WO2012114803A1 - Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell - Google Patents

Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell Download PDF

Info

Publication number
WO2012114803A1
WO2012114803A1 PCT/JP2012/051245 JP2012051245W WO2012114803A1 WO 2012114803 A1 WO2012114803 A1 WO 2012114803A1 JP 2012051245 W JP2012051245 W JP 2012051245W WO 2012114803 A1 WO2012114803 A1 WO 2012114803A1
Authority
WO
WIPO (PCT)
Prior art keywords
cdte
solar cell
film
powder
cadmium telluride
Prior art date
Application number
PCT/JP2012/051245
Other languages
French (fr)
Japanese (ja)
Inventor
保 岡本
立一 平野
朗 野田
Original Assignee
Jx日鉱日石金属株式会社
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社, 独立行政法人国立高等専門学校機構 filed Critical Jx日鉱日石金属株式会社
Publication of WO2012114803A1 publication Critical patent/WO2012114803A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a CdTe powder used as a raw material for forming a cadmium telluride (CdTe) film, a cadmium telluride (CdTe) film for a solar cell using the CdTe powder, and a solar cell.
  • CdTe cadmium telluride
  • CdTe cadmium telluride
  • Solar power generation is power generation using solar cells, and solar cells directly convert light energy from the sun into electricity. Therefore, solar power generation is expected as an alternative energy source for fossil energy, and is attracting more attention as an energy source for dealing with global environmental problems. In order to put solar cells into practical use in the future, it is necessary to increase the light conversion efficiency by which the solar cells convert light energy into electrical energy, and to further improve efficiency.
  • Solar cells include at least one pair of semiconductor films having p-type and n-type characteristics, and those using semiconductors such as silicon (Si) and compound are in practical use.
  • CdTe has a forbidden band width (band gap) of about 1.5 eV, and has high consistency with the spectrum of sunlight. Therefore, CdTe can be said to be an optimum material for absorbing solar light energy. Therefore, CdTe is used as an effective material for forming a photoelectric conversion layer for solar cells having high light conversion efficiency.
  • the CdTe film is mainly formed using a close sublimation (CSS) method or a vapor transport deposition (VTD) method. Is done. At this time, the CdTe raw material is used as a raw material for forming the CdTe film.
  • CCS close sublimation
  • VTD vapor transport deposition
  • These film forming methods are methods in which a raw material powder containing CdTe as a main component is heated and vaporized and supplied to a substrate, and CdTe is formed on a thin film forming substrate.
  • CdTe exhibits p-type conductivity even when no impurity is added (doping).
  • the carrier concentration is low, when a non-doped film is used as the p-type semiconductor of the solar cell, The light conversion efficiency was quite low.
  • a powder or raw material in which a compound containing a group I and / or group V element or an organometallic compound is mixed as an additive to a powder containing CdTe as a main component is added to a powder or a paste by adding a solvent or a binder.
  • a method for producing a CdTe film is proposed in which a CdTe film is produced by using a material coated on a support (CdTe paste) as a raw material for the CSS method, and the carrier concentration is increased (see, for example, Patent Document 1).
  • the present invention has been made in view of the above, and an object thereof is to provide a CdTe powder for a solar cell, a CdTe film for a solar cell, and a solar cell capable of producing a CdTe film containing an acceptor impurity.
  • CdTe powder for solar cells CdTe films for solar cells, and solar cells.
  • a CdTe film obtained by using a raw material powder containing a predetermined amount of acceptor impurities and containing CdTe as a main component is used as a p-type semiconductor of a solar cell.
  • the relationship between the solar cell and the light conversion efficiency was clarified.
  • the CdTe powder for solar cells of the present invention is characterized by containing cadmium, tellurium, and acceptor impurities, and having an impurity concentration of 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and at least one of the groups It is preferably a metal compound containing one element or at least one of an organometallic compound containing at least one element of the group.
  • the CdTe film for solar cells of the present invention is characterized in that it contains cadmium, tellurium, and acceptor impurities, and has an impurity concentration of 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and at least one of the groups It is preferably a metal compound containing one element or at least one of an organometallic compound containing at least one element of the group.
  • the solar cell of the present invention includes the CdTe film for solar cell described above.
  • the method for producing a CdTe film for a solar cell of the present invention uses a cadmium telluride powder containing acceptor impurities and having an impurity concentration of 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less as a raw material. It is characterized by producing.
  • the CdTe powder has at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, and gold as the acceptor impurity. It is preferable to use at least one of a metal compound containing at least one element of the group, or an organometallic compound containing at least one element of the group.
  • the present invention it is possible to produce a CdTe film containing acceptor impurities. As a result, a CdTe film having a high carrier concentration can be obtained. Therefore, when the CdTe film is used as a p-type semiconductor of a solar cell, the light conversion efficiency of the solar cell can be further improved.
  • FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell.
  • FIG. 2 is a schematic cross-sectional view showing an example of a solar cell.
  • the CdTe powder for solar cell according to this embodiment contains cadmium (Cd), tellurium (Te), and acceptor impurities, and has an impurity concentration of 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the solar cell CdTe powder according to the present embodiment contains Cd and Te as main components.
  • the solar cell CdTe powder according to this embodiment is obtained by mixing acceptor impurities in advance with a CdTe single crystal powder.
  • the acceptor impurity is an impurity element contained in the solar cell CdTe powder according to the present embodiment other than Cd and Te.
  • an impurity is an element added for the purpose of controlling the polarity (p-type, n-type) and carrier density of a semiconductor.
  • An acceptor impurity refers to an additive substance that can form holes in a p-type semiconductor (a state in which electrons are insufficient).
  • Acceptor impurities include, for example, antimony (Sb), arsenic (As), bismuth (Bi), phosphorus (P), nitrogen (N), lithium (Li), potassium (K), sodium (Na), and rubidium (Rb).
  • At least one element selected from the group consisting of copper (Cu), silver (Ag), and gold (Au), a metal compound containing at least one element of the group, or an organic metal containing at least one element of the group At least one such as a compound is shown.
  • An example of the metal compound is antimony telluride.
  • the organometallic compound is, for example, at least one selected from the group consisting of triphenylantimony, antimony octylate, triphenylbismuth, triphenylphosphine, triphenyl phosphate, triphenyl phosphite, triallylphosphine, and triallylamine.
  • the acceptor impurity is preferably P, N, or Sb, and particularly preferably Sb.
  • acceptor impurities generally emit electrons or generate holes.
  • the acceptor impurity in the present embodiment generates holes and takes charge of electrical conduction in the p-type semiconductor.
  • the solar cell CdTe powder according to the present embodiment contains acceptor impurities, and when a CdTe film is formed using the solar cell CdTe powder according to the present embodiment, holes in the CdTe polycrystal containing the acceptor impurity are formed. Many carriers can be formed. As a result, a p-type semiconductor with a high carrier concentration can be manufactured.
  • the impurity concentration of the solar cell CdTe powder according to this embodiment is 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the impurity concentration is more preferably 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 , and still more preferably 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • a higher carrier concentration is preferable, but since there is a correlation with the n-type carrier concentration of the pn junction partner, a carrier concentration in the above range is preferable in this embodiment.
  • a CdTe film containing acceptor impurities can be obtained by including a predetermined amount of acceptor impurities in CdTe, as will be described later.
  • a CdTe film having a high carrier concentration is obtained. Therefore, when the CdTe film produced from the CdTe powder for solar cell according to this embodiment is used as a p-type semiconductor layer of the solar cell, the light conversion efficiency of the solar cell is increased. Further improvement can be achieved. Further, by adjusting the amount of acceptor impurities added to CdTe, the carrier concentration of CdTe powder can be increased and the carrier concentration can be adjusted.
  • a powder or raw material obtained by mixing a powder mainly composed of CdTe and an additive is added to a solvent or a binder to form a liquid or a paste, which is applied on a support (CdTe
  • CdTe In the case of producing a CdTe film using a paste), it is necessary to print the CdTe paste on a support, apply it, and then fire it, so that the number of steps required to produce the CdTe film increases and the cost increases.
  • the CdTe film can be formed by directly heating the CdTe powder in a powder state.
  • a process such as applying a paste as a raw material of the CdTe film on the support becomes unnecessary. Since the CdTe powder can be used as a raw material for forming the CdTe film in a powder state, the cost required for producing the CdTe film can be reduced.
  • the solar cell CdTe film is produced using the solar cell CdTe powder according to the present embodiment as a raw material. Since the CdTe powder for solar cells according to this embodiment is a CdTe polycrystal containing a predetermined amount of acceptor impurities in CdTe as described above, many holes are generated in the CdTe from the acceptor impurities. Therefore, the CdTe film for solar cells formed using the CdTe powder for solar cells according to this embodiment has a high carrier concentration. For this reason, as will be described later, the solar cell CdTe film using the solar cell CdTe film as a photoelectric conversion layer can be a solar cell having high light conversion efficiency.
  • FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell.
  • the reaction apparatus 10 includes a chamber 11, a pair of susceptors 12 and 13, and a heater 14.
  • the chamber 11 is a tube made of, for example, quartz.
  • the pair of susceptors 12 and 13 are provided in the chamber 11 and are made of carbon or the like.
  • the heater 14 is not particularly limited as long as the inside of the chamber 11 can be heated, and examples thereof include an infrared lamp heater.
  • a pair of susceptors 12 and 13 are disposed in the chamber 11, and the CdTe powder for solar cells according to the present embodiment is disposed on the susceptor 12 as the semiconductor material 15.
  • the semiconductor material 15 As the semiconductor material 15, the CdTe powder for solar cell according to the present embodiment is used.
  • Spacers 16 are provided at both ends of the susceptor 12.
  • the substrate 17 is arranged close to the semiconductor material 15 and the substrate 17 with a gap of about 0.1 mm to several mm through the spacer 16.
