WO2012117456A1 - Differential driver circuit - Google Patents

Differential driver circuit Download PDF

Info

Publication number
WO2012117456A1
WO2012117456A1 PCT/JP2011/003817 JP2011003817W WO2012117456A1 WO 2012117456 A1 WO2012117456 A1 WO 2012117456A1 JP 2011003817 W JP2011003817 W JP 2011003817W WO 2012117456 A1 WO2012117456 A1 WO 2012117456A1
Authority
WO
WIPO (PCT)
Prior art keywords
replica
current source
driver circuit
resistance value
transistors
Prior art date
Application number
PCT/JP2011/003817
Other languages
French (fr)
Japanese (ja)
Inventor
義英 小松
剛志 江渕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012117456A1 publication Critical patent/WO2012117456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018514Interface arrangements with at least one differential stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission

Definitions

  • the present invention relates to a differential driver circuit, and more particularly to a differential serial data transmission technique.
  • the differential driver circuit is often configured by a current mode differential driver system in which the direction of current is changed by an output switch using a constant current circuit.
  • This method is widely used in the LVDS (Low Voltage Differential Driver) transmission method.
  • a constant current of about 2 mA flows through the terminating resistor 100 ⁇ on the receiving side, so that the amplitude on the receiving side is guaranteed, so that long distance transmission from several tens of centimeters to several meters is possible, parasitic wiring Advantages that are not easily affected by resistance are listed.
  • a current mode differential driver circuit having a configuration for correcting an output current in accordance with a change in common mode potential is also known (see Patent Document 2).
  • the constant current source is designed to be saturated, For example, a power supply voltage of 1.8 V or more is required. In this case, for example, a differential driver circuit that operates with a power supply voltage of 1.2 V cannot be realized.
  • the output impedance of a differential driver circuit that outputs a signal to a transmission line having a differential impedance of 100 ⁇ is preferably 50 ⁇ .
  • the output switch transistor of the differential driver circuit is completely turned on / off as a digital transistor, the output impedance is lowered. For this reason, reflection tends to occur at the output end of the differential driver circuit.
  • the present invention compensates for resistance variations and transistor variations by mounting a circuit that guarantees the required output voltage amplitude in a current mode differential driver circuit, and is a differential that is strong for long-distance transmission with a low power supply voltage.
  • An object is to realize a driver circuit.
  • the present invention provides a differential driver circuit for driving a transmission line pair so that a current flows through a termination resistor connected between the transmission line pair.
  • a configuration including a circuit and a feedback circuit is employed. That is, the driver body is connected between the first current source transistor on the power source side, the second current source transistor on the ground side, and the first current source transistor and the second current source transistor, respectively, via the transmission line pair. And a plurality of output switch transistors for controlling the current flowing through the terminating resistor.
  • the replica circuit includes a replica termination resistor having a resistance value greater than the resistance value of the termination resistor, an on-resistance value greater than each of the plurality of output switch transistors, and a first current source transistor and a second current source transistor.
  • the feedback circuit controls the first current source transistor according to the plus-side virtual potential so that the plus-side potential and the minus-side potential of the transmission line pair become predetermined potentials, and according to the minus-side virtual potential.
  • the second current source transistor is controlled.
  • the plus-side virtual potential and the minus-side virtual potential generated by the replica circuit are fed back, so that the plus-side potential and the minus-side potential of the transmission line pair are guaranteed even with a low power supply voltage. be able to. That is, it is possible to eliminate the influence of resistance variation and current variation from the differential voltage amplitude generated in the termination resistor.
  • FIG. 1 is a circuit diagram showing a configuration of a differential driver circuit according to an embodiment of the present invention. It is a block diagram which shows the use condition of the differential driver circuit of FIG. It is a figure which shows the frequency characteristic of the output impedance of the differential driver circuit of FIG. It is a figure which shows the output characteristic of the differential driver circuit of FIG. It is a figure which shows the output characteristic of the differential driver circuit which concerns on a comparative example.
  • FIG. 1 shows the configuration of the differential driver circuit 10 according to the present embodiment
  • FIG. 2 shows the usage state of the differential driver circuit 10.
  • a differential driver circuit 10 is a circuit for generating a differential signal for data communication between devices, for example, and outputs constituting the driver bodies 11 and 12.
  • resistors R11 and R12 inserted in series in the feedback loop, resistor R13 and capacitor C1 constituting the first filter, resistor R14 and capacitor C2 constituting the second filter, and a positive virtual potential
  • a differential amplifier circuit 21 that controls the current source transistor M9 so that is equal to the reference potential 0.3V, and a differential amplifier that controls the current source transistor M10 so that the negative virtual potential is equal to the reference potential 0.1V
  • a circuit 22 a potential generating circuit 30 for generating a reference potential of 0.3 V and 0.1 V from a power supply VDD of 1.2 V, for example, and a current source transistor M9 and output switch transistors M1 and M3 so as to constitute a first AC impedance circuit Between the resistor R15 and the capacitor C3 inserted between the connection point between the resistor R15 and the power supply VDD or the ground VSS.
  • a resistor R16 and a capacitor C4 inserted in series between the connection point of the current source transistor M10 and the output switch transistors M2 and M4 and the power supply VDD or the ground VSS so as to constitute a column circuit and a second AC impedance circuit. Circuit.
  • the plus side output terminal DATA_P and the minus side output terminal DATA_N of the differential driver circuit 10 are each a receiving device via a transmission line pair L1, L2 having a characteristic impedance of 50 ⁇ , for example. 40 and further connected to the terminating resistor circuit 41.
  • the termination resistor circuit 41 includes termination resistors R17 and R18 each having a resistance value of 50 ⁇ , for example, and switches S1 and S2 that are closed during communication. The connection point of both termination resistors R17 and R18 is connected to the power supply VDD via the capacitor C5.
  • the differential driver circuit 10 drives the transmission line pair L1 and L2 so that a current flows through the series circuit of the terminating resistors R17 and R18.
  • the differential plus side potential Vp from one transmission line L1 and the differential minus side potential Vn from the other transmission line L2 are applied to the series circuit of the termination resistors R17 and R18, respectively.
  • the circuit configuration of the driver bodies 11 and 12 including the output switch transistors M1 to M4 and the protection resistors R1 to R4 in FIG. 1 is n-parallel with the same configuration (n is a value larger than 1, especially an integer value, for example, 15). It is said.
  • the replica transistors M5 to M8 have an on-resistance value that is n times the on-resistance value of the output switch transistors M1 to M4, and the replica protection resistors R5 to R8 have a resistance that is n times the resistance value of the protection resistors R1 to R4.
  • the four replica transistors M5 to M8 are connected between the current source transistor M9 on the power supply VDD side and the current source transistor M10 on the ground VSS side, and are turned on simultaneously in response to the enable signal ENA.
  • a positive virtual potential and a negative virtual potential are generated by flowing a current 1 / n of the current flowing through the output switch transistors M1 to M4 through R10.
  • the differential amplifier circuit 21 causes the current source transistor M9 to respond to the plus-side virtual potential so that the differential plus-side potential Vp and the differential minus-side potential Vn of the transmission line pair L1, L2 are respectively predetermined potentials.
  • the differential amplifier circuit 22 feedback-controls the current source transistor M10 in accordance with the negative virtual potential.
  • the protection resistors R1 to R4 are inserted in the current paths of the output switch transistors M1 to M4 in the driver bodies 11 and 12, it is possible to increase the ESD (Electro-Static Discharge) resistance of the differential driver circuit 10. Further, since the protection resistors R1 to R4 as well as the output switch transistors M1 to M4 have an n-parallel configuration, their resistance components can be made small enough to be ignored in total.
  • the replica circuits 13 and 14 can be operated with a slight auxiliary current. The power consumption of the entire circuit 10 can be suppressed.
  • FIG. 3 shows the frequency characteristics of the output impedance Zout of the differential driver circuit 10 as seen from the transmission line side.
  • the output impedance Zout is obtained by adding the protective resistance R2 and the on-resistance RM2 of the output switch transistor M2 to the parallel impedance of the on-resistance RM10 of the current source transistor M10 and the series impedance of the resistor R16 and the capacitor C4.
  • angular frequency
  • the output impedance Zout can be set to 50 ⁇ in a specific frequency region by appropriately selecting the resistor R16 and the capacitor C4.
  • the series impedance of the resistor R15 and the capacitor C3 works in the same way.
  • the reflection generated at the driver output ends of the transmission line pair L1 and L2 can be reduced by the AC impedance circuits R15 and C3; R16 and C4.
  • FIG. 4 shows the output characteristics of the differential driver circuit 10 of FIG. 1
  • FIG. 5 shows the output characteristics of the differential driver circuit according to the comparative example.
  • the replica circuits 13 and 14 in FIG. 1 are not provided, the current source transistors M9 and M10 are replaced with constant current sources of about 2 mA, respectively, and a power supply voltage of 1.8 V or more is given. .
  • the output waveform of FIG. 4 has less blurring of the waveform mainly in the voltage direction. This indicates that there is little variation due to fluctuations in power supply voltage and temperature, that is, resistance to variations in characteristics of transistors and resistors.
  • the differential driver circuit 10 of FIG. 1 shows that the sensitivity of the characteristic variation is low with respect to the characteristic variations of the transistors and resistors.
  • the differential driver circuit according to the present invention can be designed with a digital transistor having a low threshold, can realize a circuit configuration capable of greatly reducing power consumption, and can realize data transmission with guaranteed output potential. Therefore, it is useful for an interface for communication in a mobile device such as a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

In this current mode differential driver circuit, replica transistors (M5 to M8) having high on-resistance values with respect to output switch transistors (M1 to M4) that configure driver main units (11 and 12) are connected in parallel so that, by causing low current to flow at the replica transistors (M5 to M8) to replica termination transistors (R9 and R10) which have resistance values which are larger than the actual termination resistors, virtual potentials of the plus side and the minus side are acquired at replica circuits (13 and 14) so as to feed-back the virtual potentials to current source transistors (M9 and M10). As a result, variation in resistors and variation in transistors are compensated for in order to achieve a differential driver circuit which performs well for long-distance transmission at a low power supply voltage.

Description

差動ドライバ回路Differential driver circuit
 本発明は、差動ドライバ回路に関し、特に差動シリアルデータ伝送技術に関するものである。 The present invention relates to a differential driver circuit, and more particularly to a differential serial data transmission technique.
 近年、機器間のデータ伝送方式や、ホスト機器とメモリカード等との間におけるデータ伝送方式には様々な伝送方式が用いられている。その中で、伝送速度を高速化する1つの手段として、差動方式が採用されている。差動信号を生成する差動ドライバ回路を用いれば、低振幅での通信が可能になり、高速に信号伝送を実現することができる(特許文献1参照)。 In recent years, various transmission methods have been used as a data transmission method between devices and a data transmission method between a host device and a memory card. Among them, a differential method is adopted as one means for increasing the transmission speed. If a differential driver circuit that generates a differential signal is used, communication with a low amplitude is possible, and signal transmission can be realized at high speed (see Patent Document 1).
 一般的に、差動ドライバ回路は定電流回路を用いて出力スイッチで電流の向きを変化させる電流モード差動ドライバ方式で構成されることが多い。LVDS(Low Voltage Differential Driver)伝送方式では広くこの方式が用いられる。特徴としては約2mAの定電流が受信側にある終端抵抗100Ωに流れるため、受信側の振幅が保証されるので、数十cmから数mに至る長距離伝送が可能になるメリット、配線の寄生抵抗の影響を受け難いメリット等が挙げられる。 Generally, the differential driver circuit is often configured by a current mode differential driver system in which the direction of current is changed by an output switch using a constant current circuit. This method is widely used in the LVDS (Low Voltage Differential Driver) transmission method. As a feature, a constant current of about 2 mA flows through the terminating resistor 100Ω on the receiving side, so that the amplitude on the receiving side is guaranteed, so that long distance transmission from several tens of centimeters to several meters is possible, parasitic wiring Advantages that are not easily affected by resistance are listed.
 なお、コモンモード電位の変動に応じて出力電流を補正する構成を備えた電流モード差動ドライバ回路も知られている(特許文献2参照)。 A current mode differential driver circuit having a configuration for correcting an output current in accordance with a change in common mode potential is also known (see Patent Document 2).
米国特許第6118438号明細書US Pat. No. 6,118,438 特開2004-253859号公報JP 2004-253859 A
 しかしながら、従来の電流モード差動ドライバ回路では、一般的に低電圧化が困難であった。理由としては、トランジスタが電源とグランドとの間に縦積みに少なくとも4段必要になり、更に終端抵抗の振幅分の電位差を確保する必要があるため、定電流源を飽和になるよう設計すると、1.8V以上の電源電圧が必要になってしまうことが挙げられる。これでは、例えば1.2Vの電源電圧で動作する差動ドライバ回路を実現することができない。 However, in the conventional current mode differential driver circuit, it is generally difficult to reduce the voltage. The reason is that at least four stages of transistors are required to be stacked vertically between the power source and the ground, and further, it is necessary to secure a potential difference corresponding to the amplitude of the termination resistor. Therefore, if the constant current source is designed to be saturated, For example, a power supply voltage of 1.8 V or more is required. In this case, for example, a differential driver circuit that operates with a power supply voltage of 1.2 V cannot be realized.
 また、定電流源のばらつきを抑えるために、カスコード構成の電流源にした場合は、縦積み6段のトランジスタが必要になり、益々電源電圧を下げられなくなってしまう。定電流源のばらつきは差動出力電圧に直接影響してしまうため、カスコード構成にできない場合は、電流変化の値は増大傾向となり差動電圧振幅のばらつきは増大する。 In addition, in order to suppress variations in the constant current source, when a current source having a cascode configuration is used, a six-stage transistor is required, and the power supply voltage cannot be lowered more and more. Since the variation in the constant current source directly affects the differential output voltage, if the cascode configuration cannot be achieved, the value of the current change tends to increase and the variation in the differential voltage amplitude increases.
 また、反射の課題も存在する。一般的に差動インピーダンスが100Ωの伝送線路に信号を出力する差動ドライバ回路の出力インピーダンスは50Ωにすることが望ましい。しかしながら、差動ドライバ回路の出力スイッチトランジスタはデジタルトランジスタとして完全にオン・オフ制御されるため、出力インピーダンスが低くなってしまう。そのため、差動ドライバ回路の出力端で反射が出やすい。 There is also a problem of reflection. Generally, the output impedance of a differential driver circuit that outputs a signal to a transmission line having a differential impedance of 100Ω is preferably 50Ω. However, since the output switch transistor of the differential driver circuit is completely turned on / off as a digital transistor, the output impedance is lowered. For this reason, reflection tends to occur at the output end of the differential driver circuit.
 そこで、本発明は、電流モード差動ドライバ回路において、所要の出力電圧振幅を保証する回路を搭載することで抵抗のばらつきやトランジスタのばらつきを補償し、低い電源電圧で長距離伝送に強い差動ドライバ回路を実現することを目的とする。 Therefore, the present invention compensates for resistance variations and transistor variations by mounting a circuit that guarantees the required output voltage amplitude in a current mode differential driver circuit, and is a differential that is strong for long-distance transmission with a low power supply voltage. An object is to realize a driver circuit.
 上記目的を達成するため、本発明は、伝送線路対の間に接続された終端抵抗に電流を流すように当該伝送線路対を駆動する差動ドライバ回路において、次のようなドライバ本体と、レプリカ回路と、フィードバック回路とを備えた構成を採用したものである。すなわち、ドライバ本体は、電源側の第1電流源トランジスタと、グランド側の第2電流源トランジスタと、各々第1電流源トランジスタと第2電流源トランジスタとの間に接続されて伝送線路対を介して終端抵抗に流れる電流を制御するための複数の出力スイッチトランジスタとを有する。レプリカ回路は、終端抵抗の抵抗値よりも大きい抵抗値を持つレプリカ終端抵抗と、各々複数の出力スイッチトランジスタの各々のオン抵抗値よりも大きいオン抵抗値を持ちかつ第1電流源トランジスタと第2電流源トランジスタとの間に接続されてレプリカ終端抵抗に電流を流すことによりプラス側仮想電位とマイナス側仮想電位とを生成する複数のレプリカトランジスタとを有する。フィードバック回路は、伝送線路対のプラス側電位とマイナス側電位とがそれぞれ所定の電位となるように、プラス側仮想電位に応じて第1電流源トランジスタを制御し、かつマイナス側仮想電位に応じて第2電流源トランジスタを制御するものである。 In order to achieve the above object, the present invention provides a differential driver circuit for driving a transmission line pair so that a current flows through a termination resistor connected between the transmission line pair. A configuration including a circuit and a feedback circuit is employed. That is, the driver body is connected between the first current source transistor on the power source side, the second current source transistor on the ground side, and the first current source transistor and the second current source transistor, respectively, via the transmission line pair. And a plurality of output switch transistors for controlling the current flowing through the terminating resistor. The replica circuit includes a replica termination resistor having a resistance value greater than the resistance value of the termination resistor, an on-resistance value greater than each of the plurality of output switch transistors, and a first current source transistor and a second current source transistor. And a plurality of replica transistors that are connected between the current source transistors and generate a plus-side virtual potential and a minus-side virtual potential by flowing a current through the replica termination resistor. The feedback circuit controls the first current source transistor according to the plus-side virtual potential so that the plus-side potential and the minus-side potential of the transmission line pair become predetermined potentials, and according to the minus-side virtual potential. The second current source transistor is controlled.
 本発明によれば、レプリカ回路により生成されたプラス側仮想電位とマイナス側仮想電位とをフィードバックするようにしたので、低い電源電圧でも伝送線路対のプラス側電位とマイナス側電位とをそれぞれ保証することができる。つまり、終端抵抗に生じる差動電圧振幅から抵抗ばらつきや電流ばらつきの影響を排除することが可能になる。 According to the present invention, the plus-side virtual potential and the minus-side virtual potential generated by the replica circuit are fed back, so that the plus-side potential and the minus-side potential of the transmission line pair are guaranteed even with a low power supply voltage. be able to. That is, it is possible to eliminate the influence of resistance variation and current variation from the differential voltage amplitude generated in the termination resistor.
本発明の実施形態に係る差動ドライバ回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a differential driver circuit according to an embodiment of the present invention. 図1の差動ドライバ回路の使用状態を示すブロック図である。It is a block diagram which shows the use condition of the differential driver circuit of FIG. 図1の差動ドライバ回路の出力インピーダンスの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the output impedance of the differential driver circuit of FIG. 図1の差動ドライバ回路の出力特性を示す図である。It is a figure which shows the output characteristic of the differential driver circuit of FIG. 比較例に係る差動ドライバ回路の出力特性を示す図である。It is a figure which shows the output characteristic of the differential driver circuit which concerns on a comparative example.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本実施形態に係る差動ドライバ回路10の構成を、図2は差動ドライバ回路10の使用状態をそれぞれ示している。 FIG. 1 shows the configuration of the differential driver circuit 10 according to the present embodiment, and FIG. 2 shows the usage state of the differential driver circuit 10.
 図1に示すように、本実施形態に係る差動ドライバ回路10は、例えば機器間のデータ通信のための差動信号を生成するための回路であって、ドライバ本体11,12を構成する出力スイッチトランジスタM1~M4及び保護抵抗R1~R4と、差動ドライバ回路10のプラス側出力端子DATA_Pと、差動ドライバ回路10のマイナス側出力端子DATA_Nと、レプリカ回路13,14を構成するレプリカトランジスタM5~M8、レプリカ保護抵抗R5~R8及びレプリカ終端抵抗R9,R10と、電源VDD側の電流源トランジスタM9と、グランドVSS側の電流源トランジスタM10と、シリアルデータ入力信号SERとイネーブル信号ENAとを受けて出力スイッチトランジスタM1~M4のオン・オフを制御する論理回路15,16と、フィードバックループに直列挿入された抵抗R11,R12と、第1のフィルタを構成する抵抗R13及び容量C1と、第2のフィルタを構成する抵抗R14及び容量C2と、プラス側仮想電位が基準電位0.3Vと等しくなるように電流源トランジスタM9を制御する差動アンプ回路21と、マイナス側仮想電位が基準電位0.1Vと等しくなるように電流源トランジスタM10を制御する差動アンプ回路22と、例えば1.2Vの電源VDDから基準電位0.3V及び0.1Vを生成する電位発生回路30と、第1ACインピーダンス回路を構成するように電流源トランジスタM9と出力スイッチトランジスタM1及びM3との接続点と、電源VDD又はグランドVSSとの間に挿入された、抵抗R15と容量C3との直列回路と、第2ACインピーダンス回路を構成するように電流源トランジスタM10と出力スイッチトランジスタM2及びM4との接続点と、電源VDD又はグランドVSSとの間に挿入された、抵抗R16と容量C4と直列回路とを備える。 As shown in FIG. 1, a differential driver circuit 10 according to the present embodiment is a circuit for generating a differential signal for data communication between devices, for example, and outputs constituting the driver bodies 11 and 12. The switch transistors M1 to M4 and the protective resistors R1 to R4, the positive output terminal DATA_P of the differential driver circuit 10, the negative output terminal DATA_N of the differential driver circuit 10, and the replica transistor M5 constituting the replica circuits 13 and 14 M8, replica protection resistors R5 to R8 and replica termination resistors R9 and R10, a current source transistor M9 on the power supply VDD side, a current source transistor M10 on the ground VSS side, a serial data input signal SER, and an enable signal ENA To control the on / off of the output switch transistors M1 to M4. 15 and 16, resistors R11 and R12 inserted in series in the feedback loop, resistor R13 and capacitor C1 constituting the first filter, resistor R14 and capacitor C2 constituting the second filter, and a positive virtual potential A differential amplifier circuit 21 that controls the current source transistor M9 so that is equal to the reference potential 0.3V, and a differential amplifier that controls the current source transistor M10 so that the negative virtual potential is equal to the reference potential 0.1V A circuit 22, a potential generating circuit 30 for generating a reference potential of 0.3 V and 0.1 V from a power supply VDD of 1.2 V, for example, and a current source transistor M9 and output switch transistors M1 and M3 so as to constitute a first AC impedance circuit Between the resistor R15 and the capacitor C3 inserted between the connection point between the resistor R15 and the power supply VDD or the ground VSS. A resistor R16 and a capacitor C4 inserted in series between the connection point of the current source transistor M10 and the output switch transistors M2 and M4 and the power supply VDD or the ground VSS so as to constitute a column circuit and a second AC impedance circuit. Circuit.
 図2に示すように、本実施形態に係る差動ドライバ回路10のプラス側出力端子DATA_P及びマイナス側出力端子DATA_Nは、各々例えば50Ωの特性インピーダンスを持つ伝送線路対L1,L2を介して受信機器40へ導入され、更に終端抵抗回路41に接続される。終端抵抗回路41は、各々例えば50Ωの抵抗値を持つ終端抵抗R17,R18と、通信時に閉状態にされるスイッチS1,S2とを備える。両終端抵抗R17,R18の接続点は、容量C5を介して電源VDDに接続される。両スイッチS1,S2が閉じた状態で、差動ドライバ回路10は、終端抵抗R17及びR18の直列回路に電流を流すように伝送線路対L1,L2を駆動する。これにより、終端抵抗R17及びR18の直列回路に一方の伝送線路L1から差動プラス側電位Vpが、他方の伝送線路L2から差動マイナス側電位Vnがそれぞれ印加される結果、終端抵抗R17及びR18の直列回路の両端に差動電圧振幅Vdiffが得られる。この差動電圧振幅Vdiffは、
 Vdiff=|Vp-Vn|
で表される。
As shown in FIG. 2, the plus side output terminal DATA_P and the minus side output terminal DATA_N of the differential driver circuit 10 according to the present embodiment are each a receiving device via a transmission line pair L1, L2 having a characteristic impedance of 50Ω, for example. 40 and further connected to the terminating resistor circuit 41. The termination resistor circuit 41 includes termination resistors R17 and R18 each having a resistance value of 50Ω, for example, and switches S1 and S2 that are closed during communication. The connection point of both termination resistors R17 and R18 is connected to the power supply VDD via the capacitor C5. In a state where both switches S1 and S2 are closed, the differential driver circuit 10 drives the transmission line pair L1 and L2 so that a current flows through the series circuit of the terminating resistors R17 and R18. As a result, the differential plus side potential Vp from one transmission line L1 and the differential minus side potential Vn from the other transmission line L2 are applied to the series circuit of the termination resistors R17 and R18, respectively. As a result, the termination resistors R17 and R18. A differential voltage amplitude Vdiff is obtained at both ends of the series circuit. This differential voltage amplitude Vdiff is
Vdiff = | Vp−Vn |
It is represented by
 さて、図1中の出力スイッチトランジスタM1~M4及び保護抵抗R1~R4からなるドライバ本体11,12の回路構成は、同じ構成のn並列(nは1より大きい値。特に整数値、例えば15)とされる。これにより、レプリカトランジスタM5~M8は出力スイッチトランジスタM1~M4のオン抵抗値のn倍のオン抵抗値を持ち、かつレプリカ保護抵抗R5~R8は保護抵抗R1~R4の抵抗値のn倍の抵抗値を持ち、また、レプリカ終端抵抗R9,R10の各々は、終端抵抗R17,R18の抵抗値の合計のn倍の抵抗値を持つように設定される。R17+R18=100Ω、n=15の場合には、R9=R10=1.5kΩとされる。 Now, the circuit configuration of the driver bodies 11 and 12 including the output switch transistors M1 to M4 and the protection resistors R1 to R4 in FIG. 1 is n-parallel with the same configuration (n is a value larger than 1, especially an integer value, for example, 15). It is said. Thus, the replica transistors M5 to M8 have an on-resistance value that is n times the on-resistance value of the output switch transistors M1 to M4, and the replica protection resistors R5 to R8 have a resistance that is n times the resistance value of the protection resistors R1 to R4. Each of the replica termination resistors R9 and R10 is set to have a resistance value that is n times the sum of the resistance values of the termination resistors R17 and R18. In the case of R17 + R18 = 100Ω and n = 15, R9 = R10 = 1.5 kΩ.
 4個のレプリカトランジスタM5~M8は、電源VDD側の電流源トランジスタM9とグランドVSS側の電流源トランジスタM10との間に接続され、イネーブル信号ENAに応答して同時に導通し、レプリカ終端抵抗R9,R10にそれぞれ、出力スイッチトランジスタM1~M4に流れる電流の1/nの電流を流すことにより、プラス側仮想電位とマイナス側仮想電位とを生成する。そして、伝送線路対L1,L2の差動プラス側電位Vpと差動マイナス側電位Vnとがそれぞれ所定の電位となるように、差動アンプ回路21がプラス側仮想電位に応じて電流源トランジスタM9をフィードバック制御し、差動アンプ回路22がマイナス側仮想電位に応じて電流源トランジスタM10をフィードバック制御するようになっている。 The four replica transistors M5 to M8 are connected between the current source transistor M9 on the power supply VDD side and the current source transistor M10 on the ground VSS side, and are turned on simultaneously in response to the enable signal ENA. A positive virtual potential and a negative virtual potential are generated by flowing a current 1 / n of the current flowing through the output switch transistors M1 to M4 through R10. Then, the differential amplifier circuit 21 causes the current source transistor M9 to respond to the plus-side virtual potential so that the differential plus-side potential Vp and the differential minus-side potential Vn of the transmission line pair L1, L2 are respectively predetermined potentials. The differential amplifier circuit 22 feedback-controls the current source transistor M10 in accordance with the negative virtual potential.
 図1の差動ドライバ回路10によれば、ドライバ本体11,12の出力スイッチトランジスタM1~M4には影響を与えずにドライバ本体11,12の出力電位の制御をすることが可能になる。しかも、レプリカ回路13,14によって出力電位を保証する構成になるため、電流源トランジスタM9,M10のばらつき、出力スイッチトランジスタM1~M4のばらつき、寄生抵抗ばらつき等の影響を排除することができる。具体的には、電位発生回路30から精度の良い基準電位(0.3V及び0.1V)を供給することにより、差動電圧振幅Vdiffへのばらつきの影響を抑えることができる。近年の一般的な150nm世代から32nm世代にかけての微細プロセス全般で、電圧ばらつきと電流ばらつきを比較すると、電圧ばらつきの値の方が4~6倍小さく設定できる。微細化が進むほど、その差は開いていく傾向にあるため、このような差動ドライバ回路10においては、電圧で保証する回路構成が望ましい。 1 makes it possible to control the output potentials of the driver bodies 11 and 12 without affecting the output switch transistors M1 to M4 of the driver bodies 11 and 12. In addition, since the output potential is guaranteed by the replica circuits 13 and 14, it is possible to eliminate the influence of variations in the current source transistors M9 and M10, variations in the output switch transistors M1 to M4, variations in parasitic resistance, and the like. Specifically, by supplying an accurate reference potential (0.3 V and 0.1 V) from the potential generation circuit 30, the influence of variations on the differential voltage amplitude Vdiff can be suppressed. Comparing voltage variation and current variation in general fine processes from the 150 nm generation to the 32 nm generation in recent years, the voltage variation value can be set to 4 to 6 times smaller. As the miniaturization progresses, the difference tends to increase. Therefore, in such a differential driver circuit 10, a circuit configuration that is guaranteed by voltage is desirable.
 しかも、ドライバ本体11,12において出力スイッチトランジスタM1~M4の電流経路に保護抵抗R1~R4を挿入したので、差動ドライバ回路10のESD(Electro-Static Discharge)耐性を上げることが可能になる。また、出力スイッチトランジスタM1~M4とともに保護抵抗R1~R4もn並列構成であるため、それらの抵抗成分はトータルでは無視できるほど小さくできる。 In addition, since the protection resistors R1 to R4 are inserted in the current paths of the output switch transistors M1 to M4 in the driver bodies 11 and 12, it is possible to increase the ESD (Electro-Static Discharge) resistance of the differential driver circuit 10. Further, since the protection resistors R1 to R4 as well as the output switch transistors M1 to M4 have an n-parallel configuration, their resistance components can be made small enough to be ignored in total.
 更に、ドライバ本体11,12とレプリカ回路13,14との定数比nを上げれば、軽微な補助電流でレプリカ回路13,14を動作させることができるため、レプリカ回路13,14を含む差動ドライバ回路10全体の消費電力を抑えることが可能になる。 Further, if the constant ratio n between the driver bodies 11 and 12 and the replica circuits 13 and 14 is increased, the replica circuits 13 and 14 can be operated with a slight auxiliary current. The power consumption of the entire circuit 10 can be suppressed.
 図3は、伝送線路側からみた差動ドライバ回路10の出力インピーダンスZoutの周波数特性を示している。出力インピーダンスZoutは、電流源トランジスタM10のオン抵抗RM10と、抵抗R16と容量C4との直列インピーダンスとの並列インピーダンスに、保護抵抗R2と、出力スイッチトランジスタM2のオン抵抗RM2とを加算したものであって、角周波数ω(=2πf)の成分、つまり周波数fの成分を持っている。したがって、抵抗R16と容量C4とを適切に選択することにより、特定の周波数領域で出力インピーダンスZoutを50Ωに設定することができる。抵抗R15と容量C3との直列インピーダンスも同様に作用する。 FIG. 3 shows the frequency characteristics of the output impedance Zout of the differential driver circuit 10 as seen from the transmission line side. The output impedance Zout is obtained by adding the protective resistance R2 and the on-resistance RM2 of the output switch transistor M2 to the parallel impedance of the on-resistance RM10 of the current source transistor M10 and the series impedance of the resistor R16 and the capacitor C4. Thus, it has a component of angular frequency ω (= 2πf), that is, a component of frequency f. Accordingly, the output impedance Zout can be set to 50Ω in a specific frequency region by appropriately selecting the resistor R16 and the capacitor C4. The series impedance of the resistor R15 and the capacitor C3 works in the same way.
 したがって、ACインピーダンス回路R15,C3;R16,C4により、伝送線路対L1,L2のドライバ出力端で発生する反射を低減することが可能になる。 Therefore, the reflection generated at the driver output ends of the transmission line pair L1 and L2 can be reduced by the AC impedance circuits R15 and C3; R16 and C4.
 図4は図1の差動ドライバ回路10の出力特性を、図5は比較例に係る差動ドライバ回路の出力特性をそれぞれ示している。比較例は、図1中のレプリカ回路13,14の配設をなくし、電流源トランジスタM9,M10をそれぞれ約2mAの定電流源に置き換えて、1.8V以上の電源電圧を与えたものである。図4の出力波形は、図5の出力波形と比較し、主に電圧方向に対して波形の滲みが少ない。これは、電源電圧の変動や温度変動によるばらつきが少ないこと、つまりトランジスタや抵抗の特性ばらつきに対して、耐性があることを示している。言い換えれば、図1の差動ドライバ回路10は、トランジスタや抵抗の特性ばらつきに対して、特性変動の感度が低いことを示している。 4 shows the output characteristics of the differential driver circuit 10 of FIG. 1, and FIG. 5 shows the output characteristics of the differential driver circuit according to the comparative example. In the comparative example, the replica circuits 13 and 14 in FIG. 1 are not provided, the current source transistors M9 and M10 are replaced with constant current sources of about 2 mA, respectively, and a power supply voltage of 1.8 V or more is given. . Compared with the output waveform of FIG. 5, the output waveform of FIG. 4 has less blurring of the waveform mainly in the voltage direction. This indicates that there is little variation due to fluctuations in power supply voltage and temperature, that is, resistance to variations in characteristics of transistors and resistors. In other words, the differential driver circuit 10 of FIG. 1 shows that the sensitivity of the characteristic variation is low with respect to the characteristic variations of the transistors and resistors.
 本発明に係る差動ドライバ回路は、閾値の低いデジタルトランジスタでの設計が可能になり、消費電力を大幅に低減可能な回路構成を実現でき、出力電位を保証したデータ伝送を実現することができるので、例えば携帯電話等のモバイル機器内の通信用インターフェース等に有用である。 The differential driver circuit according to the present invention can be designed with a digital transistor having a low threshold, can realize a circuit configuration capable of greatly reducing power consumption, and can realize data transmission with guaranteed output potential. Therefore, it is useful for an interface for communication in a mobile device such as a mobile phone.
10 差動ドライバ回路
11,12 ドライバ本体
13,14 レプリカ回路
15,16 論理回路
21,22 差動アンプ回路
30 電位発生回路
40 受信機器
41 終端抵抗回路
C1~C5 容量
DATA_N 差動ドライバ回路のマイナス側出力端子
DATA_P 差動ドライバ回路のプラス側出力端子
ENA イネーブル信号
L1,L2 伝送線路対
M1~M4 出力スイッチトランジスタ
M5~M8 レプリカトランジスタ
M9,M10 電流源トランジスタ
R1~R4 保護抵抗
R5~R8 レプリカ保護抵抗
R9,R10 レプリカ終端抵抗
R11~R16 抵抗
R17,R18 終端抵抗
S1,S2 スイッチ
SER シリアルデータ入力信号
VDD 電源
Vdiff 差動電圧振幅
Vn 差動マイナス側電位
Vp 差動プラス側電位
VSS グランド
Zout 差動ドライバ回路の出力インピーダンス
DESCRIPTION OF SYMBOLS 10 Differential driver circuit 11 and 12 Driver main body 13 and 14 Replica circuit 15 and 16 Logic circuit 21 and 22 Differential amplifier circuit 30 Potential generation circuit 40 Receiving device 41 Termination resistor circuit C1-C5 Capacity | capacitance DATA_N Negative side of differential driver circuit Output terminal DATA_P Positive side output terminal ENA of differential driver circuit ENA enable signal L1, L2 Transmission line pair M1-M4 Output switch transistor M5-M8 Replica transistor M9, M10 Current source transistors R1-R4 Protection resistance R5-R8 Replica protection resistance R9 , R10 Replica termination resistors R11 to R16 Resistors R17, R18 Termination resistors S1, S2 Switch SER Serial data input signal VDD Power supply Vdiff Differential voltage amplitude Vn Differential minus side potential Vp Differential plus side potential VSS Ground Zout The output impedance of the dynamic driver circuit

Claims (5)

  1.  伝送線路対の間に接続された終端抵抗に電流を流すように前記伝送線路対を駆動する差動ドライバ回路であって、
     電源側の第1電流源トランジスタと、グランド側の第2電流源トランジスタと、各々前記第1電流源トランジスタと前記第2電流源トランジスタとの間に接続されて前記伝送線路対を介して前記終端抵抗に流れる電流を制御するための複数の出力スイッチトランジスタとを有するドライバ本体と、
     前記終端抵抗の抵抗値よりも大きい抵抗値を持つレプリカ終端抵抗と、各々前記複数の出力スイッチトランジスタの各々のオン抵抗値よりも大きいオン抵抗値を持ち、かつ前記第1電流源トランジスタと前記第2電流源トランジスタとの間に接続されて前記レプリカ終端抵抗に電流を流すことによりプラス側仮想電位とマイナス側仮想電位とを生成する複数のレプリカトランジスタとを有するレプリカ回路と、
     前記伝送線路対のプラス側電位とマイナス側電位とがそれぞれ所定の電位となるように、前記プラス側仮想電位に応じて前記第1電流源トランジスタを制御し、かつ前記マイナス側仮想電位に応じて前記第2電流源トランジスタを制御するフィードバック回路とを備えたことを特徴とする差動ドライバ回路。
    A differential driver circuit that drives the transmission line pair so as to pass a current through a termination resistor connected between the transmission line pair,
    A first current source transistor on the power supply side, a second current source transistor on the ground side, and connected between the first current source transistor and the second current source transistor, respectively, and the termination via the transmission line pair A driver body having a plurality of output switch transistors for controlling a current flowing through the resistor;
    A replica termination resistor having a resistance value greater than the resistance value of the termination resistor, an on-resistance value greater than each on-resistance value of each of the plurality of output switch transistors, and the first current source transistor and the first A replica circuit having a plurality of replica transistors that are connected between two current source transistors and generate a plus-side virtual potential and a minus-side virtual potential by passing a current through the replica termination resistor;
    The first current source transistor is controlled according to the plus-side virtual potential so that the plus-side potential and the minus-side potential of the transmission line pair become predetermined potentials, respectively, and according to the minus-side virtual potential A differential driver circuit comprising a feedback circuit for controlling the second current source transistor.
  2.  請求項1記載の差動ドライバ回路において、
     前記レプリカ終端抵抗は前記終端抵抗の抵抗値のn倍(n>1)の抵抗値を持ち、かつ前記複数のレプリカトランジスタの各々は前記複数の出力スイッチトランジスタの各々のオン抵抗値のn倍のオン抵抗値を持つことを特徴とする差動ドライバ回路。
    The differential driver circuit according to claim 1.
    The replica termination resistor has a resistance value n times (n> 1) the resistance value of the termination resistor, and each of the plurality of replica transistors is n times the on-resistance value of each of the plurality of output switch transistors. A differential driver circuit characterized by having an on-resistance value.
  3.  請求項1記載の差動ドライバ回路において、
     前記フィードバック回路は、
     前記プラス側仮想電位が第1基準電位と等しくなるように前記第1電流源トランジスタを制御する第1差動アンプ回路と、
     前記マイナス側仮想電位が第2基準電位と等しくなるように前記第2電流源トランジスタを制御する第2差動アンプ回路とを有することを特徴とする差動ドライバ回路。
    The differential driver circuit according to claim 1.
    The feedback circuit includes:
    A first differential amplifier circuit that controls the first current source transistor so that the plus-side virtual potential is equal to a first reference potential;
    A differential driver circuit comprising: a second differential amplifier circuit that controls the second current source transistor so that the negative virtual potential is equal to a second reference potential.
  4.  請求項1記載の差動ドライバ回路において、
     前記ドライバ本体は、前記複数の出力スイッチトランジスタに直列接続された複数の保護抵抗を更に有し、
     前記レプリカ回路は、前記複数のレプリカトランジスタに直列接続された複数のレプリカ保護抵抗を更に有し、
     前記レプリカ終端抵抗は前記終端抵抗の抵抗値のn倍(n>1)の抵抗値を持ち、前記複数のレプリカ保護抵抗の各々は前記複数の保護抵抗の各々の抵抗値のn倍の抵抗値を持ち、かつ前記複数のレプリカトランジスタの各々は前記複数の出力スイッチトランジスタの各々のオン抵抗値のn倍のオン抵抗値を持つことを特徴とする差動ドライバ回路。
    The differential driver circuit according to claim 1.
    The driver body further includes a plurality of protective resistors connected in series to the plurality of output switch transistors,
    The replica circuit further includes a plurality of replica protection resistors connected in series to the plurality of replica transistors,
    The replica termination resistor has a resistance value that is n times (n> 1) the resistance value of the termination resistor, and each of the plurality of replica protection resistors has a resistance value that is n times the resistance value of each of the plurality of protection resistors. And each of the plurality of replica transistors has an on-resistance value that is n times the on-resistance value of each of the plurality of output switch transistors.
  5.  請求項1記載の差動ドライバ回路において、
     前記第1電流源トランジスタと前記複数の出力スイッチトランジスタのうちのいずれかとの接続点と、電源又はグランドとの間に挿入された、抵抗と容量とを直列接続してなる第1ACインピーダンス回路と、
     前記第2電流源トランジスタと前記複数の出力スイッチトランジスタのうちのいずれかとの接続点と、電源又はグランドとの間に挿入された、抵抗と容量とを直列接続してなる第2ACインピーダンス回路とを更に備えたことを特徴とする差動ドライバ回路。
    The differential driver circuit according to claim 1.
    A first AC impedance circuit formed by connecting a resistor and a capacitor in series, inserted between a connection point between the first current source transistor and any of the plurality of output switch transistors, and a power supply or a ground;
    A second AC impedance circuit formed by connecting a resistor and a capacitor connected in series between a connection point between the second current source transistor and one of the plurality of output switch transistors and a power supply or a ground; A differential driver circuit further comprising the differential driver circuit.
PCT/JP2011/003817 2011-03-03 2011-07-04 Differential driver circuit WO2012117456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-046524 2011-03-03
JP2011046524 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117456A1 true WO2012117456A1 (en) 2012-09-07

Family

ID=46757429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003817 WO2012117456A1 (en) 2011-03-03 2011-07-04 Differential driver circuit

Country Status (1)

Country Link
WO (1) WO2012117456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892923B2 (en) 2018-02-08 2021-01-12 Socionext Inc. Signal output circuit, transmission circuit and integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118438A (en) * 1997-03-18 2000-09-12 Ati Technologies, Inc. Low comment mode impedence differential driver and applications thereof
JP2004253859A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Current driver circuit
JP2008182418A (en) * 2007-01-24 2008-08-07 Sharp Corp Semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118438A (en) * 1997-03-18 2000-09-12 Ati Technologies, Inc. Low comment mode impedence differential driver and applications thereof
JP2004253859A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Current driver circuit
JP2008182418A (en) * 2007-01-24 2008-08-07 Sharp Corp Semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892923B2 (en) 2018-02-08 2021-01-12 Socionext Inc. Signal output circuit, transmission circuit and integrated circuit
US11177985B2 (en) 2018-02-08 2021-11-16 Socionext Inc. Signal output circuit, transmission circuit and integrated circuit

Similar Documents

Publication Publication Date Title
US10038574B2 (en) Method and apparatus for passive continuous-time linear equalization with continuous-time baseline wander correction
US20110193595A1 (en) Output driver circuit
US10447427B2 (en) Baseline wander correction
KR100522179B1 (en) Semiconductor device with impedance calibration function
KR101357331B1 (en) Differential driver circuit and differential signal driving method for controlling fast common mode feedback
JP4923442B2 (en) Differential signal transmission circuit and differential signal transmission device
JP2007324799A (en) Output circuit and semiconductor integrated circuit device
CN107102669A (en) The calibration circuit of driving and on-die termination on chip
US7038502B2 (en) LVDS driver circuit and driver circuit
JP2008182418A (en) Semiconductor integrated circuit
CN103684279A (en) Circuits for improving linearity of metal oxide semiconductor (MOS) transistors
CN111313228B (en) Laser driving circuit and light emitting system
EP2599218A1 (en) Low phase noise buffer for crystal oscillator
US7616926B2 (en) Conductive DC biasing for capacitively coupled on-chip drivers
TWI612771B (en) Interface circuit with configurable variable supply voltage for transmitting signals
JP5000292B2 (en) Serial transmission output device
WO2012117456A1 (en) Differential driver circuit
JP2006203418A (en) Amplitude adjusting circuit
US8085008B2 (en) System for accounting for switch impendances
JP4869667B2 (en) Differential signal transmitter circuit and electronic device using the same
KR101621844B1 (en) Low voltage differentail signal transmitter
US8878636B2 (en) Techniques for developing a negative impedance
JP6455443B2 (en) Signal potential conversion circuit
US11569808B2 (en) Wide high voltage swing input comparator stage with matching overdrive
JP2009060262A (en) Differential driving circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP