WO2012117768A1 - 膜分離装置 - Google Patents

膜分離装置 Download PDF

Info

Publication number
WO2012117768A1
WO2012117768A1 PCT/JP2012/051371 JP2012051371W WO2012117768A1 WO 2012117768 A1 WO2012117768 A1 WO 2012117768A1 JP 2012051371 W JP2012051371 W JP 2012051371W WO 2012117768 A1 WO2012117768 A1 WO 2012117768A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
air
diffuser
bubble group
holes
Prior art date
Application number
PCT/JP2012/051371
Other languages
English (en)
French (fr)
Inventor
泰日 李
寛 野口
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN201280010702.7A priority Critical patent/CN103415474B/zh
Priority to CA2825744A priority patent/CA2825744C/en
Priority to SG2013055041A priority patent/SG192034A1/en
Priority to JP2013502211A priority patent/JP5823489B2/ja
Priority to KR1020137019600A priority patent/KR101501998B1/ko
Priority to AU2012224335A priority patent/AU2012224335B2/en
Publication of WO2012117768A1 publication Critical patent/WO2012117768A1/ja
Priority to US13/974,567 priority patent/US20140069860A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/208Membrane aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a membrane separation device, and more particularly to a membrane separation device used in the field of water treatment.
  • Membrane separation technology has been used for seawater desalination, water purification, gas separation, blood purification, etc., but recently, from the viewpoint of environmental conservation, research to apply membrane separation technology to wastewater treatment has been promoted. It has been.
  • Non-Patent Document 1 As a method for solving this problem, various methods for solid-liquid separation by immersing a membrane module provided with a separation membrane such as a microfiltration membrane and an ultrafiltration membrane in water to be treated have been studied in recent years. When filtration of water to be treated is performed using a separation membrane, high quality treated water can be obtained (for example, Non-Patent Document 1).
  • a plurality of diffuser tubes of the membrane separation device described in Patent Document 1 are formed such that slit-like diffuser holes are arranged substantially perpendicular to the axis of the diffuser tube in the lower peripheral wall portion of the cylindrical diffuser tube. .
  • a diffuser (aeration tube) is provided for each separation membrane in order to cause bubbles for scrubbing to act uniformly and sufficiently on the entire separation membrane. Further, in order to improve the dissolution efficiency of the scrubbing air for the water to be treated, a grid-like or mesh-like dispersion member is arranged above the air diffuser to generate bubbles having a smaller diameter than the bubbles provided from the device. ing.
  • the membrane separation device of Patent Document 1 is effective by maintaining a constant amount of air diffused from each air diffuser of the air diffuser.
  • the subtle difference in height of each air diffuser is due to the change in the fixed state of the air diffuser tube due to the installation of the membrane separator and the water pressure during the inflow (because the dynamic water pressure works instead of the hydrostatic pressure). Even if devised, the effect is limited.
  • the air diffuser of the air diffuser has a slit shape, the gas supply from the air diffuser does not become insufficient due to the blockage of the air diffuser. However, the air diffused state becomes uneven in a plan view, and the cleaning surface of the separation membrane tends to be uneven.
  • the dispersion means according to the membrane separation devices of Patent Documents 2 to 4 can be any one selected from a wire mesh, a perforated plate, a pipe, a wire, a lattice, etc. in order to achieve both the effect of dispersing bubbles and the suppression of clogging simultaneously.
  • a horizontal arrangement is applied.
  • the aperture ratio of the dispersing means is set to 20 to 70%, and the mesh width is set to about 2 to 10 mm.
  • the coarse bubbles are subdivided by the insert having openings, the dissolution efficiency is improved by the dispersion effect of the bubbles, and the bubbles are uniformly distributed to the membrane portion by the dispersion effect of the bubbles at that time.
  • the purpose is to introduce. This is in order to improve a significant decrease in oxygen dissolution efficiency due to the coarsening of bubbles and partial film contamination due to uneven introduction of bubbles between the films.
  • the specifications of the bubble diameter required for the diffuser that combines oxygen supply and membrane cleaning require fine bubbles for oxygen supply, while coarse bubbles are required for membrane cleaning.
  • the aeration method must be selected based on conflicting requirements.
  • the membrane separation apparatus of Patent Document 4 since the bubble group provided from the air diffuser is subdivided by the mesh-like or lattice-like dispersion means, the membrane surface of the separation membrane is likely to be unevenly washed, and the membrane cleaning is performed. The function is inferior. Furthermore, a plurality of diffuser tubes must be installed or added according to the width of the lower surface of the dispersing means.
  • the installation or addition of the plurality of air diffusion pipes increases the number of air diffusion points, but the state of the air diffusion becomes uneven when viewed in plan, and cleaning of the membrane surface of the separation membrane is likely to occur. This leads to a decrease in the separation efficiency of the entire membrane, and further to a decrease in the reliability of the membrane separation process.
  • the membrane separation apparatus of the present invention diffuses a membrane unit formed by stacking a plurality of membrane modules in the depth direction of a water tank, and air for membrane cleaning disposed below the membrane unit. And a bubble group dividing member that is disposed between the membrane unit and the diffusion member and divides the air bubble group provided from the diffusion member into a plurality of bubble groups.
  • the bubble group dividing member is a three-dimensional obstacle member having a diameter larger than the diameter of the air diffuser member and arranged parallel to the axis of the air diffuser member, the air bubble group dividing member is provided from the air diffuser hole of the air diffuser member.
  • the bubble group is divided equally with the axis of this member as the center line by the collision with the bubble group dividing member. Thereby, the divided bubble group can be uniformly supplied to the lower end of the membrane unit without adding a diffuser member or a diffuser point.
  • the resistance to the bubble group diffused from the diffuser holes of the diffuser member is relaxed, so the gas-liquid mixing flow rate is reduced.
  • the bubble group can be decomposed into a plurality of bubble groups without causing them to occur.
  • the bubble group colliding with the member is divided into a plurality of bubble groups while maintaining a turbulent state on the curved surface of the member. Divided. Furthermore, if the upper side of the longitudinal section is formed to form a triangle, the suspended substance can be efficiently guided below the bubble group dividing member.
  • the bubble group dividing member is formed so that the longitudinal section is circular, or the upper side of the longitudinal section is bell-shaped while the lower half is formed in a semicircular shape, the curved surface of the lower surface of the member The gas-liquid mixed flow rising along the line swirls above the member and the swirl flow is maintained.
  • Sectional drawing which showed schematic structure of the membrane separator which concerns on Embodiment 1 of this invention.
  • FIG. A) The bottom view of the diffuser member which concerns on Embodiment 2, (b) The longitudinal cross-sectional view of the said diffuser member, (c) The bottom view of the diffuser member which concerns on Embodiment 1.
  • FIG. A) The bottom view of the diffuser which concerns on Embodiment 3, (b) The longitudinal cross-sectional view of the said diffuser.
  • the membrane separation apparatus 1 has a bubble cleaning air bubble group 401 diffused from the diffusion member 4 to the membrane module 3 in the MBR bioreactor 10.
  • the cleaning effect of the membrane module is made uniform. That is, the division of the bubble group according to the present embodiment is not intended to improve the dissolution efficiency of oxygen by refining the bubble in order to increase the activation of the activated sludge, but the bubble provided from the diffuser member
  • An object is to divide a group by colliding with a bubble group dividing member and distribute the group in multiple directions.
  • the membrane separation apparatus 1 includes a membrane unit 3 configured by stacking a plurality of membrane modules 2 in the depth direction of the biological reaction tank 10, and air bubbles for aeration and membrane cleaning for the membrane unit 3. It consists of a diffuser member 4 that diffuses and a bubble group dividing member 5 that divides the bubble group into a plurality of bubble groups.
  • the membrane separation apparatus 1 is installed so as to be immersed in the liquid phase 11 in the MBR biological reaction tank 10.
  • the membrane module 2 includes a plurality of flat separation membranes 21 arranged in parallel, a pair of support portions 22 that support both ends of the separation membrane 21, and the pair of support portions. 22 and a pair of guides 23 for closing the gaps near both ends.
  • the support 22 and the guide 23 constitute a housing having openings on the top and bottom.
  • the separation membrane 21 has a flat shape, but the separation membrane according to the invention is not limited to this embodiment.
  • an organic hollow fiber membrane, an organic flat membrane, an inorganic flat membrane, an inorganic single tube membrane, etc. which are well-known separation membranes applied to MBR, may be applied.
  • the material of the separation membrane 21 include cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ceramics, and the like.
  • a plurality of separation membranes 21 arranged in the membrane module 2 are installed so that the water collection channels 211 in the separation membrane 21 are arranged in the vertical direction, and the water collection unit communicating with the water collection channel 211 is disposed on the separation membrane 21. You may provide in an edge part (upper one or both edge parts).
  • a water collecting part (not shown) communicating with the water collecting path 211 inside the separation membrane 21 is formed inside the support part 22.
  • the water collecting part communicates with a filtration suction port 24 formed in the support part 22.
  • the filtration suction port 24 is connected to a pipe of a pump for sucking filtrate (not shown).
  • the guide 23 is attached to the support 22 so that the upper opening end cross-sectional area of the membrane module 2 is smaller than the lower opening end cross-sectional area, so that the filtration efficiency by the separation membrane 21 is improved. That is, when the membrane modules 2 are stacked, a gap is formed between the upper opening end of the membrane module 2 and the lower opening end of another membrane module (not shown) stacked on the membrane module 2.
  • a gap is formed between the upper opening end of the membrane module 2 and the lower opening end of another membrane module (not shown) stacked on the membrane module 2.
  • the number of the membrane modules 2 to be stacked is selected from the weight and the outer shape considering the water depth and maintainability of the biological reaction tank 10.
  • the number of membrane modules 2 is selected so that the height of the membrane unit 3 is about 2 m to 3 m.
  • the flow of water to be treated inside the membrane unit 3 is a flow from the lower opening of the membrane unit 3 toward the upper opening. Since the liquid phase in the membrane unit 3 is filtered by the separation membrane 21, the concentration of the activated sludge in the liquid phase increases as the upper part of the membrane unit 3 is reached. In the membrane unit 3, since the water to be treated is sucked into the membrane unit 3 from the gaps 25 of the membrane modules 2 stacked as shown in FIG.
  • the activated sludge concentration inside the membrane unit 3 is greatly increased. Can be suppressed. As a result, the load on filtration is reduced, leading to relaxation of membrane clogging and reduction of energy consumption.
  • sucks to-be-processed water into the inside of the membrane unit 3 arises by the upward flow of the bubble groups 401 and 402, it is not necessary to provide the motive power source for attracting
  • the aeration member 4 is a member for supplying air for membrane cleaning to the membrane unit 3.
  • the aeration diffuser 12 is a member for supplying oxygen necessary for biological treatment with activated sludge.
  • the air and oxygen are supplied from a blower or a compressor (not shown) outside the biological reaction tank 10. What is necessary is just to apply the thing of a known specification to the aeration member 4.
  • the 2A includes a diffuser tube 41 in which a plurality of diffuser holes 42 are formed.
  • the air diffuser 41 is disposed horizontally below the membrane unit 3 as shown in FIG.
  • the plurality of air diffusion holes 42 are formed on the lower surface of the air diffusion pipe 41 so as to be arranged in parallel to the axis of the pipe 41.
  • a plurality of air diffusion holes 42 are formed on the lower surface of the air diffusion tube 41 with a diameter of 5 to 10 mm and a pitch of 100 to 200 mm so that the air diffusion speed is 10 m / second or more.
  • the total aeration volume Dm 3 / min is selected from numerical values such as 3Q, 6Q, and 9Q as 3, 6, and 9 multiples of the design throughput Qm 3 / day of the biological reaction tank 10.
  • a plurality of membrane separation apparatuses 1 are installed according to the planned processing capacity, but the above setting method performs calculation based on the unit membrane unit 3 standard.
  • the total area of the diffuser holes 42 per unit membrane unit 3 is calculated.
  • the total amount of air diffused D is divided by the number of unit membrane units 3 to calculate the amount of air diffused per unit membrane unit 3, and further, the amount of air diffused from the air diffuser holes 42 is calculated based on the total area.
  • the flow rate Em / second is calculated.
  • a specific example of setting the diameter and the number of the air diffusion holes 42 will be described.
  • An example of setting the diameter and number of diffuser holes when the design throughput Q is 0.6 m 3 / m 2 ⁇ day (19.8 m 3 / day) and the total diffused air volume Dm 3 / min is 6Q will be described.
  • the diffuser flow velocity E from the diffuser holes is approximately 12 m / second according to the above calculation. Is calculated. Since the calculated value of E is larger than 10 m / sec, the diffused hole diameter Bmm and the number of diffused holes C of the membrane unit according to the specific example are set to appropriate specifications.
  • the bubble group dividing member 5 is not like a mesh structure, and is formed in a form that does not allow the bubble group to pass through.
  • the bubble group dividing member 5 is a three-dimensional obstacle member having a diameter larger than that of the air diffusing member 4.
  • the bubble group dividing member 5 is arranged such that its axis is parallel to the axis of the air diffuser 4 between the membrane unit 3 and the air diffuser 4.
  • the bubble group dividing member 5 is arranged so that the bubble group 401 ejected from the diffusion hole 42 of the diffusion member 4 is equally divided from side to side with the axis line of the member 5 as a center line by collision with the bubble group dividing member 5. The Thereby, the divided bubble group 402 can be evenly supplied to the lower end of the membrane unit 3.
  • the material of the bubble group dividing member 5 is exemplified by resin, metal, ceramics and the like, but is not particularly limited as long as it does not deform due to intense water flow caused by air diffusion or can maintain the function as an obstructing member even when deformed.
  • the bubble group dividing member 5 is formed in a three-dimensional shape with at least the lower side of the longitudinal section projecting downward. According to this aspect, the resistance to the bubble group 401 provided from the diffusion hole 42 of the diffusion member 4 can be relaxed, and the bubble group can be divided into a plurality of bubble groups 402 without reducing the gas-liquid mixing flow rate. Yes.
  • FIGS. 3 (a) to 3 (e) Specific examples of the bubble group dividing member 5 are illustrated in FIGS. 3 (a) to 3 (e).
  • the bubble group dividing member 5 illustrated in FIG. 3A has a semicircular lower side in the longitudinal section.
  • the upper side of the longitudinal section is an obtuse triangle, while the lower side is a semicircle.
  • the bubble group dividing member 5 illustrated in FIG. 3C has an acute triangle on the upper side of the vertical cross section, and a semicircular shape on the lower side.
  • the bubble group dividing member 5 illustrated in FIG. 3D has a circular longitudinal section.
  • the bubble group splitting member 5 illustrated in FIG. 3 (e) has a bell-shaped upper side in its longitudinal section, while its lower side has a semicircular shape.
  • the bubble group dividing member 5 illustrated in FIGS. 3 (a) to 3 (e) has at least a lower surface formed in a curved surface, so that the bubble group colliding with the lower surface is in a turbulent state on the curved surface. While maintaining, it can be divided into a plurality of bubble groups.
  • the upper surface of the bubble group dividing member 5 illustrated in FIGS. 3B to 3E is formed in a convex shape upward, the activated sludge can be efficiently placed below the member 5. It is possible to guide, and accumulation of activated sludge on the member 5 can be avoided.
  • 3D and 3E is formed in a curved surface, the air is rising along the curved surface on the lower surface of the member 5.
  • the mixed liquid flow is swirled above the member 5 and the swirl flow can be maintained. Thereby, a vigorous gas-liquid mixed flow can be continued above the bubble group dividing member 5, and the division of the bubble group can be promoted. Then, this vigorous gas-liquid mixed flow bypassing the division can be provided between the separation membranes 21 of the membrane module 2, and the membrane surface cleaning effect can be maintained.
  • the diffuser member 4 and the bubble group dividing member 5 are accommodated in a cylinder 7 disposed at the lower end of the membrane unit 3 as shown in FIG.
  • the relationship between the axial centers of the diffuser member 4 and the bubble group dividing member 5 and the direction of the membrane surface of the separation membrane 21 arranged in the membrane module 2 is not limited to the arrangement illustrated in FIG.
  • the angle between the axis of the diffuser member 4 and the bubble group dividing member 5 and the direction of the membrane surface of the separation membrane 21 disposed in the membrane module 2 is 90 degrees instead of 0 degrees as illustrated in FIG.
  • the arrangement may be as follows.
  • the liquid phase in the biological reaction tank 10 to which the water to be treated is supplied is always aerated by the aeration diffuser 12.
  • the activated sludge in the liquid phase biologically decomposes pollutants in the treated water using oxygen provided by this aeration.
  • the liquid phase in the biological reaction tank 10 is introduced into the membrane separation apparatus 1 from the lower end opening of the housing 7 and the gap 25 between the membrane modules 2 by the water flow by the aeration, and is subjected to the solid-liquid separation process.
  • the bubble group 401 is constantly released from the diffuser member 4.
  • the bubble group 401 is divided into a plurality of bubble groups 402 by collision with the bubble group dividing member 5. Since the bubble group dividing member 5 has a circular longitudinal section, the bubble group 401 colliding with the lower surface of the member 5 is divided into a plurality of bubble groups 402 while being in a turbulent state on the outer peripheral surface of the member 5. Is done. Further, since the upper half of the vertical cross section of the bubble group dividing member 5 is a semicircle, the activated sludge staying near the lower end of the membrane unit 3 is guided downward along the peripheral surface of the member 5. Thus, the accumulation of activated sludge on the upper surface of the member 5 is avoided.
  • the violent gas-liquid mixed flow bypassing the division is introduced between the individual separation membranes 21 of each membrane module 2 of the membrane unit 3 and used for cleaning the surface of the separation membrane 21.
  • Contaminants separated from the surface of the separation membrane 21 by this washing ride on the gas-liquid mixed flow and are discharged from the upper end opening of the uppermost membrane module 2 of the membrane unit 3, or the biological reaction tank 10 Sedimentation near the bottom.
  • the activated sludge contained in the separated impurities is again used for biological decomposition of the pollutant in the biological reaction tank 10.
  • each separation membrane 21 of each membrane module 2 is in a negative pressure state by a suction pump (not shown), and the solid-liquid separation treated water that has permeated into the water collecting channel inside the separation membrane 21 is It is carried out of the biological reaction tank 10 by the suction pump.
  • the membrane unit 3 an upward flow is generated by the aeration diffuser 12 and the diffuser 4, and the liquid phase introduced into the membrane module 2 is subjected to solid-liquid separation treatment by the separation membrane 21.
  • the concentration of the activated sludge in the liquid phase that circulates inside increases as it reaches the upper part of the apparatus 1. Therefore, the sludge load on the separation membrane 21 of the upper membrane module 2 in the membrane unit 3 is increased, and there is a possibility that the membrane clogging is accelerated and the energy consumption is increased.
  • a gap 25 between the lower end of the water flow guide 23 of the membrane module 2 and the upper end of the water flow guide 23 of another membrane module 2 connected to the lower side of the membrane module 2 is used.
  • the liquid phase staying on the outer periphery rides on the upward flow and is introduced into the membrane module 2.
  • an increase in the activated sludge concentration inside the membrane unit 3 is suppressed, and adverse effects due to an increase in the sludge load are avoided.
  • the flow path of the gas-liquid mixed flow including the bubble group 402 is narrowed by the water flow guide 23 as it approaches the upper end of the membrane module 2, the mixed flow is converged and the speed thereof is increased. The cleaning effect of the film 21 is enhanced.
  • the bubble group 401 of the membrane cleaning air provided from the diffuser member 4 to the membrane unit 3 in the biological reaction tank 10 is divided into a plurality of bubble groups 402 by the bubble group dividing member 5. Is done. And since this divided
  • the membrane surface cleaning is possible to prevent the membrane surface cleaning from becoming nonuniform and maintain the solid-liquid separation function of the separation membrane of the membrane module 3 without increasing the number of diffuser members or diffuser points.
  • the above-described air diffuser 4 is of the air diffuser type, the air bubbles provided from the air diffuser 4 are not affected even if the air diffuser having the air diffuser hole upward, such as the nozzle type, is employed. It can be divided by the bubble group dividing member 5.
  • the air diffuser 4 of the second embodiment is formed such that the air diffuser holes 42 are distributed to the lower side of the air diffuser 41 to the left and right. According to this aspect, due to the synergistic effect with the bubble group dividing member 5, it can be expected that the supply of the bubble groups will be more uniform.
  • the adjacent air diffusing holes 42 are arranged obliquely with respect to the axis L of the air diffusing pipe 41.
  • Adjacent air diffusion holes 42a and 42b have an angle formed by a straight line L1 passing through one air diffusion hole 42a and the axis O of the air diffusion tube 41 and L2 passing through the other air diffusion hole 42b and the axis O less than 180 degrees, preferably Is formed to be 170 degrees or less.
  • the adjacent diffuser holes 42a and 42b are a straight line L1 passing through the diffuser hole 42a and the axis O of the diffuser tube 41, and the diffuser hole 42b and the axis O. Are formed so that the angle formed by the straight line L2 passing through the angle is 90 degrees.
  • a specific example of setting the diameter and the number of the air holes 42 of the air diffusion member 4 of the present embodiment will be described.
  • An example of setting the diameter and number of diffuser holes when the design throughput Q is 0.6 m 3 / m 2 ⁇ day (19.8 m 3 / day) and the total diffused air volume Dm 3 / min is 6Q will be described.
  • the diffuser flow velocity E from the diffuser holes is described in the description of the first embodiment. According to the calculation method, it is calculated as about 12 m / sec. Since the calculated value of E is larger than 10 m / sec, the air diffusion hole diameter Bmm and the number C of air diffusion holes of the membrane unit according to the specific example are appropriate specifications.
  • the air bubbles 42 can be ejected evenly from side to side with the axis of the member 4 as the center line, so the diffuser holes 42 shown in FIG. 4C are linearly arranged.
  • the bubble group can be supplied to the membrane unit 3 more uniformly.
  • the air diffusing member 4 of the third embodiment is formed such that a plurality of air diffusing holes 42 are arranged in two rows in the direction of the axis L of the air diffusing pipe 41 as shown in FIG.
  • the illustrated air diffusion holes 42a and 42b include a straight line L1 passing through the air diffusion holes 42a in one row and the axis O of the air diffusion tube 41, and the air diffusion holes 42b and the shaft center O in the other row facing the air diffusion holes 42a.
  • the angle formed by the straight line L2 is less than 180 degrees, preferably 170 degrees or less. In the specific mode shown in FIG.
  • the air diffuser holes 42a and 42b facing each other include a straight line L1 passing through the air diffuser hole 42a and the axis O of the air diffuser tube 41, and the air diffuser hole 42b and the axis O. Are formed so that the angle formed by the straight line L2 passing through the angle is 90 degrees.
  • a specific example of setting the diameter and the number of the air holes 42 of the air diffusion member 4 of the present embodiment will be described.
  • An example of setting the diameter and number of diffuser holes when the design throughput Q is 0.6 m 3 / m 2 ⁇ day (19.8 m 3 / day) and the total diffused air volume Dm 3 / min is 12Q will be described.
  • the diffused flow velocity E from the diffused holes is described in the description of the first embodiment. According to the calculation method, it is calculated as about 12 m / sec. Since the calculated value of E is larger than 10 m / sec, the air diffusion hole diameter Bmm and the number C of air diffusion holes of the membrane unit according to the specific example are appropriate specifications.
  • the air bubble group can be ejected equally left and right with the axis of the member 4 as the center line, the air bubble group can be more uniformly compared with the air diffusing member 4 of the first embodiment. It can be supplied to the membrane unit 3.
  • the plurality of air diffusion holes 42 are arranged in two rows in the axial direction of the air diffusion tube 41, the air bubble group can be supplied with high density and uniformity compared to the air diffusion member 4 of the second embodiment.
  • the diffuser member 4 of the fourth embodiment shown in FIG. 6 has the diffuser holes 43 having a larger diameter than the diffuser holes 42 of the diffuser member 4 of the first embodiment, while the number of the diffuser holes 43 is the diffuser holes. The number is set to be less than 42. As shown in FIGS. 6A and 6B, the air diffusion holes 43 are formed on the lower surface of the air diffusion member 4.
  • a specific example of setting the diameter and the number of the air holes 43 of the air diffusion member 4 of the present embodiment will be described.
  • An example of setting the diameter and number of diffuser holes when the design throughput Q is 0.6 m 3 / m 2 ⁇ day (19.8 m 3 / day) and the total diffused air volume Dm 3 / min is 6Q will be described.
  • the diffuser flow velocity E from the diffuser holes is described in the description of the first embodiment. According to the calculation method, it is calculated as about 12 m / sec. Since the calculated value of E is larger than 10 m / sec, the air diffusion hole diameter Bmm and the number C of air diffusion holes of the membrane unit according to the specific example are appropriate specifications.
  • the diffuser member 4 of the present embodiment described above has a total diffused air volume of 6 ⁇ Qm 3 / min equivalent to that of the diffuser member 4 of the first embodiment (aeration flow velocity E of about 12 m / second). Since the number of diffuser holes in the diffuser member 4 is smaller than that of the diffuser member 4 of the first embodiment, the amount of diffused air per unit diffuser hole (m 3 / min) is larger than that of the diffuser member 4. Thereby, a gas-liquid mixed flow larger than at least the air diffusing member 4 is formed.
  • the bubble group 401 provided from the diffuser member 4 rises by the gas-liquid mixed flow and is divided into a plurality of bubble groups 402 by collision with the bubble group dividing member 5. Since the gas-liquid mixed flow is not reduced so much by the collision, the cleaning effect of the membrane unit 3 is maintained. As described above, according to the air diffusing member 4 of the present embodiment, the cleaning effect of the membrane unit is improved and maintained.
  • the membrane separation apparatus according to the present invention is not limited to the application to the biological reaction tank in which the activated sludge is retained as in Embodiments 1 to 4 above, but is also a water purification facility and an industrial wastewater treatment facility using a flocculant.
  • the present invention can also be applied to general water treatment facilities that require solid-liquid separation of suspended substances.

Abstract

 膜分離装置1は、膜モジュール2を生物反応槽10の深さ方向に複数積重させて成る膜ユニット3と、この膜ユニット3の下方に配置され当該膜ユニット3への膜洗浄用の空気を散気する散気部材4と、膜ユニット3と散気部材4との間に配置され当該散気部材4から供された空気の気泡群401を複数の気泡群402に分割させる気泡群分割部材5とを備える。気泡群分割部材5は散気部材4の径よりも大径であると共に当該散気部材4の軸と平行に配置される立体形状の障害部材からなる。気泡群分割部材5はその縦断面の下辺が下に凸の立体に形成されている。気泡群分割部材5は例えばその縦断面の上辺が三角形である一方で下半部が半円形を成す。

Description

膜分離装置
 本発明は膜分離装置に関するものであり、特に水処理の分野で用いられる膜分離装置に関する。
 膜分離技術は、従来から海水淡水化、浄水処理、ガス分離、血液浄化等で使用されてきたが、最近では環境保全の観点から、廃水処理にも膜分離技術を適用しようとする研究が進められている。
 従来、浄水処理、下排水処理、或いは産業排水の処理等、濁度の高い被処理水の固液分離を行う方法として、砂濾過や重力沈殿等が行われている。しかしながら、これら方法による固液分離は、得られる処理水の水質が不充分となる場合が生じることや、固液分離のために広大な用地を必要とするといった課題を有している。
 この課題を解決する方法として、近年精密濾過膜、限外濾過膜等の分離膜を配設した膜モジュールを被処理水に浸漬させて固液分離を行う方法が種々検討されている。分離膜を用いて被処理水の濾過処理を行うと、高い水質の処理水を得ることができる(例えば、非特許文献1)。
 分離膜を用いて被処理水の固液分離を行う場合、濾過処理を継続するにしたがって懸濁物質による分離膜表面の目詰まりが進行するため、濾過流量の低下、或いは膜間差圧の上昇が生じる。このような状態を回復させるため、膜モジュールの下方に散気装置を配設し、散気装置から気泡の散気を行い、気泡の上昇することによって生まれる気液混合流を膜モジュールの膜面に接触させること(スクラビング)により分離膜表面の懸濁物質を剥離させる方法が採られている。
 この膜面を空気洗浄する方法における留意点は、洗浄用気泡を如何に膜全面(水平断面にて)に均等に供給するかである。すなわち、膜面の洗浄において気泡の散気によって生じる気液混合流を膜面に接触させることにより洗浄を行うため、散気管から発生した気泡を均等に分散させる手段が重要となる。そこで、気泡の分散方法を改良させた膜分離装置として例えば特許文献1~4に開示された装置が知られている。
 特許文献1に記載の膜分離装置の散気管は円筒状の散気管の下部周壁部においてスリット状の散気孔が当該散気管の軸線に対して略垂直に配置されるように複数形成されている。
 特許文献2~4に記載の膜分離装置はスクラビングするための気泡を分離膜全体に均等に、かつ十分に作用させるために分離膜ごとに散気装置(散気管)を配設している。さらに、被処理水に対するスクラビングエアの溶解効率を向上させるために前記散気装置の上方に格子状または網目状の分散部材を配置させ、当該装置から供された気泡よりも小径の気泡を発生させている。
 特許文献1の膜分離装置は散気管の各散気孔からの散気量を一定に維持することで効果がある。各散気孔の微妙な高低差は膜分離装置の設置時や散気エネルギーによる散気管の固定状態変化や流入中の水圧のため(静水圧ではなく動水圧が働くため)、散気管の構造を工夫してもその効果には限界がある。
 また、散気装置の散気孔がスリット形状を成しているので散気孔の閉塞により散気装置からの気体供給が不十分な状態となることはない。しかしながら、散気状態が平面的にみて不均等となって分離膜の膜面の洗浄むらが生じやすくなる。
 膜モジュールの膜面の洗浄むらにより膜面にて汚れの偏りや分布が生じると実質的には「洗浄されやすい膜面」のみでろ過を行うようになるので利用可能な有効膜面積が減少する。さらに、この「洗浄されやすい膜面」が集中してろ過に利用されるので該当部分にて膜の目詰まりである膜ファイリングが進行しやすくなり、ろ過継続不可能に至る前に薬液を使った洗浄や物理的な洗浄などを行って膜の透過性能を再生させる作業が必要となる。そのため、この膜性能の再生作業の間隔期間が短くなり、この作業実施の期間間での全ろ過量の低下、この作業での膜分離操作の停止などにより、膜分離の総合効率が低下する。
 特許文献2~4の膜分離装置に係る分散手段は気泡の分散効果と目詰まりの抑制の二つを同時に達成するために、金網や多孔板、パイプ、ワイヤー、格子等から選ばれるいずれかのものを水平に配置したものが適用されている。分散手段の開口率は20~70%、目幅は2~10mm程度に設定されている。散気気泡の形状の観点からは、開口を有する挿入物により粗大気泡の細分化を図り、気泡の分散効果による溶解効率の向上と、その際の気泡の分散効果により膜部へ均一に気泡を導入することを目的とする。これは気泡の粗大化による酸素の溶解効率の著しい低下及び膜間への気泡導入の偏りによる部分的な膜汚染を改善させるためである。
 しかしながら、酸素供給と膜洗浄を兼ねた散気装置に要求される気泡径の仕様は、酸素供給の場合は微細気泡が必要である一方で膜洗浄時の場合は粗大気泡が必要であり各効果を達成するには相反する要求に基づき散気方法を選択しなければならない。特許文献4の膜分離装置は、散気手段から供された気泡群が網目状または格子状の分散手段によって細分化されてしまうので、分離膜の膜面の洗浄むらが生じやすくなり、膜洗浄機能が劣るものとなる。さらに、分散手段の下面の広さに応じて複数の散気管を設置また増設しなければならない。この複数の散気管の設置または増設により散気点が多数となるが、散気状態が平面的にみて不均等となり分離膜の膜面の洗浄むらが生じやすくなる。これは、膜全体としての分離の効率が低下、さらには膜分離処理の信頼性の低下につながる。
上坂太一、外3名、「排水処理の高度化・再利用に用いられる液中膜」、クボタ技報、株式会社クボタ、2005年6月、第39巻、p.42-50
特開平10-286444号公報 特開平8-281080号公報 特開2001-162141号公報 特開2006-224050号公報
 そこで、本発明の膜分離装置は、膜モジュールを水槽の深さ方向に複数積重させて成る膜ユニットと、前記膜ユニットの下方に配置され当該膜ユニットへの膜洗浄用の空気を散気する散気部材と、前記膜ユニットと前記散気部材との間に配置され当該散気部材から供された空気の気泡群を複数の気泡群に分割させる気泡群分割部材とを備える。
 前記気泡群分割部材は前記散気部材の径よりも大径であると共に当該散気部材の軸と平行に配置される立体形状の障害部材で成すと、前記散気部材の散気孔から供された気泡群が当該気泡群分割部材との衝突によりこの部材の軸線を中心線として均等に分割される。これにより散気部材やその散気点を増設させることなく前記膜ユニットの下端に対して前記分割された気泡群を均一に供給できる。
 前記気泡群分割部材はその縦断面の下辺が下に凸の立体に形成されると、散気部材の散気孔から散気された気泡群に対する抵抗が緩和されるので、気液混合流速を低減させることなく当該気泡群を複数の気泡群に分解できる。
 特に、前記気泡群分割部材の縦断面の下辺が半円形を成すように形成されると、この部材と衝突した気泡群は当該部材の曲面上で乱流状態を維持させながら複数の気泡群に分割される。さらに、前記縦断面の上辺が三角形を成すように形成されると、懸濁物質を効率的に前記気泡群分割部材の下方に案内できる。
 また、前記気泡群分割部材は縦断面が円形を成すように、または縦断面の上辺が釣鐘状である一方で下半部が半円形を成すように形成されると、当該部材の下面の曲面に沿って上昇してくる気液混合流が当該部材の上方において旋回しこの旋回流が維持される。
本発明の実施形態1に係る膜分離装置の概略構成を示した断面図。 (a)実施形態1に係る散気部材の下面図,(b)当該散気部材の縦断面図。 (a)縦断面の下辺が半円形を成す気泡群分割部材の縦断面図,(b)縦断面の上辺が鈍角三角形である一方で下辺が半円形を成す気泡群分割部材の縦断面図,(c)縦断面の上辺が鋭角三角形である一方で下辺が半円形を成す気泡群分割部材の縦断面図,(d)縦断面が円形を成す気泡群分割部材の縦断面図,(e)縦断面の上辺が釣鐘状である一方で下辺が半円形を成す気泡群分割部材の縦断面図。 (a)実施形態2に係る散気部材の下面図,(b)当該散気部材の縦断面図,(c)実施形態1に係る散気部材の下面図。 (a)実施形態3に係る散気部材の下面図,(b)当該散気部材の縦断面図。 (a)実施形態4に係る散気部材の下面図,(b)当該散気部材の縦断面図。 本発明の実施形態に係る膜モジュールの構成を示した斜視図。
 以下、図面を参照しながら本発明の実施の形態について説明する。
 [実施形態1]
 図1に示された本実施形態の膜分離装置1はMBR方式の生物反応槽10内の膜モジュール3に対して散気部材4から散気された膜洗浄用の空気の気泡群401を気泡群分割部材5によって複数の気泡群402に分割させることで膜モジュールの洗浄効果の均一化を図る。すなわち、本実施形態に係る気泡群の分割は、活性汚泥の活性化を高めるために気泡を微細化させて酸素の溶解効率の向上を目的とするものではなく、散気部材から供された気泡群を気泡群分割部材と衝突させて分割して多方向に振分けることを目的とする。
 (膜分離装置1の構成)
 膜分離装置1は、膜モジュール2を生物反応槽10の深さ方向に複数積重して構成される膜ユニット3と、膜ユニット3に対して曝気用及び膜洗浄用の空気の気泡群を散気させる散気部材4と、前記気泡群を複数の気泡群に分割させる気泡群分割部材5とから成る。膜分離装置1はMBRの生物反応槽10内の液相11に浸漬されるように設置される。
 膜モジュール2は、図7に例示されたように、並列に複数配置される平型の分離膜21と、この分離膜21の両端部を支持する一対の支持部22と、この一対の支持部22の両端付近の間隙を閉塞する一対のガイド23とから成る。この支持部22とガイド23により上下に開口部を有する筺体が構成される。
 分離膜21は平型を成しているが、発明に係る分離膜はこの態様に限定されない。例えば、MBRに適用される周知の分離膜である、有機中空糸膜、有機平膜、無機平膜、無機単管膜等を適用してもよい。尚、分離膜21の材質としては、セルロ-ス、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライト)、PTFE(ポリ四フッ化エチレン)、セラミックス等が例示される。また、膜モジュール2に複数配列される分離膜21は、分離膜21内の集水路211が縦方向に配置されるように設置して、集水路211と連通する集水部を分離膜21の端部(上下のどちらか一方か両方の端部)に設けてもよい。
 支持部22の内部には分離膜21内部の集水路211と連通する集水部(図示省略)が形成されている。前記集水部は支持部22に形成された濾過吸引口24と連通している。この濾過吸引口24は図示省略の濾過液を吸引するポンプの配管が接続される。
 ガイド23は膜モジュール2の上部開口端断面積が下部開口端断面積より小さくなるように支持部22に取り付けられることで、分離膜21による濾過効率の向上が図られている。すなわち、膜モジュール2を積重させた際に、膜モジュール2の上部開口端とこの膜モジュール2上に積重される他の膜モジュール(図示省略)の下部開口端の間に形成される空隙25から膜モジュール2の外周部の被処理水を流入させることで、膜モジュール2内を流通する被処理水の活性汚泥濃度の上昇を抑制させる。また、散気部材4から供された図1に記載の気泡群402は膜ユニット3の外部への拡散がガイド23によって抑制されるので、分離膜21の表面に対して気泡群402を有効に作用させることができる。
 生物反応槽10の水深は、一般的に4m程度である場合が多いので、生物反応槽10の水深と保守性を考慮した重量や外形から、積重する膜モジュール2の個数が選定される。例えば、膜ユニット3の高さが2m~3m程度となるように膜モジュール2の個数が選定される。この膜ユニット3内部での被処理水の流れは、膜ユニット3の下部の開口部から上部の開口部へ向かう流れとなる。膜ユニット3内の液相は分離膜21で濾過されるので、膜ユニット3の上部になればなるほど当該液相の活性汚泥濃度が上昇する。膜ユニット3においては図1に示したように積重された各膜モジュール2の空隙25から被処理水が膜ユニット3内に吸引されるので、膜ユニット3内部での活性汚泥濃度の大きな上昇を抑制することができる。その結果、濾過に対しての負荷が低減し、膜閉塞の緩和、及び消費エネルギーの低減につながる。尚、被処理水を膜ユニット3の内部に吸引する吸引力は、気泡群401,402の上昇流により生じるため、特に被処理水を吸引するための動力源を備える必要はない。
 散気部材4は膜ユニット3に対して膜洗浄用の空気を供給するための部材である。また、曝気用散気部材12は活性汚泥による生物処理に対して必要な酸素を供給するための部材である。前記空気および前記酸素は生物反応槽10外のブロワーやコンプレッサ(図示省略)から供給される。散気部材4には周知の仕様のものを適用すればよい。具体的には散気管タイプ、ノズルタイプのものが例示される。
 図2(a)に例示された散気部材4は複数の散気孔42が形成された散気管41からなる。散気管41は図2(b)に示したように膜ユニット3の下方にて水平に配置されている。複数の散気孔42は散気管41の下面にて当該管41の軸線に対して平行に配置されるように形成されている。散気孔42は空気散気速度が10m/秒以上となるように直径5~10mm及び100~200mmピッチで散気管41の下面に複数形成される。このように散気管41の下面にて散気孔42を形成すると、コンプレッサー等の送気圧変動の影響等によって散気量に脈動が生ずる場合でも、圧低下時に散気に支障となるような散気管41内への槽内液の侵入が起こりにくくなるので、安定した散気を継続できる。
 散気管41に形成する散気孔42の径と個数の設定方法について説明する。経験的に、全散気風量Dm3/分は、生物反応槽10の設計処理量Qm3/日の3、6、9倍数として3Q、6Q、9Qなどの数値から選択される。
 生物反応槽10には、計画処理能力に応じて複数の膜分離装置1を設置するが、上記設定方法は単位膜ユニット3基準で計算を行う。
 散気孔42の径Bmm及び個数Cに基づき単位膜ユニット3当たりの散気孔42の総計面積を算出する。次に、全散気風量Dを単位膜ユニット3の数で除して、単位膜ユニット3当たりの散気風量を算出し、さらに前記総計面積で除する計算に基づき散気孔42からの散気流速Em/秒が算出される。そして、この算出されたEの値が空気散気速度10m/秒以上である場合、散気孔径Bmm及び散気孔個数Cの値が適切な仕様として設定される。
 散気孔42の径と個数の設定の具体例を説明する。設計処理量Qが0.6m3/m2・日(19.8m3/日)、全散気風量Dm3/分が6Qである場合の散気孔の径と個数の設定の事例について説明する。全散気風量6×Qm3/分で、散気管全長200mm、孔径5mm、ピッチ56mmで3個の散気孔を形成させると、散気孔からの散気流速Eは上述の計算によって約12m/秒と算出される。算出されたEの値は10m/秒よりも大きいので具体例に係る膜ユニットの散気孔径Bmm及び散気孔個数Cは適切な仕様とされる。
 気泡群分割部材5は網目構造のようなものではなく気泡群を通過させない形態に形成される。気泡群分割部材5は散気部材4の径よりも大径である立体形状の障害部材からなる。気泡群分割部材5はその軸線が膜ユニット3と散気部材4との間にて散気部材4の軸線と平行となるように配置されている。気泡群分割部材5は散気部材4の散気孔42から噴出された気泡群401が気泡群分割部材5との衝突により当該部材5の軸線を中心線として左右均等に分割されるように配置される。これにより、膜ユニット3の下端に対して前記分割された気泡群402を均等に供給できる。気泡群分割部材5の材質は樹脂、金属、セラミックス等が例示されるが散気による激しい水流により変形しないものまたは変形しても障害部材としての機能を維持できるものであれば特に限定しない。
 気泡群分割部材5は少なくとも縦断面の下辺が下に凸の立体に形成されている。この態様により、散気部材4の散気孔42から供された気泡群401に対する抵抗を緩和させ、気液混合流速を低減させることなく当該気泡群を複数の気泡群402に分割できるようになっている。
 気泡群分割部材5の具体的な態様を図3(a)~図3(e)に例示した。図3(a)に例示された気泡群分割部材5はその縦断面の下辺が半円形を成している。図3(b)に例示された気泡群分割部材5はその縦断面の上辺が鈍角三角形である一方で下辺が半円形を成している。図3(c)に例示された気泡群分割部材5はその縦断面の上辺が鋭角三角形である一方で下辺が半円形を成している。図3(d)に例示された気泡群分割部材5はその縦断面が円形を成している。図3(e)に例示された気泡群分割部材5はその縦断面の上辺が釣鐘状である一方で下辺が半円形を成している。
 図3(a)~図3(e)に例示された気泡群分割部材5は、少なくともその下面が曲面に形成されているので、当該下面に衝突した気泡群を当該曲面上で乱流状態に維持させながら複数の気泡群に分割できる。特に、図3(b)~図3(e)に例示された気泡群分割部材5は、その上面が上に凸の形状に形成されているので、活性汚泥を当該部材5の下方に効率良く案内でき、当該部材5上での活性汚泥の堆積を回避させることができる。また、図3(d)、図3(e)に例示された気泡群分割部材5は、その上面が曲面に形成されているので、当該部材5の下面の曲面に沿って上昇してくる気液混合流を当該部材5の上方において旋回させ、この旋回流を維持させることができる。これにより、気泡群分割部材5の上方において激しい気液混合流を継続させ、気泡群の分割を促進させることができる。そして、この分割迂回した激しい気液混合流を膜モジュール2の分離膜21間に供することができ、膜面洗浄効果を維持させることができる。
 散気部材4、気泡群分割部材5は図1に示されたように膜ユニット3の下端に配置される筒体7に収納される。尚、散気部材4及び気泡群分割部材5の軸心と膜モジュール2に配置される分離膜21の膜面の方向との関係は図1に例示された配置に限定されない。例えば、散気部材4及び気泡群分割部材5の軸心と膜モジュール2に配置される分離膜21の膜面の方向との角度が図1に例示されたような0度ではなく90度となるような配置にしてもよい。
 (本実施形態の作用)
 図1を参照しながら膜分離装置1の作用について説明する。ここでは、縦断面が円形を成す気泡群分割部材5を備えた膜分離装置1の作用について説明する。
 被処理水が供給される生物反応槽10内の液相は曝気用散気部材12によって常時曝気された状態となっている。前記液相中の活性汚泥はこの曝気によって供された酸素を利用して被処理水中の汚濁物質を生物学的に分解する。一方、生物反応槽10内の液相は前記曝気による水流によって筐体7の下端開口部と膜モジュール2間の空隙25とから膜分離装置1内に導入され固液分離処理に供される。
 膜分離装置1内においては散気部材4から気泡群401が常時放出されている。この気泡群401は気泡群分割部材5との衝突によって複数の気泡群402に分割される。気泡群分割部材5は縦断面が円形を成しているので、当該部材5の下面に衝突した気泡群401は当該部材5の外周面上で乱流状態となりながら、複数の気泡群402に分割される。また、気泡群分割部材5の縦断面の上半部は半円となっているので、膜ユニット3の下端付近に滞留する活性汚泥は当該部材5の周面に沿って下方に案内されることで、当該部材5の上面において活性汚泥の堆積が回避される。これにより前記汚濁物質の分解に寄与する前記活性汚泥の絶対量の低減が防止される。さらに、気泡群分割部材5の下面の曲面に沿って上昇してくる気液混合流は当該部材5の上方において旋回し、この旋回流が維持されるので気泡群分割部材5の上方において激しい気液混合流が継続し、気泡群の分割が促される。
 前記分割迂回した激しい気液混合流は膜ユニット3の各膜モジュール2の個々の分離膜21間に導入され、分離膜21の表面の洗浄に供される。この洗浄によって分離膜21の表面から剥離された夾雑物は、前記気液混合流に乗って膜ユニット3の最上位の膜モジュール2の上端開口部から排出されるか、または、生物反応槽10の底部付近に沈降する。前記剥離された夾雑物に含まれる活性汚泥は生物反応槽10内における汚濁物質の生物学的分解に再度供される。
 膜ユニット3内においては各膜モジュール2の各分離膜21の内部が図示省略された吸引ポンプによって負圧状態となっており、分離膜21内部の集水路内に透過した固液分離処理水は前記吸引ポンプによって生物反応槽10外に搬出される。
 膜ユニット3内においては曝気用散気部材12及び散気部材4によって上昇流が生じており膜モジュール2内に導入された液相が分離膜21によって固液分離処理されるので、膜ユニット3内を流通する液相の活性汚泥濃度は当該装置1の上部に至るにつれて高くなる。したがって、膜ユニット3における上位の膜モジュール2の分離膜21に対する汚泥負荷が増大し、膜閉塞の加速や消費エネルギーの増大が生じるおそれがある。膜ユニット3においては、膜モジュール2の水流ガイド23の下端と、当該膜モジュール2の下側に接続される他の膜モジュール2の水流ガイド23の上端との間の空隙25から膜モジュール2の外周に滞留する液相が上昇流に乗って膜モジュール2内に導入される。これにより膜ユニット3内部での活性汚泥濃度の上昇が抑制され、前記汚泥負荷の増大による弊害が回避される。
 また、気泡群402を含む気液混合流の流路は膜モジュール2の上端に近づくにつれて水流ガイド23によって狭くなっているので当該混合流は収束すると共にその速度も速くなるので気泡群402による分離膜21の洗浄効果が高まる。
 (本実施形態の効果)
 膜分離装置1によれば生物反応槽10内の膜ユニット3に対して散気部材4から供された膜洗浄用の空気の気泡群401が気泡群分割部材5によって複数の気泡群402に分割される。そして、この分割された気泡群402が膜ユニット3の各膜モジュール2に対して均一に供されるので、膜モジュール3の膜面の洗浄むらが生じにくくなる。これにより、有効な膜面比率が高く維持され、効率の高い固液分離が可能となる。また、気泡群401の細分化が回避されることで、微細化された気泡に比べてその平均気泡径が大きく上昇浮力も高いので、気液混合流速を高く維持できる。以上のように散気部材やその散気点を増設させることなく膜面洗浄の不均一化を防止して膜モジュール3の分離膜の固液分離機能を維持できる。尚、上述の散気部材4は散気管タイプのものであるがノズルタイプのような散気孔が上方へ向いている態様のものが採用されてもこの散気部材4から供された気泡群を気泡群分割部材5によって分割できる。
 [実施形態2]
 実施形態2の散気部材4は図4(a)に示したように散気孔42が散気管41下側に散気孔を左右に振り分けるように形成されている。この態様によれば気泡群分割部材5との相乗効果により、気泡群の分割がより均一となる供給が期待できる。
 すなわち、本実施形態の散気部材4は隣接する散気孔42が散気管41の軸線Lに対して斜めに配置されている。隣接する散気孔42a,42bは一方の散気孔42aと散気管41の軸心Oとを通る直線L1と他方の散気孔42bと軸心Oとを通るL2とで成す角度が180度未満、好ましくは170度以下となるように形成されている。図4(b)に示された具体的な態様においては、隣接する散気孔42a,42bは、散気孔42aと散気管41の軸心Oとを通る直線L1と、散気孔42bと軸心Oとを通る直線L2とで成す角度が90度となるように形成されている。
 本実施形態の散気部材4の散気孔42の径と個数の設定の具体例を説明する。設計処理量Qが0.6m3/m2・日(19.8m3/日)、全散気風量Dm3/分が6Qである場合の散気孔の径と個数の設定の事例について説明する。全散気風量6×Qm3/分で、散気管全長225mm、孔径6mm、ピッチ75mmで2個の散気孔を形成させると、散気孔からの散気流速Eは実施形態1の説明で述べた計算法によると約12m/秒と算出される。算出されたEの値は10m/秒よりも大きいので具体例に係る膜ユニットの散気孔径Bmm及び散気孔個数Cは適切な仕様となっている。
 以上の本実施形態の散気部材4によれば当該部材4の軸線を中心線として左右均等に気泡群を噴出できるので図4(c)に示された散気孔42が直線的に配置された実施形態1の散気部材4と比べてより一層均一に気泡群を膜ユニット3に対して供給できる。
 [実施形態3]
 実施形態3の散気部材4は図5(a)に示すように複数の散気孔42が散気管41の軸L方向に二列に配置されるように形成されている。図示された散気孔42a,42bは一方の列の散気孔42aと散気管41の軸心Oとを通る直線L1と前記散気孔42aと対向する他方の列の散気孔42bと軸心Oとを通る直線L2とで成す角度が180度未満、好ましくは170度以下となるように形成される。図5(b)に示された具体的な態様においては、対向する散気孔42a,42bは、散気孔42aと散気管41の軸心Oとを通る直線L1と、散気孔42bと軸心Oとを通る直線L2とで成す角度が90度となるように形成されている。
 本実施形態の散気部材4の散気孔42の径と個数の設定の具体例を説明する。設計処理量Qが0.6m3/m2・日(19.8m3/日)、全散気風量Dm3/分が12Qである場合の散気孔の径と個数の設定の事例について説明する。全散気風量12×Qm3/分で、散気管全長225mm、孔径5mm、ピッチ56mmで6個の散気孔を形成させると、散気孔からの散気流速Eは実施形態1の説明で述べた計算法によると約12m/秒と算出される。算出されたEの値は10m/秒よりも大きいので具体例に係る膜ユニットの散気孔径Bmm及び散気孔個数Cは適切な仕様となっている。
 以上の本実施形態の散気部材4によれば当該部材4の軸線を中心線として左右均等に気泡群を噴出できるので、実施形態1の散気部材4と比べて、より均一に気泡群を膜ユニット3に対して供給できる。また、複数の散気孔42が散気管41の軸方向に二列に配置されているので、実施形態2の散気部材4と比べて、高密度且つ均一に気泡群を供給できる。
 [実施形態4]
 図6に示された実施形態4の散気部材4はその散気孔43が実施形態1の散気部材4の散気孔42よりも大径に形成される一方で散気孔43の数は散気孔42の数よりも少なく設定されている。図6(a)、図6(b)に示されたように散気孔43は散気部材4の下面にて形成されている。
 本実施形態の散気部材4の散気孔43の径と個数の設定の具体例を説明する。設計処理量Qが0.6m3/m2・日(19.8m3/日)、全散気風量Dm3/分が6Qである場合の散気孔の径と個数の設定の事例について説明する。全散気風量6×Qm3/分で、散気管全長198mm、孔径6mm、ピッチ66mmで2個の散気孔を形成させると、散気孔からの散気流速Eは実施形態1の説明で述べた計算法によると約12m/秒と算出される。算出されたEの値は10m/秒よりも大きいので具体例に係る膜ユニットの散気孔径Bmm及び散気孔個数Cは適切な仕様となっている。
 以上の本実施形態の散気部材4は全散気風量6×Qm3/分が実施形態1の散気部材4と同等となるが(散気流速E約12m/秒)、本実施形態の散気部材4は散気孔の数が 実施形態1の散気部材4のものよりも少ないので、単位散気孔当たりの散気風量(m3/分)が散気部材4よりも大きくなる。これにより、少なくとも散気部材4よりも大きな気液混合流が形成される。散気部材4から供された気泡群401は前記気液混合流によって上昇して気泡群分割部材5との衝突によって複数の気泡群402に分割される。前記気液混合流は前記衝突によってそれほど減少しないので膜ユニット3の洗浄効果が維持される。以上のように本実施形態の散気部材4によれば膜ユニットの洗浄効果が向上及び維持される。
 [本発明の他の態様]
 本発明に係る膜分離装置は、上記の実施形態1~4のような活性汚泥を滞留させた生物反応槽への適用に限定されることなく、凝集剤が用いられる浄水設備、産業排水処理設備に例示される懸濁物質の固液分離が必要な一般的な水処理設備にも適用できる。
1…膜分離装置
2…膜モジュール
3…膜ユニット
4…散気部材、42,42a,42b,43…散気孔
5…気泡群分割部材
401,402…気泡群

Claims (11)

  1.  膜モジュールを水槽の深さ方向に複数積重させて成る膜ユニットと、
     前記膜ユニットの下方に配置され当該膜ユニットへの膜洗浄用の空気を散気する散気部材と、
     前記膜ユニットと前記散気部材との間に配置され当該散気部材から供された空気の気泡群を複数の気泡群に分割させる気泡群分割部材と
    を備えたこと
    を特徴とする膜分離装置。
  2.  前記気泡群分割部材は前記散気部材の径よりも大径であると共に当該散気部材の軸と平行に配置される立体形状の障害部材からなること
    を特徴とする請求項1に記載の膜分離装置。
  3.  前記気泡群分割部材はその縦断面の下辺が下に凸の立体に形成されたこと
    を特徴とする請求項2に記載の膜分離装置。
  4.  前記気泡群分割部材はその縦断面の下辺が半円形を成すこと
    を特徴とする請求項3に記載の膜分離装置。
  5.  前記気泡群分割部材はその縦断面の上辺が三角形である一方で下半部が半円形を成すこと
    を特徴とする請求項3に記載の膜分離装置。
  6.  前記気泡群分割部材はその縦断面が円形を成すこと、または、その縦断面の上辺が釣鐘状である一方で下半部が半円形を成すこと
    を特徴とする請求項3に記載の膜分離装置。
  7.  前記散気部材は管状の散気管からなりこの散気管の下面に複数の散気孔が形成されたことを特徴とする請求項1に記載の膜分離装置。
  8.  前記散気孔は隣接する散気孔が前記散気部材の軸線に対して斜めに配置されるように形成されたこと
    を特徴とする請求項7に記載の膜分離装置。
  9.  前記隣接する散気孔は一方の散気孔と前記散気管の軸心とを通る直線と他方の散気孔と前記軸心とを通る直線とで成す角度が180度未満となるように形成されたこと
    を特徴とする請求項8に記載の膜分離装置。
  10.  前記複数の散気孔は前記散気管の軸方向に二列に配置されるように形成されたこと
    を特徴とする請求項7に記載の膜分離装置。
  11.  前記散気孔は、前記一方の列の散気孔と前記散気管の軸心とを通る直線と前記散気孔と対向する他方の列の散気孔と前記軸心とを通る直線とで成す角度が180度未満となるように形成されたこと
    を特徴とする請求項10に記載の膜分離装置。
PCT/JP2012/051371 2011-02-28 2012-01-23 膜分離装置 WO2012117768A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280010702.7A CN103415474B (zh) 2011-02-28 2012-01-23 膜分离装置
CA2825744A CA2825744C (en) 2011-02-28 2012-01-23 Membrane separation device with air bubble group splitting member
SG2013055041A SG192034A1 (en) 2011-02-28 2012-01-23 Membrane separation device
JP2013502211A JP5823489B2 (ja) 2011-02-28 2012-01-23 膜分離装置
KR1020137019600A KR101501998B1 (ko) 2011-02-28 2012-01-23 막 분리장치
AU2012224335A AU2012224335B2 (en) 2011-02-28 2012-01-23 Membrane separation device
US13/974,567 US20140069860A1 (en) 2011-02-28 2013-08-23 Membrane separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011041486 2011-02-28
JP2011-041486 2011-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/974,567 Continuation US20140069860A1 (en) 2011-02-28 2013-08-23 Membrane separation device

Publications (1)

Publication Number Publication Date
WO2012117768A1 true WO2012117768A1 (ja) 2012-09-07

Family

ID=46757710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051371 WO2012117768A1 (ja) 2011-02-28 2012-01-23 膜分離装置

Country Status (8)

Country Link
US (1) US20140069860A1 (ja)
JP (1) JP5823489B2 (ja)
KR (1) KR101501998B1 (ja)
CN (1) CN103415474B (ja)
AU (1) AU2012224335B2 (ja)
CA (1) CA2825744C (ja)
SG (1) SG192034A1 (ja)
WO (1) WO2012117768A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US20160185634A1 (en) * 2013-08-08 2016-06-30 Lotte Chemical Corporation Air diffuser and membrane bio-reactor
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861348B (zh) * 2014-03-24 2016-10-05 广西国宏智鸿环境科技发展有限公司 一种具有在线自动冲洗功能的双滤筒过滤器
GB201501887D0 (en) * 2015-02-05 2015-03-25 Cellexus Ltd Sparging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224050A (ja) * 2005-02-21 2006-08-31 Japan Organo Co Ltd 浸漬型膜分離装置
JP2010104932A (ja) * 2008-10-31 2010-05-13 Suido Kiko Kaisha Ltd 散気装置
JP2010194523A (ja) * 2009-02-27 2010-09-09 Kubota Corp 分離膜の洗浄装置、膜分離装置及び洗浄方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2144385A (en) * 1935-03-18 1939-01-17 Advance Engineering Company Sewage treatment apparatus
US4066722A (en) * 1976-05-21 1978-01-03 Union Carbide Corporation Apparatus for sparging gas into liquid
CN2652924Y (zh) * 2003-11-10 2004-11-03 玉环县双环环保设备有限公司 动力散流式曝气器
EP1852175A4 (en) * 2005-02-25 2009-08-05 Ngk Insulators Ltd METHOD FOR CLEANING MEMBRANE IN AN ACTIVATED MEMBRANE SEPARATION SLUDGE PROCESS
KR100935302B1 (ko) * 2008-05-06 2010-01-06 한국수자원공사 이중배관 구조를 이용한 침지형 막 세척장치
JP5488156B2 (ja) * 2010-04-19 2014-05-14 株式会社明電舎 膜ユニット及び膜分離装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224050A (ja) * 2005-02-21 2006-08-31 Japan Organo Co Ltd 浸漬型膜分離装置
JP2010104932A (ja) * 2008-10-31 2010-05-13 Suido Kiko Kaisha Ltd 散気装置
JP2010194523A (ja) * 2009-02-27 2010-09-09 Kubota Corp 分離膜の洗浄装置、膜分離装置及び洗浄方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160185634A1 (en) * 2013-08-08 2016-06-30 Lotte Chemical Corporation Air diffuser and membrane bio-reactor
EP3031781A4 (en) * 2013-08-08 2017-01-25 Lotte Chemical Corporation Air diffuser and membrane bio-reactor
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Also Published As

Publication number Publication date
US20140069860A1 (en) 2014-03-13
CA2825744A1 (en) 2012-09-07
JP5823489B2 (ja) 2015-11-25
CN103415474B (zh) 2016-01-20
CA2825744C (en) 2015-10-27
AU2012224335B2 (en) 2015-11-12
KR101501998B1 (ko) 2015-03-12
SG192034A1 (en) 2013-08-30
KR20130118358A (ko) 2013-10-29
JPWO2012117768A1 (ja) 2014-07-07
CN103415474A (zh) 2013-11-27
AU2012224335A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5488156B2 (ja) 膜ユニット及び膜分離装置
JP5803293B2 (ja) 散気装置
JP5823489B2 (ja) 膜分離装置
JP5472312B2 (ja) 膜モジュール、膜ユニット及び膜分離装置
JP5845673B2 (ja) 散気装置
JP2006212486A (ja) 膜分離装置
WO2010101152A1 (ja) 膜分離式活性汚泥処理装置及びその方法
JP2007268415A (ja) 浸漬型膜分離装置および造水方法
JP6910850B2 (ja) 散気装置、該散気装置を備える中空糸膜モジュール、及び水処理方法
JP2010194523A (ja) 分離膜の洗浄装置、膜分離装置及び洗浄方法
US20160185634A1 (en) Air diffuser and membrane bio-reactor
JP2001087763A (ja) 浸漬型膜分離装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502211

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137019600

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2825744

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012224335

Country of ref document: AU

Date of ref document: 20120123

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752773

Country of ref document: EP

Kind code of ref document: A1