  • the surface of the substrate 17 opposite to the semiconductor material 15 side is covered with the susceptor 13.
  • An inert gas 18 is supplied into the chamber 11, and air or the inert gas 18 in the chamber 11 is sucked by a rotary pump 19 to form a vacuum state.
  • the inert gas 18 include argon gas and nitrogen gas.
  • the atmosphere in the chamber 11 is replaced with an inert gas 18 to keep the inside of the chamber 11 at about 133.32 Pa to 2666.44 Pa.
  • the susceptors 12 and 13 are heated to a temperature range of about 400 ° C. to 800 ° C. by the heater 14, and the temperature of the semiconductor material 15 is set higher than that of the substrate 17 and is held for a certain time.
  • CdTe When the semiconductor material 15 is heated in the inert gas 18, CdTe is vaporized into Cd + 1 / 2Te 2 vapor and scattered from the semiconductor material 15 on the susceptor 12, and CdTe is formed on the substrate 17. Similarly, acceptor impurities contained in the CdTe powder are also vaporized and scattered from the semiconductor material 15 on the susceptor 12, and a carrier substance is formed on the substrate 17. Thereby, a CdTe film for a solar cell containing acceptor impurities and CdTe is formed on the surface of the substrate 17.
  • a CdTe powder for a solar cell is produced using a CSS method using CdTe powder as a raw material.
  • the present embodiment is not limited to this and uses a VTD method or the like.
  • a CdTe film for a solar cell may be produced.
  • FIG. 2 is a schematic cross-sectional view showing an example of a solar cell.
  • the solar cell 20 includes a translucent heat-resistant substrate 21, a translucent conductive film 22, a metal sulfide layer 23, a CdTe layer 24, an ohmic electrode 25, a metal electrode (collector). Electrode) 26.
  • the translucent heat-resistant substrate 21 has a property of transmitting light having a wavelength that can contribute to photoelectric conversion in the semiconductor layer.
  • a substrate having translucency and strength is used, and examples thereof include borosilicate glass and soda lime glass.
  • the translucent conductive film 22 is provided on the translucent heat-resistant substrate 21.
  • the light-transmitting conductive film 22 include a film made of a tin oxide such as a tin oxide film and an indium tin oxide film, and a zinc oxide film. Among these, a tin oxide film is particularly preferable.
  • the film thickness of the translucent conductive film 22 is preferably, for example, 100 nm or more and 1000 nm or less from the viewpoint of achieving both light transmittance and conductivity.
  • the metal sulfide layer 23 is laminated on the translucent conductive film 22.
  • the metal sulfide layer 23 is a layer containing a metal sulfide and functions as an n-type semiconductor layer.
  • the metal sulfide include cadmium sulfide and zinc sulfide. These may be used alone or in combination. Of these, cadmium sulfide and a mixture of cadmium sulfide and zinc sulfide are preferable.
  • the film thickness of the metal sulfide layer is preferably, for example, 50 nm or more and 500 nm or less.
  • the CdTe layer 24 is laminated on the metal sulfide layer 23.
  • the CdTe layer 24 is formed using a solar cell CdTe film formed by including the solar cell CdTe powder according to this embodiment, and functions as a p-type semiconductor layer.
  • the thickness of the CdTe layer 24 is preferably, for example, 1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of achieving both light absorption efficiency and conductivity.
  • the ohmic electrode 25 is an electrode provided in the CdTe layer 24 and in ohmic contact with the CdTe layer 24.
  • the ohmic electrode 25 is formed of a material such as carbon or nickel, for example.
  • the metal electrode 26 is provided on the electrode 25 and the exposed translucent conductive film 22.
  • the metal electrode 26 is formed of, for example, a mixture containing one or more of aluminum (Al), silver (Ag), and indium (In).
  • the translucent heat-resistant substrate 21 is set to a predetermined dimension (for example, 100 mm ⁇ 100 mm ⁇ 1 mm), and then the translucent conductive film having a predetermined film thickness (for example, 600 nm) is formed on the translucent heat-resistant substrate 21.
  • a film 22 is provided.
  • a metal having a predetermined film thickness (for example, 50 nm) is formed on the translucent conductive film 22 by inducing a gas generated by heating cadmium dimethyldithiocarbamate to about 280 ° C. on the translucent conductive film 22 for 60 seconds.
  • a sulfide layer 23 is formed.
  • a CdTe layer 24 having a predetermined film thickness (for example, 5 ⁇ m) is formed on the metal sulfide layer 23.
  • the substrate 17 shown in FIG. The CdTe layer 24 is formed using the translucent heat-resistant substrate 21 on which the physical layer 23 is formed.
  • the metal sulfide layer 23 and the CdTe layer 24 around the portion that becomes the light receiving surface are peeled off by using, for example, laser scribe (wavelength 1.05 ⁇ m), and the translucent conductive film 22 is exposed.
  • An ohmic electrode 25 is formed on the CdTe layer 24, and a metal electrode 26 is formed on the ohmic electrode 25 and the exposed translucent conductive film 22. Thereby, the solar cell 20 is obtained.
  • the solar cell 20 uses a solar cell CdTe film formed using the solar cell CdTe powder according to the present embodiment for the CdTe layer 24. For this reason, since the carrier concentration in the CdTe layer 24 is high, the open-circuit voltage and the fill factor of the solar cell 20 are improved, and the light conversion efficiency can be improved.
  • the CdTe layer 24 has a single-layer structure, but the solar cell 20 is not limited to the single-layer structure CdTe layer 24, and may have a multilayer structure.
  • the solar cell CdTe powder according to the present embodiment can be used as a photoelectric conversion layer of a solar cell by forming a CdTe film, but the present embodiment is not particularly limited to this, The present invention can also be suitably used for manufacturing integrated circuits using various semiconductor materials.
  • Example 1> (Preparation of CdTe powder containing Sb) 6N-Cd: 716 g, 6N-Te: 813 g, Sb 2 Te 3 : 4 mg were put into a PBN boat, respectively, and then the PBN boat was placed in a quartz ampule, and the inside of the quartz ampule was vacuumed by the rotary pump 19. Then, nitrogen gas was introduced into the quartz ampule to keep it at 1 ⁇ 10 ⁇ 4 Pa to 5 ⁇ 10 ⁇ 4 Pa, and then sealed with a hydrogen burner. This quartz ampoule was raised to about 1200 ° C. with a heater to produce CdTe polycrystal.
  • the produced polycrystalline CdTe was pulverized to obtain a CdTe powder.
  • the Sb concentration of the obtained CdTe powder was about 1 ⁇ 10 16 cm ⁇ 3 .
  • generated CdTe powder was measured using the glow discharge mass spectrometry (Glow Discharge Mass Spectrometry: GDMS).
  • An organic solvent solution of dimethyltin dichloride was sprayed on a glass substrate made of borosilicate glass.
  • a glass substrate coated by spraying an organic solvent solution of dimethyltin dichloride is thermally decomposed on the glass substrate in a muffle furnace heated to 450 ° C. in an air atmosphere to form SnO having a thickness of about 500 nm.
  • a transparent conductive film consisting of 2 was prepared.
  • an organic solvent solution of cadmium dibutyldithiocarbamate was sprayed on a transparent conductive film on a glass substrate and applied.
  • a CdS film having a thickness of about 100 nm was formed on the transparent conductive film by pyrolysis.
  • a CdTe film having a thickness of about 5 ⁇ m was formed on the CdS film.
  • the method for producing the CdTe layer on the CdS film was performed in the same manner as in the case of producing the CdTe layer 24 on the metal sulfide layer 23 shown in FIG.
  • a carbon film that was an ohmic electrode for the CdTe film was formed, and an Ag electrode was formed on the carbon film.
  • an Ag electrode was formed as a current collector on the CdS film side. This produced the solar cell element.
  • Example 2 (Preparation of CdTe powder containing Sb) Example 1 except that the amount of Cd, Te, Sb 2 Te 3 blended when producing CdTe powder was changed to 6N-Cd: 716 g, 6N-Te: 813 g, Sb 2 Te 3 : 40 mg I went there.
  • the Sd concentration of the CdTe powder produced in this example was about 1 ⁇ 10 17 cm ⁇ 3 .
  • Example 3 (Preparation of CdTe powder containing Sb) Example 1 except that the blending amounts of Cd, Te, Sb 2 Te 3 in preparing CdTe powder were changed to 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 0.14 g. And performed in the same manner.
  • the Sd concentration of the CdTe powder produced in this example was about 1 ⁇ 10 18 cm ⁇ 3 .
  • a solar cell element was produced in the same manner as in Example 1.
  • Example 4 (Preparation of CdTe powder containing Sb) Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 at the time of preparing the CdTe powder were changed to 6N—Cd: 716 g, 6N—Te: 813 g, and Sb 2 Te 3 : 4.17 g. And performed in the same manner.
  • the Sd concentration of the CdTe powder produced in this example was about 1 ⁇ 10 19 cm ⁇ 3 .
  • a solar cell element was produced in the same manner as in Example 1.
  • Example 5 (Preparation of CdTe powder containing Sb) Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 in preparing CdTe powder were changed to 6N—Cd: 716 g, 6N—Te: 813 g, and Sb 2 Te 3 : 41.7 g. And performed in the same manner.
  • the Sb concentration of the CdTe powder produced in this example was about 1 ⁇ 10 20 cm ⁇ 3 .
  • a solar cell element was produced in the same manner as in Example 1.
  • Example 2 (Preparation of CdTe powder containing Sb) Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 in preparing CdTe powder were changed to 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 162.2 g. And performed in the same manner.
  • the Sb concentration of the produced CdTe powder was about 1 ⁇ 10 21 cm ⁇ 3 .
  • a solar cell element was produced in the same manner as in Example 1.
  • Table 1 shows the measurement results of the Sb concentration and the film thickness d of the CdTe film in Examples 1 to 5 and Comparative Examples 1 and 2.
  • the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 ⁇ 10 16 cm ⁇ 3 was about 14% (see Example 1). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 ⁇ 10 17 cm ⁇ 3 was about 15% (see Example 2). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 ⁇ 10 18 cm ⁇ 3 was about 16% (see Example 3). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 ⁇ 10 19 cm ⁇ 3 was about 15% (see Example 4).
  • the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 ⁇ 10 20 cm ⁇ 3 was about 13% (see Example 5). Therefore, it was confirmed that the light conversion efficiency of the solar cell element obtained using the CdTe powder decreases as the Sb concentration contained in CdTe increases. This is considered to be due to the fact that the light conversion efficiency was lowered by Sb in which no hole was formed from Sb.
  • the light conversion efficiency of the solar cell element obtained using the Sb concentration of 1 ⁇ 10 15 cm ⁇ 3 or 1 ⁇ 10 21 cm ⁇ 3 CdTe powder was about 5% (see Comparative Examples 1 and 2). ). Therefore, it can be said that the light conversion efficiency of the solar cell obtained using the CdTe powder can be increased by setting the Sb concentration contained in the CdTe powder within an appropriate predetermined range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A CdTe powder for solar cells of the present invention contains Cd, Te and an acceptor impurity, and the impurity concentration is from 1 × 1016 cm-3 to 1 × 1020 cm-3 (inclusive). Consequently, a CdTe film into which an acceptor impurity is added can be produced, so that the light conversion efficiency of a solar cell can be further improved when the CdTe film is used as a p-type semiconductor layer of the solar cell.

Description

太陽電池用テルル化カドミウム粉末、太陽電池用テルル化カドミウム膜および太陽電池Cadmium telluride powder for solar cell, cadmium telluride film for solar cell and solar cell
 本発明は、テルル化カドミウム(CdTe)膜を形成するための原料として用いるCdTe粉末、そのCdTe粉末を用いた太陽電池用テルル化カドミウム(CdTe)膜および太陽電池に関する。 The present invention relates to a CdTe powder used as a raw material for forming a cadmium telluride (CdTe) film, a cadmium telluride (CdTe) film for a solar cell using the CdTe powder, and a solar cell.
 太陽光発電は太陽電池を使った発電であり、太陽電池は、太陽からの光エネルギーを直接電気に変換する。そのため、太陽光発電は化石エネルギーの代替エネルギー源として期待されており、地球環境問題への対応エネルギー源としてさらに注目されている。今後、太陽電池を本格的に実用化するためには、太陽電池が光エネルギーを電気エネルギーに変換する光変換効率を高め、更なる効率化を図る必要がある。 Solar power generation is power generation using solar cells, and solar cells directly convert light energy from the sun into electricity. Therefore, solar power generation is expected as an alternative energy source for fossil energy, and is attracting more attention as an energy source for dealing with global environmental problems. In order to put solar cells into practical use in the future, it is necessary to increase the light conversion efficiency by which the solar cells convert light energy into electrical energy, and to further improve efficiency.
 太陽電池は、p型およびn型の特性を持った少なくとも1対の半導体膜を備え、シリコン(Si)系、化合物系などの半導体を用いたものが実用化されている。CdTeの禁制帯幅(バンドギャップ)は約1.5eVであり、太陽光のスペクトルとの整合性が高いため、CdTeは太陽の光エネルギーを吸収するためには最適な材料といえる。そのため、CdTeは高い光変換効率を有する太陽電池用の光電変換層を形成するための有力な材料として用いられている。 Solar cells include at least one pair of semiconductor films having p-type and n-type characteristics, and those using semiconductors such as silicon (Si) and compound are in practical use. CdTe has a forbidden band width (band gap) of about 1.5 eV, and has high consistency with the spectrum of sunlight. Therefore, CdTe can be said to be an optimum material for absorbing solar light energy. Therefore, CdTe is used as an effective material for forming a photoelectric conversion layer for solar cells having high light conversion efficiency.
 CdTeを含むCdTe膜で太陽電池用の光電変換層を形成する場合、CdTe膜は主として近接昇華(Close Spaced Sublimation:CSS)法あるいは気相輸送堆積(Vapor Transport Deposition:VTD)法を用いて成膜される。このとき、CdTe原料がCdTe膜の成膜用の原料として用いられる。これらの成膜方法は、CdTeを主成分として含む原料粉末を加熱して蒸気にして基板に供給し、薄膜形成用基板上にCdTeを成膜する方法である。 When a photoelectric conversion layer for a solar cell is formed using a CdTe film containing CdTe, the CdTe film is mainly formed using a close sublimation (CSS) method or a vapor transport deposition (VTD) method. Is done. At this time, the CdTe raw material is used as a raw material for forming the CdTe film. These film forming methods are methods in which a raw material powder containing CdTe as a main component is heated and vaporized and supplied to a substrate, and CdTe is formed on a thin film forming substrate.
 CdTeは、特に、不純物添加(ドーピング)をしない場合であっても、p型の電導性を示すが、キャリア濃度が低いため、ドーピングしない膜を太陽電池のp型半導体として用いると、太陽電池の光変換効率はかなり低いものであった。 In particular, CdTe exhibits p-type conductivity even when no impurity is added (doping). However, since the carrier concentration is low, when a non-doped film is used as the p-type semiconductor of the solar cell, The light conversion efficiency was quite low.
 従来は、CdTeを主成分とする粉末にI族および/あるいはV族元素を含む化合物または有機金属化合物を添加剤として混入した粉末原料に、溶媒もしくは粘結剤を加えて液状またはペースト状にし、支持体上に塗布したもの(CdTeペースト)をCSS法の原料として用いてCdTe膜を製造し、キャリア濃度を高めるCdTe膜の製造方法が提案されている(例えば、特許文献1参照)。 Conventionally, a powder or raw material in which a compound containing a group I and / or group V element or an organometallic compound is mixed as an additive to a powder containing CdTe as a main component is added to a powder or a paste by adding a solvent or a binder. A method for producing a CdTe film is proposed in which a CdTe film is produced by using a material coated on a support (CdTe paste) as a raw material for the CSS method, and the carrier concentration is increased (see, for example, Patent Document 1).
特開平10-303445号公報JP-A-10-303445
 しかしながら、CdTeペーストを耐熱性基板上に印刷法により作製する方法は工程が多く、手間と費用が掛かり、膜の厚さによって成長可能時間が制約されるため、長時間の連続成長が困難である、という問題があった。 However, a method for producing a CdTe paste on a heat-resistant substrate by a printing method involves many steps, is time-consuming and expensive, and the growth time is limited by the thickness of the film, so that long-term continuous growth is difficult. There was a problem.
 本発明は、上記に鑑みてなされたものであって、アクセプタ不純物を含むCdTe膜を製造することができる太陽電池用CdTe粉末、太陽電池用CdTe膜および太陽電池を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a CdTe powder for a solar cell, a CdTe film for a solar cell, and a solar cell capable of producing a CdTe film containing an acceptor impurity.
 上述した課題を解決し、目的を達成するために、本発明者らは太陽電池用CdTe粉末、太陽電池用CdTe膜および太陽電池について鋭意研究をした。その結果、アクセプタ不純物を含むCdTe多結晶の不純物濃度に着目し、所定量のアクセプタ不純物を含み、CdTeを主成分とする原料粉末を使用して得たCdTe膜を太陽電池のp型半導体として用いた際の太陽電池の光変換効率との関係について解明した。この得られた知見に基づいて、所定量のアクセプタ不純物を含むCdTeを用いてCdTe膜を作製することで、得られるCdTe膜を太陽電池のp型半導体として用いた際に太陽電池の光変換効率を向上させることができることを見出した。本発明は、係る知見に基づいて完成されたものである。 In order to solve the above-described problems and achieve the object, the present inventors have conducted intensive research on CdTe powder for solar cells, CdTe films for solar cells, and solar cells. As a result, paying attention to the impurity concentration of CdTe polycrystal containing acceptor impurities, a CdTe film obtained by using a raw material powder containing a predetermined amount of acceptor impurities and containing CdTe as a main component is used as a p-type semiconductor of a solar cell. The relationship between the solar cell and the light conversion efficiency was clarified. Based on the obtained knowledge, by producing a CdTe film using CdTe containing a predetermined amount of acceptor impurities, the light conversion efficiency of the solar cell when the resulting CdTe film is used as a p-type semiconductor of the solar cell. It was found that can be improved. The present invention has been completed based on such knowledge.
 本発明の太陽電池用CdTe粉末は、カドミウムとテルルとアクセプタ不純物とを含み、不純物濃度が1×1016cm-3以上1×1020cm-3以下であることを特徴とする。 The CdTe powder for solar cells of the present invention is characterized by containing cadmium, tellurium, and acceptor impurities, and having an impurity concentration of 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less.
 本発明の好ましい態様として、前記アクセプタ不純物が、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つであることが好ましい。 As a preferred embodiment of the present invention, the acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and at least one of the groups It is preferably a metal compound containing one element or at least one of an organometallic compound containing at least one element of the group.
 本発明の太陽電池用CdTe膜は、カドミウムとテルルとアクセプタ不純物とを含み、不純物濃度が1×1016cm-3以上1×1020cm-3以下であることを特徴とする。 The CdTe film for solar cells of the present invention is characterized in that it contains cadmium, tellurium, and acceptor impurities, and has an impurity concentration of 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less.
 本発明の好ましい態様として、前記アクセプタ不純物が、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つであることが好ましい。 As a preferred embodiment of the present invention, the acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and at least one of the groups It is preferably a metal compound containing one element or at least one of an organometallic compound containing at least one element of the group.
 本発明の太陽電池は、上記に記載の太陽電池用CdTe膜を含むことを特徴とする。 The solar cell of the present invention includes the CdTe film for solar cell described above.
 本発明の太陽電池用CdTe膜の製造方法は、アクセプタ不純物を含み、不純物濃度が1×1016cm-3以上1×1020cm-3以下であるテルル化カドミウム粉末を原料として用い、CdTe膜を作製することを特徴とする。 The method for producing a CdTe film for a solar cell of the present invention uses a cadmium telluride powder containing acceptor impurities and having an impurity concentration of 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less as a raw material. It is characterized by producing.
 本発明の好ましい態様として、前記CdTe粉末が、前記アクセプタ不純物として、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つを用いることが好ましい。 As a preferred embodiment of the present invention, the CdTe powder has at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, and gold as the acceptor impurity. It is preferable to use at least one of a metal compound containing at least one element of the group, or an organometallic compound containing at least one element of the group.
 本発明によれば、アクセプタ不純物を含むCdTe膜を製造することができる、という効果を奏する。これにより、キャリア濃度が高いCdTe膜が得られるため、CdTe膜を太陽電池のp型半導体として用いた際、太陽電池の光変換効率を更に向上させることができる。 According to the present invention, it is possible to produce a CdTe film containing acceptor impurities. As a result, a CdTe film having a high carrier concentration can be obtained. Therefore, when the CdTe film is used as a p-type semiconductor of a solar cell, the light conversion efficiency of the solar cell can be further improved.
図1は、太陽電池用CdTe膜の作製に用いられる反応装置の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell. 図2は、太陽電池の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a solar cell.
 以下、本発明を好適に実施するための形態(以下、実施形態という。)につき、詳細に説明する。尚、本発明は以下の実施形態および実施例に記載した内容により限定されるものではない。また、以下に記載した実施形態および実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態および実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 Hereinafter, modes for suitably carrying out the present invention (hereinafter referred to as embodiments) will be described in detail. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.
<太陽電池用CdTe粉末>
 本実施形態に係る太陽電池用CdTe粉末は、カドミウム(Cd)とテルル(Te)とアクセプタ不純物とを含み、不純物濃度が1×1016cm-3以上1×1020cm-3以下である。
<CdTe powder for solar cell>
The CdTe powder for solar cell according to this embodiment contains cadmium (Cd), tellurium (Te), and acceptor impurities, and has an impurity concentration of 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less.
