WO2012117665A1 - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
WO2012117665A1
WO2012117665A1 PCT/JP2012/000666 JP2012000666W WO2012117665A1 WO 2012117665 A1 WO2012117665 A1 WO 2012117665A1 JP 2012000666 W JP2012000666 W JP 2012000666W WO 2012117665 A1 WO2012117665 A1 WO 2012117665A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
protective layer
cao
electrode
paste
Prior art date
Application number
PCT/JP2012/000666
Other languages
French (fr)
Japanese (ja)
Inventor
上野 巌
卓司 辻田
幸弘 森田
貴仁 中山
章伸 岩本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012117665A1 publication Critical patent/WO2012117665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers

Definitions

  • the technology disclosed herein relates to a plasma display panel used for a display device or the like.
  • PDP plasma display panel
  • the driving voltage can be lowered by using a material having a high secondary electron emission capability for the protective layer. For this reason, it is known to use magnesium oxide (MgO) and calcium oxide (CaO) having a higher secondary electron emission capability for the protective layer (for example, see Patent Document 1).
  • MgO magnesium oxide
  • CaO calcium oxide
  • the PDP includes a front plate and a back plate disposed to face the front plate.
  • the front plate includes a display electrode, a dielectric layer that covers the display electrode, and a protective layer that covers the dielectric layer.
  • the protective layer includes MgO, at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W, and a compound of Ca and O.
  • FIG. 1 is a perspective view illustrating a schematic structure of a PDP according to an embodiment.
  • FIG. 2 is a schematic sectional view showing the structure of the protective layer according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the protective layer according to the second embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the protective layer according to the third embodiment.
  • FIG. 5 is an enlarged view of a part of the protective layer shown in FIG.
  • the PDP 1 of the present embodiment is an AC surface discharge type PDP.
  • the PDP 1 has a structure in which a front plate 2 including a front glass substrate 5 and the like and a back plate 3 including a back glass substrate 11 and the like face each other.
  • the outer peripheral portions of the front plate 2 and the back plate 3 are hermetically sealed with a sealing material made of glass frit or the like.
  • the discharge space 15 inside the sealed PDP 1 is filled with discharge gas such as Ne (neon) and Xe (xenon) at a pressure of 55 kPa to 80 kPa.
  • the front plate 2 has display electrodes 8 including scan electrodes 6 and sustain electrodes 7 formed on the front glass substrate 5. Further, the front plate 2 includes a dielectric layer 9 that covers the display electrode 8 and a protective layer 10 that covers the dielectric layer 9. For example, the scan electrode 6 and the sustain electrode 7 have a structure in which the bus electrodes 6b and 7b are stacked on the transparent electrodes 6a and 7a. The front plate 2 may be provided with black stripes. Further, the transparent electrodes 6 a and 7 a may be omitted from the scan electrode 6 and the sustain electrode 7.
  • the back plate 3 has a plurality of address electrodes 12 formed on the back glass substrate 11.
  • the address electrode 12 is arranged in a direction orthogonal to the display electrode 8.
  • the back plate 3 includes a base dielectric layer 13 that covers the address electrodes 12 and a partition wall 4 that is formed at a position corresponding to the space between the address electrodes 12 on the base dielectric layer 13.
  • the back plate 3 includes phosphor layers 14R, 14G, and 14B formed between adjacent barrier ribs 4.
  • a discharge cell is formed at a position where the display electrode 8 and the address electrode 12 intersect.
  • the discharge cell performs color display using a phosphor layer 14R that emits red light, a phosphor layer 14G that emits green light, and a phosphor layer 14B that emits blue light.
  • Scan electrode 6 and sustain electrode 7 are formed on front glass substrate 5 by photolithography. Specifically, first, transparent electrodes 6 a and 7 a are formed on the front glass substrate 5. The transparent electrodes 6a and 7a are obtained by patterning an ITO (Indium Tin Oxide) film.
  • the bus electrodes 6b and 7b contain silver (Ag) for ensuring conductivity.
  • the bus electrodes 6b and 7b may have a laminated structure of a black electrode containing a black pigment for improving the contrast of the image display surface and a metal electrode for ensuring conductivity.
  • an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used as the material for the bus electrodes 6b and 7b.
  • an electrode paste is applied to the front glass substrate 5 by a screen printing method or the like.
  • the solvent in the electrode paste is removed by a drying furnace.
  • the electrode paste is exposed through a photomask having a predetermined pattern.
  • bus electrodes 6b and 7b are formed by the above process.
  • a sputtering method, a vapor deposition method, or the like can be used.
  • a main gap is formed in a relatively narrow region between the transparent electrode 6a and the transparent electrode 7a.
  • the main gap is a region where sustain discharge occurs in the PDP 1.
  • An interpixel gap is formed in a relatively wide area between the transparent electrode 6a and the transparent electrode 7a.
  • the sustain discharge generated in the main gap expands with time. However, the sustain discharge does not extend to the interpixel gap. That is, the discharge region is a region between the bus electrode 6b and the bus electrode 7b with the main gap interposed therebetween.
  • the dielectric layer 9 is formed.
  • a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the dielectric layer 9.
  • a dielectric paste is applied on the front glass substrate 5 by a die coating method or the like so as to cover the display electrode 8 with a predetermined thickness.
  • the solvent in the dielectric paste is removed by a drying furnace.
  • the dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing.
  • the dielectric layer 9 is formed.
  • a screen printing method, a spin coating method, or the like can be used.
  • a film that becomes the dielectric layer 9 can be formed by a CVD (Chemical Vapor Deposition) method or the like without using a dielectric paste.
  • the protective layer 10 is formed on the dielectric layer 9. Details of the protective layer 10 will be described later.
  • the front plate 2 is completed through the above steps.
  • Address electrodes 12 are formed on the rear glass substrate 11 by photolithography.
  • an address electrode material silver (Ag) for securing conductivity, glass frit for binding silver, a photosensitive resin, a solvent, and the like are used.
  • the address electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like.
  • the solvent in the address electrode paste is removed by a drying furnace.
  • the address electrode paste is exposed through a photomask having a predetermined pattern.
  • the address electrode paste is developed to form an address electrode pattern.
  • the address electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the address electrode pattern is removed.
  • the glass frit in the address electrode pattern is melted.
  • the molten glass frit is vitrified again after firing.
  • the address electrode 12 is formed by the above process.
  • a sputtering method, a vapor deposition method, or the like can be used.
  • the base dielectric layer 13 is formed.
  • a base dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the base dielectric layer 13.
  • a base dielectric paste is applied by a screen printing method or the like so as to cover the address electrodes 12 on the rear glass substrate 11 on which the address electrodes 12 are formed with a predetermined thickness.
  • the solvent in the base dielectric paste is removed by a drying furnace.
  • the base dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the base dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing.
  • the base dielectric layer 13 is formed.
  • a die coating method, a spin coating method, or the like can be used.
  • a film that becomes the base dielectric layer 13 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the base dielectric paste.
  • the partition walls 4 are formed by photolithography.
  • a partition paste including a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used as a material for the partition 4.
  • the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like.
  • the solvent in the partition wall paste is removed by a drying furnace.
  • the barrier rib paste is exposed through a photomask having a predetermined pattern.
  • the barrier rib paste is developed to form a barrier rib pattern.
  • the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed.
  • the partition 4 is formed by the above process.
  • a sandblast method or the like can be used.
  • the phosphor layers 14R, 14G, and 14B are formed.
  • a material of the phosphor layers 14R, 14G, and 14B a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used.
  • a phosphor paste is applied on the underlying dielectric layer 13 between adjacent barrier ribs 4 and on the side surfaces of the barrier ribs 4 by a dispensing method or the like.
  • the solvent in the phosphor paste is removed by a drying furnace.
  • the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed.
  • the phosphor layers 14R, 14G, and 14B are formed by the above steps.
  • a screen printing method or the like can be used.
  • the back plate 3 is completed through the above steps.
  • a sealing material (not shown) is formed around the back plate 3 by a dispensing method.
  • a sealing paste containing glass frit, a binder, a solvent, and the like is used.
  • the solvent in the sealing paste is removed by a drying furnace.
  • the front plate 2 and the back plate 3 are arranged to face each other so that the display electrodes 8 and the address electrodes 12 are orthogonal to each other.
  • the periphery of the front plate 2 and the back plate 3 is sealed with glass frit.
  • a discharge gas containing Ne, Xe or the like is enclosed in the discharge space 15.
  • a protective layer containing CaO has the following problems.
  • CaO is chemically unstable compared to MgO. CaO easily reacts with carbon dioxide or moisture in the air, and changes to calcium carbonate (CaCo 3 ) or calcium hydroxide (Ca (OH) 2 ).
  • CaCo 3 or Ca (OH) 2 is formed, the secondary electron emission ability of the protective layer is lowered. That is, it is a problem that the driving voltage of the PDP cannot be lowered.
  • metal oxide particles 92 are attached on the base layer 91 formed on the dielectric layer 9.
  • the underlayer 91 is a mixed film of MgO and CaO.
  • the metal oxide particles 92 are CaMoO 4 particles.
  • the underlayer 91 is formed by an EB (Electron Beam) vapor deposition apparatus.
  • the material is a pellet obtained by sintering single crystal MgO and single crystal CaO.
  • the pellet may further contain Al, Si, or the like as impurities.
  • an electron beam is irradiated to the pellet arrange
  • the pellets that have received the energy of the electron beam evaporate.
  • the evaporated MgO and CaO adhere to the dielectric layer 9 of the front glass substrate 5 arranged in the film forming chamber.
  • MgO and CaO deposited on the dielectric layer 9 form a mixed film of MgO and CaO.
  • the mixed film of MgO and CaO covers the dielectric layer 9.
  • the film thickness of the mixed film of MgO and CaO is adjusted so as to be within a predetermined range depending on the intensity of the electron beam, the pressure in the film forming chamber, and the like.
  • the concentration of CaO in the base layer 91 is appropriately set in the range of 5 mol% to 40 mol%.
  • the base layer 91 uses a film containing a metal oxide such as strontium oxide (SrO), barium oxide (BaO), and aluminum oxide (Al 2 O 3 ) in addition to the mixed film of MgO and CaO. Can do.
  • a film containing a plurality of types of metal oxides can also be used.
  • metal oxide particles 92 are attached by a slit coater and a drying device.
  • the slit coater includes a table, a coating head, a table drive system, a laser displacement meter, and the like.
  • the material is a solution in which CaMoO 4 particles having an average particle diameter of 0.7 to 1.5 ⁇ m are dispersed in a diluting solvent at a concentration of 5% by volume.
  • the average particle diameter is a volume cumulative average diameter (D50).
  • a laser diffraction particle size distribution measuring device MT-3300 manufactured by Nikkiso Co., Ltd. was used for measuring the average particle size.
  • the diluting solvent is, for example, a mixed solvent of 95% by volume of 3-methyl-3-methoxybutanol and 5.0% by volume of ⁇ -terpineol.
  • the viscosity of the solution was adjusted to 10 mPa ⁇ s.
  • the front glass substrate 5 is installed on the table of the slit coater.
  • the front glass substrate 5 is fixed by vacuum chucking on a table.
  • a distance (gap) between the coating head of the slit coater and the front glass substrate 5 is measured by a laser displacement meter or the like.
  • the height of the coating head is adjusted so as to maintain a distance of 100 ⁇ m.
  • the coating head moves at a constant speed of 50 mm / s, for example.
  • the solution sent from the solution tank to the coating head is uniformly coated on the front glass substrate 5 so as to have a film thickness of 15 ⁇ m.
  • a coating film in which CaMoO 4 particles are dispersed in a diluent solvent is formed on the base layer 91. CaMoO 4 particles settle in the coating. The precipitated CaMoO 4 particles adhere to the base layer 91.
  • the drying apparatus includes a vacuum chamber, a heater, a table, a vacuum pump, a pressure gauge, and the like.
  • the front glass substrate 5 is placed on a table in a vacuum chamber at atmospheric pressure that is previously maintained at a predetermined temperature by a heater.
  • the vacuum pump exhausts the inside of the vacuum chamber to a predetermined pressure. As the pressure inside the vacuum chamber drops, the diluted solvent is desorbed from the coating film.
  • the vacuum chamber temperature is 70 ° C. to 100 ° C.
  • the pressure is 0.1 Pa to 10 Pa
  • the treatment time is 5 min.
  • the CaMoO 4 particles have a coverage ratio of 0.1 to 10% in terms of the area ratio with the base layer 91.
  • coverage (%) a / b ⁇ 100.
  • an area corresponding to one discharge cell divided by the barrier ribs 4 is imaged by a camera.
  • the captured image is trimmed to the size of one cell of x ⁇ y.
  • the trimmed image is binarized into black and white data.
  • the area a of the black area by the metal oxide particles 92 is obtained based on the binarized data.
  • the coverage is calculated by the formula a / b ⁇ 100.
  • a screen printing method, a spray method, a spin coating method, a die coating method, or the like can be used to attach the metal oxide particles 92.
  • An organic resin or the like may be added to the dilution solvent. By adding an organic resin, the viscosity of the solution can be increased. When an organic resin is added, it is preferable to add a baking step in order to remove the organic resin.
  • CaMoO 4 particles a method for producing CaMoO 4 particles will be described.
  • CaCO 3 powder and molybdenum oxide (MoO 3 ) powder are mixed.
  • the concentration of the MoO 3 powder in the mixed powder is appropriately adjusted in the range of 0.5 mol% or more and 10 mol% or less.
  • the mixed powder is fired.
  • the firing temperature is preferably 900 ° C. or higher and 1200 ° C. or lower.
  • the atmosphere during firing is preferably an inert gas such as nitrogen.
  • the top keeping time during firing is preferably about 1 hour.
  • At least one oxide selected from the group consisting of SrO and BaO can be used instead of CaO.
  • MoO 3 oxidation of at least one element selected from the group consisting of vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu) and tungsten (W) Can be used.
  • At least one element selected from the group consisting of V, Mn, Co, Ni, Cu and W can be used instead of Mo in CaMoO 4 .
  • the protective layer 10 of the second form is dotted with metal oxides 95 in the base material 94 formed on the dielectric layer 9.
  • the base material 94 is a mixed film of MgO and CaO.
  • the metal oxide 95 is CaMoO 4 as an example.
  • the base material 94 and the metal oxide 95 are formed by an EB (Electron Beam) vapor deposition apparatus.
  • the material of the base material 94 is a mixed pellet obtained by sintering single crystal MgO and single crystal CaO.
  • the material of the metal oxide 95 is CaMoO 4 pellets.
  • the concentration of CaO in the mixed pellets and CaMoO 4 pellets is appropriately adjusted in the range of 5 mol% to 40 mol%.
  • the concentration of CaMoO 4 in the mixed pellets and CaMoO 4 pellets is appropriately adjusted in the range of 0.5 mol% or more and 10 mol% or less.
  • Al, Si, or the like may be further added to the mixed pellet as impurities.
  • CaMoO 4 pellets by sintering CaMoO 4 particles produced by the method described above is manufactured.
  • an electron beam is irradiated to the mixed pellet and CaMoO 4 pellet arranged in the film forming chamber of the EB vapor deposition apparatus.
  • the mixed pellets and CaMoO 4 pellets subjected to the energy of the electron beam evaporate.
  • the evaporated MgO, CaO and CaMoO 4 adhere on the dielectric layer 9 of the front glass substrate 5 arranged in the film forming chamber.
  • the MgO and CaO deposited on the dielectric layer 9 forms a mixed film of MgO and CaO that is the base material 94.
  • CaMoO 4 which is the metal oxide 95 enters the base material 94. That is, CaMoO 4 is scattered in the base material 94.
  • the film thickness of the mixed film of MgO and CaO interspersed with CaMoO 4 is adjusted so as to fall within a predetermined range depending on the intensity of the electron beam, the pressure in the film forming chamber, and the like.
  • the base material 94 can be a film containing a metal oxide such as SrO, BaO, Al 2 O 3 in addition to a mixed film of MgO and CaO.
  • a film containing a plurality of types of metal oxides can also be used.
  • At least one element selected from the group consisting of V, Mn, Co, Ni, Cu and W can be used instead of Mo in CaMoO 4 .
  • the protective layer 10 of the third form includes a mixture of first particles 97, second particles 98, and third particles 99.
  • the first particles 97 are MgO particles.
  • the second particles 98 are CaO particles.
  • the third particles 99 are CaMoO 4 particles as an example.
  • the protective layer 10 composed of the first particles 97, the second particles 98, and the third particles 99 is formed on the dielectric layer 9 by an application method as an example.
  • first particles 97 single crystal MgO particles having an average particle diameter of 10 nm to 100 nm (hereinafter referred to as nano MgO particles) are used.
  • second particles 98 single crystal CaO particles having an average particle diameter of 10 nm to 100 nm (hereinafter referred to as nano CaO particles) are used.
  • nano CaO particles CaMoO 4 particles having an average particle diameter of 10 nm to 100 nm (hereinafter referred to as nano CaMoO 4 particles) are used.
  • Nano MgO particles are produced by a vapor phase generation method. Specifically, magnesium vapor is generated by vaporizing magnesium under high energy such as plasma or electron beam. Next, the magnesium vapor is cooled in a short time by a cooling gas (for example, argon gas) containing oxygen gas, thereby producing nano-MgO particles.
  • a cooling gas for example, argon gas
  • Nano CaO particles and nano CaMoO 4 particles are produced in the same manner.
  • the nano-particle paste as a coating material is manufactured by kneading nano-mixed particles in which nano-MgO particles, nano-CaO particles and nano-CaMoO 4 particles are mixed with a vehicle having a weight equivalent to that of the nano-mixed particles.
  • the vehicle is a mixture of 60% by weight of terpineol, 30% by weight of butyl carbitol acetate, and 10% by weight of an acrylic resin.
  • a nanoparticle paste is applied on the dielectric layer 9 by a screen printing method or the like.
  • the nanoparticle paste applied on the dielectric layer 9 is dried and fired to remove the vehicle.
  • the protective layer 10 composed of nano-MgO particles, nano-CaO particles, and nano-CaMoO 4 particles is formed by the above process.
  • concentration of the nano CaO particle in the protective layer 10 is suitably adjusted in 5 mol% or more and 40 mol% or less.
  • the concentration of CaMoO 4 in the protective layer 10 is appropriately adjusted in the range of 0.5 mol% or more and 10 mol% or less.
  • the first particles 97 and the second particles 98 can use metal oxides such as SrO, BaO, and Al 2 O 3 in addition to MgO. A plurality of types of metal oxides can also be used.
  • the third particles 99 can use at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, and W instead of Mo in CaMoO 4 .
  • a PDP 1 includes a front plate 2 and a back plate 3 arranged to face the front plate 2.
  • the front plate 2 includes a display electrode 8, a dielectric layer 9 that covers the display electrode 8, and a protective layer 10 that covers the dielectric layer 9.
  • the protective layer 10 includes a base layer 91 and metal oxide particles 92 dispersedly disposed on the base layer 91.
  • the metal oxide particle 92 is a compound of at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W and Ca and O.
  • the underlayer 91 preferably has at least one oxide selected from the group consisting of CaO, SrO, and BaO.
  • the protective layer 10 includes MgO as the base material 94 and at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W as the metal oxide 95, and Ca and O. And a compound. Furthermore, the protective layer 10 preferably has at least one oxide selected from the group consisting of CaO, SrO and BaO in the base material 94.
  • the protective layer 10 of the third form includes MgO particles as the first particles 97, Ca and at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W as the third particles. Compound particles with O. Furthermore, the protective layer 10 preferably has at least one oxide particle selected from the group consisting of CaO, SrO and BaO as the second particle 98.
  • the peak intensity of CaCo 3 and Ca (OH) 2 is smaller in the protective layer 10 according to the present embodiment than in the conventional protective layer made of a mixed film of MgO and CaO.
  • the alteration is suppressed as compared with the conventional protective layer. This is because the compound of Ca and O and at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo and W, which the protective layer 10 has, suppresses the alteration of calcium. This is probably because of this.
  • the PDP 1 having the protective layer 10 according to the present embodiment was able to reduce the sustain voltage as compared with the PDP having the conventional protective layer.
  • the technique disclosed here can realize a PDP capable of reducing the sustain voltage. Therefore, it is useful for a display device with a large screen.

