WO2013077098A1 - Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell - Google Patents

Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell Download PDF

Info

Publication number
WO2013077098A1
WO2013077098A1 PCT/JP2012/076200 JP2012076200W WO2013077098A1 WO 2013077098 A1 WO2013077098 A1 WO 2013077098A1 JP 2012076200 W JP2012076200 W JP 2012076200W WO 2013077098 A1 WO2013077098 A1 WO 2013077098A1
Authority
WO
WIPO (PCT)
Prior art keywords
cdte
solar cell
film
powder
cadmium telluride
Prior art date
Application number
PCT/JP2012/076200
Other languages
French (fr)
Japanese (ja)
Inventor
保 岡本
立一 平野
朗 野田
Original Assignee
Jx日鉱日石金属株式会社
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社, 独立行政法人国立高等専門学校機構 filed Critical Jx日鉱日石金属株式会社
Publication of WO2013077098A1 publication Critical patent/WO2013077098A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cadmium telluride (CdTe) powder for solar cell, a CdTe film for solar cell using the CdTe powder, and a solar cell.
  • CdTe cadmium telluride
  • Solar power generation is power generation using solar cells, and solar cells directly convert light energy from the sun into electricity. Therefore, solar power generation is expected as an alternative energy source for fossil energy, and is attracting more attention as an energy source for dealing with global environmental problems. In order to put solar cells into practical use in the future, it is necessary to increase the light conversion efficiency by which the solar cells convert light energy into electrical energy, and to further improve efficiency.
  • Solar cells include at least one pair of semiconductor films having p-type and n-type characteristics, and those using semiconductors such as silicon (Si) and compound are in practical use.
  • CdTe has a forbidden band width (band gap) of about 1.5 eV, and has high consistency with the spectrum of sunlight. Therefore, CdTe can be said to be an optimum material for absorbing solar light energy. Therefore, CdTe is used as an effective material for forming a photoelectric conversion layer of a solar cell having high light conversion efficiency.
  • the CdTe film is mainly formed by using a proximity space sublimation (CSS) method or a vapor transport deposition (VTD) method. Is done. At this time, the CdTe raw material is used as a raw material for forming the CdTe film.
  • SCS proximity space sublimation
  • VTD vapor transport deposition
  • These film forming methods are methods in which a raw material powder containing CdTe as a main component is heated and vaporized and supplied to a substrate, and CdTe is formed on a thin film forming substrate.
  • CdTe exhibits p-type conductivity even when no impurity is added (doping).
  • the carrier concentration is low, when a non-doped film is used as the p-type semiconductor of the solar cell, The light conversion efficiency was quite low.
  • a powder or raw material in which a compound containing a group I and / or group V element or an organometallic compound is mixed as an additive to a powder containing CdTe as a main component is added to a powder or a paste by adding a solvent or a binder.
  • a method for producing a CdTe film is proposed in which a CdTe film is produced by using a material coated on a support (CdTe paste) as a raw material for the CSS method, and the carrier concentration is increased (see, for example, Patent Document 1).
  • a method for producing a CdTe paste on a heat-resistant substrate by a printing method involves many steps, is time-consuming and expensive, and the growth time is limited by the thickness of the film, so that long-term continuous growth is difficult. .
  • This invention is made
  • the present inventors have conducted intensive research on CdTe powder for solar cells, CdTe films for solar cells, and solar cells.
  • CdTe powder for solar cells
  • CdTe films for solar cells
  • solar cells As a result, attention was paid to the influence of the impurity concentration of the acceptor impurity contained in the CdTe powder containing the acceptor impurity and containing CdTe as a main component on the crystallinity of the CdTe polycrystalline film obtained using the CdTe powder.
  • the impurity concentration of the acceptor impurity contained in the CdTe powder containing CdTe as a main component and containing the acceptor impurity of a predetermined concentration, the crystallinity of the CdTe polycrystalline film obtained by using the CdTe powder, and the CdTe film as a p-type of a solar cell The relationship between the photoelectric conversion efficiency of solar cells when used as a semiconductor was elucidated. Based on the obtained knowledge, when a CdTe polycrystalline film having high crystallinity is produced using CdTe powder containing an acceptor impurity at a predetermined concentration, the resulting CdTe film is used as a p-type semiconductor of a solar cell. It was found that the light conversion efficiency of the solar cell can be improved. The present invention has been completed based on such knowledge.
  • the CdTe powder for solar cells of the present invention is characterized by containing cadmium and tellurium and an acceptor impurity having a concentration of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and at least one of the groups It is preferably a metal compound containing one element or at least one of an organometallic compound containing at least one element of the group.
  • the solar cell CdTe film of the present invention is produced using the solar cell CdTe powder described above.
  • the average particle diameter of CdTe crystal grains in the CdTe film containing acceptor impurities is 5 ⁇ m or more.
  • a solar cell of the present invention is characterized by including the CdTe film for solar cell described in any one of the above.
  • the method for producing a CdTe film for a solar cell according to the present invention uses a CdTe powder containing an acceptor impurity having a concentration of 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less as a raw material, and uses the CdTe film containing an acceptor impurity.
  • the CdTe powder has at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, and gold as the acceptor impurity. It is preferable to use at least one of a metal compound containing at least one element of the group, or an organometallic compound containing at least one element of the group.
  • an average particle diameter of CdTe crystal grains in the CdTe film containing the acceptor impurity is 5 ⁇ m or more.
  • the average particle diameter of CdTe crystal grains can be increased.
  • a CdTe film having high light conversion efficiency can be manufactured.
  • membrane is used as a p-type semiconductor of a solar cell, the light conversion efficiency of a solar cell can further be improved.
  • FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell.
  • FIG. 2 is a schematic cross-sectional view showing an example of a solar cell.
  • FIG. 3 is a diagram showing the observation result of the average particle diameter of the CdTe powder obtained in Comparative Example 1.
  • FIG. 4 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Example 1.
  • FIG. 5 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Example 2.
  • FIG. 6 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Comparative Example 2.
  • FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell.
  • FIG. 2 is a schematic cross-sectional view showing an example of a solar cell.
  • FIG. 3 is a diagram showing the observation result of the average
  • FIG. 7 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Comparative Example 3.
  • FIG. 8 is a diagram showing the results of solar cell characteristics.
  • FIG. 9 is a diagram illustrating the relationship between voltage and current density in Example 2.
  • FIG. 10 is a graph showing the relationship between the wavelength of the photoluminescence spectrum and the PL intensity in Examples 1 and 2 and Comparative Example 1.
  • FIG. 11 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Comparative Example 1.
  • FIG. 12 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Example 1.
  • FIG. 13 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Example 2.
  • FIG. 14 is a diagram showing the relationship between the angle and intensity of each X-ray diffraction pattern in Comparative Example 2.
  • FIG. 15 is a diagram showing the relationship between the angle and the intensity of
  • the solar cell CdTe powder according to the present embodiment includes cadmium (Cd), tellurium (Te), and an acceptor impurity having a concentration of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the solar cell CdTe powder according to the present embodiment contains Cd and Te as main components.
  • the solar cell CdTe powder according to the present embodiment is obtained by previously doping an acceptor impurity into a CdTe crystal powder.
  • the acceptor impurity may be added together with the Cd and Te raw materials in the form of a simple substance or a compound, or may be synthesized by adding the acceptor impurities as a single substance to the Cd and Te raw materials.
  • the CdTe crystal includes one or both of a single crystal and a polycrystal.
  • the acceptor impurity is an impurity element containing other than Cd and Te in the solar cell CdTe powder according to the present embodiment.
  • an impurity is an element added for the purpose of controlling the polarity (p-type, n-type) and carrier density of a semiconductor.
  • An acceptor impurity refers to an additive substance that can form holes in a p-type semiconductor (a state in which electrons are insufficient).
  • Acceptor impurities include, for example, antimony (Sb), arsenic (As), bismuth (Bi), phosphorus (P), nitrogen (N), lithium (Li), potassium (K), sodium (Na), and rubidium (Rb).
  • At least one element selected from the group consisting of copper (Cu), silver (Ag), and gold (Au), a metal compound containing at least one element of the group, or an organic metal containing at least one element of the group At least one such as a compound is shown.
  • An example of the metal compound is antimony telluride.
  • the organometallic compound is, for example, at least one selected from the group consisting of triphenylantimony, antimony octylate, triphenylbismuth, triphenylphosphine, triphenyl phosphate, triphenyl phosphite, triallylphosphine, and triallylamine.
  • the acceptor impurity is preferably P, N, or Sb, and particularly preferably Sb.
  • the acceptor impurity in the present embodiment generates holes and takes charge of electrical conduction in the p-type semiconductor.
  • the CdTe powder for solar cells according to the present embodiment contains acceptor impurities.
  • holes of CdTe in the CdTe crystal grains containing acceptor impurities are formed. Many carriers can be formed. As a result, a p-type semiconductor with a high carrier concentration can be manufactured.
  • the impurity concentration of the CdTe powder for solar cells is 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the impurity concentration is more preferably 2 ⁇ 10 17 cm ⁇ 3 to 0.8 ⁇ 10 18 cm ⁇ 3 , and further preferably 3 ⁇ 10 17 cm ⁇ 3 to 0.6 ⁇ 10 18 cm ⁇ 3 . is there.
  • the impurity concentration can be measured using glow discharge mass spectrometry (GDMS). In principle, it is preferable that the impurity concentration in the CdTe powder is high.
  • the impurity concentration in the CdTe powder is too high, CdTe crystal grains in the CdTe polycrystalline film obtained by using the CdTe powder for solar cell according to the present embodiment are used. Does not grow and becomes smaller. Therefore, when the CdTe powder for solar cells according to this embodiment is used as a photoelectric conversion layer of a solar cell, the light conversion efficiency is lowered. Therefore, the CdTe powder for solar cells according to the present embodiment increases the average particle diameter by promoting the growth of CdTe crystal grains in the CdTe polycrystalline film containing acceptor impurities by setting the impurity concentration within the above range. Therefore, a CdTe polycrystalline film with high light conversion efficiency can be obtained.
  • the acceptor impurity is contained in the CdTe polycrystalline film of the CdTe powder for solar cells according to the present embodiment by, for example, a photoluminescence (PL) spectrum. It can be confirmed that the acceptor impurity is contained in the CdTe polycrystalline film by increasing the emission intensity near the wavelength corresponding to the acceptor impurity by the PL spectrum. For example, when the acceptor impurity is Sb and the PL spectrum of a CdTe polycrystalline film containing Sb is measured, the emission peak of donor-acceptor pair (DAP) emission due to Sb is observed at around 800 nm. Is done. Further, the method for confirming whether or not the acceptor impurity is contained in the CdTe polycrystalline film is not limited to the method using the PL spectrum, and other methods may be used.
  • PL photoluminescence
  • the CdTe powder for solar cell according to this embodiment is a CdTe crystal containing a predetermined amount of acceptor impurities in CdTe.
  • the CdTe crystal containing the acceptor impurity contains a lot of hole carriers. Since the CdTe powder for solar cells according to the present embodiment contains a predetermined amount of acceptor impurities in the CdTe crystal, it is included in the CdTe polycrystalline film produced by the CdTe powder for solar cells according to the present embodiment, as will be described later.
  • the average particle diameter can be increased by promoting the growth of CdTe crystal grains formed on the surface of the CdTe polycrystalline film, a CdTe polycrystalline film having high light conversion efficiency can be manufactured. Therefore, when the CdTe polycrystalline film produced from the CdTe powder for solar cells according to this embodiment is used as the p-type semiconductor layer of the solar cell, the light conversion efficiency of the solar cell can be further improved.
  • a powder raw material obtained by mixing a powder mainly composed of CdTe and an additive is added with a solvent or a binder to form a liquid or a paste and is applied onto a support (CdTe
  • CdTe In the case of producing a CdTe polycrystalline film using the paste, it is necessary to print the CdTe paste on a support, apply it, and then fire it, so that the steps required to produce the CdTe polycrystalline film increase. Cost increases.
  • the solar cell CdTe film according to the present embodiment is produced using the solar cell CdTe powder according to the present embodiment as a raw material, and is a CdTe polycrystalline film.
  • the solar cell CdTe powder according to the present embodiment is a CdTe crystal containing a predetermined amount of acceptor impurities in CdTe. Since the CdTe polycrystalline film for solar cells formed using the CdTe powder for solar cells according to this embodiment has a large average particle diameter of CdTe crystal grains, it becomes a CdTe polycrystalline film with high light conversion efficiency. Therefore, as will be described later, by using the solar cell CdTe film according to the present embodiment as a photoelectric conversion layer of the solar cell, a solar cell having high light conversion efficiency can be obtained.
  • the average particle diameter of CdTe crystal grains in the CdTe film containing acceptor impurities is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more. is there.
  • the maximum value of CdTe crystal grains in the CdTe film containing acceptor impurities varies depending on each crystal grain, but the maximum value of each CdTe crystal grain is the size of the entire single crystal.
  • the average particle diameter refers to the number average particle diameter.
  • the average particle diameter of the crystal grains in the CdTe polycrystalline film is defined as the average diameter of the cross section of the crystal grains in the CdTe polycrystalline film.
  • the equivalent diameter refers to the diameter of a perfect circle having an area equivalent to the cross-sectional area of crystal grains in the CdTe film.
  • the crystal grains in the CdTe polycrystalline film with a scanning electron microscope for example, 100 particle diameters are arbitrarily measured to obtain an average particle diameter.
  • the crystal grains in the CdTe polycrystalline film are not spherical, it is approximated to an ellipse having the closest shape and is obtained by (major axis + minor axis) / 2 of the ellipse.
  • the particle size distribution can be measured by X-ray diffraction analysis (XRD) or the like.
  • FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell.
  • the reaction apparatus 10 includes a chamber 11, a pair of susceptors 12 and 13, and a heater 14.
  • the chamber 11 is a tube made of, for example, quartz.
  • the pair of susceptors 12 and 13 are provided in the chamber 11 and are made of carbon or the like.
  • the heater 14 is not particularly limited as long as the inside of the chamber 11 can be heated, and examples thereof include an infrared lamp heater.
  • a pair of susceptors 12 and 13 are disposed in the chamber 11, and the CdTe powder for solar cells according to the present embodiment is disposed on the susceptor 12 as the semiconductor material 15.
  • the semiconductor material 15 As the semiconductor material 15, the CdTe powder for solar cell according to the present embodiment is used.
  • Spacers 16 are provided at both ends of the susceptor 12.
  • the semiconductor material 15 and the substrate 17 are arranged close to each other with a gap of 0.1 mm to several mm through the spacer 16.
  • the surface of the substrate 17 opposite to the semiconductor material 15 side is covered with the susceptor 13.
  • An inert gas 18 is supplied into the chamber 11, and air or the inert gas 18 in the chamber 11 is sucked by a rotary pump 19 to form a vacuum state.
  • the inert gas 18 include argon gas and nitrogen gas.
  • the atmosphere in the chamber 11 is replaced with an inert gas 18 to keep the inside of the chamber 11 at 133.32 Pa to 2666.44 Pa.
  • the susceptors 12 and 13 are heated to a temperature range of 400 ° C. to 800 ° C. by the heater 14 so that the temperature of the semiconductor material 15 is higher than that of the substrate 17 and is maintained for a certain time.
  • CdTe When the semiconductor material 15 is heated in the inert gas 18, CdTe is vaporized into Cd + 1 / 2Te 2 vapor and scattered from the semiconductor material 15 on the susceptor 12, and CdTe is formed on the substrate 17. Similarly, acceptor impurities contained in the CdTe powder are also vaporized and scattered from the semiconductor material 15 on the susceptor 12, and a carrier substance is formed on the substrate 17. Thereby, a CdTe film for a solar cell containing acceptor impurities and CdTe is formed on the surface of the substrate 17.
  • the solar cell CdTe film according to the present embodiment is produced using the solar cell CdTe powder according to the present embodiment as a raw material as described above, and the solar cell according to the present embodiment described above.
  • the CdTe powder for batteries is a CdTe crystal containing a predetermined amount of acceptor impurities in CdTe.
  • the solar cell CdTe film according to the present embodiment thus obtained has CdTe crystal grains having an average particle diameter larger than the average particle diameter of the CdTe crystal grains in the CdTe polycrystalline film containing no acceptor impurity. is doing.
  • the CdTe film for solar cell according to the present embodiment formed using the CdTe powder for solar cell according to the present embodiment has an average particle diameter in the inside, particularly on the surface, by promoting the growth of CdTe crystal grains.
  • a CdTe polycrystalline film with high light conversion efficiency is obtained. Therefore, the solar cell CdTe film according to this embodiment formed by using the solar cell CdTe powder according to this embodiment is used as a photoelectric conversion layer of the solar cell, so that the solar cell having high light conversion efficiency can do.
  • the present embodiment the case where the CdTe powder is used as a raw material and the CdTe film for a solar cell is produced using the CSS method has been described.
  • the present embodiment is not limited to this, and the VTD method or the like is used.
  • a CdTe film for a solar cell may be prepared using
  • FIG. 2 is a schematic cross-sectional view showing an example of a solar cell.
  • the solar cell 20 includes a translucent heat-resistant substrate 21, a translucent conductive film 22, a metal sulfide layer 23, a CdTe layer 24, an ohmic electrode 25, a metal electrode (collector). Electrode) 26.
  • the translucent heat-resistant substrate 21 has a property of transmitting light having a wavelength that can contribute to photoelectric conversion in the semiconductor layer.
  • a substrate having translucency and strength is used, and examples thereof include aluminosilicate glass, borosilicate glass, and soda lime glass.
  • the translucent conductive film 22 is provided on the translucent heat-resistant substrate 21.
  • the light-transmitting conductive film 22 include a film made of a tin oxide such as an indium tin oxide film, a zinc oxide film, and the like. Among these, a tin oxide film is particularly preferable.
  • the film thickness of the translucent conductive film 22 is preferably, for example, 100 nm or more and 1000 nm or less from the viewpoint of achieving both light transmittance and conductivity.
  • the metal sulfide layer 23 is laminated on the translucent conductive film 22.
  • the metal sulfide layer 23 is a layer containing a metal sulfide and functions as an n-type semiconductor layer.
  • the metal sulfide include cadmium sulfide and zinc sulfide. These may be used alone or in combination. Of these, cadmium sulfide and a mixture of cadmium sulfide and zinc sulfide are preferable.
  • the film thickness of the metal sulfide layer 23 is preferably 50 nm or more and 500 nm or less, for example.
  • the CdTe layer 24 is laminated on the metal sulfide layer 23.
  • the CdTe layer 24 is formed using a solar cell CdTe film formed by including the solar cell CdTe powder according to this embodiment, and functions as a p-type semiconductor layer.
  • the thickness of the CdTe layer 24 is preferably, for example, 1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of achieving both light absorption efficiency and conductivity.
  • the ohmic electrode 25 is an electrode provided on the CdTe layer 24 and in ohmic contact with the CdTe layer 24.
  • the ohmic electrode 25 is formed of a material such as carbon or nickel, for example.
  • the metal electrode 26 is provided on the ohmic electrode 25 and the exposed translucent conductive film 22.
  • the metal electrode 26 is formed of, for example, a mixture containing one or more of aluminum (Al), silver (Ag), and indium (In).
  • the translucent heat-resistant substrate 21 is set to a predetermined dimension (for example, 100 mm ⁇ 100 mm ⁇ 1 mm), and then the translucent conductive film having a predetermined film thickness (for example, 600 nm) is formed on the translucent heat-resistant substrate 21.
  • a film 22 is provided.
  • a metal having a predetermined film thickness (for example, 50 nm) is formed on the translucent conductive film 22 by inducing a gas generated by heating cadmium diethyldithiocarbamate to about 280 ° C. on the translucent conductive film 22 for 60 seconds.
  • a sulfide layer 23 is formed.
  • a CdTe layer 24 having a predetermined film thickness (for example, 5 ⁇ m) is formed on the metal sulfide layer 23.
  • the substrate 17 shown in FIG. The CdTe layer 24 is formed using the translucent heat-resistant substrate 21 on which the physical layer 23 is formed.
  • the metal sulfide layer 23 and the CdTe layer 24 around the portion that becomes the light receiving surface are peeled off by using, for example, laser scribing (wavelength 1.05 ⁇ m), and the translucent conductive film 22 is exposed.
  • An ohmic electrode 25 is formed on the CdTe layer 24, and a metal electrode 26 is formed on the ohmic electrode 25 and the exposed transparent conductive film 22, respectively. Thereby, the solar cell 20 is obtained.
  • the solar cell 20 uses the CdTe film for solar cells formed using the CdTe powder for solar cells according to the present embodiment for the CdTe layer 24. For this reason, the growth of CdTe crystal grains in the CdTe layer 24 is promoted, and the average particle diameter thereof is present inside the CdTe layer 24, particularly on the surface, in a large state, so that the open circuit voltage V OC and the fill factor of the solar cell 20 are increased. (Fill factor FF) can be improved and can have high light conversion efficiency. Therefore, the solar cell 20 can be effectively used as an energy source for photovoltaic power generation.
  • the CdTe layer 24 has a single-layer structure, but the solar cell 20 is not limited to the single-layer structure CdTe layer 24, and may have a multilayer structure.
  • the solar cell CdTe powder according to the present embodiment can be used as a photoelectric conversion layer of a solar cell by forming a CdTe film, but the present embodiment is not particularly limited to this, The present invention can also be suitably used for manufacturing integrated circuits using various semiconductor materials.
  • Example 1> (Preparation of CdTe powder containing Sb) 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 40 mg were placed in a PBN boat, and then the PBN boat was placed in a quartz ampoule, and the quartz ampoule was evacuated by the rotary pump 19. Then, nitrogen gas was introduced into the quartz ampule to keep it at 1 ⁇ 10 ⁇ 4 Pa to 5 ⁇ 10 ⁇ 4 Pa, and then sealed with a hydrogen burner. This quartz ampoule was raised to about 1200 ° C. with a heater to generate CdTe crystal grains. The generated CdTe crystal grains were pulverized into powder to obtain CdTe powder. In this example, the Sb concentration of the obtained CdTe powder was about 1 ⁇ 10 17 cm ⁇ 3 . In addition, Sb density
  • GDMS glow discharge
  • ITO Indium Tin Oxide
  • the method for producing the CdTe layer on the CdS film was performed in the same manner as in the case of producing the CdTe layer 24 on the metal sulfide layer 23 shown in FIG.
  • a carbon film that was an ohmic electrode for the CdTe film was formed, and an Ag electrode was formed on the carbon film.
  • an Ag electrode was formed as a current collector on the CdS film side. This produced the solar cell element.
  • Example 2 (Preparation of CdTe powder containing Sb) Example 1 except that the blending amounts of Cd, Te, Sb 2 Te 3 in preparing CdTe powder were changed to 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 0.14 g. And performed in the same manner.
  • the Sb concentration of the CdTe powder produced in this example was about 1 ⁇ 10 18 cm ⁇ 3 .
  • a solar cell element was produced in the same manner as in Example 1.
  • Table 1 shows the measurement results of the average particle diameter, peak intensity ratio, and solar cell characteristics of the CdTe powders in Examples 1 and 2 and Comparative Examples 1 to 3. Further, as the solar cell characteristics, open circuit voltage (V OC ), short circuit current density (short circuit current: J SC ), fill factor (F F), and photoelectric conversion efficiency (Eff .: Eff.). ) was measured.
  • ⁇ Average particle size> The average particle diameter of the CdTe powder obtained in each of Examples 1 and 2 and Comparative Examples 1 to 3 was measured. The average particle size was measured using surface morphology observation using an optical microscope. The observation results of the average particle diameter of the CdTe powder obtained in each of Comparative Example 1, Examples 1 and 2, and Comparative Examples 2 and 3 are shown in FIGS. These measurement results are shown in Table 1.
  • ⁇ Solar cell characteristics> The solar cell characteristics of the solar cell elements obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were measured. As the solar cell characteristics, the open circuit voltage V OC , the short circuit current density J SC , the fill factor F.I. F. And photoelectric conversion efficiency Eff. Asked. Photoelectric conversion efficiency Eff. Measured according to JIS C 8913. The measurement results are shown in Table 1 and FIG. FIG. 9 shows the relationship between the voltage and the current density in Example 2 (Sb concentration: 1 ⁇ 10 18 ).
  • FIG. 10 shows the relationship between the wavelength and intensity of the photoluminescence spectrum in Examples 1 and 2 and Comparative Example 1 (Sb concentration: 1 ⁇ 10 18 , 1 ⁇ 10 17 , 0 cm ⁇ 3 ).
  • PL measurement conditions / light source semiconductor laser (405 nm)
  • -Spectrometer Multi-channel spectrometer (PMA-11, manufactured by Hamamatsu Photonics) ⁇ Sample temperature: 6K
  • the average particle size of the CdTe powder having Sb concentrations of 0, 1 ⁇ 10 19 cm ⁇ 3 , and 1 ⁇ 10 20 cm ⁇ 3 is 1.5 ⁇ m to 3.
  • the photoelectric conversion efficiency Eff. Of the solar cell element obtained using these CdTe powders was 0 ⁇ m. Was lower than 13% (see Comparative Examples 1 to 3).
  • the average particle diameter of the CdTe powder having Sb concentrations of 1 ⁇ 10 17 cm ⁇ 3 and 1 ⁇ 10 18 cm ⁇ 3 is about 5.0 ⁇ m.
  • Photoelectric conversion efficiency Eff Of solar cell elements obtained using these CdTe powders.
  • the Sb concentration contained in the CdTe powder within an appropriate predetermined range, the growth of CdTe crystal grains can be promoted to increase the average particle size, and the photoelectric conversion of the solar cell obtained using the CdTe powder Efficiency Eff. Therefore, it was found that it can be suitably used as a solar cell.