 本実施形態に係る太陽電池用CdTe粉末は、CdとTeとを主成分として含むものである。本実施形態に係る太陽電池用CdTe粉末は、CdTe単結晶の粉末に予めアクセプタ不純物を混合して得られる。 The solar cell CdTe powder according to the present embodiment contains Cd and Te as main components. The solar cell CdTe powder according to this embodiment is obtained by mixing acceptor impurities in advance with a CdTe single crystal powder.
 アクセプタ不純物は、本実施形態に係る太陽電池用CdTe粉末にCdおよびTe以外に含まれる不純物元素である。一般に、不純物(ドーパント)は、半導体の極性(p型、n型)やキャリア密度を制御する目的で添加される元素である。アクセプタ不純物とは、p型半導体のホールを作る(電子が足りない状態)ことができる添加物質をいう。アクセプタ不純物は、例えば、アンチモン(Sb)、砒素(As)、ビスマス(Bi)、リン(P)、窒素(N)、リチウム(Li)、カリウム(K)、ナトリウム(Na)、ルビジウム(Rb)、銅(Cu)、銀(Ag)、金(Au)からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物などの少なくとも1つを示す。金属化合物は、例えば、テルル化アンチモンなどである。また、有機金属化合物は、例えば、トリフェニルアンチモン、オクチル酸アンチモン、トリフェニルビスマス、トリフェニルホスフィン、リン酸トリフェニル、亜リン酸トリフェニル、トリアリルホスフィン、トリアリルアミンからなる群より選ばれる少なくとも1つである。本実施形態においては、アクセプタ不純物としては、これらの中では、P、N、Sbが好ましく、Sbが特に好ましい。 The acceptor impurity is an impurity element contained in the solar cell CdTe powder according to the present embodiment other than Cd and Te. In general, an impurity (dopant) is an element added for the purpose of controlling the polarity (p-type, n-type) and carrier density of a semiconductor. An acceptor impurity refers to an additive substance that can form holes in a p-type semiconductor (a state in which electrons are insufficient). Acceptor impurities include, for example, antimony (Sb), arsenic (As), bismuth (Bi), phosphorus (P), nitrogen (N), lithium (Li), potassium (K), sodium (Na), and rubidium (Rb). , At least one element selected from the group consisting of copper (Cu), silver (Ag), and gold (Au), a metal compound containing at least one element of the group, or an organic metal containing at least one element of the group At least one such as a compound is shown. An example of the metal compound is antimony telluride. The organometallic compound is, for example, at least one selected from the group consisting of triphenylantimony, antimony octylate, triphenylbismuth, triphenylphosphine, triphenyl phosphate, triphenyl phosphite, triallylphosphine, and triallylamine. One. In the present embodiment, the acceptor impurity is preferably P, N, or Sb, and particularly preferably Sb.
 アクセプタ不純物は、上述の通り、一般には電子を放出し、又は正孔(ホール)を発生するものである。本実施形態におけるアクセプタ不純物は、正孔(ホール)を発生し、p型半導体内で電気伝導を担う。本実施形態に係る太陽電池用CdTe粉末はアクセプタ不純物を含むことで、本実施形態に係る太陽電池用CdTe粉末を用いてCdTe膜を形成した際、アクセプタ不純物を含むCdTe多結晶中に正孔のキャリアが多く形成できる。その結果、キャリア濃度が高いp型半導体を作製することが可能となる。 As described above, acceptor impurities generally emit electrons or generate holes. The acceptor impurity in the present embodiment generates holes and takes charge of electrical conduction in the p-type semiconductor. The solar cell CdTe powder according to the present embodiment contains acceptor impurities, and when a CdTe film is formed using the solar cell CdTe powder according to the present embodiment, holes in the CdTe polycrystal containing the acceptor impurity are formed. Many carriers can be formed. As a result, a p-type semiconductor with a high carrier concentration can be manufactured.
 本実施形態に係る太陽電池用CdTe粉末の不純物濃度は、1×1016cm-3以上1×1020cm-3以下となる。不純物濃度は、より好ましくは1×1017cm-3以上1×1019cm-3以下であり、更に好ましくは1×1018cm-3以上1×1019cm-3以下である。キャリア濃度は原則として高い方が好ましいが、pn接合の相手方のn型キャリア濃度との相関もあるために、本実施形態では、上記範囲のキャリア濃度が好ましい。 The impurity concentration of the solar cell CdTe powder according to this embodiment is 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less. The impurity concentration is more preferably 1 × 10 17 cm −3 to 1 × 10 19 cm −3 , and still more preferably 1 × 10 18 cm −3 to 1 × 10 19 cm −3 . In principle, a higher carrier concentration is preferable, but since there is a correlation with the n-type carrier concentration of the pn junction partner, a carrier concentration in the above range is preferable in this embodiment.
 よって、本実施形態に係る太陽電池用CdTe粉末によれば、CdTe中にアクセプタ不純物を所定量含めることで、後述するように、アクセプタ不純物を含むCdTe膜が得られる。これにより、キャリア濃度が高いCdTe膜が得られるため、本実施形態に係る太陽電池用CdTe粉末により作製されたCdTe膜を太陽電池のp型半導体層として用いた際、太陽電池の光変換効率を更に向上させることができる。また、CdTeに含めるアクセプタ不純物の添加量を調整することで、CdTe粉末のキャリア濃度を高めることができると共に、キャリア濃度を調整することができる。 Therefore, according to the CdTe powder for solar cells according to this embodiment, a CdTe film containing acceptor impurities can be obtained by including a predetermined amount of acceptor impurities in CdTe, as will be described later. As a result, a CdTe film having a high carrier concentration is obtained. Therefore, when the CdTe film produced from the CdTe powder for solar cell according to this embodiment is used as a p-type semiconductor layer of the solar cell, the light conversion efficiency of the solar cell is increased. Further improvement can be achieved. Further, by adjusting the amount of acceptor impurities added to CdTe, the carrier concentration of CdTe powder can be increased and the carrier concentration can be adjusted.
 更に、太陽電池を作製する際、CdTeを主成分とする粉末と添加剤とを混合した粉末原料に、溶媒または粘結剤を加えて液状またはペースト状にし、支持体上に塗布したもの(CdTeペースト)を用いてCdTe膜を作製する場合、CdTeペーストを支持体上に印刷して塗布してから焼成する必要があるため、CdTe膜を作製するに要する工程が多くなり、費用が高くなる。これに対し、CdTe粉末を用いてCSS法によりCdTe膜を作製する場合、CdTe粉末を粉末状態のまま、直接加熱してCdTe膜を形成することができる。このため、本実施形態に係る太陽電池用CdTe粉末を用いてCSS法によりCdTe膜を作製する場合、支持体上にCdTe膜の原料となるペーストなどを塗布しておくなどの工程が不要となり、CdTe粉末を粉末状態のままCdTe膜を形成するための原料として用いることができるため、CdTe膜の作製に要する費用を軽減することができる。 Further, when a solar cell is produced, a powder or raw material obtained by mixing a powder mainly composed of CdTe and an additive is added to a solvent or a binder to form a liquid or a paste, which is applied on a support (CdTe In the case of producing a CdTe film using a paste), it is necessary to print the CdTe paste on a support, apply it, and then fire it, so that the number of steps required to produce the CdTe film increases and the cost increases. On the other hand, when a CdTe film is produced by the CSS method using CdTe powder, the CdTe film can be formed by directly heating the CdTe powder in a powder state. For this reason, when a CdTe film is produced by the CSS method using the CdTe powder for solar cells according to the present embodiment, a process such as applying a paste as a raw material of the CdTe film on the support becomes unnecessary. Since the CdTe powder can be used as a raw material for forming the CdTe film in a powder state, the cost required for producing the CdTe film can be reduced.
<太陽電池用CdTe膜>
 太陽電池用CdTe膜は、上記の本実施形態に係る太陽電池用CdTe粉末を原料として生成されるものである。本実施形態に係る太陽電池用CdTe粉末は、上述の通り、CdTeにアクセプタ不純物を所定量含んだCdTe多結晶であるため、アクセプタ不純物からCdTe中に正孔が多く発生している。よって、本実施形態に係る太陽電池用CdTe粉末を用いて形成された太陽電池用CdTe膜は、高いキャリア濃度を有する。このため、後述するように、前記太陽電池用CdTe膜を光電変換層として用いた太陽電池用CdTe膜は、高い光変換効率を有する太陽電池とすることができる。
<CdTe film for solar cell>
The solar cell CdTe film is produced using the solar cell CdTe powder according to the present embodiment as a raw material. Since the CdTe powder for solar cells according to this embodiment is a CdTe polycrystal containing a predetermined amount of acceptor impurities in CdTe as described above, many holes are generated in the CdTe from the acceptor impurities. Therefore, the CdTe film for solar cells formed using the CdTe powder for solar cells according to this embodiment has a high carrier concentration. For this reason, as will be described later, the solar cell CdTe film using the solar cell CdTe film as a photoelectric conversion layer can be a solar cell having high light conversion efficiency.
(太陽電池用CdTe膜の作製方法)
 太陽電池用CdTe膜は、CdTe粉末を原料として用いてCSS法などによって作製される。図1は、太陽電池用CdTe膜の作製に用いられる反応装置の一例を示す断面図である。図1に示すように、反応装置10は、チャンバー11と一対のサセプター12、13と、加熱器14とを有するものである。チャンバー11は、例えば石英などを材料として作製される管である。一対のサセプター12、13は、チャンバー11内に設けられ、カーボンなどで作製されるものである。加熱器14は、チャンバー11内を加熱できるものであれば特に限定されるものではなく、例えば、赤外線ランプヒーターなどが挙げられる。
(Method for producing CdTe film for solar cell)
The solar cell CdTe film is produced by a CSS method using CdTe powder as a raw material. FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell. As shown in FIG. 1, the reaction apparatus 10 includes a chamber 11, a pair of susceptors 12 and 13, and a heater 14. The chamber 11 is a tube made of, for example, quartz. The pair of susceptors 12 and 13 are provided in the chamber 11 and are made of carbon or the like. The heater 14 is not particularly limited as long as the inside of the chamber 11 can be heated, and examples thereof include an infrared lamp heater.
 チャンバー11内に一対のサセプター12、13を配置し、サセプター12上に本実施形態に係る太陽電池用CdTe粉末を半導体材料15として配置する。半導体材料15は、上記の本実施形態に係る太陽電池用CdTe粉末が用いられる。サセプター12の両端にはスペーサ16が設けられる。基板17をスペーサ16を介して半導体材料15と基板17とを0.1mm~数mm程度の隙間を有するように近接して配置する。基板17の半導体材料15側とは反対側の面をサセプター13で覆う。 A pair of susceptors 12 and 13 are disposed in the chamber 11, and the CdTe powder for solar cells according to the present embodiment is disposed on the susceptor 12 as the semiconductor material 15. As the semiconductor material 15, the CdTe powder for solar cell according to the present embodiment is used. Spacers 16 are provided at both ends of the susceptor 12. The substrate 17 is arranged close to the semiconductor material 15 and the substrate 17 with a gap of about 0.1 mm to several mm through the spacer 16. The surface of the substrate 17 opposite to the semiconductor material 15 side is covered with the susceptor 13.
 チャンバー11内に不活性ガス18を供給し、チャンバー11内の空気や不活性ガス18をロータリーポンプ19により吸引し、真空状態を形成する。不活性ガス18としては、例えば、アルゴンガス、窒素ガスなどが挙げられる。チャンバー11内の雰囲気を不活性ガス18に置換して、チャンバー11内を133.32Pa~2666.44Pa程度に保つ。加熱器14によりサセプター12、13を400℃~800℃程度の温度範囲に加熱し、半導体材料15の温度を基板17よりも高温にして一定時間保持する。半導体材料15を不活性ガス18中で加熱すると、CdTeは気化してCd+1/2Te2の蒸気となり、サセプター12上の半導体材料15から飛散し、基板17上にCdTeが成膜される。また、CdTe粉末に含まれるアクセプタ不純物も同様に、蒸気となり、サセプター12上の半導体材料15から飛散し、基板17上にキャリア物質が成膜される。これにより、基板17の表面にアクセプタ不純物とCdTeとを含む太陽電池用CdTe膜が成膜される。 An inert gas 18 is supplied into the chamber 11, and air or the inert gas 18 in the chamber 11 is sucked by a rotary pump 19 to form a vacuum state. Examples of the inert gas 18 include argon gas and nitrogen gas. The atmosphere in the chamber 11 is replaced with an inert gas 18 to keep the inside of the chamber 11 at about 133.32 Pa to 2666.44 Pa. The susceptors 12 and 13 are heated to a temperature range of about 400 ° C. to 800 ° C. by the heater 14, and the temperature of the semiconductor material 15 is set higher than that of the substrate 17 and is held for a certain time. When the semiconductor material 15 is heated in the inert gas 18, CdTe is vaporized into Cd + 1 / 2Te 2 vapor and scattered from the semiconductor material 15 on the susceptor 12, and CdTe is formed on the substrate 17. Similarly, acceptor impurities contained in the CdTe powder are also vaporized and scattered from the semiconductor material 15 on the susceptor 12, and a carrier substance is formed on the substrate 17. Thereby, a CdTe film for a solar cell containing acceptor impurities and CdTe is formed on the surface of the substrate 17.
 本実施形態においては、CdTe粉末を原料とし、CSS法を用いて太陽電池用CdTe膜を作製する場合について説明したが、本実施形態は、これに限定されるものではなく、VTD法などを用いて太陽電池用CdTe膜を作製するようにしてもよい。 In the present embodiment, the case where a CdTe powder for a solar cell is produced using a CSS method using CdTe powder as a raw material has been described. However, the present embodiment is not limited to this and uses a VTD method or the like. Thus, a CdTe film for a solar cell may be produced.
<太陽電池>
 太陽電池用CdTe膜は、太陽電池の光電変換層として好適に用いることができる。図2は、太陽電池の一例を示す概略断面図である。図2に示すように、太陽電池20は、透光性耐熱性基板21と、透光性導電膜22と、金属硫化物層23と、CdTe層24と、オーミック電極25と、金属電極(集電極)26とを有する。
<Solar cell>
The CdTe film for solar cells can be suitably used as a photoelectric conversion layer for solar cells. FIG. 2 is a schematic cross-sectional view showing an example of a solar cell. As shown in FIG. 2, the solar cell 20 includes a translucent heat-resistant substrate 21, a translucent conductive film 22, a metal sulfide layer 23, a CdTe layer 24, an ohmic electrode 25, a metal electrode (collector). Electrode) 26.
 透光性耐熱性基板21は、半導体層で光電変換に寄与し得る波長の光を透過させる性質を有する。透光性耐熱性基板21としては、透光性と強度を有するものが用いられ、例えば、ホウ珪酸ガラス、ソーダライムガラスなどが挙げられる。 The translucent heat-resistant substrate 21 has a property of transmitting light having a wavelength that can contribute to photoelectric conversion in the semiconductor layer. As the translucent heat-resistant substrate 21, a substrate having translucency and strength is used, and examples thereof include borosilicate glass and soda lime glass.
 透光性導電膜22は、透光性耐熱性基板21上に設けられている。透光性導電膜22としては、例えば、酸化スズ膜、酸化インジウムスズ膜などのスズ酸化物からなる膜、酸化亜鉛膜などが挙げられる。これらの中でも、特に、酸化スズ膜が好ましい。透光性導電膜22の膜厚は、光の透過率と導電性との両立を図る観点から、例えば、100nm以上1000nm以下であることが好ましい。 The translucent conductive film 22 is provided on the translucent heat-resistant substrate 21. Examples of the light-transmitting conductive film 22 include a film made of a tin oxide such as a tin oxide film and an indium tin oxide film, and a zinc oxide film. Among these, a tin oxide film is particularly preferable. The film thickness of the translucent conductive film 22 is preferably, for example, 100 nm or more and 1000 nm or less from the viewpoint of achieving both light transmittance and conductivity.
 金属硫化物層23は、透光性導電膜22の上に積層される。金属硫化物層23は、金属硫化物を含む層であり、n型半導体層として機能する。金属硫化物としては、例えば、硫化カドミウム、硫化亜鉛などが挙げられる。これらは単独で用いてもよく、組み合わせて用いてもよい。これらのうちでは、硫化カドミウム、硫化カドミウムと硫化亜鉛との混合物が好ましい。金属硫化物層の膜厚は、例えば、50nm以上500nm以下であることが好ましい。 The metal sulfide layer 23 is laminated on the translucent conductive film 22. The metal sulfide layer 23 is a layer containing a metal sulfide and functions as an n-type semiconductor layer. Examples of the metal sulfide include cadmium sulfide and zinc sulfide. These may be used alone or in combination. Of these, cadmium sulfide and a mixture of cadmium sulfide and zinc sulfide are preferable. The film thickness of the metal sulfide layer is preferably, for example, 50 nm or more and 500 nm or less.
 CdTe層24は、金属硫化物層23の上に積層される。CdTe層24は、本実施形態に係る太陽電池用CdTe粉末を含んで形成される太陽電池用CdTe膜を用いて形成され、p型半導体層として機能する。CdTe層24の膜厚は、光の吸収効率と導電性との両立を図る観点から、例えば、1μm以上10μm以下であることが好ましい。 The CdTe layer 24 is laminated on the metal sulfide layer 23. The CdTe layer 24 is formed using a solar cell CdTe film formed by including the solar cell CdTe powder according to this embodiment, and functions as a p-type semiconductor layer. The thickness of the CdTe layer 24 is preferably, for example, 1 μm or more and 10 μm or less from the viewpoint of achieving both light absorption efficiency and conductivity.
 オーミック電極25は、CdTe層24に設けられ、CdTe層24にオーミック接触させた電極である。オーミック電極25は、例えば、カーボン、ニッケルなどの材料で形成される。 The ohmic electrode 25 is an electrode provided in the CdTe layer 24 and in ohmic contact with the CdTe layer 24. The ohmic electrode 25 is formed of a material such as carbon or nickel, for example.
 金属電極26は、電極25上および露出させた透光性導電膜22上に設けられている。金属電極26は、例えば、アルミニウム(Al)、銀(Ag)、インジウム(In)の1つ以上を含む混合物などで形成される。 The metal electrode 26 is provided on the electrode 25 and the exposed translucent conductive film 22. The metal electrode 26 is formed of, for example, a mixture containing one or more of aluminum (Al), silver (Ag), and indium (In).
 太陽電池20の作製方法の一例について説明する。まず、透光性耐熱性基板21を所定の寸法(例えば、100mm×100mm×1mm)にした後、この透光性耐熱性基板21上に所定の膜厚(例えば、600nm)の透光性導電膜22を設ける。この透光性導電膜22上にジメチルジチオカルバミン酸カドミウムを280℃程度に加熱して発生するガスを60秒間誘導することによって透光性導電膜22上に所定の膜厚(例えば、50nm)の金属硫化物層23を形成する。金属硫化物層23上に所定の膜厚(例えば、5μm)のCdTe層24を形成する。このとき、金属硫化物層23上へのCdTe層24の作製方法については、上述の太陽電池用CdTe膜の製造方法のように、図1に示す基板17を透光性導電膜22と金属硫化物層23とが形成された透光性耐熱性基板21として用い、CdTe層24の成形を行う。その後、受光面となる部分の周囲の金属硫化物層23、CdTe層24を、例えばレーザースクライブ(波長1.05μm)を用いて剥離し、透光性導電膜22を露出させる。CdTe層24上にオーミック電極25を形成し、オーミック電極25上および露出させた透光性導電膜22上に金属電極26を各々形成する。これにより、太陽電池20が得られる。 An example of a method for manufacturing the solar cell 20 will be described. First, the translucent heat-resistant substrate 21 is set to a predetermined dimension (for example, 100 mm × 100 mm × 1 mm), and then the translucent conductive film having a predetermined film thickness (for example, 600 nm) is formed on the translucent heat-resistant substrate 21. A film 22 is provided. A metal having a predetermined film thickness (for example, 50 nm) is formed on the translucent conductive film 22 by inducing a gas generated by heating cadmium dimethyldithiocarbamate to about 280 ° C. on the translucent conductive film 22 for 60 seconds. A sulfide layer 23 is formed. A CdTe layer 24 having a predetermined film thickness (for example, 5 μm) is formed on the metal sulfide layer 23. At this time, with respect to the method for producing the CdTe layer 24 on the metal sulfide layer 23, the substrate 17 shown in FIG. The CdTe layer 24 is formed using the translucent heat-resistant substrate 21 on which the physical layer 23 is formed. Thereafter, the metal sulfide layer 23 and the CdTe layer 24 around the portion that becomes the light receiving surface are peeled off by using, for example, laser scribe (wavelength 1.05 μm), and the translucent conductive film 22 is exposed. An ohmic electrode 25 is formed on the CdTe layer 24, and a metal electrode 26 is formed on the ohmic electrode 25 and the exposed translucent conductive film 22. Thereby, the solar cell 20 is obtained.
 太陽電池20は、CdTe層24に本実施形態に係る太陽電池用CdTe粉末を用いて形成される太陽電池用CdTe膜を用いている。このため、CdTe層24中のキャリア濃度は高いため、太陽電池20の開放電圧および曲線因子は向上し、良好な光変換効率を有することができる。 The solar cell 20 uses a solar cell CdTe film formed using the solar cell CdTe powder according to the present embodiment for the CdTe layer 24. For this reason, since the carrier concentration in the CdTe layer 24 is high, the open-circuit voltage and the fill factor of the solar cell 20 are improved, and the light conversion efficiency can be improved.
 本実施形態では、CdTe層24は1層構造としているが、太陽電池20は1層構造のCdTe層24に限定されるものではなく、多層構造としてもよい。 In this embodiment, the CdTe layer 24 has a single-layer structure, but the solar cell 20 is not limited to the single-layer structure CdTe layer 24, and may have a multilayer structure.
 本実施形態に係る太陽電池用CdTe粉末は、CdTe膜とすることで、太陽電池の光電変換層として用いることができるが、本実施形態は特にこれに限定されるものではなく、赤外線受光素子や種々の半導体材料を用いた集積回路等の製造にも好適に用いることができる。 The solar cell CdTe powder according to the present embodiment can be used as a photoelectric conversion layer of a solar cell by forming a CdTe film, but the present embodiment is not particularly limited to this, The present invention can also be suitably used for manufacturing integrated circuits using various semiconductor materials.
 本発明の内容を実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The content of the present invention will be described in detail below using examples and comparative examples, but the present invention is not limited to the following examples.
<実施例1>
(Sbを含むCdTe粉末の作製)
 6N-Cd:716g、6N-Te:813g、Sb2Te3:4mgを各々PBN製ボートに入れた後、PBN製ボートを石英製アンプル内に設置し、ロータリーポンプ19で石英製アンプル内を真空に引き、石英製アンプル内に窒素ガスを導入して1×10-4Pa~5×10-4Paに保った後、水素バーナーを用いて封止した。この石英製アンプルをヒータにより1200℃程度にまで上昇させ、CdTe多結晶を生成した。この生成された多結晶のCdTeを粉砕して粉末にし、CdTe粉末を得た。本実施例において、得られたCdTe粉末のSb濃度は、1×1016cm-3程度であった。なお、生成されたCdTe粉末のSb濃度は、グロー放電質量分析法(Glow Discharge Mass Spectrometry:GDMS)を用いて測定した。
<Example 1>
(Preparation of CdTe powder containing Sb)
6N-Cd: 716 g, 6N-Te: 813 g, Sb 2 Te 3 : 4 mg were put into a PBN boat, respectively, and then the PBN boat was placed in a quartz ampule, and the inside of the quartz ampule was vacuumed by the rotary pump 19. Then, nitrogen gas was introduced into the quartz ampule to keep it at 1 × 10 −4 Pa to 5 × 10 −4 Pa, and then sealed with a hydrogen burner. This quartz ampoule was raised to about 1200 ° C. with a heater to produce CdTe polycrystal. The produced polycrystalline CdTe was pulverized to obtain a CdTe powder. In this example, the Sb concentration of the obtained CdTe powder was about 1 × 10 16 cm −3 . In addition, Sb density | concentration of the produced | generated CdTe powder was measured using the glow discharge mass spectrometry (Glow Discharge Mass Spectrometry: GDMS).
(太陽電池素子の作製)
 ホウ珪酸ガラス製のガラス基板上に二塩化ジメチルスズの有機溶媒溶液を噴霧して塗布した。二塩化ジメチルスズの有機溶媒溶液を噴霧して塗布したガラス基板を、450℃に加熱された空気雰囲気のマッフル炉内で、ガラス基板上で二塩化ジメチルスズを熱分解して、膜厚500nm程度のSnO2からなる透明導電膜を作成した。その後、ジブチルジチオカルバミン酸カドミウムの有機溶媒溶液をガラス基板上の透明導電膜に噴霧して塗布し、酸素を若干量含む窒素雰囲気の430℃程度に加熱されたマッフル炉内で、ジブチルジチオカルバミン酸カドミウムを熱分解させて透明導電膜上に膜厚100nm程度のCdS膜を作成した。その後、CdS膜上には膜厚が5μm程度のCdTe膜を形成した。このとき、CdS膜上へのCdTe層の作製方法については、上述のように、図2に示す金属硫化物層23上にCdTe層24を作製する場合と同様に行った。CdS膜上にCdTe層を形成した後、CdTe膜に対するオーミック電極であるカーボン膜を形成し、カーボン膜上にAg電極を形成した。また、CdS膜側の集電体としてAg電極を形成した。これにより、太陽電池素子を作製した。
(Production of solar cell element)
An organic solvent solution of dimethyltin dichloride was sprayed on a glass substrate made of borosilicate glass. A glass substrate coated by spraying an organic solvent solution of dimethyltin dichloride is thermally decomposed on the glass substrate in a muffle furnace heated to 450 ° C. in an air atmosphere to form SnO having a thickness of about 500 nm. A transparent conductive film consisting of 2 was prepared. After that, an organic solvent solution of cadmium dibutyldithiocarbamate was sprayed on a transparent conductive film on a glass substrate and applied. A CdS film having a thickness of about 100 nm was formed on the transparent conductive film by pyrolysis. Thereafter, a CdTe film having a thickness of about 5 μm was formed on the CdS film. At this time, the method for producing the CdTe layer on the CdS film was performed in the same manner as in the case of producing the CdTe layer 24 on the metal sulfide layer 23 shown in FIG. After the CdTe layer was formed on the CdS film, a carbon film that was an ohmic electrode for the CdTe film was formed, and an Ag electrode was formed on the carbon film. In addition, an Ag electrode was formed as a current collector on the CdS film side. This produced the solar cell element.
<実施例2>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb2Te3:40mgに変更したこと以外は、実施例1と同様にして行った。本実施例において生成されたCdTe粉末のSb濃度は、1×1017cm-3程度であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Example 2>
(Preparation of CdTe powder containing Sb)
Example 1 except that the amount of Cd, Te, Sb 2 Te 3 blended when producing CdTe powder was changed to 6N-Cd: 716 g, 6N-Te: 813 g, Sb 2 Te 3 : 40 mg I went there. The Sd concentration of the CdTe powder produced in this example was about 1 × 10 17 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<実施例3>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813gとSb2Te3:0.14gに変更したこと以外は、実施例1と同様にして行った。本実施例において生成されたCdTe粉末のSb濃度は、1×1018cm-3程度であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Example 3>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, Sb 2 Te 3 in preparing CdTe powder were changed to 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 0.14 g. And performed in the same manner. The Sd concentration of the CdTe powder produced in this example was about 1 × 10 18 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<実施例4>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb2Te3:4.17gに変更したこと以外は、実施例1と同様にして行った。本実施例において生成されたCdTe粉末のSb濃度は、1×1019cm-3程度であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Example 4>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 at the time of preparing the CdTe powder were changed to 6N—Cd: 716 g, 6N—Te: 813 g, and Sb 2 Te 3 : 4.17 g. And performed in the same manner. The Sd concentration of the CdTe powder produced in this example was about 1 × 10 19 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<実施例5>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb2Te3:41.7gに変更したこと以外は、実施例1と同様にして行った。本実施例において生成されたCdTe粉末のSb濃度は、1×1020cm-3程度であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Example 5>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 in preparing CdTe powder were changed to 6N—Cd: 716 g, 6N—Te: 813 g, and Sb 2 Te 3 : 41.7 g. And performed in the same manner. The Sb concentration of the CdTe powder produced in this example was about 1 × 10 20 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<比較例1>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb濃度が1×1018cm-3のCdTe粉末を1.5gに変更したこと以外は、実施例1と同様にして行った。生成されたCdTe粉末のSb濃度は、1×1015cm-3程度であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Comparative Example 1>
(Preparation of CdTe powder containing Sb)
The blending amount of Cd, Te, Sb 2 Te 3 in preparing CdTe powder is 6N-Cd: 716 g, 6N-Te: 813 g, and CdTe powder with Sb concentration of 1 × 10 18 cm −3 is 1.5 g. The procedure was the same as in Example 1 except that the change was made. The Sb concentration of the produced CdTe powder was about 1 × 10 15 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<比較例2>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb2Te3:162.2gに変更したこと以外は、実施例1と同様にして行った。生成されたCdTe粉末のSb濃度は、1×1021cm-3程度であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Comparative Example 2>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 in preparing CdTe powder were changed to 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 162.2 g. And performed in the same manner. The Sb concentration of the produced CdTe powder was about 1 × 10 21 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
 実施例1~5、比較例1、2におけるSb濃度、CdTe膜の膜厚dの測定結果を表1に示す。 Table 1 shows the measurement results of the Sb concentration and the film thickness d of the CdTe film in Examples 1 to 5 and Comparative Examples 1 and 2.
<光変換効率の評価>
 実施例1~5、比較例1、2の各々において得られた太陽電池素子の光の変換効率を測定した。光変換効率は、JIC C 8913に従って測定を行った。このときの変換効率の測定結果を表1に示す。
<Evaluation of light conversion efficiency>
The light conversion efficiencies of the solar cell elements obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were measured. The light conversion efficiency was measured according to JIS C 8913. Table 1 shows the measurement results of the conversion efficiency at this time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Sb濃度が1×1016cm-3のCdTe粉末を用いて得られた太陽電池素子の光変換効率は、14%程度であった(実施例1参照)。また、Sb濃度が1×1017cm-3のCdTe粉末を用いて得られた太陽電池素子の光変換効率は、15%程度であった(実施例2参照)。また、Sb濃度が1×1018cm-3のCdTe粉末を用いて得られた太陽電池素子の光変換効率は、16%程度であった(実施例3参照)。また、Sb濃度が1×1019cm-3のCdTe粉末を用いて得られた太陽電池素子の光変換効率は、15%程度であった(実施例4参照)。また、Sb濃度が1×1020cm-3のCdTe粉末を用いて得られた太陽電池素子の光変換効率は、13%程度であった(実施例5参照)。よって、CdTeに含まれるSb濃度が高くなるにしたがってCdTe粉末を用いて得られた太陽電池素子の光変換効率は小さくなることが確認された。これは、Sbからホールが形成されていないSbによって光変換効率が低下したことによるものと考えられる。一方、Sb濃度が1×1015cm-3や1×1021cm-3CdTe粉末を用いて得られた太陽電池素子の光変換効率は、5%程度であった(比較例1、2参照)。よって、CdTe粉末に含まれるSb濃度を適正な所定範囲とすることで、CdTe粉末を用いて得られる太陽電池の光変換効率を高くすることができるといえる。 As shown in Table 1, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 × 10 16 cm −3 was about 14% (see Example 1). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 × 10 17 cm −3 was about 15% (see Example 2). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 × 10 18 cm −3 was about 16% (see Example 3). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 × 10 19 cm −3 was about 15% (see Example 4). Moreover, the light conversion efficiency of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 × 10 20 cm −3 was about 13% (see Example 5). Therefore, it was confirmed that the light conversion efficiency of the solar cell element obtained using the CdTe powder decreases as the Sb concentration contained in CdTe increases. This is considered to be due to the fact that the light conversion efficiency was lowered by Sb in which no hole was formed from Sb. On the other hand, the light conversion efficiency of the solar cell element obtained using the Sb concentration of 1 × 10 15 cm −3 or 1 × 10 21 cm −3 CdTe powder was about 5% (see Comparative Examples 1 and 2). ). Therefore, it can be said that the light conversion efficiency of the solar cell obtained using the CdTe powder can be increased by setting the Sb concentration contained in the CdTe powder within an appropriate predetermined range.
 したがって、CdTe粉末に含まれるSb濃度を適正な所定範囲とすることで、CdTe粉末を用いて得られる太陽電池の光変換効率は高くできるため、太陽電池として好適に用いることができることが判明した。 Therefore, it has been found that by setting the Sb concentration contained in the CdTe powder to an appropriate predetermined range, the light conversion efficiency of the solar cell obtained using the CdTe powder can be increased, so that it can be suitably used as a solar cell.
 また、本実施例では、アクセプタ不純物としてSbを用いた場合の試験結果について示すが、Sb以外の他のアクセプタ不純物についても同様の傾向を示すといえる。 In addition, in this example, the test result when Sb is used as the acceptor impurity is shown, but it can be said that the acceptor impurity other than Sb shows the same tendency.
 10 反応装置
 11 チャンバー
 12、13 サセプター
 14 加熱器
 15 半導体材料
 16 スペーサ
 17 基板
 18 不活性ガス
 19 ロータリーポンプ
 20 太陽電池
 21 透光性耐熱性基板
 22 透光性導電膜
 23 金属硫化物層
 24 CdTe層
 25 オーミック電極
 26 金属電極(集電極)
DESCRIPTION OF SYMBOLS 10 Reaction apparatus 11 Chamber 12, 13 Susceptor 14 Heater 15 Semiconductor material 16 Spacer 17 Substrate 18 Inert gas 19 Rotary pump 20 Solar cell 21 Translucent heat-resistant substrate 22 Translucent conductive film 23 Metal sulfide layer 24 CdTe layer 25 Ohmic electrode 26 Metal electrode (collector electrode)

Claims (7)

  1.  カドミウムとテルルとアクセプタ不純物とを含み、
     不純物濃度が1×1016cm-3以上1×1020cm-3以下であることを特徴とする太陽電池用テルル化カドミウム粉末。
    Including cadmium, tellurium and acceptor impurities,
    Cadmium telluride powder for solar cells, wherein the impurity concentration is 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less.
  2.  請求項1において、
     前記アクセプタ不純物が、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つである太陽電池用テルル化カドミウム粉末。
    In claim 1,
    The acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and a metal compound containing at least one element of the group Or a cadmium telluride powder for solar cells, which is at least one of an organometallic compound containing at least one element of the group.
  3.  カドミウムとテルルとアクセプタ不純物とを含み、
     不純物濃度が1×1016cm-3以上1×1020cm-3以下であることを特徴とする太陽電池用テルル化カドミウム膜。
    Including cadmium, tellurium and acceptor impurities,
    A cadmium telluride film for solar cells, wherein the impurity concentration is 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less.
  4.  請求項3において、
     前記アクセプタ不純物が、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つである太陽電池用テルル化カドミウム膜。
    In claim 3,
    The acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and a metal compound containing at least one element of the group Or a cadmium telluride film for solar cells, which is at least one of an organometallic compound containing at least one element of the group.
  5.  請求項3または4に記載の太陽電池用テルル化カドミウム膜を含むことを特徴とする太陽電池。 A solar cell comprising the cadmium telluride film for a solar cell according to claim 3 or 4.
  6.  アクセプタ不純物を含み、不純物濃度が1×1016cm-3以上1×1020cm-3以下であるテルル化カドミウム粉末を原料として用い、CdTe膜を作製することを特徴とする太陽電池用テルル化カドミウム膜の製造方法。 Tellurization for solar cells characterized in that a CdTe film is produced using cadmium telluride powder containing acceptor impurities and having an impurity concentration of 1 × 10 16 cm −3 or more and 1 × 10 20 cm −3 or less as a raw material. A method for producing a cadmium film.
  7.  請求項6において、
     前記テルル化カドミウム粉末が、前記アクセプタ不純物として、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つを用いる太陽電池用テルル化カドミウム膜の製造方法。
    In claim 6,
    The cadmium telluride powder has at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold as the acceptor impurity, at least of the group A method for producing a cadmium telluride film for a solar cell, using at least one of a metal compound containing one element or an organometallic compound containing at least one element of the group.
PCT/JP2012/051245 2011-02-24 2012-01-20 Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell WO2012114803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039061 2011-02-24
JP2011039061 2011-02-24

Publications (1)

Publication Number Publication Date
WO2012114803A1 true WO2012114803A1 (en) 2012-08-30

Family

ID=46720592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051245 WO2012114803A1 (en) 2011-02-24 2012-01-20 Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell

Country Status (2)

Country Link
TW (1) TW201240911A (en)
WO (1) WO2012114803A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156597A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Compound semiconductor single crystals for photoelectric conversion elements, photoelectric conversion element, and production method for compound semiconductor single crystals for photoelectric conversion elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187749A (en) * 1997-09-02 1999-03-30 Matsushita Denchi Kogyo Kk Solar cell and formation method for semiconductor film thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187749A (en) * 1997-09-02 1999-03-30 Matsushita Denchi Kogyo Kk Solar cell and formation method for semiconductor film thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
O.VIGIL-GALAN ET AL.: "Physical properties of Bi doped CdTe thin films grown by the CSVT method", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 90, 11 May 2006 (2006-05-11), pages 2228 - 2234 *
T.L.CHU: "THIN FILM CADMIUM TELLURIDE SOLAR CELLS BY TWO CHEMICAL VAPOR DEPOSITION TECHNIQUES", SOLAR CELLS, vol. 23, 1988, pages 31 - 48 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156597A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Compound semiconductor single crystals for photoelectric conversion elements, photoelectric conversion element, and production method for compound semiconductor single crystals for photoelectric conversion elements
US9362431B2 (en) 2013-03-29 2016-06-07 Jx Nippon Mining & Metals Corporation Compound semiconductor single crystal ingot for photoelectric conversion devices, photoelectric conversion device, and production method for compound semiconductor single crystal ingot for photoelectric conversion devices

Also Published As

Publication number Publication date
TW201240911A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
Chantana et al. Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells
JP5928612B2 (en) Compound semiconductor solar cell
JP2015233139A (en) Solar cell containing buffer layer formed by atomic layer deposition method and manufacturing method of the same
JP2020098927A (en) Silver-doped photovoltaic devices and production methods thereof
US20100288359A1 (en) Photovoltaic Device
KR20130040358A (en) Solar cell
WO2013172253A1 (en) n-TYPE LIGHT-ABSORBING LAYER ALLOY, METHOD FOR PRODUCING SAME, AND SOLAR CELL
WO2012114803A1 (en) Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell
JP5586045B2 (en) Method for manufacturing sulfide thin film device
Sood et al. Electrical barriers and their elimination by tuning (Zn, Mg) O buffer composition in Cu (In, Ga) S2 solar cells: systematic approach to achieve over 14% power conversion efficiency
JP2016541124A (en) Layer system for thin film solar cells
JP2015201523A (en) Photoelectric conversion element and manufacturing method of the same
WO2013077098A1 (en) Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell
JPH10303445A (en) Manufacture of cdte film and solar battery using the same
CN114164399B (en) Antimony selenide film with one-dimensional chain crystal structure and method for improving hole concentration of antimony selenide film
JP2013191822A (en) Method for manufacturing semiconductor layer and method for manufacturing photoelectric conversion device
KR101281330B1 (en) Solar cells and methods of manufacturing the solar cells
JP2005117012A (en) Semiconductor film, its manufacturing method, solar cell using the same, and its manufacturing method
JP5570650B2 (en) Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
JP6978875B2 (en) Photocells and their manufacturing methods
JP2015002269A (en) Light absorption body and photoelectric conversion element
Wan et al. Co‐Evaporated CuSbSe2 Thin Films for Solar Cells
WO2011102352A1 (en) Solar cell, and process for production of solar cell
JP2017034186A (en) Light absorption layer and manufacturing method therefor, and photoelectric conversion element
JP5832229B2 (en) Photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750075

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP