WO2012119501A1 - 铝电解用阳极及其生产方法 - Google Patents

铝电解用阳极及其生产方法 Download PDF

Info

Publication number
WO2012119501A1
WO2012119501A1 PCT/CN2012/070967 CN2012070967W WO2012119501A1 WO 2012119501 A1 WO2012119501 A1 WO 2012119501A1 CN 2012070967 W CN2012070967 W CN 2012070967W WO 2012119501 A1 WO2012119501 A1 WO 2012119501A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
aluminum
crimping
cavity
guide rod
Prior art date
Application number
PCT/CN2012/070967
Other languages
English (en)
French (fr)
Inventor
陈虎政
Original Assignee
Chen Huzheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Huzheng filed Critical Chen Huzheng
Publication of WO2012119501A1 publication Critical patent/WO2012119501A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/10External supporting frames or structures

Definitions

  • the invention relates to a novel anode for aluminum electrolysis and a production method for producing the anode for aluminum electrolysis.
  • the current anode for aluminum electrolysis is composed of an anode aluminum guide rod, a steel-aluminum explosive solder bump, an anode steel claw, and a pre-baked carbon anode.
  • the structure is an anode aluminum guide rod welded with a steel-aluminum explosion-welded aluminum plate, a steel-aluminum explosive welded piece steel plate and an anode steel claw are welded, and the anode steel claw and the pre-baked carbon anode are connected by a pouring phosphorus pig iron.
  • the aluminum guide rod is connected to the anode steel claw through the steel-aluminum explosive soldering piece.
  • the specific method is as follows: four welding bevels are formed on the four sides of the lower end of the aluminum guiding rod, and two welding bevels are formed on the upper side of the upper platform of the anode steel claw.
  • the aluminum guide rod welding bevel is welded with the aluminum plate of the steel-aluminum explosive block, and the upper part of the anode steel claw is welded with the steel plate of the steel-aluminum explosive block.
  • the central part of the welding joint between the aluminum guide rod and the steel-aluminum explosive solder bump and the anode steel claw and the steel-aluminum explosive solder joint is not welded, which affects the conductive effect;
  • the aluminum guide rod and the steel-aluminum The central part of the welded joint of the explosive soldering piece is not welded. This part is easy to be broken, which increases the repair cost.
  • the resistance of the part increases before the fracture, which affects the conductive effect.
  • the cracking occurs in the aluminum plate and steel plate production of the steel-aluminum explosive soldering block.
  • the welding quality of the aluminum guide rod to the anode steel claw parts and the product quality of the anode steel claw and the steel-aluminum explosion solder bump will directly affect the power consumption index, raw material consumption cost and repair cost of the aluminum electrolysis production process.
  • the prior art anode steel claws are connected to the pre-baked carbon anodes by pouring the phosphorus pig iron.
  • the specific method is: placing the anode steel claws into a pre-baked carbon anode carbon bowl having a depth of about 100 mm.
  • the radius of the pre-baked carbon anode carbon bowl is 15-20 mm larger than the radius of the anode steel claw.
  • the anode steel claw and the pre-baked carbon are used in the gap between the anode steel claw and the pre-baked carbon anode carbon bowl.
  • the anodes are connected together.
  • the gap between the anode steel claw and the pre-baked carbon anode is a ring of 15-20 mm.
  • the ring-shaped phosphorous pig iron water poured in the gap between the pre-baked carbon anode and the anode steel claw will generate one or several broken cracks in the process of being transformed from a high-temperature liquid to a solid and cooled to a normal temperature due to the broken crack. It is produced in a solid state. Therefore, the surface of the better combined phosphorus pig iron originally combined with the surface of the anode steel claw and the surface of the pre-baked carbon anode carbon bowl will be displaced, and the displacement will increase the resistance of the joint surface. , wasting energy.
  • the work of the phosphorus pig iron pouring process, the residual pole pressing process, and the phosphorus pig iron press-off process consumes a large amount of people, money, and materials.
  • the anode of the prior art is replaced to a certain extent, and the replacement of the anode requires a lot of manpower.
  • the process of replacing the anode causes a large amount of heat energy to be lost in the electrolytic cell, resulting in waste of electric energy, and the replaced residual pole increases the anode hair consumption and increases the production cost. .
  • the invention provides a reasonable structure, good electrical conductivity effect, and can effectively avoid the high temperature phosphorus hot metal molten iron scouring and melting the anode steel claw and the phosphorus raw iron water to the charcoal bowl. Externally lost, can effectively avoid the displacement of the joint surface, omit the phosphorus pig iron pouring process, omit the residual electrode and the phosphorus pig iron press-off process, realize the anode for continuous use of the anode and its production method.
  • the present invention provides a novel anode for aluminum electrolysis, the anode for aluminum electrolysis comprising a prebaked carbon anode body and an aluminum guide rod, and a carbon anode connection portion on the upper portion of the prebaked carbon anode body, the carbon anode a plurality of anode crimping connection holes on the connecting portion;
  • the lower part of the aluminum guide rod is connected to the crimping plate through the connecting member to form an aluminum guiding rod assembly, and the pressing plate has a plurality of crimping plate connecting holes corresponding to the anode crimping connecting holes;
  • the crimping plate connecting hole and the anode crimping connecting hole are crimped by a crimping member.
  • the connecting member is composed of a cavity closed around, an upper opening cavity and a cast aluminum in the cavity.
  • the cavity is weldedly connected to the lower part of the aluminum guiding rod by cast aluminum, and the lower part of the cavity is weldedly connected with the crimping plate.
  • the connecting member is formed by a hole with a side wall, a cavity with an upper opening, and a pressing screw passing through a hole in the side wall of the cavity, and the cavity is crimped to the lower portion of the aluminum guide rod by a pressing screw.
  • the lower portion of the cavity is welded to the crimping plate.
  • the carbon anode connection portion is implanted and fixed in an upper portion of the pre-baked carbon anode body.
  • the carbon anode connection portion is a rectangular hole-shaped protrusion extending in an upper portion of the pre-baked carbon anode body.
  • the present invention also provides a novel method for producing an anode for aluminum electrolysis, which comprises pre-baked carbon anode fabrication, aluminum guide rod assembly fabrication and anode combination, the prebaking
  • the carbon anode is prepared by implanting an anode plate with a plurality of anode crimping connection holes in the upper part of the pre-baked carbon anode body or forming a plurality of anode crimping connection holes by using an upper portion of the pre-baked carbon anode body. Rectangular protrusion
  • the aluminum guide rod assembly is formed by connecting a lower portion of the aluminum guide rod to the crimping plate through a connecting member, the crimping plate has a plurality of crimping plate connecting holes, and the plurality of crimping plate connecting holes and the anode crimping connecting holes Positional relationship corresponds;
  • the combination of the anodes is that the crimping plate connecting holes and the anode crimping connecting holes are crimped by a crimping member.
  • the aluminum guide rod assembly is formed by casting aluminum liquid into the cavity of the connecting piece which is closed and open at the periphery, and simultaneously welds the lower part of the aluminum guiding rod with the cast aluminum in the cavity, and the lower part of the cavity is welded. The way is connected to the crimping plate.
  • the aluminum guide rod assembly is prepared by first preparing a side wall with a hole, an upper open joint cavity and a lower holed aluminum guide rod, and then placing the lower part of the aluminum guide rod into the cavity, and then pressing the same The screw presses the sidewall hole of the cavity with the lower hole of the aluminum guide rod, and the lower portion of the cavity is welded to the crimping plate.
  • the aluminum guide rod of the technical scheme of the invention is fully connected with the crimping plate, and has good electrical conductivity, and the invention adopts a crimp connection method to avoid high temperature phosphorus hot metal molten iron scouring and melting the anode steel claw and the phosphorus raw iron water to the charcoal bowl. External loss, can effectively avoid the displacement of the joint surface, omit the phosphorus pig iron pouring process, omit the residual pole and the phosphorus pig iron press-off process, can significantly reduce power consumption, raw material loss, thereby reducing production costs.
  • the manufacturing method of the technical scheme of the present invention is not carried out by a high-temperature casting method, but is formed by a crimping method at a normal temperature, that is, the anode for aluminum electrolysis of the invention has low production energy consumption and low production cost, and is produced. Efficiency has been effectively improved.
  • 1 to 3 are schematic views of a three-view structure of a prior art anode lead rod assembly.
  • FIG 4 to 6 are schematic views showing the structure of the connecting member of the present invention.
  • FIG. 7 to 9 are schematic views showing the structure of the connecting member of the present invention.
  • 10 to 12 are schematic views showing the structure of the anode guide rod assembly of the present invention.
  • FIG. 13 to 15 are schematic views showing the structure of the anode guide rod assembly of the present invention.
  • 16 to 18 are schematic views showing the structure of a prior art prebaked carbon anode.
  • 19 to 21 are three views of the pre-baked carbon anode structure of the anode plate implanted in the present invention.
  • FIG. 22 to FIG. 24 are schematic diagrams of three views of a pre-baked carbon anode structure having a rectangular apertured projection on the upper portion of the present invention.
  • 25 to 27 are schematic views showing the structure of a prior art anode assembly.
  • 28 to 30 are schematic views showing the structure of the anode assembly of the present invention.
  • 31 to 33 are schematic views showing the structure of the anode assembly of the present invention.
  • 34 to 37 are schematic views showing the structure of the continuous operation of the anode assembly of the present invention.
  • the anode for aluminum electrolysis of the prior art is exploded by a pre-baked carbon anode, an anode steel claw 6, and a steel-aluminum alloy.
  • the soldering block and the aluminum guiding rod 11 are formed, wherein the pre-baked carbon anode is composed of a pre-baked carbon anode body 1 and a carbon bowl 2 located in the pre-baked carbon anode body 1.
  • the lower portion of the aluminum guiding rod 11 is welded with a slope through the aluminum welding body 12 and steel.
  • the anode for aluminum electrolysis of the present invention comprises a pre-baked carbon anode body 1 and an aluminum guide rod 11, said pre- An anode plate 3 is fixed on the upper portion of the baking carbon anode body 1.
  • the anode plate 3 has a plurality of uniformly arranged anode crimping connecting holes 16; the lower portion of the aluminum guiding rod 11 is connected to the crimping plate 9 through the connecting member 10 to form aluminum.
  • the crimping plate 9 has a plurality of crimping plate connecting holes 15 corresponding to the anode crimping connecting holes 16; the crimping plate connecting holes 15 and the anode crimping connecting holes 16 are passed through the crimping screws 14 is crimped to form the new anode for aluminum electrolysis; wherein the connecting member 10 is composed of a cavity which is closed at the periphery, an upper opening, and a cast aluminum in the cavity, and the cavity is welded to the lower portion of the aluminum guide rod 11 through the cast aluminum. The lower portion of the cavity is welded to the crimping plate 9.
  • the anode for aluminum electrolysis of the present invention comprises a prebaked carbon anode body 1 and an aluminum guide rod 11
  • a rectangular perforated protrusion 4 is extended on the upper portion of the roasting carbon anode body 1.
  • the rectangular perforated protrusion 4 has a plurality of uniform anode crimping connection holes 16; the lower part of the aluminum guiding rod 11 is connected and crimped through the connecting member 10.
  • the plate 9 constitutes an aluminum guide rod assembly, and the crimping plate 9 has a plurality of crimping plate connecting holes 15 corresponding to the anode crimping connecting holes 16; the crimping plate connecting holes 15 and the anode crimping connecting holes 16
  • the new anode for aluminum electrolysis is formed by crimping the crimping screw 14; wherein the connecting member 10 is composed of a hole with a side wall, a cavity with an upper opening, and a pressing screw 14 passing through a hole in the side wall of the cavity.
  • the cavity is crimped to the lower portion of the aluminum guide rod 11 by means of a compression screw 14, the lower portion of which is welded to the crimping plate 9.
  • the production method of the novel anode for aluminum electrolysis of the present invention is as follows:
  • the production method comprises pre-baked carbon anode fabrication, aluminum guide rod assembly fabrication and anode combination.
  • the pre-baked carbon anode preparation is to fix the upper portion of the pre-baked carbon anode body 1 by internal implantation with a plurality of anode crimping.
  • the anode plate 3 of the connecting hole 16 is formed by connecting the lower portion of the aluminum guiding rod 11 to the pressing plate 9 through the connecting member 10, and the pressing plate 9 has a plurality of crimping plate connecting holes 15 thereon.
  • a plurality of crimping plate connecting holes 15 correspond to the positional relationship of the anode crimping connecting holes 16; the combination of the anodes is that the crimping plate connecting holes 15 and the anode crimping connecting holes 16 are crimped by the crimping screws 14; wherein the specific aluminum
  • the guide rod assembly is formed by casting aluminum liquid into the cavity of the connecting piece which is closed at the periphery and open at the upper part, and at the same time, the lower part of the aluminum guiding rod 11 is welded with the cast aluminum in the cavity, and the lower part of the cavity is welded and crimped. Board 9 is connected.
  • Another method for manufacturing the specific aluminum guide rod assembly is to first prepare a side wall with a hole, an upper open joint cavity and a lower perforated aluminum guide rod 11, and then place the lower portion of the aluminum guide rod 11 into the cavity. Then, the cavity sidewall hole is pressed together with the lower hole of the aluminum guide rod by the pressing screw 14, and the lower portion of the cavity is welded to the crimping plate 9 by welding.
  • the production method comprises a pre-baked carbon anode fabrication, an aluminum guide rod assembly and an anode.
  • the pre-baked carbon anode is formed by extending an upper portion of the pre-baked carbon anode body 1 with a plurality of anode crimping connection holes 16.
  • the aluminum guide rod assembly is formed by connecting a lower portion of the aluminum guide rod 11 through the connecting member 10 to the crimping plate 9, and the crimping plate 9 has a plurality of crimping plate connecting holes 15,
  • the crimping plate connecting hole 15 corresponds to the positional relationship of the anode crimping connecting hole 16;
  • the combination of the anode is that the crimping plate connecting hole 15 and the anode crimping connecting hole 16 are crimped by the crimping screw 14; wherein the specific aluminum guide
  • the rod assembly is formed by casting aluminum liquid into the cavity of the connecting piece which is closed and open at the periphery, and simultaneously welds the lower part of the aluminum guiding rod 11 with the cast aluminum in the cavity, and the lower part of the cavity is welded and pressed.
  • Another method for manufacturing the specific aluminum guide rod assembly is to first prepare a side wall with a hole, an upper open joint cavity and a lower perforated aluminum guide rod 11, and then place the lower portion of the aluminum guide rod 11 into the cavity. Then, the cavity sidewall hole is pressed together with the lower hole of the aluminum guide rod by the pressing screw 14, and the lower portion of the cavity is welded to the crimping plate 9 by welding.
  • the continuous use of the anode of the present invention is to remove the guide rod group when the anode is consumed to a certain extent, to bond the new anode to the anode being used, and then to install the guide rod group. can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明公开一种铝电解用阳极及其生产方法,该铝电解用阳极包括预焙炭阳极本体(1)和铝导杆(11),所述预焙炭阳极本体(1)上部固定一块阳极板,该阳极板上有若干个阳极板连接孔(16);所述铝导杆(11)下部通过连接件(10)连接压接板(9)构成铝导杆组件,所述压接板(9)上有若干与阳极板连接孔(16)相对应的压接板连接孔(15);所述压接板连接孔(15)与阳极板连接孔(16)通过压接件压接。本发明技术方案的制作方式没有采用高温浇铸方式,而是采用压接方式,在常温下即可完成,也就是说本发明的铝电解用阳极的生产能耗小、生产成本低,生产效率得到有效提高。

Description

铝电解用阳极及其生产方法
技术领域
  本发明涉及一种新型铝电解用阳极和制作该新型铝电解用阳极的生产方法。
背景技术
  目前的铝电解用阳极,是由阳极铝导杆、钢-铝爆炸焊块、阳极钢爪、预焙炭阳极构成。构成结构是阳极铝导杆与钢-铝爆炸焊铝板焊接,钢-铝爆炸焊块钢板与阳极钢爪焊接,阳极钢爪与预焙炭阳极通过浇涛磷生铁连接。铝导杆通过钢-铝爆炸焊块与阳极钢爪连接,具体方法是:铝导杆下端部的四条边倒平角制作四个焊接斜面,阳极钢爪上部平台两侧倒平角制作两个焊接斜面,铝导杆焊接斜面与钢-铝爆炸块的铝板焊接,阳极钢爪上部焊接斜面与钢-铝爆炸块的钢板焊接。该连接方法存在几个问题:铝导杆与钢-铝爆炸焊块焊接处及阳极钢爪与钢-铝爆炸焊块焊接处的中心部分未焊接,影响导电效果;铝导杆与钢-铝爆炸焊块焊接处的中心部分未焊接,此部位易断裂,增加修理费用,断裂前该部位电阻增大,影响导电效果;钢-铝爆炸焊块的铝板和钢板生产中存在开裂现象,开裂后钢爪报废,增加原材料消耗,且开裂前该部位电阻增大,影响导电效果;阳极钢爪易氧化,钢爪直径逐渐变小,电阻逐渐增大,影响导电效果,修理费用增加,氧化严重至钢爪报废,增加原材料消耗;为保护阳极钢爪不氧化,一般使用阳极钢爪保护环,但增加保护环使用费用,且有限的阳极钢爪保护环高度上方的阳极钢爪部分仍然会氧化。因此,铝导杆至阳极钢爪各部位的焊接质量和阳极钢爪、钢-铝爆炸焊块的产品质量将直接影响铝电解生产过程的电耗指标、原材料消耗费用、修理费用。
  现有技术的阳极钢爪与预焙炭阳极通过浇涛磷生铁连接,具体方法是:将阳极钢爪放入深约100mm的预焙炭阳极炭碗内。预焙炭阳极炭碗的半径比阳极钢爪的半径大15-20mm,用磷生铁水浇涛在阳极钢爪和预焙炭阳极炭碗之间的缝隙里,将阳极钢爪和预焙炭阳极连接在一起。阳极钢爪和预焙炭阳极之间的缝隙为15-20mm的环形,由于阳极钢爪和预焙炭阳极之间的缝隙较小,因此,在浇涛过程中会出现两种情况:一是磷生铁水靠近阳极钢爪,高温磷生铁水冲刷阳极钢爪,阳极钢爪局部熔化和磷生铁粘接在一起,磷生铁压脱时局部不能压脱需要修理阳极钢爪,粘接严重时阳极钢爪报废;二是磷生铁水靠近炭碗边缘时磷生铁水向炭碗外流失,增加磷生铁损耗和运输量、熔炼量等。这两种情况会直接影响阳极钢爪寿命、修理费用指标、磷生铁消耗指标、运输量、电耗等。
  预焙炭阳极与阳极钢爪的缝隙里浇涛的环状磷生铁水,在由高温液体转变为固体并冷却到常温的过程中,会产生一条或数条上下贯通的断裂纹,由于断裂纹是在固体状态下产生的,因此,原来结合的较好的磷生铁表面与阳极钢爪表面和预焙炭阳极炭碗表面之间就会产生位移,位移的产生会使结合面的电阻增大,浪费电能。
  磷生铁浇涛工序、残极压脱工序、磷生铁压脱工序的工作需要消耗大量的人、财、物。
  现有技术的阳极使用到一定程度就更换,更换阳极需要消耗大量的人力,更换阳极的过程会使电解槽损失大量热能,造成电能浪费,更换下来的残极会增加阳极毛耗,增加生产成本。
发明内容
  本发明所要解决的技术问题是,为了克服现有技术存在的不足,提供一种结构合理、导电效果好、能有效避免浇涛时高温磷生铁水冲刷熔化阳极钢爪与磷生铁水向炭碗外流失、能有效避免结合面的位移、省略磷生铁浇涛工序、省略残极和磷生铁压脱工序、实现阳极连续使用的新型铝电解用阳极及其生产方法。
  为了解决上述技术问题,本发明提供一种新型铝电解用阳极,该铝电解用阳极包括预焙炭阳极本体和铝导杆,所述预焙炭阳极本体上部有一炭阳极连接部,该炭阳极连接部上有若干个阳极压接连接孔;
  所述铝导杆下部通过连接件连接压接板构成铝导杆组件,所述压接板上有若干个与阳极压接连接孔相对应的压接板连接孔;
  所述压接板连接孔与阳极压接连接孔通过压接件压接。
  进一步,所述连接件是由四周封闭、上部开口的空腔和空腔内的铸铝构成,该空腔通过铸铝与铝导杆下部焊接连接,该空腔下部与压接板焊接连接。
  进一步,所述连接件是由侧壁带孔、上部开口的空腔和穿过空腔侧壁孔的压紧螺丝构成,该空腔通过压紧螺丝将铝导杆下部与空腔压接,该空腔下部与压接板焊接连接。
  进一步,所述炭阳极连接部是在预焙炭阳极本体上部内植入固定一块阳极板。
  进一步,所述炭阳极连接部是在预焙炭阳极本体上部延伸一条长方形带孔凸起。
  为了解决现有技术所存在的技术问题,本发明还提供一种新型铝电解用阳极的生产方法,该生产方法包括预焙炭阳极制作、铝导杆组件制作和阳极的组合,所述预焙炭阳极制作是将预焙炭阳极本体上部采用内植入一块带有若干个阳极压接连接孔的阳极板或采用预焙炭阳极本体上部延伸方式成型一条带有若干个阳极压接连接孔的长方形凸起;
  所述铝导杆组件制作是将铝导杆下部通过连接件连接压接板,所述压接板上有若干个压接板连接孔,该若干个压接板连接孔与阳极压接连接孔位置关系相对应;
  阳极的组合是将压接板连接孔与阳极压接连接孔采用压接件压接。
  进一步,所述铝导杆组件的制作是将铝液浇铸在四周封闭、上部开口的连接件空腔内,同时将铝导杆下部与空腔内铸铝焊接在一起,该空腔下部用焊接方式与压接板连接。
  进一步,所述铝导杆组件的制作是先预备侧壁带孔、上部开口的连接件空腔和下部带孔的铝导杆,之后将铝导杆下部放入空腔内,再用压紧螺丝将空腔侧壁孔与铝导杆下部孔压接在一起,该空腔下部用焊接方式与压接板连接。
  实现阳极连续使用是在阳极消耗到一定程度时,卸去导杆组,将新阳极粘接到正在使用的阳极上,再将导杆组安装上去及可。
  本发明的有益效果在于:
  1、本发明技术方案的铝导杆与压接板充分连接,导电性能好,且本发明采用压接连接方式,避免浇涛时高温磷生铁水冲刷熔化阳极钢爪和磷生铁水向炭碗外流失、能有效避免结合面的位移、省略磷生铁浇涛工序、省略残极和磷生铁压脱工序,能显著的降低电耗、原材料损耗,从而降低生产成本。
  2、本发明技术方案的制作方式没有采用高温浇铸方式,而是采用压接方式,在常温下即可完成,也就是说本发明的铝电解用阳极的生产能耗小、生产成本低,生产效率得到有效提高。
  下面结合附图和具体实施方式对本发明的技术方案作进一步详细描述。
附图说明
  图1至图3为现有技术阳极导杆组件的三视结构示意图。
  图4至图6为本发明连接件的结构三视示意图。
  图7至图9为本发明连接件的结构三视示意图。
  图10至图12为本发明阳极导杆组件的结构三视示意图。
  图13至图15为本发明阳极导杆组件的结构三视示意图。
  图16至图18为现有技术预焙炭阳极的结构三视示意图。
  图19至图21为本发明内植入阳极板的预焙炭阳极结构三视示意图。
  图22至图24为本发明上部有长方形带孔凸起的预焙炭阳极结构三视示意图。
  图25至图27为现有技术阳极组合的结构三视示意图。
  图28至图30为本发明阳极组合的结构三视示意图。
  图31至图33为本发明阳极组合的结构三视示意图。
  图34至图37为本发明阳极组合连续工作的结构示意图。
  其中:1、预焙炭阳极本体,2、碳碗,3、内植阳极板,4、长方形带孔凸起,5、磷生铁,6、阳极钢爪,7、钢-铝爆炸焊块铝板,8、钢-铝爆炸焊块钢板,9、压接板,10、连接件,11、铝导杆,12、铝焊体,13、钢焊体,14、压接螺丝,15、压接板连接孔,16、阳极压接连接孔。
具体实施方式
  如图1至图3、图16至图18、图25至图27所示,现有技术铝电解用阳极,该铝电解用阳极是由预焙炭阳极、阳极钢爪6、钢-铝爆炸焊块、铝导杆11构成,其中预焙炭阳极是由预焙炭阳极本体1和位于预焙炭阳极本体1内炭碗2构成,铝导杆11下部焊接斜面通过铝焊体12与钢-铝爆炸焊块铝板7焊接,钢-铝爆炸焊块钢板8通过钢焊体13与阳极钢爪6焊接斜面焊接,阳极钢爪6置入炭碗2内用磷生铁5浇铸,从而构成现有技术铝电解用阳极。
  实施例1:
  如图4至图6、图10至图12、图19至图21、图28至图30所示,本发明新型铝电解用阳极包括预焙炭阳极本体1和铝导杆11,所述预焙炭阳极本体1上部内植固定一块阳极板3,该阳极板3上有若干个均布的阳极压接连接孔16;所述铝导杆11下部通过连接件10连接压接板9构成铝导杆组件,所述压接板9上有若干个与阳极压接连接孔16相对应的压接板连接孔15;所述压接板连接孔15与阳极压接连接孔16通过压接螺丝14压接而构成所述新型铝电解用阳极;其中连接件10是由四周封闭、上部开口的空腔和空腔内的铸铝构成,该空腔通过铸铝与铝导杆11下部焊接连接,该空腔下部与压接板9焊接连接。
  实施例2:
  如图7至图9、图13至图15、图22至图24、图31至图33所示,本发明新型铝电解用阳极包括预焙炭阳极本体1和铝导杆11,所述预焙炭阳极本体1上部延伸一条长方形带孔凸起4,该长方形带孔凸起4上有若干个均布的阳极压接连接孔16;所述铝导杆11下部通过连接件10连接压接板9构成铝导杆组件,所述压接板9上有若干个与阳极压接连接孔16相对应的压接板连接孔15;所述压接板连接孔15与阳极压接连接孔16通过压接螺丝14压接而构成所述新型铝电解用阳极;其中所述连接件10是由侧壁带孔、上部开口的空腔和穿过空腔侧壁孔的压紧螺丝14构成,该空腔通过压紧螺丝14将铝导杆11下部与空腔压接,该空腔下部与压接板9焊接连接。
  本发明新型铝电解用阳极的生产方法如下所述:
  实施例1:
  该生产方法包括预焙炭阳极制作、铝导杆组件制作和阳极的组合,所述预焙炭阳极制作是将预焙炭阳极本体1上部采用内植入方式固定一块带有若干个阳极压接连接孔16的阳极板3;所述铝导杆组件制作是将铝导杆11下部通过连接件10连接压接板9,所述压接板9上有若干个压接板连接孔15,该若干个压接板连接孔15与阳极压接连接孔16位置关系相对应;阳极的组合是将压接板连接孔15与阳极压接连接孔16采用压接螺丝14压接;其中具体的铝导杆组件的制作是将铝液浇铸在四周封闭、上部开口的连接件空腔内,同时将铝导杆11下部与空腔内铸铝焊接在一起,该空腔下部用焊接方式与压接板9连接。所述具体铝导杆组件的另一种制作方法是:先预备侧壁带孔、上部开口的连接件空腔和下部带孔的铝导杆11,之后将铝导杆11下部放入空腔内,再用压紧螺丝14将空腔侧壁孔与铝导杆下部孔压接在一起,该空腔下部用焊接方式与压接板9连接。
  实施例2:
  该生产方法包括预焙炭阳极制作、铝导杆组件制作和阳极的组合,所述预焙炭阳极制作是将预焙炭阳极本体1上部延伸成型一条带有若干个阳极压接连接孔16的长方形带孔凸起4;所述铝导杆组件制作是将铝导杆11下部通过连接件10连接压接板9,所述压接板9上有若干个压接板连接孔15,该若干个压接板连接孔15与阳极压接连接孔16位置关系相对应;阳极的组合是将压接板连接孔15与阳极压接连接孔16采用压接螺丝14压接;其中具体的铝导杆组件的制作是将铝液浇铸在四周封闭、上部开口的连接件空腔内,同时将铝导杆11下部与空腔内铸铝焊接在一起,该空腔下部用焊接方式与压接板9连接。所述具体铝导杆组件的另一种制作方法是:先预备侧壁带孔、上部开口的连接件空腔和下部带孔的铝导杆11,之后将铝导杆11下部放入空腔内,再用压紧螺丝14将空腔侧壁孔与铝导杆下部孔压接在一起,该空腔下部用焊接方式与压接板9连接。
  如图34至图37所示,本发明实现阳极连续使用是在阳极消耗到一定程度时,卸去导杆组,将新阳极粘接到正在使用的阳极上,再将导杆组安装上去及可。
  本发明的保护范围不限于上述实施例,凡是依据本发明技术原理所作的显而易见的技术变形,均落入本发明的保护范围之内。

Claims (1)

  1. 1、一种铝电解用阳极,该铝电解用阳极包括预焙炭阳极本体(1)和铝导杆(11),其特征在于,所述预焙炭阳极本体(1)上部有一炭阳极连接部,该炭阳极连接部上有若干个阳极压接连接孔(16);
      所述铝导杆(11)下部通过连接件(10)连接压接板(9)构成铝导杆组件,所述压接板(9)上有若干个与阳极压接连接孔(16)相对应的压接板连接孔(15);
      所述压接板连接孔(15)与阳极压接连接孔(16)通过压接件压接。
      2、根据权利要求1所述的铝电解用阳极,其特征在于,所述连接件(10)是由四周封闭、上部开口的空腔和空腔内的铸铝构成,该空腔通过铸铝与铝导杆(11)下部焊接连接,该空腔下部与压接板(9)焊接连接。
      3、根据权利要求1所述的铝电解用阳极,其特征在于,所述连接件(10)是由侧壁带孔、上部开口的空腔和穿过空腔侧壁孔的压紧螺丝(14)构成,该空腔通过压紧螺丝(14)将铝导杆(11)下部与空腔压接,该空腔下部与压接板(9)焊接连接。
      4、根据权利要求1所述的铝电解用阳极,其特征在于,所述炭阳极连接部是在预焙炭阳极本体(1)上部内植入固定一块阳极板(3)。
      5、根据权利要求1所述的铝电解用阳极,其特征在于,所述炭阳极连接部是在预焙炭阳极本体(1)上部延伸一条长方形带孔凸起(4)。
      6、一种制作权利要求1所述铝电解用阳极的生产方法,该生产方法包括预焙炭阳极制作、铝导杆组件制作和阳极的组合,其特征在于,所述预焙炭阳极制作是将预焙炭阳极本体(1)上部采用内植入一块带有若干个阳极压接连接孔(16)的阳极板(3)或采用预焙炭阳极本体(1)上部延伸方式成型一条带有若干个阳极压接连接孔(16)的长方形凸起(4);
      所述铝导杆组件制作是将铝导杆(11)下部通过连接件(10)连接压接板(9),所述压接板(9)上有若干个压接板连接孔(15),该若干个压接板连接孔(15)与阳极压接连接孔(16)位置关系相对应;
      阳极的组合是将压接板连接孔(15)与阳极压接连接孔(16)采用压接件压接。
      7、根据权利要求6所述铝电解用阳极的生产方法,其特征在于,所述铝导杆组件的制作是将铝液浇铸在四周封闭、上部开口的连接件空腔内,同时将铝导杆(11)下部与空腔内铸铝焊接在一起,该空腔下部用焊接方式与压接板(9)连接。
      8、根据权利要求6所述铝电解用阳极的生产方法,其特征在于,所述铝导杆组件的制作是先预备侧壁带孔、上部开口的连接件空腔和下部带孔的铝导杆(11),之后将铝导杆(11)下部放入空腔内,再用压紧螺丝(14)将空腔侧壁孔与铝导杆下部孔压接在一起,该空腔下部用焊接方式与压接板(9)连接。
PCT/CN2012/070967 2011-03-07 2012-02-08 铝电解用阳极及其生产方法 WO2012119501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110052592.8 2011-03-07
CN 201110052592 CN102140652B (zh) 2011-03-07 2011-03-07 一种新型铝电解用阳极及其生产方法

Publications (1)

Publication Number Publication Date
WO2012119501A1 true WO2012119501A1 (zh) 2012-09-13

Family

ID=44408440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070967 WO2012119501A1 (zh) 2011-03-07 2012-02-08 铝电解用阳极及其生产方法

Country Status (2)

Country Link
CN (1) CN102140652B (zh)
WO (1) WO2012119501A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180023206A1 (en) * 2015-02-13 2018-01-25 Norsk Hydro Asa An anode for use in an electrolysis process for production of aluminium in cells of hall-héroult type, and a method for making same
CN114481226A (zh) * 2022-04-01 2022-05-13 山西双宇新能源有限公司 一种新式阳极导杆
CN115058742A (zh) * 2022-07-06 2022-09-16 兰州理工大学 一种铝电解槽用铝炭直连阳极工作组
CN115747885A (zh) * 2022-09-30 2023-03-07 广元中孚高精铝材有限公司 一种电解槽批量停槽后二次启动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888757A (en) * 1973-06-07 1975-06-10 Nl Kraanbouw Mij B V Anode rod clamping assembly
JPS60187692A (ja) * 1984-03-06 1985-09-25 Riyouka Keikinzoku Kogyo Kk プリベ−ク式アルミニウム電解槽用陽極棒
EP1448810B1 (en) * 2001-07-13 2008-01-02 MOLTECH Invent S.A. Alloy-based anode structures for aluminium production
CN201416038Y (zh) * 2009-04-08 2010-03-03 高德金 一种新型的铝电解槽阳极导电装置
CN201485511U (zh) * 2009-06-01 2010-05-26 高伟 阳极导电夹持卡具
CN101899682A (zh) * 2009-05-25 2010-12-01 高德金 夹持式阳极导电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323192C (zh) * 2004-12-03 2007-06-27 河南省鑫科工程设计研究有限公司 预焙阳极粘接法电解铝生产工艺
CN100404728C (zh) * 2005-06-05 2008-07-23 张进一 钢铝圆锥面压紧连接法阳极生产工艺
CN101660177A (zh) * 2009-04-08 2010-03-03 高德金 一种新型的铝电解槽阳极导电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888757A (en) * 1973-06-07 1975-06-10 Nl Kraanbouw Mij B V Anode rod clamping assembly
JPS60187692A (ja) * 1984-03-06 1985-09-25 Riyouka Keikinzoku Kogyo Kk プリベ−ク式アルミニウム電解槽用陽極棒
EP1448810B1 (en) * 2001-07-13 2008-01-02 MOLTECH Invent S.A. Alloy-based anode structures for aluminium production
CN201416038Y (zh) * 2009-04-08 2010-03-03 高德金 一种新型的铝电解槽阳极导电装置
CN101899682A (zh) * 2009-05-25 2010-12-01 高德金 夹持式阳极导电装置
CN201485511U (zh) * 2009-06-01 2010-05-26 高伟 阳极导电夹持卡具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XING, LI ET AL.: "Development and Application of Pre-baked Anode Electrolytic Cell Clamping Conductive Fixture", JIANGXI NONFERROUS METALS, vol. 24, no. 3-4, 31 October 2010 (2010-10-31), pages 164 - 169 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180023206A1 (en) * 2015-02-13 2018-01-25 Norsk Hydro Asa An anode for use in an electrolysis process for production of aluminium in cells of hall-héroult type, and a method for making same
EP3256622A4 (en) * 2015-02-13 2018-10-31 Norsk Hydro ASA An anode for use in an electrolysis process for production of aluminium in cells of hall-heroult type, and a method for making same
AU2016218531B2 (en) * 2015-02-13 2020-06-11 Norsk Hydro Asa An anode for use in an electrolysis process for production of aluminium in cells of hall-heroult type, and a method for making same
CN114481226A (zh) * 2022-04-01 2022-05-13 山西双宇新能源有限公司 一种新式阳极导杆
CN115058742A (zh) * 2022-07-06 2022-09-16 兰州理工大学 一种铝电解槽用铝炭直连阳极工作组
CN115747885A (zh) * 2022-09-30 2023-03-07 广元中孚高精铝材有限公司 一种电解槽批量停槽后二次启动方法
CN115747885B (zh) * 2022-09-30 2023-09-01 广元中孚高精铝材有限公司 一种电解槽批量停槽后二次启动方法

Also Published As

Publication number Publication date
CN102140652A (zh) 2011-08-03
CN102140652B (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2012119501A1 (zh) 铝电解用阳极及其生产方法
CN100571958C (zh) 铝电解槽阴极钢棒的带电焊接方法
CN105543896B (zh) 一种预焙铝电解槽阳极组结构
CN101474719A (zh) 一种铝母材的原位自蔓延焊接修复方法
CN105803487A (zh) 一种无阳极残极产生的预焙铝电解生产方法
WO2016086811A1 (zh) 一种直接电解金属碎料的方法
CN109860497A (zh) 一种多层极耳电池的焊接方法
CN106011939B (zh) 一种预焙阳极铝电解连续生产方法及结构
CN108381017A (zh) 一种形变量可控的石墨电极中频电阻扩散焊方法
CN105543895B (zh) 一种预焙铝电解槽用的机械式阳极钢爪结构
CN205556801U (zh) 一种预焙铝电解槽阳极组结构
CN201423498Y (zh) 一种铝母材的原位自蔓延焊接修复方法中用的焊接模具
CN106011938A (zh) 一种连续预焙用阳极炭块
CN216529234U (zh) 一种电池结构
KR101133151B1 (ko) 증착 공정용 전극 제조 방법
JP2002270150A (ja) 鉛蓄電池
CN113755907A (zh) 一种熔盐稀土电解槽用烘炉装置
JP2004228013A (ja) 制御弁式鉛蓄電池用の蓋
CN219385212U (zh) 一种用于直流钢包炉的复合型阳极装置
CN205556800U (zh) 一种预焙铝电解槽用的机械式阳极钢爪结构
CN206345925U (zh) 一种连续预焙阳极用的开合式承重导电梁
CN202684295U (zh) 一种用于在钣金件上焊接螺柱的工装
CN218296761U (zh) 单电极直流电弧炉、直流矿热炉底电极
CN201678746U (zh) 铝电解槽焙烧启动连接器
CN110343871B (zh) 用自焙石墨电极替换铜冶炼沉降炉预焙石墨电极的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754809

Country of ref document: EP

Kind code of ref document: A1