WO2012119546A2 - Method for preparing recombinant escherichia coli to produce succinic acid through fermentation - Google Patents

Method for preparing recombinant escherichia coli to produce succinic acid through fermentation Download PDF

Info

Publication number
WO2012119546A2
WO2012119546A2 PCT/CN2012/072012 CN2012072012W WO2012119546A2 WO 2012119546 A2 WO2012119546 A2 WO 2012119546A2 CN 2012072012 W CN2012072012 W CN 2012072012W WO 2012119546 A2 WO2012119546 A2 WO 2012119546A2
Authority
WO
WIPO (PCT)
Prior art keywords
escherichia coli
succinic acid
fermentation
anaerobic
nad
Prior art date
Application number
PCT/CN2012/072012
Other languages
French (fr)
Chinese (zh)
Other versions
WO2012119546A3 (en
Inventor
姜岷
马江锋
陈可泉
郭亭
韦萍
欧阳平凯
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2012119546A2 publication Critical patent/WO2012119546A2/en
Publication of WO2012119546A3 publication Critical patent/WO2012119546A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)

Definitions

  • the invention belongs to the field of bioengineering technology, and relates to a method for preparing succinic acid by recombinant Escherichia coli, specifically relates to increasing the growth rate of the strain by increasing the intracellular NAD+ biosynthesis of the strain, thereby improving the production of succinic acid under anaerobic conditions.
  • the method of ability specifically involves the overexpression of one or more genes related to NAD + biosynthesis in Escherichia coli by molecular biological means, and adding a certain concentration of the precursor substance, and finally realizing the strain Ding II under the specific anaerobic condition. Acid production capacity.
  • Succinic acid is a bulk chemical widely used in the pharmaceutical, pesticide, dye, fragrance, paint, food and plastic industries. It is also used as an excellent C4 platform compound for the synthesis of 1,4-butanediol, tetrahydrofuran, ⁇ .
  • Organic chemicals such as butyrolactone and polybutylene succinate (PBS) biodegradable materials are considered by the US Department of Energy to be one of the 12 most valuable biorefining products in the future.
  • the use of microbial fermentation to convert renewable resources (glucose, xylose, etc.) to produce succinic acid Due to the wide range of raw materials and low price, low pollution, environmental friendliness, and absorption of fixed C0 2 during fermentation, it can effectively alleviate the greenhouse effect. It has opened up a new way of utilizing greenhouse gas carbon dioxide, which has become a research hotspot in recent years.
  • the production strain of succinic acid mainly includes naerobio spirillum Actinobacillus Mannheimia
  • Succiniciproducens Recombinant C. glutamicum and recombinant E. coli.
  • the use of wild strains to produce succinic acid although a higher product concentration is obtained, but the culture medium cost is higher, and by-products such as citric acid and acetic acid accumulate more, hindering the industrialization process.
  • Escherichia coli Due to its clear genetic background, easy operation, easy regulation, simple medium requirements and rapid growth, Escherichia coli has been widely used in recent years to obtain excellent strains of succinic acid.
  • Escherichia coli can grow under both aerobic and anaerobic conditions, but under aerobic conditions, the strain grows rapidly, and the final density of cells can be increased to a few hundred dry weights with appropriate strategies.
  • intracellular carbon metabolism takes the tricarboxylic acid cycle; under anaerobic conditions, E. coli grows slowly, and the final cell dry weight is low.
  • the main reason may be that the cells undergo mixed acid fermentation under anaerobic conditions, and there are a large number of inhibitors.
  • Another reason may be that the intracellular electron transport chain does not work under anaerobic conditions, and the coenzyme NAD+ and ATP supply are insufficient.
  • the fermentation mode for producing succinic acid by using Escherichia coli mainly includes specific anaerobic fermentation and two-stage fermentation.
  • Foreign Vemuri et al. used E. coli AFP111 (PYC) two-stage fermentation, and its anaerobic stage can complete 1.1 gg" 1 succinic acid yield and 1.3 gL ⁇ -h" 1 succinic acid production intensity (Applied Environmental Microbiology. 2002, 68, 1715 ⁇ 1727).
  • the sugar consumed in the aerobic phase is taken into account and the time taken, the yield and production intensity will decrease.
  • the final concentration and yield of succinic acid were low due to slow growth of the strain and low final cell density. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method for improving the growth ability of Escherichia coli under anaerobic conditions, thereby improving the production capacity of succinic acid in a specific anaerobic fermentation process.
  • the present invention uses the following technical solutions:
  • a method for preparing a recombinant Escherichia coli to produce succinic acid which comprises the following steps:
  • the fermented anaerobic medium of the present invention is understood to be a conventional medium for fermenting succinic acid by any Escherichia coli in the prior art.
  • the concentration of nicotinic acid added in the step (2) is 0.1 mmol/L to 1 mmol/L.
  • Figure 1 is a gene related to the biosynthetic pathway of NAD + ; the present invention by overexpressing the NAD + biosynthesis-related gene, and on the other hand adding niacin as a NAD + organism in the fermented anaerobic medium
  • the synthesized precursor material which accelerates the growth rate of the strain, can greatly enhance the ability of the specific anaerobic fermentation to produce succinic acid.
  • A is NZN111 with 0.5 mmol/L nicotinic acid
  • B is NZNl ll/pTrc99a with 0.5 mmol/L nicotinic acid
  • C to E is NZNl ll/pTrc99a-/S with 0.1 mmol/L, 0.3 mmol/L, 0.5 Methanol/L and 1 mmol/L niacin.
  • the source of Escherichia coli K12 according to the present invention is: purchased from Beijing Institute of Biology, Chinese Academy of Sciences.
  • the source of pTrc99a for the expression plasmid of the present invention is: purchased from Introvegen.
  • the source of E.coli NZNl l l according to the present invention is:
  • the biological material is also disclosed and authorized in the patent documents of the Chinese patent (Application No. 96198547.X, Application Date 1996.10.31, Authorization Date January 1, 2003, Authorization Bulletin No. CN1097632C).
  • the fermentation medium of the present invention is: LB+glucose (20 g/L) + basic magnesium carbonate 0.48 g+Kan (kanamycin 30 g/mL) + Amp (ampicillin 50 g/mL) + Chl (Chloromycin 25 g/mL) + 0.3 mM IPTG.
  • Escherichia coli NZN111 (CGSC7726), when introduced into plasmid pTrc99a-/S, overexpressed niacin phosphoribosyltransferase, restored the ability of NZN111 to metabolize glucose under anaerobic conditions and had high yield of succinic acid accumulation.
  • Upstream primer 5'- CATGCCATGGATGACACAATTCGCTTCTCCTG-3'
  • Downstream primer 5 ' -CCC AAGCTTCACTTGTCC ACCCGTAAATGG-3 '
  • the plasmid pTrc99a-/S was introduced into the competent state of E.coW NZNll, and a recombinant Escherichia coli fermentation strain was obtained.
  • the specific anaerobic fermentation mode was used to enter the flask from the cryotube by 1% (v/v) inoculum.
  • niacin was added to a final concentration of 0.5 mmol/L, and anaerobic culture was carried out for 8 h at 30 ° C and 170 rpm.
  • This example illustrates the need to increase the biosynthesis of intracellular NAD+ in strains, in addition to the need to overexpress recombinant expression plasmids such as pncB, and also to add a certain concentration of niacin.
  • the anaerobic fermentation mode was introduced into the flask by a 1% (v/v) inoculum from the cryopreservation tube.
  • IPTG was added to a final concentration of 0.3 mmol/L.
  • the niacin is at a final concentration of 0.1 to 1.0 mmol/L, and anaerobic incubation is carried out at 30 ° C, 170 rpm for 24 h.
  • This example illustrates the effect on glucose consumption and product distribution after biosynthesis of intracellular NAD+ in E. coli.
  • This example illustrates the method of introducing recombinant plasmids into other recombinant plasmids in addition to the introduction of the /S recombinant expression plasmid according to the method of Example 1, and other examples involving the addition of nicotinic acid and specific anaerobic fermentation are the same as those in Example 2.
  • Upstream primer 5'- CATGCCATGGGGCGGACGTATTTATCGACGGTTGA -3'
  • Construction of an expression plasmid overexpressing NAD synthase comprising: (1) synthesizing primers with Nco I and Hind III cleavage sites,
  • Upstream primer 5'-CATGCCATGGCGCTTGTCGTTTCAGTAGCAACGGG-3 '
  • Downstream primer 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3 '
  • the plasmid pTrc99a-i E was introduced into the competent state of E. coli NZN111 to obtain a recombinant Escherichia coli fermentation strain.
  • Upstream primer 5'- CCCAAGCTTGGCGGACGTATTTATCGACGGTTGA -3 '
  • the plasmid pTrc99a-/S- was introduced into the competent state of E.coW NZN111, and the obtained positive transformant was a newly constructed strain, and a recombinant Escherichia coli fermentation strain was obtained.
  • Overexpression/S gene and i E gene Construction of an expression plasmid overexpressing co-expressed niacin phosphoribosyltransferase and NAD synthase, the process includes: (1) Hind III restriction sites are present at both ends of the synthesis Primer,
  • Upstream primer 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '
  • Downstream primer 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3 '
  • Overexpression of the gene and the iE gene Construction of an expression plasmid overexpressing the co-expressed niacin mononucleotide adenylyltransferase and NAD synthase, the process comprising:
  • Upstream primer 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '
  • Downstream primer 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3'
  • the plasmid pTrc99a- -iE was introduced into the competent state of E.coWNZNlll to obtain a recombinant Escherichia coli fermentation strain.
  • Overexpression/S gene, gene and iE gene Construction of an expression plasmid overexpressing co-expressed nicotinic acid phosphoribosyltransferase, nicotinic acid single nucleotide adenylyltransferase and NAD synthetase, the process comprising:
  • Upstream primer 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '
  • Downstream primer 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3'
  • the plasmid pTrc99a-/S--iE was introduced into the competent state of E. coli NZN111 to obtain recombinant Escherichia coli fermenting bacteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method for preparing recombinant Escherichia coli to produce succinic acid through fermentation, belonging to the technical field of bioengineering. The invention is mainly for increasing the growth rate of the strain under the anaerobic condition and the synthesis rate of succinic acid by overexpressing NAD+ biosynthesis-related genes in Escherichia coli, and adding a certain concentration of nicotinic acid to the anaerobic culture medium as the precursor material of NAD+ biosynthesis,. By this method, the problem of low production rate of the succinic acid during specific anaerobic fermentation of the recombinant Escherichia coli can be solved, at the same time, a means is provided for anaerobic production of an enzyme preparation by using the Escherichia coli.

Description

一种制备重组大肠杆菌发酵生产丁二酸的方法  Method for preparing recombinant succinic acid to produce succinic acid
技术领域 Technical field
本发明属于生物工程技术领域, 涉及一种制备重组大肠杆菌发酵生产丁二酸的方法, 具 体涉及一种通过提高菌株胞内 NAD+的生物合成加快菌株生长速率进而提高厌氧条件下丁二 酸生产能力的方法, 具体涉及利用分子生物学手段在大肠杆菌中过量表达 NAD+生物合成相 关的一个或者多个基因, 并且添加一定浓度的前体物质, 最终实现专一性厌氧条件下菌株丁 二酸的生产能力。 The invention belongs to the field of bioengineering technology, and relates to a method for preparing succinic acid by recombinant Escherichia coli, specifically relates to increasing the growth rate of the strain by increasing the intracellular NAD+ biosynthesis of the strain, thereby improving the production of succinic acid under anaerobic conditions. The method of ability specifically involves the overexpression of one or more genes related to NAD + biosynthesis in Escherichia coli by molecular biological means, and adding a certain concentration of the precursor substance, and finally realizing the strain Ding II under the specific anaerobic condition. Acid production capacity.
背景技术 Background technique
丁二酸为大宗化学品, 被广泛应用于医药、 农药、 染料、 香料、 油漆、 食品和塑料等行 业, 同时作为优秀的 C4平台化合物, 可用于合成 1 ,4-丁二醇、 四氢呋喃、 γ-丁内酯等有机化 学品以及聚丁二酸丁二醇酯(PBS )类生物可降解材料, 被美国能源部认为是未来 12种最有 价值的生物炼制产品之一。  Succinic acid is a bulk chemical widely used in the pharmaceutical, pesticide, dye, fragrance, paint, food and plastic industries. It is also used as an excellent C4 platform compound for the synthesis of 1,4-butanediol, tetrahydrofuran, γ. Organic chemicals such as butyrolactone and polybutylene succinate (PBS) biodegradable materials are considered by the US Department of Energy to be one of the 12 most valuable biorefining products in the future.
利用微生物发酵法转化可再生资源 (葡萄糖、 木糖等)生产丁二酸, 由于原料来源广泛 且价格低廉, 污染小, 环境友好, 且在发酵过程中可吸收固定 C02 , 能有效緩解温室效应, 开辟了温室气体二氧化碳利用的新途径, 近年来成为研究的热点。 丁二酸的生产菌株主要包 括 naerobio spirillum
Figure imgf000003_0001
Actinobacillus Mannheimia
The use of microbial fermentation to convert renewable resources (glucose, xylose, etc.) to produce succinic acid. Due to the wide range of raw materials and low price, low pollution, environmental friendliness, and absorption of fixed C0 2 during fermentation, it can effectively alleviate the greenhouse effect. It has opened up a new way of utilizing greenhouse gas carbon dioxide, which has become a research hotspot in recent years. The production strain of succinic acid mainly includes naerobio spirillum
Figure imgf000003_0001
Actinobacillus Mannheimia
succiniciproducens . 重组谷氨酸棒杆菌和重组大肠杆菌。 利用野生菌株生产丁二酸, 虽然获 得了较高的产物浓度, 但培养过程培养基成本较高, 且曱酸、 乙酸等副产物积累较多, 阻碍 了其工业化进程。 Succiniciproducens . Recombinant C. glutamicum and recombinant E. coli. The use of wild strains to produce succinic acid, although a higher product concentration is obtained, but the culture medium cost is higher, and by-products such as citric acid and acetic acid accumulate more, hindering the industrialization process.
大肠杆菌由于遗传背景清楚、 易操作、 易调控、 培养基要求简单和生长迅速等优点, 近 年来被广泛用于研究以获得产丁二酸优秀菌株。 大肠杆菌作为一种兼性好氧菌, 在有氧及厌 氧条件下均能生长, 但在有氧条件下, 菌株生长快速, 釆用合适的策略细胞最终密度可以提 高至细胞干重几百, 且胞内碳代谢走三羧酸循环; 在厌氧条件下大肠杆菌生长緩慢, 且终细 胞干重较低, 其主要原因可能是厌氧条件下细胞进行混合酸发酵, 有大量抑制物产生, 另有 原因可能是厌氧条件下胞内的电子传递链不起作用, 辅酶 NAD+和 ATP供给不足。  Due to its clear genetic background, easy operation, easy regulation, simple medium requirements and rapid growth, Escherichia coli has been widely used in recent years to obtain excellent strains of succinic acid. As a facultative aerobic bacterium, Escherichia coli can grow under both aerobic and anaerobic conditions, but under aerobic conditions, the strain grows rapidly, and the final density of cells can be increased to a few hundred dry weights with appropriate strategies. And intracellular carbon metabolism takes the tricarboxylic acid cycle; under anaerobic conditions, E. coli grows slowly, and the final cell dry weight is low. The main reason may be that the cells undergo mixed acid fermentation under anaerobic conditions, and there are a large number of inhibitors. Another reason may be that the intracellular electron transport chain does not work under anaerobic conditions, and the coenzyme NAD+ and ATP supply are insufficient.
利用大肠杆菌生产丁二酸的发酵模式主要包括专一性厌氧发酵及两阶段发酵。 国外 Vemuri等人利用大肠杆菌 AFP111 ( PYC )两阶段发酵, 其厌氧阶段可完成 1.1 g-g"1的丁二酸 收率和 1.3 g-L^-h"1的丁二酸生产强度 ( Applied Environmental Microbiology. 2002, 68, 1715〜 1727 )。 但如果考虑有氧阶段消耗的糖及花费的时间, 收率和生产强度将下降。 而专一性厌氧 发酵时, 由于菌株生长緩慢, 且最终菌体密度低, 丁二酸终浓度和收率均较低。 发明内容 The fermentation mode for producing succinic acid by using Escherichia coli mainly includes specific anaerobic fermentation and two-stage fermentation. Foreign Vemuri et al. used E. coli AFP111 (PYC) two-stage fermentation, and its anaerobic stage can complete 1.1 gg" 1 succinic acid yield and 1.3 gL^-h" 1 succinic acid production intensity (Applied Environmental Microbiology. 2002, 68, 1715~ 1727). However, if the sugar consumed in the aerobic phase is taken into account and the time taken, the yield and production intensity will decrease. In the case of specific anaerobic fermentation, the final concentration and yield of succinic acid were low due to slow growth of the strain and low final cell density. Summary of the invention
本发明要解决的技术问题在于提供一种提高大肠杆菌厌氧条件下生长能力的方法, 进而 提高专一性厌氧发酵过程丁二酸的生产能力。  The technical problem to be solved by the present invention is to provide a method for improving the growth ability of Escherichia coli under anaerobic conditions, thereby improving the production capacity of succinic acid in a specific anaerobic fermentation process.
为实现本发明的技术目的, 本发明釆用以下技术方案:  In order to achieve the technical object of the present invention, the present invention uses the following technical solutions:
一种制备重组大肠杆菌发酵生产丁二酸的方法, 其特征在于包括以下步骤:  A method for preparing a recombinant Escherichia coli to produce succinic acid, which comprises the following steps:
( 1 )在产丁二酸大肠杆菌出发菌株中过量表达 / S , nadD, 三种基因中的一个或 者多个, 得到重组大肠杆菌菌株;  (1) overexpressing /S, nadD, one or more of the three genes in a strain derived from Escherichia coli to obtain a recombinant Escherichia coli strain;
( 2 )在发酵厌氧培养基中添加烟酸;  (2) adding nicotinic acid to the fermentation anaerobic medium;
( 3 )利用步骤(1 )得到的重组大肠杆菌专一性厌氧发酵生产丁二酸。  (3) Producing succinic acid by the specific anaerobic fermentation of recombinant Escherichia coli obtained in the step (1).
其中, 本发明所述的发酵厌氧培养基应理解为现有技术中任意大肠杆菌发酵产丁二酸用 的常规培养基, 特殊地, 步骤(2 ) 中所述的添加烟酸的浓度为 0.1 mmol/L〜l mmol/L。  The fermented anaerobic medium of the present invention is understood to be a conventional medium for fermenting succinic acid by any Escherichia coli in the prior art. Specifically, the concentration of nicotinic acid added in the step (2) is 0.1 mmol/L to 1 mmol/L.
本发明的有益效果在于: 附图 1是 NAD+的生物合成途径相关的基因; 本发明通过过量 表达 NAD+生物合成相关的基因,并且另一方面在发酵厌氧培养基中添加烟酸作为 NAD+生物 合成的前体物质, 这样加快了菌株生长速率, 将可大幅度提高专一性厌氧发酵生产丁二酸的 能力。 The beneficial effects of the present invention are: Figure 1 is a gene related to the biosynthetic pathway of NAD + ; the present invention by overexpressing the NAD + biosynthesis-related gene, and on the other hand adding niacin as a NAD + organism in the fermented anaerobic medium The synthesized precursor material, which accelerates the growth rate of the strain, can greatly enhance the ability of the specific anaerobic fermentation to produce succinic acid.
附图说明 DRAWINGS
图 1 NAD+的生物合成途径。 Figure 1 Biosynthetic pathway of NAD + .
图 2加入不同浓度的烟酸进行诱导后对菌体生物量及丁二酸产量影响  Figure 2 Effect of different concentrations of niacin on the biomass and succinic acid production after induction
其中, A是 NZN111添加 0.5 mmol/L烟酸, B是 NZNl l l/pTrc99a添加 0.5 mmol/L烟酸, C至 E 是 NZNl l l/pTrc99a-/ S添加 0.1 mmol/L, 0.3 mmol/L, 0.5mmol/L和 lmmol/L烟酸。  Wherein, A is NZN111 with 0.5 mmol/L nicotinic acid, B is NZNl ll/pTrc99a with 0.5 mmol/L nicotinic acid, C to E is NZNl ll/pTrc99a-/S with 0.1 mmol/L, 0.3 mmol/L, 0.5 Methanol/L and 1 mmol/L niacin.
具体实施方式 detailed description
下面的实施例对本发明作详细说明, 但对本发明没有限制。  The following examples are illustrative of the invention but are not intended to limit the invention.
本发明所述的大肠杆菌 K12的来源是: 购自中国科学院北京^:生物研究所。  The source of Escherichia coli K12 according to the present invention is: purchased from Beijing Institute of Biology, Chinese Academy of Sciences.
本发明所述的表达质粒用 pTrc99a的来源是: 购自 Introvegen公司。  The source of pTrc99a for the expression plasmid of the present invention is: purchased from Introvegen.
本发明所述的 E.coli NZNl l l的来源是:  The source of E.coli NZNl l l according to the present invention is:
( 1 ) Biotechnol Bioeng, 2001,74:89〜95。 申请人首先通过查阅到该生物材料的上述文献 出处, 并联系了发表人系美国芝加哥大学, 并邮件请求其赠与该生物材料, 并免费获得了该 生物材料; 且申请人保证从本申请日起二十年内向公众发放该生物材料;  (1) Biotechnol Bioeng, 2001, 74: 89-95. The applicant first consulted the source of the above-mentioned documents of the biological material, and contacted the publisher to the University of Chicago, and requested the gift of the biological material, and obtained the biological material free of charge; and the applicant promised from the date of this application Distribute the biological material to the public within 20 years;
( 2 )该生物材料还在中国专利 (申请号 96198547.X, 申请日 1996.10.31 , 授权日 2003 年 1月 1 日, 授权公告号 CN1097632C ) 的专利文献中公开并获得授权。 本发明所述的发酵用培养基为: LB+葡萄糖( 20 g/L ) +碱式碳酸镁 0.48 g+Kan (卡那霉素 30 g/mL)+Amp (氨苄青霉素 50 g/mL)+Chl(氯霉素 25 g/mL)+0.3 mM IPTG。 实施例 1 (2) The biological material is also disclosed and authorized in the patent documents of the Chinese patent (Application No. 96198547.X, Application Date 1996.10.31, Authorization Date January 1, 2003, Authorization Bulletin No. CN1097632C). The fermentation medium of the present invention is: LB+glucose (20 g/L) + basic magnesium carbonate 0.48 g+Kan (kanamycin 30 g/mL) + Amp (ampicillin 50 g/mL) + Chl (Chloromycin 25 g/mL) + 0.3 mM IPTG. Example 1
本实施例说明在大肠杆菌 NZN 111中过量表达 pncB后, 通过 IPTG诱导, 可有效提高胞 内 NADH和 NAD+的浓度。 This example demonstrates that after overexpression of pncB in E. coli NZN 111, induction by IPTG can effectively increase the concentration of intracellular NADH and NAD + .
大肠杆菌 NZN111(CGSC7726)当导入质粒 pTrc99a-/ S ,过量表达烟酸磷酸核糖转移酶, 恢复了 NZN111在厌氧条件下代谢葡萄糖的能力, 且有高产量的琥珀酸积累。  Escherichia coli NZN111 (CGSC7726), when introduced into plasmid pTrc99a-/S, overexpressed niacin phosphoribosyltransferase, restored the ability of NZN111 to metabolize glucose under anaerobic conditions and had high yield of succinic acid accumulation.
具体操作是:  The specific operation is:
1、 构建过量表达烟酸磷酸核糖转移酶的表达质粒, 其过程包括:  1. Constructing an expression plasmid overexpressing niacin phosphoribosyltransferase, the process comprising:
( 1 )合成带有 Nco I 和 Hind III酶切位点的引物,  (1) synthesizing primers with Nco I and Hind III restriction sites,
上游引物: 5'- CATGCCATGGATGACACAATTCGCTTCTCCTG-3'  Upstream primer: 5'- CATGCCATGGATGACACAATTCGCTTCTCCTG-3'
下游引物: 5 ' -CCC AAGCTTCACTTGTCC ACCCGTAAATGG-3 '  Downstream primer: 5 ' -CCC AAGCTTCACTTGTCC ACCCGTAAATGG-3 '
( 2 ) 以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s, 55 °C 45 s, 72 °C 1 min, 35个循环); 72 °C , 10 min。 纯化扩增出的 / S基因后, 表达质粒用 pTrc99a分别用 Nco I 和 Hind III双酶切、 连接获得重组质粒 pTrc99a-/ S。  ( 2 ) PCR amplification of the target gene fragment using E. coli K12 series as template, the reaction conditions are: 94 °C, 5 min; (94 °C 45 s, 55 °C 45 s, 72 °C 1 min, 35 Cycle); 72 °C, 10 min. After purifying the amplified /S gene, the expression plasmid was digested with pTrc99a and digested with Nco I and Hind III, respectively, to obtain the recombinant plasmid pTrc99a-/S.
2、 将质粒 pTrc99a-/ S导入 E.coW NZNl l l的感受态, 得到重组大肠杆菌发酵菌株。 为了考察过量表达烟酸磷酸核糖转移酶后对胞内辅酶的影响,釆用专一性厌氧发酵模式, 按 1% ( v/v )接种量从冻存管接入三角瓶中, 当厌氧培养菌体 OD600至 0.3左右时, 加入烟酸至 终浓度为 0.5 mmol/L, 30 °C , 170 rpm厌氧培养 8 h。 2. The plasmid pTrc99a-/S was introduced into the competent state of E.coW NZNll, and a recombinant Escherichia coli fermentation strain was obtained. In order to investigate the effect of overexpression of niacin phosphoribosyltransferase on intracellular coenzyme, the specific anaerobic fermentation mode was used to enter the flask from the cryotube by 1% (v/v) inoculum. When the OD culture of the cells was about OD 600 to 0.3, niacin was added to a final concentration of 0.5 mmol/L, and anaerobic culture was carried out for 8 h at 30 ° C and 170 rpm.
E.coZ NZNl l l和构建的重组菌株胞内 NADH和 NAD+的测定, 结果见表 1。 The determination of intracellular NADH and NAD+ of E.coZ NZNl l and the constructed recombinant strain is shown in Table 1.
表 1 过量表达烟酸磷酸核糖转移酶对 E. coli NZN 11 1胞内辅酶的影响  Table 1 Effect of overexpression of niacin phosphoribosyltransferase on intracellular coenzyme in E. coli NZN 11 1
NADH NAD+ NAD(H)  NADH NAD+ NAD(H)
菌株  Strain
(mmol/g) (mmol/g) (mmol/g)  (mmol/g) (mmol/g) (mmol/g)
£.co// NZNl l l 0.264 2.912 3.176  £.co// NZNl l l 0.264 2.912 3.176
E.coli NZN 11 l/pTrc99a-pwcfi 2.133 8.342 10.475 实施例 2  E.coli NZN 11 l/pTrc99a-pwcfi 2.133 8.342 10.475 Example 2
本实施例说明要提高菌株胞内 NAD+的生物合成, 除了需要过量表达 pncB等重组表达质 粒外, 还需添加一定浓度的烟酸。  This example illustrates the need to increase the biosynthesis of intracellular NAD+ in strains, in addition to the need to overexpress recombinant expression plasmids such as pncB, and also to add a certain concentration of niacin.
1、 为了考察过量表达烟酸磷酸核糖转移酶后, 前体物质烟酸对胞内辅酶的影响, 釆用专 一性厌氧发酵模式, 按 1% ( v/v )接种量从冻存管接入三角瓶中, 当厌氧培养菌体 OD600至 0.3左右时,加入 IPTG至终浓度为 0.3 mmol/L,烟酸至终浓度为 0.1〜1.0 mmol/L之间, 30°C , 170 rpm厌氧培养 24 h。 1. In order to investigate the effect of prodrug niacin on intracellular coenzyme after overexpression of niacin phosphoribosyltransferase, The anaerobic fermentation mode was introduced into the flask by a 1% (v/v) inoculum from the cryopreservation tube. When the anaerobic culture bacterium was OD 600 to 0.3, IPTG was added to a final concentration of 0.3 mmol/L. The niacin is at a final concentration of 0.1 to 1.0 mmol/L, and anaerobic incubation is carried out at 30 ° C, 170 rpm for 24 h.
2、 E.co/ NZNl ll和构建的重组菌株胞内 NADH和 NAD+的测定, 结果见图 2。  2. The determination of intracellular NADH and NAD+ of E.co/ NZNll and the constructed recombinant strain is shown in Figure 2.
实施例 3 Example 3
本实施例说明通过提高大肠杆菌胞内 NAD+的生物合成后对葡萄糖消耗及产物分布的影 响。  This example illustrates the effect on glucose consumption and product distribution after biosynthesis of intracellular NAD+ in E. coli.
1、 为了考察过量表达烟酸磷酸核糖转移酶提高 NAD+生物合成后对胞内辅酶和代谢分布 的影响, 釆用专一性厌氧发酵模式, 按 1% ( v/v )接种量从冻存管接入三角瓶中, 当厌氧培 养菌体 OD6QQ至 0.3左右时, 加入 IPTG至终浓度为 0.3 mmol/L, 烟酸至终浓度为 0.5 mmol/L 之间, 30°C , 170 rpm厌氧培养 48 h。 1. To investigate the effect of overexpression of nicotinic acid phosphoribosyltransferase on intracellular coenzyme and metabolic distribution after NAD+ biosynthesis, using a specific anaerobic fermentation model, 1% (v/v) inoculum from cryopreservation When the tube is connected to the flask, when the anaerobic cultured cells are OD 6 QQ to 0.3, IPTG is added to a final concentration of 0.3 mmol/L, and the final concentration of niacin is 0.5 mmol/L, 30 ° C, 170 Anaerobic incubation for 48 h at rpm.
2、 E. CO/ NZN111和构建的重组菌株底物消耗和产物分布见表 2。  2. E. CO/ NZN111 and constructed recombinant strain substrate consumption and product distribution are shown in Table 2.
表 1 过量表达烟酸磷酸核糖转移酶对 E. coli NZN 11 1产物分布的影响  Table 1 Effect of overexpression of niacin phosphoribosyltransferase on the distribution of E. coli NZN 11 1 product
时间 细月包干重 葡萄糖消耗 丁二酸 丙酮酸  Time fine monthly dry weight glucose consumption succinic acid pyruvic acid
菌株  Strain
(h) (g L) (g/L) (g/L) (g/L)  (h) (g L) (g/L) (g/L) (g/L)
£.co// NZNl l l 48 1.1 1 0 0.3 12 0.412  £.co// NZNl l l 48 1.1 1 0 0.3 12 0.412
E.coli NZN1 1 l/pTrc99a-pwcfi 48 7.03 14 7.056 7.243  E.coli NZN1 1 l/pTrc99a-pwcfi 48 7.03 14 7.056 7.243
实施例 4  Example 4
本实施例说明除按照实施例 1的方法导入 / S重组表达质粒外,导入其他质粒获得重组 大肠杆菌的方法, 其他涉及烟酸的添加和专一厌氧发酵的实施例同实施例 2。  This example illustrates the method of introducing recombinant plasmids into other recombinant plasmids in addition to the introduction of the /S recombinant expression plasmid according to the method of Example 1, and other examples involving the addition of nicotinic acid and specific anaerobic fermentation are the same as those in Example 2.
1、 过量表达/ π^ )基因:  1. Overexpression / π^ ) Gene:
构建过量表达烟酸单核苷酸腺苷酰转移酶的表达质粒, 其过程包括:  Construction of an expression plasmid overexpressing niacin mononucleotide adenyltransferase, the process comprising:
( 1 )合成带有 Nco I 和 Hind III酶切位点的引物,  (1) synthesizing primers with Nco I and Hind III restriction sites,
上游引物: 5'- CATGCCATGGGGCGGACGTATTTATCGACGGTTGA -3'  Upstream primer: 5'- CATGCCATGGGGCGGACGTATTTATCGACGGTTGA -3'
下游引物: 5 '- CCCAAGCTTCAGATTTTGCGCTTGCTCAATACCG -3 '  Downstream primer: 5 '- CCCAAGCTTCAGATTTTGCGCTTGCTCAATACCG -3 '
( 2 ) 以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s, 60°C 45 s, 72 °C 48s, 35个循环); 72 °C , 10 min。 纯化扩增出的 基因后, 表 达质粒用 pTrc99a分别用 Nco I 和 Hind III双酶切、 连接获得重组质粒 pTrc99a-/%^Z)。 将质粒 pTrc99a- 导入 E.coW NZN111的感受态, 得到重组大肠杆菌发酵菌株。  ( 2 ) PCR amplification of the target gene fragment using E. coli K12 series as template, reaction conditions: 94 °C, 5 min; (94 °C 45 s, 60 °C 45 s, 72 °C 48 s, 35 cycles) ); 72 °C, 10 min. After purifying the amplified gene, the expression plasmid was digested with pTrc99a with Nco I and Hind III, respectively, and ligated to obtain the recombinant plasmid pTrc99a-/%^Z). The plasmid pTrc99a- was introduced into the competent state of E.coW NZN111 to obtain a recombinant Escherichia coli fermentation strain.
2、 过量表达/ 基因: 2. Overexpression / Gene:
构建过量表达 NAD合成酶的表达质粒, 其过程包括: ( 1 )合成带有 Nco I 和 Hind III酶切位点的引物, Construction of an expression plasmid overexpressing NAD synthase, the process comprising: (1) synthesizing primers with Nco I and Hind III cleavage sites,
上游引物: 5'-CATGCCATGGCGCTTGTCGTTTCAGTAGCAACGGG-3 '  Upstream primer: 5'-CATGCCATGGCGCTTGTCGTTTCAGTAGCAACGGG-3 '
下游引物: 5'-CCCAAGCTTCGCATCCGGCGTGAACAAATTACTC-3 '  Downstream primer: 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3 '
( 2 ) 以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s , 64 °C 45 s, 72 °C 57s, 35个循环); 72 °C , 10 min。 纯化扩增出的 dE基因后, 表 达质粒用 pTrc99a分别用 Nco I 和 Hind III双酶切、 连接获得重组质粒 pTrc99a-/%^E。  ( 2 ) PCR amplification of the target gene fragment using E. coli K12 series as template, reaction conditions: 94 °C, 5 min; (94 °C 45 s, 64 °C 45 s, 72 °C 57s, 35 cycles) ); 72 °C, 10 min. After purification of the amplified dE gene, the expression plasmid was digested with pTrc99a with Nco I and Hind III, respectively, and ligated to obtain the recombinant plasmid pTrc99a-/%^E.
将质粒 pTrc99a- i E导入 E. coli NZN111的感受态, 得到重组大肠杆菌发酵菌株。  The plasmid pTrc99a-i E was introduced into the competent state of E. coli NZN111 to obtain a recombinant Escherichia coli fermentation strain.
3、 过量表达/ S基因和 基因:  3. Overexpression / S gene and gene:
构建过量表达共表达烟酸磷酸核糖转移酶和烟酸单核苷酸腺苷酰转移酶的表达质粒, 其 过程包括:  Construction of an expression plasmid overexpressing co-expressed nicotinic acid phosphoribosyltransferase and niacin mononucleotide adenyltransferase, the process comprising:
( 1 )合成两端都带有 Hind III酶切位点的引物, (1) Primers with Hind III restriction sites at both ends of the synthesis,
上游引物: 5'- CCCAAGCTTGGCGGACGTATTTATCGACGGTTGA -3 '  Upstream primer: 5'- CCCAAGCTTGGCGGACGTATTTATCGACGGTTGA -3 '
下游引物: 5 '- CCCAAGCTTCAGATTTTGCGCTTGCTCAATACCG -3 '  Downstream primer: 5 '- CCCAAGCTTCAGATTTTGCGCTTGCTCAATACCG -3 '
( 2 )以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s , 60°C 45 s, 72 °C 48s, 35个循环); 72 °C , 10 min。 纯化扩增出的 基因后, 表达质粒
Figure imgf000007_0001
(实施例 1 中得到) 用 Hind III 双酶切、 连接获得重组质粒 pTrc99a-pncB-nadD。
(2) PCR amplification of the target gene fragment using E. coli K12 series as template. The reaction conditions were: 94 °C, 5 min; (94 °C 45 s, 60 °C 45 s, 72 °C 48 s, 35 cycles) ); 72 °C, 10 min. Expression plasmid after purification of the amplified gene
Figure imgf000007_0001
(obtained in Example 1) The recombinant plasmid pTrc99a-pncB-nadD was obtained by double digestion with Hind III.
将质粒 pTrc99a-/ S- 导入 E.coW NZN111的感受态, 获得的阳性转化子为新构建菌 株, 得到重组大肠杆菌发酵菌株。  The plasmid pTrc99a-/S- was introduced into the competent state of E.coW NZN111, and the obtained positive transformant was a newly constructed strain, and a recombinant Escherichia coli fermentation strain was obtained.
4、 过量表达/ S基因和 i E基因: 构建过量表达共表达烟酸磷酸核糖转移酶和 NAD合成酶的表达质粒, 其过程包括: ( 1 )合成两端都带有 Hind III酶切位点的引物,  4. Overexpression/S gene and i E gene: Construction of an expression plasmid overexpressing co-expressed niacin phosphoribosyltransferase and NAD synthase, the process includes: (1) Hind III restriction sites are present at both ends of the synthesis Primer,
上游引物: 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '  Upstream primer: 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '
下游引物: 5'-CCCAAGCTTCGCATCCGGCGTGAACAAATTACTC-3 '  Downstream primer: 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3 '
( 2 )以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s , 64 °C 45 s, 72 °C 57s, 35个循环); 72 °C , 10 min。 纯化扩增出的 基因后, 表达质粒
Figure imgf000007_0002
(实施例 1 中得到) 用 Hind III 双酶切、 连接获得重组质粒 pTrc99a-pwcB- <iE。 将质粒 pTrc99a-/ S- 导入 E. coli NZN111的感受态, 得到重组大肠杆菌发酵菌株。
(2) PCR amplification of the target gene fragment using E. coli K12 series as template. The reaction conditions were: 94 °C, 5 min; (94 °C 45 s, 64 °C 45 s, 72 °C 57s, 35 cycles) ); 72 °C, 10 min. Expression plasmid after purification of the amplified gene
Figure imgf000007_0002
(obtained in Example 1) The recombinant plasmid pTrc99a-pwcB- <iE was obtained by double digestion with Hind III. The plasmid pTrc99a-/S- was introduced into the competent state of E. coli NZN111 to obtain a recombinant Escherichia coli fermentation strain.
5、 过量表达 基因和 iE基因: 构建过量表达共表达烟酸单核苷酸腺苷酰转移酶和 NAD合成酶的表达质粒, 其过程包 括:  5. Overexpression of the gene and the iE gene: Construction of an expression plasmid overexpressing the co-expressed niacin mononucleotide adenylyltransferase and NAD synthase, the process comprising:
( 1 )合成两端都带有 Hind III酶切位点的引物,  (1) Primers with Hind III restriction sites at both ends of the synthesis,
上游引物: 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '  Upstream primer: 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '
下游引物: 5'-CCCAAGCTTCGCATCCGGCGTGAACAAATTACTC-3'  Downstream primer: 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3'
( 2 )以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s, 64 °C 45 s, 72 °C 57s, 35个循环); 72 °C, 10min。 纯化扩增出的 基因后, 表达质粒 pTrc99a- (本实施例第 1 项中得到)用 Hind III双酶切、 连接获得重组质粒 TpTrc99a- adD- adE。  (2) PCR amplification of the target gene fragment using E. coli K12 series as template, reaction conditions: 94 °C, 5 min; (94 °C 45 s, 64 °C 45 s, 72 °C 57s, 35 cycles) ); 72 °C, 10min. After purifying the amplified gene, the expression plasmid pTrc99a- (obtained in item 1 of the present example) was digested with Hind III and ligated to obtain a recombinant plasmid TpTrc99a-adD-adE.
将质粒 pTrc99a- - iE导入 E.coWNZNlll的感受态, 得到重组大肠杆菌发酵菌株。  The plasmid pTrc99a- -iE was introduced into the competent state of E.coWNZNlll to obtain a recombinant Escherichia coli fermentation strain.
7、 过量表达/ S基因、 基因和 iE基因: 构建过量表达共表达烟酸磷酸核糖转移酶、 烟酸单核苷酸腺苷酰转移酶和 NAD合成酶 的表达质粒, 其过程包括:  7. Overexpression/S gene, gene and iE gene: Construction of an expression plasmid overexpressing co-expressed nicotinic acid phosphoribosyltransferase, nicotinic acid single nucleotide adenylyltransferase and NAD synthetase, the process comprising:
( 1 )合成两端都带有 Hind III酶切位点的引物,  (1) Primers with Hind III restriction sites at both ends of the synthesis,
上游引物: 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '  Upstream primer: 5 ' -CCC AAGCTTCGCTTGTCGTTTC AGTAGC AACGGG-3 '
下游引物: 5'-CCCAAGCTTCGCATCCGGCGTGAACAAATTACTC-3'  Downstream primer: 5'-CCCAAGCTTCGCCCCGGCGTGAACAAATTACTC-3'
( 2 )以大肠杆菌 K12系列为模板, PCR扩增目的基因片段, 反应条件为: 94 °C , 5 min; (94 °C 45 s, 64 °C 45 s, 72 °C 57s, 35个循环); 72 °C, 10min。 纯化扩增出的 基因后, 表达质粒 pTrc99a-/ S- (本实施例第 3项中得到)用 Hind U1双酶切、 连接获得重组质 粒 p rc99a-pncB-nadD-nadE。  (2) PCR amplification of the target gene fragment using E. coli K12 series as template, reaction conditions: 94 °C, 5 min; (94 °C 45 s, 64 °C 45 s, 72 °C 57s, 35 cycles) ); 72 °C, 10min. After purification of the amplified gene, the expression plasmid pTrc99a-/S- (obtained in item 3 of the present example) was digested with Hind U1 and ligated to obtain recombinant plasmid p rc99a-pncB-nadD-nadE.
将质粒 pTrc99a-/ S- - iE导入 E. coli NZN111的感受态, 得到重组大肠杆菌发酵菌  The plasmid pTrc99a-/S--iE was introduced into the competent state of E. coli NZN111 to obtain recombinant Escherichia coli fermenting bacteria.

Claims

权利要求 Rights request
1. 一种制备重组大肠杆菌发酵生产丁二酸的方法, 其特征在于包括以下步骤:  A method for preparing a recombinant Escherichia coli to produce succinic acid, which comprises the steps of:
( 1 )在产丁二酸大肠杆菌出发菌株中过量表达 / S, nadD, 三种基因中的一个或 者多个, 得到重组大肠杆菌菌株;  (1) overexpressing /S, nadD, one or more of the three genes in a strain producing succinic acid-producing Escherichia coli to obtain a recombinant Escherichia coli strain;
( 2 )在发酵厌氧培养基中添加烟酸;  (2) adding nicotinic acid to the fermentation anaerobic medium;
(3)利用步骤(1 )得到的重组大肠杆菌专一性厌氧发酵生产丁二酸。  (3) Producing succinic acid by the specific anaerobic fermentation of recombinant Escherichia coli obtained in the step (1).
2.根据权利要求 1 所述的方法, 其特征在于所述的步骤(2) 中添加烟酸的浓度为 0.1 mmol/L〜l mmol/L。  The method according to claim 1, characterized in that the concentration of nicotinic acid added in the step (2) is 0.1 mmol/L to 1 mmol/L.
PCT/CN2012/072012 2011-03-09 2012-03-06 Method for preparing recombinant escherichia coli to produce succinic acid through fermentation WO2012119546A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100550421 2011-03-09
CN2011100550421A CN102174458A (en) 2011-03-09 2011-03-09 Method for preparing recombinant escherichia coli to produce succinic acid through fermentation

Publications (2)

Publication Number Publication Date
WO2012119546A2 true WO2012119546A2 (en) 2012-09-13
WO2012119546A3 WO2012119546A3 (en) 2012-11-01

Family

ID=44517716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072012 WO2012119546A2 (en) 2011-03-09 2012-03-06 Method for preparing recombinant escherichia coli to produce succinic acid through fermentation

Country Status (2)

Country Link
CN (1) CN102174458A (en)
WO (1) WO2012119546A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174458A (en) * 2011-03-09 2011-09-07 南京工业大学 Method for preparing recombinant escherichia coli to produce succinic acid through fermentation
CN103361384B (en) * 2012-04-10 2016-04-13 中国石油化工股份有限公司 A kind of fermentation process adding carboxylated Factor and prepare succinic acid
CN106635943B (en) * 2016-12-19 2019-09-03 江南大学 A method of improving oxidized coenzyme I content intracellular

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202930A (en) * 1995-11-02 1998-12-23 芝加哥大学 A mutant E. coli strain with increased succinic acid production
CN101044245A (en) * 2004-08-27 2007-09-26 莱斯大学 Mutant e. coli strain with increased succinic acid production
CN102154339A (en) * 2011-02-16 2011-08-17 南京工业大学 Construction method of gene engineering strain producing succinic acid escherichia coli
CN102174458A (en) * 2011-03-09 2011-09-07 南京工业大学 Method for preparing recombinant escherichia coli to produce succinic acid through fermentation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202930A (en) * 1995-11-02 1998-12-23 芝加哥大学 A mutant E. coli strain with increased succinic acid production
CN101044245A (en) * 2004-08-27 2007-09-26 莱斯大学 Mutant e. coli strain with increased succinic acid production
CN102154339A (en) * 2011-02-16 2011-08-17 南京工业大学 Construction method of gene engineering strain producing succinic acid escherichia coli
CN102174458A (en) * 2011-03-09 2011-09-07 南京工业大学 Method for preparing recombinant escherichia coli to produce succinic acid through fermentation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANG, MIN ET AL.: 'The Progress of Recombinant Escherichia coli for Production of Succinic Acid' MICROBIOLOGY vol. 36, no. 1, 20 January 2009, ISSN 0253-2654 pages 120 - 124 *
LIU, RONGMING ET AL.: 'Effect of overexpression of nicotinic acid phosphoribosyl transferase on succinic acid production in Escherichia coli NZN111' CHINESE JOURNAL OF BIOTECHNOLOGY 25 October 2011, ISSN 1000-3061 pages 1438 - 1447 *
QIN, YI ET AL.: 'Manipulation of NADH metabolism in industrial strains' CHINESE JOURNAL OF BIOTECHNOLOGY vol. 25, no. 2, 25 February 2009, ISSN 1000-3061 pages 161 - 169 *
VEMURI, G.N. ET AL.: 'Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia coli' APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 68, no. 4, 28 April 2002, ISSN 1098-5336 pages 1715 - 1727 *

Also Published As

Publication number Publication date
WO2012119546A3 (en) 2012-11-01
CN102174458A (en) 2011-09-07

Similar Documents

Publication Publication Date Title
Zhang et al. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli
Jojima et al. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation
Zhang et al. Production of L-alanine by metabolically engineered Escherichia coli
Andersson et al. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli
Zhan et al. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply
Olajuyin et al. Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli
Tian et al. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei
Zhou et al. Efficient L-alanine production by a thermo-regulated switch in Escherichia coli
CN105296411B (en) One plant utilizes the genetic engineering bacterium and its construction method of monosaccharide fermentation production L-Aspartic acid and application
CN109136295B (en) Method for biologically synthesizing glutaric acid
CN104046577A (en) Malic acid-production gene engineering bacteria and its construction and use
KR20100109902A (en) Large scale microbial culture method
Wang et al. Enhanced succinic acid production and magnesium utilization by overexpression of magnesium transporter mgtA in Escherichia coli mutant
WO2013086907A1 (en) Genetic engineering strain for producing succinic acid by using glucose and method for producing acid by fermenting the strain
WO2013010483A1 (en) Construction method of escherichia coli genetically engineered bacteria producing succinic acid by xylose metabolism
Ma et al. Coupled ARTP and ALE strategy to improve anaerobic cell growth and succinic acid production by Escherichia coli
CN107022515A (en) One plant of genetic engineering bacterium and its construction method and application using ligno-cellulose hydrolysate anaerobic fermentation production L aspartic acids
CN104195190B (en) Method for producing 5-aminolevulinic acid by carrying out anaerobic fermentation by utilizing recombinant escherichia coli
CN102154339A (en) Construction method of gene engineering strain producing succinic acid escherichia coli
Zou et al. Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies
Cai et al. Enhanced production of poly-γ-glutamic acid by overexpression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02
Hu et al. Efficient production of d-1, 2, 4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts
CN102864116B (en) Genetic engineering bacterium for producing succinic acid, and construction and application thereof
WO2012119546A2 (en) Method for preparing recombinant escherichia coli to produce succinic acid through fermentation
CN107227286B (en) Genetically engineered bacterium capable of producing succinic acid at high yield, and construction method and application thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754277

Country of ref document: EP

Kind code of ref document: A2