Abstract

A plasma display panel is provided with a front plate and a back plate positioned so as to face the front plate. The front plate contains a display electrode, a dielectric layer for covering the display electrode, and a protective layer for covering the dielectric layer. The protective layer includes MgO, and a compound of Ca, O, and at least one element selected from a group consisting of V, Mn, Co, Ni, Cu, Mo and W.

Description

プラズマディスプレイパネルPlasma display panel
 ここに開示された技術は、表示デバイスなどに用いられるプラズマディスプレイパネルに関する。 The technology disclosed herein relates to a plasma display panel used for a display device or the like.
 プラズマディスプレイパネル(以下、PDPと称する)の保護層の一つの機能は、放電を発生させるための電子を放出することである。 One function of a protective layer of a plasma display panel (hereinafter referred to as PDP) is to emit electrons for generating discharge.
 保護層に2次電子放出能力が高い材料を用いることにより、駆動電圧を下げることが可能である。このため、保護層に酸化マグネシウム(MgO)と、より2次電子放出能力が高い酸化カルシウム(CaO)などを用いることが知られている(例えば、特許文献1参照)。 The driving voltage can be lowered by using a material having a high secondary electron emission capability for the protective layer. For this reason, it is known to use magnesium oxide (MgO) and calcium oxide (CaO) having a higher secondary electron emission capability for the protective layer (for example, see Patent Document 1).
特開2010-080388号公報JP 2010-080388 A
 PDPは、前面板と、前面板と対向配置された背面板と、を備える。前面板は、表示電極と表示電極を覆う誘電体層と誘電体層を覆う保護層とを含む。保護層は、MgOと、V、Mn、Co、Ni、Cu、MoおよびWからなる群より選ばれた少なくとも一種の元素とCaとOとの化合物とを有する。 The PDP includes a front plate and a back plate disposed to face the front plate. The front plate includes a display electrode, a dielectric layer that covers the display electrode, and a protective layer that covers the dielectric layer. The protective layer includes MgO, at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W, and a compound of Ca and O.
図1は、実施の形態にかかるPDPの概略構造を示す斜視図である。FIG. 1 is a perspective view illustrating a schematic structure of a PDP according to an embodiment. 図2は、第1の形態にかかる保護層の構造を示す概略断面図である。FIG. 2 is a schematic sectional view showing the structure of the protective layer according to the first embodiment. 図3は、第2の形態にかかる保護層の構造を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the structure of the protective layer according to the second embodiment. 図4は、第3の形態にかかる保護層の構造を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the structure of the protective layer according to the third embodiment. 図5は、図4に示す保護層の一部を拡大した図である。FIG. 5 is an enlarged view of a part of the protective layer shown in FIG.
 [1.PDP1の構成]
 本実施の形態のPDP1は、交流面放電型PDPである。図1に示されるように、PDP1は、前面ガラス基板5などを含む前面板2と、背面ガラス基板11などを含む背面板3とが対向した構造である。前面板2と背面板3の外周部は、ガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間15には、Ne(ネオン)およびXe(キセノン)などの放電ガスが55kPa~80kPaの圧力で封入されている。
[1. Configuration of PDP1]
The PDP 1 of the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1, the PDP 1 has a structure in which a front plate 2 including a front glass substrate 5 and the like and a back plate 3 including a back glass substrate 11 and the like face each other. The outer peripheral portions of the front plate 2 and the back plate 3 are hermetically sealed with a sealing material made of glass frit or the like. The discharge space 15 inside the sealed PDP 1 is filled with discharge gas such as Ne (neon) and Xe (xenon) at a pressure of 55 kPa to 80 kPa.
 前面板2は、前面ガラス基板5上に形成された走査電極6と維持電極7とを含む表示電極8を有する。さらに、前面板2は、表示電極8を被覆する誘電体層9と、誘電体層9を被覆する保護層10とを有する。また、走査電極6と維持電極7は、一例として、透明電極6a、7aにバス電極6b、7bを積層した構造である。なお、前面板2は、ブラックストライプを備えてもよい。また、走査電極6および維持電極7は、透明電極6a、7aが省略されていてもよい。 The front plate 2 has display electrodes 8 including scan electrodes 6 and sustain electrodes 7 formed on the front glass substrate 5. Further, the front plate 2 includes a dielectric layer 9 that covers the display electrode 8 and a protective layer 10 that covers the dielectric layer 9. For example, the scan electrode 6 and the sustain electrode 7 have a structure in which the bus electrodes 6b and 7b are stacked on the transparent electrodes 6a and 7a. The front plate 2 may be provided with black stripes. Further, the transparent electrodes 6 a and 7 a may be omitted from the scan electrode 6 and the sustain electrode 7.
 背面板3は、背面ガラス基板11上に形成された複数のアドレス電極12を有する。アドレス電極12は、表示電極8と直交する方向に配置されている。さらに、背面板3は、アドレス電極12を被覆する下地誘電体層13と、下地誘電体層13上のアドレス電極12の間に相当する位置に形成された隔壁4とを有する。さらに、背面板3は、隣接する隔壁4の間に形成された蛍光体層14R、14G、14Bと、を有する。 The back plate 3 has a plurality of address electrodes 12 formed on the back glass substrate 11. The address electrode 12 is arranged in a direction orthogonal to the display electrode 8. Further, the back plate 3 includes a base dielectric layer 13 that covers the address electrodes 12 and a partition wall 4 that is formed at a position corresponding to the space between the address electrodes 12 on the base dielectric layer 13. Further, the back plate 3 includes phosphor layers 14R, 14G, and 14B formed between adjacent barrier ribs 4.
 表示電極8とアドレス電極12とが交差する位置に放電セルが形成されている。放電セルは、赤色に発光する蛍光体層14Rと、緑色に発光する蛍光体層14Gと、青色に発光する蛍光体層14Bとによりカラー表示をする。 A discharge cell is formed at a position where the display electrode 8 and the address electrode 12 intersect. The discharge cell performs color display using a phosphor layer 14R that emits red light, a phosphor layer 14G that emits green light, and a phosphor layer 14B that emits blue light.
 [2.PDP1の製造方法]
 [2-1.前面板2の製造方法]
 フォトリソグラフィ法によって、前面ガラス基板5上に、走査電極6および維持電極7が形成される。具体的には、まず、前面ガラス基板5上に透明電極6a、7aが形成される。透明電極6a、7aは、ITO(Indium Tin Oxide)膜がパターニングされたものである。バス電極6b、7bは、導電性を確保するための銀(Ag)を含む。なお、バス電極6b、7bは、画像表示面のコントラストを向上するため黒色顔料を含む黒色電極と、導電性を確保するための金属電極との積層構造でもよい。
[2. Manufacturing method of PDP1]
[2-1. Manufacturing method of front plate 2]
Scan electrode 6 and sustain electrode 7 are formed on front glass substrate 5 by photolithography. Specifically, first, transparent electrodes 6 a and 7 a are formed on the front glass substrate 5. The transparent electrodes 6a and 7a are obtained by patterning an ITO (Indium Tin Oxide) film. The bus electrodes 6b and 7b contain silver (Ag) for ensuring conductivity. The bus electrodes 6b and 7b may have a laminated structure of a black electrode containing a black pigment for improving the contrast of the image display surface and a metal electrode for ensuring conductivity.
 バス電極6b、7bの材料には、銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含む電極ペーストが用いられる。まず、スクリーン印刷法などによって、電極ペーストが、前面ガラス基板5に塗布される。次に、乾燥炉によって、電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、電極ペーストが露光される。 As the material for the bus electrodes 6b and 7b, an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used. First, an electrode paste is applied to the front glass substrate 5 by a screen printing method or the like. Next, the solvent in the electrode paste is removed by a drying furnace. Next, the electrode paste is exposed through a photomask having a predetermined pattern.
 次に、電極ペーストが現像され、バス電極パターンが形成される。最後に、焼成炉によって、バス電極パターンが所定の温度で焼成される。つまり、電極パターン中の感光性樹脂が除去される。また、電極パターン中のガラスフリットが溶融する。溶融していたガラスフリットは焼成後に再びガラス化する。以上の工程によって、バス電極6b、7bが形成される。電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。 Next, the electrode paste is developed to form a bus electrode pattern. Finally, the bus electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the electrode pattern is removed. Further, the glass frit in the electrode pattern is melted. The molten glass frit is vitrified again after firing. Bus electrodes 6b and 7b are formed by the above process. In addition to the method of screen printing the electrode paste, a sputtering method, a vapor deposition method, or the like can be used.
 透明電極6aと透明電極7aとの間の相対的に狭い領域にメインギャップが形成される。メインギャップは、PDP1において維持放電が発生する領域である。透明電極6aと透明電極7aとの間の相対的に広い領域にインターピクセルギャップが形成される。メインギャップにおいて発生した維持放電は、時間とともに拡大する。しかし、維持放電は、インターピクセルギャップまでは広がらない。すなわち、放電領域は、メインギャップを挟んで、概ねバス電極6bとバス電極7bとの間の領域である。 A main gap is formed in a relatively narrow region between the transparent electrode 6a and the transparent electrode 7a. The main gap is a region where sustain discharge occurs in the PDP 1. An interpixel gap is formed in a relatively wide area between the transparent electrode 6a and the transparent electrode 7a. The sustain discharge generated in the main gap expands with time. However, the sustain discharge does not extend to the interpixel gap. That is, the discharge region is a region between the bus electrode 6b and the bus electrode 7b with the main gap interposed therebetween.
 次に、誘電体層9が形成される。誘電体層9の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む誘電体ペーストが用いられる。まずダイコート法などによって、誘電体ペーストが所定の厚みで表示電極8を覆うように前面ガラス基板5上に塗布される。次に、乾燥炉によって、誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、誘電体ペーストが所定の温度で焼成される。つまり、誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。溶融していた誘電体ガラスフリットは、焼成後に再びガラス化する。以上の工程によって、誘電体層9が形成される。ここで、誘電体ペーストをダイコートする方法以外にも、スクリーン印刷法、スピンコート法などを用いることができる。また、誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、誘電体層9となる膜を形成することもできる。 Next, the dielectric layer 9 is formed. As a material for the dielectric layer 9, a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used. First, a dielectric paste is applied on the front glass substrate 5 by a die coating method or the like so as to cover the display electrode 8 with a predetermined thickness. Next, the solvent in the dielectric paste is removed by a drying furnace. Finally, the dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing. Through the above steps, the dielectric layer 9 is formed. Here, besides the method of die coating the dielectric paste, a screen printing method, a spin coating method, or the like can be used. Alternatively, a film that becomes the dielectric layer 9 can be formed by a CVD (Chemical Vapor Deposition) method or the like without using a dielectric paste.
 次に、誘電体層9上に保護層10が形成される。保護層10の詳細は、後述される。 Next, the protective layer 10 is formed on the dielectric layer 9. Details of the protective layer 10 will be described later.
 以上の工程により、前面板2が完成する。 The front plate 2 is completed through the above steps.
 [2-2.背面板3の製造方法]
 フォトリソグラフィ法によって、背面ガラス基板11上に、アドレス電極12が形成される。アドレス電極の材料には、導電性を確保するための銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含むアドレス電極ペーストが用いられる。まず、スクリーン印刷法などによって、アドレス電極ペーストが所定の厚みで背面ガラス基板11上に塗布される。次に、乾燥炉によって、アドレス電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、アドレス電極ペーストが露光される。次に、アドレス電極ペーストが現像され、アドレス電極パターンが形成される。最後に、焼成炉によって、アドレス電極パターンが所定の温度で焼成される。つまり、アドレス電極パターン中の感光性樹脂が除去される。また、アドレス電極パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、アドレス電極12が形成される。ここで、アドレス電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。
[2-2. Manufacturing method of back plate 3]
Address electrodes 12 are formed on the rear glass substrate 11 by photolithography. As an address electrode material, silver (Ag) for securing conductivity, glass frit for binding silver, a photosensitive resin, a solvent, and the like are used. First, the address electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like. Next, the solvent in the address electrode paste is removed by a drying furnace. Next, the address electrode paste is exposed through a photomask having a predetermined pattern. Next, the address electrode paste is developed to form an address electrode pattern. Finally, the address electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the address electrode pattern is removed. Further, the glass frit in the address electrode pattern is melted. The molten glass frit is vitrified again after firing. The address electrode 12 is formed by the above process. Here, besides the method of screen printing the address electrode paste, a sputtering method, a vapor deposition method, or the like can be used.
 次に、下地誘電体層13が形成される。下地誘電体層13の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む下地誘電体ペーストが用いられる。まず、スクリーン印刷法などによって、下地誘電体ペーストが所定の厚みでアドレス電極12が形成された背面ガラス基板11上にアドレス電極12を覆うように塗布される。次に、乾燥炉によって、下地誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、下地誘電体ペーストが所定の温度で焼成される。つまり、下地誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。溶融していた誘電体ガラスフリットは、焼成後に再びガラス化する。以上の工程によって、下地誘電体層13が形成される。ここで、下地誘電体ペーストをスクリーン印刷する方法以外にも、ダイコート法、スピンコート法などを用いることができる。また、下地誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、下地誘電体層13となる膜を形成することもできる。 Next, the base dielectric layer 13 is formed. As a material for the base dielectric layer 13, a base dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used. First, a base dielectric paste is applied by a screen printing method or the like so as to cover the address electrodes 12 on the rear glass substrate 11 on which the address electrodes 12 are formed with a predetermined thickness. Next, the solvent in the base dielectric paste is removed by a drying furnace. Finally, the base dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the base dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing. Through the above steps, the base dielectric layer 13 is formed. Here, other than the method of screen printing the base dielectric paste, a die coating method, a spin coating method, or the like can be used. Further, a film that becomes the base dielectric layer 13 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the base dielectric paste.
 次に、フォトリソグラフィ法によって、隔壁4が形成される。隔壁4の材料には、フィラーと、フィラーを結着させるためのガラスフリットと、感光性樹脂と、溶剤などを含む隔壁ペーストが用いられる。まず、ダイコート法などによって、隔壁ペーストが所定の厚みで下地誘電体層13上に塗布される。次に、乾燥炉によって、隔壁ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、隔壁ペーストが露光される。次に、隔壁ペーストが現像され、隔壁パターンが形成される。最後に、焼成炉によって、隔壁パターンが所定の温度で焼成される。つまり、隔壁パターン中の感光性樹脂が除去される。また、隔壁パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、隔壁4が形成される。ここで、フォトリソグラフィ法以外にも、サンドブラスト法などを用いることができる。 Next, the partition walls 4 are formed by photolithography. As a material for the partition 4, a partition paste including a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used. First, the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like. Next, the solvent in the partition wall paste is removed by a drying furnace. Next, the barrier rib paste is exposed through a photomask having a predetermined pattern. Next, the barrier rib paste is developed to form a barrier rib pattern. Finally, the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed. Further, the glass frit in the partition wall pattern is melted. The molten glass frit is vitrified again after firing. The partition 4 is formed by the above process. Here, in addition to the photolithography method, a sandblast method or the like can be used.
 次に、蛍光体層14R、14G、14Bが形成される。蛍光体層14R、14G、14Bの材料には、蛍光体粒子とバインダと溶剤などとを含む蛍光体ペーストが用いられる。まず、ディスペンス法などによって、蛍光体ペーストが所定の厚みで隣接する隔壁4間の下地誘電体層13上および隔壁4の側面に塗布される。次に、乾燥炉によって、蛍光体ペースト中の溶剤が除去される。最後に、焼成炉によって、蛍光体ペーストが所定の温度で焼成される。つまり、蛍光体ペースト中の樹脂が除去される。以上の工程によって、蛍光体層14R、14G、14Bが形成される。ここで、ディスペンス法以外にも、スクリーン印刷法などを用いることができる。 Next, the phosphor layers 14R, 14G, and 14B are formed. As a material of the phosphor layers 14R, 14G, and 14B, a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used. First, a phosphor paste is applied on the underlying dielectric layer 13 between adjacent barrier ribs 4 and on the side surfaces of the barrier ribs 4 by a dispensing method or the like. Next, the solvent in the phosphor paste is removed by a drying furnace. Finally, the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed. The phosphor layers 14R, 14G, and 14B are formed by the above steps. Here, in addition to the dispensing method, a screen printing method or the like can be used.
 以上の工程により、背面板3が完成する。 The back plate 3 is completed through the above steps.
 [2-3.前面板2と背面板3との組立方法]
 まず、ディスペンス法によって、背面板3の周囲に封着材(図示せず)が形成される。封着材(図示せず)の材料には、ガラスフリットとバインダと溶剤などを含む封着ペーストが用いられる。次に乾燥炉によって、封着ペースト中の溶剤が除去される。次に、表示電極8とアドレス電極12とが直交するように、前面板2と背面板3とが対向配置される。次に、前面板2と背面板3の周囲がガラスフリットで封着される。最後に、放電空間15にNe、Xeなどを含む放電ガスが封入される。
[2-3. Assembly method of front plate 2 and rear plate 3]
First, a sealing material (not shown) is formed around the back plate 3 by a dispensing method. As a material for the sealing material (not shown), a sealing paste containing glass frit, a binder, a solvent, and the like is used. Next, the solvent in the sealing paste is removed by a drying furnace. Next, the front plate 2 and the back plate 3 are arranged to face each other so that the display electrodes 8 and the address electrodes 12 are orthogonal to each other. Next, the periphery of the front plate 2 and the back plate 3 is sealed with glass frit. Finally, a discharge gas containing Ne, Xe or the like is enclosed in the discharge space 15.
 [3.保護層10の詳細]
 従来、CaOを含む保護層には次のような課題があった。CaOは、MgOに比べて化学的に不安定である。CaOは、空気中の二酸化炭素や、水分と容易に反応して、炭酸カルシウム(CaCo)や水酸化カルシウム(Ca(OH))に変わる。CaCoやCa(OH)が形成されると、保護層の2次電子放出能力が低下する。つまり、PDPの駆動電圧を下げることができないといった課題である。
[3. Details of Protective Layer 10]
Conventionally, a protective layer containing CaO has the following problems. CaO is chemically unstable compared to MgO. CaO easily reacts with carbon dioxide or moisture in the air, and changes to calcium carbonate (CaCo 3 ) or calcium hydroxide (Ca (OH) 2 ). When CaCo 3 or Ca (OH) 2 is formed, the secondary electron emission ability of the protective layer is lowered. That is, it is a problem that the driving voltage of the PDP cannot be lowered.
 [3-1.第1の形態]
 図2に示されるように、第1の形態の保護層10は、誘電体層9上に形成された下地層91の上に、金属酸化物粒子92が付着している。下地層91は、一例として、MgOとCaOとの混合膜である。金属酸化物粒子92は、一例として、CaMoO粒子である。
[3-1. First form]
As shown in FIG. 2, in the protective layer 10 of the first form, metal oxide particles 92 are attached on the base layer 91 formed on the dielectric layer 9. As an example, the underlayer 91 is a mixed film of MgO and CaO. As an example, the metal oxide particles 92 are CaMoO 4 particles.
 [3-1-1.下地層91の形成方法]
 下地層91は、一例として、EB(Electron Beam)蒸着装置により形成される。材料は、単結晶のMgOと単結晶のCaOとが焼結したペレットである。ペレットには、さらに不純物としてAl、Siなどが添加されていてもよい。まず、EB蒸着装置の成膜室に配置されたペレットに電子ビームが照射される。電子ビームのエネルギーを受けたペレットは蒸発する。蒸発したMgOとCaOとは、成膜室内に配置された前面ガラス基板5の誘電体層9上に付着する。誘電体層9上に付着したMgOとCaOとは、MgOとCaOとの混合膜を形成する。MgOとCaOとの混合膜は、誘電体層9を被覆する。MgOとCaOとの混合膜の膜厚は、電子ビームの強度、成膜室の圧力などによって、所定の範囲に収まるように調整される。
[3-1-1. Method for Forming Underlayer 91]
For example, the underlayer 91 is formed by an EB (Electron Beam) vapor deposition apparatus. The material is a pellet obtained by sintering single crystal MgO and single crystal CaO. The pellet may further contain Al, Si, or the like as impurities. First, an electron beam is irradiated to the pellet arrange | positioned in the film-forming chamber of EB vapor deposition apparatus. The pellets that have received the energy of the electron beam evaporate. The evaporated MgO and CaO adhere to the dielectric layer 9 of the front glass substrate 5 arranged in the film forming chamber. MgO and CaO deposited on the dielectric layer 9 form a mixed film of MgO and CaO. The mixed film of MgO and CaO covers the dielectric layer 9. The film thickness of the mixed film of MgO and CaO is adjusted so as to be within a predetermined range depending on the intensity of the electron beam, the pressure in the film forming chamber, and the like.
 なお、下地層91におけるCaOの濃度は、5mol%以上40mol%以下の範囲で適宜設定される。 In addition, the concentration of CaO in the base layer 91 is appropriately set in the range of 5 mol% to 40 mol%.
 さらに、下地層91は、MgOとCaOとの混合膜の他にも、酸化ストロンチウム(SrO)、酸化バリウム(BaO)、酸化アルミニウム(Al)などの金属酸化物を含む膜を用いることができる。また、複数の種類の金属酸化物を含む膜を用いることもできる。 Further, the base layer 91 uses a film containing a metal oxide such as strontium oxide (SrO), barium oxide (BaO), and aluminum oxide (Al 2 O 3 ) in addition to the mixed film of MgO and CaO. Can do. A film containing a plurality of types of metal oxides can also be used.
 [3-1-2.金属酸化物粒子92の付着方法]
 金属酸化物粒子92は、一例として、スリットコータおよび乾燥装置により付着される。
[3-1-2. Method of attaching metal oxide particles 92]
As an example, the metal oxide particles 92 are attached by a slit coater and a drying device.
 スリットコータは、テーブル、塗布ヘッド、テーブル駆動系、レーザ変位計などを備える。材料は、平均粒径が0.7~1.5μmのCaMoO粒子を、5体積%の濃度で希釈溶剤中に分散させた溶液である。なお平均粒径とは、体積累積平均径(D50)のことである。また、平均粒径の測定には、レーザ回折式粒度分布測定装置MT-3300(日機装株式会社製)が用いられた。 The slit coater includes a table, a coating head, a table drive system, a laser displacement meter, and the like. The material is a solution in which CaMoO 4 particles having an average particle diameter of 0.7 to 1.5 μm are dispersed in a diluting solvent at a concentration of 5% by volume. The average particle diameter is a volume cumulative average diameter (D50). In addition, a laser diffraction particle size distribution measuring device MT-3300 (manufactured by Nikkiso Co., Ltd.) was used for measuring the average particle size.
 希釈溶剤は、例えば、3メチルー3メトキシブタノール95体積%、αターピネオール5.0体積%の混合溶剤である。溶液の粘度は10mPa・sに調整された。まず、スリットコータのテーブル上に、前面ガラス基板5が設置される。前面ガラス基板5は、テーブル上に真空チャックされることにより、固定される。レーザ変位計などによりスリットコータの塗布ヘッドと前面ガラス基板5間の距離(ギャップ)が測定される。例えば、100μmの距離を保つように、塗布ヘッドの高さが調節される。さらに塗布ヘッドは、例えば、50mm/sの等速度で移動する。溶液タンクから塗布ヘッド送られた溶液は、15μmの膜厚になるように前面ガラス基板5上に均一に塗布される。CaMoO粒子が希釈溶剤に分散した塗膜が下地層91上に形成される。CaMoO粒子は、塗膜中を沈降する。沈降したCaMoO粒子は、下地層91に付着する。 The diluting solvent is, for example, a mixed solvent of 95% by volume of 3-methyl-3-methoxybutanol and 5.0% by volume of α-terpineol. The viscosity of the solution was adjusted to 10 mPa · s. First, the front glass substrate 5 is installed on the table of the slit coater. The front glass substrate 5 is fixed by vacuum chucking on a table. A distance (gap) between the coating head of the slit coater and the front glass substrate 5 is measured by a laser displacement meter or the like. For example, the height of the coating head is adjusted so as to maintain a distance of 100 μm. Furthermore, the coating head moves at a constant speed of 50 mm / s, for example. The solution sent from the solution tank to the coating head is uniformly coated on the front glass substrate 5 so as to have a film thickness of 15 μm. A coating film in which CaMoO 4 particles are dispersed in a diluent solvent is formed on the base layer 91. CaMoO 4 particles settle in the coating. The precipitated CaMoO 4 particles adhere to the base layer 91.
 次に、前面ガラス基板5は、乾燥装置へ移送される。一例として、乾燥装置は真空チャンバー、加熱ヒータ、テーブル、真空ポンプ、圧力計などを備える。加熱ヒータにより予め所定の温度に保持されている大気圧の真空チャンバー内のテーブル上に前面ガラス基板5が設置される。その後、真空ポンプが、真空チャンバー内部を所定の圧力まで排気する。真空チャンバー内部の圧力が降下することにより、塗膜から希釈溶剤が脱離する。 Next, the front glass substrate 5 is transferred to a drying device. As an example, the drying apparatus includes a vacuum chamber, a heater, a table, a vacuum pump, a pressure gauge, and the like. The front glass substrate 5 is placed on a table in a vacuum chamber at atmospheric pressure that is previously maintained at a predetermined temperature by a heater. Thereafter, the vacuum pump exhausts the inside of the vacuum chamber to a predetermined pressure. As the pressure inside the vacuum chamber drops, the diluted solvent is desorbed from the coating film.
 一例として、本実施の形態においては、真空チャンバー温度:70℃~100℃、圧力:0.1Pa~10Pa、処理時間:5minであった。上記工程によって、CaMoO粒子は下地層91との面積比で0.1以上10%以下の被覆率になっている。 As an example, in this embodiment, the vacuum chamber temperature is 70 ° C. to 100 ° C., the pressure is 0.1 Pa to 10 Pa, and the treatment time is 5 min. By the above process, the CaMoO 4 particles have a coverage ratio of 0.1 to 10% in terms of the area ratio with the base layer 91.
 被覆率とは、1個の放電セルの領域において、金属酸化物粒子92が付着している面積aを1個の放電セルの面積bの比率で表したものである。つまり、被覆率(%)=a/b×100の式により計算されたものである。測定方法としては、例えば、隔壁4により区切られた1個の放電セルに相当する領域がカメラにより撮像される。次に、撮像された画像が、x×yの1セルの大きさにトリミングされる。次に、トリミング後の画像が白黒データに2値化される。次に、2値化されたデータに基づき金属酸化物粒子92による黒エリアの面積aを求める。最後に、被覆率が、a/b×100の式により計算される。 The coverage is the ratio of the area a where the metal oxide particles 92 are adhered in the area of one discharge cell as a ratio of the area b of one discharge cell. That is, it is calculated by the formula of coverage (%) = a / b × 100. As a measuring method, for example, an area corresponding to one discharge cell divided by the barrier ribs 4 is imaged by a camera. Next, the captured image is trimmed to the size of one cell of x × y. Next, the trimmed image is binarized into black and white data. Next, the area a of the black area by the metal oxide particles 92 is obtained based on the binarized data. Finally, the coverage is calculated by the formula a / b × 100.
 なお、本乾燥条件は、用いられる希釈溶剤の種類、塗膜の膜厚などによっても変動するため、適宜変更し得る。 In addition, since this drying conditions are fluctuate | varied also with the kind of dilution solvent used, the film thickness of a coating film, etc., it can change suitably.
 なお、金属酸化物粒子92の付着には、スリットコータの他にも、スクリーン印刷法、スプレー法、スピンコート法、ダイコート法なども用いることができる。また、希釈溶剤に、有機樹脂などが添加されてもよい。有機樹脂の添加により、溶液の粘度を上げることができる。有機樹脂が添加された場合には、有機樹脂を除去するために焼成工程を付加することが好ましい。 In addition to the slit coater, a screen printing method, a spray method, a spin coating method, a die coating method, or the like can be used to attach the metal oxide particles 92. An organic resin or the like may be added to the dilution solvent. By adding an organic resin, the viscosity of the solution can be increased. When an organic resin is added, it is preferable to add a baking step in order to remove the organic resin.
 [3-1-3.金属酸化物粒子92の製造方法]
 一例として、CaMoO粒子の製造方法が説明される。まず、CaCOの粉末と酸化モリブデン(MoO)の粉末とが混合される。混合粉末におけるMoO粉末の濃度は、0.5mol%以上、10mol%以下の範囲で適宜調整される。次に、混合粉末が焼成される。焼成温度は、900℃以上1200℃以下が好ましい。焼成時の雰囲気は、窒素などの不活性ガスが好ましい。焼成時のトップキープ時間は、1時間程度が好ましい。
[3-1-3. Method for Producing Metal Oxide Particle 92]
As an example, a method for producing CaMoO 4 particles will be described. First, CaCO 3 powder and molybdenum oxide (MoO 3 ) powder are mixed. The concentration of the MoO 3 powder in the mixed powder is appropriately adjusted in the range of 0.5 mol% or more and 10 mol% or less. Next, the mixed powder is fired. The firing temperature is preferably 900 ° C. or higher and 1200 ° C. or lower. The atmosphere during firing is preferably an inert gas such as nitrogen. The top keeping time during firing is preferably about 1 hour.
 なお、CaOの代わりに、SrO、BaOからなる群より選ばれた少なくとも一種の酸化物を用いることができる。さらに、MoOの代わりに、バナジウム(V)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)およびタングステン(W)からなる群より選ばれた少なくとも一種の元素の酸化物を用いることができる。 Note that at least one oxide selected from the group consisting of SrO and BaO can be used instead of CaO. Further, instead of MoO 3 , oxidation of at least one element selected from the group consisting of vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu) and tungsten (W) Can be used.
 つまり、CaMoOにおけるMoの代わりに、V、Mn、Co、Ni、CuおよびWからなる群より選ばれた少なくとも一種の元素を用いることができる。 That is, at least one element selected from the group consisting of V, Mn, Co, Ni, Cu and W can be used instead of Mo in CaMoO 4 .
 [3-2.第2の形態]
 図3に示されるように、第2の形態の保護層10は、誘電体層9上に形成された母材94の中に、金属酸化物95が点在している。母材94は、一例として、MgOとCaOとの混合膜である。金属酸化物95は、一例として、CaMoOである。
[3-2. Second form]
As shown in FIG. 3, the protective layer 10 of the second form is dotted with metal oxides 95 in the base material 94 formed on the dielectric layer 9. As an example, the base material 94 is a mixed film of MgO and CaO. The metal oxide 95 is CaMoO 4 as an example.
 [3-2-1.母材94および金属酸化物95の形成方法]
 母材94および金属酸化物95は、一例として、EB(Electron Beam)蒸着装置により形成される。母材94の材料は、単結晶のMgOと単結晶のCaOとが焼結した混合ペレットである。金属酸化物95の材料は、一例として、CaMoOペレットである。混合ペレットおよびCaMoOペレットにおけるCaOの濃度は、5mol%以上40mol%以下の範囲で適宜調整される。混合ペレットおよびCaMoOペレットにおけるCaMoOの濃度は、0.5mol%以上、10mol%以下の範囲で適宜調整される。混合ペレットには、さらに不純物としてAl、Siなどが添加されていてもよい。
[3-2-1. Method of forming base material 94 and metal oxide 95]
As an example, the base material 94 and the metal oxide 95 are formed by an EB (Electron Beam) vapor deposition apparatus. The material of the base material 94 is a mixed pellet obtained by sintering single crystal MgO and single crystal CaO. As an example, the material of the metal oxide 95 is CaMoO 4 pellets. The concentration of CaO in the mixed pellets and CaMoO 4 pellets is appropriately adjusted in the range of 5 mol% to 40 mol%. The concentration of CaMoO 4 in the mixed pellets and CaMoO 4 pellets is appropriately adjusted in the range of 0.5 mol% or more and 10 mol% or less. Al, Si, or the like may be further added to the mixed pellet as impurities.
 なお、CaMoOペレットは、上述の方法によって製造されたCaMoO粒子を焼結することによって、製造される。 Incidentally, CaMoO 4 pellets by sintering CaMoO 4 particles produced by the method described above is manufactured.
 まず、EB蒸着装置の成膜室に配置された混合ペレットおよびCaMoOペレットに電子ビームが照射される。電子ビームのエネルギーを受けた混合ペレットおよびCaMoOペレットは蒸発する。蒸発したMgO、CaOおよびCaMoOは、成膜室内に配置された前面ガラス基板5の誘電体層9上に付着する。誘電体層9上に付着したMgOとCaOは、母材94であるMgOとCaOとの混合膜を形成する。金属酸化物95であるCaMoOは、は母材94中に入り込む。つまり、CaMoOは、母材94中に点在する。CaMoOが点在したMgOとCaOとの混合膜の膜厚は、電子ビームの強度、成膜室の圧力などによって、所定の範囲に収まるように調整される。 First, an electron beam is irradiated to the mixed pellet and CaMoO 4 pellet arranged in the film forming chamber of the EB vapor deposition apparatus. The mixed pellets and CaMoO 4 pellets subjected to the energy of the electron beam evaporate. The evaporated MgO, CaO and CaMoO 4 adhere on the dielectric layer 9 of the front glass substrate 5 arranged in the film forming chamber. The MgO and CaO deposited on the dielectric layer 9 forms a mixed film of MgO and CaO that is the base material 94. CaMoO 4 which is the metal oxide 95 enters the base material 94. That is, CaMoO 4 is scattered in the base material 94. The film thickness of the mixed film of MgO and CaO interspersed with CaMoO 4 is adjusted so as to fall within a predetermined range depending on the intensity of the electron beam, the pressure in the film forming chamber, and the like.
 なお、母材94は、MgOとCaOとの混合膜の他にも、SrO、BaO、Alなどの金属酸化物を含む膜を用いることができる。また、複数の種類の金属酸化物を含む膜を用いることもできる。 The base material 94 can be a film containing a metal oxide such as SrO, BaO, Al 2 O 3 in addition to a mixed film of MgO and CaO. A film containing a plurality of types of metal oxides can also be used.
 さらに、CaMoOにおけるMoの代わりに、V、Mn、Co、Ni、CuおよびWからなる群より選ばれた少なくとも一種の元素を用いることができる。 Furthermore, at least one element selected from the group consisting of V, Mn, Co, Ni, Cu and W can be used instead of Mo in CaMoO 4 .
 [3-3.第3の形態]
 図4および図5に示されるように、第3の形態の保護層10は、第1粒子97、第2粒子98および第3粒子99が混在している。第1粒子97は、一例として、MgO粒子である。第2粒子98は、一例として、CaO粒子である。第3粒子99は、一例として、CaMoO粒子である。
[3-3. Third form]
As shown in FIGS. 4 and 5, the protective layer 10 of the third form includes a mixture of first particles 97, second particles 98, and third particles 99. As an example, the first particles 97 are MgO particles. As an example, the second particles 98 are CaO particles. The third particles 99 are CaMoO 4 particles as an example.
 [3-3-1.第1粒子97、第2粒子98および第3粒子99の形成方法]
 第1粒子97、第2粒子98および第3粒子99から構成される保護層10は、一例として塗布法により誘電体層9上に形成される。第1粒子97には、平均粒径が10nm~100nmの単結晶MgO粒子(以降、ナノMgO粒子と称する)が用いられる。第2粒子98には、平均粒径が10nm~100nmの単結晶CaO粒子(以降、ナノCaO粒子と称する)が用いられる。第3粒子99には、平均粒径が10nm~100nmのCaMoO粒子(以降、ナノCaMoO粒子と称する)が用いられる。
[3-3-1. Method for Forming First Particle 97, Second Particle 98, and Third Particle 99]
The protective layer 10 composed of the first particles 97, the second particles 98, and the third particles 99 is formed on the dielectric layer 9 by an application method as an example. As the first particles 97, single crystal MgO particles having an average particle diameter of 10 nm to 100 nm (hereinafter referred to as nano MgO particles) are used. As the second particles 98, single crystal CaO particles having an average particle diameter of 10 nm to 100 nm (hereinafter referred to as nano CaO particles) are used. As the third particles 99, CaMoO 4 particles having an average particle diameter of 10 nm to 100 nm (hereinafter referred to as nano CaMoO 4 particles) are used.
 ナノMgO粒子は、気相生成法によって作製される。具体的には、マグネシウムがプラズマや電子ビームなどの高エネルギー下で気化されることにより、マグネシウム蒸気が生成される。次に、マグネシウム蒸気が、酸素ガスを含む冷却ガス(例えばアルゴンガス)によって短時間に冷却されることにより、ナノMgO粒子が作製される。 Nano MgO particles are produced by a vapor phase generation method. Specifically, magnesium vapor is generated by vaporizing magnesium under high energy such as plasma or electron beam. Next, the magnesium vapor is cooled in a short time by a cooling gas (for example, argon gas) containing oxygen gas, thereby producing nano-MgO particles.
 ナノCaO粒子およびナノCaMoO粒子も同様の方法で作製される。 Nano CaO particles and nano CaMoO 4 particles are produced in the same manner.
 塗布材料であるナノ粒子ペーストは、ナノMgO粒子、ナノCaO粒子およびナノCaMoO粒子が混合されたナノ混合粒子と、ナノ混合粒子と同等の重量のビヒクルとが混錬されることにより製造される。ビヒクルは、一例として、ターピネオールを60重量%、プチルカルビトールアセテートを30重量%およびアクリル樹脂を10重量%混合されたものである。 The nano-particle paste as a coating material is manufactured by kneading nano-mixed particles in which nano-MgO particles, nano-CaO particles and nano-CaMoO 4 particles are mixed with a vehicle having a weight equivalent to that of the nano-mixed particles. . As an example, the vehicle is a mixture of 60% by weight of terpineol, 30% by weight of butyl carbitol acetate, and 10% by weight of an acrylic resin.
 次に、ナノ粒子ペーストがスクリーン印刷法などにより誘電体層9上に塗布される。誘電体層9上に塗布されたナノ粒子ペーストは、乾燥、焼成されることにより、ビヒクルが除去される。上記の工程によって、ナノMgO粒子、ナノCaO粒子およびナノCaMoO粒子から構成された保護層10が形成される。 Next, a nanoparticle paste is applied on the dielectric layer 9 by a screen printing method or the like. The nanoparticle paste applied on the dielectric layer 9 is dried and fired to remove the vehicle. The protective layer 10 composed of nano-MgO particles, nano-CaO particles, and nano-CaMoO 4 particles is formed by the above process.
 なお保護層10におけるナノCaO粒子の濃度は、5mol%以上40mol%以下の範囲で適宜調整される。保護層10におけるCaMoOの濃度は、0.5mol%以上、10mol%以下の範囲で適宜調整される。 In addition, the density | concentration of the nano CaO particle in the protective layer 10 is suitably adjusted in 5 mol% or more and 40 mol% or less. The concentration of CaMoO 4 in the protective layer 10 is appropriately adjusted in the range of 0.5 mol% or more and 10 mol% or less.
 なお、第1粒子97および第2粒子98は、MgOの他にも、SrO、BaO、Alなどの金属酸化物を用いることができる。また、複数の種類の金属酸化物を用いることもできる。 The first particles 97 and the second particles 98 can use metal oxides such as SrO, BaO, and Al 2 O 3 in addition to MgO. A plurality of types of metal oxides can also be used.
 さらに、第3粒子99は、CaMoOにおけるMoの代わりに、V、Mn、Co、Ni、CuおよびWからなる群より選ばれた少なくとも一種の元素を用いることができる。 Further, the third particles 99 can use at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, and W instead of Mo in CaMoO 4 .
 [4.まとめ]
 本実施の形態にかかるPDP1は、前面板2と、前面板2と対向配置された背面板3と、を備える。前面板2は、表示電極8と表示電極8を覆う誘電体層9と誘電体層9を覆う保護層10とを含む。
[4. Summary]
A PDP 1 according to the present embodiment includes a front plate 2 and a back plate 3 arranged to face the front plate 2. The front plate 2 includes a display electrode 8, a dielectric layer 9 that covers the display electrode 8, and a protective layer 10 that covers the dielectric layer 9.
 第1の形態の保護層10は、下地層91と下地層91上に分散配置された金属酸化物粒子92とを有する。金属酸化物粒子92は、V、Mn、Co、Ni、Cu、MoおよびWからなる群より選ばれた少なくとも一種の元素とCaとOとの化合物である。さらに、下地層91は、CaO、SrOおよびBaOからなる群より選ばれた少なくとも一種の酸化物を有することが好ましい。 The protective layer 10 according to the first embodiment includes a base layer 91 and metal oxide particles 92 dispersedly disposed on the base layer 91. The metal oxide particle 92 is a compound of at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W and Ca and O. Furthermore, the underlayer 91 preferably has at least one oxide selected from the group consisting of CaO, SrO, and BaO.
 第2の形態の保護層10は、母材94としてMgOと、金属酸化物95としてV、Mn、Co、Ni、Cu、MoおよびWからなる群より選ばれた少なくとも一種の元素とCaとOとの化合物とを有する。さらに、保護層10は、母材94にCaO、SrOおよびBaOからなる群より選ばれた少なくとも一種の酸化物を有することが好ましい。 The protective layer 10 according to the second embodiment includes MgO as the base material 94 and at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W as the metal oxide 95, and Ca and O. And a compound. Furthermore, the protective layer 10 preferably has at least one oxide selected from the group consisting of CaO, SrO and BaO in the base material 94.
 第3の形態の保護層10は、第1粒子97としてMgO粒子と、第3粒子としてV、Mn、Co、Ni、Cu、MoおよびWからなる群より選ばれた少なくとも一種の元素とCaとOとの化合物粒子とを有する。さらに、保護層10は、第2粒子98としてCaO、SrOおよびBaOからなる群より選ばれた少なくとも一種の酸化物粒子を有することが好ましい。 The protective layer 10 of the third form includes MgO particles as the first particles 97, Ca and at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W as the third particles. Compound particles with O. Furthermore, the protective layer 10 preferably has at least one oxide particle selected from the group consisting of CaO, SrO and BaO as the second particle 98.
 X線回折分析によると、MgOとCaOとの混合膜からなる従来の保護層と比較して、本実施の形態にかかる保護層10では、CaCoやCa(OH)のピーク強度が小さいことが確認された。つまり、本実施の形態にかかる保護層10は、従来の保護層と比較して、変質が抑制された。これは、保護層10が有する、V、Mn、Co、Ni、Cu、MoおよびWからなる群より選ばれた少なくとも一種の元素とCaとOとの化合物が、カルシウムの変質を抑制しているためと考えられる。 According to the X-ray diffraction analysis, the peak intensity of CaCo 3 and Ca (OH) 2 is smaller in the protective layer 10 according to the present embodiment than in the conventional protective layer made of a mixed film of MgO and CaO. Was confirmed. That is, in the protective layer 10 according to the present embodiment, the alteration is suppressed as compared with the conventional protective layer. This is because the compound of Ca and O and at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo and W, which the protective layer 10 has, suppresses the alteration of calcium. This is probably because of this.
 本実施の形態にかかる保護層10を有するPDP1は、従来の保護層を有するPDPと比較して維持電圧を低下させることができた。 The PDP 1 having the protective layer 10 according to the present embodiment was able to reduce the sustain voltage as compared with the PDP having the conventional protective layer.
 ここに開示された技術は、維持電圧を低減可能なPDPを実現できる。よって、大画面の表示デバイスなどに有用である。 The technique disclosed here can realize a PDP capable of reducing the sustain voltage. Therefore, it is useful for a display device with a large screen.
  1  PDP
  2  前面板
  3  背面板
  4  隔壁
  5  前面ガラス基板
  6  走査電極
  6a,7a  透明電極
  6b,7b  バス電極
  7  維持電極
  8  表示電極
  9  誘電体層
  10  保護層
  11  背面ガラス基板
  12  アドレス電極
  13  下地誘電体層
  14R,14G,14B  蛍光体層
  15  放電空間
  91  下地層
  92  金属酸化物粒子
  94  母材
  95  金属酸化物
  97  第1粒子
  98  第2粒子
  99  第3粒子
1 PDP
2 Front plate 3 Back plate 4 Bulkhead 5 Front glass substrate 6 Scan electrode 6a, 7a Transparent electrode 6b, 7b Bus electrode 7 Sustain electrode 8 Display electrode 9 Dielectric layer 10 Protective layer 11 Rear glass substrate 12 Address electrode 13 Base dielectric layer 14R, 14G, 14B Phosphor layer 15 Discharge space 91 Underlayer 92 Metal oxide particle 94 Base material 95 Metal oxide 97 First particle 98 Second particle 99 Third particle

Claims (2)

  1. 前面板と、
    前記前面板と対向配置された背面板と、を備え、
     前記前面板は、表示電極と前記表示電極を覆う誘電体層と前記誘電体層を覆う保護層とを含み、
      前記保護層は、MgOと、V、Mn、Co、Ni、Cu、MoおよびWからなる群より選ばれた少なくとも一種の元素とCaとOとの化合物とを有する、
    プラズマディスプレイパネル。
    A front plate,
    A back plate disposed opposite to the front plate,
    The front plate includes a display electrode, a dielectric layer covering the display electrode, and a protective layer covering the dielectric layer,
    The protective layer includes MgO, at least one element selected from the group consisting of V, Mn, Co, Ni, Cu, Mo, and W, and a compound of Ca and O.
    Plasma display panel.
  2. 前記保護層は、さらにCaO、SrOおよびBaOからなる群より選ばれた少なくとも一種の酸化物を有する、
    請求項1に記載のプラズマディスプレイパネル。
    The protective layer further includes at least one oxide selected from the group consisting of CaO, SrO and BaO.
    The plasma display panel according to claim 1.
PCT/JP2012/000666 2011-03-03 2012-02-01 Plasma display panel WO2012117665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-046225 2011-03-03
JP2011046225A JP2012185916A (en) 2011-03-03 2011-03-03 Plasma display panel

Publications (1)

Publication Number Publication Date
WO2012117665A1 true WO2012117665A1 (en) 2012-09-07

Family

ID=46757612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000666 WO2012117665A1 (en) 2011-03-03 2012-02-01 Plasma display panel

Country Status (2)

Country Link
JP (1) JP2012185916A (en)
WO (1) WO2012117665A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098139A (en) * 2006-10-10 2008-04-24 Ce & Chem Inc Pdp protective film material and its manufacturing method
JP2009004150A (en) * 2007-06-20 2009-01-08 Panasonic Corp Plasma display panel, and its manufacturing method
JP2009067603A (en) * 2007-09-10 2009-04-02 Tateho Chem Ind Co Ltd Magnesium oxide sintered compact
JP2010080311A (en) * 2008-09-26 2010-04-08 Panasonic Corp Plasma display panel
JP2011023122A (en) * 2009-07-13 2011-02-03 Panasonic Corp Plasma display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098139A (en) * 2006-10-10 2008-04-24 Ce & Chem Inc Pdp protective film material and its manufacturing method
JP2009004150A (en) * 2007-06-20 2009-01-08 Panasonic Corp Plasma display panel, and its manufacturing method
JP2009067603A (en) * 2007-09-10 2009-04-02 Tateho Chem Ind Co Ltd Magnesium oxide sintered compact
JP2010080311A (en) * 2008-09-26 2010-04-08 Panasonic Corp Plasma display panel
JP2011023122A (en) * 2009-07-13 2011-02-03 Panasonic Corp Plasma display panel

Also Published As

Publication number Publication date
JP2012185916A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5549677B2 (en) Plasma display panel
WO2011118152A1 (en) Manufacturing method for plasma display panel
WO2012117666A1 (en) Plasma display panel
WO2012117664A1 (en) Plasma display panel
WO2012117665A1 (en) Plasma display panel
US8274222B2 (en) Plasma display panel having a protective layer which includes aggregated particles
JP2012064424A (en) Plasma display panel
WO2011108230A1 (en) Plasma display panel
JP2012064423A (en) Manufacturing method of plasma display panel
JP2010015698A (en) Plasma display panel
US20100207922A1 (en) Plasma display panel and method for manufacturing the same
US20100266750A1 (en) Method of manufacturing plasma display panel
JP2013033628A (en) Plasma display panel
JP2013033678A (en) Plasma display panel and method for manufacturing the same
JP2008186749A (en) Method of forming display member
JP2013033629A (en) Plasma display panel
WO2013018354A1 (en) Plasma display panel and method for producing same
WO2011114649A1 (en) Plasma display panel
WO2013018336A1 (en) Plasma display panel and method for producing same
WO2013018355A1 (en) Plasma display panel and method for producing same
WO2013018335A1 (en) Plasma display panel and manufacturing method thereof
WO2011118154A1 (en) Manufacturing method for plasma display panel
WO2011114701A1 (en) Plasma display panel
WO2012077306A1 (en) Plasma display panel
JP2013058433A (en) Plasma display panel and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752737

Country of ref document: EP

Kind code of ref document: A1