WO2012114980A1 - Reflective mask blank for euv lithography - Google Patents

Reflective mask blank for euv lithography Download PDF

Info

Publication number
WO2012114980A1
WO2012114980A1 PCT/JP2012/053712 JP2012053712W WO2012114980A1 WO 2012114980 A1 WO2012114980 A1 WO 2012114980A1 JP 2012053712 W JP2012053712 W JP 2012053712W WO 2012114980 A1 WO2012114980 A1 WO 2012114980A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film thickness
mask blank
euv
reflective
Prior art date
Application number
PCT/JP2012/053712
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 林
和伸 前重
俊之 宇野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013500989A priority Critical patent/JPWO2012114980A1/en
Publication of WO2012114980A1 publication Critical patent/WO2012114980A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a reflective mask blank for EUV (Extreme Ultra Violet) lithography (hereinafter, also referred to as “EUV mask blank” in the present specification) used in semiconductor manufacturing and the like.
  • EUV mask blank Extreme Ultra Violet
  • the resolution limit of the pattern is about 1 ⁇ 2 of the exposure wavelength, and it is said that the immersion wavelength is about 1 ⁇ 4 of the exposure wavelength, and the ArF laser (wavelength: 193 nm) is used. Even if the immersion method is used, the wavelength is expected to be about 45 nm.
  • EUV lithography which is an exposure technique using EUV light having a wavelength shorter than that of an ArF laser, is promising as a next-generation exposure technique using a wavelength shorter than 45 nm.
  • EUV light refers to light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
  • EUV light is easily absorbed by any substance, and the refractive index of the substance is close to 1 at this wavelength, so that a conventional refractive optical system such as photolithography using visible light or ultraviolet light cannot be used.
  • a reflective optical system that is, a reflective photomask and a mirror are used.
  • the mask blank is a layered body before patterning used for manufacturing a photomask.
  • the EUV mask blank has a structure in which a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light are formed in this order on a glass substrate or the like.
  • a reflective layer a multilayer reflective film is generally used in which the high-refractive index layer and the low-refractive index layer are alternately laminated to increase the light reflectivity when EUV light is irradiated on the surface of the layer.
  • the absorption layer a material having a high absorption coefficient for EUV light, specifically, a material mainly composed of Ta, for example, is used.
  • a low reflection layer for the pattern inspection wavelength (190 to 260 nm) may be formed on the absorption layer of the EUV mask blank.
  • a material having low reflection characteristics with respect to the pattern inspection wavelength specifically, a material mainly composed of Ta and O is used for the low reflection layer.
  • the basic characteristic required for the absorption layer and low reflection layer of an EUV mask blank is how to absorb EUV light. In general, it is understood that sufficient pattern transfer characteristics can be obtained if the light reflectance of the surface of the absorbing layer or the surface of the low reflective layer is 0.5% or less for a specific EUV wavelength (13.5 nm). ing. In order to satisfy the above basic characteristics, the absorption layer needs to be thicker than 80 nm. Even in the case where the low reflection layer is formed on the absorption layer, the absorption layer and the low reflection layer require a total film thickness greater than 80 nm.
  • the film thickness of the absorption layer (when the low reflection layer is formed on the absorption layer, the total film thickness of the absorption layer and the low reflection layer). ) Is desired to be thinner.
  • the “tilt effect” means that in EUV exposure, incident light is incident on the mask pattern at an angle of 6 °, so that the shadow of the pattern affects the reflection intensity distribution and the line width on the transfer wafer. The problem is that the accuracy deteriorates.
  • the minimum value of the EUV reflectance is obtained by optimizing the film thickness of the absorption film, particularly the film thickness of the uppermost layer of the absorption film composed of two or more thin films. This is a technique for reducing the change in the EUV reflectivity with respect to the change in thickness.
  • the film thickness of the absorption film that is, the film thickness of the absorption layer of the EUV mask blank (a low reflection layer is formed on the absorption layer) In this case, the total film thickness of the absorption layer and the low reflection layer is not reduced.
  • the present invention optimizes the film thickness of the absorption layer and compares the film thickness of the absorption layer with the conventional film thickness within a range that does not affect the pattern characteristics.
  • an object of the present invention is to provide an EUV mask blank that can be made thin.
  • the present invention optimizes the total film thickness of the absorption layer and the low reflection layer, and compares the total film thickness of the absorption layer and the low reflection layer with the conventional film thickness within a range that does not affect the pattern characteristics.
  • an object of the present invention is to provide an EUV mask blank that can be made thin.
  • the thickness of the absorption layer of the EUV mask blank is ⁇ the thickness at which the average light reflectance in a specific EUV wavelength range is a minimum value. It has been found that by setting to be within the range of 2.0%, the thickness can be made thinner than the thickness of the conventional absorption layer within a range that does not affect the pattern characteristics. Further, the total film thickness of the absorption layer and the low reflection layer of the EUV mask blank is within a range of ⁇ 2.0% with respect to the total film thickness at which the average light reflectance in a specific EUV wavelength range is a minimum value. It has been found that the thickness can be made thinner than the total thickness of the conventional absorption layer and the low reflection layer within a range that does not affect the pattern characteristics.
  • the present invention has been made based on the above findings, and the present invention relates to a reflective mask for EUV lithography in which a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light are formed in this order.
  • Blank The film thickness of the absorbing layer is within the range of ⁇ 2.0% with respect to the film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less and the minimum value.
  • a reflective mask blank for EUV lithography (a reflective mask blank for EUV lithography according to the first embodiment) is provided.
  • the present invention provides a reflective layer for reflecting EUV light, an absorbing layer for absorbing EUV light, and a low reflective layer for mask pattern inspection light (wavelength 190 to 260 nm) in this order.
  • a reflective mask blank The total film thickness of the absorption layer and the low reflection layer is ⁇ 3% with respect to the total film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less and a minimum value.
  • a reflective mask blank for EUV lithography second type reflective mask blank for EUV lithography
  • the term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value, and unless otherwise specified, “to” is the same in the following specification. Used with meaning.
  • the reflective mask blank for EUV lithography of the first and second embodiments described above is hereinafter referred to as “the EUV mask blank of the present invention”.
  • the absorption layer preferably contains tantalum (Ta) and nitrogen (N) as main components.
  • the film thickness of the absorption layer is 46 nm or more and 80 nm or less.
  • the low reflection layer preferably contains tantalum (Ta) and oxygen (O) as main components.
  • the total film thickness of the absorption layer and the low reflection layer is preferably 46 nm or more and 80 nm or less.
  • a protective layer for protecting the reflective layer may be formed between the reflective layer and the absorbent layer when forming a pattern on the absorbent layer.
  • the protective layer is preferably formed of any one of Ru, Ru compound, SiO 2 and Cr compound.
  • the absorption layer and the low reflection layer can be thinned without affecting the pattern characteristics.
  • the thickness of the absorption layer and the low reflection layer it is expected to suppress the oblique effect and to improve the pattern accuracy.
  • the thickness of the resist at the time of pattern formation can be reduced by reducing the thickness of the absorption layer and the low reflection layer, and an improvement in pattern resolution is expected.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • FIG. 2 shows a state where a pattern is formed on the absorption layer 14 (and the low reflection layer 15) of the EUV mask blank 1 shown in FIG.
  • FIG. 3 is a graph showing the relationship between the total film thickness of the absorption layer and the low reflection layer in the EUV mask blank of the example and the average light reflectance in the wavelength region of 13.3 to 13.7 nm.
  • FIG. 4 is a partially enlarged view of the total film thickness in the range of 43 to 51 nm in FIG.
  • FIG. 5 is a partially enlarged view of the total film thickness in the range of 50 to 58 nm in FIG.
  • FIG. 4 is a partially enlarged view of the total film thickness in the range of 43 to 51 nm in FIG.
  • FIG. 5 is a partially enlarged view of the total film thickness in the range of 50 to 58 nm in FIG.
  • FIG. 6 is a partially enlarged view of the total film thickness in the range of 57 to 65 nm in FIG.
  • FIG. 7 is a partially enlarged view of the total film thickness in the range of 65 to 73 nm in FIG.
  • FIG. 8 is a partially enlarged view of the total film thickness of 72 to 80 nm in FIG.
  • FIG. 9 is a partially enlarged view of the total film thickness in the range of 80 to 88 nm in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • a reflective layer 12 that reflects EUV light and an absorbing layer 14 that absorbs EUV light are formed on a substrate 11 in this order.
  • a protective layer 13 for protecting the reflective layer 12 is formed between the reflective layer 12 and the absorbent layer 14 when a pattern is formed on the absorbent layer 14.
  • On the absorption layer 14, a low reflection layer 15 for the inspection light of the mask pattern is formed.
  • the protective layer 13 and the low reflective layer 15 are optional components.
  • individual components of the mask blank 1 will be described.
  • the substrate 11 is required to satisfy the characteristics as a substrate for an EUV mask blank. Therefore, the substrate 11, it is a low thermal expansion coefficient is required, specifically, the thermal expansion coefficient of preferably 0 ⁇ 0.05 ⁇ 10 -7 / °C at 20 °C, 0 ⁇ 0.03 ⁇ 10 - 7 / ° C is more preferable.
  • the substrate preferably has excellent smoothness, flatness, and resistance to a cleaning liquid used for cleaning a mask blank or a photomask after pattern formation.
  • the substrate 11 is made of glass having a low thermal expansion coefficient, such as SiO 2 —TiO 2 glass, but is not limited to this. Crystallized glass, quartz glass, silicon or the like on which ⁇ quartz solid solution is precipitated is used.
  • a substrate such as metal can be used. Since the substrate 11 has a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 100 nm or less, high reflectivity and transfer accuracy can be obtained in a photomask after pattern formation. Is preferred.
  • the size and thickness of the substrate 11 are appropriately determined according to the design value of the mask. In the examples described later, SiO 2 —TiO 2 glass having an outer shape of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used. It is preferable that the surface of the substrate 11 on the side where the reflective layer 12 is formed has no defects.
  • the depth of the concave defect and the height of the convex defect are not more than 2 nm so that the phase defect does not occur due to the concave defect and / or the convex defect.
  • the full width at half maximum of the size of the defect and the convex defect is preferably 60 nm or less.
  • the reflective layer 12 is not particularly limited as long as it has desired characteristics as a reflective layer of an EUV mask blank.
  • the characteristic particularly required for the reflective layer 12 is a high EUV light reflectance. Specifically, when the surface of the reflective layer 12 is irradiated with light in the wavelength region of EUV light at an incident angle of 6 degrees, the maximum value of the light reflectance in the wavelength region of 13.3 to 13.7 nm is 60% or more. Is preferable, and 65% or more is more preferable. Further, even when the protective layer 13 is provided on the reflective layer 12, the maximum value of the light reflectance in the wavelength region of 13.3 to 13.7 nm is preferably 60% or more, more preferably 65% or more. preferable.
  • the reflective layer 12 can achieve high EUV light reflectance, a multilayer reflective film in which a high refractive index layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • a multilayer reflective film in which a high refractive index layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • Si is widely used for the high refractive index layer
  • Mo is widely used for the low refractive index layer. That is, the Mo / Si multilayer reflective film is the most common.
  • the multilayer reflective film is not limited to this, and Ru / Si multilayer reflective film, Mo / Be multilayer reflective film, Mo compound / Si compound multilayer reflective film, Si / Mo / Ru multilayer reflective film, Si / Mo / Ru / A Mo multilayer reflective film, a Si / Ru / Mo / Ru multilayer reflective film, or the like can also be used.
  • each layer constituting the multilayer reflective film constituting the reflective layer 12 and the number of repeating units of the layer can be appropriately selected according to the film material used and the EUV light reflectance required for the reflective layer.
  • the multilayer reflective film in order to obtain the reflective layer 12 having a maximum light reflectance of 60% or more in the wavelength range of 13.3 to 13.7 nm, the multilayer reflective film has a film thickness of 2.3.
  • a Mo layer with a thickness of ⁇ 0.1 nm and a Si layer with a thickness of 4.5 ⁇ 0.1 nm may be laminated so that the number of units is 30 to 60.
  • each layer which comprises the multilayer reflective film which comprises the reflective layer 12 so that it may become desired thickness using well-known film-forming methods, such as a magnetron sputtering method and an ion beam sputtering method.
  • film-forming methods such as a magnetron sputtering method and an ion beam sputtering method.
  • a Mo / Si multilayer reflective film is formed by ion beam sputtering
  • an Si target is used as a target and Ar gas (gas pressure 1.3 ⁇ 10 ⁇ 2 Pa to 2.7 ⁇ 10 ⁇ as a sputtering gas). 2 Pa)
  • an Si film is formed to have a thickness of 4.5 nm at an ion acceleration voltage of 300 to 1500 V and a film formation rate of 0.03 to 0.30 nm / sec.
  • the Mo film is formed by laminating 30 to 60 cycles of the Si film and the Mo film.
  • the uppermost layer of the multilayer reflective film forming the reflective layer 12 is preferably a layer that is not easily oxidized.
  • the layer of material that is not easily oxidized functions as a cap layer of the reflective layer 12.
  • a Si layer can be exemplified as a specific example of the layer of a material that is hardly oxidized and functions as a cap layer.
  • the multilayer reflective film forming the reflective layer 12 is a Mo / Si multilayer reflective film
  • the uppermost layer functions as a cap layer by forming the uppermost layer as an Si layer. In that case, the thickness of the cap layer is preferably 11 ⁇ 2 nm.
  • a protective layer 13 may be formed between the reflective layer 12 and the absorption layer 14.
  • the protective layer 13 is provided for the purpose of protecting the reflective layer 12 so that the reflective layer 12 is not damaged by the etching process when the absorption layer 14 is patterned by an etching process, usually a dry etching process. Therefore, the material of the protective layer 13 is selected from a material that is not easily affected by the etching process of the absorbing layer 14, that is, the etching rate is slower than that of the absorbing layer 14 and is not easily damaged by the etching process. Examples of the material satisfying this condition include Cr, Al, Ta and nitrides thereof, Ru and Ru compounds (RuB, RuSi, etc.), and SiO 2 , Si 3 N 4 , Al 2 O 3 and mixtures thereof.
  • the protective layer 13 is preferably at least one selected from the group consisting of Ru, Ru compounds, SiO 2 and Cr compounds. Among these, Ru and Ru compounds (RuB, RuSi, etc.), CrN and SiO 2 are preferable, and Ru and Ru compounds (RuB, RuSi, etc.) are particularly preferable.
  • the thickness of the protective layer 13 is preferably 1 to 60 nm.
  • the protective layer 13 is formed using a known film formation method such as magnetron sputtering or ion beam sputtering.
  • a Ru film is formed by magnetron sputtering
  • a Ru target is used as a target
  • Ar gas gas pressure: 1.0 ⁇ 10 ⁇ 2 Pa to 10 ⁇ 10 ⁇ 1 Pa
  • an input voltage is 30 V. It is preferable to form the film so that the thickness is 2 to 5 nm at a film forming speed of 0.02 to 1.0 nm / sec.
  • the characteristic particularly required for the absorption layer 14 is that the EUV light reflectance is extremely low. Specifically, when the surface of the absorption layer 14 is irradiated with light in the wavelength region of EUV light, the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less, and 3.8 % Or less is preferable, and 3.5% or less is more preferable.