Abstract

This CdTe powder for solar cells contains Cd, Te and an acceptor impurity that has a concentration of from 1 × 1017 cm-3 to 1 × 1018 cm-3 (inclusive). Consequently, growth of CdTe crystal grains in a CdTe film containing the acceptor impurity is promoted and the average grain size of the CdTe crystal grains is increased, so that a CdTe film having high photoconversion efficiency can be produced. Consequently, if the CdTe film is used as a p-type semiconductor of a solar cell, the photoconversion efficiency of the solar cell can be further improved.

Description

太陽電池用テルル化カドミウム粉末、太陽電池用テルル化カドミウム膜および太陽電池Cadmium telluride powder for solar cell, cadmium telluride film for solar cell and solar cell
 本発明は、太陽電池用テルル化カドミウム(CdTe)粉末、そのCdTe粉末を用いた太陽電池用CdTe膜および太陽電池に関する。 The present invention relates to a cadmium telluride (CdTe) powder for solar cell, a CdTe film for solar cell using the CdTe powder, and a solar cell.
 太陽光発電は太陽電池を使った発電であり、太陽電池は太陽からの光エネルギーを直接電気に変換する。そのため、太陽光発電は化石エネルギーの代替エネルギー源として期待されており、地球環境問題への対応エネルギー源としてさらに注目されている。今後、太陽電池を本格的に実用化するためには、太陽電池が光エネルギーを電気エネルギーに変換する光変換効率を高め、更なる効率化を図る必要がある。 Solar power generation is power generation using solar cells, and solar cells directly convert light energy from the sun into electricity. Therefore, solar power generation is expected as an alternative energy source for fossil energy, and is attracting more attention as an energy source for dealing with global environmental problems. In order to put solar cells into practical use in the future, it is necessary to increase the light conversion efficiency by which the solar cells convert light energy into electrical energy, and to further improve efficiency.
 太陽電池は、p型およびn型の特性を持った少なくとも1対の半導体膜を備え、シリコン(Si)系、化合物系などの半導体を用いたものが実用化されている。CdTeの禁制帯幅(バンドギャップ)は約1.5eVであり、太陽光のスペクトルとの整合性が高いため、CdTeは太陽の光エネルギーを吸収するためには最適な材料といえる。そのため、CdTeは高い光変換効率を有する太陽電池の光電変換層を形成するための有力な材料として用いられている。 Solar cells include at least one pair of semiconductor films having p-type and n-type characteristics, and those using semiconductors such as silicon (Si) and compound are in practical use. CdTe has a forbidden band width (band gap) of about 1.5 eV, and has high consistency with the spectrum of sunlight. Therefore, CdTe can be said to be an optimum material for absorbing solar light energy. Therefore, CdTe is used as an effective material for forming a photoelectric conversion layer of a solar cell having high light conversion efficiency.
 CdTeを含むCdTe膜で太陽電池の光電変換層を形成する場合、CdTe膜は主として近接昇華(Close Spaced Sublimation:CSS)法あるいは気相輸送堆積(Vapor Transport Deposition:VTD)法などを用いて成膜される。このとき、CdTe原料がCdTe膜の成膜用の原料として用いられる。これらの成膜方法は、CdTeを主成分として含む原料粉末を加熱して蒸気にして基板に供給し、薄膜形成用基板上にCdTeを成膜する方法である。 When the photoelectric conversion layer of a solar cell is formed with a CdTe film containing CdTe, the CdTe film is mainly formed by using a proximity space sublimation (CSS) method or a vapor transport deposition (VTD) method. Is done. At this time, the CdTe raw material is used as a raw material for forming the CdTe film. These film forming methods are methods in which a raw material powder containing CdTe as a main component is heated and vaporized and supplied to a substrate, and CdTe is formed on a thin film forming substrate.
 CdTeは、特に、不純物添加(ドーピング)をしない場合であっても、p型の電導性を示すが、キャリア濃度が低いため、ドーピングしない膜を太陽電池のp型半導体として用いると、太陽電池の光変換効率はかなり低いものであった。 In particular, CdTe exhibits p-type conductivity even when no impurity is added (doping). However, since the carrier concentration is low, when a non-doped film is used as the p-type semiconductor of the solar cell, The light conversion efficiency was quite low.
 従来は、CdTeを主成分とする粉末にI族および/あるいはV族元素を含む化合物または有機金属化合物を添加剤として混入した粉末原料に、溶媒もしくは粘結剤を加えて液状またはペースト状にし、支持体上に塗布したもの(CdTeペースト)をCSS法の原料として用いてCdTe膜を製造し、キャリア濃度を高めるCdTe膜の製造方法が提案されている(例えば、特許文献1参照)。 Conventionally, a powder or raw material in which a compound containing a group I and / or group V element or an organometallic compound is mixed as an additive to a powder containing CdTe as a main component is added to a powder or a paste by adding a solvent or a binder. A method for producing a CdTe film is proposed in which a CdTe film is produced by using a material coated on a support (CdTe paste) as a raw material for the CSS method, and the carrier concentration is increased (see, for example, Patent Document 1).
特開平10-303445号公報JP-A-10-303445
 しかしながら、CdTeペーストを耐熱性基板上に印刷法により作製する方法は工程が多く、手間と費用が掛かり、膜の厚さによって成長可能時間が制約されるため、長時間の連続成長が困難である。 However, a method for producing a CdTe paste on a heat-resistant substrate by a printing method involves many steps, is time-consuming and expensive, and the growth time is limited by the thickness of the film, so that long-term continuous growth is difficult. .
 今後、太陽電池を用いた太陽光発電の更なる普及を図っていくに当たって、太陽電池の光電変換層を形成する材料として用いられるCdTe膜を更に効率良く低コストで製造することを可能とし、更に光変換効率が高い太陽電池が求められている。 In the future, it will be possible to produce a CdTe film used as a material for forming a photoelectric conversion layer of a solar cell more efficiently and at a low cost in order to further promote solar power generation using a solar cell. There is a need for solar cells with high light conversion efficiency.
 本発明は、上記に鑑みてなされたものであって、光変換効率が高いCdTe膜を製造することができる太陽電池用CdTe粉末、太陽電池用CdTe膜および太陽電池を提供することを目的とする。 This invention is made | formed in view of the above, Comprising: It aims at providing CdTe powder for solar cells, CdTe film | membrane for solar cells, and a solar cell which can manufacture CdTe film | membrane with high photoconversion efficiency. .
 上述した課題を解決し、目的を達成するために、本発明者らは太陽電池用CdTe粉末、太陽電池用CdTe膜および太陽電池について鋭意研究をした。その結果、アクセプタ不純物を含みCdTeを主成分とするCdTe粉末に含まれるアクセプタ不純物の不純物濃度が、CdTe粉末を用いて得られるCdTe多結晶膜の結晶性に与える影響に着目した。所定濃度のアクセプタ不純物を含みCdTeを主成分とするCdTe粉末に含まれるアクセプタ不純物の不純物濃度と、CdTe粉末を用いて得られたCdTe多結晶膜の結晶性と、CdTe膜を太陽電池のp型半導体として用いた際の太陽電池の光電変換効率との関係について解明した。この得られた知見に基づいて、所定濃度のアクセプタ不純物を含むCdTe粉末を用いて結晶性の高いCdTe多結晶膜を作製することで、得られるCdTe膜を太陽電池のp型半導体として用いた際に太陽電池の光変換効率を向上させることができることを見出した。本発明は、係る知見に基づいて完成されたものである。 In order to solve the above-described problems and achieve the object, the present inventors have conducted intensive research on CdTe powder for solar cells, CdTe films for solar cells, and solar cells. As a result, attention was paid to the influence of the impurity concentration of the acceptor impurity contained in the CdTe powder containing the acceptor impurity and containing CdTe as a main component on the crystallinity of the CdTe polycrystalline film obtained using the CdTe powder. The impurity concentration of the acceptor impurity contained in the CdTe powder containing CdTe as a main component and containing the acceptor impurity of a predetermined concentration, the crystallinity of the CdTe polycrystalline film obtained by using the CdTe powder, and the CdTe film as a p-type of a solar cell The relationship between the photoelectric conversion efficiency of solar cells when used as a semiconductor was elucidated. Based on the obtained knowledge, when a CdTe polycrystalline film having high crystallinity is produced using CdTe powder containing an acceptor impurity at a predetermined concentration, the resulting CdTe film is used as a p-type semiconductor of a solar cell. It was found that the light conversion efficiency of the solar cell can be improved. The present invention has been completed based on such knowledge.
 本発明の太陽電池用CdTe粉末は、カドミウムとテルルと1×1017cm-3以上1×1018cm-3以下の濃度のアクセプタ不純物とを含むことを特徴とする。 The CdTe powder for solar cells of the present invention is characterized by containing cadmium and tellurium and an acceptor impurity having a concentration of 1 × 10 17 cm −3 to 1 × 10 18 cm −3 .
 本発明の好ましい態様として、前記アクセプタ不純物が、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つであることが好ましい。 As a preferred embodiment of the present invention, the acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and at least one of the groups It is preferably a metal compound containing one element or at least one of an organometallic compound containing at least one element of the group.
 本発明の太陽電池用CdTe膜は、上記に記載の太陽電池用CdTe粉末を用いて生成されることを特徴とする。 The solar cell CdTe film of the present invention is produced using the solar cell CdTe powder described above.
 本発明の好ましい態様として、アクセプタ不純物を含むCdTe膜中のCdTe結晶粒の平均粒子径が5μm以上であることが好ましい。 As a preferred embodiment of the present invention, it is preferable that the average particle diameter of CdTe crystal grains in the CdTe film containing acceptor impurities is 5 μm or more.
 本発明の太陽電池は、上記の何れか1つに記載の太陽電池用CdTe膜を含むことを特徴とする。 A solar cell of the present invention is characterized by including the CdTe film for solar cell described in any one of the above.
 本発明の太陽電池用CdTe膜の製造方法は、1×1017cm-3以上1×1018cm-3以下の濃度のアクセプタ不純物を含むCdTe粉末を原料として用い、アクセプタ不純物を含むCdTe膜を作製する製造方法であって、アクセプタ不純物を含まないCdTe膜中の結晶粒の平均粒子径よりも大きい平均粒子径を有するアクセプタ不純物を含むCdTe膜を作製することを特徴とする。 The method for producing a CdTe film for a solar cell according to the present invention uses a CdTe powder containing an acceptor impurity having a concentration of 1 × 10 17 cm −3 or more and 1 × 10 18 cm −3 or less as a raw material, and uses the CdTe film containing an acceptor impurity. A production method for producing a CdTe film including an acceptor impurity having an average particle diameter larger than an average particle diameter of crystal grains in a CdTe film not including an acceptor impurity.
 本発明の好ましい態様として、前記CdTe粉末が、前記アクセプタ不純物として、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つを用いることが好ましい。 As a preferred embodiment of the present invention, the CdTe powder has at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, and gold as the acceptor impurity. It is preferable to use at least one of a metal compound containing at least one element of the group, or an organometallic compound containing at least one element of the group.
 本発明の好ましい態様として、前記アクセプタ不純物を含むCdTe膜中のCdTe結晶粒の平均粒子径が5μm以上であることが好ましい。 As a preferred embodiment of the present invention, it is preferable that an average particle diameter of CdTe crystal grains in the CdTe film containing the acceptor impurity is 5 μm or more.
 本発明によれば、CdTe結晶粒の平均粒子径を増大させることができる。これにより、CdTe多結晶膜に含まれるCdTe結晶粒の結晶性を向上させることができるため、光変換効率が高いCdTe膜を製造することができる。これにより、CdTe膜を太陽電池のp型半導体として用いた際、太陽電池の光変換効率を更に向上させることができる。 According to the present invention, the average particle diameter of CdTe crystal grains can be increased. Thereby, since the crystallinity of the CdTe crystal grains contained in the CdTe polycrystalline film can be improved, a CdTe film having high light conversion efficiency can be manufactured. Thereby, when a CdTe film | membrane is used as a p-type semiconductor of a solar cell, the light conversion efficiency of a solar cell can further be improved.
図1は、太陽電池用CdTe膜の作製に用いられる反応装置の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell. 図2は、太陽電池の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a solar cell. 図3は、比較例1において得られたCdTe粉末の平均粒子径の観察結果を示す図である。FIG. 3 is a diagram showing the observation result of the average particle diameter of the CdTe powder obtained in Comparative Example 1. 図4は、実施例1において得られたCdTe粉末の平均粒子径の観察結果を示す図である。FIG. 4 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Example 1. 図5は、実施例2において得られたCdTe粉末の平均粒子径の観察結果を示す図である。FIG. 5 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Example 2. 図6は、比較例2において得られたCdTe粉末の平均粒子径の観察結果を示す図である。FIG. 6 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Comparative Example 2. 図7は、比較例3において得られたCdTe粉末の平均粒子径の観察結果を示す図である。FIG. 7 is a diagram showing the observation results of the average particle diameter of the CdTe powder obtained in Comparative Example 3. 図8は、太陽電池特性の結果を示す図である。FIG. 8 is a diagram showing the results of solar cell characteristics. 図9は、実施例2の時の電圧と電流密度の関係を示す図である。FIG. 9 is a diagram illustrating the relationship between voltage and current density in Example 2. 図10は、実施例1、2、比較例1の時のフォトルミネッセンススペクトルの波長とPL強度の関係を示す図である。FIG. 10 is a graph showing the relationship between the wavelength of the photoluminescence spectrum and the PL intensity in Examples 1 and 2 and Comparative Example 1. 図11は、比較例1の時のX線回折パターンの各々の角度と強度の関係を示す図である。FIG. 11 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Comparative Example 1. 図12は、実施例1の時のX線回折パターンの各々の角度と強度の関係を示す図である。FIG. 12 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Example 1. 図13は、実施例2の時のX線回折パターンの各々の角度と強度の関係を示す図である。FIG. 13 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Example 2. 図14は、比較例2の時のX線回折パターンの各々の角度と強度の関係を示す図である。FIG. 14 is a diagram showing the relationship between the angle and intensity of each X-ray diffraction pattern in Comparative Example 2. 図15は、比較例3の時のX線回折パターンの各々の角度と強度の関係を示す図である。FIG. 15 is a diagram showing the relationship between the angle and the intensity of each X-ray diffraction pattern in Comparative Example 3.
 以下、本発明を好適に実施するための形態(以下、実施形態という。)につき、詳細に説明する。尚、本発明は以下の実施形態および実施例に記載した内容により限定されるものではない。また、以下に記載した実施形態および実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態および実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 Hereinafter, modes for suitably carrying out the present invention (hereinafter referred to as embodiments) will be described in detail. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.
<太陽電池用CdTe粉末>
 本実施形態に係る太陽電池用CdTe粉末は、カドミウム(Cd)とテルル(Te)と1×1017cm-3以上1×1018cm-3以下の濃度のアクセプタ不純物とを含む。
<CdTe powder for solar cell>
The solar cell CdTe powder according to the present embodiment includes cadmium (Cd), tellurium (Te), and an acceptor impurity having a concentration of 1 × 10 17 cm −3 to 1 × 10 18 cm −3 .
 本実施形態に係る太陽電池用CdTe粉末は、CdとTeとを主成分として含むものである。本実施形態に係る太陽電池用CdTe粉末は、CdTe結晶の粉末に予めアクセプタ不純物をドープすることで得られる。アクセプタ不純物は、単体又は化合物の状態でCdとTeの原料と共に添加してもよいし、アクセプタ不純物の単体でCdとTeの原料に添加して合成するようにしてもよい。なお、CdTe結晶には、単結晶、多結晶の何れか一方又は両方が含まれる。 The solar cell CdTe powder according to the present embodiment contains Cd and Te as main components. The solar cell CdTe powder according to the present embodiment is obtained by previously doping an acceptor impurity into a CdTe crystal powder. The acceptor impurity may be added together with the Cd and Te raw materials in the form of a simple substance or a compound, or may be synthesized by adding the acceptor impurities as a single substance to the Cd and Te raw materials. Note that the CdTe crystal includes one or both of a single crystal and a polycrystal.
 アクセプタ不純物は、本実施形態に係る太陽電池用CdTe粉末にCdおよびTe以外が含まれる不純物元素である。一般に、不純物(ドーパント)は、半導体の極性(p型、n型)やキャリア密度を制御する目的で添加される元素である。アクセプタ不純物とは、p型半導体のホールを作る(電子が足りない状態)ことができる添加物質をいう。アクセプタ不純物は、例えば、アンチモン(Sb)、砒素(As)、ビスマス(Bi)、リン(P)、窒素(N)、リチウム(Li)、カリウム(K)、ナトリウム(Na)、ルビジウム(Rb)、銅(Cu)、銀(Ag)、金(Au)からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物などの少なくとも1つを示す。金属化合物は、例えば、テルル化アンチモンなどである。また、有機金属化合物は、例えば、トリフェニルアンチモン、オクチル酸アンチモン、トリフェニルビスマス、トリフェニルホスフィン、リン酸トリフェニル、亜リン酸トリフェニル、トリアリルホスフィン、トリアリルアミンからなる群より選ばれる少なくとも1つである。本実施形態においては、アクセプタ不純物としては、これらの中では、P、N、Sbが好ましく、Sbが特に好ましい。 The acceptor impurity is an impurity element containing other than Cd and Te in the solar cell CdTe powder according to the present embodiment. In general, an impurity (dopant) is an element added for the purpose of controlling the polarity (p-type, n-type) and carrier density of a semiconductor. An acceptor impurity refers to an additive substance that can form holes in a p-type semiconductor (a state in which electrons are insufficient). Acceptor impurities include, for example, antimony (Sb), arsenic (As), bismuth (Bi), phosphorus (P), nitrogen (N), lithium (Li), potassium (K), sodium (Na), and rubidium (Rb). , At least one element selected from the group consisting of copper (Cu), silver (Ag), and gold (Au), a metal compound containing at least one element of the group, or an organic metal containing at least one element of the group At least one such as a compound is shown. An example of the metal compound is antimony telluride. The organometallic compound is, for example, at least one selected from the group consisting of triphenylantimony, antimony octylate, triphenylbismuth, triphenylphosphine, triphenyl phosphate, triphenyl phosphite, triallylphosphine, and triallylamine. One. In the present embodiment, the acceptor impurity is preferably P, N, or Sb, and particularly preferably Sb.
 本実施形態におけるアクセプタ不純物は、正孔(ホール)を発生し、p型半導体内で電気伝導を担う。本実施形態に係る太陽電池用CdTe粉末はアクセプタ不純物を含むことで、本実施形態に係る太陽電池用CdTe粉末を用いてCdTe膜を形成した際、アクセプタ不純物を含むCdTe結晶粒中に正孔のキャリアを多く形成できる。その結果、キャリア濃度が高いp型半導体を作製することが可能となる。 The acceptor impurity in the present embodiment generates holes and takes charge of electrical conduction in the p-type semiconductor. The CdTe powder for solar cells according to the present embodiment contains acceptor impurities. When a CdTe film is formed using the CdTe powder for solar cells according to the present embodiment, holes of CdTe in the CdTe crystal grains containing acceptor impurities are formed. Many carriers can be formed. As a result, a p-type semiconductor with a high carrier concentration can be manufactured.
 本実施形態に係る太陽電池用CdTe粉末の不純物濃度は、1×1017cm-3以上1×1018cm-3以下である。不純物濃度は、より好ましくは2×1017cm-3以上0.8×1018cm-3以下であり、更に好ましくは3×1017cm-3以上0.6×1018cm-3以下である。なお、不純物濃度は、グロー放電質量分析法(Glow Discharge Mass Spectrometry:GDMS)を用いて測定できる。CdTe粉末中の不純物濃度は原則として高い方が好ましいが、CdTe粉末中の不純物濃度が高すぎると、本実施形態に係る太陽電池用CdTe粉末を用いて得られるCdTe多結晶膜中のCdTe結晶粒は成長せず小さくなる。そのため、本実施形態に係る太陽電池用CdTe粉末を太陽電池の光電変換層として用いた場合、光変換効率が低くなる。よって、本実施形態に係る太陽電池用CdTe粉末は不純物濃度を上記範囲内とすることで、アクセプタ不純物を含むCdTe多結晶膜中のCdTe結晶粒の成長を促進して平均粒子径を大きくすることができるため、光変換効率が高いCdTe多結晶膜を得ることができる。 The impurity concentration of the CdTe powder for solar cells according to this embodiment is 1 × 10 17 cm −3 or more and 1 × 10 18 cm −3 or less. The impurity concentration is more preferably 2 × 10 17 cm −3 to 0.8 × 10 18 cm −3 , and further preferably 3 × 10 17 cm −3 to 0.6 × 10 18 cm −3 . is there. The impurity concentration can be measured using glow discharge mass spectrometry (GDMS). In principle, it is preferable that the impurity concentration in the CdTe powder is high. However, if the impurity concentration in the CdTe powder is too high, CdTe crystal grains in the CdTe polycrystalline film obtained by using the CdTe powder for solar cell according to the present embodiment are used. Does not grow and becomes smaller. Therefore, when the CdTe powder for solar cells according to this embodiment is used as a photoelectric conversion layer of a solar cell, the light conversion efficiency is lowered. Therefore, the CdTe powder for solar cells according to the present embodiment increases the average particle diameter by promoting the growth of CdTe crystal grains in the CdTe polycrystalline film containing acceptor impurities by setting the impurity concentration within the above range. Therefore, a CdTe polycrystalline film with high light conversion efficiency can be obtained.
 本実施形態に係る太陽電池用CdTe粉末のCdTe多結晶膜にアクセプタ不純物が含まれているか否かについては、例えば、フォトルミネッセンス(PL:Photoluminescence)スペクトルにより確認することができる。PLスペクトルによりアクセプタ不純物に対応する波長付近の発光強度が増加することで、アクセプタ不純物がCdTe多結晶膜に含まれていることを確認することができる。例えば、アクセプタ不純物がSbの場合、Sbを含むCdTe多結晶膜のPLスペクトルを測定する場合には、Sbに起因するドナー・アクセプタ対(Donor Acceptor Pair;DAP)発光の発光ピークが800nm付近に観察される。また、アクセプタ不純物がCdTe多結晶膜に含まれているか否かを確認する方法は、PLスペクトルによる方法に限定されるものではなく、他の方法を用いてもよい。 Whether or not the acceptor impurity is contained in the CdTe polycrystalline film of the CdTe powder for solar cells according to the present embodiment can be confirmed by, for example, a photoluminescence (PL) spectrum. It can be confirmed that the acceptor impurity is contained in the CdTe polycrystalline film by increasing the emission intensity near the wavelength corresponding to the acceptor impurity by the PL spectrum. For example, when the acceptor impurity is Sb and the PL spectrum of a CdTe polycrystalline film containing Sb is measured, the emission peak of donor-acceptor pair (DAP) emission due to Sb is observed at around 800 nm. Is done. Further, the method for confirming whether or not the acceptor impurity is contained in the CdTe polycrystalline film is not limited to the method using the PL spectrum, and other methods may be used.
 このように、本実施形態に係る太陽電池用CdTe粉末は、CdTeにアクセプタ不純物を所定量含むCdTe結晶である。このアクセプタ不純物を含むCdTe結晶中に正孔のキャリアを多く含んでいる。本実施形態に係る太陽電池用CdTe粉末はCdTe結晶中にアクセプタ不純物を所定量含んでいるため、後述するように、本実施形態に係る太陽電池用CdTe粉末により作製されたCdTe多結晶膜に含まれる、特にCdTe多結晶膜の表面に形成されるCdTe結晶粒の成長を促進して平均粒子径を大きくすることができるため、光変換効率が高いCdTe多結晶膜を製造することができる。そのため、本実施形態に係る太陽電池用CdTe粉末により作製されたCdTe多結晶膜を太陽電池のp型半導体層として用いた際、太陽電池の光変換効率を更に向上させることができる。 Thus, the CdTe powder for solar cell according to this embodiment is a CdTe crystal containing a predetermined amount of acceptor impurities in CdTe. The CdTe crystal containing the acceptor impurity contains a lot of hole carriers. Since the CdTe powder for solar cells according to the present embodiment contains a predetermined amount of acceptor impurities in the CdTe crystal, it is included in the CdTe polycrystalline film produced by the CdTe powder for solar cells according to the present embodiment, as will be described later. In particular, since the average particle diameter can be increased by promoting the growth of CdTe crystal grains formed on the surface of the CdTe polycrystalline film, a CdTe polycrystalline film having high light conversion efficiency can be manufactured. Therefore, when the CdTe polycrystalline film produced from the CdTe powder for solar cells according to this embodiment is used as the p-type semiconductor layer of the solar cell, the light conversion efficiency of the solar cell can be further improved.
 また、太陽電池を作製する際、CdTeを主成分とする粉末と添加剤とを混合した粉末原料に、溶媒または粘結剤を加えて液状またはペースト状にし、支持体上に塗布したもの(CdTeペースト)を用いてCdTe多結晶膜を作製する場合、CdTeペーストを支持体上に印刷して塗布してから焼成する必要があるため、CdTe多結晶膜を作製するために要する工程が多くなり、費用が高くなる。これに対し、アクセプタ不純物を所定量含むCdTe粉末を用いてCSS法によりCdTe多結晶膜を作製する場合、CdTe粉末を粉末状態のまま、直接加熱してアクセプタ不純物を所定量含むCdTe多結晶膜を形成することができる。このため、本実施形態に係る太陽電池用CdTe粉末を用いてCSS法によりCdTe多結晶膜を作製する場合、支持体上にCdTe多結晶膜の原料となるペーストなどを塗布しておくなどの工程が不要となり、CdTe粉末を粉末状態のままCdTe多結晶膜を形成するための原料として用いることができるため、CdTe多結晶膜の作製に要する費用を軽減することができる。 Further, when a solar cell is manufactured, a powder raw material obtained by mixing a powder mainly composed of CdTe and an additive is added with a solvent or a binder to form a liquid or a paste and is applied onto a support (CdTe In the case of producing a CdTe polycrystalline film using the paste), it is necessary to print the CdTe paste on a support, apply it, and then fire it, so that the steps required to produce the CdTe polycrystalline film increase. Cost increases. In contrast, when a CdTe polycrystalline film is produced by the CSS method using a CdTe powder containing a predetermined amount of acceptor impurities, the CdTe polycrystalline film containing a predetermined amount of acceptor impurities is directly heated while the CdTe powder is in a powder state. Can be formed. For this reason, when producing a CdTe polycrystalline film by the CSS method using the CdTe powder for solar cells according to this embodiment, a process such as applying a paste or the like as a raw material for the CdTe polycrystalline film on the support. Is unnecessary, and the CdTe powder can be used as a raw material for forming the CdTe polycrystalline film in a powder state, so that the cost required for producing the CdTe polycrystalline film can be reduced.
<太陽電池用CdTe膜>
 本実施形態に係る太陽電池用CdTe膜は、上記の本実施形態に係る太陽電池用CdTe粉末を原料として生成されるものであり、CdTe多結晶膜である。本実施形態に係る太陽電池用CdTe粉末は、上述の通り、CdTeにアクセプタ不純物を所定量含んだCdTe結晶である。本実施形態に係る太陽電池用CdTe粉末を用いて形成された太陽電池用CdTe多結晶膜はCdTe結晶粒の平均粒子径が大きいため、光変換効率が高いCdTe多結晶膜となる。よって、後述するように、本実施形態に係る太陽電池用CdTe膜を太陽電池の光電変換層として用いることで、高い光変換効率を有する太陽電池とすることができる。
<CdTe film for solar cell>
The solar cell CdTe film according to the present embodiment is produced using the solar cell CdTe powder according to the present embodiment as a raw material, and is a CdTe polycrystalline film. As described above, the solar cell CdTe powder according to the present embodiment is a CdTe crystal containing a predetermined amount of acceptor impurities in CdTe. Since the CdTe polycrystalline film for solar cells formed using the CdTe powder for solar cells according to this embodiment has a large average particle diameter of CdTe crystal grains, it becomes a CdTe polycrystalline film with high light conversion efficiency. Therefore, as will be described later, by using the solar cell CdTe film according to the present embodiment as a photoelectric conversion layer of the solar cell, a solar cell having high light conversion efficiency can be obtained.
 本実施形態に係る太陽電池用CdTe膜は、アクセプタ不純物を含むCdTe膜中のCdTe結晶粒の平均粒子径が5μm以上であるのが好ましく、より好ましくは7μm以上であり、更に好ましくは10μm以上である。また、アクセプタ不純物を含むCdTe膜中のCdTe結晶粒の最大値はそれぞれの結晶粒に応じて異なるが、それぞれのCdTe結晶粒の最大値は全面単結晶の大きさとなる。アクセプタ不純物を含むCdTe粉末を用いることで、CdTe多結晶膜中のCdTe結晶粒の成長を促進して平均粒子径を大きくすることができるため、本実施形態に係る太陽電池用CdTe膜を太陽電池の光電変換層として用いた際、光変換効率を向上させることができる。 In the CdTe film for solar cell according to this embodiment, the average particle diameter of CdTe crystal grains in the CdTe film containing acceptor impurities is preferably 5 μm or more, more preferably 7 μm or more, and further preferably 10 μm or more. is there. In addition, the maximum value of CdTe crystal grains in the CdTe film containing acceptor impurities varies depending on each crystal grain, but the maximum value of each CdTe crystal grain is the size of the entire single crystal. By using the CdTe powder containing the acceptor impurity, it is possible to promote the growth of CdTe crystal grains in the CdTe polycrystalline film and increase the average particle size. Therefore, the solar cell CdTe film according to this embodiment is used as a solar cell. When used as a photoelectric conversion layer, the light conversion efficiency can be improved.
 なお、本実施形態において、平均粒子径とは数平均粒子径のことをいう。CdTe多結晶膜中の結晶粒の平均粒子径とは、CdTe多結晶膜中の結晶粒の断面の等価直径を平均粒子径とする。本実施形態において、等価直径とは、CdTe膜中の結晶粒の断面積と等価な面積を有する正円の直径をいう。CdTe結晶の平均粒子径を測定する方法としては、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)によりCdTe多結晶膜中の結晶粒を観察し、粒子径の数平均を計算する方法が挙げられる。例えば、走査型電子顕微鏡でCdTe多結晶膜中の結晶粒について、例えば任意に100個の粒子径の測定をし、平均粒子径を求める。また、CdTe多結晶膜中の結晶粒が球状でない場合には、最も形状の近い楕円に近似し、その楕円の(長径+短径)/2にて求める。平均粒子径を測定する方法としては、X線回折分析(XRD)などによって粒度分布を測定することができる。 In the present embodiment, the average particle diameter refers to the number average particle diameter. The average particle diameter of the crystal grains in the CdTe polycrystalline film is defined as the average diameter of the cross section of the crystal grains in the CdTe polycrystalline film. In the present embodiment, the equivalent diameter refers to the diameter of a perfect circle having an area equivalent to the cross-sectional area of crystal grains in the CdTe film. As a method for measuring the average particle size of CdTe crystals, a method of observing crystal grains in a CdTe polycrystalline film by SEM (scanning electron microscope) or TEM (transmission electron microscope) and calculating the number average of the particle sizes Is mentioned. For example, with respect to the crystal grains in the CdTe polycrystalline film with a scanning electron microscope, for example, 100 particle diameters are arbitrarily measured to obtain an average particle diameter. Further, when the crystal grains in the CdTe polycrystalline film are not spherical, it is approximated to an ellipse having the closest shape and is obtained by (major axis + minor axis) / 2 of the ellipse. As a method for measuring the average particle size, the particle size distribution can be measured by X-ray diffraction analysis (XRD) or the like.
(太陽電池用CdTe膜の作製方法)
 本実施形態に係る太陽電池用CdTe膜は、本実施形態に係るCdTe粉末を原料として用いてCSS法などによって作製される。図1は、太陽電池用CdTe膜の作製に用いられる反応装置の一例を示す断面図である。図1に示すように、反応装置10は、チャンバー11と一対のサセプター12、13と、加熱器14とを有するものである。チャンバー11は、例えば石英などを材料として作製される管である。一対のサセプター12、13は、チャンバー11内に設けられ、カーボンなどで作製されるものである。加熱器14は、チャンバー11内を加熱できるものであれば特に限定されるものではなく、例えば、赤外線ランプヒーターなどが挙げられる。
(Method for producing CdTe film for solar cell)
The CdTe film for solar cell according to the present embodiment is produced by the CSS method using the CdTe powder according to the present embodiment as a raw material. FIG. 1 is a cross-sectional view showing an example of a reaction apparatus used for producing a CdTe film for a solar cell. As shown in FIG. 1, the reaction apparatus 10 includes a chamber 11, a pair of susceptors 12 and 13, and a heater 14. The chamber 11 is a tube made of, for example, quartz. The pair of susceptors 12 and 13 are provided in the chamber 11 and are made of carbon or the like. The heater 14 is not particularly limited as long as the inside of the chamber 11 can be heated, and examples thereof include an infrared lamp heater.
 チャンバー11内に一対のサセプター12、13を配置し、サセプター12上に本実施形態に係る太陽電池用CdTe粉末を半導体材料15として配置する。半導体材料15は、上記の本実施形態に係る太陽電池用CdTe粉末が用いられる。サセプター12の両端にはスペーサ16が設けられる。スペーサ16を介して半導体材料15と基板17とを0.1mm~数mmの隙間を有するように近接して配置する。基板17の半導体材料15側とは反対側の面をサセプター13で覆う。 A pair of susceptors 12 and 13 are disposed in the chamber 11, and the CdTe powder for solar cells according to the present embodiment is disposed on the susceptor 12 as the semiconductor material 15. As the semiconductor material 15, the CdTe powder for solar cell according to the present embodiment is used. Spacers 16 are provided at both ends of the susceptor 12. The semiconductor material 15 and the substrate 17 are arranged close to each other with a gap of 0.1 mm to several mm through the spacer 16. The surface of the substrate 17 opposite to the semiconductor material 15 side is covered with the susceptor 13.
 チャンバー11内に不活性ガス18を供給し、チャンバー11内の空気や不活性ガス18をロータリーポンプ19により吸引し、真空状態を形成する。不活性ガス18としては、例えば、アルゴンガス、窒素ガスなどが挙げられる。チャンバー11内の雰囲気を不活性ガス18に置換して、チャンバー11内を133.32Pa~2666.44Paに保つ。加熱器14によりサセプター12、13を400℃~800℃の温度範囲に加熱し、半導体材料15の温度を基板17よりも高温にして一定時間保持する。半導体材料15を不活性ガス18中で加熱すると、CdTeは気化してCd+1/2Te2の蒸気となり、サセプター12上の半導体材料15から飛散し、基板17上にCdTeが成膜される。また、CdTe粉末に含まれるアクセプタ不純物も同様に、蒸気となり、サセプター12上の半導体材料15から飛散し、基板17上にキャリア物質が成膜される。これにより、基板17の表面にアクセプタ不純物とCdTeとを含む太陽電池用CdTe膜が成膜される。 An inert gas 18 is supplied into the chamber 11, and air or the inert gas 18 in the chamber 11 is sucked by a rotary pump 19 to form a vacuum state. Examples of the inert gas 18 include argon gas and nitrogen gas. The atmosphere in the chamber 11 is replaced with an inert gas 18 to keep the inside of the chamber 11 at 133.32 Pa to 2666.44 Pa. The susceptors 12 and 13 are heated to a temperature range of 400 ° C. to 800 ° C. by the heater 14 so that the temperature of the semiconductor material 15 is higher than that of the substrate 17 and is maintained for a certain time. When the semiconductor material 15 is heated in the inert gas 18, CdTe is vaporized into Cd + 1 / 2Te 2 vapor and scattered from the semiconductor material 15 on the susceptor 12, and CdTe is formed on the substrate 17. Similarly, acceptor impurities contained in the CdTe powder are also vaporized and scattered from the semiconductor material 15 on the susceptor 12, and a carrier substance is formed on the substrate 17. Thereby, a CdTe film for a solar cell containing acceptor impurities and CdTe is formed on the surface of the substrate 17.
 このように、本実施形態に係る太陽電池用CdTe膜は、上述の通り、本実施形態に係る太陽電池用CdTe粉末を原料として用いて生成されるものであり、上記の本実施形態に係る太陽電池用CdTe粉末は、上述の通り、CdTeにアクセプタ不純物を所定量含んだCdTe結晶である。このようにして得られた本実施形態に係る太陽電池用CdTe膜は、アクセプタ不純物を含まないCdTe多結晶膜中のCdTe結晶粒の平均粒子径よりも大きい平均粒子径を有するCdTe結晶粒を有している。 As described above, the solar cell CdTe film according to the present embodiment is produced using the solar cell CdTe powder according to the present embodiment as a raw material as described above, and the solar cell according to the present embodiment described above. As described above, the CdTe powder for batteries is a CdTe crystal containing a predetermined amount of acceptor impurities in CdTe. The solar cell CdTe film according to the present embodiment thus obtained has CdTe crystal grains having an average particle diameter larger than the average particle diameter of the CdTe crystal grains in the CdTe polycrystalline film containing no acceptor impurity. is doing.
 よって、本実施形態に係る太陽電池用CdTe粉末を用いて形成された本実施形態に係る太陽電池用CdTe膜は、その内部、特に表面に、CdTe結晶粒の成長が促進されて平均粒子径が大きい状態で存在することで、光変換効率が高いCdTe多結晶膜となる。したがって、本実施形態に係る太陽電池用CdTe粉末を用いて形成された本実施形態に係る太陽電池用CdTe膜は、太陽電池の光電変換層として用いることで、高い光変換効率を有する太陽電池とすることができる。 Therefore, the CdTe film for solar cell according to the present embodiment formed using the CdTe powder for solar cell according to the present embodiment has an average particle diameter in the inside, particularly on the surface, by promoting the growth of CdTe crystal grains. By existing in a large state, a CdTe polycrystalline film with high light conversion efficiency is obtained. Therefore, the solar cell CdTe film according to this embodiment formed by using the solar cell CdTe powder according to this embodiment is used as a photoelectric conversion layer of the solar cell, so that the solar cell having high light conversion efficiency can do.
