WO2012117599A1 - Multistage-compression rotary compressor and compression rotary compressor - Google Patents

Multistage-compression rotary compressor and compression rotary compressor Download PDF

Info

Publication number
WO2012117599A1
WO2012117599A1 PCT/JP2011/071493 JP2011071493W WO2012117599A1 WO 2012117599 A1 WO2012117599 A1 WO 2012117599A1 JP 2011071493 W JP2011071493 W JP 2011071493W WO 2012117599 A1 WO2012117599 A1 WO 2012117599A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
refrigerant gas
rotary
compression element
vane
Prior art date
Application number
PCT/JP2011/071493
Other languages
French (fr)
Japanese (ja)
Inventor
山口 賢太郎
桑原 修
周平 諫山
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201180068677.3A priority Critical patent/CN103415705B/en
Priority to JP2013502140A priority patent/JPWO2012117599A1/en
Publication of WO2012117599A1 publication Critical patent/WO2012117599A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Definitions

  • the present invention relates to a rotary compressor that includes a drive element and a single or multiple-stage rotary compression element driven by the drive element in an airtight container, and compresses the refrigerant by the rotary compression element.
  • the present invention relates to a compression-type rotary compressor having elements in multiple stages and a compression-type rotary compressor having a single rotary compression element.
  • the rotary compressor 100 has an internal intermediate pressure structure, and refrigerant gas is sucked into the low pressure chamber side of the lower cylinder 102 from the suction port 103 of the first rotary compression element 101.
  • the intermediate pressure is compressed by the operation of the roller 104 and the vane 105, and is discharged from the high pressure chamber side of the lower cylinder 102 to the discharge silencer chamber 130A through a discharge port (not shown).
  • the intermediate pressure is obtained, and is discharged from the high pressure chamber side of the lower cylinder 102 through the discharge port (not shown) and the muffler chamber 130A of the lower support member 130 into the sealed container of the rotary compressor 100.
  • the inside of the sealed container becomes an intermediate pressure.
  • the intermediate-pressure refrigerant gas discharged into the sealed container is cooled by removing heat from the sealed container.
  • the refrigerant gas in the intermediate pressure state passes through a suction passage (not shown) formed in the upper support member 140 from the suction port (not shown) of the upper cylinder 113 of the second rotary compression element 111 to the cylinder chamber 119.
  • the air is sucked into the low pressure chamber, and the second stage compression operation is performed by the operation of the roller 114 and the vane 115.
  • the refrigerant gas becomes a high pressure and high temperature state, passes through a discharge port (not shown) from the high pressure chamber side, passes through a discharge silencer chamber 140A formed in the upper support member 140, and is connected to the external pipe of the sealed container by a refrigerant discharge pipe (not shown). It is discharged into the (refrigerant circuit).
  • the vanes 105 and 115 attached to the rotary compressor 100 are installed in grooves provided in the radial direction of the cylinders 102 and 113, and are inserted movably in the radial direction of the cylinders 102 and 113. ing.
  • a storage portion hereinafter referred to as “spring” that opens to the rear side (sealed container side) of the vane 105 and to the outside of the cylinder 102 (sealed container side).
  • 107A 107A is formed.
  • the spring chamber 107A is inserted with a spring member 107 that constantly urges the vane 105 toward the roller 104, and then plugged into the plug 108 to prevent the spring member 107 from popping out. It is out.
  • FIG. 8 shows the spring chamber 107A and the plug 108 of the lower cylinder 102, but the upper cylinder 113 has the same configuration.
  • the present invention can provide a highly efficient compression function without cost, and can simultaneously reduce the installation space.
  • An object of the present invention is to provide a rotary compressor.
  • a multistage compression rotary compressor is a multistage compression rotary compressor that is sandwiched between upper and lower support members via a drive element and an intermediate partition plate in a hermetic container and driven by the drive element.
  • Each rotational compression element, and each rotational compression element of each stage includes a cylinder, a roller that is fitted to a rotation shaft of the drive element and rotates eccentrically in the cylinder, and abutting against the roller and the cylinder
  • a vane that divides the inside into a low-pressure chamber and a high-pressure chamber, and is compressed by the rotary compression element of each stage, and the intermediate-pressure refrigerant gas discharged into the hermetic container is discharged to the rotary compression element of the final stage.
  • the bypass path is provided inside the upper support member directly above the cylinder of the rotary compression element in the final stage.
  • the recovery path is provided inside the intermediate partition plate, directly below the cylinder of the rotary compression element of the final stage, having a substantially L-shaped cross section when cut in the thickness direction. It is characterized by.
  • a multistage compression rotary compressor includes a first element and a first element which are sandwiched between a drive element and upper and lower support members via an intermediate partition plate in a hermetic container and driven by the drive element.
  • Two rotary compression elements, and the second rotary compression element includes a cylinder, a roller that is fitted to an eccentric portion formed on a rotation shaft of the drive element and rotates eccentrically in the cylinder,
  • the intermediate pressure refrigerant gas that is composed of a vane that abuts on a roller and divides the inside of the cylinder into a low-pressure chamber and a high-pressure chamber, is compressed by the first rotary compression element, and is discharged into the hermetic container.
  • the inlet When it advances toward the roller, the inlet is opened, and the spring chamber is provided with a recovery path connected to the space in the sealed container,
  • the recovery path is characterized in that when the vane advances to a predetermined position, the recovery inlet that has been blocked by the vane is opened and the oil that has been fed into the spring chamber is recovered into the space in the sealed container.
  • the bypass path is provided inside the upper support member directly above the cylinder of the second rotary compression element, and the recovery path is thick. What has a substantially L-shaped cross section is provided inside the intermediate partition plate directly below the cylinder of the second rotary compression element.
  • a compression-type rotary compressor includes a drive element and a single rotary compression element driven by the drive element in an airtight container.
  • a cylinder sandwiched between members, a roller fitted into an eccentric portion formed on a rotation shaft of the drive element and rotated eccentrically in the cylinder, and a low pressure chamber and a high pressure chamber in contact with the roller and in the cylinder And compresses and discharges the low-pressure refrigerant gas in the sealed container of the rotary compression element, and the pressure on the refrigerant discharge side of the rotary compression element is applied as the back pressure of the vane.
  • the refrigerant gas discharged from the refrigerant discharge side of the rotary compression element is branched out from a part of the refrigerant gas discharge path where the refrigerant gas is sent out of the hermetic container, and communicates with a spring chamber containing a spring that presses the vane of the rotary compression element.
  • a bypass In order to return the oil mixed in the refrigerant gas, which is fed together with the refrigerant gas for back pressure through the bypass path, to the space in the sealed container, and collect the oil toward the roller.
  • An inlet is opened when it moves forward, and the spring chamber is provided with a recovery path connected to the space in the sealed container.
  • the bypass path is provided inside the upper support member directly above the cylinder of the rotary compression element
  • the recovery path is characterized in that a section having a substantially L-shaped cross section in the thickness direction is provided inside the lower support member immediately below the cylinder of the rotary compression element.
  • the multi-stage compression rotary compressor according to claim 1 of the present invention by providing a recovery path that opens and connects with the space in the sealed container only when the vane that contacts the outer periphery of the roller advances toward the roller, A highly efficient compression function can be realized without cost. At the same time, this enables oil to be collected inside the rotary compressor's sealed container without the need for an oil separator and external piping for oil return, thus reducing installation space. There is an advantage that a multi-stage compression type rotary compressor is obtained.
  • a recovery path is provided inside the intermediate partition plate directly below the cylinder of the rotary compression element of the final stage, in which the cross section when cut in the thickness direction is substantially L-shaped.
  • the multistage compression rotary compressor according to claim 3 of the present invention by providing a recovery path that opens and connects with the space in the sealed container only when the vane that contacts the outer periphery of the roller advances toward the roller, A highly efficient compression function can be realized without cost. At the same time, this enables oil to be collected inside the rotary compressor's sealed container without the need for an oil separator and external piping for oil return, thus reducing installation space. There is an advantage that a two-stage compression type rotary compressor is obtained.
  • the recovery path is disposed inside the intermediate partition plate directly under the cylinder of the second stage rotary compression element in which the cross section when cut in the thickness direction is substantially L-shaped.
  • the multistage compression rotary compressor according to claim 5 of the present invention by providing a recovery path that opens and connects with the space in the sealed container only when the vane that contacts the outer periphery of the roller advances toward the roller, A highly efficient compression function can be realized without cost. At the same time, this enables oil to be collected inside the rotary compressor's sealed container without the need for an oil separator and external piping for oil return, thus reducing installation space. There is an advantage that a one-stage compression type rotary compressor is obtained.
  • a pipe having a substantially L-shaped cross section in the thickness direction is provided by providing a recovery path in the lower support member directly below the cylinder of the rotary compression element. Since there is no need to separately install the device, there is an advantage that downsizing can be achieved.
  • (A) And (B) is explanatory drawing which shows the retreating state of the vane in the cylinder of a 2nd rotation compression element, and its sectional drawing. It is sectional drawing which shows the structure of the conventional two-stage compression type rotary compressor. It is a top view which shows the principal part of the lower cylinder of the compression type rotary compressor shown in FIG.
  • FIG. 1 shows a main part of a multi-stage compression rotary compressor 1 according to an embodiment of the present invention.
  • the multi-stage compression rotary compressor 1 is composed of a rotor 22 and a stator 23 in a hermetic container 1A.
  • the electric element 2 which comprises an element, the 1st rotation compression element 3 and the 2nd rotation element 4 which are driven with this electric element 2, and the intermediate partition plate 5 are provided.
  • the first and second rotary compression elements 3 and 4 are fitted to flat and substantially disk-shaped cylinders 31 and 41 and eccentric parts 32 and 42 formed eccentrically on the rotary shaft 21 of the electric element 2.
  • Rollers 33, 43 that rotate eccentrically inside the cylinders 31, 41, vanes 34, 44 that abut against the rollers 33, 43 and divide the cylinders 31, 41 into low pressure chambers and high pressure chambers, and support members 35, 45 And each.
  • a cylinder (hereinafter referred to as a “lower cylinder”) 31 that constitutes a part of the first rotary compression element 3 has an abbreviation as a space in which the roller 33 rotates eccentrically as shown in FIG. From the vane chamber 311 to accommodate a cylinder chamber 310 formed of a perfect circular space, a narrow groove-shaped vane chamber 311 for accommodating the vane 34, and a spring 36 for pressing the vane 34 inside the vane chamber 311 from the back surface.
  • a spring chamber 312 comprising a partially opened vertical hole 312A formed of a wide space and a horizontal hole 312B provided in a tunnel shape inside the cylinder so as to communicate between the vertical hole 312A and the outer peripheral surface 31A of the lower cylinder 31. And a plug 313 that closes the inlet opening in the outer peripheral surface 31 ⁇ / b> A of the spring chamber 312.
  • the cylinder chamber 310 and the vane chamber 311 are formed so as to penetrate to both the upper and lower surfaces of the lower cylinder 31 having a substantially disk shape.
  • each of the above-described chambers is opened so as to penetrate in the same shape in the upper and lower sides, but after inserting the roller 33 and the vane 34 into each chamber, the upper and lower surfaces of the lower cylinder 31 are supported by the intermediate partition plate 5 and the support. Since it is clamped by the member 35, it does not fall off.
  • the spring chamber 312 includes a vertical hole 312A that opens to the lower surface of the lower cylinder 31 and a horizontal hole 312B that communicates therewith and penetrates to the outer peripheral surface 31A of the lower cylinder 31. That is, the vertical hole 312 ⁇ / b> A is formed so as to be wider than the vane chamber 311 and continuous with the vane chamber 311 and to be opened to the upper surface side of the lower cylinder 31.
  • This refrigerant gas can enter the inside of the spring chamber 312.
  • the horizontal hole 312B is formed in a tunnel shape inside the cylinder 31 so as to communicate between the above-described vertical hole 312A and the outer peripheral surface 31A of the lower cylinder 31, and the spring 36 is connected to the deep vertical hole.
  • the plug 313 is press-fitted to close the inlet opened in the outer peripheral surface 31A.
  • the lower cylinder 31 has been refluxed into the sealed container 1 ⁇ / b> A of the rotary compressor 1 via a required refrigeration cycle (not shown) externally connected to the sealed container 1 ⁇ / b> A of the rotary compressor 1.
  • the suction hole 314 for allowing the refrigerant gas in the low pressure state to be taken into the cylinder chamber 310 again, and the refrigerant gas pressurized in the cylinder chamber 310 to the intermediate pressure state are taken out from the cylinder chamber 310 and the second rotary compression element 4
  • a discharge hole 315 for feeding into the cylinder chamber 310 is opened on the inner peripheral surface of the cylinder chamber 310.
  • the suction hole 314 and the discharge hole 315 communicate with the suction port 314A and the discharge port 315A, respectively.
  • the suction port 314A is connected to a refrigerant circuit of a refrigeration cycle (not shown) outside the rotary compressor 1 via a suction passage (not shown).
  • the discharge port 315 ⁇ / b> A communicates with the inside of the sealed container 1 ⁇ / b> A of the rotary compressor 1.
  • the roller 33 rotates about one rotation while being eccentric in the cylinder chamber 310 of the lower cylinder 31, thereby compressing the refrigerant sucked into the cylinder chamber 310 from the low pressure state at the beginning of suction to the intermediate pressure state at the time of discharge. It is what you want to do.
  • the outer shape of the roller 33 of the present embodiment is a perfect circle, the roller 33 is fixed to an eccentric portion 32 provided in an eccentric state on the rotary shaft 21 and rotates inside the cylinder chamber 310 in an eccentric state.
  • the vane 34 is configured by a thin plate having a substantially rectangular vertical cross section and standing in the vertical direction.
  • the base end surface is pressed by the spring 36, and the distal end surface is pressed by the elastic force of the spring 36. Is always in close contact with the outer periphery of the.
  • the lower support member 35 of the present embodiment supports the lower cylinder 31 from the lower side and holds the lower cylinder 31 in close contact with the intermediate partition plate 5 disposed in close contact with the upper side of the lower cylinder 31.
