane film bags And a method of applying or mixing to a plant culture medium; and a method of non-contact co-culture of the microorganisms in a plant cultivation system as in Examples described later. When the microorganism is used as a growth control agent, for example, the active ingredient can be applied to the plant by co-culturing the microorganism and the plant in a non-contact manner or in contact with each other. In addition, for example, when diluting and supplying to hydroponic liquid or supply water, the active ingredients of various concentrations (for example, about 1 μM to 0.5 M) are dissolved in liquid fertilizer and processed, and the seedlings are grown by hydroponic. The optimal concentration can be determined. The supply of the active ingredient to the plant can be appropriately determined with reference to the above concentration range even when the application method is changed.
 本発明の効果をより効率的に発揮するためには、本発明の植物の生長制御剤を、閉鎖系又は半閉鎖系で植物に施用することが好ましい。より好ましくは、閉鎖系(例えば、温室、ビニールハウス、植物工場、宇宙ステーションなど)で植物に施用する。 本発明において、植物生長調節剤の施用時期は、目的に応じて適宜選択すればよく、例えば、播種前、播種時、苗、成長期、開花期、成熟期等のいずれでもよく、特に限定されるものではない。 In order to exhibit the effects of the present invention more efficiently, it is preferable to apply the plant growth regulator of the present invention to plants in a closed or semi-closed system. More preferably, it is applied to the plants in a closed system (eg, greenhouse, greenhouse, plant factory, space station, etc.). In the present invention, the application time of the plant growth regulator may be appropriately selected according to the purpose, and may be any of, for example, before sowing, sowing, seedling, growth period, flowering period, maturation period, etc., and is particularly limited. It is not something.
 以下に、本発明1の植物の生長制御剤として、前記グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を用いて、植物の生長を抑制する方法の一例を説明する。
(a)土壌に灌注する方法
 好ましくは、10~1010(生菌数)/mL程度の菌体液(培養液)を10~1000倍程度(好ましくは100倍程度)に希釈して、より好ましくは約10~10(生菌数)/mL程度の菌体液(培養液)を10~1000倍程度(好ましくは100倍程度)希釈しても用いることが出来る。なお、微生物は、糖及び糖以外の炭素源を含む培地で培養されたものである。培養液は滅菌処理をせずそのまま、又は滅菌フィルター等による滅菌処理を施して用いることが出来る。あるいは前記微生物の抽出物又は捕集した揮発性物質を用いることができる。灌注の時期は、植物によって適宜決定すればよい。例えば、葉菜類等においては、成育を通しほぼ20℃±5℃の場所で、15cmのポットに土量700~800gとし、1ポットに500~1000倍液を50mL程度注入すればよい。
(b)葉面散布法
 (a)の液を用いて本葉に1回、50~1000倍液を50mL程度散布する。
 植物により異なるが、上記(a)及び(b)いずれの方法でも、通常1回の処理でよいが、適宜複数回処理してもよい。
The method for inhibiting plant growth using at least one microorganism selected from the group consisting of the Gram-positive bacteria, Gram-negative bacteria, fungi and molds as a plant growth regulator of the first aspect of the present invention. An example will be described.
(A) Method of irrigating the soil Preferably, a bacterial cell solution (culture solution) of about 10 3 to 10 10 (viable bacteria) / mL is diluted to about 10 to 1000 times (preferably about 100 times), and more Preferably, about 10 5 to 10 9 (viable cell count) / mL of a cell solution (culture solution) can be used even after being diluted about 10 to 1000 times (preferably about 100 times). The microorganism is cultured in a medium containing sugar and a carbon source other than sugar. The culture solution can be used as it is without being sterilized or after being sterilized by a sterilizing filter or the like. Or the extract of the said microorganisms or the collected volatile substance can be used. The timing of irrigation may be appropriately determined depending on the plant. For example, in leaf vegetables and the like, the soil volume is 700 to 800 g in a 15 cm pot at about 20 ° C. ± 5 ° C. through growth, and about 50 mL of a 500 to 1000 times solution may be injected into one pot.
(B) Leaf surface spraying method Apply about 50 mL of 50-1000 times solution to the main leaf once using the solution of (a).
Although depending on the plant, either of the above methods (a) and (b) may be usually performed once, but may be appropriately processed a plurality of times.
(c)粒剤を散布する方法
 窒素、リン酸、カリウムの植物三大栄養素、又は鉄などのミネラル等を含む既存の粒剤の製造過程で(a)の液を混合し、これを土壌へ混合する、あるいは地面に散布する。
(d)水耕液に混合する方法
 前記(a)の液を水耕液と混合して適宜希釈し、支持体などを用いて水耕栽培する植物へ適用する。
(e)空気中に噴霧する方法
 前記(a)の液を動噴又は超音波煙霧器などにより既存の農薬などと混合するなどして空間に煙霧する。閉鎖系植物工場、人工気象装置、又はビニールハウスなどにおける植物栽培に好適に用いられる。
(C) Method of spraying the granules In the process of manufacturing existing granules containing minerals such as nitrogen, phosphoric acid, potassium, and three major plant nutrients, iron (a) is mixed into the soil. Mix or spread on the ground.
(D) Method of mixing with hydroponic liquid The liquid of the above (a) is mixed with the hydroponic liquid, diluted as appropriate, and applied to a plant that is hydroponically cultivated using a support or the like.
(E) Method of spraying in the air The liquid of the above (a) is fogged in the space by mixing with existing agricultural chemicals or the like by moving spray or an ultrasonic smoker. It is suitably used for plant cultivation in a closed plant factory, an artificial weather device, or a greenhouse.
 上記(a)、(b)、(c)、(d)、(e)等の方法において前記微生物の生菌を用いる場合、該生菌にとって有害な殺菌剤等、例えば有機リン系、重金属系等の殺菌剤は、同時に使用しないことが好ましい。しかし、前記微生物の抽出物又は捕集した揮発性物質を用いる場合は、期待される生理活性が生菌に依存しないので、例えば上記殺菌剤などと同時に使用することが出来る。 In the case of using a living microorganism of the microorganism in the methods (a), (b), (c), (d), (e) and the like, a bactericidal agent harmful to the living microorganism, such as an organic phosphorus type or a heavy metal type It is preferable not to use such disinfectants at the same time. However, when the microbial extract or the collected volatile substance is used, since the expected physiological activity does not depend on the living bacteria, it can be used at the same time as the fungicide, for example.
 本発明の植物の生長制御剤及び植物の生長制御方法を用いると、土壌劣化、環境汚染等を発生させずに植物の生長を促進又は抑制することができる。また、例えば通常の農地などに天然に存在する土壌微生物と同一又は類似する株を使用することで、本発明の植物の生長制御剤及び植物の生長制御方法は消費者及び生産者にとって安心、安全な技術を提供することができる。例えば、植物の生長を抑制する作用を利用して、除草剤等として好適に用いられる。本発明の植物の生長制御剤と公知の除草剤と併用することもできる。また、例えば、栽培植物の生長を促進すると、栽培効率を上げることができる。さらに、生長を促進することにより、一般に病害を受けやすい幼苗期を短くすると、罹病率を低減することができる。本発明の植物の生長制御剤と、公知の農薬又は栄養剤等とを混和して作物に使用することも好ましい。本発明は、例えば、植物工場等にも好適に適用される。 When the plant growth regulator and the plant growth control method of the present invention are used, plant growth can be promoted or suppressed without causing soil degradation, environmental pollution, and the like. Further, for example, by using a strain that is the same as or similar to a soil microorganism naturally present in normal farmland, the plant growth control agent and the plant growth control method of the present invention are safe and secure for consumers and producers. Technology can be provided. For example, it is suitably used as a herbicide or the like by utilizing the action of suppressing plant growth. The plant growth regulator of the present invention can be used in combination with a known herbicide. Moreover, for example, when the growth of cultivated plants is promoted, the cultivation efficiency can be increased. Furthermore, by promoting the growth, the morbidity rate can be reduced by shortening the seedling period that is generally susceptible to diseases. It is also preferable to mix the plant growth regulator of the present invention with known agricultural chemicals or nutrients and use them in crops. The present invention is suitably applied to, for example, a plant factory.
 本発明は、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物の、植物の生長を制御するための使用も包含する。
 本発明は、グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物の、植物の生長を制御するための使用も包含する。
 本発明の好ましい態様などは、上述した植物の生長制御剤、及び植物の生長制御方法と同様である。
The present invention controls plant growth of at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone. The use for doing is also included.
The present invention relates to a volatile metabolite generated by culturing at least one microorganism selected from the group consisting of Gram-positive bacteria, Gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar. Of the use of the plant for controlling plant growth.
Preferred embodiments of the present invention are the same as the plant growth regulator and the plant growth control method described above.
 以下実施例を示してさらに詳しく説明を行うが、本発明はこれによりなんら制限されるものではない。本実施例中、「%」は、特に断らない限り「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereby. In this example, “%” means “% by mass” unless otherwise specified.
<実施例1>
1.実験方法
1-1 種子滅菌
 シロイヌナズナ(Arabidopsis thaliana、エコタイプ、コロンビア)の種子は、株式会社インプランタイノベーションズから購入した。イネ((Oryza sativa、品種名:日本晴)の種子は、滋賀県立大学長谷川博教授より分与を受けた。このイネ(品種名:日本晴)の種子を含め、実施例2で用いたニチニチソウ(Catharanthus roseus、品種名:Little Delicata)、スイートバジル(Ocimum basilicum)は市販されており、一般に入手可能である。使用前に、種子を次亜塩素酸ナトリウム1%溶液に15分浸漬した後、蒸留水にて4回リンスして滅菌した。イネ種子の場合、種皮を取り除いてから滅菌処理した。
<Example 1>
1. Experimental Method 1-1 Seed Sterilization Seeds of Arabidopsis thaliana (Ecotype, Colombia) were purchased from Implanta Innovations. Rice (Oryza sativa, variety: Nihonbare) seeds were distributed by Professor Shige Prefectural University Professor Hiroshi Hasegawa. The seeds of this rice (variety name: Nipponbare) were used in Example 2, including Catharanthus. Roseus, variety name: Little Delicata, and sweet basil (Ocimum basilicum) are commercially available, and are generally available after soaking the seeds in a 1% sodium hypochlorite solution for 15 minutes before using distilled water. The rice seed was sterilized after removing the seed coat.
1-2 播種
 滅菌した種子を、植物用寒天培地に播種した。種子が小さいシロイヌナズナの場合、操作を容易にするため、0.1%アガロースと種子とを混合し、ピペットにて寒天培地表面へ播種した。
1-2 Seeding Sterilized seeds were sown on plant agar medium. In the case of Arabidopsis seeds with small seeds, 0.1% agarose and seeds were mixed and seeded on the surface of the agar medium with a pipette in order to facilitate the operation.
1-3 植物栽培
 シロイヌナズナの場合、4℃にて5日間低温処理し発芽の同調を促した。イネ及びシロイヌズナの栽培は、いずれも23℃、長日条件(16時間照明をつけ、8時間照明を消す(明期16時間及び暗期8時間))にて行った。植物寒天培地の組成は以下のとおりである。
1-3 Plant cultivation In the case of Arabidopsis thaliana, low temperature treatment at 4 ° C. for 5 days promoted germination synchronization. Rice and Arabidopsis were cultivated under conditions of 23 ° C. and long days (16 hours of illumination and 8 hours of illumination (light period 16 hours and dark period 8 hours)). The composition of the plant agar medium is as follows.
 シロイヌナズナ MS (Murashige-Skoog) 培地:1リットルあたり NH4NO3 1,650 mg、ZnSO4 7H20 8.6mg、KNO3 1,900 mg、KI 0.83 mg、CaCl2 2H2O 440 mg、Na2MoO4 2H2O 0.25 mg、MgSO4 7H2O 370 mg、CuSO4 5H2O 0.025 mg、KH2PO4 170 mg、CoCl2 6H2O 0.025 mg、H3BO3 6.2 mg、MnSO4 4H2O 22.3 mg、FeCl3 16.2 mg、sucrose 30 g、Phytoblend(商品名、Caisson Laboratories社製) 7 g Arabidopsis MS (Murashige-Skoog) Medium: 1 liter NH 4 NO 3 1,650 mg, ZnSO 4 7H 2 0 8.6 mg, KNO 3 1,900 mg, KI 0.83 mg, CaCl 2 2H 2 O 440 mg, Na 2 MoO 4 2H 2 O 0.25 mg, MgSO 4 7H 2 O 370 mg, CuSO 4 5H 2 O 0.025 mg, KH 2 PO 4 170 mg, CoCl 2 6H 2 O 0.025 mg, H 3 BO 3 6.2 mg, MnSO 4 4H 2 O 22.3 mg, FeCl 3 16.2 mg, sucrose 30 g, Phytoblend (trade name, manufactured by Caisson Laboratories) 7 g
 イネ Hoagland No.2 培地:1リットルあたり (NH4)3PO4 115.03 mg、H3BO3 2.86 mg、Ca(NO3)2 656.4 mg、CuSO4 5H2O 0.08 mg、FeCl3 16.2 mg、MgSO4 240.76 mg、MnCl2 4H2O 1.81 mg、MoO3 0.016 mg、KNO3 606.6 mg、ZnSO4 7H20 0.22 mg、Phytoblend(商品名、Caisson Laboratories社製) 7 g Rice Hoagland No.2 Medium: 1 NH ( 4 ) 3 PO 4 115.03 mg, H 3 BO 3 2.86 mg, Ca (NO 3 ) 2 656.4 mg, CuSO 4 5H 2 O 0.08 mg, FeCl 3 16.2 mg, MgSO 4 240.76 mg, MnCl 2 4H 2 O 1.81 mg, MoO 3 0.016 mg, KNO 3 606.6 mg, ZnSO 4 7H 2 0 0.22 mg, Phytoblend (trade name, manufactured by Caisson Laboratories) 7 g
1-4 細菌培養
 枯草菌標準株(バチルス ズブチリス(Bacillus subtilis)、A001及びATCC9372)、その他枯草菌株(DB9011及びQST-713)、アグロバクテリウム(EHA101)、及び大腸菌(DH5a)は、以下の培地で培養した。これらの菌は、公的機関から分譲あるいは一般に市販されており、入手可能である。
TS (Tryptic Soy) 寒天培地(有機培地):Tryptic Soy Agar (商品名、Sigma社製、ロット番号22091-500G)
TS液体培地(有機培地):Bacto Tryptic Soy Broth (商品名、Becton Dickinson社製、ロット番号211824)
合成寒天培地(無機培地):1リットルあたり KH2PO4 2.72 g、Na2HPO4 10.75 g、MgSO4 7H2O 0.10 g、NH4Cl 2.00 g、CaCl2 0.01 g、vitamin B1 0.01 g、FeSO4 7H2O 0.30 mg、MnSO4 H2O 0.01 mg、biotin 3.00 mg、sucrose 15.5 g、Phytoblend(商品名、Caisson Laboratories社製) 7 g
1-4 Bacterial culture Bacillus subtilis standard strains (Bacillus subtilis, A001 and ATCC9372), other Bacillus subtilis strains (DB9011 and QST-713), Agrobacterium (EHA101), and Escherichia coli (DH5a) include the following media: In culture. These bacteria are available from public institutions or are generally commercially available.
TS (Tryptic Soy) Agar medium (organic medium): Tryptic Soy Agar (trade name, manufactured by Sigma, lot number 22091-500G)
TS liquid medium (organic medium): Bacto Tryptic Soy Broth (trade name, manufactured by Becton Dickinson, lot number 211824)
Synthetic agar medium (inorganic medium): per liter KH 2 PO 4 2.72 g, Na 2 HPO 4 10.75 g, MgSO 4 7H 2 O 0.10 g, NH 4 Cl 2.00 g, CaCl 2 0.01 g, vitamin B1 0.01 g, FeSO 4 7H 2 O 0.30 mg, MnSO 4 H 2 O 0.01 mg, biotin 3.00 mg, sucrose 15.5 g, Phytoblend (trade name, manufactured by Caisson Laboratories) 7 g
 それぞれの細菌の凍結保存ストック(50%グリセロール、50%TS培地)から1白金耳をとり、TS培地で23℃、100rpmにて2日間振とう培養し、飽和培養液を準備した。この飽和培養液30 μlを3 mlのTS培地に植え継ぎ、23℃、100rpmにて1晩振とう培養したものをアッセイに供した。凍結保存ストックとは、上記飽和培養液と等量のグリセロールを混合し、-80℃で保存した飽和培養液をいう。 One platinum loop was taken from each bacterial cryopreserved stock (50% glycerol, 50% TS medium), and cultured with shaking in TS medium at 23 ° C. and 100 rpm for 2 days to prepare a saturated culture solution. 30 μl of this saturated culture broth was inoculated into 3 μml of TS medium and cultured overnight at 23 ° C. and 100 rpm for use in the assay. The cryopreservation stock refers to a saturated culture solution that is mixed at the above saturated culture solution with an equal amount of glycerol and stored at −80 ° C.
1-5 アッセイ
 細菌を共培養しない状態で前もって無菌栽培した芽生えをアッセイに供した。シロイヌナズナの場合5日間、イネの場合3日間前培養した。35mmディッシュ(35mm dish)を植物培地の片隅に配置した、アッセイ用の植物培地を準備した(図1のa~d参照)。
1-5 Assay Sprouts that had been previously cultivated in the absence of bacterial co-culture were used for the assay. In the case of Arabidopsis thaliana, preculture was performed for 5 days, and in the case of rice, 3 days. A plant medium for assay was prepared in which a 35 mm dish was placed at one corner of the plant medium (see ad in FIG. 1).
1-5-1 枯草菌を用いたアッセイ
 35mmディッシュに細菌用TS寒天培地(有機培地)又は無機培地を満たし、これを植物培地の片隅に配置した、アッセイ用の植物培地を準備した(図1のa~d参照)。35mmディッシュ中の培地と、植物培地とは、35mmディッシュにより隔てられており、接触していない。なお、35mmディッシュ内と、植物培地とは、気相は連続している。図1のa及び図1のbでは、35mmディッシュに細菌用TS寒天培地(有機培地)が、図1のc及び図1のdでは、35mmディッシュに無機培地が、それぞれ充填されている。
1-5-1 Assay using Bacillus subtilis A 35 mm dish was filled with a bacterial TS agar medium (organic medium) or inorganic medium, and this was placed in one corner of the plant medium to prepare a plant medium for assay (FIG. 1). A to d). The medium in the 35 mm dish and the plant medium are separated by the 35 mm dish and are not in contact with each other. The gas phase is continuous between the 35 mm dish and the plant medium. In FIG. 1a and FIG. 1b, the 35 mm dish is filled with a bacterial TS agar medium (organic medium), and in FIG. 1 c and FIG. 1 d, the 35 mm dish is filled with an inorganic medium.
 終夜培養した枯草菌(濁度は通常、600nmの波長で計測して0.8前後)100μLを、芽生えの移植と共に35mmディッシュ中の培地に植菌し、通気性のサージカルテープで植物培地プレートをシールした(図1のa及び図1のc)。従って、共培養は、閉鎖系で行った。図1のb及び図1のdでは、枯草菌を植菌しない以外は、同様にしてシロイヌナズナ及びイネの芽生えを移植した。つまり、図1のaの植物培地プレートでは、35mmディッシュ1中で、細菌用TS寒天培地を用いて枯草菌標準株(ATCC9372)を培養した。図1のbの植物培地プレートでは、35mmディッシュ2には、枯草菌標準株が植菌されていない細菌用TS寒天培地が充填されている。図1cの植物培地プレートでは、35mmディッシュ3中で、無機培地を用いて枯草菌標準株を培養した。図1のdの植物培地プレートでは、35mmディッシュ4には、枯草菌標準株が植菌されていない無機培地が充填されている。
 図1のa~dのプレートは60度―90度の角度に立てて栽培棚に設置し、長日条件(16時間照明をつけ、8時間照明を消す)にて栽培し、植物の生長を経時的に観察した。標準的な共培養はシロイヌナズナ、及びイネ共に5日間とした。共培養は、23℃で行った。
Bacillus subtilis cultivated overnight (turbidity is usually measured at a wavelength of 600 nm and around 0.8) is inoculated into the medium in a 35 mm dish along with the seedling transplant, and the plant medium plate is sealed with breathable surgical tape (A in FIG. 1 and c in FIG. 1). Therefore, co-culture was performed in a closed system. In FIG. 1 b and FIG. 1 d, Arabidopsis and rice seedlings were transplanted in the same manner except that Bacillus subtilis was not inoculated. That is, the Bacillus subtilis standard strain (ATCC9372) was cultured in a 35 mm dish 1 using a bacterial TS agar medium in the plant medium plate of FIG. In the plant culture medium plate of FIG. 1b, the 35 mm dish 2 is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain. In the plant medium plate of FIG. 1c, a Bacillus subtilis standard strain was cultured in a 35 mm dish 3 using an inorganic medium. In the plant culture medium plate of FIG. 1 d, the 35 mm dish 4 is filled with an inorganic culture medium in which the Bacillus subtilis standard strain is not inoculated.
The plates a to d in Fig. 1 are placed on a cultivation shelf at an angle of 60-90 degrees, and are grown under long-day conditions (lighting for 16 hours, turning off lighting for 8 hours). Observed over time. The standard co-culture was 5 days for both Arabidopsis and rice. Co-culture was performed at 23 ° C.
1-5-2 化合物を用いたアッセイ
 化合物標品の2-ペンタデカノン(2-pentadecanone)、2,5-ジメチルピラジン(2,5-dimethylpyrazine)、3-メチル-2-ペンタノン(3-methyl-2-pentanone)、及び3-ヒドロキシ-2-ブタノン(アセトイン(acetoin))(2-pentadecanoneは関東化学株式会社、他はいずれもシグマ社製)を用いたアッセイでは、2-ペンタデカノンにクロロホルムを用いた以外は全てメタノールを溶媒に用い、適宜希釈した溶液を、上記1-5-1の枯草菌に替えて使用した。希釈液は、直接植物培地に塗布するか、又はアッセイ用植物培地の35mmディッシュに入れたろ紙に浸み込ませてアッセイに供した。希釈液はアッセイ開始時に一回のみ、植物培地に塗布又はろ紙に滴下した。植物の培養は上記に準じて行った。
1-5-2 Assay using compounds 2-pentadecanone, 2,5-dimethylpyrazine, 3-methyl-2-pentanone (3-methyl-2) -pentanone) and 3-hydroxy-2-butanone (acetoin) (2-pentadecanone is Kanto Chemical Co., Inc., all manufactured by Sigma), chloroform was used for 2-pentadecanone. Except for the above, methanol was used as a solvent, and an appropriately diluted solution was used in place of the aforementioned Bacillus subtilis 1-5-1. The diluted solution was applied directly to the plant medium, or immersed in a filter paper placed in a 35 mm dish of the plant medium for assay and used for the assay. The diluted solution was applied to the plant medium or dropped on filter paper only once at the start of the assay. Plant culture was performed according to the above.
1-6 揮発成分の捕集
 小スケール:Monotrap(登録商標) DCC18 (GL Science社製)3枚を上述の35mmディッシュから1.5cmの距離に配置し、揮発成分を3日間にわたって捕集した。
 Monotrap(登録商標)のディスク3枚をスピッツ管へ移し、塩化メチレン2mLを加えて超音波処理を10分行った。パスツールピペットに脱脂綿を詰めてあらかじめ塩化メチレンで洗浄しておいたカラムに超音波処理の終わった塩化メチレン抽出液を通し、細かい破片を取り除いたのち、65℃の湯煎にて塩化メチレンを蒸発させて抽出液を濃縮した。20μLにまで濃縮後、1μLをGC-MS解析に用いた。Monotrap(登録商標)及びこれを用いた揮発成分の捕集方法については、以下のURLに詳細に記載されている。http://www.glsciences.com/products/monotrap/catalogue.pdf
1-6 Collection of volatile components Small scale: Three Monotrap (registered trademark) DCC18 (manufactured by GL Science) were placed at a distance of 1.5 cm from the 35 mm dish, and volatile components were collected over 3 days.
Three Monotrap (registered trademark) disks were transferred to a Spitz tube, 2 mL of methylene chloride was added, and sonication was performed for 10 minutes. Put methylene chloride extract after ultrasonic treatment through a column packed with absorbent cotton in a Pasteur pipette and washed in advance with methylene chloride. After removing fine debris, evaporate methylene chloride in a 65 ° C water bath. The extract was concentrated. After concentration to 20 μL, 1 μL was used for GC-MS analysis. Monotrap (registered trademark) and a method for collecting volatile components using the same are described in detail at the following URL. http://www.glsciences.com/products/monotrap/catalogue.pdf
1-7 GC-MS解析
 以下の条件で、GC-MSの測定を行った。
 GC-MS(装置):5975 Inert Mass Selective Detector(型番)を備えた6890N GC(型番)(Agilent Technologies社製の四重極型質量分析計(quadrupole mass spectrometer))
 カラム:HP5ms capillary column(商品名)、30 m × 0.25 mm id、0.25 μm df(Agilent Technologies社製)
 キャリアガス:ヘッド圧50KPa(一定圧力)のヘリウム
 塩化メチレンを溶媒に用い、1μLのサンプルを1:10比でスプリット注入した。注入ポートは230℃とし、オーブン温度は40℃とした。サンプル注入後、10分ののち、5℃/分にて温度を上昇させ、220℃にて30分維持した。
 四重極型質量分析は、EM電圧(EM voltage)を1,176 V、イオン化電圧(ionization voltage)を70 eVに設定した。
1-7 GC-MS Analysis GC-MS was measured under the following conditions.
GC-MS (apparatus): 6890N GC (model number) with 5975 Inert Mass Selective Detector (model number) (quadrupole mass spectrometer manufactured by Agilent Technologies)
Column: HP5ms capillary column (trade name), 30 m × 0.25 mm id, 0.25 μm df (Agilent Technologies)
Carrier gas: helium methylene chloride with a head pressure of 50 KPa (constant pressure) was used as a solvent, and 1 μL of the sample was split-injected at a 1:10 ratio. The injection port was 230 ° C. and the oven temperature was 40 ° C. After the sample injection, the temperature was increased at 5 ° C./minute after 10 minutes and maintained at 220 ° C. for 30 minutes.
In quadrupole mass spectrometry, the EM voltage (EM voltage) was set to 1,176 V, and the ionization voltage (ionization voltage) was set to 70 eV.
2.結果
2-1 シロイヌナズナの幼植物の生長への枯草菌揮発性代謝物の影響
 図1のaの培地の35mmディッシュ1及び図1のcの培地の35mmディッシュ3に枯草菌を植菌し、同時に前もって無菌培養しておいたシロイヌナズナ幼植物を5個体ずつ、枯草菌からの距離別に移植して5日間、共培養した。共培養は、閉鎖系で行った。図1のb及び図1のdは、35mmプレートに枯草菌を植菌しなかった以外は図1のa及び図1のcと同様にシロイヌナズナの幼植物の培養を行ったプレートである。図1のa~dのプレート内の黒いバーは、移植時の基部の位置を、点は根端の位置をそれぞれ表す。
2. Results 2-1 Effect of Bacillus subtilis volatile metabolites on the growth of Arabidopsis seedlings B. subtilis was inoculated in 35 mm dish 1 of the medium of FIG. 1 and 35 mm dish 3 of the medium of FIG. Five Arabidopsis seedlings that had been sterilized in advance were transplanted at different distances from Bacillus subtilis and co-cultured for 5 days. Co-culture was performed in a closed system. FIG. 1b and FIG. 1d are plates obtained by cultivating Arabidopsis seedlings in the same manner as in FIG. 1a and FIG. 1c except that Bacillus subtilis was not inoculated on a 35mm plate. The black bars in the plates of FIGS. 1a to 1d represent the position of the base at the time of implantation, and the dots represent the position of the root tip.
 その結果、有機培地(糖及び糖以外の炭素源を含む培地)で培養した枯草菌から近い距離に移植したシロイヌナズナ植物体は、主根の伸張が著しく阻害されることが明らかになった(図1のa)。根端の位置を白線で示す。P、M、及びDは、35mmプレートからの距離を示す(P:1-3cm、M:4-6cm、D:7-9cm)。さらに、このまま共培養し続けた場合、1週間を目処に枯草菌から近距離に移植したシロイヌナズナから順番に枯死することも判明した。
 枯草菌を無機培地で培養した図1のcにおいては、シロイヌナズナ植物体の伸長は阻害されず、枯草菌の非存在下で培養した図1のb及び図1のdと同程度に生長した。
As a result, it was revealed that the elongation of the main roots of Arabidopsis plants transplanted at a close distance from Bacillus subtilis cultured in an organic medium (a medium containing sugar and a carbon source other than sugar) was significantly inhibited (FIG. 1). A). The root position is indicated by a white line. P, M, and D indicate the distance from the 35 mm plate (P: 1-3 cm, M: 4-6 cm, D: 7-9 cm). Furthermore, it was also found that when co-culturing was continued as it was, it died in order from Arabidopsis thaliana transplanted at a short distance from Bacillus subtilis within a week.
In FIG. 1c in which Bacillus subtilis was cultured in an inorganic medium, the growth of Arabidopsis thaliana plants was not inhibited, and grew to the same extent as b in FIG. 1 and d in FIG. 1 cultured in the absence of Bacillus subtilis.
 図2に、アッセイ開始日(0日)~5日における図1のaのプレートで培養したシロイヌナズナ、及び図1のbのプレートで培養したシロイヌナズナの主根長を測定した結果を示す。図2の縦軸は、根の長さ(mm)を示す。アッセイ開始から経日的にシロイヌナズナの主根長を測定した結果、枯草菌を共培養しない場合(図1のb、図2中CTLと表す)では、細菌用35mmプレートからの距離に無関係に培養日数の経過と共に根が伸長した。一方、枯草菌と共培養した場合、枯草菌を有機培地で培養すると(図1のa、図2中ATCC9372と表す)、枯草菌からの距離が近い場合、共培養開始後1-2日の時点で既に伸長が完全に阻害されることが判明した(図2)。この根の伸長阻害は、細菌用35mmプレートからの距離が遠くなるにつれて順次低減されることも明らかとなった。図2の結果は、1実験区あたり5個体を観察し、標準偏差をバーで表した。 FIG. 2 shows the results of measuring the main root lengths of Arabidopsis cultured on the plate of FIG. 1a and Arabidopsis cultured on the plate of FIG. The vertical axis | shaft of FIG. 2 shows the length (mm) of a root. As a result of measuring the main root length of Arabidopsis thaliana from the start of the assay, when the Bacillus subtilis is not cocultured (represented as CTL in FIG. 1 b and FIG. 2), the number of days of culture is independent of the distance from the 35 mm plate for bacteria. The roots grew with the progress of. On the other hand, when co-cultured with Bacillus subtilis, culturing Bacillus subtilis in an organic medium (referred to as ATCC9372 in FIG. 1a and FIG. 2), when the distance from Bacillus subtilis is short, 1-2 days after the start of co-culture It was already found that elongation was completely inhibited at that time (FIG. 2). It was also revealed that this root elongation inhibition was gradually reduced as the distance from the bacterial 35 mm plate was increased. In the results of FIG. 2, 5 individuals were observed per experimental group, and the standard deviation was represented by a bar.
 図3に、枯草菌揮発成分による植物湿重量への影響を示す。図3中、「(A)枯草菌なし」は、図1のbのプレートで培養したシロイヌナズナであり、「(B)枯草菌あり」は、図1のaのプレートで培養したシロイヌナズナである。P、M、及びDは、上述した通り、図1における35mmプレートからの距離を示す(P:1-3cm、M:4-6cm、D:7-9cm)。図3から分かるように、シロイヌナズナの湿重量(mg)については、枯草菌から近い個体(図1のaのP)では、枯草菌がない場合(図1のbのP)と比較して約半分減少する一方、枯草菌から遠い個体(図1のaのD)では、枯草菌がない場合(図1のbのD)と比較して反対に約1.7倍に増大した。以上の結果から、枯草菌は、枯草菌とシロイヌナズナを非接触条件下で共培養した場合に、シロイヌナズナの生長を1)距離依存的、かつ2)枯草菌培地依存的に制御できることが明らかになった。シロイヌナズナと枯草菌は非接触であるため、活性因子は揮発性と予想された。図3に示す結果は、1実験区あたり5個体を観察した結果の平均であり、標準偏差をバーで表した。 Fig. 3 shows the effect of Bacillus subtilis volatile components on the wet plant weight. In FIG. 3, “(A) without Bacillus subtilis” is Arabidopsis thaliana cultured on the plate of FIG. 1 b, and “(B) with Bacillus subtilis” is Arabidopsis thaliana cultured on the plate of FIG. As described above, P, M, and D indicate the distance from the 35 mm plate in FIG. 1 (P: 1-3 cm, M: 4-6 cm, D: 7-9 cm). As can be seen from FIG. 3, about the wet weight (mg) of Arabidopsis thaliana, about an individual close to Bacillus subtilis (P in a of FIG. 1), compared to the case without Bacillus subtilis (P in b of FIG. 1). On the other hand, in the individual far from Bacillus subtilis (D in a of FIG. 1), the increase was about 1.7 times as opposed to the case without Bacillus subtilis (D in b of FIG. 1). From the above results, it becomes clear that Bacillus subtilis can control Arabidopsis thaliana growth 1) in a distance-dependent manner and 2) in a Bacillus subtilis medium-dependent manner when co-cultured with Bacillus subtilis and Arabidopsis thaliana. It was. Since Arabidopsis thaliana and Bacillus subtilis are non-contact, the active factor was expected to be volatile. The result shown in FIG. 3 is an average of the results of observing 5 individuals per experimental group, and the standard deviation is represented by a bar.
 枯草菌とシロイヌナズナを5日間共培養した場合の、シロイヌナズナの生長に与える枯草菌揮発性成分の影響を表1にまとめた。枯草菌から遠距離であると、根の伸長は枯草菌なしの場合と比較して若干抑制されているものの、湿重量が増大していた。枯草菌の揮発成分の作用が植物器官によって異なるため、枯草菌揮発性成分が作用する植物側の応答メカニズムそのもの、あるいは感受性が、植物器官ごとに異なると考えられた。 Table 1 summarizes the effects of Bacillus subtilis volatile components on Arabidopsis thaliana growth when Bacillus subtilis and Arabidopsis were co-cultured for 5 days. At a long distance from Bacillus subtilis, root elongation was slightly suppressed as compared to the case without Bacillus subtilis, but the wet weight increased. Since the action of the volatile component of Bacillus subtilis differs depending on the plant organ, it was considered that the response mechanism itself or the sensitivity on which the volatile component of Bacillus subtilis acts differs depending on the plant organ.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 続いて枯草菌が植物生長阻害活性を示す培養条件において優先的に放出される揮発成分の有無を検討するため、異なる培養条件で培養した枯草菌の揮発成分をMonotrap(登録商標)にて捕集し、GC-MSにて分析した。結果を図4のa~cに示す。図4のaは、枯草菌(ATCC9372)を有機培地で培養したとき(図1のa)に発生した揮発成分のGC-MSのクロマトグラムである。図4のaの揮発成分は、植物の成長阻害活性を示した。つまり、捕集した枯草菌揮発成分の濃縮液が根の伸長阻害活性を示した。このことから、活性成分は濃縮可能であること、抽出後少なくとも数日間は安定であることが分かった。図4のbは、枯草菌を含まない有機培地(図1のb)の揮発成分のGC-MSのクロマトグラムである。図4のcは、枯草菌を無機培地で培養したとき(図1のc)に枯草菌から発生した揮発成分のGC-MSのクロマトグラムである。図4のbの揮発成分及び図4のcの揮発成分は、植物の成長阻害活性を示さなかった。
 GC-MSによる分析の結果、図4のa中に矢印で示した少なくとも5つの化合物ピークが、枯草菌を有機寒天培地で培養した場合に優先的に検出された。
Subsequently, in order to investigate the presence or absence of volatile components preferentially released under the culture conditions in which Bacillus subtilis exhibits plant growth inhibitory activity, the volatile components of Bacillus subtilis cultured under different culture conditions are collected with Monotrap (registered trademark). And analyzed by GC-MS. The results are shown in FIGS. 4a is a GC-MS chromatogram of volatile components generated when Bacillus subtilis (ATCC9372) is cultured in an organic medium (FIG. 1a). The volatile component a in FIG. 4 showed plant growth inhibitory activity. That is, the collected concentrated solution of Bacillus subtilis volatile components exhibited root elongation inhibitory activity. This indicates that the active ingredient can be concentrated and is stable for at least several days after extraction. FIG. 4b is a GC-MS chromatogram of volatile components of an organic medium not containing Bacillus subtilis (FIG. 1b). FIG. 4c is a GC-MS chromatogram of volatile components generated from Bacillus subtilis when Bacillus subtilis is cultured in an inorganic medium (FIG. 1c). The volatile component of FIG. 4b and the volatile component of FIG. 4c did not show plant growth inhibitory activity.
As a result of analysis by GC-MS, at least five compound peaks indicated by arrows in FIG. 4a were preferentially detected when Bacillus subtilis was cultured on an organic agar medium.
 MS/MSによりそれら5つの化合物断片化のパターンを化合物ライブラリと照合したところ、図5に示すように、それぞれ3-メチルペンタノン(3-methyl-2-pentanone)、2,5-ジメチルピラジン(2,5-dimethylpyrazine)、2-ヘプタノン(2-heptanone)、2-トリデカノン(2-tridecanone)、及び2-ペンタデカノン(2-pentadecanone)であることが判明した。図5のa~cは、それぞれ図4のa~cに対応する。つまり、図5のaは、枯草菌を有機培地で培養したとき(図1のa)に発生した揮発成分のGC-MSのクロマトグラムである。図5のbは、枯草菌を含まない有機培地(図1のb)の揮発成分のGC-MSのクロマトグラムである。図5のcは、枯草菌を無機培地で培養したとき(図1のc)に枯草菌から発生した揮発成分のGC-MSのクロマトグラムである。 When these five compound fragmentation patterns were collated with the compound library by MS / MS, as shown in FIG. 5, 3-methylpentanone (3-methyl-2-pentanone) and 2,5-dimethylpyrazine ( 2,5-dimethylpyrazine), 2-heptanone, 2-tridecanone, and 2-pentadecanone. FIGS. 5a to 5c correspond to FIGS. 4a to 4c, respectively. That is, a in FIG. 5 is a GC-MS chromatogram of volatile components generated when Bacillus subtilis is cultured in an organic medium (a in FIG. 1). FIG. 5b is a GC-MS chromatogram of the volatile components of the organic medium without Bacillus subtilis (FIG. 1b). FIG. 5c is a GC-MS chromatogram of volatile components generated from Bacillus subtilis when Bacillus subtilis is cultured in an inorganic medium (FIG. 1c).
2-2 化合物を用いたアッセイ
 3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン(アセトイン)、及び2-ペンタデカノンそれぞれについて、10mM溶液(溶媒はメタノール)を調製した。シロイヌナズナを植物培地に移植した後に、各化合物の5μL又は50μLの10mM溶液を35mmディッシュ中のろ紙へ滴下し、5日間23℃で培養した。培養後の各プレートの写真を、図6に示す。図6中、黒いバーは、移植時の基部の位置を示す。また、根端の位置を白線で示す。
2-2 Assay using compounds Prepare 10 mM solutions (solvent is methanol) for 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone (acetoin), and 2-pentadecanone. did. After transplanting Arabidopsis thaliana to the plant medium, 5 μL or 50 μL of a 10 mM solution of each compound was dropped onto a filter paper in a 35 mm dish and cultured at 23 ° C. for 5 days. A photograph of each plate after culture is shown in FIG. In FIG. 6, the black bar indicates the position of the base at the time of transplantation. The position of the root end is indicated by a white line.
 図7は、移植後(5日間23℃で培養した後)に伸長したシロイヌナズナの主根の長さを測定した結果である。図7のグラフの縦軸は、移植後(5日間23℃で培養した後)に伸長した主根の長さ(mm)である。CTLはコントロールである。
 図6及び図7の結果から、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンは、いずれも気相を介して主根の伸長を抑制し、植物の生長抑制活性を示すことが分かった。
 また、データは示していないが、上記実験において、各化合物の溶液を35mmディッシュ中に滴下する代わりに、各化合物の250μM又は50μM溶液100μLを、植物培地に直接塗布して同様に実験を行った。この場合も、各化合物により主根の伸長が抑制された。
FIG. 7 shows the results of measuring the length of the main roots of Arabidopsis thaliana after transplanting (after culturing at 23 ° C. for 5 days). The vertical axis of the graph in FIG. 7 represents the length (mm) of the main root that has been elongated after transplantation (after culturing at 23 ° C. for 5 days). CTL is a control.
From the results of FIG. 6 and FIG. 7, 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone all suppress the elongation of the main root through the gas phase. It was found that the plant growth inhibitory activity was exhibited.
Moreover, although data are not shown, in the said experiment, instead of dripping the solution of each compound in a 35 mm dish, 100 microliters of 250 micromol or 50 micromol solution of each compound was directly apply | coated to the plant culture medium, and it experimented similarly. . Also in this case, the elongation of the main root was suppressed by each compound.
2-3 イネの幼植物の生長への枯草菌揮発性代謝物の影響
 イネ(Oryza sativa 品種:日本晴)の種皮を取り除き、上述したように滅菌した後に播種し、7日間枯草菌(標準株、ATCC9372)と共培養した。イネの生育条件に合わせるため、植物培地に0.5×Hoagland No.2培地を使用したこと、生育温度を27℃としたこと以外は、上記のシロイヌナズナでの実験と同様に操作を行った。
2-3 Effects of Bacillus subtilis volatile metabolites on the growth of rice seedlings The seed coat of rice (Oryza sativa variety: Nihonbare) was removed, sterilized as described above, and sown after 7 days. ATCC9372) and co-cultured. In order to adapt to the growth conditions of rice, the same operation as in the Arabidopsis experiment was performed except that 0.5 × Hoagland No. 2 medium was used as the plant medium and the growth temperature was 27 ° C.
 その結果、枯草菌を有機培地で培養した場合に、その揮発成分によりイネの生育が阻害された。結果を、図8に示す。枯草菌の植物生長阻害活性は、シロイヌナズナだけでなくイネに対しても効果があった。図8のa~dは、イネの生長に対する枯草菌の揮発性代謝物の影響を調べた結果を示す。図8のaの植物培地プレートでは、35mmディッシュ中で、細菌用TS寒天培地(有機培地)を用いて枯草菌標準株を培養した。図8のbの植物培地プレートでは、35mmディッシュには、枯草菌標準株が植菌されていない細菌用TS寒天培地が充填されている。図8のcの植物培地プレートでは、35mmディッシュ中で、無機培地を用いて枯草菌標準株を培養した。図8のdの植物培地プレートでは、35mmディッシュには、枯草菌標準株が植菌されていない無機培地が充填されている。図8のa~dの黒いバーは、イネの基部を表す。 As a result, when Bacillus subtilis was cultured in an organic medium, the growth of rice was inhibited by the volatile components. The results are shown in FIG. The plant growth inhibitory activity of Bacillus subtilis was effective not only on Arabidopsis but also on rice. FIGS. 8a to 8d show the results of examining the influence of volatile metabolites of Bacillus subtilis on the growth of rice. In the plant medium plate of FIG. 8a, a Bacillus subtilis standard strain was cultured in a 35 mm dish using a bacterial TS agar medium (organic medium). In the plant medium plate of FIG. 8b, the 35 mm dish is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain. In the plant medium plate of FIG. 8c, the Bacillus subtilis standard strain was cultured in a 35 mm dish using an inorganic medium. In the plant culture medium plate of FIG. 8 d, the 35 mm dish is filled with an inorganic culture medium not inoculated with the Bacillus subtilis standard strain. The black bars a to d in FIG. 8 represent the base of rice.
2-4 大腸菌及びアグロバクテリウムの枯草菌揮発性代謝物のシロイヌナズナ幼植物の生長への影響
 シロイヌナズナと共に、大腸菌(DH5a)又はアグロバクテリウム(EHA101)を(A)有機培地又は(B)無機培地で培養した場合のシロイヌナズナの主根の長さ(mm)を、図9に示す。大腸菌又はアグロバクテリウムを用いた実験は、枯草菌標準株の代わりに大腸菌(DH5a)又はアグロバクテリウム(EHA101)を用いたこと以外は、上記の枯草菌標準株及びシロイヌナズナを用いた実験と同様に操作を行った。図9中、ATCC9372は枯草菌(標準株、ATCC9372)を、DH5aは大腸菌(DH5a)を、EHA101はアグロバクテリウム(EHA101)を、それぞれ表す。図9中、「No bacteria」は、微生物を共培養しなかったことを意味する。
2-4 Effect of Escherichia coli and Agrobacterium volatile metabolites on the growth of Arabidopsis seedlings Along with Arabidopsis, E. coli (DH5a) or Agrobacterium (EHA101) is transformed into (A) organic medium or (B) inorganic medium. FIG. 9 shows the length (mm) of the main root of Arabidopsis thaliana cultured in The experiment using Escherichia coli or Agrobacterium was the same as the experiment using Bacillus subtilis standard strain and Arabidopsis thaliana except that Escherichia coli (DH5a) or Agrobacterium (EHA101) was used instead of the Bacillus subtilis standard strain. The operation was performed. In FIG. 9, ATCC9372 represents Bacillus subtilis (standard strain, ATCC9372), DH5a represents E. coli (DH5a), and EHA101 represents Agrobacterium (EHA101). In FIG. 9, “No bacteria” means that the microorganisms were not co-cultured.
 図9に示されるように、枯草菌(ATCC9372)だけでなく、大腸菌(DH5a)及びアグロバクテリウム(EHA101)も、有機培地で培養した場合にシロイヌナズナの根の伸長阻害活性を示した。従って、枯草菌だけでなく、大腸菌及びアグロバクテリウムを有機培地で培養した場合の揮発性代謝物にも、シロイヌナズナの主根伸長阻害活性が保存されていることが分かった。 As shown in FIG. 9, not only Bacillus subtilis (ATCC9372) but also Escherichia coli (DH5a) and Agrobacterium (EHA101) exhibited an Arabidopsis root elongation inhibitory activity when cultured in an organic medium. Therefore, it was found that the main root elongation inhibitory activity of Arabidopsis thaliana was preserved not only in Bacillus subtilis but also in volatile metabolites when Escherichia coli and Agrobacterium were cultured in an organic medium.
<実施例2>
 実施例1の1-5-1 枯草菌を用いたアッセイにおいて、シロイヌナズナの種子の代わりにスイートバジル(Ocimum basilicum、タキイ種苗)及びニチニチソウ(Catharanthus roseus cv. Littile Delicata)の種子をそれぞれ用い、枯草菌として枯草菌標準株(A001)を用いて、同様に実験を行った。実験条件は、共培養期間を10日間とした以外は、シロイヌナズナを用いた実施例1での条件に準拠した。
<Example 2>
In the assay using Example 1-5-1 Bacillus subtilis in Example 1, seeds of sweet basil (Ocimum basilicum) and Catharanthus roseus cv. Littile Delicata were used instead of Arabidopsis seeds. The same experiment was conducted using Bacillus subtilis standard strain (A001) as The experimental conditions were based on the conditions in Example 1 using Arabidopsis except that the co-culture period was 10 days.
 結果を、図10及び図11に示す。図10のa~d及び図11のa~d中の黒いバーは、移植時の根端の位置を表す。
 図10のa~dは、スイートバジルの生長に対する枯草菌の揮発性代謝物の影響を調べた結果を示す。図10のaの植物培地プレートでは、35mmディッシュ中で、細菌用TS寒天培地を用いて枯草菌標準株(A001)を培養した。図10のbの植物培地プレートでは、35mmディッシュには、枯草菌標準株が植菌されていない細菌用TS寒天培地が充填されている。図10のcの植物培地プレートでは、35mmディッシュ中で、無機培地を用いて枯草菌標準株を培養した。図10のdの植物培地プレートでは、35mmディッシュには、枯草菌標準株が植菌されていない無機培地が充填されている。
The results are shown in FIGS. The black bars in FIGS. 10a to 10d and 11a to 11d represent the positions of root tips at the time of transplantation.
FIGS. 10a to 10d show the results of examining the influence of volatile metabolites of Bacillus subtilis on the growth of sweet basil. In the plant medium plate of FIG. 10a, a Bacillus subtilis standard strain (A001) was cultured using a TS agar medium for bacteria in a 35 mm dish. In the plant medium plate of FIG. 10b, the 35 mm dish is filled with a bacterial TS agar medium not inoculated with the Bacillus subtilis standard strain. In the plant medium plate of FIG. 10c, the Bacillus subtilis standard strain was cultured in a 35 mm dish using an inorganic medium. In the plant culture medium plate of FIG. 10d, the 35 mm dish is filled with an inorganic culture medium not inoculated with the Bacillus subtilis standard strain.
 図11のa~dは、ニチニチソウの生長に対する枯草菌の揮発性代謝物の影響を調べた結果を示す。図11のaの植物培地プレートでは、35mmディッシュ中で、細菌用TS寒天培地を用いて枯草菌標準株(A001)を培養した。図11のbの植物培地プレートでは、35mmディッシュには、枯草菌標準株が植菌されていない細菌用TS寒天培地が充填されている。図11のcの植物培地プレートでは、35mmディッシュ中で、無機培地を用いて枯草菌標準株を培養した。図11のdの植物培地プレートでは、35mmディッシュには、枯草菌標準株が植菌されていない無機培地が充填されている。 11a to 11d show the results of examining the influence of volatile metabolites of Bacillus subtilis on the growth of periwinkle. In the plant medium plate of FIG. 11a, a Bacillus subtilis standard strain (A001) was cultured in a 35 mm dish using a bacterial TS agar medium. In the plant culture medium plate of FIG. 11b, the 35 mm dish is filled with a TS agar medium for bacteria that is not inoculated with a standard strain of Bacillus subtilis. In the plant medium plate of FIG. 11c, the Bacillus subtilis standard strain was cultured in a 35 mm dish using an inorganic medium. In the plant culture medium plate of FIG. 11d, the 35 mm dish is filled with an inorganic culture medium in which the Bacillus subtilis standard strain is not inoculated.
 図10~11から分かるように、スイートバジル及びニチニチソウにおいてもシロイヌナズナ同様に、有機培地で培養した枯草菌の揮発成分により生長が阻害された。白黒写真では判別しにくいが、パネル左上(図10のa及び図11のa)の植物は完全に枯死している。 As can be seen from FIGS. 10 to 11, the growth of sweet basil and periwinkle was also inhibited by the volatile components of Bacillus subtilis cultured in an organic medium, similar to Arabidopsis thaliana. Although it is difficult to distinguish with a black and white photograph, the plant in the upper left of the panel (a in FIG. 10 and a in FIG. 11) is completely dead.
<実施例3>
 実施例1と同様に、イネ(Oryza sativa 品種:日本晴)の種皮を取り除き、滅菌した後に播種し、4日間枯草菌(ATCC9372、Bot Killer(B. subtilis Strain DB9011)、及びImpression(B. subtilis Strain QST-713)のいずれか)又はアグロバクテリウム(EHA101)と共培養した。B. subtilis Strain DB9011及びB. subtilis Strain QST-713は、それぞれ出光興産、明治製菓社から入手した。イネの生育条件に合わせるため、植物培地に0.5× Hoagland No.2培地を使用したこと、生育温度を27℃としたこと以外は、実施例1のシロイヌナズナでの実験(実施例1の1-5-1 枯草菌を用いたアッセイ)と同様に操作を行った。
<Example 3>
In the same manner as in Example 1, the seed coat of rice (Oryza sativa variety: Nihonbare) was removed, sterilized, and then sown, and then cultivated for 4 days. QST-713)) or Agrobacterium (EHA101). B. subtilis Strain DB9011 and B. subtilis Strain QST-713 were obtained from Idemitsu Kosan and Meiji Seika, respectively. In order to match the growth conditions of rice, 0.5 × Hoagland No. The same operation as in the experiment in Arabidopsis thaliana in Example 1 (assay using 1-5-1 Bacillus subtilis in Example 1) was performed except that 2 medium was used and the growth temperature was 27 ° C. .
 結果を図12に示す。図12のa~e中の黒いバーは、イネを播種した位置を表す。
図12のaは、コントロールであり、微生物を共培養しなかったものである。図12のb、図12のd及び図12のeはそれぞれ、枯草菌と共培養した場合である。図12のcは、アグロバクテリウム(EHA101)と共培養した場合である。図12のbの枯草菌は、枯草菌標準株(ATCC9372)であり、図12のdの枯草菌は、B. subtilis Strain DB9011である。図12のeの枯草菌は、B. subtilis Strain QST-713である。
 図12のb、図12のd及び図12のeに示すように、枯草菌を有機培地(図12の(A)の列)で培養した場合には、どの枯草菌を用いた場合でも、その揮発成分によりイネの生育が阻害された。枯草菌を無機培地(図12の(B)の列)で培養しても、イネの生育阻害は起こらなかった。
 図12のcから、アグロバクテリウムを有機培地で培養した場合には、その揮発成分によりイネの生育が阻害された。アグロバクテリウムを無機培地(図12の(B)の列)で培養しても、イネの生育阻害は起こらなかった。
 なお、使用したイネの種子は、シロイヌナズナと比較して発芽が必ずしも完全には同調していないため、主根の伸長度合いに多少のばらつきがあった。
 このように、イネの場合も、枯草菌だけでなくアグロバクテリウムの揮発成分により主根伸長など生長阻害を受けることが明らかになった。
The results are shown in FIG. The black bars in a to e in FIG. 12 represent the positions where rice was sown.
FIG. 12 a is a control, and the microorganism was not co-cultured. FIG. 12 b, FIG. 12 d, and FIG. 12 e are cases where co-cultured with Bacillus subtilis. FIG. 12c shows the case of co-culture with Agrobacterium (EHA101). The Bacillus subtilis of FIG. 12b is a Bacillus subtilis standard strain (ATCC9372), and the Bacillus subtilis of FIG. 12d is B. subtilis Strain DB9011. The Bacillus subtilis of e of FIG. 12 is B. subtilis Strain QST-713.
As shown in FIG. 12b, FIG. 12d and FIG. 12e, when Bacillus subtilis is cultured in an organic medium (row (A) in FIG. 12), no matter which Bacillus subtilis is used, The volatile components inhibited rice growth. Even when Bacillus subtilis was cultured in an inorganic medium (row (B) in FIG. 12), growth inhibition of rice did not occur.
From FIG. 12c, when Agrobacterium was cultured in an organic medium, the growth of rice was inhibited by its volatile components. Even when Agrobacterium was cultured in an inorganic medium (row (B) in FIG. 12), growth inhibition of rice did not occur.
In addition, since the used rice seeds were not necessarily completely germinated in comparison with Arabidopsis thaliana, there was some variation in the degree of elongation of the main root.
As described above, it has been clarified that rice also suffers from growth inhibition such as main root elongation not only by Bacillus subtilis but also by volatile components of Agrobacterium.
 本発明は、農林業、園芸等の分野において有用である。 The present invention is useful in fields such as agriculture and forestry and horticulture.
1 枯草菌標準株を植菌した35mmディッシュ(細菌用TS寒天培地)
2 枯草菌標準株を植菌していない35mmディッシュ(細菌用TS寒天培地)
3 枯草菌標準株を植菌した35mmディッシュ(炭素源として糖のみを含む寒天培地)
4 枯草菌標準株を植菌した35mmディッシュ(炭素源として糖のみを含む寒天培地)
1 35mm dish inoculated with a standard strain of Bacillus subtilis (TS agar medium for bacteria)
2 35mm dish not inoculated with the standard strain of Bacillus subtilis (TS agar medium for bacteria)
3 35mm dish inoculated with a standard strain of Bacillus subtilis (agar medium containing only sugar as a carbon source)
4 35mm dish inoculated with Bacillus subtilis standard strain (agar medium containing only sugar as carbon source)

Claims (15)

  1.  3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を有効成分として含有することを特徴とする植物の生長制御剤。 It contains at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone as an active ingredient. Plant growth regulator.
  2.  グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含有する揮発性代謝物を含有する請求項1に記載の植物の生長制御剤。 3-methyl-2-pentanone generated by culturing at least one microorganism selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar A volatile metabolite containing at least one compound selected from the group consisting of 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone. Growth control agent.
  3.  グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を含有することを特徴とする植物の生長制御剤。 It contains volatile metabolites generated by culturing at least one microorganism selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi, and molds in a medium containing sugar and a carbon source other than sugar. A plant growth regulator characterized by
  4.  微生物が、グラム陽性菌、グラム陰性菌、又は糸状菌である請求項2又は3に記載の植物の生長制御剤。 4. The plant growth regulator according to claim 2 or 3, wherein the microorganism is a gram positive bacterium, a gram negative bacterium, or a filamentous fungus.
  5.  微生物が、枯草菌、アグロバクテリウム、又は菌根菌である請求項2~4のいずれか一項に記載の植物の生長制御剤。 The plant growth regulator according to any one of claims 2 to 4, wherein the microorganism is Bacillus subtilis, Agrobacterium, or mycorrhizal fungus.
  6.  植物の生長制御が、植物の生長抑制又は生長促進である請求項1~5のいずれか一項に記載の植物の生長制御剤。 The plant growth regulator according to any one of claims 1 to 5, wherein the plant growth control is plant growth suppression or growth promotion.
  7.  植物の生長制御が、植物の生長抑制である請求項1又は2に記載の植物の生長制御剤。 The plant growth regulator according to claim 1 or 2, wherein the plant growth control is plant growth inhibition.
  8.  植物体、植物の栽培地又は植物の種子に、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を施用することを特徴とする植物の生長制御方法。 At least one selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone for the plant body, plant cultivation site or plant seed A method for controlling plant growth, which comprises applying the above compound.
  9.  グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する、3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物を含む揮発性代謝物を施用する請求項8に記載の植物の生長制御方法。 3-methyl-2-pentanone generated by culturing at least one microorganism selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi and molds in a medium containing sugar and a carbon source other than sugar The plant growth according to claim 8, wherein a volatile metabolite comprising at least one compound selected from the group consisting of 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone is applied. Control method.