 なお、本実施形態においては、CdTe粉末を原料とし、CSS法を用いて太陽電池用CdTe膜を作製する場合について説明したが、本実施形態は、これに限定されるものではなく、VTD法などを用いて太陽電池用CdTe膜を作製するようにしてもよい。 In the present embodiment, the case where the CdTe powder is used as a raw material and the CdTe film for a solar cell is produced using the CSS method has been described. However, the present embodiment is not limited to this, and the VTD method or the like is used. A CdTe film for a solar cell may be prepared using
<太陽電池>
 太陽電池用CdTe膜は、太陽電池の光電変換層として好適に用いることができる。図2は、太陽電池の一例を示す概略断面図である。図2に示すように、太陽電池20は、透光性耐熱性基板21と、透光性導電膜22と、金属硫化物層23と、CdTe層24と、オーミック電極25と、金属電極(集電極)26とを有する。
<Solar cell>
The CdTe film for solar cells can be suitably used as a photoelectric conversion layer for solar cells. FIG. 2 is a schematic cross-sectional view showing an example of a solar cell. As shown in FIG. 2, the solar cell 20 includes a translucent heat-resistant substrate 21, a translucent conductive film 22, a metal sulfide layer 23, a CdTe layer 24, an ohmic electrode 25, a metal electrode (collector). Electrode) 26.
 透光性耐熱性基板21は、半導体層で光電変換に寄与し得る波長の光を透過させる性質を有する。透光性耐熱性基板21としては、透光性と強度を有するものが用いられ、例えば、アルミノ珪酸ガラス、ホウ珪酸ガラス、ソーダライムガラスなどが挙げられる。 The translucent heat-resistant substrate 21 has a property of transmitting light having a wavelength that can contribute to photoelectric conversion in the semiconductor layer. As the translucent heat-resistant substrate 21, a substrate having translucency and strength is used, and examples thereof include aluminosilicate glass, borosilicate glass, and soda lime glass.
 透光性導電膜22は、透光性耐熱性基板21上に設けられている。透光性導電膜22としては、例えば、酸化インジウムスズ膜などのスズ酸化物からなる膜、酸化亜鉛膜などが挙げられる。これらの中でも、特に、酸化スズ膜が好ましい。透光性導電膜22の膜厚は、光の透過率と導電性との両立を図る観点から、例えば、100nm以上1000nm以下であることが好ましい。 The translucent conductive film 22 is provided on the translucent heat-resistant substrate 21. Examples of the light-transmitting conductive film 22 include a film made of a tin oxide such as an indium tin oxide film, a zinc oxide film, and the like. Among these, a tin oxide film is particularly preferable. The film thickness of the translucent conductive film 22 is preferably, for example, 100 nm or more and 1000 nm or less from the viewpoint of achieving both light transmittance and conductivity.
 金属硫化物層23は、透光性導電膜22の上に積層される。金属硫化物層23は、金属硫化物を含む層であり、n型半導体層として機能する。金属硫化物としては、例えば、硫化カドミウム、硫化亜鉛などが挙げられる。これらは単独で用いてもよく、組み合わせて用いてもよい。これらのうちでは、硫化カドミウム、硫化カドミウムと硫化亜鉛との混合物が好ましい。金属硫化物層23の膜厚は、例えば、50nm以上500nm以下であることが好ましい。 The metal sulfide layer 23 is laminated on the translucent conductive film 22. The metal sulfide layer 23 is a layer containing a metal sulfide and functions as an n-type semiconductor layer. Examples of the metal sulfide include cadmium sulfide and zinc sulfide. These may be used alone or in combination. Of these, cadmium sulfide and a mixture of cadmium sulfide and zinc sulfide are preferable. The film thickness of the metal sulfide layer 23 is preferably 50 nm or more and 500 nm or less, for example.
 CdTe層24は、金属硫化物層23の上に積層される。CdTe層24は、本実施形態に係る太陽電池用CdTe粉末を含んで形成される太陽電池用CdTe膜を用いて形成され、p型半導体層として機能する。CdTe層24の膜厚は、光の吸収効率と導電性との両立を図る観点から、例えば、1μm以上10μm以下であることが好ましい。 The CdTe layer 24 is laminated on the metal sulfide layer 23. The CdTe layer 24 is formed using a solar cell CdTe film formed by including the solar cell CdTe powder according to this embodiment, and functions as a p-type semiconductor layer. The thickness of the CdTe layer 24 is preferably, for example, 1 μm or more and 10 μm or less from the viewpoint of achieving both light absorption efficiency and conductivity.
 オーミック電極25は、CdTe層24上に設けられ、CdTe層24にオーミック接触させた電極である。オーミック電極25は、例えば、カーボン、ニッケルなどの材料で形成される。 The ohmic electrode 25 is an electrode provided on the CdTe layer 24 and in ohmic contact with the CdTe layer 24. The ohmic electrode 25 is formed of a material such as carbon or nickel, for example.
 金属電極26は、オーミック電極25上および露出させた透光性導電膜22上に設けられている。金属電極26は、例えば、アルミニウム(Al)、銀(Ag)、インジウム(In)の1つ以上を含む混合物などで形成される。 The metal electrode 26 is provided on the ohmic electrode 25 and the exposed translucent conductive film 22. The metal electrode 26 is formed of, for example, a mixture containing one or more of aluminum (Al), silver (Ag), and indium (In).
 太陽電池20の作製方法の一例について説明する。まず、透光性耐熱性基板21を所定の寸法(例えば、100mm×100mm×1mm)にした後、この透光性耐熱性基板21上に所定の膜厚(例えば、600nm)の透光性導電膜22を設ける。この透光性導電膜22上にジエチルジチオカルバミン酸カドミウムを約280℃に加熱して発生するガスを60秒間誘導することによって透光性導電膜22上に所定の膜厚(例えば、50nm)の金属硫化物層23を形成する。金属硫化物層23上に所定の膜厚(例えば、5μm)のCdTe層24を形成する。このとき、金属硫化物層23上へのCdTe層24の作製方法については、上述の太陽電池用CdTe膜の製造方法のように、図1に示す基板17を透光性導電膜22と金属硫化物層23とが形成された透光性耐熱性基板21として用い、CdTe層24の成形を行う。その後、受光面となる部分の周囲の金属硫化物層23、CdTe層24を、例えばレーザースクライブ(波長1.05μm)を用いて剥離し、透光性導電膜22を露出させる。CdTe層24上にオーミック電極25を形成し、オーミック電極25上および露出させた透光性導電膜22上に金属電極26を各々形成する。これにより、太陽電池20が得られる。 An example of a method for manufacturing the solar cell 20 will be described. First, the translucent heat-resistant substrate 21 is set to a predetermined dimension (for example, 100 mm × 100 mm × 1 mm), and then the translucent conductive film having a predetermined film thickness (for example, 600 nm) is formed on the translucent heat-resistant substrate 21. A film 22 is provided. A metal having a predetermined film thickness (for example, 50 nm) is formed on the translucent conductive film 22 by inducing a gas generated by heating cadmium diethyldithiocarbamate to about 280 ° C. on the translucent conductive film 22 for 60 seconds. A sulfide layer 23 is formed. A CdTe layer 24 having a predetermined film thickness (for example, 5 μm) is formed on the metal sulfide layer 23. At this time, with respect to the method for producing the CdTe layer 24 on the metal sulfide layer 23, the substrate 17 shown in FIG. The CdTe layer 24 is formed using the translucent heat-resistant substrate 21 on which the physical layer 23 is formed. Thereafter, the metal sulfide layer 23 and the CdTe layer 24 around the portion that becomes the light receiving surface are peeled off by using, for example, laser scribing (wavelength 1.05 μm), and the translucent conductive film 22 is exposed. An ohmic electrode 25 is formed on the CdTe layer 24, and a metal electrode 26 is formed on the ohmic electrode 25 and the exposed transparent conductive film 22, respectively. Thereby, the solar cell 20 is obtained.
 このように、太陽電池20は、CdTe層24に本実施形態に係る太陽電池用CdTe粉末を用いて形成される太陽電池用CdTe膜を用いている。このため、CdTe層24中のCdTe結晶粒の成長が促進され、その平均粒子径は大きい状態でCdTe層24の内部、特に表面に存在することで、太陽電池20の開放電圧VOCおよび曲線因子(フィルファクターF.F.)は向上し、高い光変換効率を有することができる。したがって、太陽電池20は、太陽光発電用のエネルギー源として有効に用いることができる。 Thus, the solar cell 20 uses the CdTe film for solar cells formed using the CdTe powder for solar cells according to the present embodiment for the CdTe layer 24. For this reason, the growth of CdTe crystal grains in the CdTe layer 24 is promoted, and the average particle diameter thereof is present inside the CdTe layer 24, particularly on the surface, in a large state, so that the open circuit voltage V OC and the fill factor of the solar cell 20 are increased. (Fill factor FF) can be improved and can have high light conversion efficiency. Therefore, the solar cell 20 can be effectively used as an energy source for photovoltaic power generation.
 本実施形態では、CdTe層24は1層構造としているが、太陽電池20は1層構造のCdTe層24に限定されるものではなく、多層構造としてもよい。 In this embodiment, the CdTe layer 24 has a single-layer structure, but the solar cell 20 is not limited to the single-layer structure CdTe layer 24, and may have a multilayer structure.
 本実施形態に係る太陽電池用CdTe粉末は、CdTe膜とすることで、太陽電池の光電変換層として用いることができるが、本実施形態は特にこれに限定されるものではなく、赤外線受光素子や種々の半導体材料を用いた集積回路等の製造にも好適に用いることができる。 The solar cell CdTe powder according to the present embodiment can be used as a photoelectric conversion layer of a solar cell by forming a CdTe film, but the present embodiment is not particularly limited to this, The present invention can also be suitably used for manufacturing integrated circuits using various semiconductor materials.
 本発明の内容を実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The content of the present invention will be described in detail below using examples and comparative examples, but the present invention is not limited to the following examples.
<実施例1>
(Sbを含むCdTe粉末の作製)
 6N-Cd:716g、6N-Te:813g、Sb2Te3:40mgを各々PBN製ボートに入れた後、PBN製ボートを石英製アンプル内に設置し、ロータリーポンプ19で石英製アンプル内を真空に引き、石英製アンプル内に窒素ガスを導入して1×10-4Pa~5×10-4Paに保った後、水素バーナーを用いて封止した。この石英製アンプルをヒータにより約1200℃にまで上昇させ、CdTe結晶粒を生成した。この生成されたCdTe結晶粒を粉砕して粉末にし、CdTe粉末を得た。本実施例において、得られたCdTe粉末のSb濃度は、約1×1017cm-3であった。なお、生成されたCdTe粉末のSb濃度は、グロー放電質量分析法(GDMS)を用いて測定した。
<Example 1>
(Preparation of CdTe powder containing Sb)
6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 40 mg were placed in a PBN boat, and then the PBN boat was placed in a quartz ampoule, and the quartz ampoule was evacuated by the rotary pump 19. Then, nitrogen gas was introduced into the quartz ampule to keep it at 1 × 10 −4 Pa to 5 × 10 −4 Pa, and then sealed with a hydrogen burner. This quartz ampoule was raised to about 1200 ° C. with a heater to generate CdTe crystal grains. The generated CdTe crystal grains were pulverized into powder to obtain CdTe powder. In this example, the Sb concentration of the obtained CdTe powder was about 1 × 10 17 cm −3 . In addition, Sb density | concentration of the produced | generated CdTe powder was measured using the glow discharge mass spectrometry (GDMS).
(太陽電池素子の作製)
 アルミノ珪酸ガラス製のガラス基板上にスパッタリング法により膜厚が約250nmのITO(Indium Tin Oxide:酸化インジウムスズ)からなる透明導電膜を作製した。その後、ジエチルジチオカルバミン酸カドミウムの有機溶媒溶液をガラス基板上の透明導電膜に噴霧して塗布し、酸素を若干量含む窒素雰囲気で約430℃に加熱されたマッフル炉内で、ジエチルジチオカルバミン酸カドミウムを熱分解させて透明導電膜上に膜厚が約60nmのCdS膜を作製した。その後、CdS膜上には膜厚が約5μmのCdTe膜を形成した。このとき、CdS膜上へのCdTe層の作製方法については、上述のように、図2に示す金属硫化物層23上にCdTe層24を作製する場合と同様に行った。CdS膜上にCdTe層24を形成した後、CdTe膜に対するオーミック電極であるカーボン膜を形成し、カーボン膜上にAg電極を形成した。また、CdS膜側の集電体としてAg電極を形成した。これにより、太陽電池素子を作製した。
(Production of solar cell element)
A transparent conductive film made of ITO (Indium Tin Oxide) having a film thickness of about 250 nm was produced on a glass substrate made of aluminosilicate glass by sputtering. Thereafter, an organic solvent solution of cadmium diethyldithiocarbamate was sprayed onto a transparent conductive film on a glass substrate and applied. A CdS film having a thickness of about 60 nm was produced on the transparent conductive film by pyrolysis. Thereafter, a CdTe film having a thickness of about 5 μm was formed on the CdS film. At this time, the method for producing the CdTe layer on the CdS film was performed in the same manner as in the case of producing the CdTe layer 24 on the metal sulfide layer 23 shown in FIG. After the CdTe layer 24 was formed on the CdS film, a carbon film that was an ohmic electrode for the CdTe film was formed, and an Ag electrode was formed on the carbon film. In addition, an Ag electrode was formed as a current collector on the CdS film side. This produced the solar cell element.
<実施例2>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813gとSb2Te3:0.14gに変更したこと以外は、実施例1と同様にして行った。本実施例において生成されたCdTe粉末のSb濃度は、約1×1018cm-3であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Example 2>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, Sb 2 Te 3 in preparing CdTe powder were changed to 6N-Cd: 716 g, 6N-Te: 813 g, and Sb 2 Te 3 : 0.14 g. And performed in the same manner. The Sb concentration of the CdTe powder produced in this example was about 1 × 10 18 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<比較例1>
(Sbを含まないCdTe粉末の作製)
 CdTe粉末を作製する際にSb2Te3を含まないようにしたこと以外は、実施例1と同様にして行った。本比較例において生成されたCdTe粉末のSb濃度は、0cm-3であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Comparative Example 1>
(Preparation of CdTe powder not containing Sb)
The same procedure as in Example 1 was performed except that Sb 2 Te 3 was not included when producing the CdTe powder. The Sb concentration of the CdTe powder produced in this comparative example was 0 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<比較例2>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb2Te3:4.17gに変更したこと以外は、実施例1と同様にして行った。本比較例において生成されたCdTe粉末のSb濃度は、約1×1019cm-3であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Comparative example 2>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 at the time of preparing the CdTe powder were changed to 6N—Cd: 716 g, 6N—Te: 813 g, and Sb 2 Te 3 : 4.17 g. And performed in the same manner. The Sd concentration of the CdTe powder produced in this comparative example was about 1 × 10 19 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<比較例3>
(Sbを含むCdTe粉末の作製)
 CdTe粉末を作製する際のCd、Te、Sb2Te3の配合量を、6N-Cd:716g、6N-Te:813g、Sb2Te3:41.7gに変更したこと以外は、実施例1と同様にして行った。本比較例において生成されたCdTe粉末のSb濃度は、約1×1020cm-3であった。
(太陽電池素子の作製)
 この生成されたCdTe粉末を用いて実施例1と同様にして太陽電池素子を作製した。
<Comparative Example 3>
(Preparation of CdTe powder containing Sb)
Example 1 except that the blending amounts of Cd, Te, and Sb 2 Te 3 in preparing CdTe powder were changed to 6N—Cd: 716 g, 6N—Te: 813 g, and Sb 2 Te 3 : 41.7 g. And performed in the same manner. The Sd concentration of the CdTe powder produced in this comparative example was about 1 × 10 20 cm −3 .
(Production of solar cell element)
Using this produced CdTe powder, a solar cell element was produced in the same manner as in Example 1.
<評価>
 実施例1、2、比較例1~3におけるCdTe粉末の平均粒子径、ピーク強度比、太陽電池特性の測定結果を表1に示す。また、太陽電池特性として、開放電圧(Open circuit voltage:VOC)、短絡電流密度(short circuit current:JSC)、曲線因子(フィルファクター:F.F.)及び光電変換効率(Efficiency:Eff.)を測定した。
<Evaluation>
Table 1 shows the measurement results of the average particle diameter, peak intensity ratio, and solar cell characteristics of the CdTe powders in Examples 1 and 2 and Comparative Examples 1 to 3. Further, as the solar cell characteristics, open circuit voltage (V OC ), short circuit current density (short circuit current: J SC ), fill factor (F F), and photoelectric conversion efficiency (Eff .: Eff.). ) Was measured.
<平均粒子径>
 実施例1、2、比較例1~3の各々において得られたCdTe粉末の平均粒子径を測定した。平均粒子径は、光学顕微鏡を用いた表面形態観察を用いて測定した。比較例1、実施例1、2、比較例2、3の各々において得られたCdTe粉末の平均粒子径の観察結果を図3~図7に示す。また、これらの測定結果を表1に示す。
<Average particle size>
The average particle diameter of the CdTe powder obtained in each of Examples 1 and 2 and Comparative Examples 1 to 3 was measured. The average particle size was measured using surface morphology observation using an optical microscope. The observation results of the average particle diameter of the CdTe powder obtained in each of Comparative Example 1, Examples 1 and 2, and Comparative Examples 2 and 3 are shown in FIGS. These measurement results are shown in Table 1.
<太陽電池特性>
 実施例1、2、比較例1~3の各々において得られた太陽電池素子の太陽電池特性を測定した。太陽電池特性として、開放電圧VOC、短絡電流密度JSC、フィルファクターF.F.及び光電変換効率Eff.を求めた。光電変換効率Eff.は、JIS C 8913に従って測定を行った。測定結果を表1、図8に示す。また、実施例2(Sb濃度:1×1018)の時の電圧と電流密度の関係を図9に示す。
<Solar cell characteristics>
The solar cell characteristics of the solar cell elements obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were measured. As the solar cell characteristics, the open circuit voltage V OC , the short circuit current density J SC , the fill factor F.I. F. And photoelectric conversion efficiency Eff. Asked. Photoelectric conversion efficiency Eff. Measured according to JIS C 8913. The measurement results are shown in Table 1 and FIG. FIG. 9 shows the relationship between the voltage and the current density in Example 2 (Sb concentration: 1 × 10 18 ).
(PLスペクトル強度)
 実施例1、2、比較例1(Sb濃度:1×1017、1×1018、0cm-3)の太陽電池を用いて下記PL測定条件に基づいてPL測定を行った。実施例1、2、比較例1(Sb濃度:1×1018、1×1017、0cm-3)の時のフォトルミネッセンススペクトルの波長と強度の関係を図10に示す。
PL測定条件
・光源:半導体レーザ(405nm)
・分光器:マルチチャンネル分光器(PMA-11、浜松ホトニクス社製)
・試料温度:6K
(PL spectrum intensity)
Using the solar cells of Examples 1 and 2 and Comparative Example 1 (Sb concentration: 1 × 10 17 , 1 × 10 18 , 0 cm −3 ), PL measurement was performed based on the following PL measurement conditions. FIG. 10 shows the relationship between the wavelength and intensity of the photoluminescence spectrum in Examples 1 and 2 and Comparative Example 1 (Sb concentration: 1 × 10 18 , 1 × 10 17 , 0 cm −3 ).
PL measurement conditions / light source: semiconductor laser (405 nm)
-Spectrometer: Multi-channel spectrometer (PMA-11, manufactured by Hamamatsu Photonics)
・ Sample temperature: 6K
(X線回折強度)
 実施例1、2、比較例1~3(Sb濃度:1×1017、1×1018、0、1×1019、1×1020cm-3)の時のX線回折パターンの各々の角度と強度の関係を図11~図15に示す。
(X-ray diffraction intensity)
Each of the X-ray diffraction patterns in Examples 1 and 2 and Comparative Examples 1 to 3 (Sb concentration: 1 × 10 17 , 1 × 10 18 , 0, 1 × 10 19 , 1 × 10 20 cm −3 ) The relationship between angle and intensity is shown in FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図3、図6~図8に示すように、Sb濃度が0、1×1019cm-3、1×1020cm-3のCdTe粉末の平均粒子径は1.5μm~3.0μmであり、これらのCdTe粉末を用いて得られた太陽電池素子の光電変換効率Eff.は、13%よりも低かった(比較例1~3参照)。一方、表1及び図4、図5、図8に示すように、Sb濃度が1×1017cm-3、1×1018cm-3のCdTe粉末の平均粒子径は約5.0μmであり、これらのCdTe粉末を用いて得られた太陽電池素子の光電変換効率Eff.は、13.0%以上であった。特に、Sb濃度が1×1017cm-3のCdTe粉末を用いて得られた太陽電池素子の光電変換効率Eff.は、約13.8%であった(実施例1参照)。また、Sb濃度が1×1018cm-3のCdTe粉末を用いて得られた太陽電池素子の光電変換効率Eff.は、約14.9%であった(実施例2参照)。また、CdTeに含まれるSb濃度が高すぎると、CdTe粉末を用いて得られた太陽電池素子の光電変換効率Eff.は小さくなることが確認された(比較例2、3参照)。これは、Sbを含むCdTe結晶粒の平均粒子径が小さくなったため、光電変換効率Eff.が低下したことによるものと考えられる。よって、CdTe粉末に含まれるSb濃度を適正な所定範囲とすることで、Sbを含むCdTe結晶粒の成長を促進して平均粒子径を5μm以上に大きくすることができるため、CdTe粉末を用いて得られる太陽電池の光電変換効率Eff.を高くすることができるといえる。 As shown in Table 1, FIG. 3, and FIGS. 6 to 8, the average particle size of the CdTe powder having Sb concentrations of 0, 1 × 10 19 cm −3 , and 1 × 10 20 cm −3 is 1.5 μm to 3. The photoelectric conversion efficiency Eff. Of the solar cell element obtained using these CdTe powders was 0 μm. Was lower than 13% (see Comparative Examples 1 to 3). On the other hand, as shown in Table 1 and FIGS. 4, 5, and 8, the average particle diameter of the CdTe powder having Sb concentrations of 1 × 10 17 cm −3 and 1 × 10 18 cm −3 is about 5.0 μm. , Photoelectric conversion efficiency Eff. Of solar cell elements obtained using these CdTe powders. Was 13.0% or more. In particular, the photoelectric conversion efficiency Eff. Of a solar cell element obtained using a CdTe powder having an Sb concentration of 1 × 10 17 cm −3 . Was about 13.8% (see Example 1). Further, the photoelectric conversion efficiency Eff. Of the solar cell element obtained using the CdTe powder having an Sb concentration of 1 × 10 18 cm −3 . Was about 14.9% (see Example 2). Moreover, when the Sb concentration contained in CdTe is too high, the photoelectric conversion efficiency Eff. Of the solar cell element obtained using CdTe powder. (See Comparative Examples 2 and 3). This is because the average particle diameter of the CdTe crystal grains containing Sb is reduced, and thus the photoelectric conversion efficiency Eff. This is thought to be due to the decrease in Therefore, by setting the Sb concentration contained in the CdTe powder within an appropriate predetermined range, it is possible to promote the growth of CdTe crystal grains containing Sb and increase the average particle diameter to 5 μm or more. Photoelectric conversion efficiency Eff. Can be said to be high.
 また、図10に示すように、PLスペクトルの測定結果からCdTe原料中のSb濃度の増加に伴い800nm付近のDAP発光の強度が増加したことが確認された。このことから、SbがアクセプタとしてCdTe結晶に取り込まれているといえる。また、図11~図15に示すように、X線回折パターンからCdTe原料中にSbを含む場合、CdTe原料中のSb濃度が1×1019cm-3以上の場合には、(111)配向のピーク(2θ=23deg)が低下していることが確認された。このことから、CdTe原料中にSbを含む場合、(111)配向のピーク(2θ=23deg)が高いほど太陽電池素子の発光の強度は増加する傾向にあるといえる。 Further, as shown in FIG. 10, it was confirmed from the PL spectrum measurement results that the intensity of DAP emission near 800 nm increased with an increase in the Sb concentration in the CdTe raw material. From this, it can be said that Sb is taken into the CdTe crystal as an acceptor. Further, as shown in FIGS. 11 to 15, from the X-ray diffraction pattern, when Sb is contained in the CdTe raw material, when the Sb concentration in the CdTe raw material is 1 × 10 19 cm −3 or more, (111) orientation It was confirmed that the peak (2θ = 23 deg.) Of the lowering was observed. From this, when Sb is included in the CdTe raw material, it can be said that the emission intensity of the solar cell element tends to increase as the peak of (111) orientation (2θ = 23 deg) increases.
 したがって、CdTe粉末に含まれるSb濃度を適正な所定範囲とすることで、CdTe結晶粒の成長は促進されて平均粒子径を大きくすることができ、CdTe粉末を用いて得られる太陽電池の光電変換効率Eff.を高くすることができるため、太陽電池として好適に用いることができることが判明した。 Therefore, by setting the Sb concentration contained in the CdTe powder within an appropriate predetermined range, the growth of CdTe crystal grains can be promoted to increase the average particle size, and the photoelectric conversion of the solar cell obtained using the CdTe powder Efficiency Eff. Therefore, it was found that it can be suitably used as a solar cell.
 また、本実施例では、アクセプタ不純物としてSbを用いた場合の試験結果について示すが、Sb以外の他のアクセプタ不純物についても同様の傾向を示すといえる。 In addition, in this example, the test result when Sb is used as the acceptor impurity is shown, but it can be said that the acceptor impurity other than Sb shows the same tendency.
 10 反応装置
 11 チャンバー
 12、13 サセプター
 14 加熱器
 15 半導体材料
 16 スペーサ
 17 基板
 18 不活性ガス
 19 ロータリーポンプ
 20 太陽電池
 21 透光性耐熱性基板
 22 透光性導電膜
 23 金属硫化物層
 24 CdTe層
 25 オーミック電極
 26 金属電極(集電極)
DESCRIPTION OF SYMBOLS 10 Reaction apparatus 11 Chamber 12, 13 Susceptor 14 Heater 15 Semiconductor material 16 Spacer 17 Substrate 18 Inert gas 19 Rotary pump 20 Solar cell 21 Translucent heat-resistant substrate 22 Translucent conductive film 23 Metal sulfide layer 24 CdTe layer 25 Ohmic electrode 26 Metal electrode (collector electrode)

Claims (8)

  1.  カドミウムとテルルと1×1017cm-3以上1×1018cm-3以下の濃度のアクセプタ不純物とを含むことを特徴とする太陽電池用テルル化カドミウム粉末。 A cadmium telluride powder for a solar cell, comprising cadmium and tellurium and an acceptor impurity having a concentration of 1 × 10 17 cm −3 to 1 × 10 18 cm −3 .
  2.  請求項1において、
     前記アクセプタ不純物が、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つである太陽電池用テルル化カドミウム粉末。
    In claim 1,
    The acceptor impurity is at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold, and a metal compound containing at least one element of the group Or a cadmium telluride powder for solar cells, which is at least one of an organometallic compound containing at least one element of the group.
  3.  請求項1又は2に記載の太陽電池用テルル化カドミウム粉末を用いて生成されることを特徴とする太陽電池用テルル化カドミウム膜。 A cadmium telluride film for a solar cell, produced using the cadmium telluride powder for a solar cell according to claim 1 or 2.
  4.  請求項3において、
     アクセプタ不純物を含むテルル化カドミウム膜中のテルル化カドミウム結晶粒の平均粒子径が5μm以上である太陽電池用テルル化カドミウム膜。
    In claim 3,
    A cadmium telluride film for a solar cell, wherein an average particle diameter of cadmium telluride crystal grains in a cadmium telluride film containing an acceptor impurity is 5 μm or more.
  5.  請求項3又は4に記載の太陽電池用テルル化カドミウム膜を含むことを特徴とする太陽電池。 A solar cell comprising the cadmium telluride film for a solar cell according to claim 3 or 4.
  6.  1×1017cm-3以上1×1018cm-3以下の濃度のアクセプタ不純物を含むテルル化カドミウム粉末を原料として用い、アクセプタ不純物を含むテルル化カドミウム膜を作製する製造方法であって、
     アクセプタ不純物を含まないテルル化カドミウム膜中の結晶粒の平均粒子径よりも大きい平均粒子径を有するアクセプタ不純物を含むテルル化カドミウム膜を作製することを特徴とする太陽電池用テルル化カドミウム膜の製造方法。
    A manufacturing method for producing a cadmium telluride film containing an acceptor impurity using a cadmium telluride powder containing an acceptor impurity having a concentration of 1 × 10 17 cm −3 or more and 1 × 10 18 cm −3 or less as a raw material,
    Production of a cadmium telluride film for a solar cell, characterized in that a cadmium telluride film containing an acceptor impurity having an average particle size larger than the average particle size of crystal grains in the cadmium telluride film not containing an acceptor impurity is produced. Method.
  7.  請求項6において、
     前記テルル化カドミウム粉末が、前記アクセプタ不純物として、アンチモン、砒素、ビスマス、リン、窒素、リチウム、カリウム、ナトリウム、ルビジウム、銅、銀、金からなる群から選ばれる少なくとも1つの元素、前記群の少なくとも1つの元素を含む金属化合物、または前記群の少なくとも1つの元素を含む有機金属化合物の少なくとも1つを用いる太陽電池用テルル化カドミウム膜の製造方法。
    In claim 6,
    The cadmium telluride powder has at least one element selected from the group consisting of antimony, arsenic, bismuth, phosphorus, nitrogen, lithium, potassium, sodium, rubidium, copper, silver, gold as the acceptor impurity, at least of the group A method for producing a cadmium telluride film for a solar cell, using at least one of a metal compound containing one element or an organometallic compound containing at least one element of the group.
  8.  請求項6又は7において、
     前記アクセプタ不純物を含むテルル化カドミウム膜中のテルル化カドミウム結晶粒の平均粒子径が5μm以上である太陽電池用テルル化カドミウム膜の製造方法。
    In claim 6 or 7,
    The manufacturing method of the cadmium telluride film | membrane for solar cells whose average particle diameter of the cadmium telluride crystal grain in the cadmium telluride film | membrane containing the said acceptor impurity is 5 micrometers or more.
PCT/JP2012/076200 2011-11-24 2012-10-10 Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell WO2013077098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011256821 2011-11-24
JP2011-256821 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013077098A1 true WO2013077098A1 (en) 2013-05-30

Family

ID=48469553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076200 WO2013077098A1 (en) 2011-11-24 2012-10-10 Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell

Country Status (2)

Country Link
TW (1) TW201341548A (en)
WO (1) WO2013077098A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187749A (en) * 1997-09-02 1999-03-30 Matsushita Denchi Kogyo Kk Solar cell and formation method for semiconductor film thereof
US20090194166A1 (en) * 2007-11-02 2009-08-06 First Solar, Inc. Photovoltaic devices including doped semiconductor films
JP2011011962A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Mining Co Ltd Method for producing cadmium telluride crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187749A (en) * 1997-09-02 1999-03-30 Matsushita Denchi Kogyo Kk Solar cell and formation method for semiconductor film thereof
US20090194166A1 (en) * 2007-11-02 2009-08-06 First Solar, Inc. Photovoltaic devices including doped semiconductor films
JP2011011962A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Mining Co Ltd Method for producing cadmium telluride crystal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
O.VIGIL-GALAN ET AL.: "Physical properties of Bi doped CdTe thin films grown by the CSVT method", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 90, 11 May 2006 (2006-05-11), pages 2228 - 2234, XP028002372, DOI: doi:10.1016/j.solmat.2006.02.021 *
T.L.CHU: "THIN FILM CADMIUM TELLURIDE SOLAR CELLS BY TWO CHEMICAL VAPOR DEPOSITION TECHNIQUES", SOLAR CELLS, vol. 23, 1988, pages 31 - 48 *

Also Published As

Publication number Publication date
TW201341548A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
Chantana et al. Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells
Pattini et al. Role of the substrates in the ribbon orientation of Sb2Se3 films grown by Low-Temperature Pulsed Electron Deposition
US5994642A (en) Method for preparing CdTe film and solar cell using the same
Ghosh et al. Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films
US20110067997A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
JP2011249579A (en) Solar battery and method for manufacturing the same
KR101747395B1 (en) Molybdenum substrates for cigs photovoltaic devices
Zhou et al. Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications
Zhang et al. Enhancement of charge photo-generation and transport via an internal network of Sb 2 Se 3/Cu 2 GeSe 3 heterojunctions
EP3044272A1 (en) Inorganic salt-nanoparticle ink for thin film photovoltaic devices and related methods
Pei et al. Precise-tuning the In content to achieve high fill factor in hybrid buffer structured Cu2ZnSn (S, Se) 4 solar cells
Li et al. Fabrication of closed-space sublimation Sb2 (S1-xSex) 3 thin-film based on a single mixed powder source for photovoltaic application
JP5993945B2 (en) Alloy for n-type light absorption layer, method for producing the same, and solar cell
CN103765604B (en) The preparation method of CIGS film and use its preparation method of CIGS solaode
CN106653946A (en) Method for depositing cadmium telluride film solar cell absorption layer
WO2013077098A1 (en) Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell
JP2011187732A (en) Sulfide thin film device and method of manufacturing the same
WO2012114803A1 (en) Cadmium telluride powder for solar cells, cadmium telluride film for solar cells, and solar cell
JP2015201523A (en) Photoelectric conversion element and manufacturing method of the same
CN113078224A (en) Transparent conductive glass copper indium selenium thin-film solar cell device and preparation method and application thereof
Zhang et al. Construction of coaxial ZnSe/ZnO p–n junctions and their photovoltaic applications
CN114164399B (en) Antimony selenide film with one-dimensional chain crystal structure and method for improving hole concentration of antimony selenide film
CN114195518B (en) Zinc telluride target, preparation method and thin-film solar cell thereof
Wan et al. Co‐Evaporated CuSbSe2 Thin Films for Solar Cells
CN103715283B (en) A kind of solar cell and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP