WO2012117906A1 - 映像表示スクリーン、映像表示システム、および撮影装置検出方法 - Google Patents

映像表示スクリーン、映像表示システム、および撮影装置検出方法 Download PDF

Info

Publication number
WO2012117906A1
WO2012117906A1 PCT/JP2012/054199 JP2012054199W WO2012117906A1 WO 2012117906 A1 WO2012117906 A1 WO 2012117906A1 JP 2012054199 W JP2012054199 W JP 2012054199W WO 2012117906 A1 WO2012117906 A1 WO 2012117906A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
infrared
image data
light
Prior art date
Application number
PCT/JP2012/054199
Other languages
English (en)
French (fr)
Inventor
合志 清一
越前 功
Original Assignee
シャープ株式会社
大学共同利用機関法人情報・システム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 大学共同利用機関法人情報・システム研究機構 filed Critical シャープ株式会社
Publication of WO2012117906A1 publication Critical patent/WO2012117906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/93Regeneration of the television signal or of selected parts thereof
    • H04N5/931Regeneration of the television signal or of selected parts thereof for restoring the level of the reproduced signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor

Definitions

  • the present invention relates to a technique for preventing an act of voyeurizing image content such as a movie displayed on a screen or an image display panel with an image recording device such as a video camera.
  • photographing devices such as digital image display devices and digital cameras have been widely used and high image quality has been promoted, and it has become possible to view high-quality content at low cost.
  • photographing content such as images and moving images displayed on a screen or a display with a photographing device such as a digital video camera and illegally distributing the photographed content.
  • the distribution of pirated DVDs illegally photographed in this way is against copyright protection, and the economic loss is very large, so countermeasures are urgently required.
  • the facility ID (information of the facility being screened) and the device ID (information of the device being screened) are added to the image content (original image content) before display by using a digital watermark (watermark).
  • FIG. 9A shows an example of an image obtained when an image is displayed with a camera when infrared rays are irradiated from the screen to the spectator seat.
  • the image captured by the camera includes infrared interference image A as white.
  • the method is effective as a means for preventing voyeurism in a movie theater or the like. it is conceivable that.
  • 9B shows an example of an image obtained when an image including infrared rays as a disturbing image is taken with a camera to which an infrared ray removal filter is attached. As shown in this figure, the interference image by infrared rays is removed by the action of the infrared ray removing filter, and the photographed image keeps the value as the content.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique for easily detecting a person who intends to take a voyeur by removing the invisible light from an image including the invisible light. .
  • an image display screen includes an image display unit that displays an image, and invisible light emission that irradiates an observer with light other than visible light along with the image.
  • a non-visible light receiving unit that receives light other than the visible light reflected from the imaging device possessed by the observer, and generates frame image data;
  • the image processing unit includes a background deletion unit and a flicker removal unit.
  • the background deletion unit refers to reference image data representing a background image, and removes the background image component from the frame image data.
  • the flicker removing unit removes flicker by averaging the frame image data processed by the background deleting unit over a plurality of frames.
  • the light other than visible light is light that is not included in the visible light wavelength band from 380 nm to 780 nm, and specifically, infrared light or ultraviolet light.
  • Such light other than visible light is not recognized by human eyes, but is detected in the same manner as visible light in a photographing apparatus (specifically, for example, a video camera) including a CCD, a CMOS image sensor, or the like. .
  • the background image is removed from the frame image data in the background deletion unit, so that the image of the reflector is a frame image over a plurality of frames by the averaging process. It is possible to effectively prevent reflection in data.
  • the video display screen it is possible to deteriorate the display quality of the video voyeurized by the imaging device possessed by the observer without degrading the video display quality. Furthermore, when an observer tries to sneak a shot while removing the invisible light emitted from the video display screen, the invisible light reflected from the imaging device of the observer can be easily detected. Therefore, the effect of suppressing voyeurism is obtained.
  • FIG. 1 is a block diagram showing a functional configuration of a voyeurism prevention video display system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a video display system for preventing voyeurism according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method for adding a disturbing image to a voyeur camera and a method for detecting the voyeur camera in the system shown in FIG.
  • FIG. 4 is a block diagram showing a functional configuration of an image processing unit provided in the infrared detection unit in the video display system for preventing voyeurism according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a functional configuration of a voyeurism prevention video display system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a video display system for preventing voyeurism according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing the flow of image processing performed in the image processing unit shown in FIG.
  • FIG. 6 is a schematic diagram illustrating a processing target frame of the image processing unit in a modification of the first embodiment.
  • FIG. 7A is a schematic diagram illustrating an example of the arrangement of pixel regions that are referred to by the background deletion unit to determine the coefficient ⁇ in the second embodiment of the present invention.
  • FIG. 7B is a schematic diagram illustrating an example of an arrangement of pixel regions that is referred to by the background deletion unit to determine the coefficient ⁇ in the second embodiment of the present invention.
  • FIG. 7C is a schematic diagram illustrating an example of an arrangement of pixel regions that is referred to by the background deletion unit to determine the coefficient ⁇ in the second embodiment of the present invention.
  • FIG. 7A is a schematic diagram illustrating an example of the arrangement of pixel regions that are referred to by the background deletion unit to determine the coefficient ⁇ in the second embodiment of the present invention.
  • FIG. 7B is a schematic
  • FIG. 7D is a schematic diagram illustrating an example of an arrangement of pixel regions that is referred to by the background deletion unit to determine the coefficient ⁇ in the second embodiment of the present invention.
  • FIG. 7E is a schematic diagram illustrating an example of the arrangement of pixel regions that the background deletion unit refers to in determining the coefficient ⁇ in the second embodiment of the present invention.
  • FIG. 8 is a rear view showing a schematic configuration of a screen in the video display system according to the third embodiment.
  • FIG. 9A is a schematic diagram illustrating an example of an image obtained when an image is displayed with a camera when infrared rays are emitted from a screen to a spectator seat together with the image display.
  • FIG. 9A is a schematic diagram illustrating an example of an image obtained when an image is displayed with a camera when infrared rays are emitted from a screen to a spectator seat together with the image display.
  • FIG. 9B is a schematic diagram illustrating an example of an image obtained when an image in which infrared rays are included as a disturbing image is captured by a camera to which an infrared ray removal filter is attached.
  • FIG. 10 is a block diagram illustrating a functional configuration of an image processing unit as a comparative example of the configuration illustrated in FIG.
  • An image display screen includes an image display unit that displays an image, an invisible light emitting unit that irradiates an observer with light other than visible light together with the image, and imaging that the observer has An invisible light receiving unit that receives light other than the visible light reflected from the device and generates frame image data, and an image processing unit that detects the presence of the imaging device by processing the image data
  • the image processing unit refers to reference image data representing a background image, a background deletion unit that removes a component of the background image from the frame image data, and frame image data processed by the background deletion unit, This is a configuration including a flicker removing unit that removes flicker by performing averaging processing over a plurality of frames (first configuration).
  • the voyeur When a voyeur is attempted in a theater equipped with a video display screen that allows the viewer to be irradiated with non-visible light to disturb the video along with the video, the voyeur shall be invisible to block the video.
  • a non-visible light removal filter infrared removal filter
  • the invisible light removal filter reflects a lot of invisible light.
  • the invisible light detection unit detects the reflected light from the photographing device for voyeurism with a relatively strong intensity. Therefore, the presence of the imaging device can be easily confirmed by providing the invisible light detection unit.
  • the light source of the reflected light of invisible light may be an auxiliary light source other than the voyeurism prevention signal.
  • the display quality of the video voyeurized by the imaging device possessed by the observer is deteriorated without degrading the display quality of the video displayed on the video display unit. be able to.
  • the invisible light reflected from the observer's imaging device is easily detected by the invisible light detector. can do. Therefore, the effect of preventing voyeurism can be further improved.
  • the image processing unit refers to reference image data representing a background image, and a background deletion unit that removes the component of the background image from the frame image data; And a flicker removing unit that removes flicker by averaging the frame image data processed by the background deletion unit over a plurality of frames.
  • the background image is removed from the frame image data in the background deletion unit, so that the image of the reflection object extends over the plurality of frames by the averaging process. It is possible to effectively prevent reflection in the frame image data.
  • the light other than the visible light may be infrared light
  • the invisible light detection unit may be an infrared detection unit that detects infrared light. If the light other than visible light is infrared, it is not visible to humans without adversely affecting the human body, and a photographing device such as a video camera can be perceived as an image that interferes with the image.
  • an infrared detection unit for example, an infrared camera, a photodiode, or the like can be used to easily detect reflected light from a photographing apparatus such as a video camera.
  • the infrared detection unit may be an infrared camera.
  • the infrared detection unit is an infrared camera, an image corresponding to the detected infrared intensity can be obtained.
  • the term “infrared camera” as used herein means a camera capable of detecting at least light in the infrared region. That is, the infrared camera includes a camera that can detect only light in the infrared region and can form image data by detecting light in the infrared region + visible region.
  • the infrared detection unit may detect reflected light from a member that blocks infrared rays.
  • the member that blocks infrared rays is a member that has a function of preventing transmission of infrared rays.
  • This infrared blocking member is provided in front of the photographing apparatus (camera for voyeurism) possessed by the observer, so that the infrared image is removed from the image on the image display screen for displaying the image including the infrared image so that only the image is displayed. You can shoot.
  • Such a member that blocks infrared rays include an infrared reflection filter and an infrared absorption filter. If such a filter is provided on the front of the camera for voyeurism, it reflects a large amount of infrared rays, so the infrared detection unit determines that there is reflected light when it receives infrared light with an intensity greater than or equal to a threshold value. Thus, it is possible to selectively detect the reflected light from the member that blocks the infrared rays.
  • the background deletion unit determines that the sum of absolute values of (Xt ⁇ Y) is minimum. It is preferable that the coefficient ⁇ is determined so that (Xt ⁇ Y) is calculated using the determined coefficient ⁇ (second configuration).
  • the background deletion unit uses the coefficient ⁇ that satisfies the following equations (Equation 1), (Equation 2), and (Equation 3) to obtain (Xt ⁇ It is further preferable to calculate ( ⁇ Y) (third configuration).
  • the background deletion unit determines the coefficient ⁇ using only pixels in a partial region of the frame image data (fourth configuration).
  • the image processing unit processes only frame image data of some frames among a plurality of temporally continuous frames (fifth configuration). ).
  • the image processing unit detects a moving component in the image of the non-visible light reflection object from the frame image data output from the flicker removing unit. It is preferable to further include a portion (sixth configuration).
  • the invisible light emitting unit repeats turning on and off during a period in which a video is displayed on the video display unit (seventh configuration).
  • the display quality of a picked-up image can be reduced significantly.
  • the image processing unit further includes a binarization processing unit that performs binarization processing according to a threshold value for each pixel of the frame image data.
  • a binarization processing unit that performs binarization processing according to a threshold value for each pixel of the frame image data.
  • the image processing unit measures an area of a region in which pixels binarized to a value equal to or greater than the threshold by the binarization processing unit, and the area measurement unit, And determining whether or not the area where the pixels are gathered is greater than or equal to a predetermined area by an area measurement unit, and determining that the imaging apparatus is present when the area is greater than or equal to a predetermined area.
  • Preferred (9th structure) According to this configuration, it is possible to easily remove the reflected light from the equipment in the theater unrelated to the voyeur photographing apparatus. Thereby, the false detection of an infrared detection part can be reduced.
  • a video display system generates a display image based on a video display screen according to any one of the first to ninth configurations and a digital video signal, and displays the display image as the video display And an image forming unit that projects onto a screen.
  • An imaging apparatus detection method is a method for detecting an imaging apparatus for imaging an image displayed on an image display screen, and includes a visible light together with the image displayed on the image display screen.
  • an image processing step of detecting the presence of the photographing apparatus refers to reference image data representing a background image, removes the background image component from the frame image data, and averages the frame image data after the background deletion processing over a plurality of frames.
  • the present inventors have found that the above-described voyeurism prevention signal can be captured as a perceptible signal in image content voyeurized by a video camera or the like.
  • the image based on the voyeurism prevention signal appears as noise that interferes with the original video, so that the quality of the voyeurized image content can be degraded.
  • a band-pass filter such as an infrared blocking filter
  • a specific wavelength for example, visible light
  • other light for example, infrared or ultraviolet light
  • Such a band pass filter is commercially available and easily available.
  • the inventors of the present application have studied to solve this problem.
  • the above-described filter that selectively transmits only visible light and blocks light other than visible light has a reflectance of metal or the like. It was confirmed that there was an action of reflecting more light than visible light than high materials.
  • a filter that blocks visible light was installed by providing a camera that detects light other than visible light in a theater capable of displaying an image including a voyeurism prevention signal. The present inventors have found that a video camera can be easily detected and have completed the present invention.
  • a video display system for showing a video such as a movie in a movie theater or a theater based on digital image content will be described.
  • digital image content such as a movie being screened in a theater
  • the display quality of the shot digital image content is degraded to an extent that it cannot be viewed. By doing so, it is possible to prevent illegal distribution of image content after voyeurism.
  • the video display system of the present embodiment is equipped with an infrared camera for detecting infrared rays reflected from a digital video camera equipped with an infrared filter, etc., while avoiding deterioration of image quality due to infrared rays. It is also possible to detect the presence of a camera trying to voyeur.
  • the video display system is a video display system for preventing voyeurism (voyeurism detection system) having functions for preventing voyeurism and detecting a voyeur.
  • FIG. 2 shows a schematic configuration of the video display system 1 according to the present embodiment.
  • the video display system 1 (video display device) includes a video player 201, a projector 202 (image forming unit), a screen 203 (video display unit), an infrared light emitting unit 204 (invisible light emitting unit, light emission control unit), and infrared rays.
  • the camera (invisible light detection unit, infrared detection unit) 205 is configured.
  • the screen 203, the infrared light emitting unit 204, and the infrared camera 205 constitute an image display screen.
  • the video player 201 temporarily stores the image content captured from the outside, performs a decoding process to enable image formation, and transmits the processed digital video signal to the projector 202.
  • the configuration of the video player 201 the configuration of a conventionally known digital video playback device can be applied.
  • the image content reproduced by the video player 201 is generally an image content (moving image content) composed of a plurality of image frames.
  • the invention is not necessarily limited to this. That is, the image content may be a still image content.
  • the projector 202 forms a display image on the built-in display element based on the digital video signal transmitted from the video player 201, and further forms the formed image on the screen 203 using the built-in projection optical system. Project.
  • the configuration of the projector 202 the configuration of a conventionally known front projection type image display device can be applied.
  • the screen 203 displays an image projected from the projector 202.
  • the infrared light emitting unit 204 is disposed on the back side of the screen 203, and emits infrared light to the front side during a period in which an image is displayed on the screen 203.
  • the back side of the screen 203 is the side opposite to the surface on which the image is displayed (the surface facing the observer or the spectator seat), and the front side of the screen 203 displays the image. It is the side to be done (the side where the observer is).
  • the infrared camera 205 mainly detects light in the infrared region having a wavelength of 780 nm or more to form an image.
  • the infrared camera 205 is provided to detect infrared rays reflected by an infrared filter or the like attached to a voyeur video camera among infrared rays emitted from the infrared light emitting unit 204.
  • the infrared camera 205 is not limited to one that can detect only light in the infrared region, and forms image data by detecting light in the infrared region + visible region as in the night shot function of a video camera. It may be possible. In other words, the infrared camera 205 here refers to a camera capable of detecting at least light in the infrared region.
  • the screen 203 has the same configuration as a conventional general screen for displaying images in a movie theater.
  • white paint is applied to the surface of a curtain having a large number of small holes for sound (holes having a diameter of about 1 mm) to form an image display surface 203a.
  • the infrared light emitting unit 204 is disposed on the back side of the screen 203 as described above. Further, in the present embodiment, the infrared light emitting unit 204 is disposed at a position corresponding to the substantially central portion of the image display area 203 a of the screen 203. As shown in FIG. 2, the infrared light emitting unit 204 has nine infrared light emitting regions 214 in total of 3 vertical ⁇ 3 horizontal. Each infrared light emitting region 214 is provided with an infrared LED.
  • infrared LEDs examples are those that emit light in the wavelength band near 780 nm (this is referred to as 780 nm LED), those that emit light in the wavelength band near 850 nm (this is referred to as 850 nm LED), etc. Is mentioned.
  • the infrared rays irradiated from the infrared light emitting unit 204 are parallel lights. Thereby, the intensity
  • the infrared light emitted from the infrared light emitting unit 204 passes through a hole provided in the screen 203 and is irradiated toward an observer (audience seat).
  • the light emitted from the infrared LED may include light in the visible light region close to the infrared region. Therefore, a visible light cut filter may be disposed on the light irradiation surface of the infrared light emitting unit 204.
  • the visible light cut filter used here may be a conventionally known filter.
  • a 780 nm LED emits light in a wavelength band closer to the visible light region, it is desirable to use it with a visible light cut filter. Thereby, it is possible to realize an infrared light emitting unit that is detected by a content recording device such as a video camera but is not visually recognized by a person in the audience seat.
  • FIG. 1 is a functional block diagram showing the configuration of each device in the video display system 1.
  • a content display unit 110 for displaying video on the screen 203 a voyeurism prevention signal output unit 120 for degrading the display quality of a voyeurized image,
  • An infrared detection unit 140 for detecting a camera for voyeurism is included.
  • the content display unit 110 includes a content storage unit 111, a decoder 112, and a content output unit 113.
  • the content storage unit 111 is for temporarily storing image content such as movies taken from outside.
  • the content storage unit 111 is realized by a hard disk drive or a large-capacity memory.
  • the content storage unit is not limited to the above, and may function as a buffer during playback and display of image content, such as a cache or a high-speed memory.
  • the decoder 112 decodes the image content stored in the content storage unit 111 into a format that conforms to the display standard of the projector 202.
  • the content output unit 113 forms a display image from the decoded image content (digital video signal) and displays it on the image display surface (image display area) 203 a of the screen 203.
  • the content storage unit 111 and the decoder 112 are in the video player 201.
  • the content output unit 113 is realized as the projector 202 and the screen 203.
  • the same configuration as that of a known video display system can be applied.
  • the voyeurism prevention signal output unit 120 includes a content analysis unit 121 (image analysis unit), a signal control unit 122 (light emission control unit), a signal output pattern storage unit 123 (light emission control unit), and a signal generation unit 124 (light emission unit). )It is included.
  • the content analysis unit 121 analyzes the spatial feature amount and the temporal feature amount of the image content (digital video signal) extracted from the content display unit 110.
  • the brightness (gradation value) of each pixel is analyzed for each frame of the image content composed of a plurality of image frames.
  • image information regarding spatial features and temporal features such as which region and how bright at which time point (which frame) is obtained.
  • the digital video signal transmitted to the content analysis unit 121 is a video signal processed by the decoder 112.
  • the signal control unit 122 controls the light emission intensity in the infrared light emitting unit 204 when a specific image frame is displayed based on the image information obtained by the content analysis unit 121. At this time, the emission intensity is controlled with reference to information stored in the signal output pattern storage unit 123.
  • the signal output pattern storage unit 123 stores the intensity of infrared light (voyeurism prevention signal) output from the signal generation unit 124, the ON / OFF pattern of signal generation, and the like. Specifically, the average gradation value of each pixel in the image frame and the light emission intensity (current value of the infrared LED) of the infrared light emitting unit 204 at that time are stored in association with each other. Thereby, the signal control unit 122 can control the light emission state of the infrared LED in the signal generation unit 124 while referring to the signal generation pattern stored in the signal output pattern storage unit 123.
  • the signal generation unit 124 turns on / off the output of infrared light, which is a voyeurism prevention signal, in accordance with an instruction from the signal control unit 122 and changes its intensity.
  • the content analysis unit 121, the signal control unit 122, and the signal output pattern storage unit 123 are in the video player 201.
  • the signal generator 124 corresponds to the infrared light emitting unit 204.
  • the infrared light emission intensity and light emission in the infrared light emitting unit 204 are matched to the properties of the image content.
  • the pattern can be controlled. Further, it is possible to control so that infrared rays having different emission intensities are emitted from the respective light emitting regions 214 of the infrared light emitting unit 204.
  • the infrared light emitting unit 204 emits light with a predetermined light emission intensity and light emission pattern. Control may be performed. Thereby, the processing amount in the voyeurism prevention signal output unit 120 can be reduced.
  • the light emission control unit is attached to the infrared light emitting unit 204, and the image content is displayed regardless of the content of the image content during the period when the image is displayed on the screen 203. What is necessary is just to output infrared rays with a fixed light emission intensity and light emission pattern.
  • the video display system 1 Since the video display system 1 according to the present embodiment has the above-described configuration, infrared light can be emitted along with video from the image display surface of the screen 203 toward the observer (FIG. 3). reference). Since human eyes do not recognize infrared light, even if an image including infrared light is projected on a screen, it is recognized as an image that is not different from a normal image.
  • the video camera 130 (130a / 130b) used for voyeurism has a CCD or CMOS image sensor for detecting infrared light as a light receiving element. Therefore, when an image including infrared light is captured, the infrared light irradiated from the screen is also captured as an image that can be visually recognized by humans.
  • a light emitting unit using an infrared LED as a light source is used as a light emitting unit that emits light other than visible light.
  • the present invention is not limited to this configuration.
  • a light source that emits infrared light an infrared light source other than an LED may be used.
  • light other than visible light it is not limited to infrared rays with a wavelength of 780 nm or more, but may be ultraviolet rays with a wavelength of 380 nm or less.
  • the invisible light detection unit uses an ultraviolet light detection unit instead of the infrared detection unit 140.
  • a specific example of the ultraviolet ray detection unit is an ultraviolet ray camera.
  • the light emitting unit that emits light other than visible light may be disposed in a place other than the video display unit.
  • FIG. 3 schematically shows a method for adding a disturbing image to a voyeur camera and a method for detecting the voyeur camera in the video display system 1.
  • the infrared camera 205 is provided on the upper portion of the screen 203, but here, a configuration in which the infrared camera 205 is provided on the back surface of the screen 203 is shown.
  • one infrared light emitting unit 204 is provided at the center of the screen 203, but here two infrared light emitting units are provided at the upper and lower parts of the screen, respectively. Shows the configuration. In the present invention, these configurations are not particularly limited, and can be appropriately changed according to circumstances.
  • FIG. 3 shows a voyeur camera (photographing device) 130 (130a and 130b) used by a person who intends to voyeur the video displayed on the screen 203 (also called an observer or a voyeur).
  • the camera 130a is a video camera to which an infrared filter (a member that blocks invisible light (particularly infrared)) 131 is attached. This is a normal video camera without an infrared filter.
  • the infrared ray b is emitted from the infrared light emitting unit 204 as a sneak shot prevention signal.
  • Infrared rays b emitted from the infrared light emitting unit 204 pass through a hole provided in the screen 203 and are irradiated toward an observer (audience seat).
  • the display image a and the infrared ray b are incident on the light receiving unit (lens) of the camera. Since the light receiving element of the camera 130b has sensitivity to visible light and infrared light, as shown in FIG. 9A, the recorded image content includes an image caused by infrared light as an interference image A. Thereby, in the video display system 1, since the display quality of the voyeurized image can be deteriorated and the utility value can be reduced, it is possible to prevent the video camera from being shot for the purpose of illegal distribution of video content.
  • the display image a passes through the infrared removal filter 131 and enters the light receiving unit. Is reflected by the infrared ray removing filter 131 and hardly enters the light receiving portion. For this reason, as shown in FIG. 9B, the recorded image content contains almost no disturbing image, and becomes an image that can be visually recognized although it is insufficient.
  • the image display system 1 of the present embodiment is provided with an infrared detection unit 140.
  • the infrared detector 140 includes a wide-angle lens 141, an infrared light receiver 142 (invisible light receiver), an image processor 143, and the like.
  • the wide-angle lens 141 is for enabling the infrared light receiving unit 142 to receive reflected light from a wide range.
  • the wide-angle lens 141 has an angle of view of 63 degrees or more.
  • the infrared light receiving unit 142 includes a CCD or CMOS image sensor as a light receiving element.
  • This light receiving element has light receiving sensitivity not only for the visible region but also for light having wavelengths in the ultraviolet and infrared regions.
  • an optical filter such as a visible light cut filter is provided on the light receiving surface of the light receiving element, and after removing light of wavelengths in the ultraviolet region and the visible region by this optical filter, the light receiving element takes in the element. An image is formed based on the acquired data.
  • the filter may be a filter that allows only light of a specific wavelength to pass, or may be a filter that removes only a specific wavelength.
  • the image processing unit 143 performs processing on the image captured by the infrared light receiving unit 142 in order to more reliably recognize the video camera for voyeurism. Details of the image processing performed here will be described later.
  • the infrared detection unit 140 is realized by the infrared camera 205.
  • the image processing unit 143 may be realized by a dedicated image processing apparatus such as a PC separate from the infrared camera 205.
  • an infrared removal filter such as a low-pass filter is used to remove an interference image due to infrared rays.
  • the reflected light (reflected infrared ray c) obtained by reflecting the infrared ray b emitted from the infrared light emitting unit 204 by the infrared removing filter 131 can be detected.
  • examples of the infrared filter 131 that can be detected by the infrared detector 140 include an infrared reflection filter and an infrared absorption filter. Since these filters have high infrared reflectance, the presence of the camera 130 can be easily detected by the infrared detection unit 140 when these filters are attached to the camera 130 for voyeurism.
  • the infrared reflection filter when comparing the infrared reflection filter and the infrared absorption filter, the infrared reflection filter has a higher infrared reflectance, but when an infrared absorption filter is used, the same reflectance as that of glass can be obtained. It can be detected by the infrared detector 140.
  • the infrared reflectance of a curved lens such as a video camera lens is generally lower than that of an infrared filter, but it is curved glass (for example, glass cup) or curved metal (for example, Higher than the reflectivity of rod-like metal such as screwdrivers and eyeglass frames. Therefore, according to the image processing method in the image processing unit 143, the infrared detection unit 140 can detect a lens of a normal video camera that is not provided with an infrared removal filter.
  • the infrared detection unit 140 is provided on the same plane as the screen or on the screen side to be sneak shot such as the back side of the screen, and the light receiving surface faces so that the reflected light from the observer side can be received efficiently. Preferably it is.
  • infrared rays are irradiated toward an observer (audience seat) through an acoustic hole provided in the screen 203 is illustrated.
  • irradiation with infrared rays does not necessarily require the use of acoustic holes.
  • a hole for allowing infrared rays to pass therethrough may be provided exclusively, or a hole provided for other uses than for acoustic use may be used.
  • the infrared image data obtained by the infrared light receiving unit 142 in the infrared detection unit 140 is input to the image processing unit 143 for each frame as image data composed of a plurality of frames.
  • Each frame image data has gradation data corresponding to a plurality of pixels arranged vertically and horizontally.
  • the gradation data of each pixel is data of gradation values (for example, 0 to 255 gradations) corresponding to the intensity of infrared light received by the pixel.
  • gradation values for example, 0 to 255 gradations
  • FIG. 4 shows a configuration in which the image processing unit 143 is divided for each function.
  • the image processing unit 143 includes a background deletion unit 150, a flicker removal filter 151, a motion detection unit 152, a noise removal filter 153, a binarization processing unit 154, an area measurement unit 155, and a camera.
  • a determination unit 156 determination unit is provided.
  • the background deletion unit 150 receives the infrared image data (frame image data) obtained by the infrared light receiving unit 142 and removes the background image from the input frame image data. At this time, the background deletion unit 150 refers to the reference image data 150a.
  • the infrared light emitting unit 204 of the video display system 1 is operated in a theater where there is no audience, and the image data for one frame captured by the infrared camera 205 at this time can be used as the reference image data 150a. .
  • the frame image data Xt input to the background deletion unit 150 is expressed as the following mathematical formula (Equation 5).
  • Equation 5 it is assumed that one frame image data xt has a resolution of a total of M ⁇ N pixels of N pixels in the horizontal direction and M pixels in the vertical direction.
  • t represents a frame number.
  • the reference image data Y is expressed as the following mathematical formula (Equation 6). Since there is no temporal change in the reference image data, the same reference image data Y is always used for all the frame image data Xt.
  • the background deletion unit 150 removes a background image by subtracting a component obtained by multiplying each pixel component of the reference image data Y by a predetermined coefficient ⁇ from each pixel component of the frame image data Xt. That is, the background removal unit 150 calculates (Xt ⁇ Y) expressed by the following mathematical formula (Formula 7).
  • the background deletion unit 150 obtains the value of the coefficient ⁇ so that the absolute value sum of each component of the mathematical formula (Equation 7) is minimized.
  • the influence of the reflected light component from the fixed reflector included in the reference image data Y in the frame image data Xt is minimized.
  • the absolute value sum total of each component of the said numerical formula (Formula 7) is represented by the following numerical formula (Formula 8).
  • the background deletion unit 150 determines the value of the coefficient ⁇ according to the above equation (Equation 12), and applies the determined coefficient ⁇ to the above equation (Equation 7).
  • the background image is deleted from the frame image data Xt.
  • the flicker removal filter 151 calculates the average of the gradation values of each pixel in the plurality of frame image data, and replaces the gradation value of each pixel in the plurality of frame image data with the obtained average value. Thereby, the influence of the light source blinking of the infrared light emitting unit 204 is removed.
  • the motion detection unit 152 performs a motion detection process for detecting a reflected light component from a moving infrared reflector by taking a difference between a plurality of frames.
  • the detected reflected light component is removed as a noise component by the noise removal filter 153 at the subsequent stage. Thereby, the location with a motion in image data can be excluded.
  • this motion detection process can remove the reflected light component from the moving infrared reflector and specify only the stationary reflector. As a result, the detection accuracy of the voyeur camera can be increased.
  • FIG. 10 shows a configuration in which the background image is deleted after performing the flicker removal processing.
  • the input frame image data is first input to the flicker removal filter 151, and flicker is removed by obtaining the average of each pixel of the plurality of frame image data in the flicker removal filter 151.
  • the plurality of frame image data from which the flicker is removed (that is, averaged) is sent to the difference processing unit 252.
  • the difference processing unit 252 removes a background image component by subtracting reference image data from the plurality of frame image data.
  • the flicker removal filter 151 subtracts the background image component after calculating the average of the gradation values of each pixel in a plurality of frames.
  • the image of the reflected object is slightly reflected over all of the plurality of frames subjected to the average calculation.
  • the subsequent motion detection unit 152 cannot remove the image of the moving reflector from the plurality of frames.
  • the background deletion unit 150 performs background deletion processing on each of the frame image data Xt in the previous stage of the flicker removal filter 151, so that the moving reflection object can be detected as in the comparative example described above.
  • the image does not appear in other frames. Therefore, the motion detection unit 152 in the subsequent stage can effectively remove the image of the moving reflector by taking the difference between the plurality of frame image data.
  • the noise removal filter 153 is a circuit that removes a white display pixel as noise when a white display composed of one pixel or a few pixels less than a certain number is present in a region in which several peripheral pixels are black display. is there.
  • this filter circuit infrared rays with a certain number or more (for example, 1 pixel, 2 pixels, etc.) of pixels within a plurality of pixels (for example, 3 ⁇ 3 pixels, 5 ⁇ 5 pixels) centering on the own pixel are not less than a threshold value. If detected, the pixel is left as data with infrared detection (for example, white display data).
  • the noise removal filter 153 also removes a moving noise component detected by the motion detection unit 152.
  • the binarization processing unit 154 provides a threshold value for the gradation data, and converts the gradation data into white display data (that is, gradation value 255) for pixels whose gradation data is equal to or greater than the threshold value. For pixels whose data is less than the threshold value, this is a circuit that performs processing for converting the gradation data into black display data (that is, gradation value 0).
  • the area measurement unit 155 is a circuit that measures the number of pixels included in the white display area in the image data that has been binarized by the binarization processing unit 154. This processing is performed, for example, by measuring the boundary between a black display pixel and a white display pixel and counting the number of pixels included in the boundary.
  • the camera determination unit 156 determines whether or not the white display area is greater than or equal to a predetermined area (more than the number of pixels) by the area measurement unit 155, and determines that there is a voyeur camera if the area is greater than or equal to the predetermined area. .
  • frame image data (infrared image data) transmitted from the infrared light receiving unit 142 is input to the background deletion unit 150.
  • the background deletion unit 150 deletes the background image from the input frame image data based on the reference image data 150a (step S101).
  • the background image including the infrared reflected light from the equipment or the like installed in advance in the theater is removed, and image data reflecting the infrared intensity only by the reflected light caused by the audience is obtained.
  • the frame image data from which the background image has been deleted is sent to the flicker removal filter 151, and flicker is removed as described above (step S102). Note that when the infrared light emitted from the infrared light emitting unit 204 is always on, the processing by the flicker removal filter 151 is not necessarily performed.
  • the frame image data processed by the flicker removal filter 151 is sent to the motion detection unit 152, and data of the moving reflector is removed (step S103).
  • noise removal processing is performed in the noise removal filter 153 (step S104).
  • the noise removal process is a process of converting only a predetermined number of pixels (for example, one pixel) out of pixels having a high infrared intensity equal to or higher than a threshold value into black display gradation data. It is.
  • the motion detection process is performed in step S103, the noise component of the reflector accompanying the motion is also removed here.
  • a pixel whose gradation value is equal to or greater than the threshold value is converted into a gradation value 255, and a pixel whose gradation value is less than the threshold value is converted into a gradation value 0 (step S105).
  • the threshold value here may be 80 gradations or 250 gradations, for example.
  • the threshold value is preferably set to a value in the range of 100 to 250 gradations, for example.
  • the area measurement unit 155 measures the area (number of pixels) of the white display (255 gradations) region in the binarized image data (step S106).
  • the camera determination unit 156 determines whether or not the white display area has a predetermined area or more (number of pixels or more). If the area is more than the predetermined area, it is determined that there is a voyeur camera (step S107). ).
  • the camera determination unit 156 determines that there is a voyeur camera, an alarm or the like can be issued.
  • the monitor may be able to easily estimate the voyeur camera position.
  • the above-described image processing method is an example, and the present invention is not limited to this. That is, the image processing unit 143 is not necessarily provided with all the processing circuits as illustrated in FIG. 4, and one or a plurality of processing circuits among the processing circuits illustrated in FIG. 4 are provided. In this case, the camera for voyeurism can be detected appropriately.
  • the image processing unit 143 processes all the frame image data input from the infrared light receiving unit 142 in real time, thereby performing detection processing of the voyeur camera from all the frame image data. You can go.
  • a plurality of image processing units 143 may be provided, and the plurality of image processing units 143 may perform parallel processing.
  • the image processing unit 143 may be configured to process only a part of the frame image data F2. For example, when 60 frame image data F1 is output from the infrared light receiving unit 142 per second, only a part (for example, 30, 20, or 12) of the frame image data F2 is obtained.
  • the image processing unit 143 may be a processing target. In these cases, compared with the case where all the frame image data F1 is a processing target, the processing of the image processing unit 143 can take approximately twice, three times, or five times the time. Therefore, when the processing capability of the processor or the like constituting the image processing unit 143 is not so high, it is effective to set only a part of the frame image data as a processing target.
  • Equations (Equation 5 to Equation 12) all the pixels (horizontal direction N, vertical direction M, total M ⁇ N pixels) of the frame image data are used. The process of determining a value is illustrated. However, it is not necessary to use information on all the pixels of the frame image data in order to determine the value of the coefficient ⁇ .
  • the number of pixels in the region used for determining the coefficient ⁇ may be determined as appropriate, and is not particularly limited. Further, the position is not limited to the example shown in FIG. 7A. In general, it is preferable to use an appropriate area around the image, avoiding the center of the image where the spectator seat is located. For example, as shown in FIG. 7B, a region P2 made up of pixels located slightly inside the peripheral edge of the image may be used. Alternatively, as shown in FIGS. 7C and 7D, a region P3 or P4 along the horizontal or vertical direction of the image may be used. Alternatively, as shown in FIG. 7E, a region P5 along two sides of the image may be used. Note that the examples shown in FIGS. 7A to 7E are merely specific examples, and other regions can be used.
  • the configuration in which one infrared camera 205 having a wide-angle lens that can capture the entire audience seat of the theater is attached to the front of the camera is taken as an example, but the present invention is not limited to this. That is, the configuration and the number of infrared cameras (infrared detectors) are not particularly limited as long as they can capture the entire audience seats in the theater.
  • the infrared light emitting unit that generates infrared light (voyeurism prevention signal) as noise that interferes with video and the infrared light emitting unit that generates infrared light for detecting a voyeur camera are common.
  • these infrared light emitting units may be provided separately.
  • a plurality of noise infrared light sources 304a that generate infrared rays as a voyeurism prevention signal and a voyeur camera are detected on the back side of the screen 203b.
  • an infrared camera 305 is disposed almost at the center of the back surface of the screen 203b.
  • the noise infrared light source 304a is, for example, an infrared LED with an output of 1.4 W.
  • the camera detection infrared light source 304b is, for example, a bullet-type infrared LED with an output of 0.14W.
  • the infrared light source 304b for camera detection is supported by two substrates 306 in a square lattice pattern on the back surface of the screen 203b.
  • the wavelengths of the noise infrared light source 304a and the camera detection infrared light source 304b are, for example, about 870 to 940 nm.
  • the infrared camera 305 is preferably equipped with a visible range cut filter (short wavelength cut filter with a cutoff wavelength of 870 nm).
  • the camera detection infrared light source 304b may be arranged in a square lattice shape
  • the camera detection infrared light source 304b may be arranged in a triangular lattice shape.
  • the camera detection infrared light source 304b may be provided in a movable unit such as a scanner unit or a rotary unit.
  • the noise infrared light source 304a is not extremely large, the noise infrared light source 304a can also be provided in the movable unit.
  • the infrared light source for noise 304a and the infrared light source for camera detection 304b can be controlled independently. It is preferable that the camera detection infrared light source 304b emits light at a timing when the noise infrared light source 304a does not emit light. In this case, the infrared camera 305 detects the reflected light in accordance with the timing at which the camera detection infrared light source 304b emits light.
  • the display quality of the shot image can be deteriorated. Therefore, if the present invention is used in a movie theater or the like, it is possible to prevent video content sneak shots and illegal distribution thereof.
  • the present invention it is possible to easily detect a person who intends to voyeur video content. Therefore, if the present invention is used in a movie theater or the like, it is possible to prevent sneak shots of video content.
  • the present invention can be industrially used as a video display screen that can detect a person trying to voyeur video content and a video display system that uses the video display screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Studio Devices (AREA)

Abstract

 盗撮防止用の妨害画像としての非可視光を含む映像から該非可視光を除去して盗撮しようとする者を容易に検出する。映像表示システム(1)は、映像を表示する映像表示部と、映像と共に、可視光以外の光を観察者に対して照射する非可視光発光部と、観察者が有する撮影装置から反射された非可視光を受けて、フレーム画像データを生成する非可視光受光部と、前記画像データを処理することにより、前記撮影装置の存在を検出する画像処理部(143)とを備える。画像処理部(143)は、背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する背景削除部(150)と、背景削除部(150)の処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去するフリッカ除去部(151)とを備える。

Description

映像表示スクリーン、映像表示システム、および撮影装置検出方法
 本発明は、スクリーンや画像表示パネルに表示された映画などの画像コンテンツをビデオカメラなどの画像記録装置で盗撮する行為を防ぐための技術に関する。
 近年、デジタル画像表示装置やデジタルカメラ等の撮影装置の普及および高画質化が進み、低コストで高画質のコンテンツを視聴することが可能となっている。しかし一方で、スクリーンやディスプレイに表示された画像、動画像などのコンテンツをデジタルビデオカメラ等の撮影装置で撮影し、撮影したコンテンツを違法に流通させる行為が問題視されている。このように不正に撮影された海賊版DVDの流通は、著作権の保護に反するとともに、経済的な損失も非常に大きいため、対策が急がれている。
 この問題の対策として、電子透かし(watermark)により、表示前の画像コンテンツ(オリジナルの画像コンテンツ)に施設ID(上映されている施設の情報)や機器ID(上映している機器の情報)などを埋め込み、盗撮され流通された後の画像コンテンツ(盗撮された画像コンテンツ)から当該IDを検出することで、盗撮が行われた施設や機器を特定する方法が提案されている。
 また、上記の方法とは異なる手段で盗撮行為を防止する試みとして、映像表示とともに赤外線をスクリーンから観客席に対して照射するという方法が提案されている(例えば、特開2008-176195号公報、特開2002-341449号公報を参照)。赤外線は、人間の眼には認識されないが、CCD、CMOSイメージセンサなどを備えたコンテンツ記録装置(具体的には、例えば、ビデオカメラ)では、赤外線も可視光と同様に検出される。上記の公報に開示された技術は、このような人間の視覚特性とカメラの撮像特性との違いを利用したものである。この技術によれば、映像を見ている観察者には、映像表示のみが視認される一方、盗撮用のカメラには、赤外線が映像を妨害する画像として記録されることになる。図9Aには、映像表示とともに赤外線をスクリーンから観客席に対して照射した場合に、その映像をカメラで撮影したときに得られる画像の一例を示す。この図に示すように、カメラで撮影した画像には、赤外線が白い妨害画像Aとして含まれることになる。
 このように、上記の従来の方法によれば、盗撮された映像を劣化させ、盗撮画像の利用価値をなくすことができるため、映画館などでの盗撮を防止する手段として効果的な方法であると考えられる。
 しかしながら、上記の赤外線を使用した盗撮行為の妨害方法では、例えば、赤外線除去フィルタなどのように赤外波長の光を透過させないフィルタをカメラの全面に配置することで、映像を妨害する効果が著しく低下してしまうという問題がある。上記のようなフィルタを使用したカメラで赤外線を含む表示映像を撮影した場合、得られる映像には赤外線に起因した映像がほとんど含まれず、盗撮画像の利用価値をなくすことができない。図9Bには、赤外線が妨害画像として含まれる映像を、赤外線除去フィルタが取り付けられたカメラで撮影した場合に得られる画像の一例を示す。この図に示すように、赤外線除去フィルタの作用によって、赤外線による妨害画像が取り除かれ、撮影された画像がコンテンツとしての価値を保ち続けることになる。
 本発明は、上記の問題点に鑑みてなされたものであり、非可視光を含む映像から該非可視光を除去して盗撮しようとする者を容易に検出する技術を提供することを目的とする。
 本発明の一実施形態にかかる映像表示スクリーンは、上記の課題を解決するために、映像を表示する映像表示部と、映像とともに可視光以外の光を観察者に対して照射する非可視光発光部と、上記観察者が有する撮影装置から反射された上記可視光以外の光を受けて、フレーム画像データを生成する非可視光受光部と、前記画像データを処理することにより、前記撮影装置の存在を検出する画像処理部とを備える。前記画像処理部は、背景削除部と、フリッカ除去部とを備える。背景削除部は、背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する。フリッカ除去部は、前記背景削除部の処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去する。
 ここで、可視光以外の光とは、380nmから780nmまでの可視光波長帯に含まれない光のことであり、具体的には、赤外光または紫外光のことである。このような可視光以外の光は、人間の眼には認識されないが、CCD、CMOSイメージセンサなどを備えた撮影装置(具体的には、例えば、ビデオカメラ)では可視光と同様に検出される。
 上記の構成によれば、映像表示部に映像が表示されている期間中に、人間の眼には認識されないが、ビデオカメラなどの撮影装置には可視画像として記録される可視光以外の光を映像とともに観察者に対して照射することができる。これにより、観察者が盗撮用のビデオカメラを所持していた場合には、撮影された画像コンテンツ中には、可視光以外の光がオリジナルの映像を妨害する画像(盗撮防止信号)として付加されることになり、盗撮された画像の表示品質を劣化させることができる。なお、発光部から照射される光は可視光ではないので、人間の目には、オリジナルの映像のみが映像表示部に表示されているように見える。
 また、フリッカ除去部において複数フレームにわたって平均化処理を行う前に、背景削除部において、フレーム画像データから背景画像の成分を除去することにより、平均化処理によって反射物の像が複数フレームにわたってフレーム画像データへ写り込むことを効果的に防止できる。
 上記の映像表示スクリーンによれば、映像の表示品質を落とすことなく、観察者が有する撮影装置によって盗撮された映像の表示品質を劣化させることができる。さらに、観察者が映像表示スクリーンから照射される非可視光を除去しながら盗撮を試みた場合には、観察者の撮影装置から反射される非可視光を容易に検知することができる。したがって、盗撮行為を抑制するという効果が得られる。
図1は、本発明の一実施の形態にかかる盗撮防止用映像表示システムの機能構成を示すブロック図である。 図2は、本発明の一実施の形態にかかる盗撮防止用映像表示システムの概略構成を示す模式図である。 図3は、図1に示すシステムにおいて、盗撮用のカメラに妨害画像を加える方法、および、盗撮用のカメラを検知する方法を説明するための模式図である。 図4は、本発明の第1の実施形態にかかる盗撮防止用映像表示システム内の赤外線検知部に備えられた画像処理部の機能構成を示すブロック図である。 図5は、図4に示す画像処理部内において行われる画像処理の流れを示すフローチャートである。 図6は、第1の実施形態の変形例における、画像処理部の処理対象フレームを示す模式図である。 図7Aは、本発明の第2の実施形態において、背景削除部が係数λを決定するために参照する画素領域の配置の一例を示す模式図である。 図7Bは、本発明の第2の実施形態において、背景削除部が係数λを決定するために参照する画素領域の配置の一例を示す模式図である。 図7Cは、本発明の第2の実施形態において、背景削除部が係数λを決定するために参照する画素領域の配置の一例を示す模式図である。 図7Dは、本発明の第2の実施形態において、背景削除部が係数λを決定するために参照する画素領域の配置の一例を示す模式図である。 図7Eは、本発明の第2の実施形態において、背景削除部が係数λを決定するために参照する画素領域の配置の一例を示す模式図である。 図8は、第3の実施形態にかかる映像表示システムにおけるスクリーンの概略構成を示す背面図である。 図9Aは、映像表示とともに赤外線をスクリーンから観客席に対して照射した場合に、その映像をカメラで撮影したときに得られる画像の一例を示す模式図である。 図9Bは、赤外線が妨害画像として含まれる映像を、赤外線除去フィルタが取り付けられたカメラで撮影した場合に得られる画像の一例を示す模式図である。 図10は、図4に示した構成の比較例としての画像処理部の機能構成を示すブロック図である。
 本発明の一実施形態にかかる映像表示スクリーンは、映像を表示する映像表示部と、映像とともに可視光以外の光を観察者に対して照射する非可視光発光部と、上記観察者が有する撮影装置から反射された上記可視光以外の光を受けて、フレーム画像データを生成する非可視光受光部と、前記画像データを処理することにより、前記撮影装置の存在を検出する画像処理部とを備え、前記画像処理部が、背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する背景削除部と、前記背景削除部の処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去するフリッカ除去部とを備えた構成である(第1の構成)。
 映像とともにその映像を妨害するための非可視光が観察者に対して照射されるような映像表示スクリーンを備えた劇場において盗撮を試みる場合には、盗撮者は、映像を妨害するための非可視光(盗撮防止信号)を除去するために、赤外線反射フィルタまたは赤外線吸収フィルタなどの非可視光除去フィルタ(赤外線除去フィルタ)をカメラの前面に設けることが想定される。上記非可視光除去フィルタは、多くの非可視光を反射する。そのため、上記非可視光検知部には、盗撮用の撮影装置からの反射光が比較的強い強度で検知される。したがって、上記非可視光検知部が設けられていることで、撮影装置の存在を容易に確認することができる。この非可視光の反射光の光源は盗撮防止信号以外の補助用のものでもよい。
 このように、第1の構成にかかる映像表示スクリーンによれば、映像表示部に表示される映像の表示品質を落とすことなく、観察者が有する撮影装置によって盗撮された映像の表示品質を劣化させることができる。さらに、観察者が映像表示スクリーンから照射される非可視光を除去しながら盗撮を試みた場合には、非可視光検知部によって、観察者の撮影装置から反射される非可視光を容易に検知することができる。したがって、盗撮行為を防止する効果をより向上させることができる。
 また、前記第1の構成にかかる映像表示スクリーンにおいては、画像処理部が、背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する背景削除部と、前記背景削除部の処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去するフリッカ除去部とを備えたことを特徴とする。
 このように、フリッカ除去部において複数フレームにわたって平均化処理を行う前に、背景削除部において、フレーム画像データから背景画像の成分を除去することにより、平均化処理によって反射物の像が複数フレームにわたってフレーム画像データへ写り込むことを効果的に防止できる。
 なお、本実施形態の映像表示スクリーンにおいて、上記可視光以外の光が赤外線であり、上記非可視光検知部が、赤外線を検知する赤外線検知部であってもよい。可視光以外の光が赤外線であれば、人体に悪影響を与えることなく、人間には視認不可能であり、かつ、ビデオカメラなどの撮影装置には映像を妨害する画像として感知させることができる。また、赤外線検知部として、例えば、赤外線カメラ、フォトダイオードなどを用いることで、ビデオカメラなどの撮影装置からの反射光を容易に検出することができる。
 本実施形態の映像表示スクリーンにおいて、上記赤外線検知部は、赤外線カメラであってもよい。赤外線検知部が赤外線カメラであることにより、検知した赤外線の強度に応じた画像を得ることができる。なお、ここでいう赤外線カメラとは、少なくとも赤外領域の光を検知することが可能なもののことを意味する。すなわち、赤外線カメラには、赤外領域の光のみを検知することができるもの以外に、赤外領域+可視領域の光を検知して画像データを形成することができるものなども含まれる。
 本実施形態の映像表示スクリーンにおいて、上記赤外線検知部は、赤外線を遮断する部材からの反射光を検知するものであってもよい。ここで、赤外線を遮断する部材とは、赤外線の透過を防ぐ機能を有する部材である。この赤外線を遮断する部材は、上記観察者が有する撮影装置(盗撮用のカメラ)の前面に設けることで、赤外線を含む映像表示を行う映像表示スクリーンの映像から、赤外線を除去して映像のみを撮影することができる。
 このような赤外線を遮断する部材として具体的には、赤外線反射フィルタまたは赤外線吸収フィルタなどが挙げられる。このようなフィルタを盗撮用のカメラの前面に設けていると、赤外線を多く反射するため、上記赤外線検知部は、閾値以上の強度の赤外光を受光した場合に反射光ありと判定することで、上記の赤外線を遮断する部材からの反射光を選択的に検知することができる。
 前記第1の構成において、フレーム画像データをXt(tはフレーム番号)、リファレンス画像データをY、係数をλとした場合、前記背景削除部が、(Xt-λY)の絶対値総和が最小となるように係数λを決定し、決定された係数λを用いて(Xt-λY)を算出する構成とすることが好ましい(第2の構成)。
 前記第2の構成において、前記背景削除部が、下記の数式(数1)、(数2)、および(数3)を満たす係数λを用いて、下記の数式(数4)により(Xt-λY)を算出することがさらに好ましい(第3の構成)。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 前記第2または第3の構成において、前記背景削除部が、前記フレーム画像データの一部の領域内の画素のみを用いて係数λを決定することがさらに好ましい(第4の構成)。
 前記第1~第4のいずれかの構成において、前記画像処理部が、時間的に連続する複数フレームのうち一部のフレームのフレーム画像データのみを処理対象とすることが好ましい(第5の構成)。
 前記第1~第5のいずれかの構成において、前記画像処理部が、前記フリッカ除去部から出力されたフレーム画像データから、前記非可視光の反射物の像のうち動く成分を検出する動き検出部をさらに備えた構成とすることが好ましい(第6の構成)。
 前記第1~第6のいずれかの構成において、前記非可視光発光部は、前記映像表示部に映像が表示されている期間中、点灯と消灯とを繰り返すことが好ましい(第7の構成)。
 上記の構成によれば、映像表示部から可視光以外の光が点滅しながら発せられる。これにより、非可視光発光部からの光が、ビデオカメラなどの撮影装置で撮影した画像中に点滅しながら入り込むことになる。このように、本来の映像とは異なる光が点滅しながら表示されると、人間の視角にはより目立って認識される。したがって、上記の構成によれば、撮影画像の表示品質をより大きく低下させることができる。
 前記第1~第6のいずれかの構成において、前記画像処理部が、前記フレーム画像データの画素毎に閾値に応じた2値化処理を行う2値化処理部をさらに備えた構成とすることが好ましい(第8の構成)。この構成によれば、盗撮用の撮影装置からの反射光と、それ以外の物からの反射光とをより確実に識別することができる。
 前記第8の構成において、前記画像処理部が、前記2値化処理部によって前記閾値以上の値に2値化処理された画素が集合している領域の面積を計測する面積計測部と、該面積計測部によって前記画素が集合している領域が所定の面積以上であるか否かを判別し、所定の面積以上の場合に、前記撮影装置が存在すると判定する判定部とをさらに有することが好ましい(第9の構成)。この構成によれば、盗撮用の撮影装置とは無関係の劇場内の備品などからの反射光を容易に除去することができる。これにより、赤外線検知部の誤検知を減少させることができる。
 本発明の一実施形態にかかる映像表示システムは、前記第1~第9のいずれかの構成にかかる映像表示スクリーンと、デジタル映像信号に基づいて表示画像を生成し、該表示画像を前記映像表示スクリーンに投射する画像形成部とを有する。
 本発明の一実施形態にかかる撮影装置検出方法は、映像表示スクリーンに表示される映像を撮影するための撮影装置を検出する方法であって、前記映像表示スクリーンに表示される映像とともに、可視光以外の光を観察者に対して照射する工程と、上記観察者が有する撮影装置から反射された上記可視光以外の光を受けて、フレーム画像データを生成する工程と、前記画像データを処理することにより、前記撮影装置の存在を検出する画像処理工程とを含む。前記画像処理工程は、背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する工程と、前記背景削除処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去する工程とを含む。
 [実施形態]
 以下、図面を参照しながら、本発明のより具体的な実施形態について説明する。
 人間の視覚には赤外線や紫外線などの可視光以外の光は認知されないのに対して、盗撮に用いられるデジタルカメラおよびデジタルビデオカメラなどの撮像素子であるCCDおよびCMOSイメージセンサでは、素子そのものの不安定性から赤外線や紫外線などの可視光領域以外の波長もノイズとして検知される。本願発明者らは、この点に着目し、そして、映画館などのスクリーンにおいて映像を表示しているときに、画像表示面から人間による知覚が困難な波長の光を盗撮防止信号として同時に照射することで、ビデオカメラなどによって盗撮された画像コンテンツ中に上記盗撮防止信号を知覚可能な信号として取り込むことが可能になることを見出した。これにより、ビデオカメラが取り込んだ画像コンテンツを再生した場合には、盗撮防止信号に基づく画像がオリジナルの映像を妨害するノイズとして見えるため、盗撮された画像コンテンツの品質を劣化させることができる。
 しかしながら、赤外線遮断フィルタなどのバンドパスフィルタをビデオカメラのレンズの前面に配置すると、特定の波長の光(例えば、可視光)のみを選択的に透過し、それ以外の光(例えば、赤外線や紫外線などの可視光以外の光)については遮断することができる。このようなバンドパスフィルタは、市販されており容易に入手可能である。
 そのため、ビデオカメラに赤外線遮断フィルタなどを取り付けた状態で、上記の盗撮防止信号が含まれる映像表示を撮影した場合には、盗撮防止信号がカメラから遮断され、盗撮防止信号が含まれず品質の劣化が生じない映像が入手されてしまうことになるという問題が生じる。
 本願発明者らは、この問題を解決するために検討を行ったところ、可視光のみを選択的に透過し、可視光以外の光を遮断する上記のようなフィルタは、金属などの反射率の高い素材よりも可視光以外の光を多く反射する作用があることを確認した。そして、この知見に基づいて、盗撮防止信号が含まれる映像を表示することのできる劇場内において、可視光以外の光を検知するカメラなどを設けることにより、可視光を遮断するフィルタが取り付けられたビデオカメラを容易に検知することができることを見出し、本発明を完成させるに至った。
 上記のような技術思想に基づいて実現される本発明の一実施形態について、図面に基づいて説明すると以下の通りである。なお、ここで説明する具体例は本発明の一例であり、本発明はこれに限定されるものではない。
 [第1の実施形態]
 本実施形態では、デジタル画像コンテンツを基にして、映画館や劇場などにおいて映画などの映像を上映する映像表示システムについて説明する。本実施形態の映像表示システムでは、劇場で上映されている映画などのデジタル画像コンテンツがデジタルビデオカメラなどによって撮影された場合に、撮影されたデジタル画像コンテンツの表示品質を視聴不可能な程度に劣化させることで、盗撮後の画像コンテンツが不正に流通することを防ぐことができる。
 さらに、本実施形態の映像表示システムには、赤外線除去フィルタなどを取り付けたデジタルビデオカメラから反射された赤外線を検知するための赤外線カメラが備えられており、赤外線による画像品質の劣化を回避しながら盗撮を行おうとするカメラの存在を検知することもできる。
 つまり、本実施形態の映像表示システムは、盗撮を防止し、かつ、盗撮者を検知するための機能を有している盗撮防止用の映像表示システム(盗撮検知システム)である。
 (映像表示システムの概略構成について)
 図2には、本実施形態にかかる映像表示システム1の概略構成を示す。映像表示システム1(映像表示装置)は、映像再生機201、プロジェクタ202(画像形成部)、スクリーン203(映像表示部)、赤外線発光ユニット204(非可視光発光部、発光制御部)、および赤外線カメラ(非可視光検知部、赤外線検知部)205で構成されている。なお、本実施形態では、スクリーン203、赤外線発光ユニット204、および赤外線カメラ205が、映像表示スクリーンを構成する。
 映像再生機201は、外部から取り込んだ画像コンテンツを一旦格納した後、画像形成を可能にするためのデコード処理を行い、処理後のデジタル映像信号をプロジェクタ202へ送信する。映像再生機201の構成については、従来公知のデジタル映像再生装置の構成を適用することができる。なお、本実施の形態のような映像表示システム1では、映像再生機201によって再生される画像コンテンツは、複数の画像フレームで構成されている画像コンテンツ(動画コンテンツ)が一般的であるが、本発明では必ずしもこれに限定はされない。つまり、画像コンテンツは、静止画像のコンテンツであってもよい。
 プロジェクタ202は、映像再生機201から送信されたデジタル映像信号に基づいて、内蔵された表示素子において表示画像を形成し、さらに形成された画像を、内蔵された投射光学系を用いてスクリーン203に投射させる。プロジェクタ202の構成については、従来公知の前面投射型の画像表示装置の構成を適用することができる。
 スクリーン203は、プロジェクタ202から投射された画像を表示する。
 赤外線発光ユニット204は、スクリーン203の背面側に配置されており、スクリーン203に映像が表示されている期間中、赤外光を前面側に発光する。ここで、スクリーン203の背面側とは、画像が表示される面(観察者または観客席と対向している面)とは反対側のことであり、スクリーン203の前面側とは、画像が表示される側(観察者がいる側)のことである。
 赤外線カメラ205は、波長780nm以上の赤外領域の光を主に検知して画像を形成する。赤外線カメラ205は、上記の赤外線発光ユニット204から照射された赤外線のうち、盗撮用のビデオカメラに取り付けられた赤外線除去フィルタなどによって反射された赤外線を検知するために設けられている。
 なお、赤外線カメラ205は、赤外領域の光のみを検知することができるものに限定されず、ビデオカメラのナイトショット機能のように赤外領域+可視領域の光を検知して画像データを形成することができるものであってもよい。すなわち、ここでいう赤外線カメラ205とは、少なくとも赤外領域の光を検知することが可能なもののことをいう。
 ここで、スクリーン203および赤外線発光ユニット204の具体的な構成について、以下に説明する。
 スクリーン203は、映画館において映像を表示する従来の一般的なスクリーンと同様の構成である。なお、従来の一般的なスクリーンは、音響用の多数の小さな穴(直径1mm程度の穴)を有する幕の表面に白い塗料が塗布されて、画像表示面203aが形成されている。
 また、赤外線発光ユニット204は、上記のようにスクリーン203の背面側に配置されている。さらに、本実施の形態では、赤外線発光ユニット204は、スクリーン203の画像表示領域203aのほぼ中央部に対応する位置に配置されている。図2に示すように、赤外線発光ユニット204には、縦3個×横3個の計9個の赤外光発光領域214が存在する。各赤外光発光領域214には、赤外LEDが設けられている。赤外LEDとしては、例えば、波長780nm付近の波長帯の光を発するもの(これを780nmのLEDとする)、波長850nm付近の波長帯の光を発するもの(これを850nmのLEDとする)などが挙げられる。また、赤外線発光ユニット204から照射される赤外線は平行光であることが好ましい。これにより、赤外線の強度を強くすることができる。
 上記の構成により、図3に示すように、赤外線発光ユニット204から発せられた赤外光は、スクリーン203に設けられた穴を通過して、観察者(観客席)に向かって照射される。
 なお、赤外LEDから照射される光には、赤外領域に近い可視光領域の光が含まれることがある。そのため、赤外線発光ユニット204の光照射面に、可視光カットフィルタを配置してもよい。ここで使用する可視光カットフィルタは、従来公知のものでよい。特に、780nmのLEDは、より可視光領域に近い波長帯の光を発するため、可視光カットフィルタとともに利用することが望ましい。これにより、ビデオカメラなどのコンテンツ記録装置では検知されるが、観客席にいる人の目には視認されない赤外線発光ユニットを実現することができる。
 (映像表示システム1内の各機能について)
 続いて、映像表示システム1において、映像を表示するための構成、盗撮された画像の品質を劣化させるための構成、および、盗撮用のカメラを検知するための構成についてそれぞれ説明する。図1は、映像表示システム1内の各装置の構成を示す機能ブロック図である。
 図1に示すように、映像表示システム1内には、スクリーン203に映像を表示するためのコンテンツ表示部110と、盗撮された画像の表示品質を劣化させるための盗撮防止信号出力部120と、盗撮用のカメラを検知するための赤外線検知部140とが含まれている。
 コンテンツ表示部110には、コンテンツ格納部111、デコーダ112、および、コンテンツ出力部113が含まれている。
 コンテンツ格納部111は、外部から取り込んだ映画などの画像コンテンツを一時的に格納するためのものである。この場合、コンテンツ格納部111は、ハードディスクドライブや大容量メモリなどで実現される。但し、本発明では、コンテンツ格納部は上記のようなものに限定はされず、キャッシュや高速メモリなどといった、画像コンテンツの再生および表示中のバッファとして機能するものであってもよい。デコーダ112は、コンテンツ格納部111に格納された画像コンテンツを、プロジェクタ202の表示規格に適合するフォーマットにデコード処理する。コンテンツ出力部113は、デコード処理された画像コンテンツ(デジタル映像信号)から表示画像を形成し、スクリーン203の画像表示面(画像表示領域)203aに表示する。
 本実施の形態においては、コンテンツ表示部110内の各ブロックのうち、コンテンツ格納部111およびデコーダ112は、映像再生機201内にある。また、コンテンツ出力部113は、プロジェクタ202およびスクリーン203として実現される。
 上記したコンテンツ表示部110については、公知の映像表示システムと同様の構成を適用することができる。
 盗撮防止信号出力部120には、コンテンツ解析部121(画像解析部)、信号制御部122(発光制御部)、信号出力パターン格納部123(発光制御部)、および、信号発生部124(発光部)が含まれている。
 コンテンツ解析部121は、コンテンツ表示部110から取り出した画像コンテンツ(デジタル映像信号)の空間的特徴量および時間的特徴量を解析する。すなわち、複数の画像フレームで構成されている画像コンテンツについて、フレームごとに各画素の明るさ(階調値)を解析する。これにより、一連の映像において、どの時点(どのフレーム)でどの領域がどの程度の明るさであるかという空間的特徴量および時間的特徴量に関する画像情報が得られる。なお、コンテンツ解析部121に送信されるデジタル映像信号は、デコーダ112において処理された映像信号である。
 信号制御部122では、コンテンツ解析部121で得られた画像情報に基づいて、ある特定の画像フレームが表示されている時点での、赤外線発光ユニット204における発光強度を制御する。このとき、発光強度の制御は、信号出力パターン格納部123に格納されている情報を参照しながら行われる。
 なお、信号出力パターン格納部123には、信号発生部124が出力する赤外光(盗撮防止信号)の強度や信号発生のON/OFFパターンなどが格納されている。具体的には、画像フレームにおける各画素の平均階調値と、そのときの赤外線発光ユニット204の発光強度(赤外LEDの電流値)とが対応付けて格納されている。これにより、信号制御部122では、信号出力パターン格納部123に格納されている信号発生パターンを参照しながら、信号発生部124における赤外LEDの発光状態を制御することができる。
 信号発生部124は、信号制御部122からの指示に応じて盗撮防止信号である赤外光の出力のON/OFFを行うとともに、その強度を変化させる。
 本実施の形態においては、盗撮防止信号出力部120内の各ブロックのうち、コンテンツ解析部121、信号制御部122、および、信号出力パターン格納部123は、映像再生機201内にある。また、信号発生部124は、赤外線発光ユニット204に相当する。
 上記のように、コンテンツ解析部121、信号制御部122、および、信号出力パターン格納部123が設けられていることにより、画像コンテンツの性質に合わせて、赤外線発光ユニット204における赤外線の発光強度や発光パターンを制御することができる。また、赤外線発光ユニット204の各発光領域214からそれぞれ異なる発光強度の赤外線が照射されるように制御することもできる。
 但し、本発明では、画像コンテンツの性質に合わせた発光強度および発光パターン(点灯と消灯の周期)の変更は必ずしも必要ではなく、予め決められた発光強度および発光パターンで赤外線発光ユニット204における発光の制御を行ってもよい。これにより、盗撮防止信号出力部120における処理量を軽減させることができる。このように、発光の制御を予め決められたパターンで行う場合には、赤外線発光ユニット204に発光制御部を取り付け、スクリーン203に映像が表示されている期間中、画像コンテンツの内容とは無関係に一定の発光強度および発光パターンで赤外線を出力させればよい。
 本実施の形態の映像表示システム1は、上記のような構成を有していることによって、スクリーン203の画像表示面から観察者に向かって映像とともに赤外光を照射することができる(図3参照)。人間の目は赤外光を認識しないため、赤外光を含む映像がスクリーンに映し出されても、通常の映像と何ら変わることのない映像が表示されているように認識される。これに対して、盗撮に使用されるビデオカメラ130(130a・130b)は、赤外光も検知するCCDまたはCMOSイメージセンサを受光素子として有している。そのため、赤外光を含む映像を撮影すると、スクリーンから照射された赤外光も人間が視認可能な画像として取り込まれる。
 なお、本実施の形態の映像表示システム1では、可視光以外の光を発する発光部として、赤外LEDを光源とする発光ユニットを用いているが、本発明はこの構成に限定されない。赤外光を発する光源として、LED以外の赤外光源を使用してもよい。また、可視光以外の光としては、波長780nm以上の赤外線に限定はされず、波長380nm以下の紫外線であってもよい。但し、紫外線は人体に対して有害であるため、映画館などの公共の施設で本発明の映像表示装置を使用する場合には、赤外光を発する発光部を用いることが好ましい。また、発光ユニットから照射される可視光以外の光が紫外線の場合には、非可視光検知部は、赤外線検知部140の代わりに、紫外線検知部が用いられる。紫外線検知部の具体例としては、紫外線カメラなどが挙げられる。また、可視光以外の光を発する発光部は、映像表示部以外の場所に配置してもよい。
 図3には、映像表示システム1において、盗撮用のカメラに妨害画像を加える方法、および、盗撮用のカメラを検知する方法を模式的に示す。なお、図2に示す映像表示システム1では、赤外線カメラ205がスクリーン203の上部に設けられていたが、ここでは、赤外線カメラ205がスクリーン203の背面に設けられている構成を示す。また、図2に示す映像表示システム1では、赤外線発光ユニット204はスクリーン203の中央部に1つ設けられていたが、ここでは、2つの赤外線発光ユニットが、スクリーンの上部と下部にそれぞれ設けられている構成を示す。本発明では、これらの構成について特に限定はされず、場合に応じて適宜変更することができる。
 また、図3では、スクリーン203に表示された映像を盗撮しようとする者(観察者または盗撮行為者とも呼ぶ)が用いる盗撮用のカメラ(撮影装置)130(130a・130b)を示す。図3に示す2台の盗撮用のカメラ130a・130bのうち、カメラ130aは、赤外線除去フィルタ(非可視光(特に赤外線)を遮断する部材)131が取り付けられたビデオカメラであり、カメラ130bは、赤外線除去フィルタが取り付けられていない通常のビデオカメラである。
 まず、盗撮用のカメラに妨害映像を加える方法について説明する。
 映像表示システム1では、スクリーン203に表示画像aが映し出されている期間中、同時に、赤外線発光ユニット204から赤外線bが盗撮防止信号として発せられる。赤外線発光ユニット204から発せられた赤外線bは、スクリーン203に設けられた穴を通過して、観察者(観客席)に向かって照射される。
 そして、カメラ130bを使用して画像コンテンツの盗撮を行った場合には、カメラの受光部(レンズ)に、表示画像aおよび赤外線bが入射する。カメラ130bの受光素子は、可視光および赤外光に受光感度を有するため、図9Aに示すように、記録された画像コンテンツ内には、赤外線に起因した画像が妨害画像Aとして含まれる。これにより、映像表示システム1では、盗撮された画像の表示品質を劣化させ、利用価値を低下させることができるため、映像コンテンツの不正流通を目的とするビデオカメラの撮影を防止することができる。
 一方、赤外線除去フィルタ131が取り付けられたカメラ130aを使用して画像コンテンツの盗撮を行った場合には、表示画像aについては赤外線除去フィルタ131を通過して受光部に入射するが、赤外線bについては赤外線除去フィルタ131によって反射されるため受光部にはほとんど入射しない。そのため、図9Bに示すように、記録された画像コンテンツ内には妨害画像がほとんど含まれず、不十分ながら視認可能な画像となる。
 このように、盗撮行為者が、ビデオカメラに赤外線除去フィルタなどを取り付け、赤外領域の光を遮断して撮影を行った場合には、赤外線発光ユニット204から発せられる盗撮防止信号の効果が低減してしまう。そこで、このようなビデオカメラの存在を検知するために、本実施の形態の映像表示システム1には、赤外線検知部140が設けられている。
 (赤外線検知部について)
 以下に、赤外線検知部140の構成について説明する。
 赤外線検知部140には、広角レンズ141、赤外線受光部142(非可視光受光部)、および、画像処理部143などが含まれている。
 広角レンズ141は、赤外線受光部142が広範囲からの反射光を受光できるようにするためのものである。通常、広角レンズ141は、画角が63度以上である。この広角レンズ141が設けられていることにより、劇場内の全ての観客席からの反射光を受光することができる。
 赤外線受光部142は、CCDまたはCMOSイメージセンサを受光素子として備えている。この受光素子は、可視領域だけではなく、紫外および赤外領域の波長の光に対しても受光感度を有する。そのため、受光素子の受光面には可視光カットフィルタなどの光学フィルタが設けられており、この光学フィルタによって紫外領域および可視領域の波長の光を除去した後、受光素子に取り込まれ、当該素子が取得したデータに基づいて画像を形成する。なお、前記のフィルタは特定の波長の光のみ通過させるフィルタであってもよく、また、特定の波長のみを除去するフィルタであってもよい。
 画像処理部143は、盗撮用のビデオカメラをより確実に認識するために、赤外線受光部142によって取り込まれた画像に対して処理を施す。ここで行われる画像処理の詳細については、後述する。
 本実施の形態においては、赤外線検知部140は赤外線カメラ205で実現される。なお、画像処理部143については、赤外線カメラ205とは別体のPCなどの専用の画像処理装置で実現してもよい。
 本実施の形態の映像表示システム1は、上記のような赤外線検知部140を有していることによって、図3に示すように、赤外線による妨害画像を除去するためにローパスフィルタなどの赤外線除去フィルタ131をカメラ130aに取り付けた場合に、赤外線発光ユニット204から照射された赤外線bが赤外線除去フィルタ131によって反射されて得られる反射光(反射された赤外線c)を検知することができる。
 なお、赤外線検知部140において検知することが可能な赤外線除去フィルタ131としては、例えば、赤外線反射フィルタまたは赤外線吸収フィルタなどがある。これらのフィルタは、赤外線の反射率が高いため、盗撮用のカメラ130にこれらのフィルタが取り付けられていた場合に、赤外線検知部140によって容易にカメラ130の存在を検知することができる。
 また、赤外線反射フィルタと赤外線吸収フィルタとを比較すると、赤外線反射フィルタのほうがより赤外線の反射率が高いが、赤外線吸収フィルタを使用した場合にも、ガラスなどと同程度の反射率が得られるため、赤外線検知部140によって検知することができる。
 なお、ビデオカメラのレンズのような曲面レンズの赤外線の反射率は、一般的に、赤外線除去フィルタの反射率よりも低いが、曲面状のガラス(例えば、ガラスコップ)や曲面状の金属(例えば、ねじ回し(screwdriver)やメガネのフレーム等のような棒状の金属
)の反射率よりは高い。そのため、画像処理部143における画像処理の方法によれば、赤外線除去フィルタが設けられていない通常のビデオカメラのレンズについても、赤外線検知部140における検知が可能となる。
 なお、赤外線検知部140は、スクリーンと同じ平面上またはスクリーンの裏側等の盗撮される画面側に設けられており、観察者側からの反射光を効率良く受光できるようにその受光面が向いていることが好ましい。
 なお、上記の説明においては、スクリーン203に設けられた音響用の穴を通して、観察者(観客席)に向かって赤外線が照射される構成を例示した。しかし、赤外線の照射は、必ずしも音響用の穴を利用しなくても良い。例えば、赤外線を通過させる穴を専用に設けても良いし、音響用以外の他の用途に設けられた穴を利用しても良い。
 (画像処理部での画像処理方法について)
 続いて、画像処理部143において行われる画像処理の具体例を説明する。但し、この方法は本発明の一例であり、本発明はこれに限定されない。
 赤外線検知部140(赤外線カメラ205)内の赤外線受光部142で得られた赤外線画像データは、複数のフレームからなる画像データとしてフレームごとに画像処理部143に入力される。各フレーム画像データは、縦横に配列した複数の画素に対応した階調データを有している。各画素の階調データは、当該画素において受光した赤外線の強度に対応した階調値(例えば、0~255階調)のデータである。ここでは、受光した赤外線強度がゼロの場合に0階調(これを便宜上、黒表示と呼ぶ)となり、受光した赤外線強度が最大の場合に255階調(これを便宜上、白表示と呼ぶ)となる。
 図4には、画像処理部143内を機能ごとに分割した構成を示す。図4に示すように、画像処理部143内には、背景削除部150、フリッカ除去フィルタ151、動き検出部152、ノイズ除去フィルタ153、2値化処理部154、面積計測部155、および、カメラ判定部156(判定部)が設けられている。
 背景削除部150は、赤外線受光部142で得られた赤外線画像データ(フレーム画像データ)を入力し、入力されたフレーム画像データから背景画像を除去する。このとき、背景削除部150は、リファレンス画像データ150aを参照する。例えば、観客がいない場合の劇場内において映像表示システム1の赤外線発光ユニット204を作動させ、このときに赤外線カメラ205で撮影された1フレーム分の画像データを、リファレンス画像データ150aとして用いることができる。
 ここで、背景削除部150による背景画像の除去処理について、詳しく説明する。
 背景削除部150へ入力されるフレーム画像データXtを、下記の数式(数5)のとおりに表すものとする。ここで、1つのフレーム画像データxtが、水平方向にN画素、垂直方向にM画素の、合計M×N画素の解像度を有するものとする。tは、フレーム番号を表す。
Figure JPOXMLDOC01-appb-M000009
 また、リファレンス画像データYを、下記の数式(数6)のとおりに表すものとする。なお、リファレンス画像データには時間的変化はないので、フレーム画像データXtの全てに対して、常に同じリファレンス画像データYが用いられる。
Figure JPOXMLDOC01-appb-M000010
 背景削除部150は、フレーム画像データXtの各画素成分から、リファレンス画像データYの各画素成分に所定の係数λを乗じて得られた成分を差し引くことにより、背景画像を除去する。すなわち、背景除去部150は、下記の数式(数7)で表される(Xt-λY)を演算する。
Figure JPOXMLDOC01-appb-M000011
 ここで、背景削除部150は、上記数式(数7)の各成分の絶対値総和が最小となるように、上記の係数λの値を求める。このように係数λの値を決定して、上記数式(数7)の演算を行うことにより、フレーム画像データXtにおける、リファレンス画像データYに含まれる固定反射物からの反射光成分の影響を最小限とすることができる。なお、上記数式(数7)の各成分の絶対値総和は、下記の数式(数8)で表される。
Figure JPOXMLDOC01-appb-M000012
 なお、上記数式(数8)で表される絶対値総和を最小とする方法の一例として、これにのみ限定されないが、解析的手法(ラグランジュの未定乗数法)による方法を以下に説明する。数式(数8)で表される絶対値総和を最小とすることと、下記の数式(数9)で表される関数Λ(λ)の値を最小とすることとは、同義である。
Figure JPOXMLDOC01-appb-M000013
 ここで、数式(数9)の関数をλで微分すると、数式(数10)のとおりとなる。
Figure JPOXMLDOC01-appb-M000014
 そして、この数式(数10)の値がゼロとなるように、すなわち、下記数式(数11)が成り立つように、係数λの値を求める。
Figure JPOXMLDOC01-appb-M000015
 そうすると、係数λの値は、下記数式(数12)のとおりとなる。
Figure JPOXMLDOC01-appb-M000016
 すなわち、解析的手法によれば、背景削除部150は、上記数式(数12)にしたがって係数λの値を決定し、決定された係数λを上記の数式(数7)に適用することにより、フレーム画像データXtから背景画像を削除する。この背景削除処理により、フレーム画像データXtにおける、リファレンス画像データYに含まれる固定反射物からの反射光成分の影響を最小限とすることができる。
 フリッカ除去フィルタ151は、複数のフレーム画像データにおける各画素の階調値の平均を算出し、前記複数のフレーム画像データにおける各画素の階調値を、求められた平均値に置き換える。これにより、赤外線発光ユニット204の光源点滅の影響等を除去する。
 動き検出部152は、複数のフレーム間の差分をとることにより、動く赤外線反射物からの反射光成分を検出する動き検出処理を行う。検出された反射光成分は、ノイズ成分として、後段のノイズ除去フィルタ153において除去される。これにより、画像データ内の動きのある箇所を排除することができる。通常、盗撮行為はカメラを固定して行うため、この動き検出処理によって、動きのある赤外線反射物からの反射光成分を除去し、静止している反射物のみを特定することができる。この結果、盗撮用カメラの検知精度を上げることが可能になる。
 なお、この実施形態においては、背景削除部150が、フリッカ除去フィルタ151の前段に設けられていることにより、以下の効果がある。なお、本実施形態との比較例として、フリッカ除去処理を行ってから背景画像を削除する構成を、図10に示す。図10の構成では、入力されたフレーム画像データは、最初に、フリッカ除去フィルタ151へ入力され、フリッカ除去フィルタ151において、複数のフレーム画像データの各画素の平均を求めることにより、フリッカが除去される。フリッカが除去された(すなわち平均化された)複数のフレーム画像データは、差分処理部252へ送られる。差分処理部252は、前記複数のフレーム画像データから、リファレンス画像データを差し引くことにより、背景画像の成分を除去する。
 すなわち、この図10の比較例によれば、フリッカ除去フィルタ151が、複数のフレームにおける各画素の階調値の平均を算出してから背景画像成分を差し引くので、動く反射物が存在する場合、平均算出の対象となった複数のフレームの全てにわたって、その反射物の像が、うっすらと写り込んだ状態となる。この状態では、後段の動き検出部152において、それら複数のフレームから前記の動く反射物の像を除去することができなくなってしまう。
 しかし、本実施形態のように、背景削除部150がフリッカ除去フィルタ151の前段において、フレーム画像データXtのそれぞれについて、背景削除処理を行うことにより、上述の比較例のように、動く反射物の像が他のフレームに写り込むことがない。したがって、後段の動き検出部152において、複数のフレーム画像データ間の差分をとることにより、動く反射物の像を効果的に除去することができる。
 ノイズ除去フィルタ153は、周辺の数画素が黒表示である領域内に1画素または一定数未満の数画素からなる白表示が存在する場合には、当該白表示の画素をノイズとして除去する回路である。このフィルタ回路では、自画素を中心とする複数画素(例えば、3×3画素、5×5画素)内に、一定数以上(例えば、1画素、2画素など)の画素が閾値以上の赤外線を検知した場合に、当該自画素を赤外線検知ありのデータ(例えば、白表示のデータ)として残す。自画素を中心とする複数画素内に、閾値以上の赤外線を検知した画素の数が一定数未満であった場合には、当該自画素を赤外線検知なしのデータとする(すなわち、階調値0と出力する)。また、ノイズ除去フィルタ153は、動き検出部152で検出された、動きのあるノイズ成分も除去する。
 2値化処理部154は、階調データに閾値を設け、階調データが閾値以上の画素については、その階調データを白表示のデータ(すなわち、階調値255)に変換し、階調データが閾値未満の画素については、その階調データを黒表示のデータ(すなわち、階調値0)に変換するという処理を行う回路である。
 面積計測部155は、2値化処理部154によって2値化処理が行われた画像データ内において、白表示の領域内に含まれる画素数を計測する回路である。ここでの処理は、例えば、黒表示の画素と白表示の画素との境界を測定し、この境界内に含まれる画素数をカウントすることによって行う。
 カメラ判定部156は、面積計測部155によって白表示の領域が所定の面積以上(画素数以上)であるか否かを判別し、所定の面積以上の場合に、盗撮用のカメラありと判定する。
 ここで、上記の構成を有する画像処理部143内において行われる画像処理の流れを、図5に示すフローチャートを参照しながら説明する。
 まず、赤外線受光部142から送信されたフレーム画像データ(赤外線画像データ)は、背景削除部150に入力される。背景削除部150は、リファレンス画像データ150aに基づいて、入力したフレーム画像データから、背景画像を削除する(ステップS101)。この処理により、劇場内に予め設置されている備品などからの赤外線反射光を含む背景画像が除去され、観客に起因した反射光のみによる赤外線強度を反映させた画像データが得られる。
 背景画像が削除されたフレーム画像データは、フリッカ除去フィルタ151へ送られ、前述のとおり、フリッカが除去される(ステップS102)。なお、赤外線発光ユニット204から照射される赤外線が常時点灯している場合には、フリッカ除去フィルタ151による処理は必ずしも行う必要はない。
 フリッカ除去フィルタ151による処理後のフレーム画像データは、動き検出部152へ送られ、動く反射物のデータが除去される(ステップS103)。
 次に、ノイズ除去フィルタ153においてノイズ除去処理を行う(ステップS104)。ノイズ除去処理とは、閾値以上の高い赤外線強度を有する画素のうち、所定数の画素(例えば1画素)のみが孤立して存在しているものについては、黒表示の階調データに変換する処理である。なお、ステップS103において動き検出処理を行った場合は、動きを伴う反射物のノイズ成分も、ここで除去される。
 次に、2値化処理部154において、階調値が閾値以上の画素を階調値255に変換し、階調値が閾値未満の画素を階調値0に変換する処理を行う(ステップS105)。ここでの閾値は、例えば、80階調または250階調などとすることができる。また、弱い反射光をノイズとして除去する場合には、上記閾値は、例えば、100階調~250階調の範囲内の値とするのがよい。
 最後に、面積計測部155が、2値化処理された画像データにおいて、白表示(255階調)の領域の面積(画素数)を計測する(ステップS106)。
 そして、カメラ判定部156において、白表示の領域が所定の面積以上(画素数以上)であるか否かを判別し、所定の面積以上の場合に、盗撮用のカメラありと判定する(ステップS107)。なお、ここで、カメラ判定部156が盗撮用カメラありと判定した場合には、警報などを発することができる。また、警報と同時に2値化前の撮影画像を管理室などのモニタに表示することにより、監視員が盗撮カメラ位置を容易に推定できるようにしてもよい。
 以上の方法によれば、映画館などにおいて映画の盗撮を行う者を自動で検出することが可能となる。なお、上記のように自動検出を行う場合には、例えば、上記の画像処理によって、赤外線除去フィルタの存在が確認されたら、劇場の管理者(または監視員)がいる部屋で警報を鳴らすなどして盗撮者の存在を知らせることができる。これにより、管理者がカメラを確認することなく、盗撮者の存在を容易に知ることができる。
 なお、上記した画像処理の方法は一例であり、本発明はこれに限定されない。すなわち、画像処理部143内には、図4に示すような各処理回路が必ずしも全て設けられている必要はなく、図4に示す各処理回路のうちの一つあるいは複数の処理回路が設けられている場合にも、盗撮用のカメラの検知を適切に行うことができる。
 また、本実施形態において、画像処理部143が、赤外線受光部142から入力される全てのフレーム画像データをリアルタイムに処理することにより、これらの全てのフレーム画像データから、盗撮用カメラの検知処理を行っても良い。あるいは、画像処理部143を複数設けて、これら複数の画像処理部143により、並列処理を行うようにしても良い。
 または、図6に示すように、画像処理部143が、一部のフレーム画像データF2のみを処理対象とする構成としても良い。例えば、1秒間に60枚のフレーム画像データF1が赤外線受光部142から出力されるものとした場合、そのうちの一部(例えば30枚、20枚、または12枚)のフレーム画像データF2のみを、画像処理部143が処理対象とすることとしても良い。これらの場合に、全てのフレーム画像データF1を処理対象とする場合と比較して、画像処理部143の処理に、およそ2倍、3倍、または5倍の時間をかけられることとなる。したがって、画像処理部143を構成するプロセッサ等の処理能力があまり高くない場合には、このように、一部のフレーム画像データのみを処理対象とすることが効果的である。
 [第2の実施形態]
 本発明の第2の実施形態について、以下に説明する。なお、第1の実施形態で説明した構成については、第1の実施形態と同じ参照符号を付記し、その説明を省略する。
 第1の実施形態においては、数式(数5~数12)に示したように、フレーム画像データの全画素(水平方向N、垂直方向M、合計M×N画素)を用いて、係数λの値を決定する処理を例示した。しかし、係数λの値を決定するために、フレーム画像データの全画素の情報を用いる必要はない。
 したがって、本実施形態においては、例えば、図7Aに示すように、フレーム画像データの一部の領域P1のみを用いて、この領域P1内に存在する画素について、フレーム画像データとリファレンス画像データに係数λを乗じた値との差分(すなわちXt-λY)の絶対値総和が最小となるように、係数λを求める。
 ここで、係数λを決定するために用いる領域の画素数は適宜に決定すれば良く、特に限定はない。また、その位置も、図7Aに示した例のみに限定されない。一般的には、観客席が位置する画像中央部を避けて、画像周辺の適当な領域を用いることが好ましい。例えば、図7Bに示すように、画像の周縁部よりもやや内側を位置する画素からなる領域P2を用いても良い。あるいは、図7Cおよび図7Dにそれぞれ示すように、画像の水平方向または垂直方向に沿った領域P3またはP4を用いても良い。あるいは、図7Eに示すように、画像の二辺に沿った領域P5を用いても良い。なお、これら図7A~図7Eに示した例も、あくまでも具体例に過ぎず、これ以外の領域を用いることも可能である。
 [第3の実施形態]
 本発明の第3の実施形態について、以下に説明する。なお、前述した各実施形態で説明した構成については、それらの実施形態と同じ参照符号を付記し、その説明を省略する。
 上記した実施形態では、劇場の観客席全体を捉えることのできる広角レンズがカメラの前面に取り付けられた赤外線カメラ205を1台備える構成を例に挙げたが、本発明はこれに限定されない。つまり、赤外線カメラ(赤外線検知部)は、劇場の観客席全体を捉えることのできる構成であれば、その構成および台数は、特に限定はされない。
 また、上記の実施形態においては、映像を妨害するノイズとしての赤外線(盗撮防止信号)を発生する赤外線発光ユニットと、盗撮カメラを検知するための赤外線を発生する赤外線発光ユニットとが共通である構成を例示した。しかし、これらの赤外線発光ユニットが別個に設けられた構成としても良い。
 以上の観点から、第3の実施形態では、図8に示すように、スクリーン203bの背面側に、盗撮防止信号としての赤外線を発生する複数のノイズ用赤外光源304aと、盗撮カメラを検知するための赤外線を発生する複数のカメラ検知用赤外光源304bとを備えている。また、スクリーン203bの裏面のほぼ中央に、赤外カメラ305が配置されている。
 ノイズ用赤外光源304aは、例えば、出力1.4Wの赤外LEDである。カメラ検知用赤外光源304bは、例えば、出力0.14Wの砲弾型赤外LEDである。図8の例では、カメラ検知用赤外光源304bは、2枚の基板306によって、スクリーン203bの裏面に、正方格子状に支持されている。ノイズ用赤外光源304aおよびカメラ検知用赤外光源304bの波長は、例えば870~940nm程度である。赤外カメラ305には、可視域カットフィルタ(カットオフ波長870nmの短波長カットフィルタ)を装着することが好ましい。
 なお、図8では、カメラ検知用赤外光源304bが正方格子状に配置された例を示したが、カメラ検知用赤外光源304bを三角格子状に配置された構成としても良い。あるいは、カメラ検知用赤外光源304bが、スキャナ式ユニットや回転式ユニット等の可動式ユニットに設けられていても良い。また、ノイズ用赤外光源304aが極端に大型でなければ、ノイズ用赤外光源304aも可動式ユニットに設けることも可能である。
 ノイズ用赤外光源304aとカメラ検知用赤外光源304bとは独立して制御可能である。ノイズ用赤外光源304aが発光していないタイミングで、カメラ検知用赤外光源304bが発光することが好ましい。この場合、赤外カメラ305は、カメラ検知用赤外光源304bが発光するタイミングに合わせて、反射光の検知を行う。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、ここで開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明によれば、画面に表示されたデジタル映像をビデオカメラで撮影した場合に、撮影された画像の表示品質を劣化させることができる。したがって、本発明を映画館などで利用すれば、映像コンテンツの盗撮およびその不正流通を防止することができる。
 また、本発明によれば、映像コンテンツの盗撮を行おうとする者を容易に検知することができる。したがって、本発明を映画館などで利用すれば、映像コンテンツの盗撮行為を予防することができる。
 本発明は、映像コンテンツの盗撮を試みる者を検知し得る映像表示スクリーンとこれを利用する映像表示システムとして、産業上の利用が可能である。

Claims (11)

  1.  映像を表示する映像表示部と、
     映像とともに可視光以外の光を観察者に対して照射する非可視光発光部と、
     上記観察者が有する撮影装置から反射された上記可視光以外の光を受けて、フレーム画像データを生成する非可視光受光部と、
     前記画像データを処理することにより、前記撮影装置の存在を検出する画像処理部とを備え、
     前記画像処理部が、
     背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する背景削除部と、
     前記背景削除部の処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去するフリッカ除去部とを備えた、映像表示スクリーン。
  2.  前記背景削除部が、フレーム画像データをXt(tはフレーム番号)、リファレンス画像データをY、係数をλとした場合、(Xt-λY)の絶対値総和が最小となるように係数λを決定し、決定された係数λを用いて(Xt-λY)を算出する、請求項1に記載の映像表示スクリーン。
  3.  前記背景削除部が、下記の数式(数13)、(数14)、および(数15)を満たす係数λを用いて、下記の数式(数16)により(Xt-λY)を算出する、請求項2に記載の映像表示スクリーン。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
  4.  前記背景削除部が、前記フレーム画像データの一部の領域内の画素のみを用いて係数λを決定する、請求項2または3に記載の映像表示スクリーン。
  5.  前記画像処理部が、時間的に連続する複数フレームのうち一部のフレームのフレーム画像データのみを処理対象とする、請求項1~4のいずれか一項に記載の映像表示スクリーン。
  6.  前記画像処理部が、前記フリッカ除去部から出力されたフレーム画像データから、前記非可視光の反射物の像のうち動く成分を検出する動き検出部をさらに備えた、請求項1~5のいずれか一項に記載の映像表示スクリーン。
  7.  前記非可視光発光部は、前記映像表示部に映像が表示されている期間中、点灯と消灯とを繰り返す、請求項1~6のいずれか一項に記載の映像表示スクリーン。
  8.  前記画像処理部が、前記フレーム画像データの画素毎に閾値に応じた2値化処理を行う2値化処理部をさらに備えた、請求項1~7のいずれか一項に記載の映像表示スクリーン。
  9.  前記画像処理部が、
     前記2値化処理部によって前記閾値以上の値に2値化処理された画素が集合している領域の面積を計測する面積計測部と、
     該面積計測部によって前記画素が集合している領域が所定の面積以上であるか否かを判別し、所定の面積以上の場合に、前記撮影装置が存在すると判定する判定部とをさらに有する、請求項8に記載の映像表示スクリーン。
  10.  請求項1~9のいずれか一項に記載の映像表示スクリーンと、
     デジタル映像信号に基づいて表示画像を生成し、該表示画像を前記映像表示スクリーンに投射する画像形成部とを有する、映像表示システム。
  11.  映像表示スクリーンに表示される映像を撮影するための撮影装置を検出する方法であって、
     前記映像表示スクリーンに表示される映像とともに、可視光以外の光を観察者に対して照射する工程と、
     上記観察者が有する撮影装置から反射された上記可視光以外の光を受けて、フレーム画像データを生成する工程と、
     前記画像データを処理することにより、前記撮影装置の存在を検出する画像処理工程とを含み、
     前記画像処理工程が、
     背景画像を表すリファレンス画像データを参照し、前記フレーム画像データから前記背景画像の成分を除去する工程と、
     前記背景削除処理後のフレーム画像データを、複数フレームにわたって平均化処理を行うことにより、フリッカを除去する工程とを含む、撮影装置検出方法。
PCT/JP2012/054199 2011-02-28 2012-02-22 映像表示スクリーン、映像表示システム、および撮影装置検出方法 WO2012117906A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-042761 2011-02-28
JP2011042761A JP2012181262A (ja) 2011-02-28 2011-02-28 映像表示スクリーン、映像表示システム、および撮影装置検出方法

Publications (1)

Publication Number Publication Date
WO2012117906A1 true WO2012117906A1 (ja) 2012-09-07

Family

ID=46757845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054199 WO2012117906A1 (ja) 2011-02-28 2012-02-22 映像表示スクリーン、映像表示システム、および撮影装置検出方法

Country Status (2)

Country Link
JP (1) JP2012181262A (ja)
WO (1) WO2012117906A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009611A1 (ja) * 2020-07-08 2022-01-13 株式会社Jsol 情報処理装置、プログラム、及び、情報処理装置の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197562A (ja) * 2001-01-30 2002-07-12 Masanobu Kujirada カメラ等検知装置及び方法
JP2006258651A (ja) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd 不特定撮像装置の検出方法および装置
JP2009282270A (ja) * 2008-05-22 2009-12-03 Nippon Hoso Kyokai <Nhk> 盗撮防止装置
JP2010128037A (ja) * 2008-11-26 2010-06-10 Nippon Hoso Kyokai <Nhk> 投影スクリーン
WO2011105564A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 映像表示スクリーン、映像表示システム、及び盗撮用カメラの検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197562A (ja) * 2001-01-30 2002-07-12 Masanobu Kujirada カメラ等検知装置及び方法
JP2006258651A (ja) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd 不特定撮像装置の検出方法および装置
JP2009282270A (ja) * 2008-05-22 2009-12-03 Nippon Hoso Kyokai <Nhk> 盗撮防止装置
JP2010128037A (ja) * 2008-11-26 2010-06-10 Nippon Hoso Kyokai <Nhk> 投影スクリーン
WO2011105564A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 映像表示スクリーン、映像表示システム、及び盗撮用カメラの検出方法

Also Published As

Publication number Publication date
JP2012181262A (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
WO2011105564A1 (ja) 映像表示スクリーン、映像表示システム、及び盗撮用カメラの検出方法
EP2116047B1 (en) Digital cinema anti-camcording method and apparatus based on image frame post-sampling
US9482779B2 (en) Device and methods for detecting a camera
JP3518528B2 (ja) 撮像妨害方法及びシステム
JP2004533632A (ja) 投影イメージの選択された領域の投影を阻止するための方法および装置
WO2011002059A1 (ja) 映像表示装置、映像表示方法、映像表示スクリーン、及び液晶表示装置
US20120128330A1 (en) System and method for video recording device detection
WO2011105546A1 (ja) 撮像防止装置、撮像防止方法および映像表示システム
JP2009055504A (ja) 監視カメラ装置
US20120320106A1 (en) Video image display device
JP2006258651A (ja) 不特定撮像装置の検出方法および装置
JP2010231748A (ja) 盗撮防止装置
WO2012117906A1 (ja) 映像表示スクリーン、映像表示システム、および撮影装置検出方法
WO2012053445A1 (ja) 映像表示スクリーンおよびこれを用いた映像表示システム
US20100134630A1 (en) Frequency and spectral domain solutions for prevention of video recording
WO2012108318A1 (ja) 映像表示スクリーンおよびこれを備えた映像表示システム
JP5313956B2 (ja) 監視カメラ
US20100103331A1 (en) Frequency and spectral domain solutions for prevention of video recording
Echizen et al. IR hiding: method for preventing illegal recording of videos based on differences in sensory perception between humans and devices
Yamada et al. Countermeasure of re-recording prevention against attack with short wavelength pass filter
JP2004333562A (ja) 映像投影スクリーン
WO2012065241A1 (en) System and method for video recording device detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12753022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12753022

Country of ref document: EP

Kind code of ref document: A1