  10.  植物体、植物の栽培地又は植物の種子に、グラム陽性菌、グラム陰性菌、真菌及びカビからなる群より選択される少なくとも1種の微生物を、糖及び糖以外の炭素源を含む培地で培養することにより発生する揮発性代謝物を施用することを特徴とする植物の生長制御方法。 At least one microorganism selected from the group consisting of gram-positive bacteria, gram-negative bacteria, fungi, and molds is cultured in a medium containing a carbon source other than sugar and sugar on the plant body, plant cultivation site, or plant seed. A method for controlling plant growth, which comprises applying a volatile metabolite generated by the process.
  11.  微生物が、グラム陽性菌、グラム陰性菌、又は糸状菌である請求項9又は10に記載の植物の生長制御方法。 The plant growth control method according to claim 9 or 10, wherein the microorganism is a gram-positive bacterium, a gram-negative bacterium, or a filamentous fungus.
  12.  微生物が、枯草菌、アグロバクテリウム、又は菌根菌である請求項9~11のいずれか一項に記載の植物の生長制御方法。 The plant growth control method according to any one of claims 9 to 11, wherein the microorganism is Bacillus subtilis, Agrobacterium, or mycorrhizal fungus.
  13.  植物の生長制御が、植物の生長抑制又は生長促進である請求項8~12のいずれか一項に記載の植物の生長制御方法。 The plant growth control method according to any one of claims 8 to 12, wherein the plant growth control is plant growth suppression or growth promotion.
  14.  植物の生長制御が、植物の生長抑制である請求項8又は9に記載の植物の生長制御方法。 The plant growth control method according to claim 8 or 9, wherein the plant growth control is plant growth inhibition.
  15.  3-メチル-2-ペンタノン、2,5-ジメチルピラジン、3-ヒドロキシ-2-ブタノン、及び2-ペンタデカノンからなる群より選択される少なくとも1種の化合物の、植物の生長を制御するための使用。 Use of at least one compound selected from the group consisting of 3-methyl-2-pentanone, 2,5-dimethylpyrazine, 3-hydroxy-2-butanone, and 2-pentadecanone for controlling plant growth .
PCT/JP2011/055135 2011-03-04 2011-03-04 Growth regulation agent for plants, growth regulation method for plants and use of same WO2012120604A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/055135 WO2012120604A1 (en) 2011-03-04 2011-03-04 Growth regulation agent for plants, growth regulation method for plants and use of same
PCT/JP2012/055232 WO2012121102A1 (en) 2011-03-04 2012-03-01 Growth regulation agent for plants, growth regulation method for plants and use of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055135 WO2012120604A1 (en) 2011-03-04 2011-03-04 Growth regulation agent for plants, growth regulation method for plants and use of same

Publications (1)

Publication Number Publication Date
WO2012120604A1 true WO2012120604A1 (en) 2012-09-13

Family

ID=46797614

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/055135 WO2012120604A1 (en) 2011-03-04 2011-03-04 Growth regulation agent for plants, growth regulation method for plants and use of same
PCT/JP2012/055232 WO2012121102A1 (en) 2011-03-04 2012-03-01 Growth regulation agent for plants, growth regulation method for plants and use of same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055232 WO2012121102A1 (en) 2011-03-04 2012-03-01 Growth regulation agent for plants, growth regulation method for plants and use of same

Country Status (1)

Country Link
WO (2) WO2012120604A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024037321A (en) * 2022-09-07 2024-03-19 孝昭 石井 Organic hydroponic cultivation and organic hydroponic cultivation using mycorrhizal fungi and their partner bacteria, and production of mycorrhizal fungal spores and partner bacteria under organic hydroponic cultivation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769987A (en) * 1993-09-02 1995-03-14 Sankyo Co Ltd Brassinosteroid activity inhibitor
JP2000053513A (en) * 1998-08-07 2000-02-22 Nok Corp Microorganism having growth inhibitory activity
JP2000110136A (en) * 1998-10-02 2000-04-18 Koki:Kk Grassproof chip material and grassproofing method
JP2000178110A (en) * 1998-12-11 2000-06-27 Nok Corp Microorganism manifesting growth-inhibiting activity
JP2003206212A (en) * 2002-01-10 2003-07-22 Kumiai Chem Ind Co Ltd Plant disease injury-controlling method and composition therefor
JP2009173577A (en) * 2008-01-24 2009-08-06 Sds Biotech Corp Method for agrochemical application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769987A (en) * 1993-09-02 1995-03-14 Sankyo Co Ltd Brassinosteroid activity inhibitor
JP2000053513A (en) * 1998-08-07 2000-02-22 Nok Corp Microorganism having growth inhibitory activity
JP2000110136A (en) * 1998-10-02 2000-04-18 Koki:Kk Grassproof chip material and grassproofing method
JP2000178110A (en) * 1998-12-11 2000-06-27 Nok Corp Microorganism manifesting growth-inhibiting activity
JP2003206212A (en) * 2002-01-10 2003-07-22 Kumiai Chem Ind Co Ltd Plant disease injury-controlling method and composition therefor
JP2009173577A (en) * 2008-01-24 2009-08-06 Sds Biotech Corp Method for agrochemical application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUTIERREZ-LUNA, FRANCISCA M. ET AL.: "Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission", SYMBIOSIS, vol. 51, 2010, pages 75 - 83 *
KAI, M. ET AL.: "Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana", APPL. MICROBIOL. BIOTECHNOL., vol. 88, 2010, pages 965 - 976 *
RYU, C-M. ET AL.: "Bacterial volatiles promote growth in Arabidopsis.", PROC. NATL. ACAD. SCI. USA, vol. 100, no. 8, 2003, pages 4927 - 4932 *

Also Published As

Publication number Publication date
WO2012121102A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2023138678A1 (en) Bacillus velezensis and use thereof
JP5714603B2 (en) Novel fluorescent Pseudomonas species of the Pseudomonas azotoformans species for enhancing budding and growth of plants
KR100946633B1 (en) Methods for plant growth promotion and plant protection by bacterial metabolites
CN113226034B (en) Compounds and methods for improving soil nutrient utilization
JP2015528296A (en) Methods for enhancing abiotic stress resistance in plants
RU2626543C2 (en) Paenibacillus mucilaginosus bacteria strain, method for plants growth stimulation and protection against diseases and application of paenibacillus mucilaginosus bacteria strain as fertiliser and biological control agent (antipatogenic means) in prevention and/or treatment of plant disease
BG112709A (en) The bacterial strain bacillus amyloliquefaciens subsp. plantarum bs89 as a means of increasing plant productivity and their protection against diseases
WO2022004515A1 (en) Novel microorganism belonging to genus lactobacillus, and agent and method for controlling plant disease caused by ralstonia solanacearum or ralstonia pseudosolanacearum
JP2022153489A (en) Biostimulant compositions containing lipopeptides
KR101524651B1 (en) Composition for plant disease control containing Streptomyces griseus S4-7&#39; or its culture fluid as an active ingredient
JP2001172112A (en) Activator for plant, method for producing the activator, method for imparting activity, activity promoter and method for applying the promoter
RU2495119C1 (en) STRAIN OF BACTERIA Bacillus subtilis 8A AS AGENT TO INCREASE PRODUCTIVITY OF PLANTS AND THEIR PROTECTION AGAINST PHYTOPATHOGENIC MICROORGANISMS
JP6018874B2 (en) Plant growth regulator
WO2012067127A1 (en) Novel bacterium strain, and crown gall disease control agent and/or agent for improving plant seed germination rate produced using the novel bacterium strain
KR101615873B1 (en) A novel strain of alcaligenes faecalis and a use of the same
RU2558291C2 (en) Polyfunctional means for plant growing
JP4768308B2 (en) Plant disease control microorganism and plant disease control method
WO2012120604A1 (en) Growth regulation agent for plants, growth regulation method for plants and use of same
RU2736340C9 (en) Agricultural growth stimulant
RU2551968C2 (en) Bacillus pumilus A 1.5 BACTERIA STRAIN AS AGENT FOR INCREASING PLANT PRODUCTIVITY AND PLANT PROTECTION FROM DISEASES CAUSED BY PHYTOPATHOGENIC MICROORGANISMS
EP3462879B1 (en) Method for improving the development of plants
JP2001206811A (en) Plant disease controlling agent and plant epidemic- controlling method
JP4969961B2 (en) Plant soil-borne disease control material using new fungi
KR102239389B1 (en) Alleviation of drought stress in pepper plants by Bacillus butanolivorans KJ40 and uses thereof
WO2021230175A1 (en) Plant disease control agent and plant disease control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP