WO2013023554A1 - 一种周期性srs的处理方法和设备 - Google Patents

一种周期性srs的处理方法和设备 Download PDF

Info

Publication number
WO2013023554A1
WO2013023554A1 PCT/CN2012/079950 CN2012079950W WO2013023554A1 WO 2013023554 A1 WO2013023554 A1 WO 2013023554A1 CN 2012079950 W CN2012079950 W CN 2012079950W WO 2013023554 A1 WO2013023554 A1 WO 2013023554A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
scdl
periodic srs
uplink
scell
Prior art date
Application number
PCT/CN2012/079950
Other languages
English (en)
French (fr)
Inventor
赵亚利
许芳丽
刘佳敏
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013023554A1 publication Critical patent/WO2013023554A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the invention relates to a method and a device for processing a periodic SRS.
  • the application is filed on August 12, 2011, the Chinese Patent Office, the application No. 201110231277.1, the Chinese patent application entitled “Processing and Equipment for Periodic SRS” Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of communications technologies, and in particular, to a processing method and apparatus for periodic SRS. Background technique
  • LTE-A Long Term Evolution-Advanced, Advanced LTE
  • CA Carrier aggregation
  • the carrier aggregation technology refers to a mechanism in which a UE (User Equipment) can simultaneously aggregate multiple cells (cells), and multiple cells can simultaneously provide data transmission services for the UE.
  • the carriers corresponding to the respective cells may be continuous or non-contiguous in the frequency domain.
  • the maximum bandwidth of each component carrier is 20 MHz, and the bandwidth between the component carriers may be the same or different.
  • the cell in which the UE works is divided into a PCell (Primary Cell) and a number of SCdls (Secondary Cell); the primary cell undertakes most of the control and signaling operations, such as sending downlink data. Uplink feedback, CQI (Channel Quality Indicator) reporting, uplink pilot transmission, etc.;
  • the secondary cell is mainly used as a resource to undertake data transmission.
  • carrier activation/deactivation is introduced for carrier aggregation systems.
  • Mechanism wherein, the activation/deactivation mechanism is based on a cell, that is, when the cell has no data transmission requirement, the base station may deactivate it, and when the cell has a data transmission requirement, the base station activates it.
  • the UE After the UE supporting the carrier aggregation accesses the network, the UE first establishes an RRC (Radio Resource Control) connection and uplink synchronization on the PCell. As the amount of data of the UE increases, the base station is allowed to add the SCell to the UE, and the SCell is added. The RRC re-allocates the signaling, and the SCell is deactivated by default. After the uplink synchronization is activated and established, the SCell can work.
  • RRC Radio Resource Control
  • the UE cannot perform other uplink transmissions other than random access on the SCell in the deactivated state, for example, SRS (Sounding Reference Signal) / PUSCH (Physical Uplink Shared Channel) Channel) and so on.
  • SRS Sounding Reference Signal
  • PUSCH Physical Uplink Shared Channel
  • the main purpose of the TA mechanism is to ensure that the uplink signals of all cells of all UEs in the system arrive at the base station at the same time to avoid interference. Among them, the UE should avoid uplink data transmission without non-uplink synchronization.
  • the LTE-A R10 supports only a single TA scenario, that is, the TAs of all the cells that are aggregated by the UE are the same.
  • the LTE-A R11 introduces a multi-TA scenario, that is, all the cells TA aggregated by the UE may be different.
  • multiple cells aggregated by the UE belong to different bands, and these cells have different TAs.
  • F1 provides large-scale coverage
  • F2 uses RRH (Remote Radio Head) for hotspots in the Fl cell.
  • the coverage management is based on F1.
  • the UE is located in the area where the RRH cell and the F1 cell of the F2 overlap, the F1 cell and the F2 cell can be aggregated, but the UL (upstream) TA of the F1 cell and the F2 cell are different.
  • F1 provides large-scale coverage
  • F2 has a small coverage range
  • F2 coverage can be extended by a frequency selective repeater.
  • the UE is located in Fl cell If the area overlaps with the F2 cell, the F1 cell and the F2 cell can be aggregated, but the UL TA of the F1 cell and the F2 cell are different.
  • the concept of the TA group is introduced, and the cells belonging to the same TA group can use the same TA value for the UL CC (uplink member carrier);
  • the cell of the group has different TAs for its UL CC.
  • the UE only needs to maintain uplink synchronization with one cell to implement uplink synchronization for all cells in the TA group.
  • PCdl TA group For a TA group including PCdl, it can be called PCdl TA group.
  • pTAG for a TA group containing only SCell, it can be called SCell TA group.
  • the LTE-A R10 system supports non-contention random access and contention random access. Since LTE-A R10 supports only a single TA, it considers that the PCDL carries the PUCCH (Physical Uplink Control Channel). The access is initiated only on the PCell, and is mainly used to establish an RRC connection and uplink synchronization on the PCdl.
  • PUCCH Physical Uplink Control Channel
  • the addition of the SCell after the addition of the SCell, if the TA of the SCell and the PCdl are different, in order to establish the uplink synchronization on the SCell, a random access procedure needs to be initiated on the secondary cell, and the current SCell is added.
  • the process includes:
  • the SCell is added through the RRC reconfiguration process (the SCell is in the deactivated state at this time).
  • the base station When the base station needs to use the SCell, it sends an activation signaling to activate SCelK. At this time, the SCell is active but out of synchronization.
  • the base station determines whether the activated TA group of the SCell is in uplink synchronization. If the synchronization is performed, the SCell can be used normally. If the synchronization is not performed, the base station needs to trigger the UE to initiate on the SCell or an activated cell in the TA group where the SCell is located. Random access (the SCell is now active and synchronized).
  • the SRS is configured for the cell, and is used to let the base station know the uplink channel quality of the UE on each cell.
  • SRS is divided into aperiodic SRS and periodic SRS, and aperiodic SRS is based on
  • the station scheduling determines whether to send, one scheduling signaling can only schedule one SRS transmission;
  • the periodic SRS is configured by the base station through RRC connection reconfiguration signaling, and the SRS transmits used time-frequency resources (such as period, subframe offset, etc.) once the UE
  • the UE Upon receiving the SRS configuration, the UE sends an uplink sounding signal on the corresponding time-frequency resource according to the configuration of the base station.
  • pTAG TA group
  • RRC reconfiguration procedure RRC reconfiguration procedure
  • the processing of periodic SRS in pTAG is similar to that in R10, except that it is sTAG.
  • the state of the cell in the sTAG changes as follows: (1) Deactivation (received RRC reconfiguration signaling) ), (2) activated but not sure of the same out-of-synchronization state (ie, the UL TA value cannot be determined), (3) activated and synchronized.
  • step (1) since the new SCdl in the sTAG is deactivated, the periodic SRS will not be sent.
  • step (3) the newly added SCdl in the sTAG is activated and synchronized, and the SRS can be sent according to the periodic SRS configuration.
  • the existing protocol does not specify whether the periodic SRS can be sent, because the TAT (Timing Alignment Timer) on the sTAG has not been started yet, only the TTAG of the pTAG is running, and the UE is based on the TTAG of the pTAG.
  • the running state cannot determine whether the SCdl in the sTAG is uplink synchronized and its TA value, so it is necessary to know whether the periodic SRS can be sent at this time.
  • the embodiment of the invention provides a method and a device for processing a periodic SRS, so as to avoid sending a periodic SRS when the SCdl is not in the uplink synchronization state.
  • an embodiment of the present invention provides a periodic monitoring reference signal.
  • the SRS processing method includes:
  • the user equipment When the user equipment cannot determine the uplink timing advance TA value on the new secondary cell SCdl, the user equipment prohibits sending the periodic SRS.
  • An embodiment of the present invention provides a user equipment, including:
  • a determining module configured to determine whether the user equipment can determine an uplink timing advance TA value on the newly added secondary cell SCdl;
  • the processing module is configured to prohibit sending the periodic SRS when the user equipment cannot determine the uplink TA value on the SCdl.
  • the embodiment of the present invention has at least the following advantages: avoiding unnecessary periodic SRS transmission of the secondary cell, and reducing unnecessary interference of the system.
  • FIG. 1 is a schematic diagram of a scenario in which an RRU is introduced in the prior art
  • FIG. 2 is a schematic diagram of a scenario in which a repeater is introduced in the prior art
  • FIG. 3 is a schematic flowchart of a method for processing a periodic SRS according to Embodiment 1 of the present invention
  • FIG. 4 and FIG. 5 are schematic diagrams of a MAC signaling format according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic flowchart of a method for processing a periodic SRS according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic flowchart of a method for processing a periodic SRS according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic flowchart of a method for processing a periodic SRS according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic flowchart of a method for processing a periodic SRS according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a user equipment according to Embodiment 6 of the present invention. detailed description The specific embodiments of the present invention are further described in detail below with reference to the accompanying drawings and embodiments.
  • the embodiment of the present invention provides a method and a device for processing a periodic SRS, so as to avoid unnecessary periodic SRS transmission of the secondary cell and reduce unnecessary interference of the system.
  • a first embodiment of the present invention provides a method for processing a periodic SRS. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The UE does not know the uplink TA value on the newly added secondary cell SCdl, that is, the UE cannot determine the uplink TA value on the newly added secondary cell SCdl.
  • Step 302 The UE prohibits sending the periodic SRS.
  • the network side device such as the base station
  • adds an SCdl to the UE if the UE cannot determine the synchronization or out-of-synchronization state of the added SCell according to the TAD of the SCdl or the SCell home sTAG, the UE does not know the new one.
  • the uplink TA value of the secondary cell SCell is used, the UE is not allowed to transmit the periodic SRS.
  • the PUCCH including the CQI (Channel Quality Indicator) / SR (Sounding Request) / ACK
  • the PUCCH is configured on the SCdl
  • the UE cannot Determining the uplink TA value on the SCdl prohibits the transmission of the PUCCH.
  • the UE needs to transmit the PUSCH on the SCdl, if the UE cannot determine the uplink TA value on the SCdl, the PUSCH is prohibited from being transmitted.
  • the processing of the PUCCH is similar to the processing of the periodic SRS, and the subsequent processing of the periodic SRS is taken as an example for description.
  • the following manner may be adopted:
  • the UE determines whether the RA (Random Access) on the sTAG (the secondary cell timing advance group) where the SCdl is located is successful. If yes, the UE determines that the SCdl is in the uplink synchronization state, and the UE can determine the uplink TA value on the SCdl. . No, the UE determines that the uplink TA value on the new secondary cell SCdl cannot be known.
  • RA Random Access
  • the UE determines whether the periodic SRS configuration is available according to whether the RA on the sTAG of the SCell is successful. Only when the RA on the sTAG of the SCdl is successfully completed, the periodically configured SRS can be used.
  • the base station starts to receive the SRS sent by the UE at the corresponding time-frequency position only after the RA on the sTAG is successfully completed.
  • the UE determines whether the TAT (Time Alignment Timer) of the sTAG where the SCell is located is running. If not, the UE cannot determine the TA value on the SCdl. Otherwise, if the TAT of the sTAG to which the SCdl belongs is running, the UE determines that the SCdl is in the uplink synchronization state, and the UE can learn the uplink TA value on the SCdl.
  • TAT Time Alignment Timer
  • the UE determines whether the periodic SRS configuration is available according to whether the TAT of the sTAG of the SCell is running.
  • the periodically configured SRS can be sent only when the TAT of the sTAG where the SCdl is located is running.
  • the base station starts receiving the SRS sent by the UE at the corresponding time-frequency position only when the TAT is running on the sTAG.
  • Manner 3 In this mode, unnecessary periodic transmission of periodic SRS is avoided by disabling periodic SRS for SCdl in SCdl or sTAG.
  • the network side device (such as the base station) knows that it is forbidden to configure periodic SRS for the SCell in the SCdl or sTAG, so that the UE naturally does not send periodic SRS. Therefore, periodic SRS is not allowed to be configured for SCells in SCdl or sTAG to ensure that the UE does not send periodic SRS when it cannot determine the TA on SCdl.
  • the protocol stipulates that the base station does not allow periodic SRS to be configured for the SCdl or the SCell in the sTAG (ie, the base station learns to prohibit the SCell or the sTAG.
  • the SCdl is configured with periodic SRS).
  • the UE since the periodic SRS is not configured, the UE naturally does not send the periodic SRS; once the user equipment receives the periodic SRS configuration for the SCell or the SCdl in the sTAG in the RRC signaling, the UE considers the signaling The configuration is incorrect and the signaling is discarded.
  • the network side device notifies whether the UE is allowed to send periodic SRS through explicit signaling, and further informs the effective time of the periodic SRS through explicit signaling.
  • the UE After receiving the signaling including the periodic SRS configuration, the UE determines the validity time of the periodic SRS according to the indication of the network side; and after the effective time of the periodic SRS is reached, the UE allows the periodic SRS to be sent.
  • the base station After the base station sends the RRC signaling (used to indicate the periodic SRS), the base station needs to explicitly notify the UE whether the periodic SRS can be sent, and when the UE is allowed to send the periodic SRS. Indicates the effective time of the periodic SRS.
  • the explicit signaling includes but is not limited to RRC signaling or MAC (Media Access Control) signaling.
  • the SRS configuration On the UE side, after the UE receives the RRC signaling including the SRS configuration, the SRS configuration does not take effect immediately, but the effective time is determined according to the explicit signaling indication of the base station.
  • the MAC CE Control Element
  • Figure can adopt a bitmap. Figure), and can be in two formats:
  • Ci indicates the cell number, and the lowest bit corresponds to PCdl.
  • the number of bits occupied by Ci depends on the number of cells supported by the system. For example, if the number of cells supported by the system is 5, the MAC CE can adopt the format diagram shown in Figure 4, or C5-C7 can also be set to R bit.
  • Ti represents the TAG numbered i, the lowest bit corresponds to pTAG, and the bit occupied by Ti depends on the number of TAGs supported by the system. For example, if the system supports up to two TAGs, the MAC CE can use the format diagram shown in Figure 5, or can be set from T2-T7. It should be noted that Ti can have two meanings: Indicates the cell numbered i, or the TAG numbered i corresponds to a bit. For example, if the bit is set to 0, the periodic SRS cannot be sent, and the bit is set to 1 to indicate the transmission period. SRS.
  • Manner 5 In this mode, the protocol stipulates that the base station can only configure periodic SRS for the SCdl after uplink synchronization.
  • the network side device learns to prohibit the configuration of the periodic SRS for the SCdl in the SCdl or sTAG before the UE acquires the uplink TA on the SCdl (ie, before determining the uplink TA value on the SCdl).
  • the network side device is allowed to configure the SCDL or the periodic SRS on the SCdl in the sTAG only after the UE acquires the uplink TA on the SCdl. In this case, before the UE determines that the uplink TA on the SCdl can be obtained, if the signaling including the periodic SRS configuration is received, the UE considers the signaling error and discards the signaling.
  • the protocol specifies that the base station does not allow the periodic SRS to be configured for the SCdl before the UE obtains the SCdl uplink timing advance. If there is an SRS configuration before, the base station should be configured. On the UE side, if the periodic SRS configuration for the SCdl is received in the RRC signaling before the UE obtains the uplink timing advance of the SCdl, the UE considers that the signaling is in error and discards the signaling.
  • the base station supports four cells, which are respectively called Celll, Cdl2, Cdl3, and Cdl4.
  • Cdll is PCdl
  • Cell2 and PCdl have the same TA, and belong to pTAG
  • Cell3 and Cell4 have the same TA and belong to one sTAG.
  • the second embodiment of the present invention provides a processor for periodic SRS.
  • the method includes the following steps: Step 601: Establish an RRC connection and uplink synchronization on the PCell.
  • the RA is initiated on the PCell, and the RRC connection and uplink synchronization are established on the PCell.
  • Step 602 The base station determines to add a SCell.
  • the base station needs to increase the number of aggregated cells for the UE, and the base station determines, according to the channel quality of the SCell, the interference, the amount of data to be transmitted by the UE, and the like, that the SCells to be added to the UE are Cdl3 and Cdl4.
  • Step 603 The base station is configured to perform SCell addition for the UE by using an RRC reconfiguration process.
  • the RRC reconfiguration signaling includes periodic SRS configuration information of Cdl3 and Cdl4.
  • Step 604 The UE receives the processing after the RRC reconfiguration signaling.
  • the UE receives the RRC reconfiguration information from a cell that is currently synchronized and activated (here, PCell), and the configuration information included in the RRC re-signaling (such as TDD (Time Division Duplexing) configuration, PRACH The (Packet Random Access Channel) configuration, PUS CH (Physical Uplink Shared Channel) configuration, periodic SRS configuration, etc. take effect immediately, but the periodic SRS configuration on the SCell is not available.
  • TDD Time Division Duplexing
  • PRACH The (Packet Random Access Channel) configuration, PUS CH (Physical Uplink Shared Channel) configuration, periodic SRS configuration, etc. take effect immediately, but the periodic SRS configuration on the SCell is not available.
  • Step 605 The base station activates the new SCell. Since the SCell is deactivated by default after configuration, if you want to use these cells, the base station needs to activate these SCells first.
  • Step 606 The base station triggers the sTAG to initiate the RA to obtain the uplink synchronization and the uplink timing advance of the sTAG.
  • the base station instructs a cell (Cell3 or Cdl4) in the sTAG to initiate random access to obtain an uplink synchronization and an uplink timing advance of the sTAG.
  • a cell Cell3 or Cdl4
  • Step 607 The UE determines that the periodic SRS configuration can be sent.
  • the periodic SRS configuration of the UE on Cell3 and Cell4 is available.
  • Step 608 The base station receives the periodic SRS of the UE on the sTAG.
  • the base station receives the SRS at the periodic SRS time-frequency position configured by the base station after the sTAG RA succeeds and before the step-out is not lost.
  • Embodiment 3 Based on the above assumptions, Embodiment 3 of the present invention provides a processor for periodic SRS transmission. As shown in FIG. 7, the method includes the following steps:
  • Step 701 Establish an RRC connection and uplink synchronization on the PCell.
  • the RA is initiated on the PCell, and the RRC connection and uplink synchronization are established on the PCell.
  • Step 702 The base station determines to add a SCell.
  • the base station needs to increase the number of aggregated cells for the UE, and the base station determines, according to the channel quality of the SCell, the interference, the amount of data to be transmitted by the UE, and the like, that the SCells to be added to the UE are Cdl3 and Cdl4.
  • Step 703 The base station is configured to perform SCell addition for the UE by using an RRC reconfiguration process.
  • the RRC reconfiguration signaling includes periodic SRS configuration information of Cdl3 and Cdl4.
  • Step 704 The UE receives the processing after the RRC reconfiguration signaling.
  • the UE receives the RRC reconfiguration information from a certain cell (PCell) that has been synchronized and activated, and the configuration information (such as TDD configuration, PRACH configuration, PUSCH configuration, periodic SRS configuration, etc.) included in the RRC re-signaling is immediately Effective, but the periodic SRS configuration on the SCell is not available.
  • PCell a certain cell
  • the configuration information such as TDD configuration, PRACH configuration, PUSCH configuration, periodic SRS configuration, etc.
  • Step 705 The base station activates the new SCell. Since the SCell is deactivated by default after configuration, if you want to use these cells, the base station needs to activate these SCells first.
  • Step 706 The UE determines whether the periodic SRS on the SCell can be sent according to whether the TAT of the sTAG is running.
  • the base station indicates that a random access is initiated on a cell (Cell3 or Cdl4) in the sTAG to obtain an uplink synchronization of the sTAG.
  • a cell Cell3 or Cdl4
  • the TAT corresponding to the sTAG is started, and the uplink included in the RAR is determined.
  • the timing advance value is taken.
  • Step 707 The UE determines that the periodic SRS configuration can be sent.
  • the TAT can be considered to be in a running state before the TAT expires, and the UE can send the periodic SRS on the Cdl3 and Cdl4 included in the sTAG.
  • Step 708 The base station receives the periodic SRS of the UE on the sTAG.
  • the base station receives the SRS at the periodic SRS time-frequency position configured by the base station after the sTAG TAT is started and before the timeout period, that is, during the TAT operation.
  • the fourth embodiment of the present invention provides a method for processing a periodic SRS, in which any SCdl, or only SCdl in the sTAG, or an unsynchronized non-synchronized periodic SRS is specified in the protocol, as shown in FIG.
  • the method includes the following steps: Step 801: Establish an RRC connection and uplink synchronization on the PCell.
  • the RA is initiated on the PCell, and the RRC connection and uplink synchronization are established on the PCell.
  • Step 802 The base station determines to add a new SCell.
  • the base station needs to increase the number of aggregated cells for the UE, and the base station determines, according to the channel quality of the SCell, the interference, the amount of data to be transmitted by the UE, and the like, that the SCells to be added to the UE are Cdl3 and Cdl4.
  • Step 803 The base station is configured to perform SCell addition for the UE by using an RRC reconfiguration process.
  • the periodic SRS configuration information of Cdl3 and Cell4 is not included in the RRC reconfiguration signaling.
  • Step 804 The UE receives the processing after the RRC reconfiguration signaling.
  • the UE receives the RRC reconfiguration information from a cell (PCell) that has been synchronized and activated, and the configuration information (such as TDD configuration, PRACH configuration, PUSCH configuration, and the like) included in the RRC re-signaling takes effect immediately.
  • PCell a cell
  • the configuration information such as TDD configuration, PRACH configuration, PUSCH configuration, and the like
  • the RRC reconfiguration signaling cannot include the configuration information of the periodic SRS.
  • Step 805 The base station activates the new SCell. Since the SCell is deactivated by default after configuration, if you want to use these cells, the base station needs to activate these SCells first.
  • Step 806 The base station triggers the sTAG to initiate the RA to obtain the uplink synchronization of the sTAG. Specifically, the base station indicates that a random access is initiated on a cell (Cell3 or Cdl4) in the sTAG to obtain an uplink synchronization of the sTAG. After receiving the RAR for the RA-initiating cell, the TAT corresponding to the sTAG is started, and the uplink timing on the SCell is determined. Advance quantity.
  • Step 807 subsequent SRS transmission. If the base station needs to know the uplink information on the SCell For the channel quality information, the base station may schedule the UE to send the aperiodic SRS on the SCell or configure the periodic SRS after the SCell obtains the uplink timing advance.
  • the fifth embodiment of the present invention provides a method for processing a periodic SRS, which prohibits SRS transmission by explicit signaling. As shown in FIG. 9, the method includes the following steps:
  • Step 901 Establish an RRC connection and uplink synchronization on the PCell.
  • the RA is initiated on the PCell, and the RRC connection and uplink synchronization are established on the PCell.
  • Step 902 The base station determines to add a new SCell.
  • the base station needs to increase the number of aggregated cells for the UE, and the base station determines, according to the channel quality of the SCell, the interference, the amount of data to be transmitted by the UE, and the like, that the SCells to be added to the UE are Cdl3 and Cdl4.
  • Step 903 The base station is configured to perform SCell addition for the UE by using an RRC reconfiguration process.
  • the RRC reconfiguration signaling includes periodic SRS configuration information of Cdl3 and Cdl4.
  • Step 904 The UE receives the processing after the RRC reconfiguration signaling.
  • the UE receives the RRC reconfiguration information from a certain cell (PCell) that has been synchronized and activated, and the configuration information (such as TDD configuration, PRACH configuration, PUSCH configuration, SRS configuration, and the like) included in the RRC re-signaling takes effect immediately.
  • PCell a certain cell
  • the configuration information such as TDD configuration, PRACH configuration, PUSCH configuration, SRS configuration, and the like
  • Step 905 The base station activates the new SCell. Since the SCell is deactivated by default after configuration, the base station needs to activate these SCells first. After sending the activation signaling to these SCells, it can also send RRC or MAC signaling that prohibits SRS.
  • Step 906 The base station triggers the sTAG to initiate the RA to obtain the uplink synchronization of the sTAG. Specifically, the base station instructs a cell (cell3 or Cdl4) in the sTAG to initiate random access to obtain uplink synchronization of the sTAG. After receiving the RAR for the RA originating cell, the TAT corresponding to the sTAG is started. However, the SRS is not allowed to be transmitted on the SCell until the SRS transmitted by the base station is allowed to allow RRC or MAC signaling.
  • Step 907 After the UE receives the explicit signaling indication of the base station, it may determine, according to the signaling indication, whether the SRS can be sent.
  • Embodiment 6 After the UE receives the explicit signaling indication of the base station, it may determine, according to the signaling indication, whether the SRS can be sent.
  • the embodiment of the present invention further provides a user equipment.
  • the device includes:
  • a determining module 101 configured to determine whether the user equipment can determine an uplink timing advance TA value on the newly added secondary cell SCdl;
  • the processing module 102 is configured to prohibit sending the periodic SRS when the user equipment cannot determine the uplink TA value on the SCdl.
  • the determining module 101 is further configured to: when the physical uplink control channel PUCCH is configured on the SCdl, or the user equipment needs to transmit a physical uplink shared channel PUSCH, determine whether the user equipment can determine an uplink TA value on the SCdl. ;
  • the processing module 102 is further configured to prohibit sending the PUCCH and/or the PUSCH when the user equipment cannot determine the uplink TA value on the SCdl.
  • the determining module 101 is further configured to determine whether the random access RA on the secondary cell timing advance group sTAG of the SCdl is successful, and if yes, determine that the user equipment can determine an uplink TA value on the SCdl. .
  • the determining module 101 is further configured to determine whether the time alignment timer TAT of the sTAG of the SCdl is running, and if not, determine that the user equipment can determine that there is no uplink TA value on the SCdl.
  • the processing module 102 is further configured to ensure that when the periodic SRS is not configured for the SCdl in the SCdl or the sTAG, the periodic SRS is not sent when the TA on the SCdl cannot be determined.
  • the processing module 102 is further configured to: after receiving the signaling that includes the periodic SRS configuration, determine an effective time of the periodic SRS according to an explicit signaling indication of the network side; and when the periodic SRS is effective After that, periodic SRS is allowed to be sent.
  • the processing module 102 is further configured to: when the user equipment can only determine the uplink TA value on the SCdl, and then configure the periodic SRS for the SCdl, before determining the uplink TA value on the SCdl, if the inclusion period is received If the signaling of the SRS configuration is considered, the signaling is considered to be in error and the signaling is discarded.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种周期性SRS的处理方法和设备,该方法包括:当用户设备不能确定新增辅小区SCell上的上行定时提前量TA值时,所述用户设备禁止发送周期性SRS。本发明实施例中,避免辅小区不必要的周期性SRS的发送,减少系统不必要的干扰。

Description

一种周期性 SRS的处理方法和设备 本申请要求于 2011 年 8 月 12 日提交中国专利局, 申请号为 201110231277.1 , 发明名称为 "一种周期性 SRS的处理方法和设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种周期性 SRS 的处理方 法和设备。 背景技术
( 1 ) LTE-A ( LTE- Advanced, 高级 LTE ) 系统载波聚合技术。 LTE-A系统的峰值速率比 LTE ( Long Term Evolution,长期演进 ) 系统有很大的提高,要求达到下行 lGbps,上行 500Mbps;同时, LTE-A 系统要求和 LTE系统有很好的兼容性; 基于提高峰值速率、 与 LTE 系统兼容以及充分利用频谱资源的需要, LTE-A系统中引入了载波聚 合 ( CA, Carrier Aggregation )技术。
载波聚合技术是指 UE ( User Equipment, 用户设备)可以同时聚 合多个 cell(小区),多个 cell可同时为 UE提供数据传输服务的机制。 在载波聚合的系统中,各个 cell对应的载波在频域可以是连续或非连 续的, 为了和 LTE系统兼容, 每个成员载波的最大带宽为 20MHz, 各成员载波间的带宽可以相同或不同。
在载波聚合下, UE工作的小区分为一个 PCell ( Primary Cell, 主小区 )和若干个 SCdl ( Secondary Cell, 辅小区); 主小区承担大部 分控制和信令的工作, 如发送对下行数据的上行反馈、 CQI ( Channel Quality Indicator, 信道质量指示)上报、 上行导频传输等; 辅小区主 要是作为资源, 承担数据传输的功能。
( 2 )载波激活 /去激活机制。
为了更好的节电, 针对载波聚合系统, 引入了载波激活 /去激活 机制; 其中, 激活 /去激活机制基于小区, 即当小区没有数据传输需 求时, 基站可以将其进行去激活, 当小区有数据传输需求时, 基站再 对其进行激活。
当支持载波聚合的 UE接入网络后, UE首先会在 PCell上建立 RRC ( Radio Resource Control, 无线资源控制)连接和上行同步, 随 着 UE数据量增加, 允许基站为 UE添加 SCell, SCell添加使用 RRC 重配信令, 且 SCell添加后默认处于去激活状态, 需要先激活并建立 上行同步后, SCell才能工作。
需要注意的是, UE不能在去激活状态下的 SCell上进行除随机 接入之外的其它上行传输, 例如, SRS ( Sounding Reference Signal, 监测参考信号) /PUSCH ( Physical Uplink Shared Channel, 物理上行 共享信道)等。
( 3 ) LTE-A Multi-TA ( Multi-Timing Alignment, 多定时提前量) 场景。
TA机制的主要目的是保证系统中所有 UE的所有小区的上行信 号同时到达基站, 以避免干扰。 其中, UE应该避免非上行同步的上 行数据传输。 当前 LTE-A R10只支持单 TA场景, 即 UE聚合的所有 小区的 TA相同; 当前 LTE-A R11引入了多 TA场景, 即 UE聚合的 所有小区 TA可能不同。
针对多 TA的场景, UE聚合的多个 cell属于不同 band, 且这些 cell具有不同 TA。 如图 1所示, 为引入了 RRU ( Radio Remote Unit, 射频拉远单元) 的场景, 例如, F1 提供大范围覆盖, F2使用 RRH ( Remote Radio Head, 拉远天线)用于 Fl cell内的热点覆盖, 移动 性管理基于 F1进行;该场景下如果 UE位于 F2的 RRH cell和 Fl cell 相重叠的区域, 则 Fl cell和 F2 cell可以聚合, 但是 Fl cell和 F2 cell 的 UL (上行) TA不同。
如图 2所示, 为引入直放站(repeater ) 的场景, 例如, 基站支 持 F1和 F2, F1提供大范围覆盖, F2覆盖范围较小, 通过频率选择 性 repeater, 可以扩展 F2的覆盖范围, 该场景下如果 UE位于 Fl cell 和 F2 cell相重叠的区域, 则 Fl cell和 F2 cell可以聚合, 但是 Fl cell 和 F2 cell的 UL TA不同。
为了便于对多 TA系统的 TA进行维护,当前引入了 TA group(组 ) 的概念, 归属于同一个 TA group的 cell, 其 UL CC (上行成员载波) 可以使用相同的 TA值; 归属于不同 TA group的 cell, 其 UL CC的 TA不相同。
需要注意的是,在一个 TA group内 UE只需要和一个小区保持上 行同步,即可实现对 TA group内所有小区的上行同步;对于包含 PCdl 的 TA group , 可以称为 PCdl TA group (筒写为 pTAG ) , 对于只包含 SCell的 TA group, 可以称为 SCell TA group (筒写为 sTAG )。
( 4 ) LTE-A系统中的辅小区随机接入机制。
LTE-A R10 系统支持非竟争随机接入和竟争随机接入, 由于 LTE-A R10只支持单 TA, 考虑到 PCdl上承载了 PUCCH ( Physical Uplink Control Channel,物理上行控制信道),因此随机接入只在 PCell 上发起, 主要用于在 PCdl上建立 RRC连接和上行同步。
在 LTE-A R11中由于多 TA的引入,当添加了 SCell后,如果 SCell 和 PCdl的 TA不同, 则为了建立 SCell上的上行同步, 需要在辅小 区上发起随机接入过程, 当前 SCell添加的流程包括:
1、 通过 RRC重配过程完成 SCell添加 (此时 SCell处于去激活 状态)。
2、基站在需要使用 SCell时,发送激活信令激活 SCelK此时 SCell 处于激活但失步状态)。
3、 基站判断激活的 SCell所在 TA组是否上行同步, 如果同步, 则 SCell可以正常使用; 如果不同步, 则基站需要触发 UE在该 SCell 或者该 SCell所在 TA组中的某个激活的 cell上发起随机接入 (此时 SCell处于激活且同步状态)。
( 5 ) SRS机制介绍。
SRS针对 cell配置, 用于让基站获知 UE在各个小区上的上行信 道质量。 SRS分为非周期性 SRS和周期性 SRS, 非周期性 SRS由基 站调度确定是否发送, 一条调度信令只能调度一次 SRS发送; 周期 性 SRS由基站通过 RRC连接重配信令配置, SRS发送使用的时频资 源 (如周期、 子帧偏移等), 一旦 UE接收到 SRS配置, 则 UE自行 按照基站的配置, 在相应时频资源上发送上行 sounding信号。
现有技术中, R10规范中只支持一个 TA组(即 pTAG ),对于 pTAG 内的小区, 其周期性 SRS配置 (RRC重配过程)是在 pTAG获得上 行同步之后进行的, 一旦 UE接收到 SRS配置, 则 SRS配置即生效; UE一旦处于激活状态, 即可以按照基站的配置进行周期性 SRS的发 送。
在 R11规范中, pTAG内周期性 SRS的处理与 R10中类似, 不 同之处在于 sTAG; 在 sTAG添加过程中, sTAG内 cell的状态变化过 程如下: ( 1 )去激活(接收到 RRC重配信令 )、 ( 2 )激活但不确定同 失步状态 (即不能确定 UL TA值)、 ( 3 )激活且同步。
对于步骤( 1 ), 由于 sTAG内新增的 SCdl都处于去激活状态, 因此周期性 SRS不会发送。 对于步骤( 3 ), sTAG内新增 SCdl处于 激活且同步状态, 可以按照周期性 SRS配置进行 SRS发送。
在实现本发明的过程中,发明人发现现有技术中至少存在以下问 题:
在上述步骤(2 ), 现有协议没有规定周期性 SRS是否可以发送, 因为此时 sTAG上 TAT ( Timing Alignment Timer, 时间对齐定时器 ) 尚未启动, 只有 pTAG的 TAT在运行, UE根据 pTAG的 TAT的运行 状态无法判断 sTAG内的 SCdl是否上行同步以及其 TA取值, 因此 需要明确这时是否可以发送周期性 SRS。 发明内容
本发明实施例提供一种周期性 SRS 的处理方法和设备, 以在 SCdl未处于上行同步状态时, 避免发送周期性 SRS。
为了达到上述目的,本发明实施例提供一种周期性监测参考信号 SRS的处理方法, 包括:
当用户设备不能确定新增辅小区 SCdl上的上行定时提前量 TA 值时, 所述用户设备禁止发送周期性 SRS。
本发明实施例提供一种用户设备, 包括:
确定模块, 用于确定用户设备是否可以确定新增辅小区 SCdl上 的上行定时提前量 TA值;
处理模块, 用于当用户设备不能确定所述 SCdl上的上行 TA值 时, 禁止发送周期性 SRS。
与现有技术相比, 本发明实施例至少具有以下优点: 避免辅小区 不必要的周期性 SRS的发送, 减少系统不必要的干扰。 附图说明
图 1为现有技术中引入了 RRU的场景示意图;
图 2为现有技术中引入了直放站的场景示意图;
图 3为本发明实施例一提供的一种周期性 SRS的处理方法流程 示意图;
图 4和图 5为本发明实施例一中 MAC信令格式示意图; 图 6为本发明实施例二提供的一种周期性 SRS的处理方法流程 示意图;
图 7为本发明实施例三提供的一种周期性 SRS的处理方法流程 示意图;
图 8为本发明实施例四提供的一种周期性 SRS的处理方法流程 示意图;
图 9为本发明实施例五提供的一种周期性 SRS的处理方法流程 示意图;
图 10为本发明实施例六提供的一种用户设备结构示意图。 具体实施方式 下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述:
对于支持多 TA的长期演进高级系统 R11版本, UE初始接入网 络时, 只会建立主小区的上行同步, 随着业务量增加, 基站可能为 UE新增辅小区,新增辅小区通过 RRC重配过程完成。一旦新增辅小 区和主小区 TA不同, 则基站需要先激活辅小区, 然后获取辅小区的 上行同步,但是在激活辅小区到 UE在辅小区获取同步的这段时间内, 用户设备无法获取 SCdl上的上行同步状态以及可用的 TA值, 因此 SRS是不应该发送的。基于上述发现, 本发明实施例提供一种周期性 SRS的处理方法和设备, 以避免辅小区不必要的周期性 SRS的发送, 减少系统不必要的干扰。
实施例一
本发明实施例一提供一种周期性 SRS的处理方法, 如图 3所示, 该方法包括以下步骤:
步骤 301 , UE未获知新增辅小区 SCdl上的上行 TA值, 即 UE 不能确定新增辅小区 SCdl上的上行 TA值。
步骤 302, UE禁止发送周期性 SRS。
本发明实施例中, 当网络侧设备 (如基站)为 UE新增一个 SCdl 后, 如果 UE无法根据 SCdl或者 SCell归属 sTAG的 TAT确定新增 SCell的同步或失步状态, 即 UE未获知新增辅小区 SCell的上行 TA 值时, UE不允许发送周期性 SRS。
需要注意的是, 如果允许在 SCdl上配置了 PUCCH (包括 CQI ( Channel Quality Indicator, 信道质量指示 ) /SR ( Sounding Request, 调度请求 ) /ACK等), 则在 SCdl上配置 PUCCH时, 如果 UE不能 确定该 SCdl上的上行 TA值, 则禁止发送 PUCCH。
如果 UE需要在 SCdl上传输 PUSCH时, 如果 UE不能确定该 SCdl上的上行 TA值, 则禁止发送 PUSCH。
其中, PUCCH的处理过程与周期性 SRS的处理过程类似, 后续 以周期性 SRS的处理为例进行说明。 为了实现本发明实施例的上述过程, 可采用以下方式:
方式一: 该方式下, 增加 SCdl时配置周期性 SRS, 并通过引入 其它机制避免周期性 SRS的不必要传输。
UE 判断 SCdl 所在 sTAG (辅小区定时提前量组) 上的 RA ( Random Access, 随机接入)是否成功, 如果是, 则 UE确定 SCdl 处于上行同步状态, 且 UE可以确定在 SCdl上的上行 TA值。 否贝 |J , UE确定不能获知新增辅小区 SCdl上的上行 TA值。
该方式下, 在 UE侧, UE根据 SCell所在 sTAG上 RA是否成功 判断周期性 SRS配置是否可用, 只有当 SCdl所在 sTAG上 RA成功 完成, 周期性配置的 SRS才可以使用。 在基站侧, 只有当 sTAG上 RA成功完成后,基站才开始在对应时频位置上接收 UE发送的 SRS。
方式二: 该方式下, 增加 SCdl时配置周期性 SRS, 并通过引入 其它机制避免周期性 SRS的不必要传输。
UE判断 SCell所在 sTAG的 TAT (时间对齐定时器 )是否运行, 如果未运行, UE不能确定该 SCdl上的 TA值。 否则, 如果 SCdl归 属的 sTAG的 TAT在运行, 那么 UE确定 SCdl处于上行同步状态, 且 UE可以获知该 SCdl上的上行 TA值。
该方式下, 在 UE侧, UE根据 SCell所在 sTAG的 TAT是否运 行判断周期性 SRS配置是否可用,只有当 SCdl所在 sTAG的 TAT正 在运行时, 周期性配置的 SRS才可以发送。 在基站侧, 只有当 sTAG 上 TAT运行时, 基站才开始在对应时频位置上接收 UE发送的 SRS。
方式三: 该方式下, 通过禁止对 SCdl或者 sTAG内的 SCdl配 置周期性 SRS来避免周期性 SRS的不必要传输。
网络侧设备(如基站)获知禁止对 SCdl或者 sTAG内的 SCell 配置周期性 SRS, 这样 UE自然不会发送周期性 SRS。 因此, 通过不 允许对 SCdl或者 sTAG内的 SCell配置周期性 SRS,以保证 UE在不 能确定 SCdl上的 TA时, 不会发送周期性 SRS。
该方式下,在基站侧,协议规定基站不允许对 SCdl或者对 sTAG 内的 SCell配置周期性 SRS (即基站获知禁止对 SCell或者 sTAG内 的 SCdl配置周期性 SRS )。 在 UE侧, 由于未配置周期性 SRS, 则 UE自然不会发送周期性 SRS;—旦用户设备在 RRC信令中收到针对 SCell或者针对 sTAG内 SCdl的周期性 SRS配置,则 UE认为信令配 置出错, 丢弃该信令。
方式四: 该方式下, 增加 SCdl时配置周期性 SRS, 并通过引入 其它机制避免周期性 SRS的不必要传输。
网络侧设备通过显式信令通知是否允许 UE发送周期性 SRS, 并 进一步通过显式信令通知周期性 SRS 的生效时间。 当接收到包含周 期性 SRS配置的信令后,UE按照网络侧的指示确定周期性 SRS的生 效时间; 并在到达周期性 SRS 的生效时间后, UE允许发送周期性 SRS。
该方式下, 在基站侧, 基站发送 RRC信令后 (用于指示周期性 SRS ), 还需要通过显式信令通知 UE该周期性 SRS是否可以发送, 以及在允许 UE发送周期性 SRS时, 指示周期性 SRS的生效时间。 其中, 该显式信令包括但不限于 RRC信令或者 MAC ( Media Access Control, 介质访问控制)信令。 在 UE侧, 当 UE收到包含 SRS配置 的 RRC信令后, SRS配置并不会立即生效, 而是要按照基站的显式 信令指示确定生效时间。
本发明实施例中, 在该方式下, 如果采用 MAC信令, 则需要引 入新的 LCID ( Logical Channel ID, 逻辑信道标识), 此时 MAC CE ( Control Element, 控制单元)部分可以采用 bitmap (位图)方式, 并可以有两种格式:
格式 1: Ci表示 cell编号, 最低位对应 PCdl, Ci占用的 bit数取 决于系统支持的 Cell个数。 例如, 如果系统支持的 cell个数为 5, MAC CE可以采用如图 4所示的格式示意图, 或者, C5-C7也可以置 为 R bit。
格式 2: Ti表示编号为 i的 TAG, 最低位对应 pTAG, Ti占用的 bit取决于系统支持的 TAG个数。例如,如果系统最多支持两个 TAG, MAC CE可以采用如图 5所示的格式示意图,或者从 T2-T7可以置为 需要注意的是, Ti可以有两种含义: 表示编号为 i的 cell, 或者 编号为 i的 TAG对应一个 bit,例如 bit置为 0表示不可以发送周期性 SRS, bit置为 1表示允许发送周期性 SRS。
方式五: 该方式下, 协议规定只能在 SCdl上行同步之后基站才 能为其配置周期性 SRS。
网络侧设备获知禁止在 UE获取 SCdl上的上行 TA之前(即不 能确定 SCdl上的上行 TA值之前)对 SCdl或者 sTAG内的 SCdl配 置周期性 SRS。 只有当 UE获取了 SCdl上的上行 TA之后才允许网 络侧设备为其配置 SCdl或者 sTAG内的 SCdl上的周期性 SRS。 该 情况下, 在 UE确定可以获得 SCdl上的上行 TA之前, 如果接收到 包含周期性 SRS配置的信令, 则 UE认为信令错误, 丢弃该信令。
该方式下, 在基站侧, 协议规定基站不允许在 UE获得 SCdl上 行定时提前量之前为 SCdl配置周期性 SRS, 如果之前有 SRS配置, 则基站应该去配置。 在 UE侧, 如果在 UE获得 SCdl的上行定时提 前量之前在 RRC信令中收到针对所述 SCdl的周期性 SRS配置, 则 UE认为信令出错, 丢弃该信令。
综上所述, 本发明实施例中, 避免辅小区不必要的周期性 SRS 的发送, 即可以避免出现非上行同步的 SRS传输, 减少系统不必要 的干扰。
为了更加清楚的阐述本发明实施例提供的技术方案,以下结合具 体的应该场景进行阐述, 在该应用场景下, 假设基站支持 4个 cell, 分别称为 Celll、 Cdl2、 Cdl3和 Cdl4。 其中, Cdll为 PCdl, Cell2 和 PCdl的 TA相同, 同属于 pTAG; Cell3和 Cell4的 TA相同, 属于 一个 sTAG。
实施例二
基于上述假设, 本发明实施例二提供一种周期性 SRS 的处理方 如图 6所示, 该方法包括以下步骤: 步骤 601 , PCell上建立 RRC连接和上行同步。
当空闲态的 UE有数据传输需求时,在 PCell上发起 RA,在 PCell 上建立 RRC连接和上行同步。
步骤 602, 基站确定新增 SCell。
随着 UE数据传输需求的增加, 基站需要为 UE增加聚合的小区 个数, 且基站根据 SCell的信道质量、 干扰、 UE要传输的数据量等 因素确定需要为 UE增加的 SCell为 Cdl3和 Cdl4。
步骤 603, 基站通过 RRC重配过程配置为 UE进行 SCell添加。 RRC重配信令中包含 Cdl3和 Cdl4的周期性 SRS配置信息。
步骤 604 , UE接收到 RRC重配信令后的处理。
UE从当前已经同步且激活的某个 cell (此处是 PCell )上接收到 该 RRC重配信息, RRC重信令中包含的配置信息 (如 TDD ( Time Division Duplexing , 时分双工 )配置, PRACH ( Packet Random Access Channel, 分组随机接入信道)配置、 PUS CH ( Physical Uplink Shared Channel, 物理上行共享信道)配置、 周期性 SRS配置等)立即生效, 但是 SCell上的周期性 SRS配置不可用。
步骤 605, 基站激活新增 SCell。 由于 SCell配置后默认去激活, 如果要使用这些 cell, 基站需要首先激活这些 SCell。
步骤 606, 基站触发 sTAG发起 RA获得 sTAG的上行同步和上 行定时提前量。
具体的, 基站指示 sTAG内某个 cell ( Cell3或者 Cdl4 )上发起 随机接入获得 sTAG的上行同步和上行定时提前量。
步骤 607, UE确定周期性 SRS配置可以发送。
UE在 sTAG内 RA成功完成之后, UE在 Cell3和 Cell4上的周 期性 SRS配置才可用。
步骤 608, 基站接收 UE在 sTAG上的周期性 SRS。
基站在 sTAG RA成功之后, 且未失步之前, 在基站配置的周期 性 SRS时频位置上接收 SRS。
实施例三 基于上述假设, 本发明实施例三提供一种周期性 SRS 的处理方 发送, 如图 7所示, 该方法包括以下步骤:
步骤 701 , PCell上建立 RRC连接和上行同步。
当空闲态的 UE有数据传输需求时,在 PCell上发起 RA,在 PCell 上建立 RRC连接和上行同步。
步骤 702, 基站确定新增 SCell。
随着 UE数据传输需求的增加, 基站需要为 UE增加聚合的小区 个数, 且基站根据 SCell的信道质量、 干扰、 UE要传输的数据量等 因素确定需要为 UE增加的 SCell为 Cdl3和 Cdl4。
步骤 703, 基站通过 RRC重配过程配置为 UE进行 SCell添加。 RRC重配信令中包含 Cdl3和 Cdl4的周期性 SRS配置信息。
步骤 704 , UE接收到 RRC重配信令后的处理。
UE从当前已经同步且激活的某个 cell ( PCell )上接收到该 RRC 重配信息, RRC重信令中包含的配置信息(如 TDD配置, PRACH 配置、 PUSCH配置、 周期性 SRS配置等)立即生效, 但是 SCell上 的周期性 SRS配置不可用。
步骤 705, 基站激活新增 SCell。 由于 SCell配置后默认去激活, 如果要使用这些 cell, 基站需要首先激活这些 SCell。
步骤 706, UE根据 sTAG的 TAT是否运行确定 SCell上的周期性 SRS是否可以发送。
具体的, 基站指示 sTAG内某个 cell ( Cell3或者 Cdl4 )上发起 随机接入获得 sTAG的上行同步, 当收到针对 RA发起 cell的 RAR 后, 启动 sTAG对应的 TAT, 并确定 RAR中包含的上行定时提前量 取值。
步骤 707, UE确定周期性 SRS配置可以发送。
一旦 SCell对应的 TAT启动, 那么在该 TAT超时之前都可以认 为该 TAT处于运行状态, 则 UE可以在 sTAG包含的 Cdl3和 Cdl4 上发送周期性 SRS。 步骤 708, 基站接收 UE在 sTAG上的周期性 SRS。
基站在 sTAG TAT启动之后且未超时之前, 即 TAT运行期间,在 基站配置的周期性 SRS时频位置上接收 SRS。
实施例四
基于上述假设, 本发明实施例四提供一种周期性 SRS 的处理方 法, 在协议中规定任何一个 SCdl、 或者只有 sTAG内的 SCdl、 或者 未同步的不允许配置周期性 SRS,如图 8所示,该方法包括以下步骤: 步骤 801 , PCell上建立 RRC连接和上行同步。
当空闲态的 UE有数据传输需求时,在 PCell上发起 RA,在 PCell 上建立 RRC连接和上行同步。
步骤 802, 基站确定新增 SCell。
随着 UE数据传输需求的增加, 基站需要为 UE增加聚合的小区 个数, 且基站根据 SCell的信道质量、 干扰、 UE要传输的数据量等 因素确定需要为 UE增加的 SCell为 Cdl3和 Cdl4。
步骤 803, 基站通过 RRC重配过程配置为 UE进行 SCell添加。 RRC重配信令中不包含 Cdl3和 Cell4的周期性 SRS配置信息。
步骤 804 , UE接收到 RRC重配信令后的处理。
UE从当前已经同步且激活的某个 cell ( PCell )上接收到该 RRC 重配信息, RRC重信令中包含的配置信息(如 TDD配置, PRACH 配置、 PUSCH配置等)立即生效。
需要注意的是, 该 RRC重配信令中不能包含周期性 SRS的配置 信息。
步骤 805, 基站激活新增 SCell。 由于 SCell配置后默认去激活, 如果要使用这些 cell, 基站需要首先激活这些 SCell。
步骤 806 , 基站触发 sTAG发起 RA获得 sTAG的上行同步。 具体的, 基站指示 sTAG内某个 cell ( Cell3或者 Cdl4 )上发起 随机接入获得 sTAG的上行同步; 当收到针对 RA发起 cell的 RAR 后, 启动 sTAG对应的 TAT, 并确定 SCell上的上行定时提前量。
步骤 807, 后续 SRS传输。 如果基站需要获知 SCell上的上行信 道质量信息, 则基站可以调度 UE在 SCell上发送非周期 SRS或者在 SCell获得上行定时提前量之后, 再配置周期性 SRS。
实施例五
基于上述假设, 本发明实施例五提供一种周期性 SRS 的处理方 法, 通过显式信令禁止 SRS传输, 如图 9所示, 该方法包括以下步 骤:
步骤 901 , PCell上建立 RRC连接和上行同步。
当空闲态的 UE有数据传输需求时,在 PCell上发起 RA,在 PCell 上建立 RRC连接和上行同步。
步骤 902, 基站确定新增 SCell。
随着 UE数据传输需求的增加, 基站需要为 UE增加聚合的小区 个数, 且基站根据 SCell的信道质量、 干扰、 UE要传输的数据量等 因素确定需要为 UE增加的 SCell为 Cdl3和 Cdl4。
步骤 903, 基站通过 RRC重配过程配置为 UE进行 SCell添加。 RRC重配信令中包含 Cdl3和 Cdl4的周期性 SRS配置信息。
步骤 904 , UE接收到 RRC重配信令后的处理。
UE从当前已经同步且激活的某个 cell ( PCell )上接收到该 RRC 重配信息, RRC重信令中包含的配置信息(比如 TDD配置, PRACH 配置、 PUSCH配置、 SRS配置等)立即生效。
步骤 905, 基站激活新增 SCell。 由于 SCell配置后默认去激活, 如果要使用这些 cell, 基站需要首先激活这些 SCell, 在给这些 SCell 发送激活信令的同时还可以发送禁止 SRS的 RRC或者 MAC信令。
步骤 906 , 基站触发 sTAG发起 RA获得 sTAG的上行同步。 具体的, 基站指示 sTAG内某个 cell ( Cell3或者 Cdl4 )上发起 随机接入获得 sTAG的上行同步。 当收到针对 RA发起 cell的 RAR 后,启动 sTAG对应的 TAT。但是在接收到基站发送的 SRS允许 RRC 或者 MAC信令之前不允许在 SCell上发送 SRS。
步骤 907, 当 UE接收到基站的显式信令指示后, 才可以根据信 令指示确定 SRS是否可以发送。 实施例六
基于与上述方法同样的发明构思,本发明实施例中还提供了一种 用户设备, 如图 10所示, 该设备包括:
确定模块 101 ,用于确定用户设备是否可以确定新增辅小区 SCdl 上的上行定时提前量 TA值;
处理模块 102,用于当用户设备不能确定所述 SCdl上的上行 TA 值时, 禁止发送周期性 SRS。
所述确定模块 101, 还用于当在所述 SCdl上配置了物理上行控 制信道 PUCCH或所述用户设备需要传输物理上行共享信道 PUSCH 时, 确定用户设备是否可以确定所述 SCdl上的上行 TA值;
所述处理模块 102, 还用于当用户设备不能确定 SCdl上的上行 TA值时, 禁止发送 PUCCH和 /或 PUSCH。
所述确定模块 101 , 进一步用于判断所述 SCdl所在辅小区定时 提前量组 sTAG上的随机接入 RA是否成功, 如果是, 则判断所述用 户设备可以确定在所述 SCdl上的上行 TA值。
所述确定模块 101 , 进一步用于判断所述 SCdl所在 sTAG的时 间对齐定时器 TAT是否运行, 如果未运行, 则判断所述用户设备可 以确定在所述 SCdl上不存在上行 TA值。
所述处理模块 102,进一步用于当不允许对所述 SCdl或者 sTAG 内的 SCdl配置周期性 SRS时, 保证在不能确定 SCdl上的 TA时, 不会发送周期性 SRS。
所述处理模块 102,进一步用于当接收到包含周期性 SRS配置的 信令后, 按照网络侧的显式信令指示确定所述周期性 SRS 的生效时 间; 并在到达周期性 SRS的生效时间后, 允许发送周期性 SRS。
所述处理模块 102, 进一步用于当只允许在用户设备可以确定 SCdl上的上行 TA值后才能为 SCdl配置周期性 SRS时, 在确定所 述 SCdl上的上行 TA值之前, 如果接收到包含周期性 SRS配置的信 令, 则认为信令发生错误, 并丢弃该信令。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附 图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实 施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同 于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个 模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。

Claims

权利要求
1、 一种周期性监测参考信号 SRS的处理方法, 其特征在于, 包 括:
当用户设备不能确定新增辅小区 SCdl上的上行定时提前量 TA 值时, 所述用户设备禁止发送周期性 SRS。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括: 当在所述 SCdl上配置了物理上行控制信道 PUCCH或所述用户 设备需要传输物理上行共享信道 PUSCH时, 如果所述用户设备不能 确定 SCell上的上行 TA值, 则禁止发送 PUCCH和 /或 PUSCH。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述方法进一 步包括:
所述用户设备判断所述 SCdl所在辅小区定时提前量组 sTAG上 的随机接入 RA是否成功, 如果是, 则判断所述用户设备可以确定在 所述 SCell上的上行 TA值。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述方法进一 步包括:
所述用户设备判断所述 SCdl所在 sTAG的时间对齐定时器 TAT 是否运行, 如果未运行, 则判断所述用户设备可以确定在所述 SCdl 上不存在上行 TA值。
5、 如权利要求 1所述的方法, 其特征在于, 所述方法进一步包 括:
不允许对所述 SCell或者 sTAG内的 SCdl配置周期性 SRS, 以 保证所述用户设备在不能确定 SCdl 上的 TA 时, 不会发送周期性 SRS。
6、 如权利要求 5所述的方法, 其特征在于, 所述方法进一步包 括:
网络侧设备禁止对所述 SCdl或者 sTAG内的 SCdl配置周期性
SRS。
7、 如权利要求 1所述的方法, 其特征在于, 所述方法进一步包 括:
当接收到包含周期性 SRS 配置的信令后, 所述用户设备按照网 络侧的指示确定所述周期性 SRS的生效时间; 并在到达周期性 SRS 的生效时间后, 所述用户设备允许发送周期性 SRS。
8、 如权利要求 7所述的方法, 其特征在于, 所述方法进一步包 括:
网络侧设备通过显式信令通知是否允许所述用户设备发送周期 性 SRS, 并进一步通过显式信令通知所述周期性 SRS的生效时间。
9、 如权利要求 1所述的方法, 其特征在于, 所述方法进一步包 括:
当在用户设备确定 SCell上的上行 TA值后, 网络侧设备才能为 SCell配置周期性 SRS时, 在所述用户设备确定所述 SCell上的上行 TA值之前, 如果接收到包含周期性 SRS配置的信令, 所述用户设备 认为信令发生错误, 并丢弃该信令。
10、 如权利要求 9所述的方法, 其特征在于,
网络侧设备获知禁止在用户设备不能确定 SCell上的上行 TA值 之前对所述 SCell或者 sTAG内的 SCell配置周期性 SRS。
11、 一种用户设备, 其特征在于, 包括:
确定模块, 用于确定用户设备是否可以确定新增辅小区 SCell上 的上行定时提前量 TA值;
处理模块, 用于当用户设备不能确定所述 SCell上的上行 TA值 时, 禁止发送周期性 SRS。
12、 如权利要求 11所述的用户设备, 其特征在于,
所述确定模块, 还用于当在所述 SCell上配置了物理上行控制信 道 PUCCH或所述用户设备需要传输物理上行共享信道 PUSCH时, 确定用户设备是否可以确定所述 SCell上的上行 TA值;
所述处理模块, 还用于当用户设备不能确定 SCell上的上行 TA 值时, 禁止发送 PUCCH和 /或 PUSCH。
13、 如权利要求 11或 12所述的用户设备, 其特征在于, 所述确定模块, 进一步用于判断所述 SCdl所在辅小区定时提前 量组 sTAG上的随机接入 RA是否成功, 如果是, 则判断所述用户设 备可以确定在所述 SCdl上的上行 TA值。
14、 如权利要求 11或 12所述的用户设备, 其特征在于, 所述确定模块, 进一步用于判断所述 SCdl所在 sTAG的时间对 齐定时器 TAT是否运行, 如果未运行, 则判断所述用户设备可以确 定在所述 SCdl上不存在上行 TA值。
15、 如权利要求 11所述的用户设备, 其特征在于,
所述处理模块, 进一步用于当不允许对所述 SCdl或者 sTAG内 的 SCdl配置周期性 SRS时, 保证在不能确定 SCdl上的 TA时, 不 会发送周期性 SRS。
16、 如权利要求 11所述的用户设备, 其特征在于,
所述处理模块, 进一步用于当接收到包含周期性 SRS 配置的信 令后, 按照网络侧的显式信令指示确定所述周期性 SRS的生效时间; 并在到达周期性 SRS的生效时间后, 允许发送周期性 SRS。
17、 如权利要求 11所述的用户设备, 其特征在于,
所述处理模块, 进一步用于当只允许在用户设备确定 SCdl上的 上行 TA值后才能为 SCdl配置周期性 SRS时, 在确定所述 SCdl上 的上行 TA值之前, 如果接收到包含周期性 SRS配置的信令, 则认为 信令发生错误, 并丢弃该信令。
PCT/CN2012/079950 2011-08-12 2012-08-10 一种周期性srs的处理方法和设备 WO2013023554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110231277.1 2011-08-12
CN201110231277.1A CN102291837B (zh) 2011-08-12 2011-08-12 一种周期性srs的处理方法和设备

Publications (1)

Publication Number Publication Date
WO2013023554A1 true WO2013023554A1 (zh) 2013-02-21

Family

ID=45337874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079950 WO2013023554A1 (zh) 2011-08-12 2012-08-10 一种周期性srs的处理方法和设备

Country Status (2)

Country Link
CN (1) CN102291837B (zh)
WO (1) WO2013023554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304312A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 在增强的载波聚合系统中设置定时提前命令mac ce的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291837B (zh) * 2011-08-12 2013-11-06 电信科学技术研究院 一种周期性srs的处理方法和设备
CN103797872B (zh) * 2011-12-31 2017-06-16 富士通株式会社 避免时间提前量组重配后上行干扰的方法及装置
CN104221453B (zh) * 2012-05-14 2018-03-20 富士通株式会社 一种时间提前量组重配的方法和装置
CN103428753B (zh) * 2012-05-24 2017-05-24 电信科学技术研究院 一种进行上行转移的方法、系统和设备
KR102156886B1 (ko) * 2012-09-25 2020-09-17 삼성전자주식회사 통신 시스템에서 복수의 셀을 이용하는 방법 및 장치
CN104904299B (zh) * 2013-01-07 2018-05-22 Lg 电子株式会社 在无线通信系统中基于无线资源的动态变化收发信号的方法及其设备
CN104519589A (zh) * 2013-09-26 2015-04-15 中兴通讯股份有限公司 随机接入方法和装置
US10425941B2 (en) * 2015-01-13 2019-09-24 Lg Electronics Inc. Method for de-configuring a cell from PUCCH resource in a carrier aggregation system and a device therefor
EP3070986B1 (en) * 2015-02-26 2019-05-08 HTC Corporation Device and method of handling communication operations with a network
CN109150451B (zh) * 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统
CN110213831B (zh) * 2019-05-29 2022-05-24 成都中科微信息技术研究院有限公司 一种结合srs周期的调度方法及系统
CN110225595B (zh) * 2019-05-29 2022-05-24 成都中科微信息技术研究院有限公司 一种结合srs周期的调度基站及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092422A1 (en) * 2008-07-14 2010-08-19 Nokia Corporation Method and apparatus to limit periodic uplink transmissions
CN102014480A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种上行同步处理方法及设备
US20110134774A1 (en) * 2009-11-19 2011-06-09 Interdigital Patent Holdings, Inc. Component carrier activation/deactivation in multi-carrier systems
CN102131283A (zh) * 2008-06-02 2011-07-20 富士通株式会社 定时调节方法、移动站、基站以及移动通信系统
CN102291837A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 一种周期性srs的处理方法和设备
CN102573099A (zh) * 2012-01-13 2012-07-11 电信科学技术研究院 一种更新sTAG下行定时参考载波的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082119A1 (en) * 2006-12-31 2008-07-10 Posdata Co., Ltd. Apparatus and method for transmitting uplink signals in a wireless communication system
US8830982B2 (en) * 2008-05-05 2014-09-09 Industrial Technology Research Institute System and method for multicarrier uplink control
CN101610607B (zh) * 2008-06-20 2012-08-08 电信科学技术研究院 上行探测参考信号发送、接收方法以及基站和移动终端
CN101848541B (zh) * 2009-03-27 2013-03-13 电信科学技术研究院 一种探测参考信号发送的方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131283A (zh) * 2008-06-02 2011-07-20 富士通株式会社 定时调节方法、移动站、基站以及移动通信系统
WO2010092422A1 (en) * 2008-07-14 2010-08-19 Nokia Corporation Method and apparatus to limit periodic uplink transmissions
CN102014480A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种上行同步处理方法及设备
US20110134774A1 (en) * 2009-11-19 2011-06-09 Interdigital Patent Holdings, Inc. Component carrier activation/deactivation in multi-carrier systems
CN102291837A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 一种周期性srs的处理方法和设备
CN102573099A (zh) * 2012-01-13 2012-07-11 电信科学技术研究院 一种更新sTAG下行定时参考载波的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304312A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 在增强的载波聚合系统中设置定时提前命令mac ce的方法
CN106304312B (zh) * 2015-05-15 2019-11-29 上海诺基亚贝尔股份有限公司 在增强的载波聚合系统中设置定时提前命令mac ce的方法

Also Published As

Publication number Publication date
CN102291837B (zh) 2013-11-06
CN102291837A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
US11412510B2 (en) Uplink signal starting position in a wireless device and wireless network
EP3723321B1 (en) Channel state information report on bandwidth part
EP3595397B1 (en) Listen before talk procedure in a wireless device and wireless device
JP6977066B2 (ja) 無線通信システムにおけるアップリンクタイミングを調整する方法、及びこのための装置
KR102507150B1 (ko) 승인 불요 구성
US9674805B2 (en) Method and apparatus for applying a time alignment timer in a wireless communication system using a carrier aggregation technique
EP2487970B1 (en) Method, system and device for uplink synchronization
WO2013023554A1 (zh) 一种周期性srs的处理方法和设备
CA2886634C (en) Methods for dynamic tdd uplink/downlink configuration
EP2693801B1 (en) Uplink transmission method and device for multi-carrier aggregation system
EP2813025B1 (en) Method and apparatus for transmit timing adjustment
WO2012129998A1 (zh) 一种基于多个上行定时提前量的随机接入方法和设备
WO2013004084A1 (zh) 辅服务小区随机接入的方法和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823998

Country of ref document: EP

Kind code of ref document: A1