  • the low reflection layer 15 for the inspection light of the mask pattern is formed on the absorption layer 14 as in the EUV mask blank 1 of the present invention, the surface of the low reflection layer 15 is irradiated with light in the wavelength region of EUV light. In this case, the average light reflectance in the wavelength range of 13.3 to 13.7 nm is 4.0% or less, preferably 3.8% or less, and more preferably 3.5% or less.
  • the absorption layer 14 is made of a material having a high EUV light absorption coefficient.
  • a material having a high EUV light absorption coefficient a material mainly composed of tantalum (Ta) and nitrogen (N) has an average light reflectance of 4.0% or less in a wavelength range of 13.3 to 13.7 nm.
  • the crystalline state of the absorption layer is likely to be amorphous, and the surface is small and the surface is excellent in smoothness.
  • Ta and N in the material are 40 atomic% or more (hereinafter referred to as atomic%) in total content, preferably 50 at.
  • the materials mainly composed of Ta and N used for the absorption layer 14 include, in addition to Ta and N, hafnium (Hf), silicon (Si), zirconium (Zr), germanium (Ge), boron (B), and hydrogen (H). It may contain at least one element selected from Specific examples of the material containing the above elements in addition to Ta and N include TaNH, TaHfN, TaBSiN, TaBSiNH, TaBN, TaBNH, TaSiN, TaGeN, TaZrN, and the like.
  • the absorption layer 14 having the above-described configuration that is, an absorption layer made of a material mainly composed of Ta and N can be formed by a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a known film formation method for example, a magnetron sputtering method or an ion beam sputtering method.
  • a TaNH film is formed as the absorption layer 14 using a magnetron sputtering method
  • a Ta target is used as a target, and a mixed gas of Ar, N 2 and H 2 (H 2 gas concentration 1 to 50 vol%) as a sputtering gas.
  • concentration of the inert gas sets it as the same concentration range as above-mentioned Ar gas concentration.
  • the total concentration of the inert gases is in the same concentration range as the Ar gas concentration described above.
  • the low reflection layer 15 is composed of a film that exhibits low reflection in inspection light used for inspection of a mask pattern.
  • an inspection machine that normally uses light of about 190 to 260 nm as inspection light is used. That is, the difference in reflectance of light of about 190 to 260 nm, specifically, the surface exposed by removing the absorption layer 14 by pattern formation, the surface of the absorption layer 14 remaining without being removed by pattern formation, It is inspected by the difference in reflectance.
  • the former is the surface of the reflective layer 12 or the surface of the protective layer 13, and is usually the surface of the protective layer 13. Therefore, if the difference in reflectance between the surface of the reflective layer 12 or the protective layer 13 and the surface of the absorption layer 14 with respect to the wavelength of the inspection light is small, the contrast at the time of inspection deteriorates and accurate inspection cannot be performed.
  • the absorption layer 14 having the above-described configuration that is, an absorption layer composed of a material mainly composed of Ta and N, has extremely low EUV light reflectance, and has excellent characteristics as an absorption layer of the EUV mask blank 1.
  • the light reflectance is not necessarily low enough.
  • the difference between the reflectance of the surface of the absorption layer 14 at the wavelength of the inspection light and the reflectance of the surface of the reflective layer 12 or the surface of the protective layer 13 becomes small, and there is a possibility that sufficient contrast during inspection cannot be obtained. is there. If sufficient contrast at the time of inspection is not obtained, pattern defects cannot be sufficiently determined in mask inspection, and accurate defect inspection cannot be performed.
  • R 2 at the wavelength of the inspection light is a reflectance on the surface of the reflective layer 12 or the protective layer 13
  • R 1 is a reflectance on the surface of the low reflective layer 15. Note that R 1 and R 2 are as shown in FIG.
  • the measurement is performed in a state where a pattern is formed on the absorption layer 14 and the low reflection layer 15 of the EUV mask blank 1.
  • the R 2 is a value measured on the surface of the reflective layer 12 or the protective layer 13 exposed to the outside after the absorption layer 14 and the low reflection layer 15 are removed by pattern formation in FIG. 2, and R 1 is obtained by pattern formation. This is a value measured on the surface of the low reflective layer 15 remaining without being removed.
  • the low reflection layer is not formed on an absorption layer, it measures in the state which formed the pattern in the absorption layer.
  • the contrast at the time of inspection represented by the above formula is preferably 30% or more, more preferably 45% or more, still more preferably 60% or more, and more than 80%. Particularly preferred.
  • the maximum light reflectance of the wavelength of the inspection light when the surface of the low reflection layer 15 is irradiated with the light of the wavelength of the inspection light is preferably 15% or less. % Or less is more preferable, and 5% or less is more preferable.
  • the low reflection layer 15 is made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption layer 14 in order to achieve the above characteristics.
  • a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption layer 14 a material mainly composed of tantalum (Ta) and oxygen (O) is used, and the maximum light reflectance at the wavelength of the inspection light is 15%.
  • the low reflection layer is likely to be amorphous and the surface is small in surface roughness and excellent in smoothness.
  • a material mainly composed of Ta and O when used, a material containing Ta and O in the material in a total content of 40 at% or more, preferably 50 at% or more, more preferably 55 at% or more. Meaning TaO.
  • the material mainly composed of Ta and O used for the low reflection layer 15 may contain at least one element selected from Hf, Si, Zr, Ge, B, N and H in addition to Ta and O.
  • Specific examples of the material containing the above elements in addition to Ta and O include TaON, TaONH, TaHfO, TaHfON, TaBSiO, TaBSiON, and the like.
  • the low reflective layer 15 having the above-described configuration that is, the low reflective layer made of a material mainly composed of Ta and O can be formed by a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a known film formation method for example, a magnetron sputtering method or an ion beam sputtering method.
  • a TaONH film is formed as the low reflection layer 15 using a magnetron sputtering method
  • a Ta target is used as a target, and a mixed gas of Ar, O 2 , N 2, and H 2 (H 2 gas) as a sputtering gas.
  • the average light reflectance in the wavelength region of 13.3 to 13.7 nm in the absorption layer is 4.0% or less.
  • the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is 4.0% or less.
  • the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is as follows. And is dependent on the total film thickness of the low-reflection layer, and periodically increases and decreases (ie, increases and decreases between the maximum and minimum values) and decreases as the total film thickness increases. Go.
  • the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is 4.0% or less. It is necessary to set the total film thickness of the absorption layer and the low reflection layer. The same applies to the average light reflectance in the wavelength region of 13.3 to 13.7 nm in the absorption layer in which the low reflection layer is not formed on the absorption layer, and is dependent on the thickness of the absorption layer and is periodic. While increasing and decreasing repeatedly (that is, repeating increasing and decreasing between the maximum value and the minimum value), it decreases as the total film thickness increases.
  • the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the absorption layer is 4.0% or less. It is necessary to set the film thickness of the absorption layer.
  • the absorption is further performed so that the average light reflectance in the wavelength range of 13.3 to 13.7 nm is within a range of ⁇ 2.0% with respect to the minimum film thickness.
  • the film thickness of the layer or the total film thickness of the absorption layer and the low reflection layer is set. In the case of an EUV mask blank in which a low reflection layer is not formed on the absorption layer, ⁇ 2 with respect to the film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm in the absorption layer is a minimum value.
  • the film thickness of the absorption layer is set so as to be in the range of 0.0%.
  • the film thickness at which the average light reflectance becomes a minimum value is 100. 0.0% corresponds to a film thickness range of 98.0% to 102.0%.
  • the average film reflectivity in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is ⁇
  • the total film thickness of the absorption layer and the low reflection layer is set so as to be within the range of 2.0%.
  • the light reflectance of a specific EUV wavelength on the surface of the absorption layer (the surface of the low reflection layer when a low reflection layer is formed on the absorption layer), Specifically, it was conventionally considered that the light reflectance at a wavelength of 13.5 nm needs to be 0.5% or less.
  • the film thickness of the absorption layer (when the low reflection layer is formed on the absorption layer, the total film thickness of the absorption layer and the low reflection layer) needs to be thicker than 80 nm. There was a problem.
  • Patent Document 1 is expected to reduce the thickness of the absorption layer, or the absorption layer and the low reflection layer based on such a concept, but as described in paragraph [0022] of Patent Document 1. , The width of the OD (Optical Density) near the maximum value is narrow, the OD value is likely to change due to the change of the film thickness, and strict accuracy is required for controlling the film thickness.
  • the average light reflectance in the wavelength region of 13.3 to 13.7 nm is within a range of ⁇ 2.0% with respect to the film thickness at which the minimum value is obtained.
  • the film thickness of the absorption layer or the total film thickness of the absorption layer and the low reflection layer is set.
  • the total film thickness of the absorbing layer and the low reflecting layer is The change of the average light reflectivity with respect to the change, particularly the change of the average light reflectivity near the minimum value is gradual. With respect to this point, in FIGS.
  • the range of the total film thickness that is ⁇ 2.0% with respect to the total film thickness at which the average light reflectance becomes the minimum value is shown in gray tone. .
  • the change in the average light reflectance in the range is as small as 0.3% at the maximum. Such a very small change in the average light reflectance is considered not to affect the pattern characteristics.
  • the average light reflection in the range is within the range.
  • the change in rate is very small and it is considered that the pattern characteristics are not affected.
  • the average light reflectance in the wavelength region of 13.3 to 13.7 nm takes a plurality of different minimum values depending on the total film thickness of the absorption layer and the low reflection layer.
  • the total film thickness of the absorption layer and the low reflection layer may be set for any minimum value. This is the same for the EUV mask blank in which the low reflection layer is not formed on the absorption layer.
  • the thickness of the absorption layer or the total thickness of the absorption layer and the low reflection layer is 80 nm or less, more preferably 75 nm or less, more preferably 70 nm or less.
  • the lower limit of the film thickness of the absorption layer is preferably 46 nm or more from the viewpoint of obtaining a functional surface as the absorption layer and an average light reflectance of 4.0% or less.
  • the lower limit of the total film thickness is preferably 46 nm or more from the viewpoint of obtaining a functional surface as an absorption layer and an average light reflectance of 4.0% or less.
  • the film thickness of the low reflection layer is larger than the film thickness of the absorption layer, the EUV light absorption characteristics in the absorption layer may be reduced.
  • the film thickness of the low reflection layer is preferably thinner than the film thickness of the absorption layer. For this reason, the film thickness of the low reflection layer is preferably 1 to 20 nm, more preferably 1 to 15 nm, and even more preferably 1 to 10 nm.
  • the EUV mask blank of the present invention may have a functional film known in the field of EUV mask blanks in addition to the reflective layer, the absorbing layer, and the protective layer and the low reflective layer formed as necessary.
  • a functional film for example, as described in Japanese Patent Application Publication No. 2003-501823, a high dielectric material applied to the back side of the substrate in order to promote electrostatic chucking of the substrate.
  • a functional coating here, the back surface of the substrate refers to the surface of the substrate 11 in FIG. 1 opposite to the side on which the reflective layer 12 is formed.
  • the electrical conductivity and thickness of the constituent material are selected so that the sheet resistance is 100 ⁇ / ⁇ or less.
  • the constituent material of the high dielectric coating can be widely selected from those described in known literature.
  • a high dielectric constant coating described in JP-A-2003-501823 specifically, a coating made of silicon, TiN, molybdenum, chromium, or TaSi can be applied.
  • the thickness of the high dielectric coating can be, for example, 10 to 1000 nm.
  • the high dielectric coating can be formed using a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
  • the low reflection layer 15 has a maximum light reflectance of 10% or less for the wavelength (190 to 260 nm) of the pattern inspection light, so that the film thickness is fixed at 7 nm and only the film thickness of the absorption layer 14 is changed. It was.
  • the average light reflectance in the wavelength region of 13.3 to 13.7 nm is calculated by calculating the integral value of the light reflectance in the wavelength region of 13.3 to 13.7 nm and the number of data used when calculating the integral value. The value was divided.
  • the horizontal axis represents the total film thickness (nm) of the absorption layer (TaNH film) and the low reflection layer (TaONH film), and the vertical axis represents the average light reflectance (%) in the wavelength range of 13.3 to 13.7 nm.
  • the film thickness dependence of the average light reflectance is shown.
  • the average light reflectance in the wavelength range of 13.3 to 13.7 nm is dependent on the total film thickness of the absorption layer and the low reflection layer, and is periodically increased and decreased (that is, , While increasing and decreasing between the maximum and minimum values), it decreases as the total film thickness increases.
  • 4 to 9 are partial enlarged views showing the vicinity of the minimum value of the average light reflectance in FIG.
  • 4 to 9 are partial enlarged views in which the total thickness of the absorption layer and the low reflection layer is in the range of 43 to 51 nm, 50 to 58 nm, 57 to 65 nm, 65 to 73 nm, 72 to 80 nm, and 80 to 88 nm, respectively.
  • the average light reflectance near the minimum value in each total film thickness range is 4.0% or less, which satisfies the required characteristics of the EUV mask blank.
  • the film thickness that can be substantially reduced is preferably 76 nm, 69 nm, 62 nm, 54 nm, and 47 nm.
  • the range of the total film thickness that is ⁇ 2.0% with respect to the total film thickness at which the average light reflectance is a minimum value is shown in gray tone.
  • the film thickness at which the average light reflectance becomes a minimum value the film thickness at which the average light reflectance becomes ⁇ 2.0% with respect to the film thickness at which the average light reflectance becomes a minimum value, and the film thicknesses thereof.
  • the average light reflectance was estimated. The results are shown in the table below. Table 1 shows that the total film thickness of the absorbing layer and the low reflection layer is 43 to 51 nm, Table 2 shows that the total film thickness is 50 to 58 nm, and Table 3 shows that the total film thickness is 57 to 65 nm.
  • Table 4 shows the case where the same total film thickness is 65 to 73 nm
  • Table 5 shows the case where the same total film thickness is 72 to 80 nm
  • Table 6 shows the case where the same total film thickness is 80 to 88 nm. The value of was shown.
  • the average light reflectance is 4 within the range of ⁇ 2.0 with respect to the total film thickness. Since the difference from the average light reflectance that is a minimum value is 0.0% or less and is extremely small at 0.3% at the maximum, the pattern characteristics are not deteriorated.
  • the total film thickness of the absorption layer and the low reflection layer is set to 80 nm or less and the average light reflectance is set to a minimum value, the absorption layer can be made thin without deteriorating the pattern characteristics. Become.
  • the absorption layer and the low reflection layer of the EUV mask blank are thinned, so that it is expected to suppress the oblique effect and thereby improve the pattern accuracy, which is useful as a reflective photomask for EUV optical lithography. is there.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-038428 filed on February 24, 2011 are incorporated herein by reference. .
  • EUV mask blank 11 Substrate 12: Reflective layer (multilayer reflective film) 13: Protection layer 14: Absorption layer 15: Low reflection layer

Abstract

The present invention provides an EUV mask blank in which the thickness of the absorbing layer is optimized, whereby the thickness of the absorption layer can be reduced in comparison with conventional thickness in a range that does not affect pattern characteristics. A reflective mask blank for EUV lithography in which a reflective layer for reflecting EUV light and a absorbing layer for absorbing EUV light are formed in the stated order, the reflective mask blank for EUV lithography characterized in that the thickness of the absorbing layer is set so as to be within a range of ±2.0% of minimum thickness and so that the average beam reflectivity is 4.0% or less in a wavelength region of 13.3 to 13.7 nm.

Description

EUVリソグラフィ用反射型マスクブランクReflective mask blank for EUV lithography
 本発明は、半導体製造等に使用されるEUV(Extreme Ultra Violet:極端紫外)リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブランク」ともいう。)に関する。 The present invention relates to a reflective mask blank for EUV (Extreme Ultra Violet) lithography (hereinafter, also referred to as “EUV mask blank” in the present specification) used in semiconductor manufacturing and the like.
 従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(波長:193nm)の液浸法を用いても、その波長は45nm程度が限界と予想される。そこで45nmよりも短い波長を用いる次世代の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線をさし、具体的には波長10~20nm程度、特に13.5nm±0.3nm程度の光線を指す。 Conventionally, in the semiconductor industry, a photolithography method using visible light or ultraviolet light has been used as a technique for transferring a fine pattern necessary for forming an integrated circuit having a fine pattern on a Si substrate or the like. However, while miniaturization of semiconductor devices is accelerating, the limits of conventional photolithography methods have been approached. In the case of the photolithography method, the resolution limit of the pattern is about ½ of the exposure wavelength, and it is said that the immersion wavelength is about ¼ of the exposure wavelength, and the ArF laser (wavelength: 193 nm) is used. Even if the immersion method is used, the wavelength is expected to be about 45 nm. Therefore, EUV lithography, which is an exposure technique using EUV light having a wavelength shorter than that of an ArF laser, is promising as a next-generation exposure technique using a wavelength shorter than 45 nm. In this specification, EUV light refers to light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ± 0.3 nm.
 EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用できない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスクとミラーとが用いられる。 EUV light is easily absorbed by any substance, and the refractive index of the substance is close to 1 at this wavelength, so that a conventional refractive optical system such as photolithography using visible light or ultraviolet light cannot be used. For this reason, in the EUV light lithography, a reflective optical system, that is, a reflective photomask and a mirror are used.
 マスクブランクは、フォトマスク製造用に用いられるパターニング前の積層体である。EUVマスクブランクの場合、ガラス製等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収層と、がこの順で形成された構造を有している。反射層としては、高屈折率層と低屈折率層とを交互に積層することで、EUV光を層表面に照射した際の光線反射率が高められた多層反射膜が通常使用される。吸収層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、Taを主成分とする材料が用いられる。
 また、EUVマスクブランクの吸収層上には、パターン検査波長(190~260nm)に対する低反射層が形成される場合もある。この場合、低反射層には、パターン検査波長に対して低反射特性を有する材料、具体的にはTaおよびOを主成分とする材料が用いられる。
The mask blank is a layered body before patterning used for manufacturing a photomask. The EUV mask blank has a structure in which a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light are formed in this order on a glass substrate or the like. As the reflective layer, a multilayer reflective film is generally used in which the high-refractive index layer and the low-refractive index layer are alternately laminated to increase the light reflectivity when EUV light is irradiated on the surface of the layer. For the absorption layer, a material having a high absorption coefficient for EUV light, specifically, a material mainly composed of Ta, for example, is used.
In addition, a low reflection layer for the pattern inspection wavelength (190 to 260 nm) may be formed on the absorption layer of the EUV mask blank. In this case, a material having low reflection characteristics with respect to the pattern inspection wavelength, specifically, a material mainly composed of Ta and O is used for the low reflection layer.
 EUVマスクブランクの吸収層や低反射層に要求される基本特性は、EUV光をいかに吸収するかである。一般的に、特定のEUV波長(13.5nm)に対して、吸収層表面や低反射層表面の光線反射率が0.5%以下であれば、十分なパターン転写特性が得られることがわかっている。上記の基本特性を満たすためには、吸収層は80nmより厚い膜厚が必要であった。吸収層の上に低反射層が形成されている場合も吸収層および低反射層は80nmより厚い合計膜厚が必要であった。
 一方、EUVマスクでは、以下に示す「斜影効果」を低減するために、吸収層の膜厚(吸収層の上に低反射層が形成されている場合は吸収層および低反射層の合計膜厚)をより薄くすることが望まれている。ここで、「斜影効果」とは、EUV露光では、入射光はマスクパターンに対して、6°の角度で入射するため、パターンの影が反射強度分布に影響を与え、転写ウエハ上の線幅精度が悪化するという問題である。斜影効果による問題を解決する方法として、露光光の低反射部となる吸収膜のEUV反射率が極小値付近となるように吸収膜の膜厚を設定する方法がある(特許文献1参照)。
The basic characteristic required for the absorption layer and low reflection layer of an EUV mask blank is how to absorb EUV light. In general, it is understood that sufficient pattern transfer characteristics can be obtained if the light reflectance of the surface of the absorbing layer or the surface of the low reflective layer is 0.5% or less for a specific EUV wavelength (13.5 nm). ing. In order to satisfy the above basic characteristics, the absorption layer needs to be thicker than 80 nm. Even in the case where the low reflection layer is formed on the absorption layer, the absorption layer and the low reflection layer require a total film thickness greater than 80 nm.
On the other hand, in the EUV mask, in order to reduce the “bevel effect” shown below, the film thickness of the absorption layer (when the low reflection layer is formed on the absorption layer, the total film thickness of the absorption layer and the low reflection layer). ) Is desired to be thinner. Here, the “tilt effect” means that in EUV exposure, incident light is incident on the mask pattern at an angle of 6 °, so that the shadow of the pattern affects the reflection intensity distribution and the line width on the transfer wafer. The problem is that the accuracy deteriorates. As a method of solving the problem due to the oblique effect, there is a method of setting the film thickness of the absorption film so that the EUV reflectance of the absorption film serving as a low reflection portion of the exposure light is in the vicinity of the minimum value (see Patent Document 1).
日本特開2005-268255号公報Japanese Unexamined Patent Publication No. 2005-268255
 特許文献1では、吸収膜の膜厚、特に、2層以上の薄膜からなる吸収膜の最上層の膜厚を最適化することにより、EUV反射率の極小値を得ているが、これは膜厚変化に対する、EUV反射率の変化を小さくするための技術であり、実質的に吸収膜の膜厚、すなわち、EUVマスクブランクの吸収層の膜厚(吸収層の上に低反射層が形成されている場合は吸収層および低反射層の合計膜厚)をより薄くできているわけではない。 In Patent Document 1, the minimum value of the EUV reflectance is obtained by optimizing the film thickness of the absorption film, particularly the film thickness of the uppermost layer of the absorption film composed of two or more thin films. This is a technique for reducing the change in the EUV reflectivity with respect to the change in thickness. The film thickness of the absorption film, that is, the film thickness of the absorption layer of the EUV mask blank (a low reflection layer is formed on the absorption layer) In this case, the total film thickness of the absorption layer and the low reflection layer is not reduced.
 一方、近年、パターン転写特性に関して、特定の波長(13.5nm)における光線反射率ではなく、特定範囲の波長域(13.3~13.7nm)における平均光線反射率の方が、パターン特性に影響を与えることがわかってきている。上記の波長域における平均光線反射率が4.0%以下であれば、パターン特性には問題ないことが予測されている。 On the other hand, in recent years, with regard to pattern transfer characteristics, not the light reflectance at a specific wavelength (13.5 nm) but the average light reflectance at a specific wavelength range (13.3 to 13.7 nm) is more effective for pattern characteristics. It has been found to have an impact. If the average light reflectance in the above wavelength range is 4.0% or less, it is predicted that there is no problem in pattern characteristics.
 本発明は、上記した従来技術の問題点を解決するため、吸収層の膜厚を最適化することにより、パターン特性に影響がない範囲で、吸収層の膜厚を、従来の膜厚と比較して薄膜化可能としたEUVマスクブランクの提供を目的とする。
 また、本発明は、吸収層および低反射層の合計膜厚を最適化することにより、パターン特性に影響がない範囲で、吸収層および低反射層の合計膜厚を、従来の膜厚と比較して薄膜化可能としたEUVマスクブランクの提供を目的とする。
In order to solve the above-mentioned problems of the prior art, the present invention optimizes the film thickness of the absorption layer and compares the film thickness of the absorption layer with the conventional film thickness within a range that does not affect the pattern characteristics. Thus, an object of the present invention is to provide an EUV mask blank that can be made thin.
In addition, the present invention optimizes the total film thickness of the absorption layer and the low reflection layer, and compares the total film thickness of the absorption layer and the low reflection layer with the conventional film thickness within a range that does not affect the pattern characteristics. Thus, an object of the present invention is to provide an EUV mask blank that can be made thin.
 本発明者らは、上記課題を解決するために鋭意検討した結果、EUVマスクブランクの吸収層の膜厚を、特定のEUV波長範囲における平均光線反射率が極小値となる膜厚に対して±2.0%の範囲内となるように設定することにより、パターン特性に影響がない範囲で、従来の吸収層の膜厚よりも薄膜化できることを見出した。
 また、EUVマスクブランクの吸収層および低反射層の合計膜厚を、特定のEUV波長範囲における平均光線反射率が極小値となる合計膜厚に対して±2.0%の範囲内となるように設定することにより、パターン特性に影響がない範囲で、従来の吸収層および低反射層の合計膜厚よりも薄膜化できることを見出した。
As a result of intensive studies to solve the above problems, the present inventors have determined that the thickness of the absorption layer of the EUV mask blank is ±± the thickness at which the average light reflectance in a specific EUV wavelength range is a minimum value. It has been found that by setting to be within the range of 2.0%, the thickness can be made thinner than the thickness of the conventional absorption layer within a range that does not affect the pattern characteristics.
Further, the total film thickness of the absorption layer and the low reflection layer of the EUV mask blank is within a range of ± 2.0% with respect to the total film thickness at which the average light reflectance in a specific EUV wavelength range is a minimum value. It has been found that the thickness can be made thinner than the total thickness of the conventional absorption layer and the low reflection layer within a range that does not affect the pattern characteristics.
 本発明は、上記の知見に基づいてなされたものであり、本発明は、EUV光を反射する反射層と、EUV光を吸収する吸収層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収層の膜厚が、13.3~13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク(第1の形態のEUVリソグラフィ用反射型マスクブランク)を提供する。
The present invention has been made based on the above findings, and the present invention relates to a reflective mask for EUV lithography in which a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light are formed in this order. Blank,
The film thickness of the absorbing layer is within the range of ± 2.0% with respect to the film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less and the minimum value. A reflective mask blank for EUV lithography (a reflective mask blank for EUV lithography according to the first embodiment) is provided.
 また、本発明は、EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190~260nm)に対する低反射層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収層および前記低反射層の合計膜厚が、13.3~13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる合計膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク(第2の形態のEUVリソグラフィ用反射型マスクブランク)を提供する。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
Also, the present invention provides a reflective layer for reflecting EUV light, an absorbing layer for absorbing EUV light, and a low reflective layer for mask pattern inspection light (wavelength 190 to 260 nm) in this order. A reflective mask blank,
The total film thickness of the absorption layer and the low reflection layer is ± 3% with respect to the total film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less and a minimum value. Provided is a reflective mask blank for EUV lithography (second type reflective mask blank for EUV lithography), which is set to fall within a range of 2.0%.
The term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value, and unless otherwise specified, “to” is the same in the following specification. Used with meaning.
 前記した第1および第2の形態のEUVリソグラフィ用反射型マスクブランクのことを、以下本明細書において、「本発明のEUVマスクブランク」という。 The reflective mask blank for EUV lithography of the first and second embodiments described above is hereinafter referred to as “the EUV mask blank of the present invention”.
 本発明のEUVマスクブランクにおいて、前記吸収層が、タンタル(Ta)および窒素(N)を主成分とすることが好ましい。また、本発明のEUVマスクブランクにおいて、前記吸収層の膜厚が46nm以上、80nm以下とすることが好ましい。 In the EUV mask blank of the present invention, the absorption layer preferably contains tantalum (Ta) and nitrogen (N) as main components. In the EUV mask blank of the present invention, it is preferable that the film thickness of the absorption layer is 46 nm or more and 80 nm or less.
 低反射層が形成された本発明のEUVマスクブランクにおいて、前記低反射層が、タンタル(Ta)および酸素(O)を主成分とすることが好ましい。また、低反射層が形成された本発明のEUVマスクブランクにおいて、前記吸収層及び前記低反射層の合計膜厚が46nm以上、80nm以下とすることが好ましい。 In the EUV mask blank of the present invention in which a low reflection layer is formed, the low reflection layer preferably contains tantalum (Ta) and oxygen (O) as main components. Moreover, in the EUV mask blank of the present invention in which the low reflection layer is formed, the total film thickness of the absorption layer and the low reflection layer is preferably 46 nm or more and 80 nm or less.
 本発明のEUVマスクブランクにおいて、前記反射層と前記吸収層との間に、前記吸収層へのパターン形成時に前記反射層を保護するための保護層が形成されていてもよい。この場合、前記保護層が、Ru、Ru化合物、SiO2およびCr化合物のいずれか1種で形成されることが好ましい。 In the EUV mask blank of the present invention, a protective layer for protecting the reflective layer may be formed between the reflective layer and the absorbent layer when forming a pattern on the absorbent layer. In this case, the protective layer is preferably formed of any one of Ru, Ru compound, SiO 2 and Cr compound.
 本発明のEUVマスクブランクでは、パターン特性に影響を及ぼすことなしに、吸収層および低反射層を薄膜化できる。吸収層および低反射層の薄膜化により、斜影効果の抑制、および、それによるパターン精度の向上が期待される。さらに、吸収層および低反射層の薄膜化により、パターン形成時のレジストの厚さを薄膜化することが可能であり、パターン解像度の向上が期待される。 In the EUV mask blank of the present invention, the absorption layer and the low reflection layer can be thinned without affecting the pattern characteristics. By reducing the thickness of the absorption layer and the low reflection layer, it is expected to suppress the oblique effect and to improve the pattern accuracy. Furthermore, the thickness of the resist at the time of pattern formation can be reduced by reducing the thickness of the absorption layer and the low reflection layer, and an improvement in pattern resolution is expected.
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention. 図2は、図1に示すEUVマスクブランク1の吸収層14(および低反射層15)にパターン形成した状態を示している。FIG. 2 shows a state where a pattern is formed on the absorption layer 14 (and the low reflection layer 15) of the EUV mask blank 1 shown in FIG. 図3は、実施例のEUVマスクブランクにおける吸収層および低反射層の合計膜厚と、13.3~13.7nmの波長域における平均光線反射率との関係を示したグラフである。FIG. 3 is a graph showing the relationship between the total film thickness of the absorption layer and the low reflection layer in the EUV mask blank of the example and the average light reflectance in the wavelength region of 13.3 to 13.7 nm. 図4は、図3中、合計膜厚43~51nmの範囲の部分拡大図である。FIG. 4 is a partially enlarged view of the total film thickness in the range of 43 to 51 nm in FIG. 図5は、図3中、合計膜厚50~58nmの範囲の部分拡大図である。FIG. 5 is a partially enlarged view of the total film thickness in the range of 50 to 58 nm in FIG. 図6は、図3中、合計膜厚57~65nmの範囲の部分拡大図である。FIG. 6 is a partially enlarged view of the total film thickness in the range of 57 to 65 nm in FIG. 図7は、図3中、合計膜厚65~73nmの範囲の部分拡大図である。FIG. 7 is a partially enlarged view of the total film thickness in the range of 65 to 73 nm in FIG. 図8は、図3中、合計膜厚72~80nmの範囲の部分拡大図である。FIG. 8 is a partially enlarged view of the total film thickness of 72 to 80 nm in FIG. 図9は、図3中、合計膜厚80~88nmの範囲の部分拡大図である。FIG. 9 is a partially enlarged view of the total film thickness in the range of 80 to 88 nm in FIG.
 以下、図面を参照して本発明を説明する。図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、EUV光を吸収する吸収層14とがこの順に形成されている。反射層12と吸収層14との間には、吸収層14へのパターン形成時に反射層12を保護するための保護層13が形成されている。吸収層14上には、マスクパターンの検査光に対する低反射層15が形成されている。但し、本発明のEUVマスクブランク1において、図1に示す構成中、基板11、反射層12および吸収層14のみが必須であり、保護層13および低反射層15は任意の構成要素である。
 以下、マスクブランク1の個々の構成要素について説明する。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention. In the mask blank 1 shown in FIG. 1, a reflective layer 12 that reflects EUV light and an absorbing layer 14 that absorbs EUV light are formed on a substrate 11 in this order. A protective layer 13 for protecting the reflective layer 12 is formed between the reflective layer 12 and the absorbent layer 14 when a pattern is formed on the absorbent layer 14. On the absorption layer 14, a low reflection layer 15 for the inspection light of the mask pattern is formed. However, in the EUV mask blank 1 of the present invention, only the substrate 11, the reflective layer 12 and the absorbing layer 14 are essential in the configuration shown in FIG. 1, and the protective layer 13 and the low reflective layer 15 are optional components.
Hereinafter, individual components of the mask blank 1 will be described.
 基板11は、EUVマスクブランク用の基板としての特性を満たすことが要求される。
 そのため、基板11は、低熱膨張係数であることが要求され、具体的には、20℃における熱膨張係数が0±0.05×10-7/℃が好ましく、0±0.03×10-7/℃がより好ましい。また、基板は、平滑性、平坦度、およびマスクブランクまたはパターン形成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。
 基板11としては、具体的には低熱膨張係数を有するガラス、例えばSiO2-TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を使用できる。
 基板11は、表面粗さ(rms)が0.15nm以下の平滑な表面と、100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
 基板11の大きさや厚さなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)のSiO2-TiO2系ガラスを用いた。
 基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の大きさの半値幅が60nm以下であることが好ましい。
The substrate 11 is required to satisfy the characteristics as a substrate for an EUV mask blank.
Therefore, the substrate 11, it is a low thermal expansion coefficient is required, specifically, the thermal expansion coefficient of preferably 0 ± 0.05 × 10 -7 / ℃ at 20 ℃, 0 ± 0.03 × 10 - 7 / ° C is more preferable. The substrate preferably has excellent smoothness, flatness, and resistance to a cleaning liquid used for cleaning a mask blank or a photomask after pattern formation.
Specifically, the substrate 11 is made of glass having a low thermal expansion coefficient, such as SiO 2 —TiO 2 glass, but is not limited to this. Crystallized glass, quartz glass, silicon or the like on which β quartz solid solution is precipitated is used. A substrate such as metal can be used.
Since the substrate 11 has a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 100 nm or less, high reflectivity and transfer accuracy can be obtained in a photomask after pattern formation. Is preferred.
The size and thickness of the substrate 11 are appropriately determined according to the design value of the mask. In the examples described later, SiO 2 —TiO 2 glass having an outer shape of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used.
It is preferable that the surface of the substrate 11 on the side where the reflective layer 12 is formed has no defects. However, even if it exists, the depth of the concave defect and the height of the convex defect are not more than 2 nm so that the phase defect does not occur due to the concave defect and / or the convex defect. The full width at half maximum of the size of the defect and the convex defect is preferably 60 nm or less.
 反射層12は、EUVマスクブランクの反射層として所望の特性を有するものである限り特に限定されない。ここで、反射層12に特に要求される特性は、高EUV光線反射率である。具体的には、EUV光の波長領域の光線を入射角6度で反射層12表面に照射した際に、13.3~13.7nmの波長域における光線反射率の最大値は、60%以上が好ましく、65%以上がより好ましい。また、反射層12の上に保護層13を設けた場合であっても、13.3~13.7nmの波長域における光線反射率の最大値は、60%以上が好ましく、65%以上がより好ましい。 The reflective layer 12 is not particularly limited as long as it has desired characteristics as a reflective layer of an EUV mask blank. Here, the characteristic particularly required for the reflective layer 12 is a high EUV light reflectance. Specifically, when the surface of the reflective layer 12 is irradiated with light in the wavelength region of EUV light at an incident angle of 6 degrees, the maximum value of the light reflectance in the wavelength region of 13.3 to 13.7 nm is 60% or more. Is preferable, and 65% or more is more preferable. Further, even when the protective layer 13 is provided on the reflective layer 12, the maximum value of the light reflectance in the wavelength region of 13.3 to 13.7 nm is preferably 60% or more, more preferably 65% or more. preferable.
 反射層12は、高EUV光線反射率を達成できることから、通常は高屈折率層と低屈折率層を交互に複数回積層させた多層反射膜が反射層12として用いられる。反射層12をなす多層反射膜において、高屈折率層には、Siが広く使用され、低屈折率層にはMoが広く使用される。すなわち、Mo/Si多層反射膜が最も一般的である。但し、多層反射膜はこれに限定されず、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜なども使用できる。 Since the reflective layer 12 can achieve high EUV light reflectance, a multilayer reflective film in which a high refractive index layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12. In the multilayer reflective film forming the reflective layer 12, Si is widely used for the high refractive index layer, and Mo is widely used for the low refractive index layer. That is, the Mo / Si multilayer reflective film is the most common. However, the multilayer reflective film is not limited to this, and Ru / Si multilayer reflective film, Mo / Be multilayer reflective film, Mo compound / Si compound multilayer reflective film, Si / Mo / Ru multilayer reflective film, Si / Mo / Ru / A Mo multilayer reflective film, a Si / Ru / Mo / Ru multilayer reflective film, or the like can also be used.
 反射層12をなす多層反射膜を構成する各層の膜厚および層の繰り返し単位の数は、使用する膜材料および反射層に要求されるEUV光線反射率に応じて適宜選択できる。Mo/Si反射膜を例にとると、13.3~13.7nmの波長域における光線反射率の最大値が60%以上の反射層12とするには、多層反射膜は膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30~60になるように積層させればよい。 The film thickness of each layer constituting the multilayer reflective film constituting the reflective layer 12 and the number of repeating units of the layer can be appropriately selected according to the film material used and the EUV light reflectance required for the reflective layer. Taking the Mo / Si reflective film as an example, in order to obtain the reflective layer 12 having a maximum light reflectance of 60% or more in the wavelength range of 13.3 to 13.7 nm, the multilayer reflective film has a film thickness of 2.3. A Mo layer with a thickness of ± 0.1 nm and a Si layer with a thickness of 4.5 ± 0.1 nm may be laminated so that the number of units is 30 to 60.
 なお、反射層12をなす多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてMo/Si多層反射膜を形成する場合、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ4.5nmとなるようにSi膜を成膜し、次に、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ2.3nmとなるようにMo膜を成膜するのが好ましい。これを1周期として、Si膜およびMo膜を30~60周期積層させることによりMo/Si多層反射膜が成膜される。 In addition, what is necessary is just to form each layer which comprises the multilayer reflective film which comprises the reflective layer 12 so that it may become desired thickness using well-known film-forming methods, such as a magnetron sputtering method and an ion beam sputtering method. For example, when a Mo / Si multilayer reflective film is formed by ion beam sputtering, an Si target is used as a target and Ar gas (gas pressure 1.3 × 10 −2 Pa to 2.7 × 10 as a sputtering gas). 2 Pa), an Si film is formed to have a thickness of 4.5 nm at an ion acceleration voltage of 300 to 1500 V and a film formation rate of 0.03 to 0.30 nm / sec. Using a target, Ar gas (gas pressure 1.3 × 10 −2 Pa to 2.7 × 10 −2 Pa) as a sputtering gas, ion acceleration voltage 300 to 1500 V, film formation rate 0.03 to 0 It is preferable to form the Mo film so that the thickness is 2.3 nm at 30 nm / sec. With this as one cycle, the Mo / Si multilayer reflective film is formed by laminating 30 to 60 cycles of the Si film and the Mo film.
 反射層12表面が酸化されるのを防止するため、反射層12をなす多層反射膜の最上層は酸化されにくい材料の層が好ましい。酸化されにくい材料の層は反射層12のキャップ層として機能する。キャップ層として機能する酸化されにくい材料の層の具体例としては、Si層を例示できる。反射層12をなす多層反射膜がMo/Si多層反射膜である場合、最上層をSi層とすることによって、該最上層がキャップ層として機能する。その場合キャップ層の膜厚は、11±2nmが好ましい。 In order to prevent the surface of the reflective layer 12 from being oxidized, the uppermost layer of the multilayer reflective film forming the reflective layer 12 is preferably a layer that is not easily oxidized. The layer of material that is not easily oxidized functions as a cap layer of the reflective layer 12. A Si layer can be exemplified as a specific example of the layer of a material that is hardly oxidized and functions as a cap layer. When the multilayer reflective film forming the reflective layer 12 is a Mo / Si multilayer reflective film, the uppermost layer functions as a cap layer by forming the uppermost layer as an Si layer. In that case, the thickness of the cap layer is preferably 11 ± 2 nm.
 反射層12と、吸収層14との間には保護層13を形成してもよい。保護層13は、エッチングプロセス、通常はドライエッチングプロセスにより吸収層14にパターン形成する際に、反射層12がエッチングプロセスによるダメージを受けないよう、反射層12を保護する目的で設けられる。したがって保護層13の材質としては、吸収層14のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収層14よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、たとえばCr、Al、Ta及びこれらの窒化物、Ru及びRu化合物(RuB、RuSi等)、ならびにSiO2、Si34、Al23やこれらの混合物が例示される。保護層13として好ましくは、Ru、Ru化合物、SiO2およびCr化合物の群から選ばれる少なくとも1種が挙げられる。これらの中でも、Ru及びRu化合物(RuB、RuSi等)、CrNおよびSiO2が好ましく、Ru及びRu化合物(RuB、RuSi等)が特に好ましい。
 保護層13の厚さは1~60nmが好ましい。
A protective layer 13 may be formed between the reflective layer 12 and the absorption layer 14. The protective layer 13 is provided for the purpose of protecting the reflective layer 12 so that the reflective layer 12 is not damaged by the etching process when the absorption layer 14 is patterned by an etching process, usually a dry etching process. Therefore, the material of the protective layer 13 is selected from a material that is not easily affected by the etching process of the absorbing layer 14, that is, the etching rate is slower than that of the absorbing layer 14 and is not easily damaged by the etching process. Examples of the material satisfying this condition include Cr, Al, Ta and nitrides thereof, Ru and Ru compounds (RuB, RuSi, etc.), and SiO 2 , Si 3 N 4 , Al 2 O 3 and mixtures thereof. Is done. The protective layer 13 is preferably at least one selected from the group consisting of Ru, Ru compounds, SiO 2 and Cr compounds. Among these, Ru and Ru compounds (RuB, RuSi, etc.), CrN and SiO 2 are preferable, and Ru and Ru compounds (RuB, RuSi, etc.) are particularly preferable.
The thickness of the protective layer 13 is preferably 1 to 60 nm.
 保護層13は、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜する。マグネトロンスパッタリング法によりRu膜を成膜する場合、ターゲットとしてRuターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-2Pa~10×10-1Pa)を使用して投入電圧30V~1500V、成膜速度0.02~1.0nm/secで厚さ2~5nmとなるように成膜するのが好ましい。 The protective layer 13 is formed using a known film formation method such as magnetron sputtering or ion beam sputtering. When a Ru film is formed by magnetron sputtering, a Ru target is used as a target, Ar gas (gas pressure: 1.0 × 10 −2 Pa to 10 × 10 −1 Pa) is used as a sputtering gas, and an input voltage is 30 V. It is preferable to form the film so that the thickness is 2 to 5 nm at a film forming speed of 0.02 to 1.0 nm / sec.
 吸収層14に特に要求される特性は、EUV光線反射率が極めて低いことである。具体的には、EUV光の波長領域の光線を吸収層14表面に照射した際に、13.3~13.7nmの波長域における平均光線反射率が4.0%以下であり、3.8%以下が好ましく、3.5%以下がより好ましい。
 本発明のEUVマスクブランク1のように、吸収層14上にマスクパターンの検査光に対する低反射層15が形成されている場合においては、EUV光の波長領域の光線を低反射層15表面に照射した際にも、13.3~13.7nmの波長域における平均光線反射率が4.0%以下であり、3.8%以下が好ましく、3.5%以下がより好ましい。
The characteristic particularly required for the absorption layer 14 is that the EUV light reflectance is extremely low. Specifically, when the surface of the absorption layer 14 is irradiated with light in the wavelength region of EUV light, the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less, and 3.8 % Or less is preferable, and 3.5% or less is more preferable.
When the low reflection layer 15 for the inspection light of the mask pattern is formed on the absorption layer 14 as in the EUV mask blank 1 of the present invention, the surface of the low reflection layer 15 is irradiated with light in the wavelength region of EUV light. In this case, the average light reflectance in the wavelength range of 13.3 to 13.7 nm is 4.0% or less, preferably 3.8% or less, and more preferably 3.5% or less.
 上記の特性を達成するため、吸収層14は、EUV光の吸収係数が高い材料で構成される。EUV光の吸収係数が高い材料としては、タンタル(Ta)および窒素(N)を主成分とする材料が13.3~13.7nmの波長域における平均光線反射率が4.0%以下の吸収層を形成しやすいことに加えて、吸収層の結晶状態がアモルファスになりやすく、表面粗さが小さく平滑性に優れた表面となるので好ましい。本明細書において、TaおよびNを主成分とする材料と言った場合、当該材料中TaおよびNを合計含有率で40原子%(以下、原子%をat%と記す。)以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料を意味し、TaNが例示される。
 吸収層14に用いるTaおよびNを主成分とする材料は、TaおよびN以外にハフニウム(Hf)、珪素(Si)、ジルコニウム(Zr)、ゲルマニウム(Ge)、硼素(B)および水素(H)から選ばれる少なくとも一種の元素を含んでも良い。TaおよびN以外に上記の元素を含有する材料の具体例としては、例えば、TaNH、TaHfN、TaBSiN、TaBSiNH、TaBN、TaBNH、TaSiN、TaGeN、TaZrNなどが挙げられる。
In order to achieve the above characteristics, the absorption layer 14 is made of a material having a high EUV light absorption coefficient. As a material having a high EUV light absorption coefficient, a material mainly composed of tantalum (Ta) and nitrogen (N) has an average light reflectance of 4.0% or less in a wavelength range of 13.3 to 13.7 nm. In addition to being easy to form a layer, the crystalline state of the absorption layer is likely to be amorphous, and the surface is small and the surface is excellent in smoothness. In this specification, when a material mainly composed of Ta and N is used, Ta and N in the material are 40 atomic% or more (hereinafter referred to as atomic%) in total content, preferably 50 at. %, More preferably 55 at% or more, and TaN is exemplified.
The materials mainly composed of Ta and N used for the absorption layer 14 include, in addition to Ta and N, hafnium (Hf), silicon (Si), zirconium (Zr), germanium (Ge), boron (B), and hydrogen (H). It may contain at least one element selected from Specific examples of the material containing the above elements in addition to Ta and N include TaNH, TaHfN, TaBSiN, TaBSiNH, TaBN, TaBNH, TaSiN, TaGeN, TaZrN, and the like.
 上記した構成の吸収層14、すなわち、TaおよびNを主成分とする材料で構成される吸収層は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法により形成できる。
 例えば、吸収層14として、マグネトロンスパッタリング法を用いてTaNH膜を形成する場合、ターゲットとしてTaターゲットを用い、スパッタガスとして、ArとN2とH2の混合ガス(H2ガス濃度1~50vol%、N2ガス濃度1~80vol%、Arガス濃度5~95vol%、ガス圧1.0×10-1Pa~50×10-1Pa)を使用して、投入電力30~3000W、成膜速度0.5~60nm/minで、後述する膜厚となるようにTaNH膜を成膜することが好ましい。
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にするのが好ましい。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にするのが好ましい。
The absorption layer 14 having the above-described configuration, that is, an absorption layer made of a material mainly composed of Ta and N can be formed by a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
For example, when a TaNH film is formed as the absorption layer 14 using a magnetron sputtering method, a Ta target is used as a target, and a mixed gas of Ar, N 2 and H 2 (H 2 gas concentration 1 to 50 vol%) as a sputtering gas. N 2 gas concentration 1 to 80 vol%, Ar gas concentration 5 to 95 vol%, gas pressure 1.0 × 10 −1 Pa to 50 × 10 −1 Pa), input power 30 to 3000 W, film formation rate It is preferable to form a TaNH film so as to have a film thickness described later at 0.5 to 60 nm / min.
In addition, when using inert gas other than Ar, it is preferable that the density | concentration of the inert gas sets it as the same concentration range as above-mentioned Ar gas concentration. Further, when a plurality of types of inert gases are used, it is preferable that the total concentration of the inert gases is in the same concentration range as the Ar gas concentration described above.
 低反射層15はマスクパターンの検査に使用する検査光において、低反射となるような膜で構成される。EUVマスクを作製する際、吸収層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常190~260nm程度の光を使用した検査機が使用される。つまり、この190~260nm程度の光の反射率の差、具体的には、吸収層14がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収層14表面と、の反射率の差によって検査される。ここで、前者は反射層12表面または保護層13表面であり、通常は保護層13表面である。したがって、検査光の波長に対する反射層12表面または保護層13表面と、吸収層14表面と、の反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。 The low reflection layer 15 is composed of a film that exhibits low reflection in inspection light used for inspection of a mask pattern. When producing an EUV mask, after forming a pattern in the absorption layer, it is inspected whether this pattern is formed as designed. In this mask pattern inspection, an inspection machine that normally uses light of about 190 to 260 nm as inspection light is used. That is, the difference in reflectance of light of about 190 to 260 nm, specifically, the surface exposed by removing the absorption layer 14 by pattern formation, the surface of the absorption layer 14 remaining without being removed by pattern formation, It is inspected by the difference in reflectance. Here, the former is the surface of the reflective layer 12 or the surface of the protective layer 13, and is usually the surface of the protective layer 13. Therefore, if the difference in reflectance between the surface of the reflective layer 12 or the protective layer 13 and the surface of the absorption layer 14 with respect to the wavelength of the inspection light is small, the contrast at the time of inspection deteriorates and accurate inspection cannot be performed.
 上記した構成の吸収層14、すなわち、TaおよびNを主成分とする材料で構成される吸収層は、EUV光線反射率が極めて低く、EUVマスクブランク1の吸収層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査光の波長での吸収層14表面の反射率と、反射層12表面または保護層13表面の反射率と、の差が小さくなり、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。 The absorption layer 14 having the above-described configuration, that is, an absorption layer composed of a material mainly composed of Ta and N, has extremely low EUV light reflectance, and has excellent characteristics as an absorption layer of the EUV mask blank 1. However, when looking at the wavelength of the inspection light, the light reflectance is not necessarily low enough. As a result, the difference between the reflectance of the surface of the absorption layer 14 at the wavelength of the inspection light and the reflectance of the surface of the reflective layer 12 or the surface of the protective layer 13 becomes small, and there is a possibility that sufficient contrast during inspection cannot be obtained. is there. If sufficient contrast at the time of inspection is not obtained, pattern defects cannot be sufficiently determined in mask inspection, and accurate defect inspection cannot be performed.
 本発明のEUVマスクブランク1では、吸収層14上に検査光における低反射層15を形成することにより、検査光の波長での光線反射率が極めて低くなり、検査時のコントラストが良好となる。
 本明細書において、検査時のコントラストは下記式を用いて求めることができる。
  検査時のコントラスト(%)=((R2-R1)/(R2+R1))×100
 ここで、検査光の波長におけるR2は反射層12表面または保護層13表面での反射率であり、R1は低反射層15表面での反射率である。なお、上記R1およびR2は、図1に示すEUVマスクブランク1のように、吸収層14上にマスクパターンの検査光に対する低反射層15が形成されている場合、図2に示すように、EUVマスクブランク1の吸収層14および低反射層15にパターンを形成した状態で測定する。上記R2は、図2中、パターン形成によって吸収層14および低反射層15が除去され、外部に露出した反射層12表面または保護層13表面で測定した値であり、R1はパターン形成によって除去されずに残った低反射層15表面で測定した値である。なお、吸収層の上に低反射層が形成されていない場合には、吸収層にパターンを形成した状態で測定する。
 本発明のEUVマスクブランクが低反射層を有する場合、上記式で表される検査時のコントラストが、30%以上が好ましく、45%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。
 なお、検査時のコントラストが上記を満たすためには、検査光の波長の光線を低反射層15表面に照射した際の該検査光の波長の最大光線反射率は、15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましい。
In the EUV mask blank 1 of the present invention, by forming the low reflection layer 15 for the inspection light on the absorption layer 14, the light reflectance at the wavelength of the inspection light becomes extremely low, and the contrast at the time of inspection becomes good.
In this specification, the contrast at the time of inspection can be obtained using the following equation.
Contrast at the time of inspection (%) = ((R 2 −R 1 ) / (R 2 + R 1 )) × 100
Here, R 2 at the wavelength of the inspection light is a reflectance on the surface of the reflective layer 12 or the protective layer 13, and R 1 is a reflectance on the surface of the low reflective layer 15. Note that R 1 and R 2 are as shown in FIG. 2 when the low reflection layer 15 for the mask pattern inspection light is formed on the absorption layer 14 as in the EUV mask blank 1 shown in FIG. The measurement is performed in a state where a pattern is formed on the absorption layer 14 and the low reflection layer 15 of the EUV mask blank 1. The R 2 is a value measured on the surface of the reflective layer 12 or the protective layer 13 exposed to the outside after the absorption layer 14 and the low reflection layer 15 are removed by pattern formation in FIG. 2, and R 1 is obtained by pattern formation. This is a value measured on the surface of the low reflective layer 15 remaining without being removed. In addition, when the low reflection layer is not formed on an absorption layer, it measures in the state which formed the pattern in the absorption layer.
When the EUV mask blank of the present invention has a low reflection layer, the contrast at the time of inspection represented by the above formula is preferably 30% or more, more preferably 45% or more, still more preferably 60% or more, and more than 80%. Particularly preferred.
In order for the contrast at the time of inspection to satisfy the above, the maximum light reflectance of the wavelength of the inspection light when the surface of the low reflection layer 15 is irradiated with the light of the wavelength of the inspection light is preferably 15% or less. % Or less is more preferable, and 5% or less is more preferable.
 低反射層15は、上記の特性を達成するため、検査光の波長の屈折率が吸収層14よりも低い材料で構成される。検査光の波長の屈折率が吸収層14よりも低い材料としては、タンタル(Ta)および酸素(O)を主成分とする材料を用いることが、検査光の波長の最大光線反射率が15%以下の低反射層を形成しやすいことに加えて、低反射層の結晶状態がアモルファスになりやすく、表面粗さが小さく平滑性に優れた表面となるので好ましい。本明細書において、TaおよびOを主成分とする材料と言った場合、当該材料中TaおよびOを合計含有率で40at%以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料を意味し、TaOが例示される。
 低反射層15に用いるTaおよびOを主成分とする材料は、TaおよびO以外にHf、Si、Zr、Ge、B、NおよびHから選ばれる少なくとも一種の元素を含んでも良い。TaおよびO以外に上記の元素を含有する材料の具体例としては、例えば、TaON、TaONH、TaHfO、TaHfON、TaBSiO、TaBSiON等が挙げられる。
The low reflection layer 15 is made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption layer 14 in order to achieve the above characteristics. As a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption layer 14, a material mainly composed of tantalum (Ta) and oxygen (O) is used, and the maximum light reflectance at the wavelength of the inspection light is 15%. In addition to being easy to form the following low reflection layer, the low reflection layer is likely to be amorphous and the surface is small in surface roughness and excellent in smoothness. In this specification, when a material mainly composed of Ta and O is used, a material containing Ta and O in the material in a total content of 40 at% or more, preferably 50 at% or more, more preferably 55 at% or more. Meaning TaO.
The material mainly composed of Ta and O used for the low reflection layer 15 may contain at least one element selected from Hf, Si, Zr, Ge, B, N and H in addition to Ta and O. Specific examples of the material containing the above elements in addition to Ta and O include TaON, TaONH, TaHfO, TaHfON, TaBSiO, TaBSiON, and the like.
 上記した構成の低反射層15は、すなわち、TaおよびOを主成分とする材料で構成される低反射層は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法により形成できる。
 例えば、低反射層15として、マグネトロンスパッタリング法を用いてTaONH膜を形成する場合、ターゲットとして、Taターゲットを用い、スパッタガスとして、ArとO2とN2とH2の混合ガス(H2ガス濃度1~50vol%、O2ガス濃度1~80vol%、N2ガス濃度1~80vol%、Arガス濃度5~95vol%、ガス圧1.0×10-1Pa~50×10-1Pa)を使用して、投入電力30~3000W、成膜速度0.01~60nm/minで、後述する膜厚となるようにTaONH膜を成膜することが好ましい。
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にすることが好ましい。
The low reflective layer 15 having the above-described configuration, that is, the low reflective layer made of a material mainly composed of Ta and O can be formed by a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
For example, when a TaONH film is formed as the low reflection layer 15 using a magnetron sputtering method, a Ta target is used as a target, and a mixed gas of Ar, O 2 , N 2, and H 2 (H 2 gas) as a sputtering gas. (Concentration 1 to 50 vol%, O 2 gas concentration 1 to 80 vol%, N 2 gas concentration 1 to 80 vol%, Ar gas concentration 5 to 95 vol%, gas pressure 1.0 × 10 −1 Pa to 50 × 10 −1 Pa) It is preferable to form a TaONH film with a power of 30 to 3000 W and a film formation rate of 0.01 to 60 nm / min.
In addition, when using inert gas other than Ar, it is preferable that the density | concentration of the inert gas sets it as the same concentration range as above-mentioned Ar gas concentration.
 上述したように、本発明のEUVマスクブランクは、吸収層での13.3~13.7nmの波長域における平均光線反射率が4.0%以下となる。また、吸収層上に低反射層が形成されている場合、該低反射層での13.3~13.7nmの波長域における平均光線反射率が4.0%以下となる。
 後述する実施例の図3に示すように、吸収層上に低反射層が形成されている場合、低反射層での13.3~13.7nmの波長域における平均光線反射率は、吸収層および低反射層の合計膜厚に対し依存性があり、周期的に増減を繰り返しながら(すなわち、極大値と極小値との間で増減を繰り返しながら)、合計膜厚が増加するにつれて減少していく。
 したがって、吸収層上に低反射層が形成されたEUVマスクブランクの場合、低反射層での13.3~13.7nmの波長域における平均光線反射率が4.0%以下となるように、吸収層および低反射層の合計膜厚を設定する必要がある。
 吸収層上に低反射層を形成していない吸収層での13.3~13.7nmの波長域における平均光線反射率も同様であり、吸収層の膜厚に対し依存性があり、周期的に増減を繰り返しながら(すなわち、極大値と極小値との間で増減を繰り返しながら)、合計膜厚が増加するにつれて減少していく。
 したがって、吸収層上に低反射層が形成されていないEUVマスクブランクの場合、吸収層での13.3~13.7nmの波長域における平均光線反射率が4.0%以下となるように、吸収層の膜厚を設定する必要がある。
As described above, in the EUV mask blank of the present invention, the average light reflectance in the wavelength region of 13.3 to 13.7 nm in the absorption layer is 4.0% or less. When a low reflection layer is formed on the absorption layer, the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is 4.0% or less.
As shown in FIG. 3 of the example described later, when the low reflection layer is formed on the absorption layer, the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is as follows. And is dependent on the total film thickness of the low-reflection layer, and periodically increases and decreases (ie, increases and decreases between the maximum and minimum values) and decreases as the total film thickness increases. Go.
Therefore, in the case of an EUV mask blank having a low reflection layer formed on the absorption layer, the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is 4.0% or less. It is necessary to set the total film thickness of the absorption layer and the low reflection layer.
The same applies to the average light reflectance in the wavelength region of 13.3 to 13.7 nm in the absorption layer in which the low reflection layer is not formed on the absorption layer, and is dependent on the thickness of the absorption layer and is periodic. While increasing and decreasing repeatedly (that is, repeating increasing and decreasing between the maximum value and the minimum value), it decreases as the total film thickness increases.
Therefore, in the case of an EUV mask blank in which a low reflection layer is not formed on the absorption layer, the average light reflectance in the wavelength range of 13.3 to 13.7 nm in the absorption layer is 4.0% or less. It is necessary to set the film thickness of the absorption layer.
 本発明のEUVマスクブランクでは、さらに、13.3~13.7nmの波長域における平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内となるように、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を設定する。
 吸収層上に低反射層が形成されていないEUVマスクブランクの場合、吸収層での13.3~13.7nmの波長域における平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内となるように、吸収層の膜厚を設定する。
 ここで、「平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内」とは、別の言い方をすると、平均光線反射率が極小値となる膜厚を100.0%としたときに、98.0%~102.0%の膜厚の範囲に相当する。
 吸収層上に低反射層が形成されたEUVマスクブランクの場合、低反射層での13.3~13.7nmの波長域における平均光線反射率が極小値となる合計膜厚に対して、±2.0%の範囲内となるように、吸収層および低反射層の合計膜厚を設定する。
In the EUV mask blank of the present invention, the absorption is further performed so that the average light reflectance in the wavelength range of 13.3 to 13.7 nm is within a range of ± 2.0% with respect to the minimum film thickness. The film thickness of the layer or the total film thickness of the absorption layer and the low reflection layer is set.
In the case of an EUV mask blank in which a low reflection layer is not formed on the absorption layer, ± 2 with respect to the film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm in the absorption layer is a minimum value. The film thickness of the absorption layer is set so as to be in the range of 0.0%.
Here, “within the range of ± 2.0% with respect to the film thickness at which the average light reflectance becomes a minimum value”, in other words, the film thickness at which the average light reflectance becomes a minimum value is 100. 0.0% corresponds to a film thickness range of 98.0% to 102.0%.
In the case of an EUV mask blank in which a low reflection layer is formed on the absorption layer, the average film reflectivity in the wavelength range of 13.3 to 13.7 nm in the low reflection layer is ±± The total film thickness of the absorption layer and the low reflection layer is set so as to be within the range of 2.0%.
 上述したように、十分なパターン転写特性を得るためには、吸収層表面(吸収層上に低反射層が形成されている場合は低反射層表面)での特定のEUV波長の光線反射率、具体的には、波長13.5nmの光線反射率を0.5%以下とする必要があると従来は考えられていた。これを満たすためには、吸収層の膜厚(吸収層上に低反射層が形成されている場合は吸収層および低反射層の合計膜厚)を80nmより厚くする必要があり、斜影効果の問題があった。
 これに対し、波長13.5nmの光線反射率が極小値付近となるように、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を設定すれば、十分なパターン転写特性が得られるというのが、特許文献1における考え方である。
 特許文献1は、このような考え方に基づき、吸収層、あるいは、吸収層および低反射層の薄膜化を期待したものであるが、特許文献1の段落番号[0022]に記載されているように、OD(Optical density)値の極大値付近の幅は狭く、膜厚の変化によりOD値は変化しやすく、膜厚の制御には厳しい精度が求められる。ここで、OD値と光線反射率は直接関連するので、波長13.5nmの光線反射率の極小値付近の幅は狭いうえ、膜厚の変化により該光線反射率が変化することが示されていると言える。したがって、特許文献1では、膜厚の制御に厳しい精度が求められるため、吸収層、あるいは、吸収層および低反射層の薄膜化は困難であるとされている。
As described above, in order to obtain a sufficient pattern transfer characteristic, the light reflectance of a specific EUV wavelength on the surface of the absorption layer (the surface of the low reflection layer when a low reflection layer is formed on the absorption layer), Specifically, it was conventionally considered that the light reflectance at a wavelength of 13.5 nm needs to be 0.5% or less. In order to satisfy this, the film thickness of the absorption layer (when the low reflection layer is formed on the absorption layer, the total film thickness of the absorption layer and the low reflection layer) needs to be thicker than 80 nm. There was a problem.
On the other hand, if the film thickness of the absorption layer or the total film thickness of the absorption layer and the low reflection layer is set so that the light reflectance at the wavelength of 13.5 nm is near the minimum value, sufficient pattern transfer characteristics can be obtained. It is the idea in Patent Document 1 that it is obtained.
Patent Document 1 is expected to reduce the thickness of the absorption layer, or the absorption layer and the low reflection layer based on such a concept, but as described in paragraph [0022] of Patent Document 1. , The width of the OD (Optical Density) near the maximum value is narrow, the OD value is likely to change due to the change of the film thickness, and strict accuracy is required for controlling the film thickness. Here, since the OD value and the light reflectance are directly related to each other, the width near the minimum value of the light reflectance at the wavelength of 13.5 nm is narrow, and it is shown that the light reflectance changes with the change of the film thickness. I can say that. Therefore, in Patent Document 1, since strict precision is required for controlling the film thickness, it is difficult to reduce the thickness of the absorption layer or the absorption layer and the low reflection layer.
 これに対し、本発明のEUVマスクブランクでは、13.3~13.7nmの波長域における平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内となるように、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を設定する。
 後述する実施例の図3~9、特に、図4~9に示すように、13.3~13.7nmの波長域における平均光線反射率の場合、吸収層および低反射層の合計膜厚の変化に対する該平均光線反射率の変化、特に極小値付近での平均光線反射率の変化がゆるやかである。この点に関して、後述する実施例の図4~9では、平均光線反射率が極小値となる合計膜厚に対して、±2.0%となる合計膜厚の範囲をグレートーンで示している。後述する実施例の表に示すように、当該範囲における平均光線反射率の変化は最大でも0.3%ときわめて小さい。このような平均光線反射率のきわめて小さい変化であれば、パターン特性に影響を及ぼすことはないと考えられる。
 吸収層上に低反射層が形成されていないEUVマスクブランクの場合も同様であり、吸収層の膜厚に対する13.3~13.7nmの波長域における平均光線反射率、特に極小値付近での平均光線反射率の変化がゆるやかであり、平均光線反射率が極小値となる膜厚に対して、±2.0%となる吸収層の膜厚の範囲であれば、当該範囲における平均光線反射率の変化はきわめて小さく、パターン特性に影響を及ぼすことはないと考えられる。
On the other hand, in the EUV mask blank of the present invention, the average light reflectance in the wavelength region of 13.3 to 13.7 nm is within a range of ± 2.0% with respect to the film thickness at which the minimum value is obtained. The film thickness of the absorption layer or the total film thickness of the absorption layer and the low reflection layer is set.
As shown in FIGS. 3 to 9, particularly FIGS. 4 to 9, in the examples described later, in the case of the average light reflectance in the wavelength region of 13.3 to 13.7 nm, the total film thickness of the absorbing layer and the low reflecting layer is The change of the average light reflectivity with respect to the change, particularly the change of the average light reflectivity near the minimum value is gradual. With respect to this point, in FIGS. 4 to 9 of the examples described later, the range of the total film thickness that is ± 2.0% with respect to the total film thickness at which the average light reflectance becomes the minimum value is shown in gray tone. . As shown in the table of Examples to be described later, the change in the average light reflectance in the range is as small as 0.3% at the maximum. Such a very small change in the average light reflectance is considered not to affect the pattern characteristics.
The same applies to the case of an EUV mask blank in which a low reflection layer is not formed on the absorption layer, and the average light reflectance in the wavelength range of 13.3 to 13.7 nm with respect to the thickness of the absorption layer, particularly in the vicinity of the minimum value. If the change of the average light reflectivity is gradual and the film thickness of the absorption layer is ± 2.0% with respect to the film thickness at which the average light reflectivity is a minimum value, the average light reflection in the range is within the range. The change in rate is very small and it is considered that the pattern characteristics are not affected.
 後述する実施例の図3に示すように、13.3~13.7nmの波長域における平均光線反射率は、吸収層および低反射層の合計膜厚によって、複数の異なる極小値を取るが、該極小値における平均光線反射率が4.0%以下である限り、どの極小値に対して吸収層および低反射層の合計膜厚を設定してもよい。この点については、吸収層上に低反射層が形成されていないEUVマスクブランクの場合も同様である。
 但し、吸収層および低反射層を薄膜化するためには、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚が80nm以下、より好ましくは、75nm以下、さらに好ましくは70nm以下となるように、13.3~13.7nmの波長域における平均光線反射率が極小値となる吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を選択することが好ましい。なお、吸収層の膜厚の下限は、吸収層としての機能面および4.0%以下の平均光線反射率を得られるようにするという面から46nm以上が好ましく、また吸収層および低反射層の合計膜厚の下限は、吸収層としての機能面および4.0%以下の平均光線反射率を得られるようにするという面から46nm以上が好ましい。
As shown in FIG. 3 of the example described later, the average light reflectance in the wavelength region of 13.3 to 13.7 nm takes a plurality of different minimum values depending on the total film thickness of the absorption layer and the low reflection layer. As long as the average light reflectance at the minimum value is 4.0% or less, the total film thickness of the absorption layer and the low reflection layer may be set for any minimum value. This is the same for the EUV mask blank in which the low reflection layer is not formed on the absorption layer.
However, in order to reduce the thickness of the absorption layer and the low reflection layer, the thickness of the absorption layer or the total thickness of the absorption layer and the low reflection layer is 80 nm or less, more preferably 75 nm or less, more preferably 70 nm or less. Therefore, it is preferable to select the thickness of the absorbing layer at which the average light reflectance in the wavelength range of 13.3 to 13.7 nm is a minimum value, or the total thickness of the absorbing layer and the low reflecting layer. In addition, the lower limit of the film thickness of the absorption layer is preferably 46 nm or more from the viewpoint of obtaining a functional surface as the absorption layer and an average light reflectance of 4.0% or less. The lower limit of the total film thickness is preferably 46 nm or more from the viewpoint of obtaining a functional surface as an absorption layer and an average light reflectance of 4.0% or less.
 吸収層上に低反射層が形成されたEUVマスクブランクの場合、低反射層の膜厚が吸収層の膜厚よりも厚いと、吸収層でのEUV光吸収特性が低下するおそれがあるので、低反射層の膜厚は吸収層の膜厚よりも薄いことが好ましい。このため、低反射層の膜厚は1~20nmであることが好ましく、1~15nmであることがより好ましく、1~10nmであることがさらに好ましい。 In the case of an EUV mask blank in which a low reflection layer is formed on the absorption layer, if the film thickness of the low reflection layer is larger than the film thickness of the absorption layer, the EUV light absorption characteristics in the absorption layer may be reduced. The film thickness of the low reflection layer is preferably thinner than the film thickness of the absorption layer. For this reason, the film thickness of the low reflection layer is preferably 1 to 20 nm, more preferably 1 to 15 nm, and even more preferably 1 to 10 nm.
 本発明のEUVマスクブランクは、反射層、吸収層、ならびに必要に応じて形成される保護層および低反射層以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003-501823号公報に記載されているもののように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1の基板11において、反射層12が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択できる。例えば、特表2003-501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、TaSiからなるコーティングを適用できる。高誘電性コーティングの厚さは、例えば10~1000nmとできる。
 高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて形成できる。
The EUV mask blank of the present invention may have a functional film known in the field of EUV mask blanks in addition to the reflective layer, the absorbing layer, and the protective layer and the low reflective layer formed as necessary. As a specific example of such a functional film, for example, as described in Japanese Patent Application Publication No. 2003-501823, a high dielectric material applied to the back side of the substrate in order to promote electrostatic chucking of the substrate. A functional coating. Here, the back surface of the substrate refers to the surface of the substrate 11 in FIG. 1 opposite to the side on which the reflective layer 12 is formed. For the high dielectric coating applied to the back surface of the substrate for such a purpose, the electrical conductivity and thickness of the constituent material are selected so that the sheet resistance is 100Ω / □ or less. The constituent material of the high dielectric coating can be widely selected from those described in known literature. For example, a high dielectric constant coating described in JP-A-2003-501823, specifically, a coating made of silicon, TiN, molybdenum, chromium, or TaSi can be applied. The thickness of the high dielectric coating can be, for example, 10 to 1000 nm.
The high dielectric coating can be formed using a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
 以下、実施例により本発明を詳述するが、本発明はこれらの実施例に限定されるものではない。
 本実施例では、図1に示すEUVマスクブランク1の吸収層14としてTaNH膜、低反射層15としてTaONH膜を形成した場合について、EUV光線反射率の膜厚依存性、より具体的には、13.3~13.7nmの波長域における平均光線反射率の吸収層14および低反射層15の合計膜厚に対する依存性を計算で求めた。ここで、低反射層15は、パターン検査光の波長(190~260nm)の最大光線反射率を10%以下とするため、膜厚を7nmと固定し、吸収層14の膜厚のみを変化させた。なお、吸収層の組成比(原子比)は、Ta:N:H=55:39:6であり、低反射層の組成比(原子比)は、Ta:O:N:H=22:65:5:8とした。
 13.3~13.7nmの波長域における平均光線反射率は、13.3~13.7nmの波長域における光線反射率の積分値を算出し、積分値を算出する際に用いたデータ数で除した値とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
In this example, regarding the case where a TaNH film is formed as the absorption layer 14 of the EUV mask blank 1 shown in FIG. 1 and a TaONH film is formed as the low reflection layer 15, the film thickness dependence of the EUV light reflectance, more specifically, The dependence of the average light reflectance in the wavelength range of 13.3 to 13.7 nm on the total film thickness of the absorption layer 14 and the low reflection layer 15 was calculated. Here, the low reflection layer 15 has a maximum light reflectance of 10% or less for the wavelength (190 to 260 nm) of the pattern inspection light, so that the film thickness is fixed at 7 nm and only the film thickness of the absorption layer 14 is changed. It was. The composition ratio (atomic ratio) of the absorbing layer is Ta: N: H = 55: 39: 6, and the composition ratio (atomic ratio) of the low reflective layer is Ta: O: N: H = 22: 65. : 5: 8.
The average light reflectance in the wavelength region of 13.3 to 13.7 nm is calculated by calculating the integral value of the light reflectance in the wavelength region of 13.3 to 13.7 nm and the number of data used when calculating the integral value. The value was divided.
 図3に、横軸を吸収層(TaNH膜)および低反射層(TaONH膜)の合計膜厚(nm)、縦軸を13.3~13.7nmの波長域における平均光線反射率(%)とした、平均光線反射率の膜厚依存性を示す。図3に示すように、13.3~13.7nmの波長域における平均光線反射率は、吸収層および低反射層の合計膜厚に対し依存性があり、周期的に増減を繰り返しながら(すなわち、極大値と極小値との間で増減を繰り返しながら)、合計膜厚が増加するにつれて減少していく。
 図4~9は、図3における平均光線反射率の極小値付近を示した部分拡大図である。図4~9は、それぞれ、吸収層および低反射層の合計膜厚が、43~51nm、50~58nm、57~65nm、65~73nm、72~80nm、80~88nmの範囲の部分拡大図であり、極小値は、それぞれ、47nm付近、54nm付近、62nm付近、69nm付近、76nm付近、および83nm付近に存在している。また、それぞれの合計膜厚範囲における極小値付近の平均光線反射率は、いずれも4.0%以下であり、EUVマスクブランクの要求特性を満たす。これらの極小値のうち、合計膜厚83nm付近のものは、従来のEUVマスクブランクでの吸収層および低反射層の合計膜厚と同等程度であるため、吸収層および低反射層の薄膜化とはならない。実質的に薄膜化が可能な膜厚としては、76nm付近、69nm付近、62nm付近、54nm付近および47nm付近が好適である。
In FIG. 3, the horizontal axis represents the total film thickness (nm) of the absorption layer (TaNH film) and the low reflection layer (TaONH film), and the vertical axis represents the average light reflectance (%) in the wavelength range of 13.3 to 13.7 nm. The film thickness dependence of the average light reflectance is shown. As shown in FIG. 3, the average light reflectance in the wavelength range of 13.3 to 13.7 nm is dependent on the total film thickness of the absorption layer and the low reflection layer, and is periodically increased and decreased (that is, , While increasing and decreasing between the maximum and minimum values), it decreases as the total film thickness increases.
4 to 9 are partial enlarged views showing the vicinity of the minimum value of the average light reflectance in FIG. 4 to 9 are partial enlarged views in which the total thickness of the absorption layer and the low reflection layer is in the range of 43 to 51 nm, 50 to 58 nm, 57 to 65 nm, 65 to 73 nm, 72 to 80 nm, and 80 to 88 nm, respectively. There are minimum values near 47 nm, 54 nm, 62 nm, 69 nm, 76 nm, and 83 nm, respectively. Further, the average light reflectance near the minimum value in each total film thickness range is 4.0% or less, which satisfies the required characteristics of the EUV mask blank. Among these minimum values, those having a total film thickness of about 83 nm are approximately the same as the total film thickness of the absorption layer and the low reflection layer in the conventional EUV mask blank. Must not. The film thickness that can be substantially reduced is preferably 76 nm, 69 nm, 62 nm, 54 nm, and 47 nm.
 図4~9には、平均光線反射率が極小値となる合計膜厚に対して、±2.0%となる合計膜厚の範囲をグレートーンで示している。図4~9において、平均光線反射率が極小値となる膜厚と、平均光線反射率が極小値となる膜厚に対して±2.0%となる膜厚、および、それらの膜厚における平均光線反射率を見積もった。その結果を下記表に示す。
 なお、表1は、吸収層および低反射層の合計膜厚が43~51nmの場合、表2は、同合計膜厚が50~58nmの場合、表3は、同合計膜厚が57~65nmの場合、表4は、同合計膜厚が65~73nmの場合、表5は、同合計膜厚が72~80nmの場合、表6は、同合計膜厚が80~88nmの場合について、それぞれの値を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記表から明らかなように、平均光線反射率が極小値となるいずれの合計膜厚においても、該合計膜厚に対して±2.0の膜厚範囲であれば、平均光線反射率が4.0%以下であり、かつ、極小値となる平均光線反射率との差が最大でも0.3%ときわめて小さいため、パターン特性が悪化することはない。特に、吸収層および低反射層の合計膜厚が80nm以下の範囲で、平均光線反射率が極小値となるように設定すれば、パターン特性が悪化することなく、吸収層の薄膜化が可能になる。
In FIGS. 4 to 9, the range of the total film thickness that is ± 2.0% with respect to the total film thickness at which the average light reflectance is a minimum value is shown in gray tone. 4 to 9, the film thickness at which the average light reflectance becomes a minimum value, the film thickness at which the average light reflectance becomes ± 2.0% with respect to the film thickness at which the average light reflectance becomes a minimum value, and the film thicknesses thereof. The average light reflectance was estimated. The results are shown in the table below.
Table 1 shows that the total film thickness of the absorbing layer and the low reflection layer is 43 to 51 nm, Table 2 shows that the total film thickness is 50 to 58 nm, and Table 3 shows that the total film thickness is 57 to 65 nm. Table 4 shows the case where the same total film thickness is 65 to 73 nm, Table 5 shows the case where the same total film thickness is 72 to 80 nm, and Table 6 shows the case where the same total film thickness is 80 to 88 nm. The value of was shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
As is apparent from the above table, in any total film thickness at which the average light reflectance becomes a minimum value, the average light reflectance is 4 within the range of ± 2.0 with respect to the total film thickness. Since the difference from the average light reflectance that is a minimum value is 0.0% or less and is extremely small at 0.3% at the maximum, the pattern characteristics are not deteriorated. In particular, if the total film thickness of the absorption layer and the low reflection layer is set to 80 nm or less and the average light reflectance is set to a minimum value, the absorption layer can be made thin without deteriorating the pattern characteristics. Become.
 本発明によれば、EUVマスクブランクの吸収層および低反射層の薄膜化により、斜影効果の抑制、および、それによるパターン精度の向上が期待され、EUV光リソグラフィ用の反射型フォトマスクとして有用である。
 なお、2011年2月24日に出願された日本特許出願2011-038428号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, the absorption layer and the low reflection layer of the EUV mask blank are thinned, so that it is expected to suppress the oblique effect and thereby improve the pattern accuracy, which is useful as a reflective photomask for EUV optical lithography. is there.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-038428 filed on February 24, 2011 are incorporated herein by reference. .
  1:EUVマスクブランク
 11:基板
 12:反射層(多層反射膜)
 13:保護層
 14:吸収層
 15:低反射層
1: EUV mask blank 11: Substrate 12: Reflective layer (multilayer reflective film)
13: Protection layer 14: Absorption layer 15: Low reflection layer

Claims (7)

  1.  EUV光を反射する反射層と、EUV光を吸収する吸収層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収層の膜厚が、13.3~13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク。
    A reflective mask blank for EUV lithography in which a reflective layer for reflecting EUV light and an absorption layer for absorbing EUV light are formed in this order,
    The film thickness of the absorbing layer is within the range of ± 2.0% with respect to the film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less and the minimum value. A reflective mask blank for EUV lithography, which is set to be
  2.  EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190~260nm)に対する低反射層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収層および前記低反射層の合計膜厚が、13.3~13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる合計膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク。
    A reflective mask blank for EUV lithography in which a reflective layer for reflecting EUV light, an absorption layer for absorbing EUV light, and a low reflective layer for mask pattern inspection light (wavelength 190 to 260 nm) are formed in this order. And
    The total film thickness of the absorption layer and the low reflection layer is ± 3% with respect to the total film thickness at which the average light reflectance in the wavelength region of 13.3 to 13.7 nm is 4.0% or less and a minimum value. A reflective mask blank for EUV lithography, which is set to be within a range of 2.0%.
  3.  前記吸収層が、タンタル(Ta)および窒素(N)を主成分とする請求項1または2に記載のEUVリソグラフィ用反射型マスクブランク。 3. The reflective mask blank for EUV lithography according to claim 1, wherein the absorption layer contains tantalum (Ta) and nitrogen (N) as main components.
  4.  前記低反射層が、タンタル(Ta)および酸素(O)を主成分とする請求項2または3に記載のEUVリソグラフィ用反射型マスクブランク。 The reflective mask blank for EUV lithography according to claim 2 or 3, wherein the low reflective layer contains tantalum (Ta) and oxygen (O) as main components.
  5.  前記吸収層の膜厚が、46nm以上、80nm以下である請求項1乃至3のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。 The reflective mask blank for EUV lithography according to any one of claims 1 to 3, wherein the absorption layer has a thickness of 46 nm or more and 80 nm or less.
  6.  前記吸収層および前記低反射層の合計膜厚が、46nm以上、80nm以下である請求項2乃至4のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。 The reflective mask blank for EUV lithography according to any one of claims 2 to 4, wherein a total film thickness of the absorption layer and the low reflection layer is 46 nm or more and 80 nm or less.
  7.  前記反射層と前記吸収層との間に、前記吸収層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
     前記保護層が、Ru、Ru化合物、SiO2およびCr化合物の群から選ばれる少なくとも1種で形成される請求項1乃至6のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。
    A protective layer is formed between the reflective layer and the absorbing layer to protect the reflective layer when forming a pattern on the absorbing layer.
    The reflective mask blank for EUV lithography according to any one of claims 1 to 6, wherein the protective layer is formed of at least one selected from the group consisting of Ru, Ru compounds, SiO 2 and Cr compounds.
PCT/JP2012/053712 2011-02-24 2012-02-16 Reflective mask blank for euv lithography WO2012114980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013500989A JPWO2012114980A1 (en) 2011-02-24 2012-02-16 Reflective mask blank for EUV lithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-038428 2011-02-24
JP2011038428 2011-02-24

Publications (1)

Publication Number Publication Date
WO2012114980A1 true WO2012114980A1 (en) 2012-08-30

Family

ID=46720761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053712 WO2012114980A1 (en) 2011-02-24 2012-02-16 Reflective mask blank for euv lithography

Country Status (3)

Country Link
JP (1) JPWO2012114980A1 (en)
TW (1) TWI582530B (en)
WO (1) WO2012114980A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268255A (en) * 2004-03-16 2005-09-29 Toppan Printing Co Ltd Mask blank for extreme ultraviolet exposure and mask, and transferring method
JP2008118143A (en) * 2002-04-11 2008-05-22 Hoya Corp Reflection type mask blank and reflection type mask and production methods for them, and production method for semiconductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540267B2 (en) * 2001-07-30 2010-09-08 Hoya株式会社 Reflective mask blank for EUV light exposure and reflective mask for EUV light exposure
JP3674591B2 (en) * 2002-02-25 2005-07-20 ソニー株式会社 Exposure mask manufacturing method and exposure mask
DE102007028172B3 (en) * 2007-06-20 2008-12-11 Advanced Mask Technology Center Gmbh & Co. Kg EUV mask and procedure for repairing an EUV mask
JP4602430B2 (en) * 2008-03-03 2010-12-22 株式会社東芝 Reflective mask and manufacturing method thereof
KR101670318B1 (en) * 2008-08-21 2016-10-28 에이에스엠엘 홀딩 엔.브이. Reticle substrates with high thermal conductivity
JP2010062244A (en) * 2008-09-02 2010-03-18 Renesas Technology Corp Semiconductor device manufacturing method
WO2010050520A1 (en) * 2008-10-30 2010-05-06 旭硝子株式会社 Reflection-type mask blank for euv lithography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118143A (en) * 2002-04-11 2008-05-22 Hoya Corp Reflection type mask blank and reflection type mask and production methods for them, and production method for semiconductor
JP2005268255A (en) * 2004-03-16 2005-09-29 Toppan Printing Co Ltd Mask blank for extreme ultraviolet exposure and mask, and transferring method

Also Published As

Publication number Publication date
JPWO2012114980A1 (en) 2014-07-07
TWI582530B (en) 2017-05-11
TW201243492A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US9423684B2 (en) Reflective mask blank for EUV lithography and process for its production
JP5018789B2 (en) Reflective mask blank for EUV lithography
US8828627B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP5067483B2 (en) Reflective mask blank for EUV lithography
JP5590113B2 (en) Reflective mask blank for EUV lithography and manufacturing method thereof
US9097976B2 (en) Reflective mask blank for EUV lithography
US8927181B2 (en) Reflective mask blank for EUV lithography
JP6287099B2 (en) Reflective mask blank for EUV lithography
JP5040996B2 (en) Reflective mask blank for EUV lithography
JP5348141B2 (en) Reflective mask blank for EUV lithography
JPWO2011004850A1 (en) Reflective mask blank for EUV lithography
KR102476861B1 (en) Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
JP2015073013A (en) Method of manufacturing reflective mask blank for euv lithography
JP2014160752A (en) Reflective mask blank for euv lithography and substrate with reflective layer for the mask blank
JP6186996B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP2009210802A (en) Reflective mask blank for extreme ultraviolet lithography
JP5333016B2 (en) Reflective mask blank for EUV lithography
JP6044213B2 (en) Reflective mask blank for EUV lithography and method for manufacturing the same, and substrate with a reflective layer for the mask blank and method for manufacturing the same
JP6288327B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
WO2012114980A1 (en) Reflective mask blank for euv lithography
JP2009252788A (en) Reflective mask blank for euv lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749543

Country of ref document: EP

Kind code of ref document: A1