WO2012119544A1 - 一种频谱资源共享使用的方法及系统 - Google Patents

一种频谱资源共享使用的方法及系统 Download PDF

Info

Publication number
WO2012119544A1
WO2012119544A1 PCT/CN2012/071999 CN2012071999W WO2012119544A1 WO 2012119544 A1 WO2012119544 A1 WO 2012119544A1 CN 2012071999 W CN2012071999 W CN 2012071999W WO 2012119544 A1 WO2012119544 A1 WO 2012119544A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
user terminal
base station
uplink
downlink
Prior art date
Application number
PCT/CN2012/071999
Other languages
English (en)
French (fr)
Inventor
于晓谦
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012119544A1 publication Critical patent/WO2012119544A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular to FD (Long Term Evolution, Long Term Evolution, LTE) FDD (Frequency Division Duplex) and TDD (Time Division Duplex) spectrum resource sharing.
  • FD Long Term Evolution, Long Term Evolution, LTE
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • each is assigned a corresponding working frequency band, and each wireless communication system operates in a planned frequency band.
  • communication systems require ever-increasing transmission rates to meet the higher demands of multiple wireless transmission services.
  • the existing operating band of the communication system may not meet the requirements of higher transmission rates and require a larger working bandwidth.
  • the FDD duplex mode is such that the uplink and downlink reception of the UE (User Equipment) are performed in different frequency bands, which are an uplink frequency band and a downlink frequency band, respectively, and uplink transmission and downlink reception can occur simultaneously.
  • the TDD duplex mode the uplink transmission and the downlink reception of the UE are performed at different times, and uplink transmission and downlink reception cannot occur at a certain time.
  • the spectrum resources of LTE are mainly 2500MHz ⁇ 2690MHz, of which 2500MHz ⁇ 2570MHz is the uplink frequency band of LTE FDD, 2620MHz ⁇ 2690MHz is the downlink frequency band of LTE FDD, and 2570MHz ⁇ 2620MHz is the frequency band of LTE TDD. Because LTE technology has two pairs of FDD and TDD In terms of duplex mode, the LTE network can be divided into two types: FDD and TDD. The network of the LTE FDD system works in the FDD band, and the network of the TDD system works in the TDD band.
  • each eNB may be configured with multiple component carriers.
  • the UE may also be configured and use multiple component carriers. As shown in Figure 1, UE1 is configured with three component carriers fl, £. 2 and ⁇ (f denotes carriers of different frequencies), UE2 is configured with 2 component carriers f4 and f5.
  • the component carrier is divided into a primary component carrier (PCC) and a secondary component carrier (SCC).
  • the primary component carrier is a carrier that provides a complete service to the UE in the carrier aggregation, that is, in the absence of the secondary component carrier, the UE can work normally only by the primary component carrier.
  • the secondary component carrier is introduced into the LTE-Advanced standard in order to expand the working bandwidth and improve the throughput of the LTE device, and cannot provide a complete service for the UE, and cannot exist separately from the primary component carrier.
  • LTE only one component carrier serves one UE, and each cell has only one component carrier.
  • the cell corresponding to the component carrier serving the UE is the serving cell of the UE, and the system provides a series of functions for the UE through the serving cell. Including security input, NAS (Non-Access Stratum, non-access stratum) mobile information, radio link detection, paging, etc.
  • NAS Non-Access Stratum, non-access stratum
  • a UE that aggregates multiple component carriers will transmit and receive on multiple component carriers.
  • the main object of the present invention is to provide a method and system for sharing spectrum resources, which is used to solve the technical problem that the existing wireless communication system cannot share the spectrum resources of other wireless communication technologies and the utilization of spectrum resources is low.
  • a method for sharing spectrum resources comprising:
  • the first wireless access system configures a non-first wireless access system frequency band for the user terminal of the system Carrier, that is, an extended carrier;
  • the extension carrier is a carrier of another second radio access system frequency band using the same or different radio access technologies
  • the user terminal of the first radio access system and the terminal of the second radio access system use the extension carrier in a time division multiplexing manner.
  • the method for sharing the use of the spectrum resource further includes:
  • extension carrier by the first radio access system and the second radio access system is coordinated and controlled by an operation management and maintenance module.
  • the method for sharing the use of the spectrum resource further includes:
  • the configuration information includes at least a cell index value corresponding to the extended carrier, a physical identifier of the cell and a frequency band of the carrier, where the cell index value and the cell physical identifier are used to uniquely identify a cell;
  • the base station After the base station configures the extension carrier for the user terminal, the base station further configures the extended carrier usage time and the uplink and downlink transmission mode for the user terminal.
  • the method for the base station in the first radio access system to configure the extended carrier for the lower user terminal is:
  • the base station configures a measurement reporting event for the user terminal, where the measurement reporting event is used by the user terminal to report measurement information to the base station when the available extension carrier is measured; the base station is configured according to the user terminal.
  • the reported measurement information is an extended carrier configured for the user terminal.
  • the method for the base station in the first radio access system to configure the extended carrier for the lower user terminal is:
  • the user terminal detects an available extension carrier, and reports the available extended carrier list to the base station;
  • the base station adds an extension carrier to the user terminal according to the extended carrier list reported by the user terminal, and configures an extension carrier for the user terminal.
  • the base station in the first radio access system configures the usage time of the extended carrier for the user terminal, and the specific method is one of the following methods:
  • the base station notifies the user terminal of data transmission and reception on which subframes of the extended carrier by using a bitmap or a bitmap value of a bitmap, and the value of each bit of the bitmap corresponds to Determining whether one of the radio frames of the extended carrier can be used by the user terminal, and the index value of the bitmap corresponds to only one bitmap;
  • Method 2 The base station sends a start command and an end command using the extended carrier to the user terminal to indicate a time when the user terminal performs data transmission and reception;
  • Method 3 The time when the base station sends the time length of using the extended carrier to the user terminal to indicate that the user terminal performs data transmission and reception;
  • Method 4 method 1 is combined with method 2;
  • the method for the base station to configure the usage time of the extended carrier for the user terminal is one of the following methods:
  • the base station and the user terminal use the extension carrier in a default manner, where the default mode includes the following default configuration: a subframe configuration in a radio frame of the extension carrier that can be used by the user terminal, and use of the extension carrier The length of the duration.
  • the method for the base station to further configure the uplink and downlink transmission modes of the extended carrier for the user terminal is:
  • the base station sends the configuration message to notify the user terminal that the extended carrier is to be used for the uplink carrier, the downlink carrier, or the uplink and downlink alternate carriers, and the uplink and downlink transmission mode of the extended carrier is specifically one of the following manners:
  • the extended carrier is configured as an uplink carrier, and the user terminal sends only the uplink carrier. Send upstream data;
  • the extended carrier is configured as a downlink carrier, and the user terminal receives only downlink data on the carrier;
  • the mode 3 is that the extended carrier is configured in a half-duplex mode, and the user terminal has both uplink and downlink data transmission and reception on the carrier, but the uplink and the downlink do not occur at the same time.
  • the base station is still The user terminal configures an uplink and downlink time of the extended carrier.
  • the method further includes the step of the base station performing uplink and downlink scheduling on the extended carrier:
  • the base station schedules the extension carrier by using a cross-carrier or a non-span carrier mode;
  • the base station For the uplink data transmission of the extension carrier, when the extension carrier is used by the user terminal to be used as an uplink carrier or a half-duplex mode carrier, the base station performs cross-carrier scheduling on the extension carrier.
  • the present invention further provides a system for sharing spectrum resources, including a first wireless access system and a second wireless access system, where
  • the first radio access system configures, for the user terminal of the system, a carrier that is not the first radio access system frequency band, that is, an extension carrier; and the extension carrier is another second radio access system frequency band that uses the same or different radio access technologies.
  • Carrier that is not the first radio access system frequency band, that is, an extension carrier; and the extension carrier is another second radio access system frequency band that uses the same or different radio access technologies.
  • the user terminal of the first radio access system and the terminal of the second radio access system use the extension carrier in a time division multiplexing manner.
  • system further includes:
  • an operation management and maintenance module configured to coordinate and control usage of the extension carrier by the first wireless access system and the second wireless access system.
  • the base station in the first wireless access system configures the user terminal An extension carrier, and sending configuration information to the user terminal;
  • the configuration information includes at least a cell index value, a cell physical identifier, and a frequency band of the carrier, where the cell index value and the cell physical identifier are Used to uniquely identify a cell;
  • the base station After the base station configures the extension carrier for the user terminal, the base station further configures the extended carrier usage time and the uplink and downlink transmission mode for the user terminal.
  • the spectrum resource sharing scheme proposed by the present invention uses the spectrum of other systems in an aggregation manner, so that the LTE system can use the spectrum resources that are not originally used as the system for data transmission, especially for the two duplex modes in the LTE system, the FDD network of the LTE system. Can fully utilize the frequency band of TDD. By utilizing the present invention, spectrum resources can be fully utilized to maximize the throughput of the LTE system.
  • FIG. 1 is a schematic diagram of carrier aggregation in an LTE system
  • FIG. 2 is a schematic diagram of a user terminal aggregating a carrier band of a non-self system band according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a system for a user terminal to aggregate a carrier band of a non-self system band according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing the coordination of the use time of the OAM with the A and B base stations in the embodiment of the present invention
  • FIG. 5 is a schematic diagram of a process for an eNB to configure an ECC for a UE by measuring a reporting event according to the present invention
  • FIG. 6 is a schematic flowchart of an eNB configuring an ECC for a UE according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a second method for scheduling an ECC downlink transmission by an eNB according to an embodiment of the present invention. detailed description
  • a user terminal device of a wireless communication system may also use carriers that are not in the system band of the system. As shown in FIG. 2, such carriers may be in the frequency band of other systems or radio access technologies, that is, the network side configures the user terminal. For a carrier that is not in the frequency band in which the system is located, the user terminal can perform data transmission with the network side on a frequency band other than the own system.
  • the UE of the LTE FDD system can also aggregate the carriers of the LTE TDD band while using the FDD band carrier resources.
  • This aggregation mode requires the eNB of the LTE FDD system to provide the carrier of the TDD frequency band for the UE to aggregate, and the FDD UE needs to have the capability of receiving and transmitting data on the carrier of the TDD frequency band.
  • the eNB provides a carrier of the TDD band, that is, it can transmit a downlink frame to the UE and receive an uplink frame from the UE in the TDD band.
  • UEs in the LTE TDD system can also aggregate carriers in the FDD band. If the FDD UE aggregates the TDD carrier, the TDD carrier is used by the FDD UE as a component carrier (CC), and the FDD UE can receive the downlink subframe and the uplink subframe on the TDD CC.
  • CC component carrier
  • UEs of LTE can also aggregate carriers of other radio access technology bands.
  • the eNB configures one or more carriers for the UE, and the UE performs data transmission and reception on the configured carrier.
  • a terminal of a certain wireless communication system uses a carrier other than the system band.
  • a wireless access technology system is called A system, and its base station and user terminal equipment are called A base station and A terminal, where A system, A base station and A terminal can be all wireless such as LTE, GSM, TD-SCDMA, Wimax, etc.
  • Communication technology systems, base stations, and terminals are called A system, and its base station and user terminal equipment.
  • the wireless access technology system of another non-A system is called the B system, and the base station and the user terminal equipment are called the B base station and the B terminal, similar to the A system, where the B system, the B base station, and the B terminal may also be LTE, Systems, base stations, and terminals for all wireless communication technologies such as GSM, TD-SCDMA, and Wimax.
  • a terminal Carrier aggregation technology is used, and at least one of the aggregated carriers is a carrier of the A system, and one or more carriers of the non-A system may also exist. Which carriers are aggregated by the A terminal, including the carriers of the A system and the non-A system, will be sent by the A base station to configure the A terminal. As shown in FIG.
  • the A base station provides three carriers fl, £2, ⁇ , where fl and £2 are carriers of the system, ⁇ is the carrier of the B system, and the base station provides the ⁇ carrier.
  • ⁇ Terminal aggregation uses three carriers of fl, £2 and ⁇ , and the terminal aggregation uses the ⁇ carrier.
  • OAM Operaation Administration and Maintenance
  • the network side configures the non-self system carrier for the user terminal, that is, the base station configures the carrier of the non-A system (B system) frequency band for the A terminal, and sends the configuration information to the A terminal through the A base station.
  • the configuration information should include at least the B system band carrier and the corresponding cell index value, the cell physical identifier, and the frequency band of the carrier, wherein the cell index value and the cell physical identifier are two values used to uniquely identify a d and a region.
  • 0AM and A base station There is information exchange between 0AM and A base station, 0AM and B base station, and 0AM can control and coordinate A base station and B base station. Since both the A base station and the B base station can provide a beta carrier, the use of ⁇ will be controlled by 0 ⁇ .
  • the base station and the base station After controlling and coordinating the base station and the B base station, that is, after notifying the base station B and the base station to use the time of ⁇ , the base station and the base station configure the ⁇ use time for the A terminal and the B terminal respectively. Shown as follows:
  • the ⁇ base station when the ⁇ base station performs data transmission with the ⁇ system terminal in the cell controlled by itself, the ⁇ carrier is used, and the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Notice.
  • the A base station needs to stop data transmission on the ⁇ carrier and the system terminal in the cell controlled by itself, and the OAM can notify the A base station to stop using the ⁇ carrier, that is, not perform data transmission with the terminal on the ⁇ carrier.
  • the ⁇ base station stops transmitting data on the ⁇ carrier, it can initiate a notification to stop using the ⁇ carrier, and then notify the ⁇ base station, and the A base station can use the ⁇ carrier.
  • may send a subframe configuration of each of the ⁇ base station and the B base station, respectively, to inform the ⁇ base station and the ⁇ base station which subframes of ⁇ , and the ⁇ base station and the ⁇ base station receive the respective subframes.
  • is used on the corresponding subframe, that is, data transmission is performed on ⁇ .
  • the eNB of the LTE sends a message to the UE using the carrier aggregation technology to inform the UE which carriers to aggregate.
  • the technical problem of the eNB configuring a working carrier for the UE is first described.
  • the eNB may configure multiple carriers for the UE in order to increase the working bandwidth and the transmission rate.
  • the carrier is divided into two types, which are respectively called the primary component carrier PCC and the secondary component carrier.
  • PCC primary component carrier
  • the secondary component carrier For the SCC, each CC corresponds to one cell, that is, the primary cell PCell and the secondary cell SCell, and each UE PCell has only one, and the SCell may have multiple.
  • the new non-A system carrier can be represented as an ECC (Extension Component Carrier) or an ECell. Multiple ECCs can also be configured for one UE.
  • the eNB sends related configuration information by sending an RRC connection reconfiguration message, that is, an RRCConnectionReconfiguration message to the UE, which may include the configuration of the ECC, and may be extended based on the existing SCell configuration information element in the RRCConnectionReconfiguration message, such as SCellToAddModList.
  • Each element in the list SCellToAddModList is a SCellToAddMod structure, and the structure includes the SCell index value SCelllndex, the cell identifier Cellldentification, and the SCell shared radio resource configuration radioResourceConfigCommon (when the SCell is added, the part is RadioResourceConfigCommonSCell), SCell Proprietary wireless resource configuration radioResourceConfigDedicated (This part is RadioResourceConfigDedicatedSCell when SCell is added), where Cellldentification contains the physical identifier physCelllD of the cell and the downlink carrier frequency band dl-CarrierFreq.
  • the content of SCellToAddMod indicates the basic attribute value of a cell, corresponding to only one cell, also That is, it corresponds to only one carrier.
  • the eNB adds an extension carrier to the UE, it is determined by the information of the SCellToAddMod that the SCell is not an ordinary SCell but an ECC.
  • the dl-CarrierFreq value of the SCellToAddMod corresponding to the extended carrier in the SCellToAddModList of the RRCConnectionReconfiguration message will be the frequency band of the extended carrier, or the carrier type is indicated as ECC, or the ECC-specific cell is configured, as described in detail later.
  • the ECell configuration cell in the RRCConnectionReconfiguration message may also be used.
  • the ECellToAddModList may be configured similar to the SCell.
  • Each element in the list ECellToAddModList is an ECellToAddMod structure, and the content of the structure is the ECell index value ECelllndex, the physical identifier of the cell. physCelllD and the downlink carrier frequency band dl-CarrierFreq, the content of ECellToAddMod represents the basic attribute value of a cell, corresponding to only one cell, that is, uniquely corresponds to one carrier.
  • the eNB After the UE is configured with the component carrier (ECC) of the non-self system band, the eNB needs to configure the available time of the ECC and the uplink and downlink transmission modes for the UE, that is, inform the UE, at which time the ECC is available, and the ECC will Used as a carrier for up/down/half duplex. For both configurations, if the UE does not receive specific configuration parameters from the eNB before starting to use the ECC, the ECC can be used according to the default configuration.
  • ECC component carrier
  • the eNB may configure a measurement reporting event Bl (Event B1), which is reported to the eNB when the UE detects that there is a non-self system cell, that is, the ECC exists. After receiving the measurement report event, the eNB will learn that the UE has detected the ECC of the non-self system, and then the eNB configures the ECC for the UE. The process is as shown in FIG. 5:
  • Step 501 The eNB configures a measurement reporting event for the UE.
  • Step 502 When the UE detects the available frequency band carrier of other systems, that is, the ECC, the measurement report is performed.
  • Step 503 The eNB configures the ECC for the UE according to the measurement information reported by the UE.
  • Step 504 The UE uses the ECC according to the configuration of the eNB.
  • the eNB will be able to configure the ECC to the UE through the RRC message, ie as described above.
  • the eNB performs the configuration of the measurement reporting event for the UE, and also sends the RRCConnectionReconfiguration message to the UE.
  • the measConfig part is included as the measurement configuration.
  • the reportConfigToAddModList section will be included in the measConfig section
  • the reportConfiglnterRAT section will be included in the ReportConfigToAddModList section
  • the configuration report eventB1 will be included in the reportConfiglnterRAT. If the UE is configured with the measurement reporting event B1, the UE will perform measurement reporting when the measured signal quality of the different system cell is higher than the threshold according to the configuration, and the threshold value here will also be configured by the eNB.
  • reportConfiglnterRAT If the UE is configured with the measurement reporting event B1, the UE will perform measurement reporting when the measured signal quality of the different system cell is higher than the threshold according to the configuration, and the threshold value here will also be configured by the eNB.
  • reportConfiglnterRAT If the UE is configured
  • the UE may initiate the negotiation to the eNB, and then configure the UE by using the eNB to enable the UE to use the ECC.
  • Figure 6 shows:
  • Step 601 The UE detects an available extended carrier ECC.
  • Step 602 The UE sends an available ECC list to the eNB.
  • Step 603 After receiving the ECC list, the eNB sends an RRC connection reconfiguration to the UE.
  • the message carries the ECC information allocated to the UE, and after the eNB successfully adds the ECC to the UE, the eNB configures the ECC allocated to the UE.
  • Step 604 The UE performs data transmission according to the configuration of the ECC on the allocated ECC.
  • the RRC message will carry an ECC list that the UE can use, The contents of the list will contain band information for one or more ECCs, telling the eNB which ECC bands are available.
  • the UE sends the RRC message to the eNB.
  • the eNB may send an RRCConnectionReconfiguration message to the UE, and configure the SCell to the UE.
  • the SCell may include the cell corresponding to the ECC.
  • the UE may detect whether there is a carrier transmission on the ECC band.
  • terminals of other radio access technology systems need to send configuration information to the terminal before using the carrier of the frequency band outside the system, and the configuration information includes the terminal to be used.
  • the carrier list is notified to the terminal by the base station transmitting a list of carrier indices.
  • These wireless access systems will transmit configuration information from the base station to the user terminal through its own signaling method.
  • the A terminal uses its uplink and downlink resources continuously or discontinuously in time. That is, the A terminal performs uplink or downlink data transmission and reception continuously or discontinuously on the extension carrier.
  • the time at which the A terminal performs data transmission and reception on the extension carrier is configured by the A base station, and the specific configuration is transmitted to the A terminal, and the A terminal uses the extension carrier according to the configuration of the A base station.
  • the carrier of the TDD band is the extended carrier ECC, and the carrier can be time-configured by the eNB, that is, the eNB informs the UE of the time during which the carrier of the TDD band can be used.
  • the message that the eNB sends the configuration of the carrier time of the TDD band to the UE may adopt one or more of the following methods:
  • Method 1 The eNB configures a subframe of a TDD frequency band carrier that can be used by the UE, that is, informs the UE of the use.
  • the method can be implemented by the eNB sending a bitmap to the UE, that is, transmitting a bitmap of 10 bits, wherein the value of each bit represents whether a subframe in the radio frame can be used by the UE. For example, a bit with a value of 1 indicates that it is available, a bit with a value of 0 indicates that it is unavailable, or vice versa.
  • the value of each bit of the bitmap may represent a larger time granularity, that is, whether the TDD band carrier is available in the time exceeding 1 subframe.
  • the method can also be performed by the eNB
  • the UE sends a bitmap index value to implement, that is, sends an index value, and the index value will correspond to only one bitmap, and the value of this cable will represent a certain bitmap.
  • the ECC available time configuration information of the method may be sent by the eNB to the UE by using RRC signaling or MAC CE (MAC Control Element). If the RRC signaling is sent, the RRCConnectionReconfiguration message may be sent, that is, the configuration of each ECC available subframe is added in the RRCConnectionReconfiguration message, where the configuration includes the cell index of the ECC (Celllndex) and a 10-bit bitmap or bitmap corresponding to Index value.
  • the MAC CE includes the Celllndex of the ECC and a bitmap or index value of 10 bits. After receiving the bitmap configured by the ECC available subframe or its index value, the UE can only perform uplink and downlink data transmission and reception in the available subframe.
  • Method 2 The eNB sends a start command and an end command to the UE that can use the ECC.
  • the eNB sends a start command to the UE, and the UE can start data transmission and reception on the ECC.
  • the eNB sends an end command to the UE, and the UE ends the data transmission and reception on the ECC.
  • the eNB may send the start and end commands available to the ECC through RRC signaling or MAC CE or physical layer signaling. If it is sent through RRC signaling, it may be sent through an RRCConnectionReconfiguration message, and an RRC message may be added to indicate that one or more configured ECCs are used to start or end.
  • the content of the message consists of a list.
  • Each element in the list contains two parts, namely, the SCelllndex of the ECC and the start or end of the ECC corresponding to the use of the SCell, and the contents of the two parts are corresponding, and can be named as SCellUsage.
  • SCellUsage can be a value of start or stop, indicating start or stop.
  • the SCelllndex and SCellUsage contents are also included, and may also be sent in the form of a list, and each MAC CE may carry a command for starting or ending the use of multiple ECCs.
  • the physical layer signaling sends the start and end commands available to the ECC, and the eNB may send the PDCCH or the PHICH to the UE to notify the UE to start and end the use of the ECC. That is, the eNB carries an ECC available start or end command on the PDCCH or PHICH, and sends the command to the UE.
  • the eNB implicitly notifies the UE to start and end the use of the ECC by scheduling the ECC. That is, when the eNB performs uplink and downlink scheduling on the ECC of the UE, the UE considers that the ECC is available, and performs data transmission on the ECC according to the scheduling of the eNB. At other times, the UE considers that the ECC is unavailable, and stops data transmission on the ECC.
  • Method 3 The eNB sends a message to the UE, and carries information about the length of time available for the ECC, and informs the UE of the length of time that the ECC can use the ECC. Specifically, the eNB sends the message to the UE, and after receiving the UE, the ECC is considered to be available, and then a timer is started to count the ECC usage time. After the timer expires, the UE considers the ECC to be unavailable. Similar to Method 1 and Method 2, a message can be sent to the UE through RRC signaling or MAC CE. The content sent can also be a list. The content of each element in the list will contain two parts, SCelllndex and ECC available time, named ECCUsableTime.
  • the method 1 and the method 2 may be used in combination, or the method 1 and the method 3 may be used in combination, that is, the eNB first configures the UE by the method 1, and informs the UE which subframes are available. The subframe will then inform the UE to start using the ECC through the start command described in the method 2, and finally the eNB will inform the UE to end the use of the ECC through the end command, or by the method described in the method 3, the eNB informs the UE of the available time of the ECC, and the UE In the ECC available time, ECC is used according to the configuration of Method 1.
  • the configuration of the TDD band usage time by the eNB for the UE will include, but is not limited to, the above three methods. The above method is also applicable to other non-LTE FDD systems.
  • the A base station configures a carrier (extended carrier) of the non-A system frequency band for the A terminal, and if the A base station does not configure the use time of the extended carrier for the A terminal, then the A base station and the A terminal
  • the extension carrier can be used by default.
  • the default party The formula may include the available subframes of the extension carrier and the duration of the duration of use of the extension carrier.
  • the eNB configures the carrier of the non-self system band, that is, the extended carrier ECC, for the UE, and starts using the ECC. If the eNB does not send the configuration of the ECC usage time to the UE, the UE uses the ECC in a default manner, that is, performs data transmission and reception on the default available uplink/downlink subframe.
  • the default mode may be that the UE continuously uses the extension carrier.
  • the default time configuration may be configured by the eNB to send system information to configure the UE. Take the FDD UE aggregation TDD extension carrier as an example. The specific process is as follows:
  • Step 701 The eNB adds an extension carrier to the UE, where the extension carrier is a carrier of a system band where the UE is not located, that is, a TDD ECC.
  • Step 702 The eNB activates the ECC, and activates the ECC by sending an Activation/Deactivation MAC Control Element to the UE.
  • Step 703 After the ECC is activated, the UE performs data transmission on the ECC in the default available uplink/downlink subframe.
  • the default uplink/downlink subframe may be obtained from system information of the eNB.
  • One of the SystemInfoformBlockType 1 - SystemlnformationBlockType 13 of the system information carries the default available subframe information of the ECC. If there are multiple ECCs, each ECC can be called ECCi.
  • the eNB may carry a list of available subframe numbers, availableSubframeList, in the system information. The value of each element in the list is the number or index value of the available subframes, indicating which subframes of the ECC can be used by the UE for data. transmission.
  • the eNB may further carry a bitmap in the system information, which is used to indicate which subframes of the ECC are available subframes, and the length of the bitmap may be the frame length of the TDD system, where the value of each bit is 1 indicates that the subframe corresponding to the bit is available, and 0 indicates that it is unavailable.
  • the UE will perform data transmission on the available subframes.
  • Step 704 After the ECC is activated, the UE may start a timer. After the timer expires, the UE considers the ECC to be unavailable.
  • the initial timing of the timer may be sent by the eNB to the UE through a system message, that is, in SystemlnformationBlockType 1 ⁇ SystemlnformationBlockType 13 One of them carries the default available time length information for each ECC.
  • Each ECC can be given a default available time length, or all ECCs can have the same default available time length.
  • the A base station For the non-A system carrier (extended carrier), the A base station sends configuration information to the A terminal, and informs the A terminal that the extended carrier will be used as an uplink carrier or a downlink carrier, or an uplink and downlink alternate carrier, etc., and has the following configurations: method:
  • the extension carrier is configured as an uplink carrier, and the A terminal transmits only uplink data on the carrier.
  • the extension carrier is configured as a downlink carrier, and the A terminal receives only downlink data on the carrier.
  • the extension carrier is configured in a half-duplex mode, that is, the A terminal has both uplink and downlink data transmission and reception on the carrier, but the uplink and the downlink do not occur at the same time, and only one of the uplink or the downlink can be sent at a certain time.
  • the A base station also configures the uplink and downlink times of the extended carrier for the A terminal.
  • the A base station is configured with an uplink and downlink mode of the extended carrier, and the A terminal performs uplink and downlink data transmission and reception according to the configuration of the A base station. If it is necessary to change the configuration of the uplink and downlink modes of the extension carrier, the A base station sends configuration information to the A terminal to notify the A terminal to modify.
  • the FDD UE of the LTE aggregates the carrier (extended carrier, ECC) of the LTE TDD band
  • the carrier can be used as an uplink, downlink, or half-duplex carrier, and the related configuration needs to be sent by the eNB to the UE.
  • the eNB may send the uplink and downlink configurations of the carrier of the non-LTE FDD band to the UE by using an RRC message when the SCell is added or modified.
  • the configuration value may be one of uplink, downlink, and half duplex.
  • the ECC is configured as an uplink or downlink carrier, the UE performs only uplink or downlink data transmission and reception on the ECC.
  • the eNB needs to configure the uplink and downlink times of the ECC, where the uplink time and downlink time length will not be less than the LTE subframe time length lms.
  • the UE performs uplink data on the ECC.
  • Transmit in the downlink time, the UE performs downlink data reception on the ECC.
  • the configuration of the uplink and downlink modes in which the eNB uses the ECC for the UE may have the following methods:
  • the eNB configures the SCell for the UE, that is, adds the SCell to the UE, which is completed by RRC connection reconfiguration.
  • the eNB sends an RRCConnectionReconfiguration message to the UE, where the SCellToAddModList list is included, and the UE adds or modifies the SCell according to the content in the SCellToAddModList.
  • the dl-CarrierFreq configuration of one or some SCellToAddMod elements in the SCellToAddModList is the carrier of the ECC band
  • an optional option can be added to the SCellToAddMod, which is called UplinkDownlinkMode, and the value is uplink/downlink/semiduplex, which is represented as 3
  • the ECC should be configured in the upper, lower or half duplex mode.
  • the UE configures the uplink/downlink/half-duplex mode according to the value of the uplink/downlink/semiduplex of the UplinkDownlinkMode to the SCell corresponding to the SCellToAddMod (the frequency bands corresponding to these SCells are ECC). If the ECC is configured in the half-duplex mode, the eNB will configure the uplink and downlink times for the UE to perform uplink and downlink data transmission and reception on the ECC according to the uplink and downlink times.
  • the RRCConnectionReconfiguration message may carry the configuration of the uplink time and the downlink time.
  • Add an optional SemiduplexTime to the SCellToAddMod which includes two parts, the uplink time UplinkTime and the downlink time DownTime.
  • the base station may also send the uplink, downlink, and half-duplex mode configuration information of the carrier to the terminal, and notify the terminal of the carrier.
  • the uplink or downlink or half-duplex mode is used to send and receive data.
  • the eNB may pass the UE to the UE. Send a command to change the configuration to achieve.
  • the eNB sends signaling to the UE, and the signaling carries the modified configuration information and the ECC index value to be modified, and informs the UE that the uplink and downlink modes of the ECC are to be changed, and the UE modifies the configuration after successfully receiving the signaling.
  • the eNB sends an RRCConnectionReconfiguration message to the UE, where the SCellToAddModList list is included, and the UE performs the modification of the SCell according to the content in the SCellToAddModList, where the SCell may correspond to the ECC.
  • the UE of the LTE FDD uses the carrier aggregation technology, and the carrier of the TDD band is aggregated as one CC, that is, one ECC, and the carrier of the TDD band is called CC1, and the cell corresponding to CC1 is SCell-1.
  • CC1 is aggregated by the UE as a downlink carrier or a half-duplex mode carrier, and the eNB cross-carriers the CC1:
  • Method 1 In the available downlink subframe of CC1 (the eNB configures available subframes for the UE), the eNB sends a PDCCH on a non-CC1 carrier to schedule downlink data of CC1, and simultaneously on the subframe. The eNB sends downlink data on CC1. The UE receives the subframe on both carriers. If the PDCCH is received on the non-CC1, and the PDCCH is the downlink scheduling for CC1, the received CC1 subframe is decoded.
  • Method 2 As shown in FIG. 7, the eNB schedules CC1 to transmit downlink data as n, and in the Xth subframe before subframe n, the eNB transmits PDCCH cross-carrier scheduling CC1 on a non-CC1 CC. After successfully receiving the PDCCH, the UE transmits the downlink data of CC1 in subframe n after X milliseconds of processing time.
  • the value of X may be a fixed value, an integer value greater than 0, or a non-fixed value, and the eNB notifies the UE of the specific X value.
  • the eNB may carry the value of X in the PDCCH transmitted on non-CC1.
  • CC1 is used by the UE to be aggregated as a downlink carrier or a half-duplex mode carrier, and the eNB is not a cross-carrier.
  • the eNB uses non-cross-carrier scheduling for CC1, and transmits PDCCH and PDSCH on the downlink subframes available to CC1.
  • CC1 is aggregated by the UE as an uplink carrier:
  • the eNB since CC1 is the uplink carrier and there is no downlink, the eNB will perform cross-carrier scheduling for CC1.
  • the eNB schedules the subframe in which CC1 transmits uplink data to be n, and subframe n is an available uplink subframe.
  • subframe n-4 the eNB transmits PDCCH cross-carrier scheduling CC1 uplink on a non-CC1 CC.
  • the UE After successfully receiving the PDCCH, the UE sends uplink data on CC1 in subframe n.
  • subframe n+4 the eNB transmits HARQ feedback on the carrier transmitting the PDCCH when scheduling CC1.
  • the HARQ feedback is NACK, then retransmission is required, and the UE will transmit the uplink retransmission data of CC1 in subframe n+8.
  • the subframe n+8 on CC1 may be a non-available uplink subframe, and the UE will transmit the retransmission data on the first available uplink subframe on CC1 starting from subframe n+8. If the HARQ feedback is ACK, the transmission is successful.
  • CC1 is aggregated by the UE as a half-duplex mode carrier:
  • the uplink data sent by the UE in CC1 will be performed in the uplink time of CC1 half-duplex, and the scheduling mode is the same as the case where CC1 is aggregated by the UE as the uplink carrier.
  • CC1 For the UE, if CC1 is configured in the half-duplex uplink and downlink mode, the UE uses CC1 in half-duplex mode in the available time of CC1 (as described above), that is, the uplink and downlink times alternately, uplink
  • the uplink data is transmitted during the time, and the downlink data is transmitted during the downlink time.
  • MAC Control Element abbreviated as MAC CE MAC Control Element abbreviated as MAC CE
  • the UE After receiving and successfully decoding the Activation/Deactivation MAC Control Element, the UE starts to use CC1 as an uplink (or downlink) CC, and can start a timer, and the time is up (or downlink). Time UplinkTime (or DownTime). After the timer expires, the UE starts to use CC1 as a downlink (or uplink) CC, and alternates in this manner.
  • the present invention further provides a system embodiment for implementing the method, where the system includes a first radio access system and a second radio access system, where the first The radio access system configures, for the user terminal of the system, a carrier that is not the first radio access system frequency band, that is, an extension carrier; and the extension carrier is a carrier of another second radio access system frequency band that uses the same or different radio access technologies. And the user terminal of the first radio access system and the terminal of the second radio access system use the extension carrier in a time division multiplexing manner.
  • system further includes: an operation management and maintenance module, configured to coordinate and control use of the extension carrier by the first wireless access system and the second wireless access system.
  • the base station in the first radio access system configures the extension carrier for the user terminal, and sends configuration information to the user terminal;
  • the configuration information includes at least a cell corresponding to the extension carrier.
  • the functions of the apparatus, the module, and the subsystem included in the system embodiment of the present invention are all configured to complete the step procedure in the method embodiment, and the functions thereof are all
  • the method is directly exported in the embodiment, and the space is not described here.
  • the LTE system can use other system spectrums by means of aggregation, so that the LTE system can perform data transmission without using the spectrum resources of the system.
  • the FDD network of the LTE can fully utilize the frequency band of the TDD. Maximize the throughput of the LTE system as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种频谱资源共享使用的方法及系统,用于解决现有无线通信系统无法共享使用其它无线通信技术的频谱资源,频谱资源利用率低的技术问题。本发明通过聚合方式使用其它系统频谱,使得LTE系统可以利用原来未作为本系统频谱资源进行数据传输,特别的对于LTE系统内的两种双工模式,LTE的FDD网络能充分利用TDD的频带,从而尽可能的将LTE系统的吞吐量最大化。

Description

一种频谱资源共享使用的方法及系统 技术领域
本发明涉及无线通信技术领域, 特别涉及 LTE ( Long Term Evolution, 长期演进技术, LTE ) 的 FDD ( Frequency Division Duplex, 频分双工)和 TDD ( Time Division Duplex, 时分双工 )频谱资源共享使用的方法及系统。 背景技术
对于无线通信技术, 各自都被分配了相应的工作频段, 各无线通信系 统都工作在已规划的频段中。 随着无线电通信技术的发展, 通信系统需要 越来越大的传输速率, 以满足多种无线传输业务的更高需求。 通信系统的 现有工作频带可能无法满足更高传输速率的要求, 需要更大的工作带宽。
特别的,对于 LTE技术, 有两种双工模式, 分别是 FDD和 TDD。 FDD 双工模式是使 UE ( User Equipment, 用户设备) 的上行发送和下行接收在 不同的频带上进行, 分别是上行频带和下行频带, 并且上行发送和下行接 收可以同时发生。 TDD双工模式是 UE的上行发送和下行接收分别在不同 的时间里进行, 在某一时刻不能同时发生上行发送和下行接收。 LTE 的频 谱资源主要是 2500MHz~2690MHz, 其中 2500MHz~2570MHz是 LTE FDD 的上行频带, 2620MHz~2690MHz 是 LTE FDD 的下行频带, 2570MHz~2620MHz是 LTE TDD的频带, 由于 LTE技术具有 FDD和 TDD 两种双工模式, 所以从双工模式来看, LTE网络可以分为 FDD和 TDD两 种 , LTE的 FDD系统的网络工作在 FDD频带 , TDD系统的网络工作在 TDD 频带。
有些 FDD网络的运营商同时拥有 FDD和 TDD频段, 由于其 FDD网 络工作在 FDD频段, 则 TDD频段不存在网络部署, 造成一定的频谱浪费。 随着 LTE标准的逐步推进,载波聚合技术成为 LTE-Advanced标准的一 个重要特性。 在载波聚合技术中, 每个 eNB 可能会配置多个成员载波 ( Component Carrier ), UE也可能被配置并使用多个成员载波,如图 1所示, UE1被配置了 3个成员载波 fl、 £2和 β ( f 表示不同频率的载波), UE2 被配置了 2 个成员载波 f4 和 f5。 成员载波分为主成员载波(Primary Component Carrier, PCC )和辅成员载波 ( Secondary Component Carrier, SCC )。 主成员载波是载波聚合中对 UE提供完整服务的载波, 即在没有辅 成员载波存在的情况下, UE仅由主成员载波便可正常工作。 而辅成员载波 是为了扩大 LTE设备的工作带宽、提高吞吐量而被引入 LTE-Advanced标准 的, 不能为 UE提供完整的服务, 不能离开主成员载波而单独存在。 在 LTE 中, 只有一个成员载波服务于一个 UE, 且每个小区只有一个成员载波, 服 务于 UE的成员载波对应的小区即为此 UE的服务小区, 系统通过服务小区 为 UE提供一系列功能, 包括安全输入, NAS ( Non- Access Stratum, 非接 入层)移动信息, 无线链路检测, 寻呼等。 聚合了多个成员载波的 UE将在 多个成员载波上进行发送和接收。
现有载波聚合技术中, 一个无线通信系统无法共享使用其它无线通信 技术的频谱资源, 造成频谱资源利用率低, 无法满足未来无线传输业务的 带宽需求。 发明内容
有鉴于此, 本发明的主要目的在于提供一种频谱资源共享使用的方法 及系统, 用于解决现有无线通信系统无法共享使用其它无线通信技术的频 谱资源, 频谱资源利用率低的技术问题。
为达到上述目的, 本发明的技术方案是这样实现的:
一种频谱资源共享使用的方法, 该方法包括:
第一无线接入系统为该系统的用户终端配置非第一无线接入系统频带 的载波, 即扩展载波;
所述扩展载波为其它采用相同或不相同无线接入技术的第二无线接入 系统频带的载波;
第一无线接入系统的用户终端与第二无线接入系统的终端通过时分复 用的方式使用所述扩展载波。
进一步地, 所述频谱资源共享使用的方法还包括:
由操作管理和维护模块协调和控制所述第一无线接入系统与所述第二 无线接入系统对所述扩展载波的使用。
进一步地, 所述频谱资源共享使用的方法还包括:
由所述第一无线接入系统中的基站为所述用户终端配置所述扩展载 波, 并向所述用户终端发送配置信息; 所述配置信息至少包括所述扩展载 波所对应的小区索引值、 小区物理标识以及该载波的频带, 其中, 小区索 引值和小区物理标识是用于唯一识别一个小区;
所述基站为所述用户终端配置所述扩展载波后, 所述基站进一步为所 述用户终端配置所述扩展载波的使用时间及上下行传输模式。
基于本发明一实施例, 所述第一无线接入系统中的基站为其下用户终 端配置所述扩展载波方法为:
所述基站为所述用户终端配置测量上报事件, 所述测量上报事件用于 所述用户终端在测量到存在可用的扩展载波时, 向所述基站上报测量信息; 所述基站根据所述用户终端上报的测量信息为所述用户终端配置扩展 载波。
基于本发明另一实施例, 所述第一无线接入系统中的基站为其下用户 终端配置所述扩展载波方法为:
所述用户终端检测到可用的扩展载波, 向所述基站上报可用的扩展载 波列表; 所述基站根据所述用户终端上报的扩展载波列表为所述用户终端添加 扩展载波, 并为所述用户终端配置扩展载波。
进一步地, 由所述第一无线接入系统中的基站为所述用户终端配置所 述扩展载波的使用时间, 具体方法为以下方法之一:
方法 1、 所述基站通过位图 (bitmap )或位图的索引值方式通知所述用 户终端在所述扩展载波的哪些子帧上进行数据收发, 所述位图的每一位的 值都对应指示扩展载波的无线帧中的一个子帧是否能被所述用户终端使 用, 所述位图的索引值对应唯——个位图;
方法 2、所述基站通过向所述用户终端发送使用所述扩展载波的开始命 令和结束命令来指示所述用户终端进行数据收发的时间;
方法 3、所述基站通过向所述用户终端发送使用所述扩展载波的时间长 度来指示所述用户终端进行数据收发的时间;
方法 4、 方法 1与方法 2结合;
方法 5、 方法 1与方法 3结合。
进一步地, 所述基站为所述用户终端配置所述扩展载波的使用时间的 方法为以下方法之一:
所述基站和所述用户终端按照默认方式使用所述扩展载波, 所述默认 方式包括如下默认配置: 扩展载波的无线帧中的可被所述用户终端使用的 子帧配置, 以及对扩展载波使用的持续时间长度。
进一步地, 所述基站进一步为所述用户终端配置所述扩展载波的上下 行传输模式的方法为:
所述基站通过发送配置消息告知所述用户终端所述扩展载波将被用于 上行载波、 下线载波或上下行交替的载波, 所述扩展载波的上下行传输模 式具体为以下方式之一:
方式 1、 所述扩展载波配置为上行载波, 所述用户终端在该载波上仅发 送上行数据;
方式 2、 所述扩展载波配置为下行载波, 所述用户终端在该载波上仅接 收下行数据;
方式 3、 所述扩展载波配置为半双工模式, 所述用户终端在该载波上既 有上行也有下行数据收发, 但上行和下行不在同时发生, 在半双工情况下, 所述基站还对所述用户终端配置扩展载波的上、 下行时间。
进一步地, 所述方法还包括所述基站对所述扩展载波进行上下行调度 的步驟:
对于所述扩展载波的下行数据传输, 所述扩展载波被所述用户终端聚 合作为下行载波或半双工模式载波使用时, 所述基站通过跨载波或非跨载 波方式调度所述扩展载波;
对于所述扩展载波的上行数据传输, 所述扩展载波被所述用户终端聚 合作为上行载波或半双工模式载波使用时, 所述基站对所述扩展载波进行 跨载波调度。
基于本发明实施例, 本发明还提出一种频谱资源共享使用的系统, 包 括第一无线接入系统和第二无线接入系统, 其中,
第一无线接入系统为该系统用户终端配置非第一无线接入系统频带的 载波, 即扩展载波; 所述扩展载波为其它采用相同或不相同无线接入技术 的第二无线接入系统频带的载波;
所述第一无线接入系统的用户终端与所述第二无线接入系统的终端通 过时分复用的方式使用所述扩展载波。
进一步地, 所述系统还包括:
操作管理和维护模块, 用于协调和控制所述第一无线接入系统与所述 第二无线接入系统对所述扩展载波的使用。
进一步地, 由所述第一无线接入系统中的基站为所述用户终端配置所 述扩展载波, 并向所述用户终端发送配置信息; 所述配置信息至少包括所 述扩展载波所对应的小区索引值、 小区物理标识以及该载波的频带, 其中, 小区索引值和小区物理标识是用于唯一识别一个小区;
所述基站为所述用户终端配置所述扩展载波后, 所述基站进一步为所 述用户终端配置所述扩展载波的使用时间及上下行传输模式。
本发明提出的频谱资源共享方案, 通过聚合方式使用其它系统频谱, 使得 LTE系统可以利用原来未作为本系统频谱资源进行数据传输, 特别的 对于 LTE系统内的两种双工模式, LTE的 FDD网络能充分利用 TDD的频 带。 通过本发明能充分利用频谱资源, 尽可能的将 LTE系统的吞吐量最大 化。 附图说明
图 1 为 LTE系统载波聚合的示意图;
图 2为本发明实施例中用户终端聚合非自身系统频带载波的示意图; 图 3 为本发明实施例中用户终端聚合非自身系统频带载波的系统结构 示意图;
图 4为本发明实施例中 OAM与 A和 B基站协调 β使用时间的流程示 意图;
图 5为本发明中 eNB通过测量上报事件对 UE配置 ECC的流程示意图; 图 6为本发明实施例中 eNB为 UE配置 ECC的流程示意图;
图 7为本发明实施例中 eNB调度 ECC下行传输的方法二示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
无线通信系统的用户终端设备, 除了使用自身所在系统的频带资源, 在自身所在系统的频带上进行数据传输, 还可以使用非自身系统频带的载 波, 如图 2所示, 这类载波可能在其它系统或无线接入技术的频带上, 即 网络侧对用户终端配置了非自身系统所在频带的载波, 用户终端可以在非 自身系统的频带上与网络侧进行数据传输。
对于 LTE技术 , LTE FDD系统的 UE在使用 FDD频带载波资源的同时, 也可以将 LTE TDD频带的载波进行聚合使用。这种聚合方式需要 LTE FDD 系统的 eNB提供 TDD 频带的载波, 供 UE进行聚合, 同时 FDD的 UE需 要具备在 TDD频带的载波上进行接收和发送数据的能力。 eNB提供 TDD 频带的载波,即可以在 TDD频带上向 UE发送下行帧和从 UE接收上行帧。 同样的, LTE TDD系统的 UE也可以将 FDD频带的载波进行聚合使用。 如 果 FDD UE聚合了 TDD载波, 该 TDD载波被 FDD UE作为一个成员载波 ( Component Carrier, CC )使用, FDD UE可以在该 TDD CC上接收下行子 帧和发送上行子帧。
LTE的 UE (包括 FDD和 TDD的 UE )还可以聚合其它无线接入技术 频带的载波。 具体的, 对于使用了载波聚合技术的 UE, eNB为其配置了一 个或多个载波, UE将在配置的载波上进行数据收发。 为了扩大工作带宽, 这些载波中可能有一个或多个非 UE 自身系统频带的载波, eNB在这些已 配置的载波上向 UE提供无线传输服务。
如图 3所示, 说明某一无线通信系统的终端使用非本系统频带的载波。 称某一无线接入技术系统为 A系统, 其基站和用户终端设备称为 A基站和 A终端,这里的 A系统、 A基站以及 A终端可以是 LTE、 GSM、 TD-SCDMA、 Wimax等所有无线通信技术的系统、 基站以及终端。 称另一非 A系统的无 线接入技术系统为 B系统, 其基站和用户终端设备称为 B基站和 B终端, 与 A系统类似, 这里的 B系统、 B基站以及 B终端也可以是 LTE、 GSM、 TD-SCDMA、 Wimax等所有无线通信技术的系统、 基站以及终端。 A终端 使用了载波聚合技术, 其聚合的载波有至少一个是 A系统的载波, 另外还 可以存在一个或多于一个非 A系统的载波。 A终端聚合哪些载波, 包括 A 系统的和非 A系统的载波, 将由 A基站发送信息来对 A终端进行配置。 如 图 3所示, A基站提供 fl, £2, β三个载波, 其中 fl和 £2为 Α系统的载波, β为 B系统的载波, Β基站提供了 β载波。 Α终端聚合使用了 fl, £2以及 β三个载波, Β终端聚合使用了 β载波。 另外, 对于 β载波的使用, 将由 Α基站和 B基站之间的 OAM(操作管理和维护, Operation Administration and Maintenance, OAM )模块进行协调和控制, Α基站和 B基站如何控制终端 使用 β将由 0ΑΜ控制和决策。
网络侧对用户终端进行非自身系统载波的配置, 即 Α基站对 A终端配 置非 A系统(B系统)频带的载波, 将通过 A基站向 A终端发送配置信息 来实现。 配置信息至少应包括 B系统频带载波及所对应的小区索引值、 小 区物理标识以及该载波的频带, 其中, 小区索引值和小区物理标识是被用 来唯一识别一个 d、区的两个值。
在 0AM与 A基站、 0AM与 B基站之间都存在信息交互, 0AM可以 对 A基站和 B基站进行一定的控制和协调。由于 A基站和 B基站都可以提 供 β载波, 对于 β的使用, 将由 0ΑΜ进行控制。 0ΑΜ对 Α基站和 B基 站进行控制和协调之后, 即通知 A基站和 B基站使用 β的时间后, Α基站 和 B基站分别对 A终端和 B终端进行 β使用时间的配置, 该流程如图 4 所示:
步驟 401、 0ΑΜ与 Α基站和 B基站协调 β载波的使用时间; 步驟 402、 Α基站和 B基站分别对 A终端和 B终端进行配置; 步驟 403、 A终端和 B终端按照各自的配置使用 β载波。
本发明一具体实施例中, 当 Β基站与自身所控制小区中的 Β系统终端 进行数据传输时, 使用了 β载波, 可以向 ΟΑΜ发起 Β基站使用 β载波的 通知。 为了避免干扰, A基站需要停止在 β载波上与自身所控制小区中的 Α系统终端进行数据传输, OAM可以通知 A基站停止使用 β载波, 即不 在 β载波上与终端进行数据传输。当 Β基站停止在 β载波上进行数据传输 时, 可以向 ΟΑΜ发起停止使用 β载波的通知, 再由 ΟΑΜ通知 Α基站, A基站即可使用 β载波。 本发明一具体实施例中, ΟΑΜ可以分别向 Α基 站和 B基站发送其各自可使用 β的子帧配置,告知 Α基站和 Β基站可以使 用 β的哪些子帧, Α基站和 Β基站收到各自的可使用 β的子帧配置后,在 相应的子帧上使用 β , 即在 β上进行数据传输。
对于 LTE技术, 包括 FDD系统和 TDD系统, LTE的 eNB向使用载波 聚合技术的 UE发送消息以告知 UE将聚合哪些载波。
为了清楚说明本发明,首先说明 eNB为 UE配置工作载波的技术问题。 在 LTE系统中, UE与 eNB建立 RRC连接后, 为了增大工作带宽和传输速 率, eNB可能会为 UE配置多个载波, 载波中分为两类, 分别称为主成员 载波 PCC和辅成员载波 SCC, 每个 CC对应一个小区, 即主小区 PCell和 辅小区 SCell, 每个 UE PCell只有一个, 而 SCell可以有多个。 新的非 A系 统的载波可以表示为 ECC (Extension Component Carrier, 扩展载波)或者 ECell, 对于一个 UE也可以配置多个 ECC。
eNB 通 过 向 UE 发 送 RRC 连 接 重 配 置 消 息 即 RRCConnectionReconfiguration消息来发送相关的配置信息, 其中可以包括 ECC的配置, 可以使用 RRCConnectionReconfiguration消息中现有的 SCell 配置信元的基础上进行扩充表示, 如 SCellToAddModList。 其中, 列表 SCellToAddModList中的每个元素都是 SCellToAddMod结构, 该结构包含 的内容是 SCell的索引值 SCelllndex, 小区标识 Cellldentification, SCell的 共有无线资源配置 radioResourceConfigCommon (当添加 SCell时, 该部分 为 RadioResourceConfigCommonSCell )、 SCell 的专有无线资源配置 radioResourceConfigDedicated ( 当 添 加 SCell 时 , 该 部 分 为 RadioResourceConfigDedicatedSCell ) , 其中 Cellldentification中包含小区的 物理标识 physCelllD以及下行载波频带 dl-CarrierFreq, SCellToAddMod的 内容表示一个小区的基本属性值, 对应着唯——个小区, 也即唯一对应着 一个载波。 eNB向 UE添加扩展载波时, 通过 SCellToAddMod的信息判断 所 述 的 SCell 不 是 普 通 的 SCell 而 是 一 个 ECC 。 如 RRCConnectionReconfiguration消息的 SCellToAddModList中对应扩展载波 的 SCellToAddMod的 dl-CarrierFreq值将是扩展载波的频带,或者载波类型 指明为 ECC, 或者配置 ECC特有的信元, 具体见后续描述。 也可以使用 RRCConnectionReconfiguration消息中的 ECell配置信元, 可以类似 SCell 的配置有 ECellToAddModList, 其中, 列表 ECellToAddModList中的每个元 素都是 ECellToAddMod 结构, 该结构包含的内容是 ECell 的索引值 ECelllndex, 小区的物理标识 physCelllD以及下行载波频带 dl-CarrierFreq, ECellToAddMod的内容表示一个小区的基本属性值,对应着唯——个小区, 也即唯一对应着一个载波。
在 UE被配置了非自身系统频带的成员载波(ECC )后, 需要 eNB为 UE配置 ECC的可用时间以及上、 下行传输模式, 即告知 UE, 在哪些时间 里该 ECC为可用, 以及该 ECC将被用作上 /下 /半双工的载波。 对于这两种 配置, 如果 UE在开始使用 ECC之前未收到来自 eNB的具体配置参数, 则 可以按照默认配置使用 ECC。
eNB除了对 UE配置 ECC之外,可以配置一个测量上报事件 Bl ( Event B1 ), 目的是当 UE通过测量得知存在非自身系统小区即 ECC存在时, 上 报给 eNB。 eNB收到该测量上报事件后, 将获知 UE已检测到非自身系统 的小区即 ECC, 接下来 eNB对 UE配置 ECC, 该流程如图 5所示:
步驟 501、 eNB为 UE配置测量上报事件。 步驟 502、 UE检测到其它系统的可用频带载波, 即 ECC时, 进行测量 上报。
步驟 503、 eNB根据 UE上报的测量信息为 UE配置 ECC。
步驟 504、 UE按照 eNB的配置使用 ECC。
eNB 将可以通过 RRC 消息来向 UE 配置 ECC, 即如前文所述使用
RRCConnectionReconfiguration消息。 eNB对 UE进行测量上报事件的配置, 同样将通过向 UE 发送 RRCConnectionReconfiguration 消息, 在 RRCConnectionReconfiguration消息中, 将包含 measConfig部分, 为测量配 置。 measConfig 部分中将包含 ReportConfigToAddModList 部分, ReportConfigToAddModList 部分需要包含 reportConfiglnterRAT 部分, reportConfiglnterRAT中携带测量上报事件 eventBl的配置。如果 UE被配置 了测量上报事件 B1 , 那么 UE按照该配置, 在测量到的异系统小区的信号 质量高于门限值时,将进行测量上报,这里的门限值也将由 eNB进行配置, 存在于 reportConfiglnterRAT中。
可选的, 对于 UE, 如果 eNB未对 UE配置 ECC, UE通过对 ECC的 检测, 判断自己可以使用 ECC, 那么 UE可以向 eNB发起协商, 然后通过 eNB对 UE进行配置使 UE使用 ECC, 流程如图 6所示:
步驟 601、 UE检测到可用的扩展载波 ECC。
步驟 602、 UE向 eNB发送可用的 ECC列表。
步驟 603、 eNB接收到 ECC 列表后, 向 UE发送 RRC连接重配置
( RRCConnectionReconfiguration ) 消息, 消息中携带分配给 UE的 ECC信 息, eNB为 UE添加 ECC成功后, 对分配给 UE的 ECC进行配置。
步驟 604、 UE在分配的 ECC上, UE和 eNB按照 ECC的配置进行数 据传输。
定义一条 RRC消息, 该 RRC消息将携带 UE可使用的 ECC列表, 该 列表的内容将包含了一个或多个 ECC的频带信息, 告知 eNB哪些 ECC频 带可以使用。 UE向 eNB发送该 RRC消息, eNB收到后, 可以向 UE发送 RRCConnectionReconfiguration消息, 向 UE配置 SCell, SCell中可能包含 ECC对应的小区。 另夕卜, 对于 UE检测可用的 ECC, UE可以检测 ECC频 带上是否存在载波的传输。
除了 LTE技术,其它无线接入技术的系统(GSM、 TD-SCDMA、 Wimax 等) 的终端在使用自身系统之外频带的载波之前, 需要基站向终端发送配 置信息, 该配置信息包含终端将使用的载波列表, 通过基站发送一个载波 索引的列表来告知终端。 这些无线接入的系统将通过自身的信令发送方式, 将配置信息从基站发送到用户终端。 对于扩展载波(非 A系统的载波), A终端在时间上连续或非连续地使 用其上、 下行资源。 即 A终端在扩展载波上连续或非连续地进行上行或下 行数据收发。 A终端在扩展载波上进行数据收发的时间由 A基站配置, 将 具体配置发送到 A终端, A终端按照 A基站的配置来使用扩展载波。
如果 LTE FDD聚合了 TDD频带的载波,该 TDD频带的载波即为扩展 载波 ECC, 可以通过 eNB对该载波进行时间配置, 即 eNB告知 UE在哪些 时间里可以使用该 TDD频带的载波。 eNB向 UE发送 TDD频带载波使用 时间的配置的消息, 可以采用下述方法中的一种或多种:
方法 1 : eNB配置 UE可使用的 TDD频带载波的子帧, 即告知 UE该 用。 该方法可以通过 eNB向 UE发送 bitmap的方式实现, 即发送一个 lObit 的位图 (bitmap ), 其中每一个 bit的值代表无线帧中一个子帧是否可被 UE 使用。 例如, 值为 1的 bit表示可用, 值为 0的 bit表示不可用, 或者相反。 可选的, bitmap的每个 bit的值可以代表更大的时间粒度, 即表示超过 1个 子帧的时间里 TDD频带载波是否可用。 另外, 该方法还可以通过 eNB向 UE发送一个 bitmap的索引值的方式来实现, 即发送一个索引值,这个索引 值将对应唯——个 bitmap , 则这个索弓 I值将代表某一个 bitmap。 具体的, 这种方法的 ECC可用时间配置信息可以由 eNB通过 RRC信令或 MAC CE ( MAC Control Element, MAC层控制单元 )发送到 UE。 如果通过 RRC信 令发送, 则可以通过 RRCConnectionReconfiguration 消息进行发送, 即在 RRCConnectionReconfiguration消息中增加对每个 ECC可用子帧的配置,该 配置包含 ECC的小区索引 ( Celllndex )和一个 lObit的 bitmap或者 bitmap 对应的索引值。如果通过 MAC CE发送 bitmap或对应的索引值,则该 MAC CE包含 ECC的 Celllndex和一个 lObit的 bitmap或索引值。 UE收到 ECC 可用子帧配置的 bitmap或其索引值后, 便只能在可用子帧进行上行或下行 的数据收发。
方法 2: eNB向 UE发送可使用 ECC的开始命令和结束命令。 当 UE 可以使用 ECC时, eNB向 UE发送开始命令, UE即可开始在 ECC上进行 数据收发, 当 ECC不可用时, eNB向 UE发送结束命令, UE即结束在 ECC 上的数据收发。具体的, eNB可以通过 RRC信令或 MAC CE或者物理层信 令发送 ECC可用的开始和结束命令。 如果通过 RRC信令发送, 则可以通 过 RRCConnectionReconfiguration消息进行发送,可以增加一条 RRC消息, 表示开始或结束使用一个或多个已配置的 ECC。 该消息内容由一个列表组 成, 列表中的每一个元素包含两部分内容, 分别为 ECC的 SCelllndex和表 示使用该 SCell对应的 ECC的开始或结束, 并且这两部分内容是对应的, 可以命名为 SCellUsage, 可取值为 start或 stop, 表示开始或停止。 UE收到 该消息后, 根据每个 SCelllndex值和对应的 SCellUsage的值来开始或结束 使用 ECC。 如果使用 MAC CE发送 ECC可用的开始和结束命令, 同样也 包括 SCelllndex和 SCellUsage两部分内容, 并且也可以以列表形式发送, 每个 MAC CE可以携带了多个 ECC的开始或结束使用的命令。如果使用物 理层信令发送 ECC可用的开始和结束命令, 则可以通过 eNB向 UE发送 PDCCH或 PHICH来通知 UE开始和结束使用 ECC。 即 eNB在 PDCCH或 PHICH上携带 ECC可用的开始或结束命令, 并向 UE发送。 或者, eNB通 过对 ECC的调度隐式通知 UE开始和结束使用 ECC。即 eNB对 UE的 ECC 进行上、 下行调度时, UE认为 ECC为可用, 并按照 eNB的调度在 ECC上 进行数据传输, 其它时间 UE认为 ECC为不可用, 停止在 ECC上进行数据 传输。
方法 3: eNB向 UE发送消息, 携带 ECC可用时间长度的信息, 告知 UE可使用 ECC的时间长度。 具体的, eNB向 UE发送该消息, UE收到后 即可认为 ECC为可用, 随后启动一个定时器,用来对 ECC使用时间进行计 时, 定时器超时后 UE认为 ECC为不可用。 与方法 1和方法 2相似, 可以 通过 RRC信令或 MAC CE来向 UE发送消息。发送的内容也可以是一个列 表, 列表中每一个元素的内容都将包含两部分, 分别是 SCelllndex和 ECC 可用时间, 命名为 ECCUsableTime。
为了使 eNB向 UE完整配置 ECC的使用时间, 可以将方法 1和方法 2 结合使用,或者将方法 1和方法 3结合使用, 即首先 eNB通过方法 1对 UE 进行配置,告知 UE哪些子帧为可用子帧, 然后将通过方法 2中描述的开始 命令告知 UE开始使用 ECC, 最后 eNB将通过结束命令告知 UE结束使用 ECC, 或者通过方法 3 中描述的, eNB向 UE告知 ECC的可用时间, UE 在 ECC的可用时间里, 按照方法 1的配置使用 ECC。
eNB对 UE进行 TDD频带使用时间的配置, 将包含但不仅限于以上三 种方法。 上述方法对其它非 LTE FDD系统也同样适用。 在无线通信系统中, 以 A系统为例, A基站为 A终端配置了非 A系统 频带的载波(扩展载波), 如果 A基站没有为 A终端配置扩展载波的使用 时间, 那么 A基站和 A终端可以按照默认方式来使用扩展载波。 该默认方 式可以包括扩展载波的可用子帧, 以及对扩展载波使用的持续时间长度。 以 LTE系统为例, eNB为 UE配置了非自身系统频带的载波, 即扩展 载波 ECC, 并开始使用该 ECC。 如果 eNB未向 UE发送 ECC的使用时间 的配置, 那么 UE按照默认方式来使用 ECC, 即在默认的可用上 /下行子帧 上进行数据收发。 该默认方式可以是 UE连续使用扩展载波。 可选的, 默认 方式的时间配置可以由 eNB发送系统信息来对 UE进行配置。 以 FDD UE 聚合 TDD扩展载波为例, 具体流程如下:
步驟 701、 eNB为 UE添加扩展载波, 该扩展载波为非 UE所在系统频 带的载波, 即 TDD ECC。
步驟 702、 eNB激活 ECC, 通过向 UE发送激活 /去激活 MAC层控制 单元 ( Activation/Deactivation MAC Control Element )激活 ECC。
步驟 703、 ECC被激活后, UE在默认的可用上 /下行子帧里在 ECC上 进行数据传输。 其中, 默认的上 /下行子帧可以从 eNB的系统信息中获得。 在 系 统 信 息 的 SystemlnformationBlockType 1 - SystemlnformationBlockType 13其中之一携带 ECC的默认可用子帧信息,如 果存在多个 ECC, 每个 ECC可称为 ECCi。 对于 ECCi, eNB可以在系统信 息中携带可用子帧编号的列表 AvailableSubframeList, 列表中的每一个元素 的值是可用子帧的编号或索引值, 表示该 ECC的哪些子帧可以被 UE用来 进行数据传输。另外,对于 ECCi, eNB还可以在系统信息中携带一个 bitmap, 用来指示该 ECC的哪些子帧为可用子帧, bitmap的长度可以是 TDD系统 的帧长度 10,其中每一个比特的取值为 1时表示该比特对应的子帧为可用, 为 0时表示不可用。 UE将在可用的子帧上进行数据传输。
步驟 704、 ECC被激活后, UE可以启动一个定时器, 定时器超时后, UE将认为该 ECC为不可用。 该定时器的定时初值可以由 eNB通过系统消 息 发 送 给 UE , 即 在 SystemlnformationBlockType 1~ SystemlnformationBlockType 13 其中之一携带每个 ECC的默认可用时间长 度信息, 可以为每一个 ECC都提供一个默认可用时间长度, 也可以使所有 ECC都具有同一个默认可用时间长度。 对于非 A系统的载波(扩展载波), A基站向 A终端发送配置信息, 告知 A终端该扩展载波将被用作上行载波或者下行载波, 或者上、 下行交 替的载波等, 有如下几种配置方法:
方法 1、扩展载波被配置成上行载波, A终端在该载波上仅发送上行数 据。
方法 2、扩展载波被配置成下行载波, A终端在该载波上仅接收下行数 据。
方法 3、 扩展载波被配置成半双工模式, 即 A终端在该载波上既有上 行也有下行数据收发, 但上行和下行不在同时发生, 某一时刻仅能发送上 行或下行其中之一。 另外, 在半双工情况下, A基站还对 A终端配置扩展 载波的上、 下行时间。
对于 A终端, A基站配置了扩展载波的上、 下行模式, A终端按照 A 基站的配置进行上、 下行数据收发。 如果需要改变扩展载波的上、 下行模 式的配置, 则由 A基站向 A终端发送配置信息告知 A终端进行修改。
如果 LTE的 FDD UE聚合了 LTE TDD频带的载波(扩展载波, ECC ), 那么该载波可以作为上行、 下行或半双工的载波使用, 相关的配置需要由 eNB发送到 UE。 eNB可以在添加或修改 SCell时,通过 RRC消息把非 LTE FDD频带的载波的上、 下行配置发送给 UE, 该配置值可以是上行、 下行、 半双工三种其中之一。 如果将 ECC配置成上行或下行载波, UE在 ECC上 只进行上行或下行的数据收发。 如果将 ECC配置成半双工模式, 那么 eNB 需要配置 ECC的上行和下行时间, 这里的上行时间和下行时间长度将不小 于 LTE的子帧时间长度 lms。 在上行时间里, UE在 ECC上进行上行数据 发送, 在下行时间里, UE在 ECC上进行下行数据接收。 eNB对 UE使用 ECC的上、 下行模式的配置, 可以有如下方法:
如前文所述, eNB为 UE配置 SCell, 即向 UE添加 SCell,是通过 RRC 连接重配置完成的。 eNB向 UE发送 RRCConnectionReconfiguration消息, 其中包含 SCellToAddModList列表, UE根据 SCellToAddModList中的内容 进行 SCell 的添加或修改。 如果 SCellToAddModList 中的某一个或某些 SCellToAddMod元素的 dl-CarrierFreq配置是 ECC频带的载波,那么可以在 SCellToAddMod中增加一个可选项, 称之为 UplinkDownlinkMode, 可取值 为 uplink/downlink/semiduplex , 表示为 3于应的 ECC配置上、 下行或半双工 模式。 当 SCellToAddModList 中的一个或多个 SCellToAddMod 中含有 UplinkDownlinkMode , 则 UE 根据 UplinkDownlinkMode 的取值 uplink/downlink/semiduplex来对 SCellToAddMod对应的 SCell (这些 SCell 对应的频带是 ECC ) 配置上行 /下行 /半双工模式。 如果 ECC被配置了半双 工模式, eNB将为其配置上行、 和下行时间, 使 UE在该 ECC上按照上、 下行时间交替进行上、 下行数据收发。 具体的, 如果 SCellToAddModList 中的一个或多个 SCellToAddMod 中含有 UplinkDownlinkMode , 并且 UplinkDownlinkMode的取值为 semiduplex,即表示将该 ECC配置成半双工 模式,那么在 RRCConnectionReconfiguration消息中可以携带上行时间和下 行时间的配置, 在 SCellToAddMod中增加一个可选项 SemiduplexTime , 其 中包括两部分内容, 分别为上行时间 UplinkTime和下行时间 DownTime。
除 LTE技术外, 其它无线接入技术的用户终端设备在聚合非自身系统 的频带载波时, 也可以通过基站向终端发送该载波的上、 下行、 半双工模 式配置信息, 告知终端在该载波上进行上行或下行或半双工模式收发数据。
在 LTE FDD的 UE使用某 ECC时, 如果需要改变该 ECC的配置, 即 从原有的上、 下行或半双工模式变成另外一种模式, eNB 可以通过向 UE 发送改变配置的命令来实现。 eNB向 UE发送信令, 该信令携带修改的配 置信息和将要修改的 ECC索引值, 告知 UE将要改变某 ECC的上、 下行模 式, UE成功收到该信令后即修改自身配置。 具体的, 如前文所述, eNB向 UE发送 RRCConnectionReconfiguration消息,其中包含 SCellToAddModList 列表, UE根据 SCellToAddModList中的内容进行 SCell的修改, 其中 SCell 可能对应 ECC。
特别的, 对于 LTE技术, 下面说明 UE在上述聚合方式下的 HARQ调 度。 LTE FDD的 UE使用了载波聚合技术, 并且聚合了 TDD频带的载波作 为一个 CC, 即一个 ECC, 称该 TDD频带的载波为 CC1 , CC1对应的小区 为 SCell— 1。
下行调度, 将有以下几种情况:
CC1被 UE聚合作为下行载波或半双工模式载波使用, eNB跨载波调 度 CC1 :
方法一: 在 CC1的可用下行子帧 (由前文所述, eNB对 UE配置了可 用的子帧), eNB在一个非 CC1载波上发送 PDCCH, 以调度 CC1的下行数 据, 同时在这个子帧上, eNB在 CC1上发送下行数据。 UE对两个载波上 的这个子帧都进行接收,如果在非 CC1上接收到了 PDCCH,并且该 PDCCH 是对 CC1的下行调度, 那么解码接收到的 CC1子帧。
方法二: 如图 7所示, 设 eNB调度 CC1发送下行数据的子帧为 n, 在 子帧 n之前第 X个子帧, eNB在某非 CC1的 CC上发送 PDCCH跨载波调 度 CC1。 UE成功接收收到该 PDCCH后, 经过 X毫秒的处理时间, 在子帧 n发送 CC1的下行数据。 这里的 X值可以是固定值, 为大于 0的整数值, 也可以为非固定的值, 由 eNB通知 UE具体的 X值。 eNB可以在非 CC1上 发送的 PDCCH中携带 X的值。
CC1被 UE聚合作为下行载波或半双工模式载波使用, eNB非跨载波 调度 CC1 :
eNB对 CC1采用非跨载波调度,在 CC1可用的下行子帧上发送 PDCCH 和 PDSCH即可。
上行调度, 将有以下几种情况:
CC1被 UE聚合作为上行载波使用:
在这种情况下, 由于 CC1作为上行载波, 不存在下行, 那么 eNB对 CC1将进行跨载波调度。 设 eNB调度 CC1发送上行数据的子帧为 n, 子帧 n为可用的上行子帧, 在子帧 n-4, eNB在某非 CC1的 CC上发送 PDCCH 跨载波调度 CC1的上行。 UE成功接收到该 PDCCH后, 在子帧 n在 CC1 上发送上行数据。 在子帧 n+4, eNB在调度 CC1时发送 PDCCH的载波上 发送 HARQ反馈。 如果 HARQ反馈为 NACK, 那么需要进行重传, UE将 在子帧 n+8发送 CC1的上行重传数据。但 CC1上子帧 n+8可能是非可用的 上行子帧, UE将在从子帧 n+8开始 CC1上第一个可用的上行子帧发送上 行重传数据。 如果 HARQ反馈为 ACK, 那么发送成功。
CC1被 UE聚合作为半双工模式载波使用:
在这种情况下, UE在 CC1发送上行数据将在 CC1半双工的上行时间 里进行, 调度方式与 CC1被 UE聚合作为上行载波情况相同。
对于 UE, 如果 CC1被配置成半双工的上、 下行模式, 那么 UE在 CC1 的可用时间 (如前文所述) 内, 以半双工的方式使用 CC1 , 即上、 下行时 间交替进行, 上行时间里进行上行数据的传输, 下行时间里进行下行数据 的传输。当 UE收到来自 eNB的 MAC控制单元 Activation/Deactivation MAC Control Element ( MAC Control Element缩写为 MAC CE ), 如果该 MAC CE 中对应 CC1的比特的值为 1 , 表示 eNB对 UE进行激活 CC1。 UE收到并 成功解码 Activation/Deactivation MAC Control Element后,开始 ^寻 CC1作为 上行(或下行) CC使用, 并可以启动定时器, 定时的时间为上行(或下行) 时间 UplinkTime (或者 DownTime )。 待定时器超时后, UE开始将 CC1作 为下行(或上行) CC使用, 以此方式交替进行。
基于本发明提供的频谱资源共享使用的方法实施例, 本发明还提出用 于实现所述方法的系统实施例, 该系统包括第一无线接入系统和第二无线 接入系统, 所述第一无线接入系统为该系统用户终端配置非第一无线接入 系统频带的载波, 即扩展载波; 所述扩展载波为其它采用相同或不相同无 线接入技术的第二无线接入系统频带的载波; 所述第一无线接入系统的用 户终端与所述第二无线接入系统的终端通过时分复用的方式使用所述扩展 载波。
进一步地, 所述系统还包括: 操作管理和维护模块, 该模块用于协调 和控制所述第一无线接入系统与所述第二无线接入系统对所述扩展载波的 使用。
进一步地, 由所述第一无线接入系统中的基站为所述用户终端配置所 述扩展载波, 并向所述用户终端发送配置信息; 所述配置信息至少包括所 述扩展载波所对应的小区索引值、 小区物理标识以及该载波的频带, 其中, 小区索引值和小区物理标识是用于唯一识别一个小区; 所述基站为所述用 户终端配置所述扩展载波后, 所述基站进一步为所述用户终端配置所述扩 展载波的使用时间及上下行传输模式。
由于本发明系统实施例是基于本发明方法实施例的, 本发明系统实施 例所包含的装置、 模块及子系统的功能都是为完成方法实施例中的步驟流 程而设, 其功能都可从方法实施例中直接导出, 为节省篇幅, 此处不再赘 述。
以上所述仅为本发明的优选实施例而已, 并非用于限定本发明的保护 范围。 根据本发明的发明内容, 还可有其他多种实施例, 在不背离本发明 精神及其实质的情况下, 熟悉本领域的技术人员当可根据本发明作出各种 相应的改变和变形, 凡在本发明的精神和原则之内, 所作的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性
本发明通过聚合方式使用其它系统频谱, 使得 LTE系统可以利用原来 未作为本系统频谱资源进行数据传输, 特别的对于 LTE系统内的两种双工 模式, LTE的 FDD网络能充分利用 TDD的频带, 尽可能的将 LTE系统的 吞吐量最大化。

Claims

权利要求书
1、 一种频谱资源共享使用的方法, 该方法包括:
第一无线接入系统为该系统的用户终端配置非第一无线接入系统频带 的载波, 即扩展载波;
所述扩展载波为其它采用相同或不相同无线接入技术的第二无线接入 系统频带的载波;
第一无线接入系统的用户终端与第二无线接入系统的终端通过时分复 用的方式使用所述扩展载波。
2、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
由操作管理和维护模块协调和控制所述第一无线接入系统与所述第二 无线接入系统对所述扩展载波的使用。
3、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
由所述第一无线接入系统中的基站为所述用户终端配置所述扩展载 波, 并向所述用户终端发送配置信息; 所述配置信息至少包括所述扩展载 波所对应的小区索引值、 小区物理标识以及该载波的频带, 其中, 小区索 引值和小区物理标识用于唯一识别一个小区;
所述基站为所述用户终端配置所述扩展载波后, 所述基站进一步为所 述用户终端配置所述扩展载波的使用时间及上下行传输模式。
4、 根据权利要求 3所述的方法, 其中, 所述第一无线接入系统中的基 站为其下用户终端配置所述扩展载波方法为:
所述基站为所述用户终端配置测量上报事件, 所述测量上报事件用于 所述用户终端在测量到存在可用的扩展载波时, 向所述基站上报测量信息; 所述基站根据所述用户终端上报的测量信息为所述用户终端配置扩展 载波。
5、 根据权利要求 3所述的方法, 其中, 所述第一无线接入系统中的基 站为其下用户终端配置所述扩展载波方法为:
所述用户终端检测到可用的扩展载波, 向所述基站上报可用的扩展载 波列表;
所述基站根据所述用户终端上报的扩展载波列表为所述用户终端添加 扩展载波, 并为所述用户终端配置扩展载波。
6、 根据权利要求 1或 3所述的方法, 其中, 由所述第一无线接入系统 中的基站为所述用户终端配置所述扩展载波的使用时间, 具体方法为以下 方法之一:
方法 1、 所述基站通过位图 bitmap或位图的索引值方式通知所述用户 终端在所述扩展载波的哪些子帧上进行数据收发, 所述位图的每一位的值 都对应指示扩展载波的无线帧中的一个子帧是否能被所述用户终端使用, 所述位图的索引值对应唯——个位图;
方法 2、所述基站通过向所述用户终端发送使用所述扩展载波的开始命 令和结束命令来指示所述用户终端进行数据收发的时间;
方法 3、所述基站通过向所述用户终端发送使用所述扩展载波的时间长 度来指示所述用户终端进行数据收发的时间;
方法 4、 方法 1与方法 2结合;
方法 5、 方法 1与方法 3结合。
7、 根据权利要求 3所述的方法, 其中, 所述基站为所述用户终端配置 所述扩展载波的使用时间的方法为以下方法之一:
所述基站和所述用户终端按照默认方式使用所述扩展载波, 所述默认 方式包括如下默认配置: 扩展载波的无线帧中的可被所述用户终端使用的 子帧配置, 以及对扩展载波使用的持续时间长度。
8、 根据权利要求 3所述的方法, 其中, 所述基站进一步为所述用户终 端配置所述扩展载波的上下行传输模式的方法为:
所述基站通过发送配置消息告知所述用户终端所述扩展载波将被用于 上行载波、 下线载波或上下行交替的载波, 所述扩展载波的上下行传输模 式具体为以下方式之一:
方式 1、 所述扩展载波配置为上行载波, 所述用户终端在该载波上仅发 送上行数据;
方式 2、 所述扩展载波配置为下行载波, 所述用户终端在该载波上仅接 收下行数据;
方式 3、 所述扩展载波配置为半双工模式, 所述用户终端在该载波上既 有上行也有下行数据收发, 但上行和下行不在同时发生, 在半双工情况下, 所述基站还对所述用户终端配置扩展载波的上、 下行时间。
9、 根据权利要求 3所述的方法, 其中, 所述方法还包括所述基站对所 述扩展载波进行上下行调度的步驟:
对于所述扩展载波的下行数据传输, 所述扩展载波被所述用户终端聚 合作为下行载波或半双工模式载波使用时, 所述基站通过跨载波或非跨载 波方式调度所述扩展载波;
对于所述扩展载波的上行数据传输, 所述扩展载波被所述用户终端聚 合作为上行载波或半双工模式载波使用时, 所述基站对所述扩展载波进行 跨载波调度。
10、 一种频谱资源共享使用的系统, 包括第一无线接入系统和第二无 线接入系统:
所述第一无线接入系统为该系统用户终端配置非第一无线接入系统频 带的载波, 即扩展载波; 所述扩展载波为其它采用相同或不相同无线接入 技术的第二无线接入系统频带的载波;
所述第一无线接入系统的用户终端与所述第二无线接入系统的终端通 过时分复用的方式使用所述扩展载波。
11、 根据权利要求 10所述的系统, 其中, 所述系统还包括: 操作管理和维护模块, 用于协调和控制所述第一无线接入系统与所述 第二无线接入系统对所述扩展载波的使用。
12、 根据权利要求 10所述的系统, 其中,
由所述第一无线接入系统中的基站为所述用户终端配置所述扩展载 波, 并向所述用户终端发送配置信息; 所述配置信息至少包括所述扩展载 波所对应的小区索引值、 小区物理标识以及该载波的频带, 其中, 小区索 引值和小区物理标识是用于唯一识别一个小区;
所述基站为所述用户终端配置所述扩展载波后, 所述基站进一步为所 述用户终端配置所述扩展载波的使用时间及上下行传输模式。
PCT/CN2012/071999 2011-03-07 2012-03-06 一种频谱资源共享使用的方法及系统 WO2012119544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110053813.3A CN102685755B (zh) 2011-03-07 2011-03-07 一种频谱资源共享使用的方法及系统
CN201110053813.3 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012119544A1 true WO2012119544A1 (zh) 2012-09-13

Family

ID=46797493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071999 WO2012119544A1 (zh) 2011-03-07 2012-03-06 一种频谱资源共享使用的方法及系统

Country Status (2)

Country Link
CN (1) CN102685755B (zh)
WO (1) WO2012119544A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104186021B (zh) * 2013-03-20 2018-04-20 华为技术有限公司 接入控制方法、接入方法、装置、基站、用户设备和实体
US9900142B2 (en) * 2013-06-26 2018-02-20 Lg Electronics Inc. Method and apparatus for FDD/TDD intra-node and inter-node carrier aggregation
CN104468064B (zh) * 2013-09-17 2017-12-22 中国移动通信集团公司 一种小区的实现方法、系统和设备
WO2015096011A1 (zh) * 2013-12-23 2015-07-02 华为技术有限公司 多载波聚合的方法、装置、用户设备及网络侧设备
CN104735790B (zh) * 2013-12-23 2019-03-15 中国电信股份有限公司 Lte fdd单模终端利用tdd频谱的方法与系统
CN105592561A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种实现无线接入的方法及系统
CN105792221B (zh) * 2014-12-18 2021-05-11 中兴通讯股份有限公司 一种频率共享方法、用户设备和基站
CN105790907A (zh) * 2014-12-23 2016-07-20 中兴通讯股份有限公司 频带修改方法、装置、终端及基站
US10440688B2 (en) * 2016-01-14 2019-10-08 Samsung Electronics Co., Ltd. Frame structures and signaling techniques for a unified wireless backhaul and access network
JP6902554B2 (ja) 2016-02-19 2021-07-14 富士通株式会社 周波数バンド設定装置、方法及び通信システム
CN109756921B (zh) * 2017-11-08 2021-09-17 华为技术有限公司 测量方法和装置
JP2020171026A (ja) * 2020-06-09 2020-10-15 富士通株式会社 周波数バンド設定装置、方法及び通信システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379600A (zh) * 2001-04-04 2002-11-13 西门子信息通讯网络公司 移动系统中提供多用户共享无线资源的分组服务的方法
CN1764307A (zh) * 2004-10-20 2006-04-26 中兴通讯股份有限公司 多载频小区系统中共享信道的配置及使用方法
WO2010000069A1 (en) * 2008-07-03 2010-01-07 Nortel Netwoks Limited Method and apparatus for effecting a handoff in a frequency-division multiplex network
CN101754233A (zh) * 2008-11-28 2010-06-23 京信通信系统(中国)有限公司 跨网络载波信道支援系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439367A (en) * 2006-06-20 2007-12-27 Nec Corp Separate ACK/NACK channel from a control channel
CN101404539A (zh) * 2008-11-18 2009-04-08 中兴通讯股份有限公司 一种混合时分双工大带宽系统数据传输方法
CN101873648B (zh) * 2009-04-27 2013-02-20 电信科学技术研究院 一种lte系统中信息的发送方法、系统和设备
CN101594683B (zh) * 2009-06-19 2014-03-19 中兴通讯股份有限公司南京分公司 一种载波聚合时的信号传输方法及系统
CN101959251A (zh) * 2009-07-21 2011-01-26 鼎桥通信技术有限公司 一种支持多载波频段能力的上报方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379600A (zh) * 2001-04-04 2002-11-13 西门子信息通讯网络公司 移动系统中提供多用户共享无线资源的分组服务的方法
CN1764307A (zh) * 2004-10-20 2006-04-26 中兴通讯股份有限公司 多载频小区系统中共享信道的配置及使用方法
WO2010000069A1 (en) * 2008-07-03 2010-01-07 Nortel Netwoks Limited Method and apparatus for effecting a handoff in a frequency-division multiplex network
CN101754233A (zh) * 2008-11-28 2010-06-23 京信通信系统(中国)有限公司 跨网络载波信道支援系统

Also Published As

Publication number Publication date
CN102685755B (zh) 2016-12-07
CN102685755A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
US11671988B2 (en) Configured grant and dynamic grant transmission
US11178687B2 (en) Method and user equipment for receiving downlink signals
US20230300758A1 (en) Method and apparatus for performing and reporting measurements by user equipment configured with multiple carriers in mobile communication systems
KR102507150B1 (ko) 승인 불요 구성
JP6480540B2 (ja) 搬送波集積技術を使用する無線通信システムにおける副搬送波の不活性化方法及び装置
WO2012119544A1 (zh) 一种频谱资源共享使用的方法及系统
CN105900521B (zh) 无线通信的方法和装置
JP6581658B2 (ja) 非ライセンス無線周波数帯域における時間分割lte送信のための方法及び装置
CN110463324B (zh) 针对无线设备的跨载波调度
KR102004834B1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
TWI491219B (zh) 為通信設備提供下行鏈路控制信息的方法和無線通信系統
JP6449264B2 (ja) Eノードb間のキャリアアグリゲーションのためのul tdmの方法
US9544896B2 (en) Method and apparatus for transceiving data using plurality of carriers in mobile communication system
CN110622608B (zh) 无线通信系统中的资源管理
KR20140106672A (ko) 데이터 전송 방법 및 장치
US20220210860A1 (en) Methods for data transmission and user equipment using the same
WO2013113272A1 (zh) 一种发送和接收反馈信息的方法、系统及装置
WO2013023554A1 (zh) 一种周期性srs的处理方法和设备
WO2011134350A1 (zh) 一种pdcchcc搜索空间的确定方法和设备
US20130182649A1 (en) Apparatus and method for activating a component carrier in a multiple component carrier system
AU2021284686B2 (en) Beam failure recovery method and apparatus, and device
CN117099412B (zh) 用于无线通信的方法、系统和装置
KR20220137471A (ko) 무선 통신 시스템에서 사이드링크 자원 할당 방법 및 장치
CN117099412A (zh) 用于业务的小区休眠技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754220

Country of ref document: EP

Kind code of ref document: A1