WO2012117887A1 - Airtightness inspection apparatus - Google Patents

Airtightness inspection apparatus Download PDF

Info

Publication number
WO2012117887A1
WO2012117887A1 PCT/JP2012/054076 JP2012054076W WO2012117887A1 WO 2012117887 A1 WO2012117887 A1 WO 2012117887A1 JP 2012054076 W JP2012054076 W JP 2012054076W WO 2012117887 A1 WO2012117887 A1 WO 2012117887A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
detection
storage
suction
airtightness
Prior art date
Application number
PCT/JP2012/054076
Other languages
French (fr)
Japanese (ja)
Inventor
文男 小川
健太郎 朝長
雅俊 山下
Original Assignee
株式会社oneA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社oneA filed Critical 株式会社oneA
Priority to KR1020137021497A priority Critical patent/KR101765774B1/en
Priority to CN201280010550.0A priority patent/CN103392119B/en
Priority to JP2012524028A priority patent/JP5050139B1/en
Publication of WO2012117887A1 publication Critical patent/WO2012117887A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/229Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators removably mounted in a test cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3281Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators removably mounted in a test cell

Definitions

  • the present invention relates to an airtightness inspection device having a sealed container, and more particularly to an airtightness inspection device for an inspection object such as a secondary battery.
  • a lithium ion battery includes a sealed container in which an electrolyte such as an organic electrolyte is sealed. If there are defects such as pinholes in this sealed container, the hermeticity of the sealed container is insufficient. And possibility that the electrolyte solution enclosed inside this sealed container will leak increases.
  • An airtightness inspection apparatus for performing this airtightness inspection includes a sealed container that can accommodate a battery therein, and a vacuum exhaust pipe connected to the sealed container.
  • the vacuum exhaust pipe includes a vacuum pump, a switching valve, and a hydrogen concentration sensor. And the vacuum pump, the vacuum pump, the switching valve, and the hydrogen concentration sensor are connected in series from the sealed container. And when the vacuum pump is operated, the inside of the sealed container is depressurized. At that time, the gas in the sealed container discharged from the vacuum pump is released into the atmosphere by the switching valve. When the inside of the sealed container reaches a predetermined condition, the switching valve is switched.
  • the hydrogen concentration sensor measures the concentration of hydrogen contained in the gas.
  • This airtightness inspection apparatus compares the measurement result with the hydrogen concentration in the atmosphere. The airtightness inspection apparatus determines whether or not airtightness is maintained.
  • lithium-ion batteries are produced in large quantities by the production line method.
  • the airtightness inspection is required to be performed according to the production speed of the production line. This is not limited to lithium ion batteries. This is also a problem common to inspection objects that are other secondary batteries and primary batteries.
  • a (hydrogen concentration) sensor is provided on the outlet side of the vacuum pump. Therefore, this sensor cannot directly detect the hydrogen concentration contained in the gas. Therefore, in such an airtightness inspection, the airtightness of the inspection object cannot be inspected in a short time according to the production speed of the production line.
  • an object of the present invention is to provide an airtightness inspection apparatus capable of inspecting an airtightness in a short time.
  • An airtightness inspection apparatus includes a storage container for storing an inspection object, suction means for sucking a gas inside the storage container, and a gaseous detection object leaked from the inspection object.
  • a gas detection means capable of detecting the gas tightness, wherein the gas detection means is installed inside the containment vessel, and the suction means detects the gas around the object to be detected.
  • a suction port that can be guided to the means, wherein suction is performed from a suction port provided at a position in the storage container in order to suck the gas around the inspection object.
  • the gas detection means is installed inside the containment vessel for storing the inspection object.
  • the gas inside the containment vessel is sucked from the suction port by the suction means, so that the detection target as well as the gas around the inspection target are It is guided to the gas detection means.
  • the gas detection means can detect the detection object. Therefore, the airtightness inspection apparatus of the present invention can detect whether or not the detection object leaks from the inspection object inside the containment vessel. And an airtightness inspection apparatus can test
  • the storage container is a first storage unit that stores the inspection object, and a second storage unit that can circulate gas inside the first storage unit, wherein the suction port is the first storage unit. It is preferable to include a second storage portion provided so as to be in a position where the gas flowing from the first storage portion can be sucked to the outside.
  • the inspection object is stored in the first storage unit.
  • the gaseous detection object leaking from the inspection object is discharged into the first storage unit.
  • a suction port is provided in the second storage unit.
  • the gas inside the second storage portion is sucked into the suction port by sucking the suction means.
  • the gas inside the first storage unit is sucked into the suction port.
  • the detection object leaked from the inspection object is guided to the gas detection means together with the gas around the inspection object from the first storage part by sucking the gas inside the second storage part from the suction port by the suction means. Is done.
  • the gas detection means can detect the detection object. Therefore, the airtightness inspection apparatus of the present invention can detect whether or not the detection object leaks from the inspection object inside the containment vessel. And an airtightness inspection apparatus can test
  • the suction means includes a communication port for sucking the gas inside the first storage part into the second storage part.
  • the communication port can be arranged at a position close to the first storage unit in which the inspection object is stored. This communication port can suck the gas around the inspection object at high speed.
  • the suction means includes an adjustment means capable of adjusting a flow rate of gas for sucking the gas inside the storage container from the suction port.
  • the gas inside the containment vessel is guided to the gas detection means.
  • the adjusting means can be adjusted so that the gas detecting means has a flow rate suitable for detecting the detection target.
  • the gas detection unit is configured to detect the detection target, a guide path for guiding the gas inside the storage container to the detection section, and guide the gas to the detection section through the guide path. It is preferable to provide an exhaust hole provided at a position intersecting with the gas flow.
  • the gas inside the containment vessel is sucked by the suction means. And this gas is guided to a detection part via a guide way.
  • This gas detection means has a structure capable of decelerating the flow rate of the sucked gas. For this reason, the gas detection means can improve the sensitivity which detects a detection target object.
  • An airtightness inspection apparatus includes a storage container for storing an inspection object, suction means for sucking a gas inside the storage container, and a gaseous detection object leaked from the inspection object.
  • a gas detection means capable of detecting an object, wherein the gas detection means is installed inside the containment vessel, and the suction means removes gas around the inspection object.
  • a suction port that can be guided to a gas detection means, and sucks from a suction port provided at a position in the storage container in order to suck the gas around the inspection object, and the storage container is the inspection object
  • the suction means includes a communication port for sucking the gas inside the first storage unit into the second storage unit, and a lid that closes the communication port, and the lid includes the second storage unit. It is a flow hole which can pass the gas attracted
  • the gas detection means is installed inside the containment vessel for storing the inspection object.
  • the gas inside the containment vessel is sucked from the suction port by the suction means, so that the detection target as well as the gas around the inspection target are It is guided to the gas detection means.
  • the gas detection means can detect the detection object. Therefore, the airtightness inspection apparatus of the present invention can detect whether or not the detection object leaks from the inspection object inside the containment vessel. And an airtightness inspection apparatus can test
  • the lid can limit the opening area of the communication port by the flow hole. Therefore, the flow hole can restrict the flow rate of the gas passing through the communication port.
  • the airtightness inspection apparatus has an excellent effect that the airtightness inspection can be performed in a short time.
  • FIG. 1 is an overall overview diagram of an airtightness testing apparatus according to the first embodiment.
  • (A) shows a front view.
  • (B) shows a side view.
  • FIG. 2 is a storage container used in the airtightness inspection apparatus according to the embodiment.
  • (A) shows a front view.
  • (B) shows a top view.
  • (C) shows a side view.
  • FIG. 3 shows a cross-sectional view of the storage container used in the airtightness inspection apparatus according to the embodiment.
  • FIG. 4 is a gas flow diagram showing a gas flow in the airtightness inspection apparatus according to the embodiment.
  • FIG. 5 shows gas detection means used in the airtightness inspection apparatus according to the embodiment.
  • (A) And (b) shows a longitudinal cross-sectional view.
  • (C) shows a bottom view.
  • FIG. 6 is a diagram related to a detection unit of a gas detection unit used in the airtightness inspection apparatus according to the embodiment.
  • (A) shows the operating characteristic figure at the time of gas pressure reduction.
  • (B) shows an equivalent circuit diagram.
  • FIG. 7 shows a control block diagram of the airtightness inspection apparatus according to the embodiment.
  • FIG. 8 shows a control flow diagram of the airtightness inspection apparatus according to the embodiment.
  • FIG. 9 shows a control flow diagram of the airtightness inspection apparatus according to the embodiment.
  • FIG. 10 shows the sensor output voltage of the detection part of the gas detection means of the airtightness inspection apparatus according to the embodiment.
  • FIG. 11 is a diagram of an airtightness inspection apparatus according to the second embodiment.
  • (A) shows a general overview.
  • FIG. 12 is a cross-sectional view of an airtightness inspection apparatus according to the third embodiment.
  • FIG. 13 is a lid of the airtightness inspection apparatus according to the embodiment.
  • (A) shows sectional drawing.
  • (B) shows a bottom view.
  • FIG. 14 is an overall schematic diagram of an airtightness inspection apparatus according to another embodiment.
  • the airtightness inspection apparatus according to the first embodiment of the present invention will be described with reference to the drawings. First, the configuration of the airtightness inspection apparatus according to the embodiment will be described in detail with reference to FIGS.
  • the airtightness inspection apparatus is an inspection apparatus that inspects the airtightness of an inspection object by detecting leakage of the detection object enclosed in the inspection object.
  • an airtight inspection of a lithium ion battery will be described as an example of the inspection object.
  • an electrolyte solution electrolyte
  • an aqueous solution such as dilute sulfuric acid or an alcohol-based organic electrolyte solution
  • a positive electrode and a negative electrode If there is a defect such as a pinhole or a crack in the sealed container, the electrolyte leaks from the defective part of the sealed container.
  • this airtightness inspection apparatus for a lithium ion battery the organic electrolyte that has become gaseous due to leakage from the sealed container during the inspection process is detected as a detection target. And in this airtightness test
  • inspection apparatus the quality of the airtightness of the sealed container is judged.
  • such an inspection of an airtightness inspection apparatus for a lithium ion battery will be described.
  • the airtightness inspection apparatus 1 sucks the storage container 2 for storing the inspection object X and the gas inside the storage container 2 as shown in the overall overview of FIGS. 1 (a) and 1 (b).
  • the suction means 3, the gas detection means 4 capable of detecting the gaseous detection object leaked from the inspection object X, the control means 5 for controlling the suction means 3 and the gas detection means 4, and these devices are integrated.
  • the containment vessel 2 is divided into two rooms as shown in detail in FIGS. 2 (a) to 2 (c) and FIG.
  • the storage container 2 includes a first storage unit 21 that stores the inspection target X, and a second storage unit 22 through which the gas inside the first storage unit 21 can flow.
  • the first storage portion 21 and the second storage portion 22 are fixed to the protruding portion 20a by a bolt and a nut, and protruded inwardly in the middle in the height direction inside the storage container 2.
  • the first storage unit 21 and the second storage unit 22 are partitioned by a wall 20b that is sealed so that gas cannot flow.
  • the first storage unit 21 stores the first chamber 21a that is in a reduced pressure atmosphere by sucking out the internal gas, and the inspection object X (specifically, a lithium ion battery) inside the first chamber 21a.
  • the first chamber 21 a has a sealed structure in which the inspection object X is placed and can be isolated from the outside of the first storage unit 21. Further, the first chamber 21 a has a sealed structure that can be isolated from the adjacent second storage portion 22. Therefore, when the gas inside the first chamber 21a is sucked to the outside, the inside becomes a reduced pressure atmosphere or a vacuum. That is, the first chamber 21a is a device for reducing the oxygen concentration inside.
  • the storage means 21b is a storage door having a function capable of being isolated from the outside so that the first chamber 21a is sealed from the outside when closed. Furthermore, the storage means 21b is also used when the inspection object X is taken out from the inside of the first chamber 21a after the inside of the first chamber 21a is decompressed. Naturally, when the storage means 21b is opened, the gas inside the first chamber 21a is released to the outside.
  • the atmosphere release means 21c includes an atmosphere release valve in the middle or at the end. Therefore, the air release means 21 c is a communication pipe that can communicate the inside and the outside of the first storage unit 21.
  • the air release means 21c is provided to return the pressure inside the first chamber 21a to atmospheric pressure after depressurizing the inside of the first chamber 21a.
  • the inspection means 21d is provided in the storage means 21b.
  • the inspection means 21d is an inspection window that allows the inside of the first chamber 21a to be viewed from the outside.
  • the pressure gauge 21e is connected to the control means 5.
  • the pressure gauge 21e has a transmitter capable of digitally or analogly outputting the measured internal pressure of the first chamber 21a.
  • the second storage unit 22 includes a first chamber 21a and a second chamber 22a that are brought into a reduced pressure atmosphere by sucking out the internal gas, and the first chamber 21a and the second chamber 22a so that the gas can flow between the first chamber 21a and the second chamber 22a.
  • a communication port 22b that communicates with the second chamber 22a, a suction port 22c that is provided at a position where the gas flowing from the first chamber 21a can be sucked to the outside (of the first storage unit 21 and the second storage unit 22),
  • An inspection means 22d for attaching and inspecting a device such as the gas detection means 4 attached inside the second chamber 22a, and a pressure gauge 22e (see FIG. 3) for measuring the pressure in the second chamber 22a are provided. .
  • the second chamber 22 a has a sealed structure in which the inspection object X is placed and can be isolated from the outside of the second storage unit 22. Further, the second chamber 22 a has a sealed structure that can be isolated from the adjacent first storage portion 21. Therefore, when the gas inside the second chamber 22a is sucked to the outside, the inside becomes a reduced pressure atmosphere or a vacuum. That is, the second chamber 22a is a device for sucking the gas inside the first chamber 21a and making the inside of the first chamber 21a a reduced pressure atmosphere or a vacuum.
  • the communication port 22b is an opening through which gas is circulated in the present embodiment. Furthermore, the communication port 22b has a structure in which a device for controlling the gas flow can be attached. This communication port 22b is provided in two places on the wall 20b.
  • the adjusting means 32 is attached to one communication port 22b (hereinafter referred to as “first communication port 22b1”, see FIG. 3).
  • the first circulation port 22b1 is disposed at a position where the gas inside the first storage unit 21 is efficiently sucked to the outside through the second storage unit 22. Therefore, the first communication port 22b1 is arranged closer to the suction port 22c than the other communication port 22b.
  • the gas detection means 4 is attached to the other communication port 22b (hereinafter referred to as “second communication port 22b2”, see FIG. 3).
  • the second communication port 22b2 is disposed at an efficient position for sucking the gas around the inspection object X to the outside through the suction port 22c. More specifically, the second communication port 22b2 collects most of the gas around the inspection target X (if the detection target flows out from the inspection target X, this detection target). It is provided at an easy position.
  • the suction port 22c is provided at a position where the gas around the inspection object X can be guided to the gas detection means 4 installed in the storage container 2.
  • the suction port 22c stores the gas around the inspection object X, that is, the gas inside the first storage unit 21, from the first communication port 22b1 and / or the second communication port 22b2 into the second storage. In order to make the part 22 suck, it is provided at a position where the gas is easily sucked.
  • Inspection means 22d is provided on the top surface of the second chamber 22a.
  • the inspection means 22d is an inspection lid having a structure in which the second chamber 22a can be sealed by being tightened and closed on the top surface with bolts and nuts.
  • the pressure gauge 22e is connected to the control means 5.
  • the pressure gauge 22e has a transmitter capable of digitally or analogly outputting the measured internal pressure of the second chamber 22a.
  • the suction means 3 sucks from the suction port 22c.
  • the suction port 22c is provided at a position in the storage container 2 where the gas around the inspection object X can be guided to the gas detection means 4 installed inside the second storage unit 22.
  • the suction means 3 is guided to the gas detection means 4 from the suction device 31 (see FIGS. 1A and 1B and FIG. 3) for sucking the gas inside the storage container 2 and the periphery of the inspection object X.
  • the switching means 32 that can switch between the plurality of communication ports 22b1 and 22b2, and the adjustment means 33 that can adjust the flow rate of the gas that sucks the gas inside the storage container 2 from the suction port 22c ( 4).
  • the suction device 31 is connected to the storage container 2 (specifically, the suction port 22 c of the second storage unit 22) via the adjusting means 33.
  • the suction device 31 is a vacuum pump that sucks the gas inside the storage container 2.
  • the adjusting means 32 adjusts the flow rate flowing through the two communication ports 22 b 1 and 22 b 2 of the second storage portion 22, thereby adjusting the flow rate of the gas guided to the gas detection means 4. adjust.
  • the adjusting means 32 according to the present embodiment is a gas cutoff valve 32a attached to one of the communication ports 22b1 and 22b2 and the one communication port 22b (first communication port 22b1).
  • the gas detection means 4 is attached to the other communication port 22b (second communication port 22b2).
  • the flow passage through which the gas inside the first storage portion 21 passes through the gas shutoff valve 32a from the first communication port 22b1 and flows to the second storage portion 22 will be referred to as a first flow passage Ra-1.
  • the flow passage through which the gas inside the first storage portion 21 passes through the gas detection means 4 from the second communication port 22b2 and flows to the second storage portion 22 will be referred to as a second flow passage Ra-2.
  • the adjusting means 32 shuts off the gas shut-off valve 32a, so that the first flow passage Ra-1 is shut off, and the gas inside the first storage portion 21 is not supplied with a shut-off mechanism. -2 is allowed to pass through to the second storage unit 22 only. That is, the flow rate of the gas to the gas detection means 4 provided in the second flow path Ra-2 can be the total amount of gas flowing from the first storage unit 21 to the second storage unit 22.
  • the adjusting means 32 opens the gas cutoff valve 32a, thereby allowing the gas inside the first storage portion 21 to pass through both the first flow path Ra-1 and the second flow path Ra-2. 2 Pass through the storage unit 22.
  • the first communication port 22b1 is closer to the suction port 22c than the second communication port 22b2, and is arranged at a position where it can be easily sucked. Therefore, most of the gas sucked from the first storage unit 21 to the second storage unit 22 flows into the first flow path Ra-1, and substantially flows into the second flow path Ra-2. Absent.
  • the second flow rate adjusting means 33 includes a first suction route Rb-1 for sucking the gas inside the second storage unit 22 from the suction port 22c at the (maximum) suction flow rate of the suction device 31, and the suction flow rate of the suction device 31.
  • the flow rate to be sucked is adjusted by switching between the second suction route Rb-2 for sucking at a reduced flow rate and reducing the flow velocity.
  • the second flow rate adjusting means 33 is connected to the first pipe 33a for guiding the gas inside the second storage portion 22 from the suction port 33c, and the first pipe 33a, and the first suction route Rb-1
  • a flow rate adjusting valve (flow rate adjusting means) 33e provided in the third pipe 33d and capable of adjusting the flow rate of the gas passing through the pipe, and the first suction route Rb-1 and the second suction route Rb-2 merge.
  • Pipe 33f for guiding the gas from the head to the suction device 31 , Comprising a.
  • the gas detection means 4 includes a detection unit 41 that detects a detection target, and a detection unit that detects the gas inside the first storage unit 21 from the second communication port 22b2. And a holder 42 for guiding to 41.
  • the detection unit 41 is a semiconductor type gas sensor that can detect an organic solvent that is a detection target.
  • the detection part 41 demonstrates the example which used the tin oxide semiconductor gas sensor in this embodiment.
  • This semiconductor-type gas sensor uses the fact that the electrical conductivity changes due to the detection object adhering to the surface of the metal oxide semiconductor element. By measuring the electrical conductivity, the presence or absence of the detection object is detected. Is detected. The gas sensor further detects the amount of leakage of the detection object.
  • FIG. 6A shows the operating characteristics of the gas sensor when the gas pressure is reduced.
  • the horizontal axis represents the pressure reduction level [kPa] / [Torr] at which the inside of the storage container is decompressed.
  • the vertical axis represents the oxygen concentration [%] and the sensor output [mV] of this gas sensor.
  • the oxygen concentration is a line indicated by a dotted line.
  • the sensor output of the gas sensor is a b line indicated by a solid line.
  • the sensor output of this gas sensor is the value of the voltage VRL across the load resistor RL connected in series with the semiconductor element 41a, as shown in the equivalent circuit of the gas sensor in FIG. 6B.
  • the holder 42 includes a holder main body 42a that holds the detection unit 41, a guide path 42b that guides the gas inside the first storage unit 21 to the detection unit 41, And an exhaust hole 42c provided at a position intersecting with the flow of gas guided to the detection unit 41 by the guide path 42b.
  • 5A is a cross-sectional view taken along the line AA in FIG. 5C.
  • the vertical cross-sectional view of FIG. 5B is a cross-sectional view taken along the line BB in FIG.
  • the holder main body 42a includes a mounting unit 44 that can mount the holder 42 to the second communication port 22b2, and a holding unit 45 that holds the detection unit 41.
  • a female screw is formed on the inner peripheral surface of the second communication port 22b2.
  • a male screw that is screwed into the female screw of the second communication port 22b2 is formed on the lower peripheral surface of the holder body 42a. Therefore, the mounting means 44 has a structure that is detachably mounted to the second communication port 22b2.
  • the guide path 42b is disposed at a position where the gas inside the first storage portion 21 can be sucked from the first storage portion 21 side.
  • the holder main body 42a is disposed at a position where the exhaust hole 32c can exhaust the gas inside the first storage portion 21 on the second storage portion 22 side.
  • the holding means 45 is arranged so that the detection surface 41b of the detection unit 41 is orthogonal to the flow of gas flowing through the guide path 42b.
  • the holding means 45 is configured to prevent the gas flowing in the guide path 42b from flowing backward (upward in FIGS. 5A and 5B) from the detection surface 43 of the detection unit 41 (detection surface 43 of the detection unit 41). So that there is no gap between them.
  • the guide path 42b is straight from the suction port 46 provided at the lower end of the holder main body 42a (the lower side in FIGS. 5A and 5B) toward the detection surface 43 of the detection unit 41a held by the holder main body 42a. It is the flow path extended in a shape.
  • the exhaust hole 42c is a hole penetrating the side surface of the holder main body 42a between the outer peripheral surface and the guide path 42b. More specifically, the exhaust hole 42c is a long hole whose length in the width direction of the holder body 42a is a long side and whose length in the axial direction is a short side.
  • the exhaust hole 42c is disposed at a position that communicates at least with the second storage part 22 side.
  • the exhaust hole 42c is disposed in the immediate vicinity of the detection unit 41.
  • the exhaust hole 42c bends the gas flow guided by the guide path 42b orthogonally at the detection surface 43 of the detection unit 41 to the side so that the gas does not pass through the detection unit 41 in this way. It can be discharged to the second storage unit 22 side.
  • the gas flowing in the guide path 42b is bent at a right angle on the detection surface 43 of the detection unit 41, so that the flow velocity is reduced. Therefore, since the detection part 41 can detect after reducing the flow velocity of gas with the detection surface 43, it can suppress the temperature fall of the heater incorporated.
  • the sensor resistance is prevented from increasing due to a decrease in the temperature of the built-in heater, and the detection unit 41 can operate normally.
  • the control means 5 includes an operation unit 51 that is operated by an inspection person engaged in an airtightness inspection, the storage container 2, the suction means 3, and the gas detection means 4.
  • An input / output unit 52 for inputting / outputting signals
  • a control unit 53 for controlling the suction means 3 and the like based on a signal input from the input / output unit 52
  • an informing unit 54 for informing a test result and the like of the control unit 53 And comprising.
  • the operation unit 51 is connected to the control unit 53.
  • the operation unit 51 includes an inspection start switch for instructing the apparatus to start an airtightness inspection by the person to be inspected, a power switch for supplying power to each apparatus, and the like.
  • the input / output unit 52 is connected to the pressure gauge 21e of the first storage unit 21, the pressure gauge 22e of the second storage unit 22, and the detection unit 41 of the gas detection unit 4, and supplies these power sources. Accepts various signals.
  • a measurement signal obtained by measuring the pressure inside the first storage unit 21 is input from the pressure gauge 21 e of the first storage unit 21.
  • a measurement signal obtained by measuring the pressure inside the second storage unit 22 is input from the pressure gauge 22e of the second storage unit 22.
  • a sensor output is input from the detector 41 of the gas detector 4.
  • the input / output unit 52 is further connected to the suction device 31, the gas cutoff valve 32 a of the switching unit 32, the flow path switching valve 33 b of the adjusting unit 33, and the atmosphere release valve 21 c of the first storage unit 21.
  • the input / output unit 52 supplies power and outputs various signals.
  • the suction device 31 is supplied with power for driving the pump.
  • a cutoff signal is output to the gas cutoff valve 32a.
  • a flow path switching signal is output to the flow path switching valve 33b.
  • the control unit 53 performs various arithmetic processes with a ROM that is a non-volatile memory that stores a control program related to an airtightness test, a RAM that is a volatile memory that stores an input / output signal from the input / output unit 52, and the like. And an arithmetic unit.
  • the control unit 53 controls the suction device 31, the gas cutoff valve 32 a, the flow path switching valve 33 b and the atmosphere release valve 21 c to control the gas pressure inside the storage container 2, and the first storage unit 21.
  • a state monitoring unit 53b for monitoring the internal state of the containment vessel 2 based on the measurement signals from the pressure gauge 21e and the pressure gauge 22e of the second storage unit 22, and the airtightness of the test object from the internal pressure of the containment vessel 2
  • An airtightness determining unit 53c for determining
  • the notification unit 54 includes a first pressure indicator 54 a that displays the pressure of the gas inside the first storage unit 21, a second pressure display meter 54 b that displays the pressure of the gas inside the second storage unit 22, and an airtight And a determination display unit (display panel, alarm lamp, alarm buzzer) 54c that notifies the determination result of the airtightness of the inspection object by the sex determination unit 53c.
  • a determination display unit display panel, alarm lamp, alarm buzzer
  • the casing 6 is provided with a caster on the bottom surface so that the storage container 2, the suction means 3, the control means 5 and the like can be accommodated and transported.
  • Various instruments and operation switches of the control means 5 are attached to the front surface of the casing 6.
  • the inspection object X is stored in the first storage unit 21.
  • the inspection door (inspection means) 21d is closed, and the first storage portion 21 is sealed (S1).
  • the operation start switch of the operation unit 51 is operated and the airtightness inspection is started (S2), the airtightness inspection is performed in such a condition that the detection object can be leaked from the inspection object X.
  • test object X is airtight or not is determined from a decompression stage in which the storage unit 21 is depressurized to a predetermined pressure and a sensor output signal of the detection unit 41 that detects the detection target object from the gas inside the first storage unit 21.
  • the process is divided into a determination stage and a determination stage.
  • the pressure control unit 53a of the control unit 5 controls the switching unit 32 so that the gas inside the first storage unit 21 mainly passes from the first flow path Ra-1 to the second storage unit. It adjusts so that 22 may be attracted
  • the pressure control unit 53a controls the adjustment unit 33 so that the gas inside the second storage unit 22 is sucked from the first suction route Rb-1. That is, the pressure control unit 53a switches the flow path switching valve 33b to the first suction route Rb-1 side (S4).
  • the pressure control unit 53a sucks the suction device 31 to drive it.
  • a drive signal for driving the device 31 is output to the input / output unit 52 (S5).
  • the suction device 31 starts to be driven by the input of a drive signal from the input / output unit 52.
  • the suction device 31 sucks the gas inside the second storage unit 22.
  • the suction device 31 mainly sucks the gas inside the first storage portion 21 from the first flow path Ra-1. In this way, the first storage unit 21 starts to be depressurized.
  • the state monitoring unit 53b monitors the gas pressure inside the storage containers 21 and 22 based on measurement signals input from the pressure gauge 21e of the first storage unit 21 and the pressure gauge 22e of the second storage unit 22. And the state monitoring part 53b is outputting the measurement signal which measured the pressure of the gas inside the pressure control part 53a and the alerting
  • FIG. The notification unit 54 displays the measurement signal (pressure signal) input from the state monitoring unit 53b on the first pressure display meter 54a and the second pressure display meter 54b in order to notify the operator.
  • the pressure control unit 53 determines that the pressure in the first storage unit 21 has reached a predetermined pressure based on the pressure signal input from the state monitoring unit 53b (YES in S6), the airtightness test is detected from the test object. Since the target object is in a condition that allows leakage, the process moves to the detection stage.
  • the predetermined pressure here is a pressure required to leak the detection target from the inspection target X.
  • this pressure is referred to as “determination start pressure”. In the present embodiment, this determination start pressure is 93.3 [kPa] / 700 [Torr].
  • the pressure control unit 53a of the control unit 5 controls the adjustment unit 33 so that the gas inside the second storage unit 22 is second suctioned. Switch so as to be sucked from route Rb-2. That is, the pressure control unit 53a switches the flow path switching valve 33b to the second suction route Rb-2 side (S7).
  • the pressure control unit 53a further controls the switching means 32 to adjust the gas inside the first storage unit 21 so that the gas is sucked into the second storage unit 22 from the second flow path Ra-2. That is, the pressure control unit 53a shuts off the gas shutoff valve 32a (S8).
  • the detection unit 41 of the gas detection means 4 is connected to the detection unit 41 of the first storage unit 21.
  • the airtightness determination unit 53c accepts the input of the sensor output signal of the detection unit 41 of the gas detection unit 4 (decompression of the storage container 2 is started when the inspection time is about 4 seconds. However, about 12 seconds after reaching the determination start pressure, if there is a pinhole or the like, the sensor output voltage (signal) starts to rise.
  • the airtightness determination unit 53c determines that the sensor output voltage of the detection unit 41 is equal to or lower than the predetermined voltage when a predetermined time has elapsed after the gas pressure in the first storage unit 21 reaches the determination start pressure (YES in S9). Whether or not the detection target is airtight is determined based on whether or not there is (S10).
  • the predetermined time referred to here is a time required for the detection unit 41 to leak the detection target to a threshold at which the airtightness can be determined in the airtightness determination.
  • This predetermined time is hereinafter referred to as “leakage detection time”.
  • the sensor output voltage one-dot chain line b other than solid line a, two-dot chain line c, three-dot chain line d
  • the voltage reaches at least 1.6 V within about 4 seconds after reaching the determination start pressure (after about 12 seconds of the inspection time). If it is about 4 seconds, it can be determined whether or not the inspection object X has a pinhole. Therefore, in this embodiment, the leakage detection time is about 4 seconds (inspection time is about 12 to 16 seconds) after reaching the determination start pressure.
  • the predetermined voltage referred to here is a sensor output voltage serving as a threshold value for determining whether the airtightness is good or not when the leakage detection time is reached from the determination start pressure.
  • This predetermined voltage is hereinafter referred to as “airtightness determination voltage”.
  • the voltage value of the airtightness determination voltage varies depending on the scale (size) of the pinhole formed in the inspection object X. For example, when the pinhole diameter is detected to 0.020 mm, the airtightness determination voltage is 2.1V. When the pinhole diameter is detected to 0.010 mm, the airtightness determination voltage is set to 2.0V. When the pinhole diameter is detected to 0.005 mm, the airtightness determination voltage is set to 1.6V.
  • the continuous line a of FIG. 10 shows sensor output voltage [V] when there is no pinhole.
  • An alternate long and short dash line b indicates the sensor output voltage [V] when the pinhole diameter is 0.020 mm.
  • a two-dot chain line c represents the sensor output voltage [V] when the pinhole diameter is 0.010 mm.
  • a three-dot chain line d indicates the sensor output voltage [V] when the pinhole diameter is 0.005 mm.
  • the airtightness determining unit 52 determines that there is no abnormality in the airtightness and that the airtightness is maintained (YES in S10, S11). On the other hand, when the sensor output voltage exceeds the airtightness determination voltage, the airtightness determining unit 52 determines that the airtightness is abnormal and the airtightness is not sufficiently maintained (NO in S10, S12). The airtightness determination unit 52 outputs these determination results (determination result signals) to the notification unit 54 (S13). In the notification unit 54, the determination display unit 54c notifies the result.
  • the pressure control unit 53a opens the atmosphere release valve 21c to release the storage container 2 to the atmosphere so that the object to be inspected can be taken out. Return to atmospheric pressure (S14). When the pressure in the containment vessel 2 returns to atmospheric pressure, the inspection person opens the inspection door 21d, takes out the inspection object X, and completes the inspection.
  • the gas detection means 4 is installed inside the storage container 2 for storing the inspection object X.
  • the gas inside the storage container 2 is sucked from the suction port 22c by the suction means 3, so that along with the gas around the inspection target X, The detection object X is also guided to the gas detection means 4.
  • the gas detection means 4 can detect the detection object.
  • the inspection object X is stored in the first storage unit 21.
  • the gaseous detection target leaked from the inspection target X is discharged into the first storage unit 21.
  • the second storage unit 22 is provided with a suction port 22c.
  • the gas inside the second storage portion 22 is sucked into the suction port 22c by sucking the suction means 3.
  • the gas inside the first storage unit 21 is sucked into the suction port 22c.
  • the detection object leaked from the inspection object X is sucked together with the gas around the inspection object X from the first storage part 21 by sucking the gas inside the second storage part 22 from the suction port 22c by the suction means 3. , Guided to the gas detection means 4.
  • the gas detection means 4 can detect the detection object X.
  • the airtightness inspection apparatus 1 can detect whether or not the detection target is leaking from the inspection target X inside the storage container 2. And the airtightness inspection apparatus 1 can test
  • the communication ports 22b1 and 22b2 can be arranged at positions close to the first storage unit 21 in which the inspection object X is stored.
  • the communication ports 22b1 and 22b2 can suck the gas around the inspection object X at high speed.
  • the gas inside the containment vessel 2 is guided to the gas detection means 4.
  • the adjusting unit 33 can adjust the flow rate so that the gas detecting unit 4 can detect the detection target.
  • the gas inside the containment vessel 2 is sucked by the suction means 3. And this gas is guided to the detection part 41 via the guide path 42b. When this gas is discharged from the exhaust hole 42c, the flow of this gas is bent by the detection unit 41 and decelerated.
  • the gas detection means 4 has a structure capable of decelerating the flow rate of the sucked gas. For this reason, the gas detection means 4 can improve the sensitivity which detects a detection target object.
  • the detection target attached to the surface of the semiconductor element can be obtained by simply returning the pressure inside the storage container 2 to atmospheric pressure. Leaves. For this reason, as shown in FIG. 10, the sensor output (voltage) of the detection unit 41 can be returned to the initial voltage of the test, and can be returned to the sensor output voltage before the determination. Therefore, according to the airtightness inspection apparatus of the present invention, even if the airtightness inspection is continuously performed, the detection accuracy does not decrease.
  • the airtightness inspection apparatus 100 includes a storage container 102, a suction means 3, a gas detection means 4, a control means 5, and a casing 6, as in the first embodiment.
  • the storage container 102 includes a first storage unit 121 and a second storage unit 122 as shown in FIG.
  • the first storage part 121 and the second storage part 122 are not partitioned so as to be hermetically sealed, and a protruding part 120 a provided to protrude inward in the middle in the height direction inside the storage container 102.
  • a wall 120b is placed on the wall. That is, the wall 120b can be detached from the storage container 102 by sliding forward.
  • the first storage unit 121 can store a plurality of trays 121f to inspect a large number of inspection objects at the same time. By sliding the tray 121f forward, the first storage part 121 is provided with a protruding part 121g, which can be detachably held from the storage container 102.
  • the second storage unit 122 simultaneously inspects a large number of inspection objects according to the present embodiment. Therefore, the volume of the first storage unit 121 is large, and the flow rate of the gas sucked from the first storage unit 121 is naturally large. Therefore, a plurality of communication ports 122b,... Are provided.
  • the suction port 122 c is provided in the upper part of the storage container 102. Therefore, the suction port 122c is disposed at a position where the gas inside the storage container 102 can be efficiently sucked. .. Are attached to the communication ports 122b,... According to the volume of the first storage part 121.
  • each of the first storage unit 121 and the second storage unit 122 is not completely sealed.
  • the gas inside the first storage part 121 can be circulated from the joint part between the projecting part 120a and the wall 120b, most of the gas inside the first storage part 121 has a large number of communication ports 122b, Circulate to the second storage unit 122 via. For this reason, it is possible to detect a detection target object by the gas detection means 4, ... attached to this communication port 122b, ....
  • the storage container 102 is configured such that the wall 120b can be removed, so that maintenance can be easily performed.
  • the flow rate of the gas that can be sucked from the first storage unit 121 increases, and the inside of the first storage unit 121 can be reduced to a predetermined pressure (compared to the case of suction from one place) in a short time. it can.
  • the airtightness inspection apparatus 1 sucks the storage container 2 for storing the inspection object X and the gas inside the storage container 2 as shown in the overall overview of FIGS. 1 (a) and 1 (b).
  • the suction means 3, the gas detection means 4 capable of detecting the gaseous detection object leaked from the inspection object X, the control means 5 for controlling the suction means 3 and the gas detection means 4, and these devices are integrated.
  • the storage container 2 has a first storage unit 21 for storing the inspection object X and a gas inside the first storage unit 21 flowing therethrough.
  • a second storage unit 22 that is possible.
  • the first storage unit 21 and the second storage unit 22 are partitioned by a wall 20b sealed between the first storage unit 21 and the second storage unit 22 so that gas cannot flow.
  • the first storage unit 21 is decompressed by a first chamber 21a that is in a reduced pressure atmosphere by sucking out the internal gas, and storage means 21b for storing the inspection object X inside the first chamber 21a.
  • An air release means 21c for releasing the gas inside the first chamber 21a to the outside, an inspection means 21d for checking the state of the inspection object X and the like inside the first chamber 21a, and an inside of the first chamber 21a
  • a pressure gauge 21e (see FIG. 3) for measuring pressure.
  • the second storage unit 22 includes a first chamber 21a and a second chamber 22a that are brought into a reduced pressure atmosphere by sucking out the internal gas, and the first chamber 21a and the second chamber 22a so that the gas can flow between the first chamber 21a and the second chamber 22a.
  • a communication port 22b that communicates with the second chamber 22a, a lid 322f that can be indirectly closed to the communication port 22b via a mounting portion 347 (see FIG. 12), and a gas that flows from the first chamber 21a to the outside
  • a suction port 22c provided at a position where suction is possible, an inspection means 22d for attaching and inspecting a device such as the gas detection means 4 attached inside the second chamber 22a, and a pressure in the second chamber 22a are measured.
  • a pressure gauge 22e (see FIG. 3).
  • the communication port 22b is provided in order for the gas inside the first chamber 21a (first storage unit 21) to be sucked into the second chamber 22a (second storage unit 22) by the suction means 3. That is, the communication port 22 b also functions as a part of the suction unit 3.
  • the communication port 22b is provided in two places on the wall 20b.
  • the adjusting means 32 is attached to one communication port 22b (hereinafter referred to as “first communication port 22b1”, see FIG. 3).
  • the gas detection means 4 is attached to the other communication port 22b (hereinafter referred to as “second communication port 22b2”, see FIG. 3).
  • the lid 322f includes a lid body 322f1 that can indirectly close the communication port 22b via a mounting portion 347, and a second chamber 22a (second 2 storage part 22) and a flow hole 322f2 through which the gas sucked can be passed.
  • the lid 322f2 is preferably attached to the second communication port 22b2 among the plurality of communication ports 22b.
  • FIG. 12 is a partial cross-sectional view around the second communication port 22b2.
  • FIG. 13A is a longitudinal sectional view of the lid 322f.
  • FIG. 13B is a bottom view of the lid 322f.
  • the lid body 322f1 is formed in a bottomed cylindrical shape, and includes a plate-like base portion 322f3 that closes the communication port 22b, and a cylindrical portion 322f4 that extends from one surface of the base portion 322f3. .
  • the base portion 322f3 is formed in a disc shape having an outer diameter larger than that of the communication port 22b. And the edge of the one part arc of the base part 322f3 is formed in linear form.
  • the cylindrical portion 322f4 includes a male screw 322f5 on its outer peripheral surface so that the communication port 22b can be detachably attached.
  • the male screw 322f5 is screwed into a female screw 347b provided in the attachment portion 347.
  • the lid 322f is structured to be detachably attached to the attachment portion 347.
  • the cylindrical portion 322f4 is formed in a cylindrical shape so that the inner peripheral surface thereof flows the gas that has passed through the flow hole 322f2 to the communication port 22b.
  • the distribution hole 322f2 is composed of one or a plurality of holes.
  • the flow hole 322f2 according to the present embodiment is composed of four holes.
  • the total opening area of the four flow holes 322f2,... is smaller than the opening area of the communication port 22b.
  • the flow hole 322f2 is provided through the base portion 322f3 of the lid body 322f1.
  • the flow hole 322f2 is disposed on the inner side of the inner peripheral surface of the cylindrical portion 322f4 so that the gas flows inside the cylindrical portion 322f4.
  • the gas detection means 4 includes a detection unit 41 for detecting a detection target and a holder for guiding the gas inside the first storage unit 21 from the second communication port 22b2 to the detection unit 41. 42 and an attachment portion 347 for attaching the holder 42 to the wall 20b in a detachable manner.
  • the detection unit 41 is a semiconductor type gas sensor that can detect an organic solvent that is a detection target.
  • the holder 42 includes a holder main body 42a for holding the detection unit 41, a guide path 42b for guiding the gas inside the first storage unit 21 to the detection unit 41, and a detection unit by the guide path 42b. And an exhaust hole 42 c provided at a position intersecting with the flow of gas guided to 41.
  • the holder main body 42a includes a mounting unit 44 that can mount the holder 42 to the second communication port 22b2, and a holding unit 45 that holds the detection unit 41.
  • the mounting means 44 includes a cylindrical portion 344a formed in a cylindrical shape and a male screw 344b formed on the outer peripheral surface of the cylindrical portion 344a.
  • the cylindrical portion 344 a has an outer diameter that can be inserted into the attachment portion 347.
  • the male screw 344b is screwed into a female screw 347b provided in the attachment portion 347. Therefore, the mounting means 44 has a structure that is detachably mounted on the mounting portion 347.
  • the holding means 45 is arranged so that the detection surface 41b of the detection unit 41 is orthogonal to the flow of gas flowing through the guide path 42b. Since the holding means 45 makes it difficult for the gas flowing in the guide path 42b to flow backward (upward in FIG. 12) from the detection surface 43 of the detection unit 41, there is no gap between the holding unit 45 and the detection unit 41 (the detection surface 43). To be held.
  • the mounting portion 347 is disposed through the communication port 22b.
  • the attachment portion 347 is provided such that one end side is located on the first storage portion 21 side and the other end side is located on the second storage portion 22 side. And the attaching part 347 is being fixed to the wall 20b.
  • the attachment portion 347 includes a cylindrical portion 347a formed in a cylindrical shape, and a female screw 347b formed on the inner peripheral surface from one end side to the other end side in the cylindrical core direction of the cylindrical portion 347a.
  • the female screw 347b of the mounting portion 347 is provided so that the holder main body 42a can be screwed from one end side in the cylinder core direction and the lid 322f can be screwed from the other side.
  • the female screw 347b of the attachment portion 347 according to the present embodiment is formed long enough so that a gap is opened between the respective tip portions in a state where the holder main body 42a and the lid 322f are screwed to the attachment portion 347. Yes.
  • the gas detection means 4 is installed inside the storage container 2 for storing the inspection object X.
  • the gas inside the storage container 2 is sucked from the suction port 22c by the suction means 3, so that along with the gas around the inspection target X, The detection object X is also guided to the gas detection means 4.
  • the gas detection means 4 can detect the detection object.
  • the flow hole 322f2 of the lid 322f can limit the gas flow rate so as to be suitable for detection of the detection target by the gas detection means 4. And since the flow rate of the gas which passes the detection surface 43 is restrict
  • the airtightness inspection apparatus is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
  • the airtightness inspection apparatus 1,100 has been described as being applied to a lithium ion battery, but is not limited to this application.
  • the airtightness inspection apparatus according to the present invention is a secondary battery (so-called rechargeable battery) that can be recharged and repeatedly used after discharge, such as a nickel metal hydride battery other than a lithium ion battery, an alkaline dry battery, or manganese.
  • the present invention can also be applied to a battery such as a primary battery such as a dry battery.
  • it can apply also to the test object which has the container of a sealing structure similarly to these batteries.
  • the electrolytic capacitor can also be applied to an inspection object having an anode electrode, a cathode electrode, and an electrolytic solution permeated between the electrodes.
  • This inspection object has the same problem as a lithium ion battery, and the same problem can be achieved by performing an airtight inspection using the airtightness inspection apparatus according to the present invention.
  • the detection unit 41 is a tin oxide semiconductor gas sensor
  • the present invention is not limited to this.
  • the detection unit selects a detection target in accordance with the inspection target X to be inspected by the airtightness inspection apparatus of the present invention, and any sensor can be used as long as the sensor is suitable for detection of the detection target. Good.
  • the characteristic of the detection part disclosed by the said embodiment is an example. It goes without saying that the characteristics of the detection unit must be appropriately checked according to the characteristics of the sensor selected according to the object to be detected, and control suitable for each sensor must be performed.
  • the airtightness inspection apparatus 200 is installed on the production line Y of the inspection object X, is automatically stored in the storage container 202, performs the airtightness inspection, and then automatically You may be comprised so that it may return on the production line Y.
  • the airtightness inspection apparatus 200 transmits the inspection result obtained by performing the airtightness inspection to the production line facility so that the inspection object X that is not airtight is automatically removed from the production line Y.
  • an external output terminal capable of outputting the inspection result may be provided in the production line facility.
  • the example in which the first communication port 22b1 is disposed on the suction port 22c side with respect to the second communication port 22b2 has been described.
  • the gas inside the first storage unit 21 may be efficiently configured to be sucked outside through the second storage unit 22.
  • the first communication port 22b1 may be more efficiently distributed by setting it larger than the opening area of the second communication port 22b2.
  • the first communication port 22b1 may be more efficiently distributed by providing a plurality of second communication ports 22b2 with respect to one first communication port 22b2.
  • the example in which the exhaust hole 42c is provided at a position where the holder main body 42a intersects the gas flow guided to the detection unit 41 by the guide path 42b has been described. It is not limited to this.
  • the holder main body is provided with an exhaust hole at a position on the extension line of the gas flow guided to the detection unit 41 by the guide path 42b so that the gas to be detected by the detection unit 41 passes through the detection unit 41. Also good.
  • a recovery time (about 20 seconds) is provided after gas detection, It is preferable to maintain the sensitivity.
  • the gas shut-off valve 32a is provided on the first communication port 22b1 side as the switching unit 32
  • this switching means is attached to the second communication port 22b2 side to which the gas detection means 4 is attached, and the flow rate of the gas sucked from the first storage portion 21 to the second storage portion 22 is adjusted.
  • a gas shut-off valve is attached to the outlet side of the gas detection means, and the gas shut-off valve is shut off during the decompression stage, so that the gas flows to the first communication port 22b1 side during decompression.
  • the gas shut-off valve only at the determination stage, the gas flows through both the first communication port 22b1 and the second communication port 22b2, and the gas is included in the gas flowing through the second communication port 22b2. You may make it detect a detection target object. Therefore, since the flow rate of the gas flowing through the second communication port 22b2 is lower than that of the present embodiment, it is preferable to secure the gas flow rate by extending the measurement time.
  • inspection apparatuses 1 and 100 which concern on the said embodiment demonstrated the example in which the storage container 2 was divided into two of the 1st storage part 21 and the 2nd storage part 22, it is limited to this is not.
  • the gas inside the first storage unit does not prevent the gas from flowing through the first communication port and the second communication port of the second storage unit, the first storage unit and the second storage unit respectively
  • the suction port is provided at a position in the containment vessel capable of guiding the gas around the test object to the gas detection means installed in the containment container, the detection target leaked from the test object Objects can be guided to the gas detection means and detected.
  • the configuration according to the above embodiment is most preferable.
  • the airtightness is not required to be high, the amount of the detection target (concentration contained in the gas) leaking from the gas detection unit is naturally increased until the configuration according to the above embodiment is obtained. In such a case, it is preferable to adopt such a configuration because it can be detected without any problem and can be manufactured at low cost.
  • the present invention is not limited to this.
  • two exhaust holes may be provided.
  • the positional relationship between the exhaust holes provided at two locations may be provided at positions facing each other with respect to the radial direction of the holder main body 42a.
  • the exhaust hole may be provided in three or more places.
  • the suction means may be a vacuum pump capable of adjusting the suction capacity or switching in multiple stages to adjust the gas flow rate, or a vacuum pump equipped with a controller capable of adjusting the suction capacity or switching in multiple stages. That is, the adjusting means may be integrated with the suction means to adjust the flow rate for sucking the gas inside the storage container.
  • the lid 322f can indirectly close the communication port 22b via the attachment portion 347
  • the present invention is not limited to this.
  • the lid may be capable of directly closing the communication port 22b without using an attachment portion.
  • the airtightness inspection apparatus 1,100 has been described with an example in which there are a plurality of flow holes 322f2, the present invention is not limited thereto.
  • the number of through holes may be one.
  • the circulation hole is a circular hole and preferably has an outer diameter smaller than the inner diameter of the communication port 22b.
  • the flow hole is not limited to a circular opening.
  • the through hole may be a hole formed in a polygonal shape with respect to the base part of the lid body of the lid, or may be a hole formed in an elliptical shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

The present invention addresses the problem of providing an apparatus for inspecting airtightness of a subject to be inspected, said apparatus being capable of performing airtightness inspection in a short time. This airtightness inspection apparatus is characterized in being provided with a storing container (2) for storing a subject to be inspected (X), a suction means (3) that sucks a gas inside of the storing container (2), and a gas detection means (4) that is capable of detecting a gaseous subject to be detected, said subject having leaked from the subject to be inspected (X). The airtightness inspection apparatus is also characterized in that the suction means (3) performs suction through a suction port (22c), which is capable of guiding the gas at the periphery of the subject to be inspected (X) to the gas detection means (4) that is disposed in the storing container (2), and which is provided at a position inside of the storing container (2).

Description

気密性検査装置Airtightness inspection device
 本発明は、密封構造の容器を有する気密性検査装置であって、特に、二次電池などの検査対象物の気密性検査装置に関する。 The present invention relates to an airtightness inspection device having a sealed container, and more particularly to an airtightness inspection device for an inspection object such as a secondary battery.
 従来から、リチウムイオン電池の製造工程において、その気密性が充分に保たれていることを検査する気密性検査が実施されている。通常、リチウムイオン電池は、有機電解液などの電解質が密封された密封容器を備えている。ピンホールなどの不良がこの密封容器にあると、密封容器の気密性は不足する。そして、この密封容器の内部に封入された電解液が漏れ出す可能性は高まる。 Conventionally, in a manufacturing process of a lithium ion battery, an airtightness inspection for inspecting that the airtightness is sufficiently maintained has been performed. In general, a lithium ion battery includes a sealed container in which an electrolyte such as an organic electrolyte is sealed. If there are defects such as pinholes in this sealed container, the hermeticity of the sealed container is insufficient. And possibility that the electrolyte solution enclosed inside this sealed container will leak increases.
 そこで、特許文献1にあるような気密性検査が実施されている。この気密性検査を実施するための気密性検査装置は、電池を内部に収容可能な密閉容器と、該密閉容器に接続される真空排気管と、を備える。真空排気管は、真空ポンプ、切換弁及び水素濃度センサから構成されている。そして、真空排気管は、真空ポンプ、切換弁及び水素濃度センサが密閉容器から直列に接続されている。そして、真空ポンプが作動することにより、密閉容器の内部が減圧する。そのとき、真空ポンプから排出される密閉容器内のガスは、切換弁によって、大気中に放出されている。密閉容器の内部が所定の条件に達すると、切換弁が切り換えられる。そして、真空ポンプから排出されるガスは、水素濃度センサに送られる。水素濃度センサは、そのガスに含まれる水素濃度を測定する。この気密性検査装置は、その測定結果を大気中の水素濃度と比較する。そして、気密性検査装置は、気密性が保たれているか否かを判断する。 Therefore, an airtightness inspection as disclosed in Patent Document 1 is performed. An airtightness inspection apparatus for performing this airtightness inspection includes a sealed container that can accommodate a battery therein, and a vacuum exhaust pipe connected to the sealed container. The vacuum exhaust pipe includes a vacuum pump, a switching valve, and a hydrogen concentration sensor. And the vacuum pump, the vacuum pump, the switching valve, and the hydrogen concentration sensor are connected in series from the sealed container. And when the vacuum pump is operated, the inside of the sealed container is depressurized. At that time, the gas in the sealed container discharged from the vacuum pump is released into the atmosphere by the switching valve. When the inside of the sealed container reaches a predetermined condition, the switching valve is switched. And the gas discharged | emitted from a vacuum pump is sent to a hydrogen concentration sensor. The hydrogen concentration sensor measures the concentration of hydrogen contained in the gas. This airtightness inspection apparatus compares the measurement result with the hydrogen concentration in the atmosphere. The airtightness inspection apparatus determines whether or not airtightness is maintained.
日本国特開2001-236986号公報Japanese Unexamined Patent Publication No. 2001-236986
 通常、リチウムイオン電池は、生産ライン方式によって大量に生産されている。気密性検査は、生産ラインの生産速度に合わせて実施することを求められている。これは、リチウムイオン電池に限られない。他の二次電池や一次電池である検査対象物でも共通する課題である。しかし、前述の気密性検査では、(水素濃度)センサが真空ポンプの出口側に設けられている。そのため、このセンサは、ガスに含まれる水素濃度を直接に検出することができない。よって、このような気密性検査では、生産ラインの生産速度に合わせて短時間で検査対象物の気密性を検査することができなかった。 Usually, lithium-ion batteries are produced in large quantities by the production line method. The airtightness inspection is required to be performed according to the production speed of the production line. This is not limited to lithium ion batteries. This is also a problem common to inspection objects that are other secondary batteries and primary batteries. However, in the above-described airtightness inspection, a (hydrogen concentration) sensor is provided on the outlet side of the vacuum pump. Therefore, this sensor cannot directly detect the hydrogen concentration contained in the gas. Therefore, in such an airtightness inspection, the airtightness of the inspection object cannot be inspected in a short time according to the production speed of the production line.
 そこで、本発明は、かかる事情に鑑み、気密性検査を短時間で検査することができる気密性検査装置を提供することを課題とする。 Therefore, in view of such circumstances, an object of the present invention is to provide an airtightness inspection apparatus capable of inspecting an airtightness in a short time.
 本発明に係る気密性検査装置は、検査対象物を格納するための格納容器と、該格納容器の内部のガスを吸引する吸引手段と、前記検査対象物から漏出したガス状の検知対象物を検知可能なガス検知手段と、を備える気密性検査装置であって、前記ガス検知手段は、前記格納容器の内部に設置され、前記吸引手段は、前記検査対象物の周囲のガスを前記ガス検知手段に誘導可能な吸引口であって、前記検査対象物の周囲のガスを吸引するために前記格納容器内の位置に設けられる吸引口から吸引することを特徴とする。 An airtightness inspection apparatus according to the present invention includes a storage container for storing an inspection object, suction means for sucking a gas inside the storage container, and a gaseous detection object leaked from the inspection object. A gas detection means capable of detecting the gas tightness, wherein the gas detection means is installed inside the containment vessel, and the suction means detects the gas around the object to be detected. A suction port that can be guided to the means, wherein suction is performed from a suction port provided at a position in the storage container in order to suck the gas around the inspection object.
 かかる構成によれば、ガス検知手段は、検査対象物を格納する格納容器の内部に設置されている。ガス状の検知対象物が検査対象物から漏出している場合、格納容器の内部のガスが吸引手段で吸引口から吸引されることにより、検査対象物の周囲のガスとともに、その検知対象物もガス検知手段に誘導される。このようにして、ガス検知手段は、その検知対象物を検知することができるようになっている。よって、本発明の気密性検査装置は、格納容器の内部で検査対象物から検知対象物が漏出しているか否かを検知することができる。そして、気密性検査装置は、短時間で検査対象物の気密性を検査することができる。 According to such a configuration, the gas detection means is installed inside the containment vessel for storing the inspection object. When a gaseous detection target is leaking from the inspection target, the gas inside the containment vessel is sucked from the suction port by the suction means, so that the detection target as well as the gas around the inspection target are It is guided to the gas detection means. In this way, the gas detection means can detect the detection object. Therefore, the airtightness inspection apparatus of the present invention can detect whether or not the detection object leaks from the inspection object inside the containment vessel. And an airtightness inspection apparatus can test | inspect the airtightness of a test target object in a short time.
 本発明によれば、前記格納容器は、前記検査対象物を格納する第1格納部と、該第1格納部の内部のガスを流通可能な第2格納部であって、前記吸引口が前記第1格納部から流通するガスを外部に吸引可能な位置となるように設けられる第2格納部と、を備えていることが好ましい。 According to the present invention, the storage container is a first storage unit that stores the inspection object, and a second storage unit that can circulate gas inside the first storage unit, wherein the suction port is the first storage unit. It is preferable to include a second storage portion provided so as to be in a position where the gas flowing from the first storage portion can be sucked to the outside.
 かかる構成によれば、検査対象物が第1格納部に格納される。検査対象物から漏出したガス状の検知対象物は、この第1格納部の内部に放出される。第2格納部には、吸引口が設けられている。第2格納部の内部のガスは、吸引手段を吸引させることにより、吸引口に吸引される。続けて、第1格納部の内部のガスが吸引口に吸引される。検査対象物から漏出した検知対象物は、第2格納部の内部のガスを吸引口から吸引手段で吸引することにより、第1格納部から検査対象物の周囲のガスとともに、ガス検知手段に誘導される。このようにして、ガス検知手段は、その検知対象物を検知することができるようになっている。よって、本発明の気密性検査装置は、格納容器の内部で検査対象物から検知対象物が漏出しているか否かを検知することができる。そして、気密性検査装置は、短時間で検査対象物の気密性を検査することができる。 According to this configuration, the inspection object is stored in the first storage unit. The gaseous detection object leaking from the inspection object is discharged into the first storage unit. A suction port is provided in the second storage unit. The gas inside the second storage portion is sucked into the suction port by sucking the suction means. Subsequently, the gas inside the first storage unit is sucked into the suction port. The detection object leaked from the inspection object is guided to the gas detection means together with the gas around the inspection object from the first storage part by sucking the gas inside the second storage part from the suction port by the suction means. Is done. In this way, the gas detection means can detect the detection object. Therefore, the airtightness inspection apparatus of the present invention can detect whether or not the detection object leaks from the inspection object inside the containment vessel. And an airtightness inspection apparatus can test | inspect the airtightness of a test target object in a short time.
 本発明によれば、前記吸引手段は、前記第1格納部の内部のガスを前記第2格納部に吸引するための連通口を備えていることが好ましい。 According to the present invention, it is preferable that the suction means includes a communication port for sucking the gas inside the first storage part into the second storage part.
 かかる構成によれば、連通口は、検査対象物が格納される第1格納部に近い位置に配置することができる。この連通口は、検査対象物の周囲のガスを高速に吸引することができる。 According to such a configuration, the communication port can be arranged at a position close to the first storage unit in which the inspection object is stored. This communication port can suck the gas around the inspection object at high speed.
 本発明によれば、前記吸引手段は、前記格納容器の内部のガスを前記吸引口から吸引するガスの流量を調整可能な調整手段を備えていることが好ましい。 According to the present invention, it is preferable that the suction means includes an adjustment means capable of adjusting a flow rate of gas for sucking the gas inside the storage container from the suction port.
 かかる構成によれば、格納容器の内部のガスは、ガス検知手段に誘導される。調整手段は、ガス検知手段が検知対象物を検知するのに適した流量になるように調整することができる。 According to such a configuration, the gas inside the containment vessel is guided to the gas detection means. The adjusting means can be adjusted so that the gas detecting means has a flow rate suitable for detecting the detection target.
 本発明によれば、前記ガス検知手段は、前記検知対象物を検知する検知部と、該検知部に前記格納容器の内部のガスを案内する案内路と、該案内路により前記検知部まで案内されたガスの流れに対して交差する位置に設けられる排気孔と、を備えていることが好ましい。 According to the present invention, the gas detection unit is configured to detect the detection target, a guide path for guiding the gas inside the storage container to the detection section, and guide the gas to the detection section through the guide path. It is preferable to provide an exhaust hole provided at a position intersecting with the gas flow.
 かかる構成によれば、格納容器の内部のガスは、吸引手段により吸引される。そして、このガスは、案内路を介して検知部まで案内される。このガスが排気孔から排出される際に、このガスの流れは、検知部で曲げられて減速する。このガス検知手段は、吸引されるガスの流速を減速することができる構造となっている。このため、ガス検知手段は、検知対象物を検知する感度を向上させることができる。 According to such a configuration, the gas inside the containment vessel is sucked by the suction means. And this gas is guided to a detection part via a guide way. When this gas is exhausted from the exhaust hole, the flow of this gas is bent by the detector and decelerated. This gas detection means has a structure capable of decelerating the flow rate of the sucked gas. For this reason, the gas detection means can improve the sensitivity which detects a detection target object.
 また、本発明に係る気密性検査装置は、検査対象物を格納するための格納容器と、該格納容器の内部のガスを吸引する吸引手段と、前記検査対象物から漏出したガス状の検知対象物を検知可能なガス検知手段と、を備える気密性検査装置であって、前記ガス検知手段は、前記格納容器の内部に設置され、前記吸引手段は、前記検査対象物の周囲のガスを前記ガス検知手段に誘導可能な吸引口であって、前記検査対象物の周囲のガスを吸引するために前記格納容器内の位置に設けられる吸引口から吸引し、前記格納容器は、前記検査対象物を格納する第1格納部と、該第1格納部の内部のガスを流通可能な第2格納部であって、前記吸引口が前記第1格納部から流通するガスを外部に吸引可能な位置となるように設けられる第2格納部と、を備え、前記吸引手段は、前記第1格納部の内部のガスを前記第2格納部に吸引するための連通口と、該連通口を塞ぐ蓋と、を備え、前記蓋は、前記第2格納部に吸引されるガスを通過可能な流通孔であって、該流通孔の開口面積は、前記連通口の開口面積より小さいことを特徴とする。 An airtightness inspection apparatus according to the present invention includes a storage container for storing an inspection object, suction means for sucking a gas inside the storage container, and a gaseous detection object leaked from the inspection object. A gas detection means capable of detecting an object, wherein the gas detection means is installed inside the containment vessel, and the suction means removes gas around the inspection object. A suction port that can be guided to a gas detection means, and sucks from a suction port provided at a position in the storage container in order to suck the gas around the inspection object, and the storage container is the inspection object A first storage part for storing the gas and a second storage part capable of circulating the gas inside the first storage part, wherein the suction port can suck the gas flowing from the first storage part to the outside A second storage provided to be The suction means includes a communication port for sucking the gas inside the first storage unit into the second storage unit, and a lid that closes the communication port, and the lid includes the second storage unit. It is a flow hole which can pass the gas attracted | sucked to a part, Comprising: The opening area of this flow hole is smaller than the opening area of the said communicating port, It is characterized by the above-mentioned.
 かかる構成によれば、ガス検知手段は、検査対象物を格納する格納容器の内部に設置されている。ガス状の検知対象物が検査対象物から漏出している場合、格納容器の内部のガスが吸引手段で吸引口から吸引されることにより、検査対象物の周囲のガスとともに、その検知対象物もガス検知手段に誘導される。このようにして、ガス検知手段は、その検知対象物を検知することができるようになっている。よって、本発明の気密性検査装置は、格納容器の内部で検査対象物から検知対象物が漏出しているか否かを検知することができる。そして、気密性検査装置は、短時間で検査対象物の気密性を検査することができる。 According to such a configuration, the gas detection means is installed inside the containment vessel for storing the inspection object. When a gaseous detection target is leaking from the inspection target, the gas inside the containment vessel is sucked from the suction port by the suction means, so that the detection target as well as the gas around the inspection target are It is guided to the gas detection means. In this way, the gas detection means can detect the detection object. Therefore, the airtightness inspection apparatus of the present invention can detect whether or not the detection object leaks from the inspection object inside the containment vessel. And an airtightness inspection apparatus can test | inspect the airtightness of a test target object in a short time.
 また、蓋は、連通口の開口面積を流通孔によって制限することができる。よって、流通孔は、連通口を通過するガスの流量を制限することができる。 Also, the lid can limit the opening area of the communication port by the flow hole. Therefore, the flow hole can restrict the flow rate of the gas passing through the communication port.
 以上の如く、本発明に係る気密性検査装置によれば、気密性検査を短時間で検査することができるという優れた効果を奏する。 As described above, the airtightness inspection apparatus according to the present invention has an excellent effect that the airtightness inspection can be performed in a short time.
図1は、第1実施形態に係る気密性検査装置の全体概観図である。(a)は、正面図を示す。(b)は、側面図を示す。FIG. 1 is an overall overview diagram of an airtightness testing apparatus according to the first embodiment. (A) shows a front view. (B) shows a side view. 図2は、同実施形態に係る気密性検査装置で用いる格納容器である。(a)は、正面図を示す。(b)は、上面図を示す。(c)は、側面図を示す。FIG. 2 is a storage container used in the airtightness inspection apparatus according to the embodiment. (A) shows a front view. (B) shows a top view. (C) shows a side view. 図3は、同実施形態に係る気密性検査装置で用いる格納容器の断面図を示す。FIG. 3 shows a cross-sectional view of the storage container used in the airtightness inspection apparatus according to the embodiment. 図4は、同実施形態に係る気密性検査装置内のガスの流れを表すガスフロー図を示す。FIG. 4 is a gas flow diagram showing a gas flow in the airtightness inspection apparatus according to the embodiment. 図5は、同実施形態に係る気密性検査装置で用いるガス検知手段である。(a)及び(b)は、縦断面図を示す。(c)は、底面図を示す。FIG. 5 shows gas detection means used in the airtightness inspection apparatus according to the embodiment. (A) And (b) shows a longitudinal cross-sectional view. (C) shows a bottom view. 図6は、同実施形態に係る気密性検査装置で用いるガス検知手段の検知部に関する図である。(a)は、ガス減圧時の動作特性図を示す。(b)は、等価回路図を示す。FIG. 6 is a diagram related to a detection unit of a gas detection unit used in the airtightness inspection apparatus according to the embodiment. (A) shows the operating characteristic figure at the time of gas pressure reduction. (B) shows an equivalent circuit diagram. 図7は、同実施形態に係る気密性検査装置の制御ブロック図を示す。FIG. 7 shows a control block diagram of the airtightness inspection apparatus according to the embodiment. 図8は、同実施形態に係る気密性検査装置の制御フロー図を示す。FIG. 8 shows a control flow diagram of the airtightness inspection apparatus according to the embodiment. 図9は、同実施形態に係る気密性検査装置の制御フロー図を示す。FIG. 9 shows a control flow diagram of the airtightness inspection apparatus according to the embodiment. 図10は、同実施形態に係る気密性検査装置のガス検知手段の検知部のセンサ出力電圧を示す。FIG. 10 shows the sensor output voltage of the detection part of the gas detection means of the airtightness inspection apparatus according to the embodiment. 図11は、第2実施形態に係る気密性検査装置の図である。(a)は、全体概観図を示す。(b)は、格納容器の内部の正面図を示す。FIG. 11 is a diagram of an airtightness inspection apparatus according to the second embodiment. (A) shows a general overview. (B) shows the front view of the inside of a containment vessel. 図12は、第3実施形態に係る気密性検査装置の断面図を示す。FIG. 12 is a cross-sectional view of an airtightness inspection apparatus according to the third embodiment. 図13は、同実施形態に係る気密性検査装置の蓋である。(a)は、断面図を示す。(b)は、下面図を示す。FIG. 13 is a lid of the airtightness inspection apparatus according to the embodiment. (A) shows sectional drawing. (B) shows a bottom view. 図14は、他の実施形態に係る気密性検査装置の全体概略図を示す。FIG. 14 is an overall schematic diagram of an airtightness inspection apparatus according to another embodiment.
 本発明の第1実施形態に係る気密性検査装置について、図面を参照しつつ説明する。まず、同実施形態に係る気密性検査装置の構成について、図1~図7を参照しつつ詳細に説明する。 The airtightness inspection apparatus according to the first embodiment of the present invention will be described with reference to the drawings. First, the configuration of the airtightness inspection apparatus according to the embodiment will be described in detail with reference to FIGS.
 同実施形態に係る気密性検査装置は、検査対象物に封入された検知対象物の漏出を検知することによりその検査対象物の気密性を検査する検査装置である。本実施形態では、検査対象物としてリチウムイオン電池の気密性検査を例に説明する。リチウムイオン電池には、正極や負極などとともに、希硫酸などの水溶液やアルコール系の有機電解液などの電解液(電解質)が密封容器に封入されている。この密封容器にピンホールや亀裂などの不良があると、電解液がこの密封容器の不良箇所から漏出する。よって、このリチウムイオン電池の気密性検査装置では、検査過程で密封容器から漏出してガス状となった有機電解液を検知対象物として検知する。そして、この気密性検査装置では、その密封容器の気密性の良否を判断する。本実施形態では、リチウムイオン電池の気密性検査装置のこのような検査について説明する。 The airtightness inspection apparatus according to the embodiment is an inspection apparatus that inspects the airtightness of an inspection object by detecting leakage of the detection object enclosed in the inspection object. In this embodiment, an airtight inspection of a lithium ion battery will be described as an example of the inspection object. In a lithium ion battery, an electrolyte solution (electrolyte) such as an aqueous solution such as dilute sulfuric acid or an alcohol-based organic electrolyte solution is enclosed in a sealed container, along with a positive electrode and a negative electrode. If there is a defect such as a pinhole or a crack in the sealed container, the electrolyte leaks from the defective part of the sealed container. Therefore, in this airtightness inspection apparatus for a lithium ion battery, the organic electrolyte that has become gaseous due to leakage from the sealed container during the inspection process is detected as a detection target. And in this airtightness test | inspection apparatus, the quality of the airtightness of the sealed container is judged. In the present embodiment, such an inspection of an airtightness inspection apparatus for a lithium ion battery will be described.
 気密性検査装置1は、図1(a)及び(b)の全体概観図に示すように、検査対象物Xを格納するための格納容器2と、該格納容器2の内部のガスを吸引する吸引手段3と、検査対象物Xから漏出したガス状の検知対象物を検知可能なガス検知手段4と、吸引手段3及びガス検知手段4を制御する制御手段5と、これらの装置を一体に収納するケーシング6と、を備える。 The airtightness inspection apparatus 1 sucks the storage container 2 for storing the inspection object X and the gas inside the storage container 2 as shown in the overall overview of FIGS. 1 (a) and 1 (b). The suction means 3, the gas detection means 4 capable of detecting the gaseous detection object leaked from the inspection object X, the control means 5 for controlling the suction means 3 and the gas detection means 4, and these devices are integrated. A casing 6 for storage.
 格納容器2は、図2(a)~(c)及び図3に詳細に示すように、2つの部屋に区画されている。格納容器2は、検査対象物Xを格納する第1格納部21と、該第1格納部21の内部のガスが流通可能である第2格納部22と、を備える。第1格納部21と第2格納部22とは、格納容器2の内部の高さ方向中途部に内側に向かって突出して設けられる突出部20aと、該突出部20aにボルト及びナットで固定され、第1格納部21と第2格納部22との間をガスが流通不能となるようにシールされた壁20bと、によって、区画されている。 The containment vessel 2 is divided into two rooms as shown in detail in FIGS. 2 (a) to 2 (c) and FIG. The storage container 2 includes a first storage unit 21 that stores the inspection target X, and a second storage unit 22 through which the gas inside the first storage unit 21 can flow. The first storage portion 21 and the second storage portion 22 are fixed to the protruding portion 20a by a bolt and a nut, and protruded inwardly in the middle in the height direction inside the storage container 2. The first storage unit 21 and the second storage unit 22 are partitioned by a wall 20b that is sealed so that gas cannot flow.
 第1格納部21は、内部のガスを吸い出すことにより減圧雰囲気とされる第1チャンバー21aと、該第1チャンバー21aの内部に検査対象物X(具体的には、リチウムイオン電池)を格納するための格納手段21bと、減圧された第1チャンバー21aの内部のガスを外部に開放する大気開放手段21cと、第1チャンバー21aの内部の検査対象物X等の状況を点検するための点検手段21dと、第1チャンバー21aの内部の圧力を計測する圧力計21e(図3参照)と、を備える。 The first storage unit 21 stores the first chamber 21a that is in a reduced pressure atmosphere by sucking out the internal gas, and the inspection object X (specifically, a lithium ion battery) inside the first chamber 21a. Storage means 21b for opening, atmospheric release means 21c for releasing the decompressed gas inside the first chamber 21a to the outside, and inspection means for checking the status of the inspection object X and the like inside the first chamber 21a 21d and a pressure gauge 21e (see FIG. 3) for measuring the pressure inside the first chamber 21a.
 第1チャンバー21aは、その内部に検査対象物Xが載置されて、第1格納部21の外部と隔絶可能な密閉構造をしている。更に、第1チャンバー21aは、隣接する第2格納部22とも隔絶可能な密閉構造をしている。そのため、第1チャンバー21aの内部のガスを外部に吸引すると、その内部は、減圧雰囲気又は真空となる。すなわち、第1チャンバー21aは、その内部の酸素濃度を低下させるための装置である。 The first chamber 21 a has a sealed structure in which the inspection object X is placed and can be isolated from the outside of the first storage unit 21. Further, the first chamber 21 a has a sealed structure that can be isolated from the adjacent second storage portion 22. Therefore, when the gas inside the first chamber 21a is sucked to the outside, the inside becomes a reduced pressure atmosphere or a vacuum. That is, the first chamber 21a is a device for reducing the oxygen concentration inside.
 格納手段21bは、閉じたときに第1チャンバー21aがその外部から密閉される構造となるように外部と隔絶可能な機能を有する格納扉である。更に、格納手段21bは、第1チャンバー21aの内部を減圧した後に検査対象物Xを第1チャンバー21aの内部から取り出すときにも利用される。当然に、格納手段21bを開放すると、第1チャンバー21aの内部のガスは、外部に開放される。 The storage means 21b is a storage door having a function capable of being isolated from the outside so that the first chamber 21a is sealed from the outside when closed. Furthermore, the storage means 21b is also used when the inspection object X is taken out from the inside of the first chamber 21a after the inside of the first chamber 21a is decompressed. Naturally, when the storage means 21b is opened, the gas inside the first chamber 21a is released to the outside.
 大気開放手段21cは、大気開放弁を途中又は端部に備える。よって、大気開放手段21cは、第1格納部21の内部と外部とを連通可能な連通管である。大気開放手段21cは、第1チャンバー21aの内部を減圧した後に、第1チャンバー21aの内部の圧力を大気圧に戻すために設けられている。 The atmosphere release means 21c includes an atmosphere release valve in the middle or at the end. Therefore, the air release means 21 c is a communication pipe that can communicate the inside and the outside of the first storage unit 21. The air release means 21c is provided to return the pressure inside the first chamber 21a to atmospheric pressure after depressurizing the inside of the first chamber 21a.
 点検手段21dは、格納手段21bに設けられる。点検手段21dは、第1チャンバー21aの内部を外部から目視可能な点検窓である。 The inspection means 21d is provided in the storage means 21b. The inspection means 21d is an inspection window that allows the inside of the first chamber 21a to be viewed from the outside.
 圧力計21eは、制御手段5と接続されている。圧力計21eは、計測した第1チャンバー21aの内部の圧力をデジタル出力又はアナログ出力可能な送信部を有する。 The pressure gauge 21e is connected to the control means 5. The pressure gauge 21e has a transmitter capable of digitally or analogly outputting the measured internal pressure of the first chamber 21a.
 第2格納部22は、内部のガスを吸い出すことにより減圧雰囲気とされる第2チャンバー22aと、第1チャンバー21aと第2チャンバー22aとの間をガスが流通可能なように第1チャンバー21a及び第2チャンバー22aを連通させた連通口22bと、第1チャンバー21aから流通するガスを(第1格納部21及び第2格納部22の)外部に吸引可能な位置に設けられる吸引口22cと、第2チャンバー22aの内部に取り付けられるガス検知手段4などの装置を取り付け及び点検するための点検手段22dと、第2チャンバー22a内の圧力を計測する圧力計22e(図3参照)と、を備える。 The second storage unit 22 includes a first chamber 21a and a second chamber 22a that are brought into a reduced pressure atmosphere by sucking out the internal gas, and the first chamber 21a and the second chamber 22a so that the gas can flow between the first chamber 21a and the second chamber 22a. A communication port 22b that communicates with the second chamber 22a, a suction port 22c that is provided at a position where the gas flowing from the first chamber 21a can be sucked to the outside (of the first storage unit 21 and the second storage unit 22), An inspection means 22d for attaching and inspecting a device such as the gas detection means 4 attached inside the second chamber 22a, and a pressure gauge 22e (see FIG. 3) for measuring the pressure in the second chamber 22a are provided. .
 第2チャンバー22aは、その内部に検査対象物Xが載置されて、第2格納部22の外部と隔絶可能な密閉構造をしている。更に、第2チャンバー22aは、隣接する第1格納部21とも隔絶可能な密閉構造をしている。そのため、第2チャンバー22aの内部のガスを外部に吸引すると、その内部は、減圧雰囲気又は真空となる。すなわち、第2チャンバー22aは、第1チャンバー21aの内部のガスを吸引して、第1チャンバー21aの内部を減圧雰囲気又は真空とするための装置である。 The second chamber 22 a has a sealed structure in which the inspection object X is placed and can be isolated from the outside of the second storage unit 22. Further, the second chamber 22 a has a sealed structure that can be isolated from the adjacent first storage portion 21. Therefore, when the gas inside the second chamber 22a is sucked to the outside, the inside becomes a reduced pressure atmosphere or a vacuum. That is, the second chamber 22a is a device for sucking the gas inside the first chamber 21a and making the inside of the first chamber 21a a reduced pressure atmosphere or a vacuum.
 連通口22bは、本実施形態では、ガスを流通させる開口である。更に、連通口22bは、そのガスの流通を制御する装置を装着可能な構造を有する。この連通口22bは壁20bに2箇所設ける。一方の連通口22b(以下、「第1の連通口22b1」と称する。図3参照)には、調整手段32が取り付けられる。この第1の流通口22b1は、第1格納部21の内部のガスを第2格納部22を介して外部に吸引するのに効率の良い位置に配置される。そのため、第1の連通口22b1は、他方の連通口22bより吸引口22c側に配置されている。 The communication port 22b is an opening through which gas is circulated in the present embodiment. Furthermore, the communication port 22b has a structure in which a device for controlling the gas flow can be attached. This communication port 22b is provided in two places on the wall 20b. The adjusting means 32 is attached to one communication port 22b (hereinafter referred to as “first communication port 22b1”, see FIG. 3). The first circulation port 22b1 is disposed at a position where the gas inside the first storage unit 21 is efficiently sucked to the outside through the second storage unit 22. Therefore, the first communication port 22b1 is arranged closer to the suction port 22c than the other communication port 22b.
 また、他方の連通口22b(以下、「第2の連通口22b2」と称する。図3参照)には、ガス検知手段4が取り付けられる。この第2の連通口22b2は、検査対象物Xの周囲のガスを吸引口22cを介して外部に吸引するのに効率のよい位置に配置される。より具体的には、第2の連通口22b2は、検査対象物Xの周囲のガスを(検査対象物Xから検知対象物が流出している場合は、この検知対象物を)最も捕集しやすい位置に設けられる。 In addition, the gas detection means 4 is attached to the other communication port 22b (hereinafter referred to as “second communication port 22b2”, see FIG. 3). The second communication port 22b2 is disposed at an efficient position for sucking the gas around the inspection object X to the outside through the suction port 22c. More specifically, the second communication port 22b2 collects most of the gas around the inspection target X (if the detection target flows out from the inspection target X, this detection target). It is provided at an easy position.
 吸引口22cは、格納容器2内に設置されるガス検知手段4に検査対象物Xの周囲のガスを誘導可能な位置に設けられる。吸引口22cは、検査対象物Xの周囲のガス、すなわち、第1格納部21の内部のガスを第1の連通口22b1及び第2の連通口22b2のいずれか一方又はその両方から第2格納部22に吸引させるため、そのガスを吸引しやすい位置に設けられている。 The suction port 22c is provided at a position where the gas around the inspection object X can be guided to the gas detection means 4 installed in the storage container 2. The suction port 22c stores the gas around the inspection object X, that is, the gas inside the first storage unit 21, from the first communication port 22b1 and / or the second communication port 22b2 into the second storage. In order to make the part 22 suck, it is provided at a position where the gas is easily sucked.
 点検手段22dは、第2チャンバー22aの天面に設けられる。点検手段22dは、この天面にボルトとナットとによって締付けられて閉鎖することにより、第2チャンバー22aが密閉可能な構造となる構造を有する点検蓋である。 Inspection means 22d is provided on the top surface of the second chamber 22a. The inspection means 22d is an inspection lid having a structure in which the second chamber 22a can be sealed by being tightened and closed on the top surface with bolts and nuts.
 圧力計22eは、制御手段5と接続されている。圧力計22eは、計測した第2チャンバー22aの内部の圧力をデジタル出力又はアナログ出力可能な送信部を有する。 The pressure gauge 22e is connected to the control means 5. The pressure gauge 22e has a transmitter capable of digitally or analogly outputting the measured internal pressure of the second chamber 22a.
 吸引手段3は、図3及び図4に示すように、吸引口22cから吸引する。この吸引口22cは、第2格納部22の内部に設置されるガス検知手段4に検査対象物Xの周囲のガスを誘導可能な格納容器2内の位置に設けられる。吸引手段3は、格納容器2の内部のガスを吸引する吸引装置31(図1(a)及び(b),図3参照)と、検査対象物Xの周囲からガス検知手段4に誘導されるガスの流量を調整するために、複数ある連通口22b1,22b2を切換可能な切換手段32と、格納容器2の内部のガスを吸引口22cから吸引するガスの流量を調整可能な調整手段33(図4参照)と、を備える。 As shown in FIGS. 3 and 4, the suction means 3 sucks from the suction port 22c. The suction port 22c is provided at a position in the storage container 2 where the gas around the inspection object X can be guided to the gas detection means 4 installed inside the second storage unit 22. The suction means 3 is guided to the gas detection means 4 from the suction device 31 (see FIGS. 1A and 1B and FIG. 3) for sucking the gas inside the storage container 2 and the periphery of the inspection object X. In order to adjust the gas flow rate, the switching means 32 that can switch between the plurality of communication ports 22b1 and 22b2, and the adjustment means 33 that can adjust the flow rate of the gas that sucks the gas inside the storage container 2 from the suction port 22c ( 4).
 吸引装置31は、図4にその吸引経路が示されているように、調整手段33を介して格納容器2(具体的には、第2格納部22の吸引口22c)に接続されている。吸引装置31は、この格納容器2の内部のガスを吸引する真空ポンプである。 As shown in FIG. 4, the suction device 31 is connected to the storage container 2 (specifically, the suction port 22 c of the second storage unit 22) via the adjusting means 33. The suction device 31 is a vacuum pump that sucks the gas inside the storage container 2.
 調整手段32は、図3及び図4に示すように、第2格納部22の2つある連通口22b1,22b2を流れる流量を調整することにより、ガス検知手段4に誘導されるガスの流量を調整する。本実施形態に係る調整手段32は、これらの連通口22b1,22b2のうちの一方の連通口22b(第1の連通口22b1)に取り付けられるガス遮断弁32aである。他方の連通口22b(第2の連通口22b2)には、ガス検知手段4が取り付けられる。以下、第1格納部21の内部のガスを第1の連通口22b1からガス遮断弁32aを通過させて第2格納部22に流通させる流通路を第1流通路Ra-1と称して説明する。また、第1格納部21の内部のガスを第2の連通口22b2からガス検知手段4を通過させて第2格納部22に流通させる流通路を第2流通路Ra-2と称して説明する。 As shown in FIGS. 3 and 4, the adjusting means 32 adjusts the flow rate flowing through the two communication ports 22 b 1 and 22 b 2 of the second storage portion 22, thereby adjusting the flow rate of the gas guided to the gas detection means 4. adjust. The adjusting means 32 according to the present embodiment is a gas cutoff valve 32a attached to one of the communication ports 22b1 and 22b2 and the one communication port 22b (first communication port 22b1). The gas detection means 4 is attached to the other communication port 22b (second communication port 22b2). Hereinafter, the flow passage through which the gas inside the first storage portion 21 passes through the gas shutoff valve 32a from the first communication port 22b1 and flows to the second storage portion 22 will be referred to as a first flow passage Ra-1. . Further, the flow passage through which the gas inside the first storage portion 21 passes through the gas detection means 4 from the second communication port 22b2 and flows to the second storage portion 22 will be referred to as a second flow passage Ra-2. .
 調整手段32は、ガス遮断弁32aを遮断することにより、第1流通路Ra-1が遮断されて、第1格納部21の内部のガスを(遮断機構を備えていない)第2流通路Ra-2のみに通過させて第2格納部22に流通させる。すなわち、第2流通路Ra-2に備えられるガス検知手段4へのガスの流量は、第1格納部21から第2格納部22を流通するガスの全量にすることができる。 The adjusting means 32 shuts off the gas shut-off valve 32a, so that the first flow passage Ra-1 is shut off, and the gas inside the first storage portion 21 is not supplied with a shut-off mechanism. -2 is allowed to pass through to the second storage unit 22 only. That is, the flow rate of the gas to the gas detection means 4 provided in the second flow path Ra-2 can be the total amount of gas flowing from the first storage unit 21 to the second storage unit 22.
 また、調整手段32は、ガス遮断弁32aを開放することにより、第1格納部21の内部のガスを第1流通路Ra-1及び第2の流通路Ra-2の両方を通過させて第2格納部22に通過させる。なお、第1の連通口22b1が第2の連通口22b2よりも吸引口22c側に近く、吸引しやすい位置に配置されている。よって、第1格納部21から第2格納部22に吸引されるガスは、その大部分が第1流通路Ra-1に流れ、第2流通路Ra-2には実質的にほとんど流れることはない。 Further, the adjusting means 32 opens the gas cutoff valve 32a, thereby allowing the gas inside the first storage portion 21 to pass through both the first flow path Ra-1 and the second flow path Ra-2. 2 Pass through the storage unit 22. The first communication port 22b1 is closer to the suction port 22c than the second communication port 22b2, and is arranged at a position where it can be easily sucked. Therefore, most of the gas sucked from the first storage unit 21 to the second storage unit 22 flows into the first flow path Ra-1, and substantially flows into the second flow path Ra-2. Absent.
 第2の流量調整手段33は、第2格納部22の内部のガスを吸引口22cから吸引装置31の(最大)吸引流量で吸引する第1吸引ルートRb-1と、吸引装置31の吸引流量を減少させて流速を減速させて吸引する第2吸引ルートRb-2と、を切り換えることにより、吸引する流量を調整する。 The second flow rate adjusting means 33 includes a first suction route Rb-1 for sucking the gas inside the second storage unit 22 from the suction port 22c at the (maximum) suction flow rate of the suction device 31, and the suction flow rate of the suction device 31. The flow rate to be sucked is adjusted by switching between the second suction route Rb-2 for sucking at a reduced flow rate and reducing the flow velocity.
 第2の流量調整手段33は、吸引口33cから第2格納部22の内部のガスを誘導する第1の配管33aと、該第1の配管33aと接続され、第1吸引ルートRb-1と第2吸引ルートRb-2とを切り換える流路切換弁(流路切換手段)33bと、第1吸引ルートRb-1を構成する配管であって、第2吸引ルートRb-2との合流部までガスを誘導する第2の配管33cと、第2吸引ルートRb-2を構成する配管であって、第1吸引ルートRb-1との合流部までガスを誘導する第3の配管33dと、該第3の配管33dに設けられ、配管内を通過するガスの流量を調整可能な流量調整弁(流量調整手段)33eと、第1吸引ルートRb-1と第2吸引ルートRb-2との合流部から吸引装置31にガスを誘導する第4の配管33fと、を備える。 The second flow rate adjusting means 33 is connected to the first pipe 33a for guiding the gas inside the second storage portion 22 from the suction port 33c, and the first pipe 33a, and the first suction route Rb-1 A flow path switching valve (flow path switching means) 33b for switching between the second suction route Rb-2 and a pipe constituting the first suction route Rb-1, up to the junction with the second suction route Rb-2 A second pipe 33c for guiding the gas and a pipe constituting the second suction route Rb-2, the third pipe 33d for guiding the gas to the junction with the first suction route Rb-1, A flow rate adjusting valve (flow rate adjusting means) 33e provided in the third pipe 33d and capable of adjusting the flow rate of the gas passing through the pipe, and the first suction route Rb-1 and the second suction route Rb-2 merge. Pipe 33f for guiding the gas from the head to the suction device 31 , Comprising a.
 ガス検知手段4は、図5(a)~(c)に示すように、検知対象物を検知する検知部41と、第1格納部21の内部のガスを第2の連通口22b2から検知部41に誘導するためのホルダ42と、を備える。 As shown in FIGS. 5 (a) to 5 (c), the gas detection means 4 includes a detection unit 41 that detects a detection target, and a detection unit that detects the gas inside the first storage unit 21 from the second communication port 22b2. And a holder 42 for guiding to 41.
 検知部41は、検知対象物である有機溶媒を検知可能な半導体方式のガスセンサである。検知部41は、本実施形態では、酸化スズ半導体ガスセンサを用いた例を説明する。この半導体方式のガスセンサは、金属酸化物半導体素子の表面に検知対象物が付着することにより電気伝導度が変化することを利用して、その電気伝導度を計測することにより、検知対象物の有無を検知する。このガスセンサは、更には、その検知対象物の漏出量を検知する。 The detection unit 41 is a semiconductor type gas sensor that can detect an organic solvent that is a detection target. The detection part 41 demonstrates the example which used the tin oxide semiconductor gas sensor in this embodiment. This semiconductor-type gas sensor uses the fact that the electrical conductivity changes due to the detection object adhering to the surface of the metal oxide semiconductor element. By measuring the electrical conductivity, the presence or absence of the detection object is detected. Is detected. The gas sensor further detects the amount of leakage of the detection object.
 まず、このガスセンサの動作特性について、図6を参照しつつ説明する。まず、このガスセンサがガス減圧時の動作特性を図6(a)に示す。図6(a)では、横軸に格納容器の内部を減圧した減圧レベル[kPa]/[Torr]を示す。また、図6(a)では、縦軸にそのときの酸素濃度[%]及びこのガスセンサのセンサ出力[mV]を示す。酸素濃度は、点線で示すa線である。ガスセンサのセンサ出力は、実線で示すb線である。なお、このガスセンサのセンサ出力は、図6(b)のガスセンサの等価回路に示されているように、半導体素子41aと直列に接続された負荷抵抗RLの両端電圧VRLの値である。 First, the operating characteristics of this gas sensor will be described with reference to FIG. First, FIG. 6A shows the operating characteristics of the gas sensor when the gas pressure is reduced. In FIG. 6A, the horizontal axis represents the pressure reduction level [kPa] / [Torr] at which the inside of the storage container is decompressed. In FIG. 6A, the vertical axis represents the oxygen concentration [%] and the sensor output [mV] of this gas sensor. The oxygen concentration is a line indicated by a dotted line. The sensor output of the gas sensor is a b line indicated by a solid line. The sensor output of this gas sensor is the value of the voltage VRL across the load resistor RL connected in series with the semiconductor element 41a, as shown in the equivalent circuit of the gas sensor in FIG. 6B.
 図6(a)の結果に示されているように、減圧レベルを高くすると、当然に、格納容器の内部の酸素濃度(点線a)が低下し、その低下とともに、このガスセンサのセンサ出力(負荷抵抗の両端電圧VRL。実線b)は、酸素濃度と比例して上昇する。すなわち、(回路電圧VCは一定であることから)センサ抵抗RSは、酸素濃度と比例して低下している。このことから、このガスセンサは、格納容器の内部を真空状態に相当する93.3[kPa](=700[Torr])まで減圧しても使用に耐え得ることがわかる。 As shown in the result of FIG. 6A, when the decompression level is increased, naturally, the oxygen concentration (dotted line a) inside the containment vessel decreases, and along with the decrease, the sensor output (load) of this gas sensor The voltage VRL across the resistor, the solid line b) increases in proportion to the oxygen concentration. That is, the sensor resistance RS decreases in proportion to the oxygen concentration (since the circuit voltage VC is constant). From this, it can be seen that this gas sensor can withstand use even when the inside of the containment vessel is depressurized to 93.3 [kPa] (= 700 [Torr]) corresponding to a vacuum state.
 ホルダ42は、図5(a)~(c)に示すように、検知部41を保持するホルダ本体42aと、検知部41に第1格納部21の内部のガスを案内する案内路42bと、該案内路42bにより検知部41まで案内されたガスの流れに対して交差する位置に設けられる排気孔42cと、を備える。なお、図5(a)の縦断面図は、図5(c)の矢視A-A断面である。図5(b)の縦断面図は、図5(c)の矢視B-B断面である。 As shown in FIGS. 5A to 5C, the holder 42 includes a holder main body 42a that holds the detection unit 41, a guide path 42b that guides the gas inside the first storage unit 21 to the detection unit 41, And an exhaust hole 42c provided at a position intersecting with the flow of gas guided to the detection unit 41 by the guide path 42b. 5A is a cross-sectional view taken along the line AA in FIG. 5C. The vertical cross-sectional view of FIG. 5B is a cross-sectional view taken along the line BB in FIG.
 ホルダ本体42aは、ホルダ42を第2の連通口22b2に装着可能な装着手段44と、検知部41を保持する保持手段45と、を備える。 The holder main body 42a includes a mounting unit 44 that can mount the holder 42 to the second communication port 22b2, and a holding unit 45 that holds the detection unit 41.
 第2の連通口22b2の内周面には、雌螺子が形成されている。装着手段44は、この第2の連通口22b2の雌螺子に螺合される雄螺子がホルダ本体42aの下端側周面に形成されている。よって、装着手段44は、第2の連通口22b2に着脱自在に装着される構造となっている。ホルダ本体42aは、第2の連通口22b2に装着すると、案内路42bが第1格納部21側から第1格納部21の内部のガスを吸引可能な位置に配置される。ホルダ本体42aは、排気孔32cが第2格納部22側に第1格納部21の内部のガスを排気可能な位置に配置される。 A female screw is formed on the inner peripheral surface of the second communication port 22b2. In the mounting means 44, a male screw that is screwed into the female screw of the second communication port 22b2 is formed on the lower peripheral surface of the holder body 42a. Therefore, the mounting means 44 has a structure that is detachably mounted to the second communication port 22b2. When the holder main body 42a is attached to the second communication port 22b2, the guide path 42b is disposed at a position where the gas inside the first storage portion 21 can be sucked from the first storage portion 21 side. The holder main body 42a is disposed at a position where the exhaust hole 32c can exhaust the gas inside the first storage portion 21 on the second storage portion 22 side.
 保持手段45は、検知部41の検知面41bが案内路42bを流れるガスの流れに対して直交するように配置される。保持手段45は、案内路42bを流れるガスを検知部41の検知面43より後方(図5(a)及び(b)の上側)に流れにくくするために、検知部41(の検知面43)との間に隙間ができないように保持される。 The holding means 45 is arranged so that the detection surface 41b of the detection unit 41 is orthogonal to the flow of gas flowing through the guide path 42b. The holding means 45 is configured to prevent the gas flowing in the guide path 42b from flowing backward (upward in FIGS. 5A and 5B) from the detection surface 43 of the detection unit 41 (detection surface 43 of the detection unit 41). So that there is no gap between them.
 案内路42bは、ホルダ本体42aの下端(図5(a)及び(b)では下側)に設けられた吸引口46からホルダ本体42aに保持される検知部41aの検知面43に向かって直線状に延びる流路である。 The guide path 42b is straight from the suction port 46 provided at the lower end of the holder main body 42a (the lower side in FIGS. 5A and 5B) toward the detection surface 43 of the detection unit 41a held by the holder main body 42a. It is the flow path extended in a shape.
 排気孔42cは、ホルダ本体42aの側面をその外周面と案内路42bとの間を貫通した孔である。排気孔42cは、より具体的には、ホルダ本体42aの幅方向の長さを長辺とし、軸方向の長さを短辺とする長孔である。ホルダ本体42aを第2格納部22の連通口22bに取り付けた際に、排気孔42cは、少なくとも第2格納部22側に通じる位置に配置されている。好ましくは、排気孔42cは、検知部41の直近に配置されていることが好ましい。 The exhaust hole 42c is a hole penetrating the side surface of the holder main body 42a between the outer peripheral surface and the guide path 42b. More specifically, the exhaust hole 42c is a long hole whose length in the width direction of the holder body 42a is a long side and whose length in the axial direction is a short side. When the holder main body 42a is attached to the communication port 22b of the second storage part 22, the exhaust hole 42c is disposed at a position that communicates at least with the second storage part 22 side. Preferably, the exhaust hole 42c is disposed in the immediate vicinity of the detection unit 41.
 排気孔42cは、このようにして、検知部41の内部にガスが通過しないように、案内路42bによって案内されたガスの流れを検知部41の検知面43で直交させて側方に曲げて第2格納部22側に排出させることができる。そして、案内路42bを流れるガスは、検知部41の検知面43でその流れが直角に曲げられることにより、その流速が低下する。よって、検知部41は、検知面43でガスの流速を低下させてから検知することができるため、内蔵されるヒータの温度低下を抑制できる。そして、内蔵されるヒータの温度が低下することによるセンサ抵抗が増加するのを防止し、検知部41は、正常に動作することができる。 In this way, the exhaust hole 42c bends the gas flow guided by the guide path 42b orthogonally at the detection surface 43 of the detection unit 41 to the side so that the gas does not pass through the detection unit 41 in this way. It can be discharged to the second storage unit 22 side. The gas flowing in the guide path 42b is bent at a right angle on the detection surface 43 of the detection unit 41, so that the flow velocity is reduced. Therefore, since the detection part 41 can detect after reducing the flow velocity of gas with the detection surface 43, it can suppress the temperature fall of the heater incorporated. The sensor resistance is prevented from increasing due to a decrease in the temperature of the built-in heater, and the detection unit 41 can operate normally.
 制御手段5は、図7の制御ブロック図に示すように、気密性検査に従事する検査担当者が当該装置を操作する操作部51と、格納容器2、吸引手段3及びガス検知手段4との信号の入出力を行う入出力部52と、該入出力部52から入力された信号に基づき吸引手段3等を制御する制御部53と、該制御部53の検査結果等を報知する報知部54と、を備える。 As shown in the control block diagram of FIG. 7, the control means 5 includes an operation unit 51 that is operated by an inspection person engaged in an airtightness inspection, the storage container 2, the suction means 3, and the gas detection means 4. An input / output unit 52 for inputting / outputting signals, a control unit 53 for controlling the suction means 3 and the like based on a signal input from the input / output unit 52, and an informing unit 54 for informing a test result and the like of the control unit 53 And comprising.
 操作部51は、制御部53に接続される。操作部51は、検査対象者が当該装置に気密性検査の開始を指示する検査開始スイッチや各装置に電源を供給する電源スイッチなどを備える。 The operation unit 51 is connected to the control unit 53. The operation unit 51 includes an inspection start switch for instructing the apparatus to start an airtightness inspection by the person to be inspected, a power switch for supplying power to each apparatus, and the like.
 入出力部52は、第1格納部21の圧力計21eと、第2格納部22の圧力計22eと、ガス検知手段4の検知部41とに接続されて、これらの電源を供給するとともに、各種信号を受け付ける。第1格納部21の圧力計21eからは、第1格納部21の内部の圧力を計測した計測信号が入力される。第2格納部22の圧力計22eからも同様に第2格納部22の内部の圧力を計測した計測信号が入力される。ガス検知手段4の検知部41からは、センサ出力が入力される。 The input / output unit 52 is connected to the pressure gauge 21e of the first storage unit 21, the pressure gauge 22e of the second storage unit 22, and the detection unit 41 of the gas detection unit 4, and supplies these power sources. Accepts various signals. A measurement signal obtained by measuring the pressure inside the first storage unit 21 is input from the pressure gauge 21 e of the first storage unit 21. Similarly, a measurement signal obtained by measuring the pressure inside the second storage unit 22 is input from the pressure gauge 22e of the second storage unit 22. A sensor output is input from the detector 41 of the gas detector 4.
 入出力部52は、更に、吸引装置31と、切換手段32のガス遮断弁32aと、調整手段33の流路切換弁33bと、第1格納部21の大気開放弁21cとも接続されている。そして、入出力部52は、電源を供給するとともに、各種信号を出力する。吸引装置31には、ポンプ駆動用の電源を供給する。ガス遮断弁32aには、遮断信号を出力する。流路切換弁33bには、流路切換信号を出力する。 The input / output unit 52 is further connected to the suction device 31, the gas cutoff valve 32 a of the switching unit 32, the flow path switching valve 33 b of the adjusting unit 33, and the atmosphere release valve 21 c of the first storage unit 21. The input / output unit 52 supplies power and outputs various signals. The suction device 31 is supplied with power for driving the pump. A cutoff signal is output to the gas cutoff valve 32a. A flow path switching signal is output to the flow path switching valve 33b.
 制御部53は、気密性検査に関する制御プログラムを記憶する不揮発性のメモリであるROMと、入出力部52からの入出力信号などを記憶する揮発性のメモリであるRAMと、各種演算処理を行う演算部と、を備える。 The control unit 53 performs various arithmetic processes with a ROM that is a non-volatile memory that stores a control program related to an airtightness test, a RAM that is a volatile memory that stores an input / output signal from the input / output unit 52, and the like. And an arithmetic unit.
 制御部53は、吸引装置31、ガス遮断弁32a、流路切換弁33b及び大気開放弁21cを制御して格納容器2の内部のガス圧力を制御する圧力制御部53aと、第1格納部21の圧力計21e及び第2格納部22の圧力計22eからの計測信号に基づき格納容器2の内部の状態を監視する状態監視部53bと、格納容器2の内部の圧力から検査対象物の気密性を判定する気密性判定部53cと、を備える。 The control unit 53 controls the suction device 31, the gas cutoff valve 32 a, the flow path switching valve 33 b and the atmosphere release valve 21 c to control the gas pressure inside the storage container 2, and the first storage unit 21. A state monitoring unit 53b for monitoring the internal state of the containment vessel 2 based on the measurement signals from the pressure gauge 21e and the pressure gauge 22e of the second storage unit 22, and the airtightness of the test object from the internal pressure of the containment vessel 2 An airtightness determining unit 53c for determining
 報知部54は、第1格納部21の内部のガスの圧力を表示する第1圧力表示計54aと、第2格納部22の内部のガスの圧力を表示する第2圧力表示計54bと、気密性判定部53cによる検査対象物の気密性の判定結果を報知する判定表示部(表示パネルや警報ランプ、警報ブザー)54cと、を備える。 The notification unit 54 includes a first pressure indicator 54 a that displays the pressure of the gas inside the first storage unit 21, a second pressure display meter 54 b that displays the pressure of the gas inside the second storage unit 22, and an airtight And a determination display unit (display panel, alarm lamp, alarm buzzer) 54c that notifies the determination result of the airtightness of the inspection object by the sex determination unit 53c.
 ケーシング6は、格納容器2、吸引手段3、制御手段5などを収納して搬送可能なように底面にキャスターが設けられている。ケーシング6の前面には、制御手段5の各種計器や操作スイッチ等が取り付けられている。 The casing 6 is provided with a caster on the bottom surface so that the storage container 2, the suction means 3, the control means 5 and the like can be accommodated and transported. Various instruments and operation switches of the control means 5 are attached to the front surface of the casing 6.
 次に、本実施形態に係る気密性検査装置の作用について、図8及び図9を参照しつつ詳細に説明する。まず、図8の制御フローにそって順に説明する。最初に、検査対象物Xの気密性を検査するにあたり、第1格納部21に検査対象物Xを格納する。点検扉(点検手段)21dを閉鎖して、第1格納部21を密閉する(S1)。そして、操作部51の運転開始スイッチが操作されて、気密性検査が開始される(S2)と、気密性検査は、検査対象物Xから検知対象物が漏出可能な条件にすべく、第1格納部21を所定の圧力まで減圧する減圧段階と、第1格納部21の内部のガスから検知対象物を検知する検知部41のセンサ出力信号から検査対象物Xの気密性の良否を判定する判定段階と、に分けて実施される。 Next, the operation of the airtightness inspection apparatus according to the present embodiment will be described in detail with reference to FIGS. First, it demonstrates in order along the control flow of FIG. First, when inspecting the airtightness of the inspection object X, the inspection object X is stored in the first storage unit 21. The inspection door (inspection means) 21d is closed, and the first storage portion 21 is sealed (S1). Then, when the operation start switch of the operation unit 51 is operated and the airtightness inspection is started (S2), the airtightness inspection is performed in such a condition that the detection object can be leaked from the inspection object X. Whether the test object X is airtight or not is determined from a decompression stage in which the storage unit 21 is depressurized to a predetermined pressure and a sensor output signal of the detection unit 41 that detects the detection target object from the gas inside the first storage unit 21. The process is divided into a determination stage and a determination stage.
 気密性検査の減圧段階では、制御手段5の圧力制御部53aは、切換手段32を制御して、第1格納部21の内部のガスが主に第1流通路Ra-1から第2格納部22に吸引されるように調整する。すなわち、圧力制御部53aは、ガス遮断弁32aを開放する(S3)。 In the pressure reduction stage of the airtightness test, the pressure control unit 53a of the control unit 5 controls the switching unit 32 so that the gas inside the first storage unit 21 mainly passes from the first flow path Ra-1 to the second storage unit. It adjusts so that 22 may be attracted | sucked. That is, the pressure control unit 53a opens the gas cutoff valve 32a (S3).
 圧力制御部53aは、調整手段33を制御して、第2格納部22の内部のガスが第1吸引ルートRb-1から吸引されるように切り換える。すなわち、圧力制御部53aは、流路切換弁33bを第1吸引ルートRb-1側に切り換える(S4)。 The pressure control unit 53a controls the adjustment unit 33 so that the gas inside the second storage unit 22 is sucked from the first suction route Rb-1. That is, the pressure control unit 53a switches the flow path switching valve 33b to the first suction route Rb-1 side (S4).
 このようにして第1格納部21の内部のガスを吸引装置31に吸引する流路が選択される(S3及びS4の後)と、圧力制御部53aは、吸引装置31を駆動させるべく、吸引装置31を駆動させる駆動信号を入出力部52に出力する(S5)。吸引装置31は、この入出力部52からの駆動信号の入力により駆動を開始する。そして、吸引装置31は、第2格納部22の内部のガスを吸引する。更には、吸引装置31は、主として第1流通路Ra-1から第1格納部21の内部のガスを吸引する。このようにして、第1格納部21は、減圧され始める。 When the flow path for sucking the gas inside the first storage unit 21 to the suction device 31 is selected in this way (after S3 and S4), the pressure control unit 53a sucks the suction device 31 to drive it. A drive signal for driving the device 31 is output to the input / output unit 52 (S5). The suction device 31 starts to be driven by the input of a drive signal from the input / output unit 52. Then, the suction device 31 sucks the gas inside the second storage unit 22. Further, the suction device 31 mainly sucks the gas inside the first storage portion 21 from the first flow path Ra-1. In this way, the first storage unit 21 starts to be depressurized.
 状態監視部53bでは、格納容器21,22の内部のガスの圧力を第1格納部21の圧力計21e及び第2格納部22の圧力計22eから入力される計測信号に基づき監視している。そして、状態監視部53bは、その内部のガスの圧力を計測した計測信号を圧力制御部53a及び報知部54に出力している。報知部54では、状態監視部53bから入力された計測信号(圧力信号)を操作者に報知するために第1圧力表示計54a及び第2圧力表示計54bに表示させる。 The state monitoring unit 53b monitors the gas pressure inside the storage containers 21 and 22 based on measurement signals input from the pressure gauge 21e of the first storage unit 21 and the pressure gauge 22e of the second storage unit 22. And the state monitoring part 53b is outputting the measurement signal which measured the pressure of the gas inside the pressure control part 53a and the alerting | reporting part 54. FIG. The notification unit 54 displays the measurement signal (pressure signal) input from the state monitoring unit 53b on the first pressure display meter 54a and the second pressure display meter 54b in order to notify the operator.
 圧力制御部53が状態監視部53bから入力された圧力信号に基づき第1格納部21の圧力が所定圧力に達したと判定する(S6でYES)と、気密性検査は、検査対象物から検知対象物が漏出可能な条件となったため、検知段階に移行する。なお、ここでいう所定圧力とは、検査対象物Xから検知対象物を漏出させるために必要な圧力である。以下、この圧力を「判定開始圧力」を称する。本実施形態では、この判定開始圧力は、93.3[kPa]/700[Torr]とする。 When the pressure control unit 53 determines that the pressure in the first storage unit 21 has reached a predetermined pressure based on the pressure signal input from the state monitoring unit 53b (YES in S6), the airtightness test is detected from the test object. Since the target object is in a condition that allows leakage, the process moves to the detection stage. In addition, the predetermined pressure here is a pressure required to leak the detection target from the inspection target X. Hereinafter, this pressure is referred to as “determination start pressure”. In the present embodiment, this determination start pressure is 93.3 [kPa] / 700 [Torr].
 検知段階S4では、図9の制御フロー図に示されているように、制御手段5の圧力制御部53aは、調整手段33を制御して、第2格納部22の内部のガスが第2吸引ルートRb-2から吸引されるように切り換える。すなわち、圧力制御部53aは、流路切換弁33bを第2吸引ルートRb-2側に切り換える(S7)。 In the detection step S4, as shown in the control flow diagram of FIG. 9, the pressure control unit 53a of the control unit 5 controls the adjustment unit 33 so that the gas inside the second storage unit 22 is second suctioned. Switch so as to be sucked from route Rb-2. That is, the pressure control unit 53a switches the flow path switching valve 33b to the second suction route Rb-2 side (S7).
 圧力制御部53aは、更に、切換手段32を制御して、第1格納部21の内部のガスが第2流通路Ra-2から第2格納部22に吸引されるように調整する。すなわち、圧力制御部53aは、ガス遮断弁32aを遮断する(S8)。 The pressure control unit 53a further controls the switching means 32 to adjust the gas inside the first storage unit 21 so that the gas is sucked into the second storage unit 22 from the second flow path Ra-2. That is, the pressure control unit 53a shuts off the gas shutoff valve 32a (S8).
 このようにして第1格納部21の内部のガスを吸引装置31に吸引する流路が選択される(S7及びS8の後)と、ガス検知手段4の検知部41に第1格納部21のガスが大量に流入するようになる。気密性判定部53cでは、図10に示すように、ガス検知手段4の検知部41のセンサ出力信号の入力を受け付けている(検査時間が約4秒のときに格納容器2の減圧が開始される)が、判定開始圧力に達した約12秒後から、ピンホール等があれば、センサ出力電圧(信号)が上昇し始める。 In this way, when a flow path for sucking the gas inside the first storage unit 21 to the suction device 31 is selected (after S7 and S8), the detection unit 41 of the gas detection means 4 is connected to the detection unit 41 of the first storage unit 21. A large amount of gas flows in. As shown in FIG. 10, the airtightness determination unit 53c accepts the input of the sensor output signal of the detection unit 41 of the gas detection unit 4 (decompression of the storage container 2 is started when the inspection time is about 4 seconds. However, about 12 seconds after reaching the determination start pressure, if there is a pinhole or the like, the sensor output voltage (signal) starts to rise.
 気密性判定部53cは、第1格納部21内のガス圧力が判定開始圧力に達してから所定の時間が経過したとき(S9でYES)の検知部41のセンサ出力電圧が所定の電圧以下であるか否かでその検知対象物の気密性の良否を判定する(S10)。 The airtightness determination unit 53c determines that the sensor output voltage of the detection unit 41 is equal to or lower than the predetermined voltage when a predetermined time has elapsed after the gas pressure in the first storage unit 21 reaches the determination start pressure (YES in S9). Whether or not the detection target is airtight is determined based on whether or not there is (S10).
 なお、ここでいう所定の時間とは、検知部41が気密性の判定においてその気密性の良否を判別可能な閾値まで検知対象物を漏出させるのに必要な時間である。この所定の時間は、以下、「漏出検知時間」と称する。具体的には、図10に示されているように、センサ出力電圧は、検査対象物Xにピンホールがあれば(実線a以外の1点鎖線b、2点鎖線c、3点鎖線d)、判定開始圧力に達してから(検査時間約12秒後)約4秒以内に少なくとも1.6Vに達している。約4秒間あれば、検査対象物Xにピンホールがあるか否かを判別することができる。このことから、本実施形態でこの漏出検知時間は、判定開始圧力に達してから約4秒間(検査時間が約12~16秒の間)とする。 It should be noted that the predetermined time referred to here is a time required for the detection unit 41 to leak the detection target to a threshold at which the airtightness can be determined in the airtightness determination. This predetermined time is hereinafter referred to as “leakage detection time”. Specifically, as shown in FIG. 10, if the inspection object X has a pinhole, the sensor output voltage (one-dot chain line b other than solid line a, two-dot chain line c, three-dot chain line d) The voltage reaches at least 1.6 V within about 4 seconds after reaching the determination start pressure (after about 12 seconds of the inspection time). If it is about 4 seconds, it can be determined whether or not the inspection object X has a pinhole. Therefore, in this embodiment, the leakage detection time is about 4 seconds (inspection time is about 12 to 16 seconds) after reaching the determination start pressure.
 また、ここでいう所定の電圧とは、判定開始圧力から漏出検知時間に達したときのその気密性の良否を判別可能な閾値となるセンサ出力電圧である。この所定の電圧は、以下、「気密性判定電圧」と称する。この気密性判定電圧は、検査対象物Xに形成されたピンホールの規模(大きさ)によって、電圧値が異なっている。例えば、ピンホールの直径が0.020mmまで検知する場合は、気密性判定電圧は2.1Vとされる。ピンホールの直径が0.010mmまで検知する場合は、気密性判定電圧は2.0Vとされる。ピンホールの直径が0.005mmまで検知する場合は、気密性判定電圧は1.6Vとされる。なお、図10の実線aは、ピンホールがないときのセンサ出力電圧[V]を示す。1点鎖線bは、ピンホールの直径が0.020mmのときのセンサ出力電圧[V]を示す。2点鎖線cは、ピンホールの直径が0.010mmのときのセンサ出力電圧[V]を示す。3点鎖線dは、ピンホールの直径が0.005mmのときのセンサ出力電圧[V]を示す。 Further, the predetermined voltage referred to here is a sensor output voltage serving as a threshold value for determining whether the airtightness is good or not when the leakage detection time is reached from the determination start pressure. This predetermined voltage is hereinafter referred to as “airtightness determination voltage”. The voltage value of the airtightness determination voltage varies depending on the scale (size) of the pinhole formed in the inspection object X. For example, when the pinhole diameter is detected to 0.020 mm, the airtightness determination voltage is 2.1V. When the pinhole diameter is detected to 0.010 mm, the airtightness determination voltage is set to 2.0V. When the pinhole diameter is detected to 0.005 mm, the airtightness determination voltage is set to 1.6V. In addition, the continuous line a of FIG. 10 shows sensor output voltage [V] when there is no pinhole. An alternate long and short dash line b indicates the sensor output voltage [V] when the pinhole diameter is 0.020 mm. A two-dot chain line c represents the sensor output voltage [V] when the pinhole diameter is 0.010 mm. A three-dot chain line d indicates the sensor output voltage [V] when the pinhole diameter is 0.005 mm.
 気密性判定部52は、センサ出力電圧がこの気密性判定電圧以下であった場合、気密性に異常はなく、気密性が保たれていると判定する(S10でYES,S11)。一方、気密性判定部52は、センサ出力電圧がこの気密性判定電圧を超えた場合、気密性に異常があり、気密性が充分に保たれていないと判定する(S10でNO,S12)。気密性判定部52は、これらの判定結果(判定結果信号)を報知部54に出力する(S13)。報知部54では、判定表示部54cでその結果を報知する。 When the sensor output voltage is equal to or lower than the airtightness determination voltage, the airtightness determining unit 52 determines that there is no abnormality in the airtightness and that the airtightness is maintained (YES in S10, S11). On the other hand, when the sensor output voltage exceeds the airtightness determination voltage, the airtightness determining unit 52 determines that the airtightness is abnormal and the airtightness is not sufficiently maintained (NO in S10, S12). The airtightness determination unit 52 outputs these determination results (determination result signals) to the notification unit 54 (S13). In the notification unit 54, the determination display unit 54c notifies the result.
 判定結果が出て、気密性検査が完了すると、圧力制御部53aは、検査対象物を取り出すべく、大気開放弁21cを開放して、格納容器2を大気開放し、格納容器2の内部を大気圧に戻す(S14)。格納容器2の圧力が大気圧まで戻ると、検査担当者は、点検扉21dを開放して、検査対象物Xを取り出して、検査を完了する。 When the determination result is obtained and the airtightness inspection is completed, the pressure control unit 53a opens the atmosphere release valve 21c to release the storage container 2 to the atmosphere so that the object to be inspected can be taken out. Return to atmospheric pressure (S14). When the pressure in the containment vessel 2 returns to atmospheric pressure, the inspection person opens the inspection door 21d, takes out the inspection object X, and completes the inspection.
 このようにして、ガス検知手段4は、検査対象物Xを格納する格納容器2の内部に設置されている。ガス状の検知対象物が検査対象物Xから漏出している場合、格納容器2の内部のガスが吸引手段3で吸引口22cから吸引されることにより、検査対象物Xの周囲のガスとともに、その検知対象物Xもガス検知手段4に誘導される。このようにして、ガス検知手段4は、その検知対象物を検知することができるようになっている。 In this way, the gas detection means 4 is installed inside the storage container 2 for storing the inspection object X. When the gaseous detection target is leaking from the inspection target X, the gas inside the storage container 2 is sucked from the suction port 22c by the suction means 3, so that along with the gas around the inspection target X, The detection object X is also guided to the gas detection means 4. In this way, the gas detection means 4 can detect the detection object.
 特に、検査対象物Xが第1格納部21に格納される。検査対象物Xから漏出したガス状の検知対象物は、この第1格納部21の内部に放出される。第2格納部22には、吸引口22cが設けられている。この第2格納部22の内部のガスは、吸引手段3を吸引させることにより、吸引口22cに吸引される。続けて、第1格納部21の内部のガスが吸引口22cに吸引される。検査対象物Xから漏出した検知対象物は、第2格納部22の内部のガスを吸引口22cから吸引手段3で吸引することにより、第1格納部21から検査対象物Xの周囲のガスとともに、ガス検知手段4に誘導される。このようにして、ガス検知手段4は、その検知対象物Xを検知することができるようになっている。よって、本実施形態に係る気密性検査装置1は、格納容器2の内部で検査対象物Xから検知対象物が漏出しているか否かを検知することができる。そして、気密性検査装置1は、短時間で検査対象物Xの気密性を検査することができる。 In particular, the inspection object X is stored in the first storage unit 21. The gaseous detection target leaked from the inspection target X is discharged into the first storage unit 21. The second storage unit 22 is provided with a suction port 22c. The gas inside the second storage portion 22 is sucked into the suction port 22c by sucking the suction means 3. Subsequently, the gas inside the first storage unit 21 is sucked into the suction port 22c. The detection object leaked from the inspection object X is sucked together with the gas around the inspection object X from the first storage part 21 by sucking the gas inside the second storage part 22 from the suction port 22c by the suction means 3. , Guided to the gas detection means 4. In this way, the gas detection means 4 can detect the detection object X. Therefore, the airtightness inspection apparatus 1 according to the present embodiment can detect whether or not the detection target is leaking from the inspection target X inside the storage container 2. And the airtightness inspection apparatus 1 can test | inspect the airtightness of the test target object X in a short time.
 連通口22b1,22b2は、検査対象物Xが格納される第1格納部21に近い位置に配置することができる。この連通口22b1,22b2は、検査対象物Xの周囲のガスを高速に吸引することができる。 The communication ports 22b1 and 22b2 can be arranged at positions close to the first storage unit 21 in which the inspection object X is stored. The communication ports 22b1 and 22b2 can suck the gas around the inspection object X at high speed.
 格納容器2の内部のガスは、ガス検知手段4に誘導される。調整手段33は、ガス検知手段4が検知対象物を検知するのに適した流量になるように調整することができる。 The gas inside the containment vessel 2 is guided to the gas detection means 4. The adjusting unit 33 can adjust the flow rate so that the gas detecting unit 4 can detect the detection target.
 格納容器2の内部のガスは、吸引手段3により吸引される。そして、このガスは、案内路42bを介して検知部41まで案内される。このガスが排気孔42cから排出される際に、このガスの流れは、検知部41で曲げられて減速する。このガス検知手段4は、吸引されるガスの流速を減速することができる構造となっている。このため、ガス検知手段4は、検知対象物を検知する感度を向上させることができる。 The gas inside the containment vessel 2 is sucked by the suction means 3. And this gas is guided to the detection part 41 via the guide path 42b. When this gas is discharged from the exhaust hole 42c, the flow of this gas is bent by the detection unit 41 and decelerated. The gas detection means 4 has a structure capable of decelerating the flow rate of the sucked gas. For this reason, the gas detection means 4 can improve the sensitivity which detects a detection target object.
 なお、検知部41のセンサ出力(電圧)が気密性判定電圧を超えた後であっても、格納容器2の内部の圧力を大気圧に戻すだけで、半導体素子の表面に付着した検知対象物が離脱する。このため、図10に示すように、検知部41のセンサ出力(電圧)を検査初期の電圧に戻すことができ、判定前のセンサ出力電圧に戻すことができる。よって、本発明の気密性検査装置によれば、連続して気密性検査を実施しても、その検知精度が低下することがない。 Even after the sensor output (voltage) of the detection unit 41 exceeds the airtightness determination voltage, the detection target attached to the surface of the semiconductor element can be obtained by simply returning the pressure inside the storage container 2 to atmospheric pressure. Leaves. For this reason, as shown in FIG. 10, the sensor output (voltage) of the detection unit 41 can be returned to the initial voltage of the test, and can be returned to the sensor output voltage before the determination. Therefore, according to the airtightness inspection apparatus of the present invention, even if the airtightness inspection is continuously performed, the detection accuracy does not decrease.
 次に、本発明の第2実施形態に係る気密性検査装置について、図11を参照しつつ説明する。なお、第1実施形態に係る気密性検査装置1と同一の構成については、同じ符号を用いるともに、その説明を省略する。 Next, an airtightness inspection apparatus according to a second embodiment of the present invention will be described with reference to FIG. In addition, about the same structure as the airtightness inspection apparatus 1 which concerns on 1st Embodiment, while using the same code | symbol, the description is abbreviate | omitted.
 まず、本実施形態に係る気密性検査装置100は、第1実施形態と同じく、格納容器102と、吸引手段3と、ガス検知手段4と、制御手段5と、ケーシング6と、を備える。 First, the airtightness inspection apparatus 100 according to the present embodiment includes a storage container 102, a suction means 3, a gas detection means 4, a control means 5, and a casing 6, as in the first embodiment.
 格納容器102は、図11に示すように、第1格納部121と第2格納部122とを備える。しかし、第1格納部121と第2格納部122とは、それぞれが密閉可能に仕切られておらず、格納容器102の内部の高さ方向中途部に内側に向かって突出して設けられる突出部120aに壁120bが載置されている。つまり、壁120bは、前方にスライドすることにより、格納容器102から取り外し可能となっている。第1格納部121は、多数の検査対象物を同時に検査するために、複数のトレイ121f,…が収納可能となっている。当該トレイ121fを前方にスライドすることにより、第1格納部121には、格納容器102から取り外し可能に保持可能な突出部121g,…が設けられている。 The storage container 102 includes a first storage unit 121 and a second storage unit 122 as shown in FIG. However, the first storage part 121 and the second storage part 122 are not partitioned so as to be hermetically sealed, and a protruding part 120 a provided to protrude inward in the middle in the height direction inside the storage container 102. A wall 120b is placed on the wall. That is, the wall 120b can be detached from the storage container 102 by sliding forward. The first storage unit 121 can store a plurality of trays 121f to inspect a large number of inspection objects at the same time. By sliding the tray 121f forward, the first storage part 121 is provided with a protruding part 121g, which can be detachably held from the storage container 102.
 第2格納部122は、本実施形態に係る多数の検査対象物を同時に検査することを想定している。そのことから、第1格納部121の容積が大きく、第1格納部121から吸引するガスの流量も当然に大きくなっている。よって、連通口122b,…が複数設けられている。また、吸引口122cは、格納容器102の上部に設けられている。よって、吸引口122cは、格納容器102の内部のガスを効率よく吸引可能な位置に配置されている。連通口122b,…には、第1格納部121の容積に合わせて多数のガス遮断弁32,…及びガス検知手段4,…が取り付けられている。 It is assumed that the second storage unit 122 simultaneously inspects a large number of inspection objects according to the present embodiment. Therefore, the volume of the first storage unit 121 is large, and the flow rate of the gas sucked from the first storage unit 121 is naturally large. Therefore, a plurality of communication ports 122b,... Are provided. In addition, the suction port 122 c is provided in the upper part of the storage container 102. Therefore, the suction port 122c is disposed at a position where the gas inside the storage container 102 can be efficiently sucked. .. Are attached to the communication ports 122b,... According to the volume of the first storage part 121.
 このように、第1格納部121と第2格納部122とは、それぞれが完全に密閉されていない。例えば、突出部120aと壁120bとの接合部分から第1格納部121の内部のガスが流通可能であったとしても、第1格納部121の内部のガスの大部分は多数の連通口122b,…を介して第2格納部122に流通する。このため、この連通口122b,…に取り付けられるガス検知手段4,…によって、検知対象物を検知することは可能である。 Thus, each of the first storage unit 121 and the second storage unit 122 is not completely sealed. For example, even if the gas inside the first storage part 121 can be circulated from the joint part between the projecting part 120a and the wall 120b, most of the gas inside the first storage part 121 has a large number of communication ports 122b, Circulate to the second storage unit 122 via. For this reason, it is possible to detect a detection target object by the gas detection means 4, ... attached to this communication port 122b, ....
 また、検査対象物の容積が増えた場合であっても、連通口122b,…の数量を増加させることにより、検知対象物の検知を行うことに支障となることはない。また、連通口122b,…を複数設けることにより、ガス検知手段4,…及びガス遮断弁32,…も複数となる。しかし、本実施形態に係る格納容器102は、壁120bが取り外し可能に構成されているため、容易にメンテナンスが行えるようになっている。また、第1格納部121から吸引可能なガスの流量が増加して、第1格納部121の内部を所定の圧力まで(1箇所から吸引する場合と比較して)短時間で低下させることができる。なお、1箇所の連通口の開口面積を拡大することによって、同様の効果を得るようにしてもよい。 In addition, even when the volume of the inspection object increases, there is no problem in detecting the detection object by increasing the number of communication ports 122b,. Further, by providing a plurality of communication ports 122b,..., A plurality of gas detection means 4,. However, the storage container 102 according to the present embodiment is configured such that the wall 120b can be removed, so that maintenance can be easily performed. In addition, the flow rate of the gas that can be sucked from the first storage unit 121 increases, and the inside of the first storage unit 121 can be reduced to a predetermined pressure (compared to the case of suction from one place) in a short time. it can. In addition, you may make it acquire the same effect by enlarging the opening area of one communicating port.
 次に、本発明の第3実施形態に係る気密性検査装置について、図1~図4,図12及び図13を参照しつつ説明する。 Next, an airtightness inspection apparatus according to a third embodiment of the present invention will be described with reference to FIGS. 1 to 4, 12, and 13.
 気密性検査装置1は、図1(a)及び(b)の全体概観図に示すように、検査対象物Xを格納するための格納容器2と、該格納容器2の内部のガスを吸引する吸引手段3と、検査対象物Xから漏出したガス状の検知対象物を検知可能なガス検知手段4と、吸引手段3及びガス検知手段4を制御する制御手段5と、これらの装置を一体に収納するケーシング6と、を備える。 The airtightness inspection apparatus 1 sucks the storage container 2 for storing the inspection object X and the gas inside the storage container 2 as shown in the overall overview of FIGS. 1 (a) and 1 (b). The suction means 3, the gas detection means 4 capable of detecting the gaseous detection object leaked from the inspection object X, the control means 5 for controlling the suction means 3 and the gas detection means 4, and these devices are integrated. A casing 6 for storage.
 格納容器2は、図2(a)~(c)及び図3に詳細に示すように、検査対象物Xを格納する第1格納部21と、該第1格納部21の内部のガスが流通可能である第2格納部22と、を備える。第1格納部21と第2格納部22とは、第1格納部21と第2格納部22との間をガスが流通不能となるようにシールされた壁20bによって、区画されている。 As shown in detail in FIGS. 2 (a) to 2 (c) and FIG. 3, the storage container 2 has a first storage unit 21 for storing the inspection object X and a gas inside the first storage unit 21 flowing therethrough. A second storage unit 22 that is possible. The first storage unit 21 and the second storage unit 22 are partitioned by a wall 20b sealed between the first storage unit 21 and the second storage unit 22 so that gas cannot flow.
 第1格納部21は、内部のガスを吸い出すことにより減圧雰囲気とされる第1チャンバー21aと、該第1チャンバー21aの内部に検査対象物Xを格納するための格納手段21bと、減圧された第1チャンバー21aの内部のガスを外部に開放する大気開放手段21cと、第1チャンバー21aの内部の検査対象物X等の状況を点検するための点検手段21dと、第1チャンバー21aの内部の圧力を計測する圧力計21e(図3参照)と、を備える。 The first storage unit 21 is decompressed by a first chamber 21a that is in a reduced pressure atmosphere by sucking out the internal gas, and storage means 21b for storing the inspection object X inside the first chamber 21a. An air release means 21c for releasing the gas inside the first chamber 21a to the outside, an inspection means 21d for checking the state of the inspection object X and the like inside the first chamber 21a, and an inside of the first chamber 21a And a pressure gauge 21e (see FIG. 3) for measuring pressure.
 第2格納部22は、内部のガスを吸い出すことにより減圧雰囲気とされる第2チャンバー22aと、第1チャンバー21aと第2チャンバー22aとの間をガスが流通可能なように第1チャンバー21a及び第2チャンバー22aを連通させた連通口22bと、該連通口22bに取付部347を介して間接的に閉塞可能な蓋322f(図12参照)と、第1チャンバー21aから流通するガスを外部に吸引可能な位置に設けられる吸引口22cと、第2チャンバー22aの内部に取り付けられるガス検知手段4などの装置を取り付け及び点検するための点検手段22dと、第2チャンバー22a内の圧力を計測する圧力計22e(図3参照)と、を備える。 The second storage unit 22 includes a first chamber 21a and a second chamber 22a that are brought into a reduced pressure atmosphere by sucking out the internal gas, and the first chamber 21a and the second chamber 22a so that the gas can flow between the first chamber 21a and the second chamber 22a. A communication port 22b that communicates with the second chamber 22a, a lid 322f that can be indirectly closed to the communication port 22b via a mounting portion 347 (see FIG. 12), and a gas that flows from the first chamber 21a to the outside A suction port 22c provided at a position where suction is possible, an inspection means 22d for attaching and inspecting a device such as the gas detection means 4 attached inside the second chamber 22a, and a pressure in the second chamber 22a are measured. And a pressure gauge 22e (see FIG. 3).
 また、連通口22bは、吸引手段3により第1チャンバー21a(第1の格納部21)の内部のガスを第2チャンバー22a(第2の格納部22)に吸引するために設けられている。つまり、連通口22bは、吸引手段3の一部としても機能する。 Further, the communication port 22b is provided in order for the gas inside the first chamber 21a (first storage unit 21) to be sucked into the second chamber 22a (second storage unit 22) by the suction means 3. That is, the communication port 22 b also functions as a part of the suction unit 3.
 連通口22bは、壁20bに2箇所設ける。一方の連通口22b(以下、「第1の連通口22b1」と称する。図3参照)には、調整手段32が取り付けられる。他方の連通口22b(以下、「第2の連通口22b2」と称する。図3参照)には、ガス検知手段4が取り付けられる。 The communication port 22b is provided in two places on the wall 20b. The adjusting means 32 is attached to one communication port 22b (hereinafter referred to as “first communication port 22b1”, see FIG. 3). The gas detection means 4 is attached to the other communication port 22b (hereinafter referred to as “second communication port 22b2”, see FIG. 3).
 蓋322fは、図12,図13(a)及び図13(b)に示すように、連通口22bを取付部347を介して間接的に閉塞可能な蓋本体322f1と、第2チャンバー22a(第2格納部22)に吸引されるガスを通過可能な流通孔322f2と、を備える。蓋322f2は、複数ある連通口22bのうち、第2の連通口22b2側に取り付けられることが好ましい。なお、図12は、第2の連通口22b2周辺の部分断面図である。図13(a)は、蓋322fの縦断面図である。図13(b)は、蓋322fの底面図である。 As shown in FIGS. 12, 13A, and 13B, the lid 322f includes a lid body 322f1 that can indirectly close the communication port 22b via a mounting portion 347, and a second chamber 22a (second 2 storage part 22) and a flow hole 322f2 through which the gas sucked can be passed. The lid 322f2 is preferably attached to the second communication port 22b2 among the plurality of communication ports 22b. FIG. 12 is a partial cross-sectional view around the second communication port 22b2. FIG. 13A is a longitudinal sectional view of the lid 322f. FIG. 13B is a bottom view of the lid 322f.
 蓋本体322f1は、有底筒状に形成されており、連通口22bを閉塞する板状の基底部322f3と、該基底部322f3の一方の面から延出して設けられる円筒部322f4と、を備える。基底部322f3は、連通口22bよりも大きい外径を有する円板状に形成されている。そして、基底部322f3の一部の円弧の縁が直線状に形成されている。円筒部322f4は、連通口22bを着脱可能に取り付けるべく雄螺子322f5をその外周面に備える。雄螺子322f5は、取付部347に設けられる雌螺子347bに螺合される。よって、蓋322fは、取付部347に着脱自在に装着される構造となっている。円筒部322f4は、その内周面が流通孔322f2を通過したガスを連通口22bに流すべく円筒形状に形成されている。 The lid body 322f1 is formed in a bottomed cylindrical shape, and includes a plate-like base portion 322f3 that closes the communication port 22b, and a cylindrical portion 322f4 that extends from one surface of the base portion 322f3. . The base portion 322f3 is formed in a disc shape having an outer diameter larger than that of the communication port 22b. And the edge of the one part arc of the base part 322f3 is formed in linear form. The cylindrical portion 322f4 includes a male screw 322f5 on its outer peripheral surface so that the communication port 22b can be detachably attached. The male screw 322f5 is screwed into a female screw 347b provided in the attachment portion 347. Therefore, the lid 322f is structured to be detachably attached to the attachment portion 347. The cylindrical portion 322f4 is formed in a cylindrical shape so that the inner peripheral surface thereof flows the gas that has passed through the flow hole 322f2 to the communication port 22b.
 流通孔322f2は、1又は複数の孔から構成される。本実施形態に係る流通孔322f2は、4つの孔から構成される。そして、この4つの流通孔322f2,…の各開口面積の合計が連通口22bの開口面積より小さくなるように設けられている。流通孔322f2は、蓋本体322f1の基底部322f3を貫通して設けられる。流通孔322f2は、円筒部322f4の内側にガスを流すべく、円筒部322f4の内周面より内側に配置される。 The distribution hole 322f2 is composed of one or a plurality of holes. The flow hole 322f2 according to the present embodiment is composed of four holes. The total opening area of the four flow holes 322f2,... Is smaller than the opening area of the communication port 22b. The flow hole 322f2 is provided through the base portion 322f3 of the lid body 322f1. The flow hole 322f2 is disposed on the inner side of the inner peripheral surface of the cylindrical portion 322f4 so that the gas flows inside the cylindrical portion 322f4.
 ガス検知手段4は、図12に示すように、検知対象物を検知する検知部41と、第1格納部21の内部のガスを第2の連通口22b2から検知部41に誘導するためのホルダ42と、該ホルダ42を壁20bに着脱可能に取り付ける取付部347と、を備える。 As shown in FIG. 12, the gas detection means 4 includes a detection unit 41 for detecting a detection target and a holder for guiding the gas inside the first storage unit 21 from the second communication port 22b2 to the detection unit 41. 42 and an attachment portion 347 for attaching the holder 42 to the wall 20b in a detachable manner.
 検知部41は、検知対象物である有機溶媒を検知可能な半導体方式のガスセンサである。 The detection unit 41 is a semiconductor type gas sensor that can detect an organic solvent that is a detection target.
 ホルダ42は、図12に示すように、検知部41を保持するホルダ本体42aと、検知部41に第1格納部21の内部のガスを案内する案内路42bと、該案内路42bにより検知部41まで案内されたガスの流れに対して交差する位置に設けられる排気孔42cと、を備える。 As shown in FIG. 12, the holder 42 includes a holder main body 42a for holding the detection unit 41, a guide path 42b for guiding the gas inside the first storage unit 21 to the detection unit 41, and a detection unit by the guide path 42b. And an exhaust hole 42 c provided at a position intersecting with the flow of gas guided to 41.
 ホルダ本体42aは、ホルダ42を第2の連通口22b2に装着可能な装着手段44と、検知部41を保持する保持手段45と、を備える。 The holder main body 42a includes a mounting unit 44 that can mount the holder 42 to the second communication port 22b2, and a holding unit 45 that holds the detection unit 41.
 装着手段44は、円筒形状に形成された筒部344aと、該筒部344aの外周面に形成される雄螺子344bと、を備える。筒部344aは、取付部347に挿入可能な外径を有する。雄螺子344bは、取付部347に設けられる雌螺子347bに螺合される。よって、装着手段44は、取付部347に着脱自在に装着される構造となっている。 The mounting means 44 includes a cylindrical portion 344a formed in a cylindrical shape and a male screw 344b formed on the outer peripheral surface of the cylindrical portion 344a. The cylindrical portion 344 a has an outer diameter that can be inserted into the attachment portion 347. The male screw 344b is screwed into a female screw 347b provided in the attachment portion 347. Therefore, the mounting means 44 has a structure that is detachably mounted on the mounting portion 347.
 保持手段45は、検知部41の検知面41bが案内路42bを流れるガスの流れに対して直交するように配置される。保持手段45は、案内路42bを流れるガスを検知部41の検知面43より後方(図12の上側)に流れにくくするために、検知部41(の検知面43)との間に隙間ができないように保持される。 The holding means 45 is arranged so that the detection surface 41b of the detection unit 41 is orthogonal to the flow of gas flowing through the guide path 42b. Since the holding means 45 makes it difficult for the gas flowing in the guide path 42b to flow backward (upward in FIG. 12) from the detection surface 43 of the detection unit 41, there is no gap between the holding unit 45 and the detection unit 41 (the detection surface 43). To be held.
 取付部347は、連通口22bに挿通させて配置されている。取付部347は、一端側が第1格納部21側に、他端側が第2格納部22側に位置するように設けられている。そして、取付部347は、壁20bに固定されている。取付部347は、円筒形状に形成された筒部347aと、該筒部347aの筒芯方向の一端側から他端側の内周面に形成される雌螺子347bと、を備える。 The mounting portion 347 is disposed through the communication port 22b. The attachment portion 347 is provided such that one end side is located on the first storage portion 21 side and the other end side is located on the second storage portion 22 side. And the attaching part 347 is being fixed to the wall 20b. The attachment portion 347 includes a cylindrical portion 347a formed in a cylindrical shape, and a female screw 347b formed on the inner peripheral surface from one end side to the other end side in the cylindrical core direction of the cylindrical portion 347a.
 取付部347の雌螺子347bは、筒芯方向の一端側からホルダ本体42aが螺合でき、他方側から蓋322fが螺合できるように設けられる。本実施形態に係る取付部347の雌螺子347bは、取付部347にホルダ本体42aと蓋322fとを螺合させた状態で、それぞれの先端部の間に隙間が開くように十分長く形成されている。 The female screw 347b of the mounting portion 347 is provided so that the holder main body 42a can be screwed from one end side in the cylinder core direction and the lid 322f can be screwed from the other side. The female screw 347b of the attachment portion 347 according to the present embodiment is formed long enough so that a gap is opened between the respective tip portions in a state where the holder main body 42a and the lid 322f are screwed to the attachment portion 347. Yes.
 このようにして、ガス検知手段4は、検査対象物Xを格納する格納容器2の内部に設置されている。ガス状の検知対象物が検査対象物Xから漏出している場合、格納容器2の内部のガスが吸引手段3で吸引口22cから吸引されることにより、検査対象物Xの周囲のガスとともに、その検知対象物Xもガス検知手段4に誘導される。このようにして、ガス検知手段4は、その検知対象物を検知することができるようになっている。 In this way, the gas detection means 4 is installed inside the storage container 2 for storing the inspection object X. When the gaseous detection target is leaking from the inspection target X, the gas inside the storage container 2 is sucked from the suction port 22c by the suction means 3, so that along with the gas around the inspection target X, The detection object X is also guided to the gas detection means 4. In this way, the gas detection means 4 can detect the detection object.
 また、蓋322fの流通孔322f2は、ガス検知手段4による検知対象物の検知に適するようにガスの流量を制限することができる。そして、検知部41は、検知面43を通過するガスの流量が最適な流量に制限されるため、内蔵されるヒータの温度低下を抑制できる。検知部41は、センサ抵抗の増加を防止できるため、正常に動作することができる。 Also, the flow hole 322f2 of the lid 322f can limit the gas flow rate so as to be suitable for detection of the detection target by the gas detection means 4. And since the flow rate of the gas which passes the detection surface 43 is restrict | limited to the optimal flow volume, the detection part 41 can suppress the temperature fall of the built-in heater. Since the detector 41 can prevent an increase in sensor resistance, it can operate normally.
 なお、本発明に係る気密性検査装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the airtightness inspection apparatus according to the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
 上記実施形態に係る気密性検査装置1,100は、リチウムイオン電池に適用する例を説明したが、この用途に限定されるものではない。例えば、本発明に係る気密性検査装置は、リチウムイオン電池以外のニッケル水素電池などのように、放電後に再充電して繰り返し使用可能な二次電池(いわゆる、充電池)や、アルカリ乾電池やマンガン乾電池のような一次電池などの電池に対しても適用することができる。また、これらの電池と同じように密封構造の容器を有する検査対象物にも適用することができる。例えば、電解コンデンサも陽極電極と、陰極電極と、当該両電極間に浸透される電解液と、を有している検査対象物にも適用することができる。この検査対象物は、リチウムイオン電池と同じ課題があり、本発明に係る気密性検査装置を用いて気密性検査を行えば、同じ課題を達成することができる。 The airtightness inspection apparatus 1,100 according to the above embodiment has been described as being applied to a lithium ion battery, but is not limited to this application. For example, the airtightness inspection apparatus according to the present invention is a secondary battery (so-called rechargeable battery) that can be recharged and repeatedly used after discharge, such as a nickel metal hydride battery other than a lithium ion battery, an alkaline dry battery, or manganese. The present invention can also be applied to a battery such as a primary battery such as a dry battery. Moreover, it can apply also to the test object which has the container of a sealing structure similarly to these batteries. For example, the electrolytic capacitor can also be applied to an inspection object having an anode electrode, a cathode electrode, and an electrolytic solution permeated between the electrodes. This inspection object has the same problem as a lithium ion battery, and the same problem can be achieved by performing an airtight inspection using the airtightness inspection apparatus according to the present invention.
 上記実施形態に係る気密性検査装置1,100は、検知部41が酸化スズ半導体ガスセンサである例を説明したが、これに限定されるものではない。検知部は、本発明の気密性検査装置が検査する検査対象物Xに合わせて検知対象物を選択し、この検知対象物の検知に適したセンサであれば、どのようなセンサであってもよい。なお、上記実施形態で開示した検知部の特性は、一例である。検知部の特性は、検知対象物に合わせて選択したセンサの特性に合わせて適宜、センサの特性を確認し、センサごとに適した制御が行われなくてはならないことは言うまでもない。 In the airtightness inspection devices 1 and 100 according to the above embodiment, the example in which the detection unit 41 is a tin oxide semiconductor gas sensor has been described, but the present invention is not limited to this. The detection unit selects a detection target in accordance with the inspection target X to be inspected by the airtightness inspection apparatus of the present invention, and any sensor can be used as long as the sensor is suitable for detection of the detection target. Good. In addition, the characteristic of the detection part disclosed by the said embodiment is an example. It goes without saying that the characteristics of the detection unit must be appropriately checked according to the characteristics of the sensor selected according to the object to be detected, and control suitable for each sensor must be performed.
 上記実施形態に係る気密性検査装置1,100は、検査対象物Xを検査担当者によって格納容器2,102に格納する例を説明したが、これに限定されるものではない。例えば、図14に示すように、気密性検査装置200は、検査対象物Xの生産ラインY上に設置されて、自動で格納容器202内に格納され、気密性検査を実施した上、自動で生産ラインY上に戻すように構成されていてもよい。この場合、気密性検査装置200は、気密性検査を実施した検査結果を生産ライン設備に送信し、気密性が保たれていない検査対象物Xを自動で生産ラインYから外すようにするために、生産ライン設備に検査結果を出力可能な外部出力端子が設けられていてもよい。 In the airtightness inspection apparatus 1 and 100 according to the above-described embodiment, the example in which the inspection object X is stored in the storage container 2 and 102 by the person in charge of the inspection has been described, but the present invention is not limited to this. For example, as shown in FIG. 14, the airtightness inspection apparatus 200 is installed on the production line Y of the inspection object X, is automatically stored in the storage container 202, performs the airtightness inspection, and then automatically You may be comprised so that it may return on the production line Y. In this case, the airtightness inspection apparatus 200 transmits the inspection result obtained by performing the airtightness inspection to the production line facility so that the inspection object X that is not airtight is automatically removed from the production line Y. In addition, an external output terminal capable of outputting the inspection result may be provided in the production line facility.
 上記実施形態に係る気密性検査装置1は、第1の連通口22b1が第2の連通口22b2に対して吸引口22c側に配置される例を説明したが、これ以外の方法によって又はこれ以外の方法を組み合わせて第1格納部21の内部のガスを第2格納部22を介して外部に吸引するのに効率の良く構成させてもよい。例えば、第1の連通口22b1は、第2の連通口22b2の開口面積よりも大きく設定することにより、より効率よく流通できるようにしてもよい。また、第1の連通口22b1は、第2の連通口22b2を1つの第1の連通口22b2に対して複数設けるようにして、より効率よく流通できるようにしてもよい。 In the airtightness inspection apparatus 1 according to the above embodiment, the example in which the first communication port 22b1 is disposed on the suction port 22c side with respect to the second communication port 22b2 has been described. By combining these methods, the gas inside the first storage unit 21 may be efficiently configured to be sucked outside through the second storage unit 22. For example, the first communication port 22b1 may be more efficiently distributed by setting it larger than the opening area of the second communication port 22b2. The first communication port 22b1 may be more efficiently distributed by providing a plurality of second communication ports 22b2 with respect to one first communication port 22b2.
 上記実施形態に係る気密性検査装置1,100は、ホルダ本体42aが案内路42bにより検知部41まで案内されたガスの流れに対して交差する位置に排気孔42cを設ける例を説明したが、これに限定されるものではない。例えば、ホルダ本体は、検知部41に検知させるガスを検知部41を通過させるように、案内路42bにより検知部41まで案内されたガスの流れを延長線上の位置に排気孔を設けるようにしてもよい。このようにする場合、検知部のセンサ出力が低下する場合があるため、そのセンサ出力を復帰させるために、ガスの検知後、復帰時間(約20秒程度)を設けるようにして、そのセンサの感度を維持させるようにすることが好ましい。 In the airtightness inspection apparatuses 1 and 100 according to the above embodiment, the example in which the exhaust hole 42c is provided at a position where the holder main body 42a intersects the gas flow guided to the detection unit 41 by the guide path 42b has been described. It is not limited to this. For example, the holder main body is provided with an exhaust hole at a position on the extension line of the gas flow guided to the detection unit 41 by the guide path 42b so that the gas to be detected by the detection unit 41 passes through the detection unit 41. Also good. In this case, since the sensor output of the detection unit may decrease, in order to restore the sensor output, a recovery time (about 20 seconds) is provided after gas detection, It is preferable to maintain the sensitivity.
 上記実施形態に係る気密性検査装置1,100は、切換手段32として第1の連通口22b1側にガス遮断弁32aを設ける例を説明したが、これに限定されるものではない。例えば、この切換手段は、ガス検知手段4が取り付けられる第2の連通口22b2側に取り付けるようにして、第1格納部21から第2格納部22に吸引するガスの流量を調整するようにしてもよい。この場合、好ましくは、ガス検知手段の出口側にガス遮断弁を取り付けて、減圧段階時にガス遮断弁を遮断することにより、減圧時に第1の連通口22b1側にガスを流すようする。そして、判定段階時にのみガス遮断弁を開放することにより、第1の連通口22b1と第2の連通口22b2の両方にガスを流し、そのうち、第2の連通口22b2に流れたガスに含まれる検知対象物を検知するようにしてもよい。よって、第2の連通口22b2に流れるガスの流量が本実施形態と比較すると低下するため、測定時間を長くすることにより、そのガスの流量を確保するようにすることが好ましい。 In the airtightness inspection devices 1 and 100 according to the above embodiment, the example in which the gas shut-off valve 32a is provided on the first communication port 22b1 side as the switching unit 32 has been described, but the present invention is not limited to this. For example, this switching means is attached to the second communication port 22b2 side to which the gas detection means 4 is attached, and the flow rate of the gas sucked from the first storage portion 21 to the second storage portion 22 is adjusted. Also good. In this case, preferably, a gas shut-off valve is attached to the outlet side of the gas detection means, and the gas shut-off valve is shut off during the decompression stage, so that the gas flows to the first communication port 22b1 side during decompression. Then, by opening the gas shut-off valve only at the determination stage, the gas flows through both the first communication port 22b1 and the second communication port 22b2, and the gas is included in the gas flowing through the second communication port 22b2. You may make it detect a detection target object. Therefore, since the flow rate of the gas flowing through the second communication port 22b2 is lower than that of the present embodiment, it is preferable to secure the gas flow rate by extending the measurement time.
 上記実施形態に係る気密性検査装置1,100は、格納容器2が第1格納部21と第2格納部22との二つに区画されている例を説明したが、これに限定されるものではない。例えば、第1格納部の内部のガスが第2格納部の第1の連通口及び第2の連通口を介して流通する妨げとならなければ、第1格納部と第2格納部とがそれぞれ完全に密閉構造となっている必要はなく、二つに区画されている必要もない。すなわち、吸引口が前記格納容器内に設置される前記ガス検知手段に前記検査対象物の周囲のガスを誘導可能な格納容器内の位置に設けられておれば、検査対象物から漏出した検知対象物をガス検知手段に誘導することができ、検知することができる。しかし、ガス検知手段にガスを集中的に誘導することができないため、上記実施形態に係る構成が最も好ましいことは言うまでもない。なお、気密性が高く求められていない場合であれば、当然に、ガス検知手段から漏出する検知対象物の量(ガス中に含まれる濃度)が高くなり、上記実施形態に係る構成とするまでもなく検知できるとともに、安価に製造することができるため、このような場合においては、このような構成とすることが好ましい。 Although the airtightness test | inspection apparatuses 1 and 100 which concern on the said embodiment demonstrated the example in which the storage container 2 was divided into two of the 1st storage part 21 and the 2nd storage part 22, it is limited to this is not. For example, if the gas inside the first storage unit does not prevent the gas from flowing through the first communication port and the second communication port of the second storage unit, the first storage unit and the second storage unit respectively There is no need for a completely sealed structure, and there is no need for two sections. That is, if the suction port is provided at a position in the containment vessel capable of guiding the gas around the test object to the gas detection means installed in the containment container, the detection target leaked from the test object Objects can be guided to the gas detection means and detected. However, since the gas cannot be intensively guided to the gas detection means, it goes without saying that the configuration according to the above embodiment is most preferable. In addition, if the airtightness is not required to be high, the amount of the detection target (concentration contained in the gas) leaking from the gas detection unit is naturally increased until the configuration according to the above embodiment is obtained. In such a case, it is preferable to adopt such a configuration because it can be detected without any problem and can be manufactured at low cost.
 上記実施形態に係る気密性検査装置1,100は、排気孔42cがホルダ本体42aの側面に1箇所設けられる例を説明したが、これに限定されるものではない。例えば、排気孔は、2箇所設けられていてもよい。2箇所に設ける排気孔の位置関係は、ホルダ本体42aの半径方向に対して互いに対向する位置に設けられていてもよい。また、排気孔は、3箇所以上の複数箇所に設けられていてもよい。 In the airtightness inspection devices 1 and 100 according to the above-described embodiment, the example in which the exhaust hole 42c is provided at one place on the side surface of the holder body 42a has been described, but the present invention is not limited to this. For example, two exhaust holes may be provided. The positional relationship between the exhaust holes provided at two locations may be provided at positions facing each other with respect to the radial direction of the holder main body 42a. Moreover, the exhaust hole may be provided in three or more places.
 上記実施形態に係る気密性検査装置1,100は、吸引手段31の吸引能力を一定のまま、調整手段33によって格納容器2の内部のガスを吸引する流量を調整する例を説明したが、これに限定されるものではない。例えば、吸引手段は、その吸引能力を調整又は多段切換してガスの流量を調整可能な真空ポンプ若しくは吸引能力を調整又は多段切換可能な制御部を搭載した真空ポンプであってもよい。すなわち、調整手段は、吸引手段に一体に組み込まれて、格納容器の内部のガスを吸引する流量を調整するようにしてもよい。 In the airtightness inspection devices 1 and 100 according to the above embodiment, the example in which the flow rate for sucking the gas inside the storage container 2 is adjusted by the adjusting unit 33 while the suction capability of the suction unit 31 is kept constant has been described. It is not limited to. For example, the suction means may be a vacuum pump capable of adjusting the suction capacity or switching in multiple stages to adjust the gas flow rate, or a vacuum pump equipped with a controller capable of adjusting the suction capacity or switching in multiple stages. That is, the adjusting means may be integrated with the suction means to adjust the flow rate for sucking the gas inside the storage container.
 上記実施形態に係る気密性検査装置1,100は、蓋322fが取付部347を介して連通口22bを間接的に閉塞可能である例を説明したが、これに限定されるものではない。例えば、蓋は、取付部を介することなく、連通口22bを直接閉塞可能であってもよい。 In the airtightness inspection apparatus 1 and 100 according to the above embodiment, the example in which the lid 322f can indirectly close the communication port 22b via the attachment portion 347 has been described, but the present invention is not limited to this. For example, the lid may be capable of directly closing the communication port 22b without using an attachment portion.
 上記実施形態に係る気密性検査装置1,100は、流通孔322f2が複数ある例を説明したが、これに限定されるものではない。例えば、流通孔は、1つであってもよい。流通孔は、円形の孔であって、連通口22bの内径よりも小さい外径を有していることが好ましい。また、流通孔は、その開口の形状が円状であるものに限定されない。例えば、流通孔は、蓋の蓋本体の基底部に対して多角形状に形成される孔であってもよいし、楕円状に形成される孔であってもよい。 Although the airtightness inspection apparatus 1,100 according to the above embodiment has been described with an example in which there are a plurality of flow holes 322f2, the present invention is not limited thereto. For example, the number of through holes may be one. The circulation hole is a circular hole and preferably has an outer diameter smaller than the inner diameter of the communication port 22b. Further, the flow hole is not limited to a circular opening. For example, the through hole may be a hole formed in a polygonal shape with respect to the base part of the lid body of the lid, or may be a hole formed in an elliptical shape.
 1…気密性検査装置、2…格納容器、20a…突出部、20b…壁、21…第1格納部、21a…第1チャンバー、21b…格納手段、21c…大気開放手段、21d…点検手段(点検扉)、21e…圧力計、22…第2格納部、22a…第2チャンバー、22b…連通口、22b1…第1の連通口、22b2…第2の連通口、22c…吸引口、22d…点検手段(点検蓋)、22e…圧力計、3…吸引手段、31…吸引装置、32…切換手段、32a…ガス遮断手段(ガス遮断弁)、33…調整手段、33a…第1の配管、33b…流路切換手段(流路切換弁)、33c…第2の配管、33d…第3の配管、33e…流量調整手段(流量調整弁)、33f…第4配管、4…ガス検知手段、41…検知部、41a…半導体素子、42…ホルダ、42a…ホルダ本体、42b…案内路、43…検知面、44…装着手段、45…保持手段、46…吸引口、42c…排気孔、5…制御手段、51…操作部、52…入出力部、53…制御部、53a…圧力制御部、53b…状態監視部、53c…気密性判定部、54…報知部、54a…第1圧力表示計、54b…第2圧力表示計、54c…判定表示部、6…ケーシング、100…気密性検査装置、102…格納容器、120a…突出部、120b…壁、121…第1格納部、121g…突出部、121f…トレイ、122…第2格納部、122b…連通口、122c…吸引口、200…気密性検査装置、202…格納容器、322f…蓋、322f1…蓋本体、322f2…流通孔、322f3…基底部、322f4…円筒部、322f5…雄螺子、344a…筒部、344b…雄螺子、347…取付部、347a…筒部、347b…雌螺子、Ra-1…第1流通路、Ra-2…第2流通路、Rb-1…第1吸引ルート、Rb-2…第2吸引ルート、X…検査対象物、Y…生産ライン DESCRIPTION OF SYMBOLS 1 ... Air tightness inspection apparatus, 2 ... Storage container, 20a ... Projection part, 20b ... Wall, 21 ... 1st storage part, 21a ... 1st chamber, 21b ... Storage means, 21c ... Air release means, 21d ... Inspection means ( Inspection door), 21e ... pressure gauge, 22 ... second storage unit, 22a ... second chamber, 22b ... communication port, 22b1 ... first communication port, 22b2 ... second communication port, 22c ... suction port, 22d ... Inspection means (inspection lid), 22e ... pressure gauge, 3 ... suction means, 31 ... suction device, 32 ... switching means, 32a ... gas cutoff means (gas cutoff valve), 33 ... adjustment means, 33a ... first piping, 33b: Channel switching means (channel switching valve), 33c: Second pipe, 33d: Third pipe, 33e: Flow rate adjusting means (flow rate adjusting valve), 33f: Fourth pipe, 4: Gas detecting means, 41 ... Detector, 41a ... Semiconductor element, 42 ... Holder 42a ... holder body, 42b ... guide path, 43 ... detection surface, 44 ... mounting means, 45 ... holding means, 46 ... suction port, 42c ... exhaust hole, 5 ... control means, 51 ... operation part, 52 ... input / output 53, control unit, 53a, pressure control unit, 53b, state monitoring unit, 53c, airtightness determination unit, 54, notification unit, 54a, first pressure indicator, 54b, second pressure indicator, 54c, determination. Display unit, 6 ... casing, 100 ... air tightness inspection device, 102 ... storage container, 120a ... projection, 120b ... wall, 121 ... first storage, 121g ... projection, 121f ... tray, 122 ... second storage 122b ... Communication port, 122c ... Suction port, 200 ... Air tightness inspection device, 202 ... Storage container, 322f ... Lid, 322f1 ... Lid body, 322f2 ... Through hole, 322f3 ... Base part, 322f4 ... Cylindrical part, 322f5 ... Male Screw 344a ... Cylinder portion, 344b ... Male screw, 347 ... Mounting portion, 347a ... Cylinder portion, 347b ... Female screw, Ra-1 ... First flow passage, Ra-2 ... Second flow passage, Rb-1 ... First Suction route, Rb-2 ... second suction route, X ... test object, Y ... production line

Claims (6)

  1.  検査対象物を格納するための格納容器と、該格納容器の内部のガスを吸引する吸引手段と、前記検査対象物から漏出したガス状の検知対象物を検知可能なガス検知手段と、を備える気密性検査装置であって、
     前記ガス検知手段は、前記格納容器の内部に設置され、
     前記吸引手段は、前記検査対象物の周囲のガスを前記ガス検知手段に誘導可能な吸引口であって、前記検査対象物の周囲のガスを吸引するために前記格納容器内の位置に設けられる吸引口から吸引することを特徴とする気密性検査装置。
    A storage container for storing an inspection object, a suction means for sucking a gas inside the storage container, and a gas detection means capable of detecting a gaseous detection object leaked from the inspection object. An airtightness inspection device,
    The gas detection means is installed inside the containment vessel,
    The suction means is a suction port capable of guiding the gas around the inspection object to the gas detection means, and is provided at a position in the storage container for sucking the gas around the inspection object. An airtightness inspection apparatus characterized by suctioning from a suction port.
  2.  前記格納容器は、前記検査対象物を格納する第1格納部と、該第1格納部の内部のガスを流通可能な第2格納部であって、前記吸引口が前記第1格納部から流通するガスを外部に吸引可能な位置となるように設けられる第2格納部と、を備える請求項1に記載の気密性検査装置。 The storage container is a first storage unit that stores the inspection object, and a second storage unit that can circulate the gas inside the first storage unit, and the suction port is circulated from the first storage unit. A gas tightness inspection apparatus according to claim 1, further comprising: a second storage portion provided so as to be in a position where the gas to be sucked to the outside can be provided.
  3.  前記吸引手段は、前記第1格納部の内部のガスを前記第2格納部に吸引するための連通口を備える請求項2に記載の気密性検査装置。 3. The airtightness inspection apparatus according to claim 2, wherein the suction means includes a communication port for sucking the gas inside the first storage part into the second storage part.
  4.  前記吸引手段は、前記格納容器の内部のガスを前記吸引口から吸引するガスの流量を調整可能な調整手段を備える請求項1~3のいずれか1項に記載の気密性検査装置。 The airtightness inspection apparatus according to any one of claims 1 to 3, wherein the suction means includes an adjustment means capable of adjusting a flow rate of a gas that sucks the gas inside the storage container from the suction port.
  5.  前記ガス検知手段は、前記検知対象物を検知する検知部と、該検知部に前記格納容器の内部のガスを案内する案内路と、該案内路により前記検知部まで案内されたガスの流れに対して交差する位置に設けられる排気孔と、を備える請求項1~4のいずれか1項に記載の気密性検査装置。 The gas detection means includes: a detection unit that detects the detection target; a guide path that guides the gas inside the storage container to the detection unit; and a gas flow guided to the detection unit by the guide path. The airtightness inspection apparatus according to any one of claims 1 to 4, further comprising an exhaust hole provided at a position intersecting with the exhaust hole.
  6.  検査対象物を格納するための格納容器と、該格納容器の内部のガスを吸引する吸引手段と、前記検査対象物から漏出したガス状の検知対象物を検知可能なガス検知手段と、を備える気密性検査装置であって、
     前記ガス検知手段は、前記格納容器の内部に設置され、
     前記吸引手段は、前記検査対象物の周囲のガスを前記ガス検知手段に誘導可能な吸引口であって、前記検査対象物の周囲のガスを吸引するために前記格納容器内の位置に設けられる吸引口から吸引し、
     前記格納容器は、前記検査対象物を格納する第1格納部と、該第1格納部の内部のガスを流通可能な第2格納部であって、前記吸引口が前記第1格納部から流通するガスを外部に吸引可能な位置となるように設けられる第2格納部と、を備え、
     前記吸引手段は、前記第1格納部の内部のガスを前記第2格納部に吸引するための連通口と、該連通口を塞ぐ蓋と、を備え、
     前記蓋は、前記第2格納部に吸引されるガスを通過可能な流通孔であって、該流通孔の開口面積は、前記連通口の開口面積より小さいことを特徴とする気密性検査装置。
    A storage container for storing an inspection object, a suction means for sucking a gas inside the storage container, and a gas detection means capable of detecting a gaseous detection object leaked from the inspection object. An airtightness inspection device,
    The gas detection means is installed inside the containment vessel,
    The suction means is a suction port capable of guiding the gas around the inspection object to the gas detection means, and is provided at a position in the storage container for sucking the gas around the inspection object. Suction from the suction port,
    The storage container is a first storage unit that stores the inspection object, and a second storage unit that can circulate gas inside the first storage unit, and the suction port circulates from the first storage unit. A second storage portion provided to be in a position where the gas to be sucked to the outside can be provided,
    The suction means includes a communication port for sucking the gas inside the first storage unit into the second storage unit, and a lid for closing the communication port,
    The lid is a flow hole through which the gas sucked into the second storage part can pass, and an opening area of the flow hole is smaller than an opening area of the communication port.
PCT/JP2012/054076 2011-03-01 2012-02-21 Airtightness inspection apparatus WO2012117887A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137021497A KR101765774B1 (en) 2011-03-01 2012-02-21 Airtightness inspection apparatus
CN201280010550.0A CN103392119B (en) 2011-03-01 2012-02-21 Airtightness inspection apparatus
JP2012524028A JP5050139B1 (en) 2011-03-01 2012-02-21 Airtightness inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011044354 2011-03-01
JP2011-044354 2011-03-01

Publications (1)

Publication Number Publication Date
WO2012117887A1 true WO2012117887A1 (en) 2012-09-07

Family

ID=46757826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054076 WO2012117887A1 (en) 2011-03-01 2012-02-21 Airtightness inspection apparatus

Country Status (4)

Country Link
JP (1) JP5050139B1 (en)
KR (1) KR101765774B1 (en)
CN (1) CN103392119B (en)
WO (1) WO2012117887A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716801A (en) * 2016-04-25 2016-06-29 天能集团江苏科技有限公司 Automatic detection device for air tightness of battery
JP2016148525A (en) * 2015-02-10 2016-08-18 Tdk株式会社 Airtightness inspection device
EP3306292A4 (en) * 2015-08-03 2019-01-23 J.E.T. Co., Ltd. Sensor unit and airtightness inspection device
CN117168712A (en) * 2023-11-03 2023-12-05 宁德时代新能源科技股份有限公司 Detection assembly, detection equipment and detection method thereof
EP3678254B1 (en) * 2019-01-04 2024-02-28 Samsung SDI Co., Ltd. Method for determining the composition of a gaseous mixture enclosed within a gas-tight housing of a battery pack and a corresponding gas-tight housing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127285A (en) * 2012-12-26 2014-07-07 Automotive Energy Supply Corp Leakage inspection method of battery module and battery module
JP6533341B2 (en) * 2016-06-30 2019-06-19 株式会社キッツ Pressure resistance inspection system for valve, inspection method therefor and hydrogen gas detection unit
CN109342511A (en) * 2018-11-20 2019-02-15 东莞锂威能源科技有限公司 Battery electrolyte condition checkout gear and detection method
KR102232314B1 (en) 2020-08-06 2021-03-26 김창오 Leak test device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243842A (en) * 1990-02-21 1991-10-30 Japan Nuclear Fuel Co Ltd<Jnf> Method for measuring leaking gas of slight amount
JPH0845541A (en) * 1994-07-29 1996-02-16 Sanyo Electric Co Ltd Sealing degree deciding method of sealed battery
JP2000149961A (en) * 1998-11-16 2000-05-30 Keihin Rika Kogyo:Kk Product inspecting device and method
JP2003166894A (en) * 2001-11-29 2003-06-13 Keihin Rika Kogyo:Kk Gas leakage detection device
JP2004340723A (en) * 2003-05-15 2004-12-02 Ulvac Japan Ltd Apparatus and method for detecting leak of bag-like object or hollow body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587006A (en) * 2009-06-18 2009-11-25 齐诺精密系统自动化(天津)有限公司 Air tightness detecting system used for lithium battery and detecting method thereof
CN101881689A (en) * 2010-06-30 2010-11-10 奇瑞汽车股份有限公司 Large-capacity power lithium-ion battery sealing-performance testing equipment and test method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243842A (en) * 1990-02-21 1991-10-30 Japan Nuclear Fuel Co Ltd<Jnf> Method for measuring leaking gas of slight amount
JPH0845541A (en) * 1994-07-29 1996-02-16 Sanyo Electric Co Ltd Sealing degree deciding method of sealed battery
JP2000149961A (en) * 1998-11-16 2000-05-30 Keihin Rika Kogyo:Kk Product inspecting device and method
JP2003166894A (en) * 2001-11-29 2003-06-13 Keihin Rika Kogyo:Kk Gas leakage detection device
JP2004340723A (en) * 2003-05-15 2004-12-02 Ulvac Japan Ltd Apparatus and method for detecting leak of bag-like object or hollow body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148525A (en) * 2015-02-10 2016-08-18 Tdk株式会社 Airtightness inspection device
EP3306292A4 (en) * 2015-08-03 2019-01-23 J.E.T. Co., Ltd. Sensor unit and airtightness inspection device
CN105716801A (en) * 2016-04-25 2016-06-29 天能集团江苏科技有限公司 Automatic detection device for air tightness of battery
EP3678254B1 (en) * 2019-01-04 2024-02-28 Samsung SDI Co., Ltd. Method for determining the composition of a gaseous mixture enclosed within a gas-tight housing of a battery pack and a corresponding gas-tight housing
CN117168712A (en) * 2023-11-03 2023-12-05 宁德时代新能源科技股份有限公司 Detection assembly, detection equipment and detection method thereof
CN117168712B (en) * 2023-11-03 2024-04-02 宁德时代新能源科技股份有限公司 Detection assembly, detection equipment and detection method thereof

Also Published As

Publication number Publication date
KR101765774B1 (en) 2017-08-07
KR20140005970A (en) 2014-01-15
CN103392119A (en) 2013-11-13
CN103392119B (en) 2014-12-17
JP5050139B1 (en) 2012-10-17
JPWO2012117887A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5050139B1 (en) Airtightness inspection device
US10514315B2 (en) Sensor unit and airtightness inspection device
CN213425051U (en) Battery monomer leakage detection device
US20110268611A1 (en) Liquid-mixing apparatus, chemical testing apparatus, and endoscope processing apparatus
KR101726337B1 (en) Method for manufacturing sealed battery
CN110006599A (en) The self-checking unit and self checking method of helium mass-spectrometer leak detector signal
JP2012047651A (en) Leak detector
CN111051841B (en) Leak inspection device and leak inspection method
JP2007271558A (en) Leakage testing apparatus
JP6305949B2 (en) Inspection device for safety valve mechanism and inspection method for safety valve mechanism
JP2015210149A (en) Gas sensor performance inspection method
CN115824521A (en) Seal detection device and detection method
JP2007071545A (en) Leakage inspection apparatus and method
JP2009217695A (en) Gas detecting device
JP6663756B2 (en) Gas inspection machine inspection processing system
JP6515692B2 (en) Airtightness inspection device and airtightness inspection method
JP5826126B2 (en) Airtightness inspection apparatus and method for inspecting airtightness of inspection object
US11777119B2 (en) Leak test method for fuel cell stack
JP2021002433A (en) Fuel cell system and method of detecting degradation of hydrogen sensor in fuel cell system
US9829443B2 (en) Cryostat inspection camera arrangement and method
CN214374600U (en) Radioactive reaction liquid acidity detection device
JP6668118B2 (en) Gas inspection machine inspection processing system
JP2667205B2 (en) Ion source exchange method for ion implanter
CN117268702A (en) Inspection device and inspection method
CN111912568A (en) Method for detecting leakage of lithium battery electrolyte

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012524028

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021497

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752703

Country of ref document: EP

Kind code of ref document: A1