  • the lower support member 35 includes the lower silencing chamber 35 ⁇ / b> A shown in FIG. 2, in addition to the lower silencing chamber 35 ⁇ / b> A that takes in and silences the intermediate pressure refrigerant discharged from the cylinder chamber 310.
  • the groove 35 ⁇ / b> B communicates with the vertical hole 312 ⁇ / b> A which is a part of the spring chamber 312, and is formed to reach the outer peripheral surface.
  • the vertical hole 312A may be configured to open only on the lower surface side so as to lie from the lower surface side of the lower cylinder 31. However, in the present embodiment, as described above, the vertical hole 312A is opened through both the upper and lower surfaces. It is.
  • the spring 36 uses a compression coil spring, and is always kept in a compressed state even if it is housed in the spring chamber 312. Therefore, the spring 36 having a natural length longer than the longitudinal dimension of the spring chamber 312 is used. Thereby, even when the spring 36 is accommodated in the spring chamber 312 and extends to the maximum, the spring 36 can obtain an action that can surely bias the elastic force that presses the vane 34.
  • a cylinder (hereinafter referred to as “upper cylinder”) 41 constituting a part of the second rotary compression element is similar to the lower cylinder 31 of the first rotary compression element as shown in FIG.
  • the spring chamber 412 provided in the upper cylinder 41 is constituted by a vertical hole 412A and a horizontal hole 412B, similarly to the spring chamber 312 of the first rotary compression element 3.
  • the vertical hole 412A has a perfect circular shape as shown in FIG. 4 as shown in FIG. 5A, as in the lower cylinder 31 of the first rotary compression element 3, as shown in FIG.
  • the upper cylinder 41 is penetrated so as to reach from the upper surface to the lower surface. In this way, the vertical hole 412A is opened so as to penetrate both the upper and lower surfaces of the upper cylinder 41 because the outlet 451 of the bypass passage 45B formed in the support member 45 described later and the upper surface side of the vertical hole 412A.
  • the horizontal hole 412B communicates between the above-described vertical hole 412A and the outer peripheral surface 41A of the upper cylinder 41 in the same manner as the horizontal hole 312B of the spring chamber 312 of the first rotary compression element 3.
  • 41 is formed in a tunnel shape so as to penetrate to the outer peripheral surface 41 ⁇ / b> A of the upper cylinder 41.
  • the horizontal hole 412B is configured such that after the spring 46 is inserted from the hole opened in the outer peripheral surface 41A of the upper cylinder 41 to the vertical hole 4121A at the back, the plug 413 is press-fitted and the inlet of the hole is blocked. ing.
  • the upper cylinder 41 of the present embodiment is also provided with the cylinder chamber 410, the vane chamber 411, and the spring chamber 412 so as to penetrate both the upper and lower surfaces.
  • the vertical holes 412 ⁇ / b> A need to open through both the upper and lower surfaces of the upper cylinder 41.
  • the vane chamber 411 may have a configuration in which only the lower surface side is opened without opening up to the upper surface of the upper cylinder 41, and the vane chamber 411 extends in the thickness direction.
  • a support member (hereinafter referred to as “upper support member”) 45 is in close contact with the upper surface side of the upper cylinder 41 from above, and an intermediate partition plate provided on the lower side of the upper cylinder 41.
  • the upper cylinder 41 is sandwiched between the upper cylinder 41 and the upper cylinder 41.
  • the upper supporting member 45 is compressed into a high pressure state and is silenced as shown in FIGS.
  • a tunnel-like bypass circuit 45B (which constitutes a part of the silencing chamber) is provided in the spring chamber 412. It is formed inside so as to communicate.
  • a recovery path 51 having a recovery inlet 51 ⁇ / b> A that can communicate with the opening is formed in a portion corresponding to the lower opening of the vertical hole 412 ⁇ / b> A of the spring chamber 412 of the upper cylinder 41. .
  • the recovery path 51 of the present embodiment has a substantially L-shaped cross section when the intermediate partition plate 5 is cut in the thickness direction. As shown in FIG.
  • the spring chamber 412 has an opening immediately below it so as to face the lower surface side opening of the vertical hole 412A. Further, a recovery outlet 51B is opened on the outer peripheral surface of the intermediate partition plate 5 and communicates with the space in the sealed container 1A.
  • the recovery inlet 51A of the present embodiment has a perfect circle shape, but may be, for example, an inverted triangle that gradually expands along the forward direction in which the vane 44 advances, a triangle that gradually decreases, or the like along the front direction.
  • the oil discharge amount may be adjusted in accordance with the advance position of the vane 44.
  • the recovery inlet to be opened in the intermediate partition plate 5 at a portion immediately below the recovery path 51 provided facing the lower surface side opening of the vertical hole 412A of the spring chamber opens in a long hole groove shape or the like. May be.
  • the recovery path 51 is provided with a recovery inlet 51A sealed by the vane 44. Opens. For this reason, the oil that has been fed into the spring chamber 412 is collected from the opened collection inlet 51A into the space inside the sealed container 1A.
  • the recovery inlet 51 ⁇ / b> A is closed by the vane 44 and closed.
  • the opening position of the recovery inlet 51A may be a portion corresponding to the lower opening at the boundary between both the vane chamber 411 and the vertical hole 412A.
  • FIG. 1 when a coil (not shown) on the stator 23 side of the electric element 2 of the compressor 1 is energized via a wiring (not shown), the electric element 2 is activated and the rotor 22 rotates. Due to this rotation, the upper and lower rollers 33 and 43 which are fixed integrally with the rotary shaft 21 and fit into the lower eccentric portions 32 and 42 are respectively in the cylinder chambers 310 and 410 of the upper and lower cylinders 31 and 41. The inside rotates eccentrically.
  • the low pressure chamber (in FIG. 3) of the cylinder chamber 310 from the suction port 314A (see FIG. 3) of the lower cylinder 31 via the refrigerant introduction pipe (not shown) and the suction passage (not shown) formed in the lower support member 35.
  • the low-pressure refrigerant gas sucked into the upper space) side is compressed by the operation of the roller 33 and the vane 34 to become an intermediate pressure, and enters the sealed container 1A from the high-pressure chamber side of the lower cylinder 31 through the discharge port 315A and the sound deadening chamber 35A. Discharged.
  • the first stage compression operation is performed, and the inside of the sealed container 1A becomes an intermediate pressure.
  • the intermediate-pressure refrigerant gas discharged into the sealed container 1A is deprived of heat and cooled in the sealed container 1A.
  • the refrigerant gas in the intermediate pressure state passes through a suction passage (not shown) formed in the upper support member 45 from the suction port 414A of the upper cylinder 41 of the second rotary compression element 4 shown in FIG. 410 is sucked into the low pressure chamber side (upper space in FIG. 4A), and the compression operation of the second stage is performed by the operation of the roller 43 and the vane 44 (the compression process of one cycle is FIG. 5 ⁇ FIG. 6 ⁇ FIG. 5). Is done.
  • the refrigerant gas enters a high pressure and high temperature state shown in FIG. 5, passes through the discharge port 415A from the high pressure chamber side, passes through the discharge silencer chamber 45A formed in the upper support member 45, and is closed by the refrigerant discharge pipe (not shown).
  • the refrigerant circuit To the external piping (refrigerant circuit).
  • the roller 33 that rotates eccentrically for the first-stage compression operation starts from the initial state where the low-pressure refrigerant gas is sucked into the low-pressure chamber shown in FIG.
  • the refrigerant gas is compressed to an intermediate pressure in the chamber (this low-pressure chamber eventually becomes a high-pressure chamber) until the final state of cold discharge.
  • the cylinder chamber 310 In order to hold the refrigerant gas in a sealed state inside the cylinder chamber 310 into which the refrigerant gas is introduced during this one cycle, in other words, in order to separate the low pressure chamber and the high pressure chamber, the cylinder chamber 310 It is important to make the tip of the vane 34 firmly contact the inner roller 33.
  • the vane 34 in order to press the vane 34 against the outer peripheral surface of the roller 33, as described above, the vane 34 is pressed from the back by the spring 36 accommodated in the spring chamber 312, and the vane 34 is pressed by the elastic force of the roller 33. It is in pressure contact with the outer peripheral surface.
  • the refrigerant gas in the lower cylinder 31 of the first rotary compression element 3, as described above, the refrigerant gas is compressed to the intermediate pressure state by the first-stage compression operation.
  • the pressing force to the vane 34 does not require a large force as much as the pressing force required to act on the vane in the second rotary compression element 4. In other words, the compression is not performed up to the high pressure compression like the second stage compression operation in the second rotary compression element 4.
  • the longitudinal hole 312A passes through the shallow groove 35B that allows the intermediate pressure refrigerant gas filled in the sealed container 1A of the rotary compressor 1 to communicate between the spring chamber 312 and the sealed container 1 inside. It is sufficient to take in the inside of the spring chamber 312 from the opening and apply the gas pressure to the vane 34 additionally. Therefore, in the first rotary compression element 3, the oil suction operation as described above is performed as shown in FIG.
  • the refrigerant gas that fills the sealed container 1A of the rotary compressor 1 causes the intermediate pressure in the first rotary compression element 3 to remain inside the sealed container 1A as it is without passing through piping outside the sealed container 1A. Introduced into the second rotary compression element 4.
  • the structure via an external piping may be sufficient.
  • the second stage compression operation is performed through the same process, and the refrigerant gas in the intermediate pressure state is obtained. Is compressed to a high pressure state. For this reason, in order to cope with the high pressure compression state that is the final pressure inside the cylinder chamber 410, in addition to the elastic force by the spring 46 that presses the vane 44, the pressure of the high-pressure refrigerant gas is used inside the spring chamber 410. The vane 44 is additionally pressed.
  • the upper support member 45 is formed inside the upper support member 45 so as to communicate from the upper silencing chamber 45A from which the refrigerant gas compressed to a high pressure state is discharged from the cylinder chamber 410 to the opening portion of the vertical hole 412A of the spring chamber 412. A part of the high-pressure refrigerant gas is introduced into the spring chamber 412 through the bypass passage 45B and the opening of the vertical hole 412A. Thereby, the refrigerant gas introduced into the spring chamber 412 is applied as the back pressure of the vane 44.
  • the refrigerant gas that has been compressed in the second stage and compressed from the intermediate pressure state to the high pressure state passes through the discharge port 415A from the high pressure chamber side inside the cylinder chamber 410 and passes through the upper support member 45 as described above.
  • the refrigerant After passing through the discharge silencing chamber 45A, the refrigerant is discharged to an external pipe (refrigerant circuit) of the sealed container 1A by a refrigerant discharge pipe (not shown).
  • the refrigerant gas depends on the type of the gas, for example, in the case of carbon dioxide gas or the like, the refrigerant gas is greatly increased in pressure until a differential pressure of about ⁇ 8 MPa (for example, 5 MPa ⁇ 13 MPa).
  • the recovery path 51 having the recovery inlet 51A that can communicate with the lower opening of the vertical hole 412A of the spring chamber 412 is formed inside the intermediate partition plate 5.
  • the refrigerant gas that has been compressed from the lower cylinder 31 of the first rotary compression element 3 to the intermediate pressure state moves forward as the vane 44 moves forward from a predetermined position as shown in FIG.
  • the internal space of the chamber 411 increases.
  • the internal pressure of the spring chamber 412 communicating with the vane chamber 411 decreases, so that the silencing chamber 45A in the high pressure state of the upper cylinder 41 of the second rotary compression element 4 Differential pressure is generated during
  • the cylinder chamber 410 has a high-pressure chamber (lower space in FIG. 5 (A)), which is a space divided into two by the vane 44.
  • the refrigerant gas enters a high-temperature and high-pressure state, passes through the discharge port 415A from the high-pressure chamber side, passes through the discharge silencer chamber 45A formed in the upper support member 45, and is connected to the external pipe (refrigerant circuit) of the sealed container 1A by a refrigerant discharge pipe (not shown).
  • a refrigerant discharge pipe not shown.
  • the mixture of oil is suppressed as much as possible in the refrigerant gas.
  • the recovery outlet 51 ⁇ / b> B of the recovery path 51 is in a communication state that is always open to the inside of the sealed container 1 ⁇ / b> A of the rotary compressor 1.
  • the oil in the spring chamber 412 and further the second rotary compression element 4 are utilized by utilizing the differential pressure from the vertical hole 412A of the spring chamber 412 in the high pressure state toward the inside of the sealed container 1A in the intermediate pressure state. Even the oil in the silencing chamber 45A in the high pressure state of the upper cylinder 41 is discharged. Thus, most of the oil mixed in the refrigerant gas discharged from the closed container 1A through the discharge silencer chamber 45A to the outside of the sealed container 1A is not discharged to the outside of the sealed container 1A. Before being discharged from the sealed container 1A to the outside, it is recovered inside the sealed container 1A.
  • oil separation means such as an oil separator attached to the sealed container 1A and installed outside and oil return According to the present embodiment, the installation of the piping for use can be omitted. For this reason, the installation space can be reduced by that amount, and the cost can be reduced.
  • the multi-stage compression rotary compressor is composed of upper and lower two-stage rotary compression elements, but a multi-stage compression rotary compressor composed of three or more stages of rotary compression elements may be used.
  • a recovery path may be provided at least in the intermediate partition plate interposed between the rotary compression element at the final stage and the rotary compression element at the next stage.
  • a bypass path is provided in the upper support member directly above the final stage rotary compression element.
  • a configuration having a single rotary compression element may be used.
  • a recovery path may be provided in the lower support member of the upper and lower support members that sandwich the cylinder that is a part of the rotary compression element.
  • a bypass path is provided in the upper support member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

[Problem] To provide a two-stage compression rotary compressor that can provide an inexpensive, highly efficient compression function, and that can also reduce installation space. [Solution] A multistage-compression rotary compressor is provided with first and second rotary compression elements (3, 4) via an intermediate partition plate (5), and the second rotary compression element (4) has an internal medium pressure structure configured from a roller (43) and a vane (44) in contact with the roller (43). Some coolant gas compressed into a high-pressure state by the second rotary compression element is fed into a spring chamber (412) within an upper cylinder (41). A bypass passage (45B) that applies some of the coolant gas with the vane (44) as a back pressure of the vane (44) is provided on the inside of an upper supporting member (45). In order to collect and return oil, which has been fed into a spring chamber (42) through the bypass passage (45B) with gas, to the inside of a sealed vessel (1A), a collection port (51A) opens when the vane (44) advances and a collection passage (51) that communicates with the space within the sealed vessel (1A) is provided inside the intermediate partition plate (5).

Description

多段圧縮式ロータリコンプレッサ及び圧縮式ロータリコンプレッサMultistage compression rotary compressor and compression rotary compressor
 本発明は、密閉容器内に駆動要素とこの駆動要素にて駆動される単一又は複数段の回転圧縮要素とを備え、冷媒を回転圧縮要素にて圧縮するロータリコンプレッサに係り、特に、回転圧縮要素を多段に備えた圧縮式ロータリコンプレッサ及び単一の回転圧縮要素を備えた圧縮式ロータリコンプレッサ関するものである。 The present invention relates to a rotary compressor that includes a drive element and a single or multiple-stage rotary compression element driven by the drive element in an airtight container, and compresses the refrigerant by the rotary compression element. The present invention relates to a compression-type rotary compressor having elements in multiple stages and a compression-type rotary compressor having a single rotary compression element.
 従来、圧縮式ロータリコンプレッサにあっては、各種タイプのものが提案され開発されているが、その一つとして、回転圧縮要素を多段に備えた圧縮式ロータリコンプレッサ、例えば2段式の圧縮式ロータリコンプレッサが知られている(例えば、特許文献1参照)。 Conventionally, various types of compression-type rotary compressors have been proposed and developed. One of them is a compression-type rotary compressor having multiple stages of rotary compression elements, for example, a two-stage type compression rotary compressor. A compressor is known (see, for example, Patent Document 1).
 このロータリコンプレッサ100は、図7及び図8に示すように、内部中間圧構造であって、第1の回転圧縮要素101の吸込ポート103から冷媒ガスが下シリンダ102の低圧室側に吸入され、ローラ104とベーン105の動作により圧縮されて中間圧となり、下シリンダ102の高圧室側より図示外の吐出ポートを経て吐出消音室130Aに吐出される。 As shown in FIGS. 7 and 8, the rotary compressor 100 has an internal intermediate pressure structure, and refrigerant gas is sucked into the low pressure chamber side of the lower cylinder 102 from the suction port 103 of the first rotary compression element 101. The intermediate pressure is compressed by the operation of the roller 104 and the vane 105, and is discharged from the high pressure chamber side of the lower cylinder 102 to the discharge silencer chamber 130A through a discharge port (not shown).
 このようにして、中間圧となり、下シリンダ102の高圧室側より図示外の吐出ポート及び下支持部材130の消音室130Aを経て、ロータリコンプレッサ100の密閉容器内に吐出される。換言すれば、1段目の圧縮動作が行われることで、密閉容器内は中間圧となる。この密閉容器内に吐出された中間圧の冷媒ガスは、密閉容器内で熱を奪われて冷却される。 In this way, the intermediate pressure is obtained, and is discharged from the high pressure chamber side of the lower cylinder 102 through the discharge port (not shown) and the muffler chamber 130A of the lower support member 130 into the sealed container of the rotary compressor 100. In other words, when the first stage compression operation is performed, the inside of the sealed container becomes an intermediate pressure. The intermediate-pressure refrigerant gas discharged into the sealed container is cooled by removing heat from the sealed container.
 そして、この中間圧状態の冷媒ガスは、上支持部材140に形成された図示しない吸込通路を経由して、第2の回転圧縮要素111の上シリンダ113の図示外の吸込ポートからシリンダ室119の低圧室側に吸入され、ローラ114とベーン115の動作により2段目の圧縮動作が行われる。これにより、冷媒ガスは、高圧高温の状態となり、高圧室側から図示外の吐出ポートを通り、上支持部材140に形成された吐出消音室140Aを経て図示しない冷媒吐出管により密閉容器の外部配管(冷媒回路)に吐出される。 Then, the refrigerant gas in the intermediate pressure state passes through a suction passage (not shown) formed in the upper support member 140 from the suction port (not shown) of the upper cylinder 113 of the second rotary compression element 111 to the cylinder chamber 119. The air is sucked into the low pressure chamber, and the second stage compression operation is performed by the operation of the roller 114 and the vane 115. As a result, the refrigerant gas becomes a high pressure and high temperature state, passes through a discharge port (not shown) from the high pressure chamber side, passes through a discharge silencer chamber 140A formed in the upper support member 140, and is connected to the external pipe of the sealed container by a refrigerant discharge pipe (not shown). It is discharged into the (refrigerant circuit).
 このようなロータリコンプレッサ100に取り付けられたベーン105,115は、シリンダ102,113の半径方向に設けられた溝内に設置されており、且つ、シリンダ102,113の半径方向に移動自在に挿入されている。そして、シリンダ102,113には、例えば図8に示すシリンダ102には、ベーン105の後側(密閉容器側)に、シリンダ102の外側(密閉容器側)に開口する収納部(以下、「ばね室」とよぶ)107Aが形成されている。また、このばね室107Aには、ベーン105をそれぞれ常時ローラ104側に付勢するバネ部材107を挿入した後、プラグ(抜け止め)108を圧入することで閉塞してバネ部材107の飛び出しを防いでいる。なお、この図8には下シリンダ102のばね室107A及びプラグ108などを示すものであるが、上シリンダ113についても、同様の構成である。 The vanes 105 and 115 attached to the rotary compressor 100 are installed in grooves provided in the radial direction of the cylinders 102 and 113, and are inserted movably in the radial direction of the cylinders 102 and 113. ing. For example, in the cylinders 102 and 113 shown in FIG. 8, a storage portion (hereinafter referred to as “spring”) that opens to the rear side (sealed container side) of the vane 105 and to the outside of the cylinder 102 (sealed container side). 107A) 107A is formed. The spring chamber 107A is inserted with a spring member 107 that constantly urges the vane 105 toward the roller 104, and then plugged into the plug 108 to prevent the spring member 107 from popping out. It is out. FIG. 8 shows the spring chamber 107A and the plug 108 of the lower cylinder 102, but the upper cylinder 113 has the same configuration.
 ところで、従来、上述のような内部中間圧構造の2段圧縮式ロータリコンプレッサでは、一般に、2段目である高圧状態となる回転圧縮要素の高圧部シールのために必要なオイルが、冷媒ガスとともに密閉容器内の高圧部に直接給油されている。ところが、そのオイルの一部は、冷媒ガスとともに密閉容器外の冷凍サイクルへ吐出している場合が多い。そこで、冷凍サイクルへ冷媒ガスとともに吐出されていくオイルを、ロータリコンプレッサの密閉容器から吐出直後に回収させるように構成したものも提案されている(例えば、特許文献2参照)。 Conventionally, in a two-stage compression rotary compressor having an internal intermediate pressure structure as described above, generally, oil necessary for sealing a high-pressure portion of a rotary compression element that is in a high-pressure state, which is the second stage, is combined with refrigerant gas. Oil is supplied directly to the high-pressure part in the sealed container. However, a part of the oil is often discharged together with the refrigerant gas to the refrigeration cycle outside the sealed container. In view of this, there has also been proposed a configuration in which oil discharged together with the refrigerant gas to the refrigeration cycle is collected immediately after being discharged from the sealed container of the rotary compressor (see, for example, Patent Document 2).
特開2007-100544号公報Japanese Patent Application Laid-Open No. 2007-1000054 特開2004-169617号公報JP 2004-169617 A
 しかしながら、例えば特許文献2に記載のような内部中間圧構造の2段圧縮式ロータリコンプレッサでは、外付けでオイルセパレータを付設してあるので、その分、スペースを必要とすると共に返油回路とする配管を要するので、大型化するとともにコストが嵩んでいる。 However, in the two-stage compression type rotary compressor having an internal intermediate pressure structure as described in Patent Document 2, for example, an oil separator is externally attached. Since piping is required, the size is increased and the cost is increased.
 このような事情につきましては、3段以上に亘り回転圧縮要素を備えた内部中間圧構造の多段圧縮式ロータリコンプレッサや、単一の回転圧縮要素を備えた内部低圧構造の圧縮式ロータリコンプレッサについても同様であり、同じような不都合を生じている。 The same applies to a multistage compression rotary compressor having an internal intermediate pressure structure having a rotary compression element over three stages or a compression rotary compressor having an internal low pressure structure having a single rotary compression element. And has the same disadvantages.
 そこで、本発明は、上記した事情に鑑み、コストをかけずに高効率な圧縮機能を提供することができ、同時に設置スペースの削減を図ることも可能となる、多段圧縮式ロータリコンプレッサ及び圧縮式ロータリコンプレッサを提供することを目的とするものである。 Therefore, in view of the above-described circumstances, the present invention can provide a highly efficient compression function without cost, and can simultaneously reduce the installation space. An object of the present invention is to provide a rotary compressor.
 本発明の請求項1に係る多段圧縮式ロータリコンプレッサは、密閉容器内に、駆動要素と、それぞれ中間仕切板を介して上下の支持部材で挟持され、前記駆動要素にて駆動される多段式の各回転圧縮要素と、を備え、前記各段の回転圧縮要素は、シリンダと、前記駆動要素の回転軸に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室と高圧室とに区画するベーンと、から構成され、前記各段の回転圧縮要素で圧縮され、前記密閉容器内に吐出された中間圧の冷媒ガスを前記最終段の回転圧縮要素に吸引し、圧縮して吐出する内部中圧構造の多段圧縮式ロータリコンプレッサにおいて、
 少なくとも最終段の回転圧縮要素の冷媒吐出側から吐出される前記冷媒ガスが密閉容器外へ送り出される、冷媒ガスの経路の一部から分岐して最終段の回転圧縮要素のベーンを押圧するスプリングが収容されたばね室に連通するバイパス路を備えるとともに、
 前記バイパス路を通り前記冷媒ガスとともに前記ばね室へ送り込まれた、前記冷媒ガス中に混在するオイルを前記密閉容器内の空間へ戻して回収させるために、前記ベーンがローラに向けて前進すると入口が開口されて、前記ばね室が前記密閉容器内の空間と連結される回収路を備えた、ことを特徴とする。
A multistage compression rotary compressor according to claim 1 of the present invention is a multistage compression rotary compressor that is sandwiched between upper and lower support members via a drive element and an intermediate partition plate in a hermetic container and driven by the drive element. Each rotational compression element, and each rotational compression element of each stage includes a cylinder, a roller that is fitted to a rotation shaft of the drive element and rotates eccentrically in the cylinder, and abutting against the roller and the cylinder A vane that divides the inside into a low-pressure chamber and a high-pressure chamber, and is compressed by the rotary compression element of each stage, and the intermediate-pressure refrigerant gas discharged into the hermetic container is discharged to the rotary compression element of the final stage. In a multi-stage compression rotary compressor with an internal medium pressure structure that sucks in, compresses and discharges,
A spring for branching from a part of the refrigerant gas path for pressing the vane of the final stage rotary compression element, wherein the refrigerant gas discharged from at least the refrigerant discharge side of the final stage rotary compression element is sent out of the sealed container; While having a bypass passage communicating with the accommodated spring chamber,
In order to return the oil mixed in the refrigerant gas, which has been fed into the spring chamber together with the refrigerant gas through the bypass path, to the space in the sealed container, the inlet is moved forward toward the roller. Is provided, and the spring chamber is provided with a recovery path connected to the space in the sealed container.
 また、請求項2の発明は、請求項1の発明において、前記バイパス路が、最終段の回転圧縮要素のシリンダ直上の前記上支持部材の内部に設けられているとともに、
 前記回収路は、厚さ方向に切断したときの断面が略L字形状を呈するものを、前記最終段の回転圧縮要素のシリンダの直下の、前記中間仕切板の内部に設けられている、ことを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, the bypass path is provided inside the upper support member directly above the cylinder of the rotary compression element in the final stage.
The recovery path is provided inside the intermediate partition plate, directly below the cylinder of the rotary compression element of the final stage, having a substantially L-shaped cross section when cut in the thickness direction. It is characterized by.
 本発明の請求項3に係る多段圧縮式ロータリコンプレッサは、密閉容器内に、駆動要素と、中間仕切板を介して上下の支持部材で挟持され、前記駆動要素にて駆動される第1及び第2の回転圧縮要素と、を備え、前記第2の回転圧縮要素は、シリンダと、前記駆動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室と高圧室とに区画するベーンとから構成され、前記第1の回転圧縮要素で圧縮され、前記密閉容器内に吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素に吸引し、圧縮して吐出する内部中圧構造の多段圧縮式ロータリコンプレッサにおいて、
 前記第2の回転圧縮要素の冷媒吐出側から吐出される前記冷媒ガスが密閉容器外へ送り出される、冷媒ガスの経路の一部から分岐して前記第2の回転圧縮要素のベーンを押圧するスプリングが収容されたばね室に連通するバイパス路を備えるとともに、
 前記バイパス路を通り前記冷媒ガスとともに前記ばね室へ送り込まれた、前記冷媒ガス中に混在するオイルを前記密閉容器内の空間へ戻して回収させるために、前記第2の回転圧縮要素のベーンがローラに向けて前進すると入口が開口されて、前記ばね室が前記密閉容器内の空間と連結される回収路を備え、
 前記回収路は、前記ベーンが所定位置まで前進すると、ベーンに封鎖されていた回収用入口が開口されてばね室内に送り込まれていたオイルが密閉容器内の空間へ回収される、ことを特徴とする。
A multistage compression rotary compressor according to a third aspect of the present invention includes a first element and a first element which are sandwiched between a drive element and upper and lower support members via an intermediate partition plate in a hermetic container and driven by the drive element. Two rotary compression elements, and the second rotary compression element includes a cylinder, a roller that is fitted to an eccentric portion formed on a rotation shaft of the drive element and rotates eccentrically in the cylinder, The intermediate pressure refrigerant gas that is composed of a vane that abuts on a roller and divides the inside of the cylinder into a low-pressure chamber and a high-pressure chamber, is compressed by the first rotary compression element, and is discharged into the hermetic container. In a multi-stage compression rotary compressor having an internal intermediate pressure structure that sucks, compresses and discharges the second rotary compression element,
A spring that branches off from a part of the refrigerant gas path where the refrigerant gas discharged from the refrigerant discharge side of the second rotary compression element is sent out of the sealed container and presses the vane of the second rotary compression element Including a bypass passage communicating with the spring chamber in which the
In order to return the oil mixed in the refrigerant gas, which has been sent to the spring chamber together with the refrigerant gas through the bypass, to the space in the sealed container, the vanes of the second rotary compression element are provided. When it advances toward the roller, the inlet is opened, and the spring chamber is provided with a recovery path connected to the space in the sealed container,
The recovery path is characterized in that when the vane advances to a predetermined position, the recovery inlet that has been blocked by the vane is opened and the oil that has been fed into the spring chamber is recovered into the space in the sealed container. To do.
 また、請求項4の発明は、請求項3の発明において、前記バイパス路は、第2の回転圧縮要素のシリンダ直上の前記上支持部材の内部に設けられているとともに、前記回収路は、厚さ方向の断面が略L字形状を呈するものを、前記第2の回転圧縮要素のシリンダの直下の、中間仕切板の内部に設けられている、ことを特徴とする。 According to a fourth aspect of the present invention, in the third aspect of the present invention, the bypass path is provided inside the upper support member directly above the cylinder of the second rotary compression element, and the recovery path is thick. What has a substantially L-shaped cross section is provided inside the intermediate partition plate directly below the cylinder of the second rotary compression element.
 本発明の請求項5に係る圧縮式ロータリコンプレッサは、密閉容器内に、駆動要素と、該駆動要素にて駆動される単一の回転圧縮要素と、を備え、この回転圧縮要素は、上下支持部材で挟持されたシリンダと、前記駆動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室と高圧室とに区画するベーンと、から構成され、前記回転圧縮要素の密閉容器内で低圧の冷媒ガスを圧縮して吐出すると共に、前記回転圧縮要素の冷媒吐出側の圧力が前記ベーンの背圧として印加される、内部低圧構造の圧縮式ロータリコンプレッサにおいて、
 回転圧縮要素の冷媒吐出側から吐出される冷媒ガスが密閉容器外へ送り出される、冷媒ガスの吐出経路の一部から分岐し、回転圧縮要素のベーンを押圧するスプリングが収容されたばね室に連通するバイパス路を備えるとともに、
 前記バイパス路を通り前記ばね室へ背圧用の冷媒ガスとともに送り込まれた、前記冷媒ガス中に混在するオイルを前記密閉容器内の空間へ戻して回収されるために、前記ベーンがローラに向けて前進すると入口が開口されて、前記ばね室が前記密閉容器内の空間と連結される回収路を備えた、ことを特徴とする。
A compression-type rotary compressor according to claim 5 of the present invention includes a drive element and a single rotary compression element driven by the drive element in an airtight container. A cylinder sandwiched between members, a roller fitted into an eccentric portion formed on a rotation shaft of the drive element and rotated eccentrically in the cylinder, and a low pressure chamber and a high pressure chamber in contact with the roller and in the cylinder And compresses and discharges the low-pressure refrigerant gas in the sealed container of the rotary compression element, and the pressure on the refrigerant discharge side of the rotary compression element is applied as the back pressure of the vane. In a compression type rotary compressor having an internal low pressure structure,
The refrigerant gas discharged from the refrigerant discharge side of the rotary compression element is branched out from a part of the refrigerant gas discharge path where the refrigerant gas is sent out of the hermetic container, and communicates with a spring chamber containing a spring that presses the vane of the rotary compression element. With a bypass,
In order to return the oil mixed in the refrigerant gas, which is fed together with the refrigerant gas for back pressure through the bypass path, to the space in the sealed container, and collect the oil toward the roller. An inlet is opened when it moves forward, and the spring chamber is provided with a recovery path connected to the space in the sealed container.
 また、請求項6の発明は、請求項5の発明において、前記バイパス路は、回転圧縮要素のシリンダ直上の前記上支持部材の内部に設けられているとともに、
 前記回収路は、厚さ方向の断面が略L字形状を呈するものを、前記回転圧縮要素のシリンダ直下の前記下支持部材の内部に設けられている、ことを特徴とする。
According to a sixth aspect of the invention, in the fifth aspect of the invention, the bypass path is provided inside the upper support member directly above the cylinder of the rotary compression element,
The recovery path is characterized in that a section having a substantially L-shaped cross section in the thickness direction is provided inside the lower support member immediately below the cylinder of the rotary compression element.
 本発明の請求項1に係る多段圧縮式ロータリコンプレッサによれば、ローラ外周に当接するベーンがローラに向けて前進するときだけ開口して密閉容器内の空間と連結する回収路を設けることで、コストをかけずに高効率な圧縮機能を実現できるようになる。同時に、これによって、オイルセパレータ及び返油のための外部配管を必要とせずに、ロータリコンプレッサの密閉容器内部でオイルの回収を行うことができるようになるので、設置スペースの削減を図ることも可能となる、多段圧縮式ロータリコンプレッサが得られるという利点がある。 According to the multi-stage compression rotary compressor according to claim 1 of the present invention, by providing a recovery path that opens and connects with the space in the sealed container only when the vane that contacts the outer periphery of the roller advances toward the roller, A highly efficient compression function can be realized without cost. At the same time, this enables oil to be collected inside the rotary compressor's sealed container without the need for an oil separator and external piping for oil return, thus reducing installation space. There is an advantage that a multi-stage compression type rotary compressor is obtained.
 また、本発明の請求項2によれば、厚さ方向に切断したときの断面が略L字形状を呈するものを最終段の回転圧縮要素のシリンダ直下の中間仕切板内部に、回収路を設けることで、専用の配管路をわざわざ別に設置することが不要であるので、小型化が図れるという利点がある。 According to claim 2 of the present invention, a recovery path is provided inside the intermediate partition plate directly below the cylinder of the rotary compression element of the final stage, in which the cross section when cut in the thickness direction is substantially L-shaped. Thus, it is not necessary to separately install a dedicated piping path, and there is an advantage that downsizing can be achieved.
 本発明の請求項3に係る多段圧縮式ロータリコンプレッサによれば、ローラ外周に当接するベーンがローラに向けて前進するときだけ開口して密閉容器内の空間と連結する回収路を設けることで、コストをかけずに高効率な圧縮機能を実現できるようになる。同時に、これによって、オイルセパレータ及び返油のための外部配管を必要とせずに、ロータリコンプレッサの密閉容器内部でオイルの回収を行うことができるようになるので、設置スペースの削減を図ることも可能となる、2段圧縮式ロータリコンプレッサが得られるという利点がある。 According to the multistage compression rotary compressor according to claim 3 of the present invention, by providing a recovery path that opens and connects with the space in the sealed container only when the vane that contacts the outer periphery of the roller advances toward the roller, A highly efficient compression function can be realized without cost. At the same time, this enables oil to be collected inside the rotary compressor's sealed container without the need for an oil separator and external piping for oil return, thus reducing installation space. There is an advantage that a two-stage compression type rotary compressor is obtained.
 また、本発明の請求項4によれば、厚さ方向に切断したときの断面が略L字形状を呈するものを2段目の回転圧縮要素のシリンダ直下の中間仕切板内部に、回収路を設けることで、専用の配管路をわざわざ別に設置することが不要であるので、小型化が図れるという利点がある。 Further, according to claim 4 of the present invention, the recovery path is disposed inside the intermediate partition plate directly under the cylinder of the second stage rotary compression element in which the cross section when cut in the thickness direction is substantially L-shaped. By providing, it is unnecessary to separately install a dedicated piping path, and there is an advantage that downsizing can be achieved.
 本発明の請求項5に係る多段圧縮式ロータリコンプレッサによれば、ローラ外周に当接するベーンがローラに向けて前進するときだけ開口して密閉容器内の空間と連結する回収路を設けることで、コストをかけずに高効率な圧縮機能を実現できるようになる。同時に、これによって、オイルセパレータ及び返油のための外部配管を必要とせずに、ロータリコンプレッサの密閉容器内部でオイルの回収を行うことができるようになるので、設置スペースの削減を図ることも可能となる、1段圧縮式ロータリコンプレッサが得られるという利点がある。 According to the multistage compression rotary compressor according to claim 5 of the present invention, by providing a recovery path that opens and connects with the space in the sealed container only when the vane that contacts the outer periphery of the roller advances toward the roller, A highly efficient compression function can be realized without cost. At the same time, this enables oil to be collected inside the rotary compressor's sealed container without the need for an oil separator and external piping for oil return, thus reducing installation space. There is an advantage that a one-stage compression type rotary compressor is obtained.
 また、本発明の請求項6によれば、厚さ方向の断面が略L字形状を呈するものを、回転圧縮要素のシリンダ直下の下支持部材に、回収路を設けることで、専用の配管路をわざわざ別に設置することが不要であるので、小型化が図れるという利点がある。 According to claim 6 of the present invention, a pipe having a substantially L-shaped cross section in the thickness direction is provided by providing a recovery path in the lower support member directly below the cylinder of the rotary compression element. Since there is no need to separately install the device, there is an advantage that downsizing can be achieved.
本発明の実施形態に係る多段圧縮式ロータリコンプレッサの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the multistage compression type rotary compressor which concerns on embodiment of this invention. その要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part. 第1の回転圧縮要素のシリンダを下側から見たときの状態を示す底面図である。It is a bottom view which shows a state when the cylinder of the 1st rotation compression element is seen from the lower side. (A)及び(B)は第2の回転圧縮要素のシリンダ及び中間仕切板などを示す平面図及びその要部拡大図である。(A) And (B) is a top view which shows the cylinder, intermediate | middle partition plate, etc. of a 2nd rotation compression element, and its principal part enlarged view. (A)及び(B)は第2の回転圧縮要素のシリンダにおけるベーンの前進状態を示す説明図及びその断面図である。(A) And (B) is explanatory drawing which shows the advance state of the vane in the cylinder of a 2nd rotation compression element, and its sectional drawing. (A)及び(B)は第2の回転圧縮要素のシリンダにおけるベーンの後退状態を示す説明図及びその断面図である。(A) And (B) is explanatory drawing which shows the retreating state of the vane in the cylinder of a 2nd rotation compression element, and its sectional drawing. 従来の2段式の圧縮式ロータリコンプレッサの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional two-stage compression type rotary compressor. 図7に示す圧縮式ロータリコンプレッサの下シリンダの要部を示す平面図である。It is a top view which shows the principal part of the lower cylinder of the compression type rotary compressor shown in FIG.
 以下、本発明の実施形態について、添付図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態に係る多段圧縮式ロータリコンプレッサ1の要部を示すものであり、この多段圧縮式ロータリコンプレッサ1は、密閉容器1A内に、ロータ22及びステータ23からなり駆動要素を構成する電動要素2と、この電動要素2にて駆動される第1の回転圧縮要素3及び第2の回転要素4と、中間仕切板5とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a main part of a multi-stage compression rotary compressor 1 according to an embodiment of the present invention. The multi-stage compression rotary compressor 1 is composed of a rotor 22 and a stator 23 in a hermetic container 1A. The electric element 2 which comprises an element, the 1st rotation compression element 3 and the 2nd rotation element 4 which are driven with this electric element 2, and the intermediate partition plate 5 are provided.
 第1及び第2の回転圧縮要素3,4は、扁平な略円盤状のシリンダ31,41と、電動要素2の回転軸21に偏心状態で形成された偏心部32,42に嵌合されてシリンダ31,41内部で偏心回転するローラ33,43と、このローラ33,43に当接してシリンダ31,41内を低圧室と高圧室とに区画するベーン34,44と、支持部材35,45と、をそれぞれ備えている。 The first and second rotary compression elements 3 and 4 are fitted to flat and substantially disk-shaped cylinders 31 and 41 and eccentric parts 32 and 42 formed eccentrically on the rotary shaft 21 of the electric element 2. Rollers 33, 43 that rotate eccentrically inside the cylinders 31, 41, vanes 34, 44 that abut against the rollers 33, 43 and divide the cylinders 31, 41 into low pressure chambers and high pressure chambers, and support members 35, 45 And each.
 このうち、第1の回転圧縮要素3の一部を構成するシリンダ(以下、これを「下シリンダ」とよぶ)31には、図3に示すように、ローラ33が偏心回転するスペースである略真円形状の空間からなるシリンダ室310と、ベーン34を収容する細幅溝形状のベーン室311と、ベーン室311内部のベーン34を背面から押圧するスプリング36を収容するためにベーン室311よりも幅広空間からなる一部開口した縦孔312Aとこの縦孔312Aと下シリンダ31の外周面31Aとの間を連通するようにシリンダ内部にトンネル状に設けた横孔312Bとからなるばね室312と、ばね室312の外周面31Aに開口した入口を塞ぐプラグ313と、を設けている。 Among these, a cylinder (hereinafter referred to as a “lower cylinder”) 31 that constitutes a part of the first rotary compression element 3 has an abbreviation as a space in which the roller 33 rotates eccentrically as shown in FIG. From the vane chamber 311 to accommodate a cylinder chamber 310 formed of a perfect circular space, a narrow groove-shaped vane chamber 311 for accommodating the vane 34, and a spring 36 for pressing the vane 34 inside the vane chamber 311 from the back surface. A spring chamber 312 comprising a partially opened vertical hole 312A formed of a wide space and a horizontal hole 312B provided in a tunnel shape inside the cylinder so as to communicate between the vertical hole 312A and the outer peripheral surface 31A of the lower cylinder 31. And a plug 313 that closes the inlet opening in the outer peripheral surface 31 </ b> A of the spring chamber 312.
 本実施形態では、シリンダ室310、ベーン室311は、略円盤状を呈する下シリンダ31の上下両面まで貫通して形成されている。このように、上述の各室は、上下同一形状で貫通する状態で開口されているが、各室にローラ33及びベーン34をそれぞれ挿入後、下シリンダ31の上下両面は中間仕切板5及び支持部材35で密着状態に挟持されるので、脱落することがない。 In this embodiment, the cylinder chamber 310 and the vane chamber 311 are formed so as to penetrate to both the upper and lower surfaces of the lower cylinder 31 having a substantially disk shape. In this way, each of the above-described chambers is opened so as to penetrate in the same shape in the upper and lower sides, but after inserting the roller 33 and the vane 34 into each chamber, the upper and lower surfaces of the lower cylinder 31 are supported by the intermediate partition plate 5 and the support. Since it is clamped by the member 35, it does not fall off.
 ばね室312は、下シリンダ31の下面に開口した縦孔312A及びこれに連通し下シリンダ31の外周面31Aまで貫通する横孔312Bで構成されている。即ち、縦孔312Aについては、ベーン室311よりも幅広空間からなりベーン室311と連なる状態で、かつ、下シリンダ31の上面側に開口するような状態で抉られて形成されている。これにより、第1の回転圧縮要素3側の支持部材(以下、「下支持部材」とよぶ)35の上面側に設けた浅い溝35Bを介して、密閉容器1A内部に満たされた中圧状態の冷媒ガスが、ばね室312の内部へ侵入できるようになっている。 The spring chamber 312 includes a vertical hole 312A that opens to the lower surface of the lower cylinder 31 and a horizontal hole 312B that communicates therewith and penetrates to the outer peripheral surface 31A of the lower cylinder 31. That is, the vertical hole 312 </ b> A is formed so as to be wider than the vane chamber 311 and continuous with the vane chamber 311 and to be opened to the upper surface side of the lower cylinder 31. Thus, the intermediate pressure state filled in the sealed container 1A through the shallow groove 35B provided on the upper surface side of the support member (hereinafter referred to as “lower support member”) 35 on the first rotary compression element 3 side. This refrigerant gas can enter the inside of the spring chamber 312.
 一方、横孔312Bについては、上述の縦孔312Aと下シリンダ31の外周面31Aとの間を連通するようにシリンダ31の内部にトンネル状に形成されており、スプリング36を奥部の縦孔312Aまで挿入させたのちに、プラグ313を圧入させて外周面31Aに開口された入口を塞ぐようになっている。 On the other hand, the horizontal hole 312B is formed in a tunnel shape inside the cylinder 31 so as to communicate between the above-described vertical hole 312A and the outer peripheral surface 31A of the lower cylinder 31, and the spring 36 is connected to the deep vertical hole. After the insertion up to 312A, the plug 313 is press-fitted to close the inlet opened in the outer peripheral surface 31A.
 また、下シリンダ31には、図3に示すように、ロータリコンプレッサ1の密閉容器1Aと外部接続した図示しない所要の冷凍サイクルを経由して、ロータリコンプレッサ1の密閉容器1A内部へ還流されてきた低圧状態の冷媒ガスを、シリンダ室310へ再び取り込ませるための吸入孔314と、シリンダ室310で加圧され中間圧状態となった冷媒ガスをシリンダ室310から取出して第2の回転圧縮要素4へ送り込ませるための吐出孔315とが、シリンダ室310の内周面に開口されている。 Further, as shown in FIG. 3, the lower cylinder 31 has been refluxed into the sealed container 1 </ b> A of the rotary compressor 1 via a required refrigeration cycle (not shown) externally connected to the sealed container 1 </ b> A of the rotary compressor 1. The suction hole 314 for allowing the refrigerant gas in the low pressure state to be taken into the cylinder chamber 310 again, and the refrigerant gas pressurized in the cylinder chamber 310 to the intermediate pressure state are taken out from the cylinder chamber 310 and the second rotary compression element 4 A discharge hole 315 for feeding into the cylinder chamber 310 is opened on the inner peripheral surface of the cylinder chamber 310.
 吸入孔314及び吐出孔315は、それぞれ、吸入ポート314A及び吐出ポート315Aに連通している。吸入ポート314Aは、図示外の吸込通路を経由してロータリコンプレッサ1外部の図示しない冷凍サイクルの冷媒回路と接続されている。吐出ポート315Aは、ロータリコンプレッサ1の密閉容器1A内部と連通している。 The suction hole 314 and the discharge hole 315 communicate with the suction port 314A and the discharge port 315A, respectively. The suction port 314A is connected to a refrigerant circuit of a refrigeration cycle (not shown) outside the rotary compressor 1 via a suction passage (not shown). The discharge port 315 </ b> A communicates with the inside of the sealed container 1 </ b> A of the rotary compressor 1.
 ローラ33は、下シリンダ31のシリンダ室310内部で偏心しながらほぼ1回転程度回転することで、シリンダ室310内部に吸引した冷媒を吸入当初の低圧状態から吐出時の中圧状態まで圧縮動作を行わせるものである。本実施形態のローラ33は、外形形状が真円形状となっているが、回転軸21に偏心状態で設けた偏心部32に固設されており、シリンダ室310内部を偏心状態で回転する。 The roller 33 rotates about one rotation while being eccentric in the cylinder chamber 310 of the lower cylinder 31, thereby compressing the refrigerant sucked into the cylinder chamber 310 from the low pressure state at the beginning of suction to the intermediate pressure state at the time of discharge. It is what you want to do. Although the outer shape of the roller 33 of the present embodiment is a perfect circle, the roller 33 is fixed to an eccentric portion 32 provided in an eccentric state on the rotary shaft 21 and rotates inside the cylinder chamber 310 in an eccentric state.
 ベーン34は、縦断面略矩形状を有し縦方向に起立した薄板形状のもので構成されており、基端面がスプリング36によって押圧されているとともに、先端面がスプリング36の弾性力でローラ33の外周に常時密接状態で当接している。 The vane 34 is configured by a thin plate having a substantially rectangular vertical cross section and standing in the vertical direction. The base end surface is pressed by the spring 36, and the distal end surface is pressed by the elastic force of the spring 36. Is always in close contact with the outer periphery of the.
 本実施形態の下支持部材35は、下側から下シリンダ31を支持するとともに、下シリンダ31の上側に密着状態で配置の中間仕切板5との間で下シリンダ31を密着状態に挟持する。この下支持部材35は、図1、2に示すように、シリンダ室310から吐出されてくる中間圧の冷媒を取り込んで消音させる下消音室35A等の他に、図2に示す、上述した浅い溝35Bがばね室312の一部である縦孔312Aまで重なるような状態で連通し、かつ、外周面に至るまで形成されている。
 なお、この縦孔312Aは、下シリンダ31の下面側から抉るようにして下面側のみに開口させて構成してもよいが、本実施形態では、上述したように上下両面まで貫通して開口させてある。
The lower support member 35 of the present embodiment supports the lower cylinder 31 from the lower side and holds the lower cylinder 31 in close contact with the intermediate partition plate 5 disposed in close contact with the upper side of the lower cylinder 31. As shown in FIGS. 1 and 2, the lower support member 35 includes the lower silencing chamber 35 </ b> A shown in FIG. 2, in addition to the lower silencing chamber 35 </ b> A that takes in and silences the intermediate pressure refrigerant discharged from the cylinder chamber 310. The groove 35 </ b> B communicates with the vertical hole 312 </ b> A which is a part of the spring chamber 312, and is formed to reach the outer peripheral surface.
The vertical hole 312A may be configured to open only on the lower surface side so as to lie from the lower surface side of the lower cylinder 31. However, in the present embodiment, as described above, the vertical hole 312A is opened through both the upper and lower surfaces. It is.
 スプリング36は、圧縮コイルばねを用いており、ばね室312に収容させた状態であっても圧縮された状態を常時保持するようになっている。そのため、スプリング36の自然長がばね室312の長手方向の長さ寸法よりも長いものを用いている。これにより、スプリング36は、ばね室312に収容されて最大に伸長したときであっても、ベーン34を押圧させる弾性力を確実に付勢可能とする作用が得られる。 The spring 36 uses a compression coil spring, and is always kept in a compressed state even if it is housed in the spring chamber 312. Therefore, the spring 36 having a natural length longer than the longitudinal dimension of the spring chamber 312 is used. Thereby, even when the spring 36 is accommodated in the spring chamber 312 and extends to the maximum, the spring 36 can obtain an action that can surely bias the elastic force that presses the vane 34.
 一方、第2の回転圧縮要素の一部を構成するシリンダ(以下、これを「上シリンダ」とよぶ)41には、図4に示すように、第1の回転圧縮要素の下シリンダ31と同様に、ローラ43が偏心回転する略真円形状の空間からなるシリンダ室410と、ベーン44を収容する細幅溝形状のベーン室411と、ベーン室411内部のベーン44を背面から押圧するスプリング46を収容するためにベーン室411よりも幅広空間からなるばね室412と、第1の回転圧縮要素3で圧縮された中間圧状態の冷媒をシリンダ室410へ取り込ませるための吸入孔414と、シリンダ室410で加圧され高圧状態となった冷媒ガスをシリンダ室410から取出し、図示外の冷媒吐出管からロータリコンプレッサ1の外部に吐出させるための吐出孔415と、が設けられている。 On the other hand, a cylinder (hereinafter referred to as “upper cylinder”) 41 constituting a part of the second rotary compression element is similar to the lower cylinder 31 of the first rotary compression element as shown in FIG. In addition, a cylinder chamber 410 formed of a substantially circular space in which the roller 43 rotates eccentrically, a vane chamber 411 having a narrow groove shape for accommodating the vane 44, and a spring 46 that presses the vane 44 inside the vane chamber 411 from the back surface. A spring chamber 412 that is wider than the vane chamber 411, a suction hole 414 that allows the intermediate pressure refrigerant compressed by the first rotary compression element 3 to be taken into the cylinder chamber 410, and a cylinder A discharge hole 41 for taking out the refrigerant gas pressurized in the chamber 410 from the cylinder chamber 410 and discharging it from the refrigerant discharge pipe (not shown) to the outside of the rotary compressor 1. And, it is provided.
 また、上シリンダ41に設けたばね室412は、第1の回転圧縮要素3のばね室312と同様に、縦孔412A及び横孔412Bで構成されている。
 このうち、縦孔412Aは、第1の回転圧縮要素3の下シリンダ31と同様に、図4に示すように開口形状が真円形状を呈するようにして、図5(A)に示すように上シリンダ41の上面から下面まで達するように貫通して穿設されている。このように、縦孔412Aを上シリンダ41の上下両面を貫通させるように開口してあるのは、後述する支持部材45の内部に形成したバイパス路45Bの出口451とこの縦孔412Aの上面側の開口部分とを連通させるためと、後述する中間仕切板5の回収路51の回収口51Aとこの縦孔412Aの下面側の開口部分とを連通させるためである。なお、中間仕切板5の回収路51の回収口51Aとこの縦孔412Aの下面側の開口部分とを連通状態については、後に詳述する。
Further, the spring chamber 412 provided in the upper cylinder 41 is constituted by a vertical hole 412A and a horizontal hole 412B, similarly to the spring chamber 312 of the first rotary compression element 3.
Among them, the vertical hole 412A has a perfect circular shape as shown in FIG. 4 as shown in FIG. 5A, as in the lower cylinder 31 of the first rotary compression element 3, as shown in FIG. The upper cylinder 41 is penetrated so as to reach from the upper surface to the lower surface. In this way, the vertical hole 412A is opened so as to penetrate both the upper and lower surfaces of the upper cylinder 41 because the outlet 451 of the bypass passage 45B formed in the support member 45 described later and the upper surface side of the vertical hole 412A. This is because the opening 51A of the collecting path 51 of the intermediate partition plate 5 described later and the opening part on the lower surface side of the vertical hole 412A are communicated. The state of communication between the collection port 51A of the collection path 51 of the intermediate partition plate 5 and the opening portion on the lower surface side of the vertical hole 412A will be described in detail later.
 一方、横孔412Bは、第1の回転圧縮要素3のばね室312の横孔312Bと同様、上述の縦孔412Aと上シリンダ41の外周面41Aとの間を連通するようにして、上シリンダ41内部にトンネル状に、上シリンダ41の外周面41Aまで貫通して形成されている。この横孔412Bは、上シリンダ41の外周面41Aに開口された孔からスプリング46を奥部の縦孔4121Aまで挿入させたのちに、プラグ413を圧入させ、その孔の入口を塞ぐようになっている。 On the other hand, the horizontal hole 412B communicates between the above-described vertical hole 412A and the outer peripheral surface 41A of the upper cylinder 41 in the same manner as the horizontal hole 312B of the spring chamber 312 of the first rotary compression element 3. 41 is formed in a tunnel shape so as to penetrate to the outer peripheral surface 41 </ b> A of the upper cylinder 41. The horizontal hole 412B is configured such that after the spring 46 is inserted from the hole opened in the outer peripheral surface 41A of the upper cylinder 41 to the vertical hole 4121A at the back, the plug 413 is press-fitted and the inlet of the hole is blocked. ing.
 このように、本実施形態の上シリンダ41にも、上下両面を貫通する状態で、シリンダ室410と、ベーン室411と、ばね室412とを設けている。このうちのばね室412については、縦孔412Aが上シリンダ41の上下両面を貫通して開口させる必要がある。このように縦孔4121Aを構成することで、後述する上支持部材45内部のバイパス路45Bとの連通及び中間仕切板5内部の回収路51と連通状態が確保される。尚、ベーン室411については、上シリンダ41の上面まで開口させずに下面側のみ開口させ、厚さ方向に抉るような構成であってもよい。 Thus, the upper cylinder 41 of the present embodiment is also provided with the cylinder chamber 410, the vane chamber 411, and the spring chamber 412 so as to penetrate both the upper and lower surfaces. Among the spring chambers 412, the vertical holes 412 </ b> A need to open through both the upper and lower surfaces of the upper cylinder 41. By configuring the vertical hole 4121A in this way, communication with a bypass path 45B inside the upper support member 45 described later and communication with the collection path 51 inside the intermediate partition plate 5 are ensured. The vane chamber 411 may have a configuration in which only the lower surface side is opened without opening up to the upper surface of the upper cylinder 41, and the vane chamber 411 extends in the thickness direction.
 本実施形態の支持部材(以下、「上支持部材」とよぶ)45は、上シリンダ41の上面側にその上から密接状態で当接しており、上シリンダ41の下側に設けた中間仕切板5との間で、上シリンダ41を挟持する。この上支持部材45には、シリンダ室410から吐出されてくる高圧の冷媒を取り込んで消音させる上消音室45Aの他に、図5及び図6に示すように、高圧状態に圧縮され上消音室45Aに吐出された冷媒ガスの一部を上シリンダ41のばね室412へ導入させベーンの背圧として印加させるため、トンネル状のバイパス回路45B(消音室の一部を構成)がばね室412に連通するような状態で内部に形成されている。 A support member (hereinafter referred to as “upper support member”) 45 according to the present embodiment is in close contact with the upper surface side of the upper cylinder 41 from above, and an intermediate partition plate provided on the lower side of the upper cylinder 41. The upper cylinder 41 is sandwiched between the upper cylinder 41 and the upper cylinder 41. In addition to the upper silencing chamber 45A that takes in and silences the high-pressure refrigerant discharged from the cylinder chamber 410, the upper supporting member 45 is compressed into a high pressure state and is silenced as shown in FIGS. In order to introduce a part of the refrigerant gas discharged to 45A into the spring chamber 412 of the upper cylinder 41 and apply it as a back pressure of the vane, a tunnel-like bypass circuit 45B (which constitutes a part of the silencing chamber) is provided in the spring chamber 412. It is formed inside so as to communicate.
 中間仕切板5には、上シリンダ41のばね室412の縦孔412Aの下部開口に対応する部位に、この開口と連通可能な回収用入口51Aを有する回収路51がその内部に形成されている。 In the intermediate partition plate 5, a recovery path 51 having a recovery inlet 51 </ b> A that can communicate with the opening is formed in a portion corresponding to the lower opening of the vertical hole 412 </ b> A of the spring chamber 412 of the upper cylinder 41. .
 本実施形態の回収路51は、中間仕切板5を厚さ方向に切断したときの断面が略L字形状を呈するものであって、図5(A)に示すように、回収用入口51Aがばね室412の縦孔412Aの下面側開口に対面するようにその直下に開口している。また、この回収路51には、回収用出口51Bが中間仕切板5の外周面に開口されて密閉容器1A内の空間と連通している。 The recovery path 51 of the present embodiment has a substantially L-shaped cross section when the intermediate partition plate 5 is cut in the thickness direction. As shown in FIG. The spring chamber 412 has an opening immediately below it so as to face the lower surface side opening of the vertical hole 412A. Further, a recovery outlet 51B is opened on the outer peripheral surface of the intermediate partition plate 5 and communicates with the space in the sealed container 1A.
 本実施形態の回収用入口51Aは、真円形状であるが、例えばベーン44の前進する前側方向に沿って次第に拡大するような逆三角形或いは次第に縮小するような三角形などとしたり、前側方向に沿って長尺形状を有する長方形などに構成して、ベーン44の前進位置に応じてオイルの排出量を調整させるようにしてもよい。また、中間仕切板5の内部に、設ける回収路51の、ばね室の縦孔412Aの下面側開口に対面したその直下の部分に開口させる回収用入口としては、長孔溝状などに開口してあってもよい。 The recovery inlet 51A of the present embodiment has a perfect circle shape, but may be, for example, an inverted triangle that gradually expands along the forward direction in which the vane 44 advances, a triangle that gradually decreases, or the like along the front direction. In this case, the oil discharge amount may be adjusted in accordance with the advance position of the vane 44. Further, the recovery inlet to be opened in the intermediate partition plate 5 at a portion immediately below the recovery path 51 provided facing the lower surface side opening of the vertical hole 412A of the spring chamber opens in a long hole groove shape or the like. May be.
 即ち、この回収路51は、図5に示すように、上シリンダ41のベーン室411に進退可能に収容されているベーン44が所定位置まで前進すると、ベーン44に封鎖されていた回収用入口51Aが開く。このため、ばね室412内に送り込まれていたオイルが開口された回収用入口51Aから密閉容器1A内の空間へ回収されるようになっている。一方、この回収路51は、図6に示すように、ベーン44が上記の所定位置よりも後退すると、回収用入口51Aがベーン44に封鎖されて閉じる。なお、この回収用入口51Aの開口位置は、ベーン室411と縦孔412Aとの双方の境界部分での下部開口に対応する部分でもよい。 That is, as shown in FIG. 5, when the vane 44 accommodated in the vane chamber 411 of the upper cylinder 41 is advanced to a predetermined position, the recovery path 51 is provided with a recovery inlet 51A sealed by the vane 44. Opens. For this reason, the oil that has been fed into the spring chamber 412 is collected from the opened collection inlet 51A into the space inside the sealed container 1A. On the other hand, as shown in FIG. 6, when the vane 44 moves backward from the predetermined position, the recovery inlet 51 </ b> A is closed by the vane 44 and closed. The opening position of the recovery inlet 51A may be a portion corresponding to the lower opening at the boundary between both the vane chamber 411 and the vertical hole 412A.
 次に、本実施形態の多段圧縮式ロータリコンプレッサ1における基本動作である、2段階での圧縮動作について、図面を参照しながら説明する。
 図1において、図示されない配線を介して圧縮機1の電動要素2のステータ23側の図示外のコイルが通電されると、電動要素2が起動してロータ22が回転する。この回転により、回転軸21と一体に固設された上、下偏心部32,42に嵌合する、上、下ローラ33,43が、それぞれ上、下シリンダ31,41のシリンダ室310,410内を偏心回転する。
Next, a compression operation in two stages, which is a basic operation in the multistage compression rotary compressor 1 of the present embodiment, will be described with reference to the drawings.
In FIG. 1, when a coil (not shown) on the stator 23 side of the electric element 2 of the compressor 1 is energized via a wiring (not shown), the electric element 2 is activated and the rotor 22 rotates. Due to this rotation, the upper and lower rollers 33 and 43 which are fixed integrally with the rotary shaft 21 and fit into the lower eccentric portions 32 and 42 are respectively in the cylinder chambers 310 and 410 of the upper and lower cylinders 31 and 41. The inside rotates eccentrically.
 これにより、図示外の冷媒導入管および下支持部材35に形成された図示外の吸込通路を経由して下シリンダ31の吸込ポート314A(図3参照)からシリンダ室310の低圧室(図3では上空間)側に吸入された低圧の冷媒ガスは、ローラ33とベーン34の動作により圧縮されて中間圧となり、下シリンダ31の高圧室側より吐出ポート315A及び消音室35Aを経て密閉容器1A内に吐出される。これによって、1段目の圧縮動作が行われ、密閉容器1A内は中間圧となる。 Thus, the low pressure chamber (in FIG. 3) of the cylinder chamber 310 from the suction port 314A (see FIG. 3) of the lower cylinder 31 via the refrigerant introduction pipe (not shown) and the suction passage (not shown) formed in the lower support member 35. The low-pressure refrigerant gas sucked into the upper space) side is compressed by the operation of the roller 33 and the vane 34 to become an intermediate pressure, and enters the sealed container 1A from the high-pressure chamber side of the lower cylinder 31 through the discharge port 315A and the sound deadening chamber 35A. Discharged. Thus, the first stage compression operation is performed, and the inside of the sealed container 1A becomes an intermediate pressure.
 この密閉容器1A内に吐出された中間圧の冷媒ガスは、密閉容器1A内で熱を奪われて冷却される。 The intermediate-pressure refrigerant gas discharged into the sealed container 1A is deprived of heat and cooled in the sealed container 1A.
 そして、この中間圧状態の冷媒ガスは、上支持部材45に形成された図示しない吸込通路を経由して、図4に示す第2の回転圧縮要素4の上シリンダ41の吸込ポート414Aからシリンダ室410の低圧室側(図4(A)では上側空間)に吸入され、ローラ43とベーン44の動作(1サイクルの圧縮工程が、図5→図6→図5)により2段目の圧縮動作が行われる。これにより、冷媒ガスは、図5に示す高圧高温の状態となり、高圧室側から吐出ポート415Aを通り、上支持部材45に形成された吐出消音室45Aを経て図示しない冷媒吐出管により密閉容器1Aの外部配管(冷媒回路)に吐出される。 Then, the refrigerant gas in the intermediate pressure state passes through a suction passage (not shown) formed in the upper support member 45 from the suction port 414A of the upper cylinder 41 of the second rotary compression element 4 shown in FIG. 410 is sucked into the low pressure chamber side (upper space in FIG. 4A), and the compression operation of the second stage is performed by the operation of the roller 43 and the vane 44 (the compression process of one cycle is FIG. 5 → FIG. 6 → FIG. 5). Is done. As a result, the refrigerant gas enters a high pressure and high temperature state shown in FIG. 5, passes through the discharge port 415A from the high pressure chamber side, passes through the discharge silencer chamber 45A formed in the upper support member 45, and is closed by the refrigerant discharge pipe (not shown). To the external piping (refrigerant circuit).
 次に、本発明に係る上、下シリンダ31,41において、主に、ばね室312,412及びこれらに導入する冷媒ガス及びオイルなどの動作について説明する。
 第1の回転圧縮要素3の下シリンダ31のシリンダ室310では、1段目の圧縮動作のため偏心回転するローラ33により、図3に示す低圧状態の冷媒ガスを低圧室へ吸入する初期状態から、冷吐出させる終期状態までの間、その室内(この低圧室が最終的には高圧室となる)で中間圧まで冷媒ガスを圧縮させる。この1サイクルの間、冷媒ガスを導入するシリンダ室310の内部に冷媒ガスを密閉状態で保持するために、換言すれば、低圧室と高圧室とを分離して区画させるために、シリンダ室310内のローラ33にベーン34の先端を確りと当接させることが重要となっている。
Next, in the upper cylinders 31 and 41 according to the present invention, operations of the spring chambers 312 and 412 and the refrigerant gas and oil introduced therein will be mainly described.
In the cylinder chamber 310 of the lower cylinder 31 of the first rotary compression element 3, the roller 33 that rotates eccentrically for the first-stage compression operation starts from the initial state where the low-pressure refrigerant gas is sucked into the low-pressure chamber shown in FIG. The refrigerant gas is compressed to an intermediate pressure in the chamber (this low-pressure chamber eventually becomes a high-pressure chamber) until the final state of cold discharge. In order to hold the refrigerant gas in a sealed state inside the cylinder chamber 310 into which the refrigerant gas is introduced during this one cycle, in other words, in order to separate the low pressure chamber and the high pressure chamber, the cylinder chamber 310 It is important to make the tip of the vane 34 firmly contact the inner roller 33.
 そこで、ベーン34をローラ33の外周面に圧接させるために、前述したように、ばね室312の内部に収容させるスプリング36でベーン34を背面から押圧させ、その弾性力でベーン34をローラ33の外周面に圧接させている。ところが、この第1の回転圧縮要素3の下シリンダ31では、前述のように、1段目の圧縮動作により冷媒ガスを中間圧の状態まで圧縮させる構成である。このため、ベーン34への押圧力は、第2の回転圧縮要素4でのベーンに作用させるのに必要な押圧力程には大きな力を必要とはしない。換言すれば、第2の回転圧縮要素4での2段目の圧縮動作のような高圧圧縮まで圧縮を行うものではない。 Therefore, in order to press the vane 34 against the outer peripheral surface of the roller 33, as described above, the vane 34 is pressed from the back by the spring 36 accommodated in the spring chamber 312, and the vane 34 is pressed by the elastic force of the roller 33. It is in pressure contact with the outer peripheral surface. However, in the lower cylinder 31 of the first rotary compression element 3, as described above, the refrigerant gas is compressed to the intermediate pressure state by the first-stage compression operation. For this reason, the pressing force to the vane 34 does not require a large force as much as the pressing force required to act on the vane in the second rotary compression element 4. In other words, the compression is not performed up to the high pressure compression like the second stage compression operation in the second rotary compression element 4.
 このような事情から、ロータリコンプレッサ1の密閉容器1A内に充満している中間圧の冷媒ガスを、ばね室312と密閉容器1内部との間を連通させる浅い溝35Bを介して、縦孔312Aの開口部分からばね室312の内部に取り込み、そのガス圧を追加的にベーン34に印加すれば充分である。従って、第1の回転圧縮要素3では、図2に示すように、上記のようなオイルの吸入動作が行われる。 Due to such circumstances, the longitudinal hole 312A passes through the shallow groove 35B that allows the intermediate pressure refrigerant gas filled in the sealed container 1A of the rotary compressor 1 to communicate between the spring chamber 312 and the sealed container 1 inside. It is sufficient to take in the inside of the spring chamber 312 from the opening and apply the gas pressure to the vane 34 additionally. Therefore, in the first rotary compression element 3, the oil suction operation as described above is performed as shown in FIG.
 次に、ロータリコンプレッサ1の密閉容器1A内に充満する冷媒ガスは、第1の回転圧縮要素3での中間圧が、密閉容器1A外部の配管などを経由せずに、そのまま密閉容器1A内部の第2の回転圧縮要素4に導入される。なお、用途などによっては中間ガスの冷却が必要なものもあるため、本発明では、外部配管を経由する構成であってもよい。 Next, the refrigerant gas that fills the sealed container 1A of the rotary compressor 1 causes the intermediate pressure in the first rotary compression element 3 to remain inside the sealed container 1A as it is without passing through piping outside the sealed container 1A. Introduced into the second rotary compression element 4. In addition, since there is a thing which requires cooling of intermediate gas depending on a use etc., in this invention, the structure via an external piping may be sufficient.
 第2の回転圧縮要素4の上シリンダ41のシリンダ室410でも、図5及び図6に示すように、同様のプロセスを経ることで2段目の圧縮動作が行われ、中間圧状態の冷媒ガスが高圧状態に圧縮される。このため、シリンダ室410内部の最終圧力である高圧の圧縮状態に対応するべく、ベーン44を押圧するスプリング46による弾性力の他に、ばね室410内部で高圧の冷媒ガスの圧力を利用して、ベーン44を追加的に押圧している。 Also in the cylinder chamber 410 of the upper cylinder 41 of the second rotary compression element 4, as shown in FIGS. 5 and 6, the second stage compression operation is performed through the same process, and the refrigerant gas in the intermediate pressure state is obtained. Is compressed to a high pressure state. For this reason, in order to cope with the high pressure compression state that is the final pressure inside the cylinder chamber 410, in addition to the elastic force by the spring 46 that presses the vane 44, the pressure of the high-pressure refrigerant gas is used inside the spring chamber 410. The vane 44 is additionally pressed.
 即ち、シリンダ室410から高圧状態に圧縮された冷媒ガスが吐出される上消音室45Aからばね室412の縦孔412Aの開口部分まで連通するような状態で、上支持部材45内部に形成されているバイパス路45B及び縦孔412Aの開口部分を経由して、高圧の冷媒ガスの一部をばね室412へ導入させる。これにより、ばね室412内部に導入された冷媒ガスを、ベーン44の背圧として印加させる。 That is, it is formed inside the upper support member 45 so as to communicate from the upper silencing chamber 45A from which the refrigerant gas compressed to a high pressure state is discharged from the cylinder chamber 410 to the opening portion of the vertical hole 412A of the spring chamber 412. A part of the high-pressure refrigerant gas is introduced into the spring chamber 412 through the bypass passage 45B and the opening of the vertical hole 412A. Thereby, the refrigerant gas introduced into the spring chamber 412 is applied as the back pressure of the vane 44.
 ところで、2段目の圧縮動作が行われ、中間圧状態から高圧状態に圧縮された冷媒ガスは、上述したように、シリンダ室410内部の高圧室側から吐出ポート415Aを通り、上支持部材45に形成された吐出消音室45Aを経て、図示しない冷媒吐出管により密閉容器1Aの外部配管(冷媒回路)に吐出される。この場合、その冷媒ガスには、そのガスの種類にもよるが、例えば炭酸ガスなどの場合にはΔ8MPa程度の差圧(例えば、5MPa→13MPa)となるまで大きく昇圧される。このように差圧が大きいと、圧縮室内外などでの漏れ防止のためシール材として多量のオイルが必要となるが、一般に、内部低圧型や内部中圧型の圧縮機では、供給したオイルが密閉容器1A内部で分離され再使用されることなく、直接外部配管に放出されるので、冷凍サイクル中のオイル量が増加していた。 By the way, the refrigerant gas that has been compressed in the second stage and compressed from the intermediate pressure state to the high pressure state passes through the discharge port 415A from the high pressure chamber side inside the cylinder chamber 410 and passes through the upper support member 45 as described above. After passing through the discharge silencing chamber 45A, the refrigerant is discharged to an external pipe (refrigerant circuit) of the sealed container 1A by a refrigerant discharge pipe (not shown). In this case, although the refrigerant gas depends on the type of the gas, for example, in the case of carbon dioxide gas or the like, the refrigerant gas is greatly increased in pressure until a differential pressure of about Δ8 MPa (for example, 5 MPa → 13 MPa). When the differential pressure is large, a large amount of oil is required as a seal material to prevent leakage inside and outside the compression chamber. Generally, however, the supplied oil is hermetically sealed in internal low-pressure and internal / intermediate-pressure compressors. The oil amount in the refrigeration cycle increased because it was discharged directly to the external piping without being separated and reused inside the container 1A.
 そこで、本発明では、上述したように、中間仕切板5の内部に、ばね室412の縦孔412Aの下部開口に連通可能な回収用入口51Aを有する回収路51を形成している。 Therefore, in the present invention, as described above, the recovery path 51 having the recovery inlet 51A that can communicate with the lower opening of the vertical hole 412A of the spring chamber 412 is formed inside the intermediate partition plate 5.
 即ち、第1の回転圧縮要素3の下シリンダ31から中圧状態まで圧縮されてきた冷媒ガスが、図5(A)に示すようにベーン44が所定位置より前に前進移動することで、ベーン室411の内部空間が増大する。そして、このベーン室411内部空間の増大に伴い、これと連通するばね室412の内部圧力が低下することで、第2の回転圧縮要素4の上シリンダ41の高圧状態にある消音室45A側との間に差圧が発生する。 That is, the refrigerant gas that has been compressed from the lower cylinder 31 of the first rotary compression element 3 to the intermediate pressure state moves forward as the vane 44 moves forward from a predetermined position as shown in FIG. The internal space of the chamber 411 increases. Then, as the internal space of the vane chamber 411 increases, the internal pressure of the spring chamber 412 communicating with the vane chamber 411 decreases, so that the silencing chamber 45A in the high pressure state of the upper cylinder 41 of the second rotary compression element 4 Differential pressure is generated during
 その結果、この差圧により、図5(B)に示すように、第2の回転圧縮要素4の上シリンダ41の吸込ポート414Aから上シリンダ室41のばね室412へ向けて、消音室45A内部の冷媒ガス及びこれに混入されているオイルが、バイパス路45Bを介して流入する。この結果、前述したように、ばね室412の内圧が増大することにより、この高圧状態の冷媒ガスを利用してベーン44の背面には、高圧の冷媒ガスによる圧力がスプリング46の弾性力とともに付与される。 As a result, due to this differential pressure, as shown in FIG. 5B, the interior of the sound deadening chamber 45A is moved from the suction port 414A of the upper cylinder 41 of the second rotary compression element 4 toward the spring chamber 412 of the upper cylinder chamber 41. Refrigerant gas and oil mixed therein flow in via the bypass passage 45B. As a result, as described above, when the internal pressure of the spring chamber 412 increases, the pressure of the high-pressure refrigerant gas is applied to the back surface of the vane 44 together with the elastic force of the spring 46 using this high-pressure refrigerant gas. Is done.
 また、このとき、図5(A)に示すように、シリンダ室410には、ベーン44で2分割された一方側の空間である、高圧室(図5(A)では下部側空間)内の冷媒ガスが高温高圧状態の状態となり、高圧室側から吐出ポート415Aを通り、上支持部材45に形成された吐出消音室45Aを経て図示しない冷媒吐出管により密閉容器1Aの外部配管(冷媒回路)に吐出されるが、この冷媒ガス中にはオイルの混入が可及的に抑えられる。 At this time, as shown in FIG. 5 (A), the cylinder chamber 410 has a high-pressure chamber (lower space in FIG. 5 (A)), which is a space divided into two by the vane 44. The refrigerant gas enters a high-temperature and high-pressure state, passes through the discharge port 415A from the high-pressure chamber side, passes through the discharge silencer chamber 45A formed in the upper support member 45, and is connected to the external pipe (refrigerant circuit) of the sealed container 1A by a refrigerant discharge pipe (not shown). However, the mixture of oil is suppressed as much as possible in the refrigerant gas.
 即ち、図5(A)に示す状態のとき、高圧状態となったばね室412の縦孔412Aの下部側の開口部分には、それまでベーン44で塞がれていた回収路51の回収用入口51Aが、ベーン44の前進動作で開放される。このため、高圧状態のばね室412と中間仕切板5の回収路51内部とが連通する。一方、この回収路51の回収用出口51Bは、ロータリコンプレッサ1の密閉容器1A内部に対して常時開放された連通状態である。 That is, in the state shown in FIG. 5 (A), the recovery inlet of the recovery path 51 that has been blocked by the vane 44 up to the opening portion on the lower side of the vertical hole 412A of the spring chamber 412 in a high pressure state. 51A is released by the forward movement of the vane 44. For this reason, the spring chamber 412 in a high pressure state communicates with the inside of the recovery path 51 of the intermediate partition plate 5. On the other hand, the recovery outlet 51 </ b> B of the recovery path 51 is in a communication state that is always open to the inside of the sealed container 1 </ b> A of the rotary compressor 1.
 従って、高圧状態にあるばね室412の縦孔412Aから中圧状態にある密閉容器1A内部に向けて、その差圧を利用してばね室412内部のオイル、さらには第2の回転圧縮要素4の上シリンダ41の高圧状態にある消音室45A側のオイルまでもが排出される。かくして、吐出消音室45Aを経て図示しない冷媒吐出管により密閉容器1Aの外部に吐出される筈の冷媒ガス中に混在していたオイルの多くが、密閉容器1Aの外部に吐出されるのではなく、密閉容器1Aから外部へ吐出される前に密閉容器1A内部に回収されるわけである。 Accordingly, the oil in the spring chamber 412 and further the second rotary compression element 4 are utilized by utilizing the differential pressure from the vertical hole 412A of the spring chamber 412 in the high pressure state toward the inside of the sealed container 1A in the intermediate pressure state. Even the oil in the silencing chamber 45A in the high pressure state of the upper cylinder 41 is discharged. Thus, most of the oil mixed in the refrigerant gas discharged from the closed container 1A through the discharge silencer chamber 45A to the outside of the sealed container 1A is not discharged to the outside of the sealed container 1A. Before being discharged from the sealed container 1A to the outside, it is recovered inside the sealed container 1A.
 従って、従来は、オイルの多くが、図示しない冷媒吐出管により密閉容器1Aの外部に吐出されていたものが、本実施形態によれば、密閉容器1Aの外部の冷凍サイクルに漏出されることが効果的に抑えられる。この結果、冷凍効果が高められるとともに、冷凍サイクルへ漏出することで減少していたオイルの補給量及び補給頻度を低下させることができる。 Therefore, conventionally, most of the oil that has been discharged to the outside of the sealed container 1A by a refrigerant discharge pipe (not shown) may be leaked to the refrigeration cycle outside the sealed container 1A according to this embodiment. Effectively suppressed. As a result, the refrigeration effect is enhanced, and the oil replenishment amount and replenishment frequency that have been reduced by leaking into the refrigeration cycle can be reduced.
 また、従来は、冷凍サイクルへのオイルの漏出量が無視できない程度に多い場合に必要とされていたため、密閉容器1Aに付設して外部に設置していたオイルセパレータ等のオイル分離手段及び返油用の配管の設置が、本実施形態によれば省くことができる。このため、その分だけ設置スペースの削減を図ることができるとともに、コストの削減も可能となる。 Further, conventionally, it has been required when the amount of oil leaked into the refrigeration cycle is so large that it cannot be ignored. Therefore, oil separation means such as an oil separator attached to the sealed container 1A and installed outside and oil return According to the present embodiment, the installation of the piping for use can be omitted. For this reason, the installation space can be reduced by that amount, and the cost can be reduced.
 なお、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載の要旨を逸脱しない範囲で各種の変形実施が可能である。 It should be noted that the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims.
 即ち、本実施形態では、上下2段の回転圧縮要素からなる多段圧縮式ロータリコンプレッサで構成したが、3段以上の回転圧縮要素からなる多段圧縮式ロータリコンプレッサであってもよい。その場合には、少なくとも、最終段の回転圧縮要素と次位の回転圧縮要素との間に介装させる中間仕切板に、回収路を設ければよい。一方、最終段の回転圧縮要素の直上の上支持部材には、バイパス路を設けるようにする。 In other words, in the present embodiment, the multi-stage compression rotary compressor is composed of upper and lower two-stage rotary compression elements, but a multi-stage compression rotary compressor composed of three or more stages of rotary compression elements may be used. In that case, a recovery path may be provided at least in the intermediate partition plate interposed between the rotary compression element at the final stage and the rotary compression element at the next stage. On the other hand, a bypass path is provided in the upper support member directly above the final stage rotary compression element.
 さらに、本発明では、単一の回転圧縮要素を備えた構成のものであってもよい。この場合には、回転圧縮要素の一部であるシリンダを挟持する上下の支持部材のうちの下支持部材に回収路を設ければよい。一方、上支持部材には、バイパス路を設けるようにする。 Furthermore, in the present invention, a configuration having a single rotary compression element may be used. In this case, a recovery path may be provided in the lower support member of the upper and lower support members that sandwich the cylinder that is a part of the rotary compression element. On the other hand, a bypass path is provided in the upper support member.
 1  多段圧縮式ロータリコンプレッサ
 1A  密閉容器
 22  ロータ
 23  ステータ
 2  電動要素
 21  回転軸
 3  第1の回転圧縮要素
 31  下シリンダ
 310,410  シリンダ室
 311,411  ベーン室
 312,412  ばね室
 312A  縦孔
 312B  横孔
 313,413  プラグ
 32,42  偏心部
 33,43  ローラ
 34,44  ベーン
 35,45  支持部材
 314,414  吸入孔
 314A  吸入ポート
 315  吐出孔
 315A
  吐出ポート
 35B  浅い溝
 36,46  スプリング
 4  第2の回転要素
 41  上シリンダ
 412A  縦孔
 412B  横孔
 415  吐出孔
 45B  バイパス路
 451  出口
 5  中間仕切板
 51  回収路
 51A  回収口(入口)
 51B  回収用出口
DESCRIPTION OF SYMBOLS 1 Multistage compression type rotary compressor 1A Airtight container 22 Rotor 23 Stator 2 Electric element 21 Rotating shaft 3 1st rotation compression element 31 Lower cylinder 310,410 Cylinder chamber 311,411 Vane chamber 312,412 Spring chamber 312A Vertical hole 312B Horizontal hole 313, 413 Plug 32, 42 Eccentric part 33, 43 Roller 34, 44 Vane 35, 45 Support member 314, 414 Suction hole 314A Suction port 315 Ejection hole 315A
Discharge port 35B Shallow groove 36, 46 Spring 4 Second rotating element 41 Upper cylinder 412A Vertical hole 412B Horizontal hole 415 Discharge hole 45B Bypass path 451 Exit 5 Intermediate partition plate 51 Recovery path 51A Recovery port (inlet)
51B Recovery outlet

Claims (6)

  1.  密閉容器内に、駆動要素と、それぞれ中間仕切板を介して上下の支持部材で挟持され、前記駆動要素にて駆動される多段式の各回転圧縮要素と、を備え、前記各段の回転圧縮要素は、シリンダと、前記駆動要素の回転軸に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室と高圧室とに区画するベーンと、から構成され、前記各段の回転圧縮要素で圧縮され、前記密閉容器内に吐出された中間圧の冷媒ガスを前記最終段の回転圧縮要素に吸引し、圧縮して吐出する内部中圧構造の多段圧縮式ロータリコンプレッサにおいて、
     少なくとも最終段の回転圧縮要素の冷媒吐出側から吐出される前記冷媒ガスが密閉容器外へ送り出される、冷媒ガスの経路の一部から分岐して最終段の回転圧縮要素のベーンを押圧するスプリングが収容されたばね室に連通するバイパス路を備えるとともに、
     前記バイパス路を通り前記冷媒ガスとともに前記ばね室へ送り込まれた、前記冷媒ガス中に混在するオイルを前記密閉容器内の空間へ戻して回収させるために、前記ベーンがローラに向けて前進すると入口が開口されて、前記ばね室が前記密閉容器内の空間と連結される回収路を備えた、
     ことを特徴とする多段圧縮式ロータリコンプレッサ。
    A sealed element is provided with a driving element and multistage rotary compression elements that are sandwiched between upper and lower support members via intermediate partition plates and driven by the driving element, respectively. The element includes a cylinder, a roller that is fitted to a rotation shaft of the drive element and rotates eccentrically in the cylinder, and a vane that abuts on the roller and divides the cylinder into a low pressure chamber and a high pressure chamber. A multi-stage structure having an internal / intermediate pressure structure in which the intermediate-pressure refrigerant gas compressed by the rotary compression element of each stage and discharged into the hermetic container is sucked into the rotary compression element of the final stage, and compressed and discharged. In compression type rotary compressor,
    A spring for branching from a part of the refrigerant gas path for pressing the vane of the final stage rotary compression element, wherein the refrigerant gas discharged from at least the refrigerant discharge side of the final stage rotary compression element is sent out of the sealed container; While having a bypass passage communicating with the accommodated spring chamber,
    In order to return the oil mixed in the refrigerant gas, which has been fed into the spring chamber together with the refrigerant gas through the bypass path, to the space in the sealed container, the inlet is moved forward toward the roller. Is provided, and the spring chamber is provided with a recovery path connected to the space in the sealed container,
    A multi-stage compression rotary compressor characterized by that.
  2.  前記バイパス路は、最終段の回転圧縮要素のシリンダ直上の前記上支持部材の内部に設けられているとともに、
     前記回収路は、厚さ方向に切断したときの断面が略L字形状を呈するものを、前記最終段の回転圧縮要素のシリンダの直下の、前記中間仕切板の内部に設けられている、
     ことを特徴とする、請求項1に記載の多段圧縮式ロータリコンプレッサ。
    The bypass path is provided inside the upper support member directly above the cylinder of the rotary compression element of the final stage,
    The recovery path is provided inside the intermediate partition plate, directly below the cylinder of the rotary compression element of the final stage, in which the cross section when cut in the thickness direction has a substantially L shape.
    The multistage compression rotary compressor according to claim 1, wherein the multistage compression rotary compressor is provided.
  3.  密閉容器内に、駆動要素と、中間仕切板を介して上下の支持部材で挟持され、前記駆動要素にて駆動される第1及び第2の回転圧縮要素と、を備え、前記第2の回転圧縮要素は、シリンダと、前記駆動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室と高圧室とに区画するベーンとから構成され、前記第1の回転圧縮要素で圧縮され、前記密閉容器内に吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素に吸引し、圧縮して吐出する内部中圧構造の多段圧縮式ロータリコンプレッサにおいて、
     前記第2の回転圧縮要素の冷媒吐出側から吐出される前記冷媒ガスが密閉容器外へ送り出される、冷媒ガスの経路の一部から分岐して前記第2の回転圧縮要素のベーンを押圧するスプリングが収容されたばね室に連通するバイパス路を備えるとともに、
     前記バイパス路を通り前記冷媒ガスとともに前記ばね室へ送り込まれた、前記冷媒ガス中に混在するオイルを前記密閉容器内の空間へ戻して回収させるために、前記第2の回転圧縮要素のベーンがローラに向けて前進すると入口が開口されて、前記ばね室が前記密閉容器内の空間と連結される回収路を備え、
     前記回収路は、前記ベーンが所定位置まで前進すると、ベーンに封鎖されていた回収用入口が開口されてばね室内に送り込まれていたオイルが密閉容器内の空間へ回収される、
     ことを特徴とする多段圧縮式ロータリコンプレッサ。
    In the sealed container, a drive element and first and second rotary compression elements sandwiched between upper and lower support members via an intermediate partition plate and driven by the drive element, the second rotation The compression element includes a cylinder, a roller that is fitted to an eccentric portion formed on a rotation shaft of the drive element and rotates eccentrically in the cylinder, and a low pressure chamber and a high pressure chamber that are in contact with the roller and are inside the cylinder. The refrigerant gas is compressed by the first rotary compression element and discharged into the hermetic container, and the intermediate pressure refrigerant gas is sucked into the second rotary compression element, compressed and discharged. In multi-stage compression rotary compressor with internal / intermediate pressure structure,
    A spring that branches off from a part of the refrigerant gas path where the refrigerant gas discharged from the refrigerant discharge side of the second rotary compression element is sent out of the sealed container and presses the vane of the second rotary compression element Including a bypass passage communicating with the spring chamber in which the
    In order to return the oil mixed in the refrigerant gas, which has been sent to the spring chamber together with the refrigerant gas through the bypass, to the space in the sealed container, the vanes of the second rotary compression element are provided. When it advances toward the roller, the inlet is opened, and the spring chamber is provided with a recovery path connected to the space in the sealed container,
    In the recovery path, when the vane advances to a predetermined position, the recovery inlet that has been blocked by the vane is opened, and the oil that has been fed into the spring chamber is recovered into the space in the sealed container,
    A multi-stage compression rotary compressor characterized by that.
  4.  前記バイパス路は、第2の回転圧縮要素のシリンダ直上の前記上支持部材の内部に設けられているとともに、
     前記回収路は、厚さ方向の断面が略L字形状を呈するものを、前記第2の回転圧縮要素のシリンダの直下の、中間仕切板の内部に設けられている、
     ことを特徴とする、請求項3に記載の多段圧縮式ロータリコンプレッサ。
    The bypass path is provided inside the upper support member directly above the cylinder of the second rotary compression element,
    The recovery path is provided inside the intermediate partition plate, directly below the cylinder of the second rotary compression element, in which the cross section in the thickness direction has a substantially L shape.
    The multi-stage compression rotary compressor according to claim 3, wherein
  5.  密閉容器内に、駆動要素と、該駆動要素にて駆動される単一の回転圧縮要素と、を備え、この回転圧縮要素は、上下支持部材で挟持されたシリンダと、前記駆動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室と高圧室とに区画するベーンと、から構成され、前記回転圧縮要素の密閉容器内で低圧の冷媒ガスを圧縮して吐出すると共に、前記回転圧縮要素の冷媒吐出側の圧力が前記ベーンの背圧として印加される、内部低圧構造の圧縮式ロータリコンプレッサにおいて、
     回転圧縮要素の冷媒吐出側から吐出される冷媒ガスが密閉容器外へ送り出される、冷媒ガスの吐出経路の一部から分岐し、回転圧縮要素のベーンを押圧するスプリングが収容されたばね室に連通するバイパス路を備えるとともに、
     前記バイパス路を通り前記ばね室へ背圧用の冷媒ガスとともに送り込まれた、前記冷媒ガス中に混在するオイルを前記密閉容器内の空間へ戻して回収されるために、前記ベーンがローラに向けて前進すると入口が開口されて、前記ばね室が前記密閉容器内の空間と連結される回収路を備えた、
     ことを特徴とする圧縮式ロータリコンプレッサ。
    The sealed container includes a drive element and a single rotary compression element driven by the drive element. The rotary compression element includes a cylinder sandwiched between upper and lower support members, and a rotation shaft of the drive element. A roller that is fitted to an eccentric portion formed in the cylinder and rotates eccentrically in the cylinder, and a vane that abuts the roller and divides the cylinder into a low pressure chamber and a high pressure chamber. In a compression type rotary compressor having an internal low-pressure structure, in which a low-pressure refrigerant gas is compressed and discharged in a sealed container of the element, and a pressure on the refrigerant discharge side of the rotary compression element is applied as a back pressure of the vane.
    The refrigerant gas discharged from the refrigerant discharge side of the rotary compression element is branched out from a part of the refrigerant gas discharge path where the refrigerant gas is sent out of the hermetic container, and communicates with a spring chamber containing a spring that presses the vane of the rotary compression element. With a bypass,
    In order to return the oil mixed in the refrigerant gas, which is fed together with the refrigerant gas for back pressure through the bypass path, to the space in the sealed container, and collect the oil toward the roller. An inlet is opened when moving forward, and the spring chamber has a recovery path connected to the space in the sealed container;
    A compression-type rotary compressor characterized by that.
  6.  前記バイパス路は、回転圧縮要素のシリンダ直上の前記上支持部材の内部に設けられているとともに、
     前記回収路は、厚さ方向の断面が略L字形状を呈するものを、前記回転圧縮要素のシリンダ直下の前記下支持部材の内部に設けられている、
     ことを特徴とする、請求項5に記載の圧縮式ロータリコンプレッサ。
    The bypass path is provided inside the upper support member directly above the cylinder of the rotary compression element,
    The recovery path has a substantially L-shaped cross section in the thickness direction, and is provided inside the lower support member directly below the cylinder of the rotary compression element.
    The compression type rotary compressor according to claim 5, wherein
PCT/JP2011/071493 2011-02-28 2011-09-21 Multistage-compression rotary compressor and compression rotary compressor WO2012117599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180068677.3A CN103415705B (en) 2011-02-28 2011-09-21 Multiple compression rotary compressor and compression type rotary compressor
JP2013502140A JPWO2012117599A1 (en) 2011-02-28 2011-09-21 Multistage compression rotary compressor and compression rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-041781 2011-02-28
JP2011041781 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117599A1 true WO2012117599A1 (en) 2012-09-07

Family

ID=46757549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071493 WO2012117599A1 (en) 2011-02-28 2011-09-21 Multistage-compression rotary compressor and compression rotary compressor

Country Status (3)

Country Link
JP (1) JPWO2012117599A1 (en)
CN (1) CN103415705B (en)
WO (1) WO2012117599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927499A4 (en) * 2013-10-31 2016-07-06 Guangdong Meizhi Compressor Co Ltd Rotation type compressor and refrigeration cycle apparatus
US10267539B2 (en) 2014-02-17 2019-04-23 Carrier Corporation Hot gas bypass for two-stage compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720312B (en) * 2020-06-18 2022-08-19 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133367A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Multistep gas compressor provided with bypass valve device
JP2002089472A (en) * 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd Rotary multistage compressor
JP2002147375A (en) * 2000-11-15 2002-05-22 Daikin Ind Ltd Rotary compressor
JP2002303284A (en) * 2001-04-09 2002-10-18 Matsushita Electric Ind Co Ltd Rotary multistage compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI263762B (en) * 2002-08-27 2006-10-11 Sanyo Electric Co Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP2007100544A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Compressor for storing motor-driven element
KR101316247B1 (en) * 2007-07-31 2013-10-08 엘지전자 주식회사 2 stage rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133367A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Multistep gas compressor provided with bypass valve device
JP2002089472A (en) * 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd Rotary multistage compressor
JP2002147375A (en) * 2000-11-15 2002-05-22 Daikin Ind Ltd Rotary compressor
JP2002303284A (en) * 2001-04-09 2002-10-18 Matsushita Electric Ind Co Ltd Rotary multistage compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927499A4 (en) * 2013-10-31 2016-07-06 Guangdong Meizhi Compressor Co Ltd Rotation type compressor and refrigeration cycle apparatus
US10072661B2 (en) 2013-10-31 2018-09-11 Guangdong Meizhi Compressor Co., Ltd. Rotatory compressor and refrigerating cycle device
US10267539B2 (en) 2014-02-17 2019-04-23 Carrier Corporation Hot gas bypass for two-stage compressor

Also Published As

Publication number Publication date
CN103415705B (en) 2016-01-13
CN103415705A (en) 2013-11-27
JPWO2012117599A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
EP2639457B1 (en) Scroll compressor
WO2009098874A1 (en) Compressor and freezer
US9702361B2 (en) Claw pump with relief space
WO2012117599A1 (en) Multistage-compression rotary compressor and compression rotary compressor
JP2002130156A (en) Scroll fluid machine having multistage type fluid compressing part
JP2003148366A (en) Multiple stage gas compressor
JP5551644B2 (en) Scroll compressor
WO2005010372A1 (en) Scroll compressor
KR20140012858A (en) Scroll compressor
JP2003254276A (en) Rotary compressor
JPH11241691A (en) Scroll type electric compressor for co2
KR101309464B1 (en) Compressor
JP6130271B2 (en) Scroll compressor
JP2012177353A (en) Multistage compression type rotary compressor and compression type rotary compressor
JP2003097471A (en) Rotary gas compressor
KR101454239B1 (en) Scroll compressor and refrigeration cycle system having the same
JP2002317784A (en) Rotary two-stage compressor
JP5781355B2 (en) Hermetic rotary compressor
JP2009264161A (en) Vane rotary type compressor
JP2002227781A (en) Scroll type compressor and back pressure adjusting method
JP7429891B2 (en) scroll compressor
KR20040107723A (en) Safety apparatus for scroll compressor
JP2001140781A (en) Gas compressor
JP4080805B2 (en) Scroll fluid machinery
JP2001304144A (en) Horizontal scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859990

Country of ref document: EP

Kind code of ref document: A1