WO2012114776A1 - Laminate for nonaqueous electrolyte secondary cell container, method for producing same, nonaqueous electrolyte secondary cell, and adhesive composition - Google Patents

Laminate for nonaqueous electrolyte secondary cell container, method for producing same, nonaqueous electrolyte secondary cell, and adhesive composition Download PDF

Info

Publication number
WO2012114776A1
WO2012114776A1 PCT/JP2012/001309 JP2012001309W WO2012114776A1 WO 2012114776 A1 WO2012114776 A1 WO 2012114776A1 JP 2012001309 W JP2012001309 W JP 2012001309W WO 2012114776 A1 WO2012114776 A1 WO 2012114776A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomer
thermoplastic elastomer
styrenic thermoplastic
tackifier
styrene
Prior art date
Application number
PCT/JP2012/001309
Other languages
French (fr)
Japanese (ja)
Inventor
堀口 雅之
諭志 前田
猛 吉川
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to JP2013500913A priority Critical patent/JP6020438B2/en
Publication of WO2012114776A1 publication Critical patent/WO2012114776A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4213Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from terephthalic acid and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an adhesive composition that can be suitably applied to a laminate for forming a battery container of a non-aqueous electrolyte secondary battery. Moreover, it is related with the laminated body for nonaqueous electrolyte secondary battery containers formed using the adhesive composition, and its manufacturing method. Furthermore, it is related with the nonaqueous electrolyte secondary battery which comprises the laminated body for the nonaqueous electrolyte secondary battery container.
  • bag-like or tray-like battery containers made of a composite film such as a metal foil represented by aluminum foil and a resin film that can be made lighter and more compact is drawing attention. Collecting.
  • a secondary battery using a bag-like or tray-like battery container is often obtained as follows.
  • Step 1 A battery container laminate for forming a bag-shaped or tray-shaped battery container is formed.
  • the battery container laminate is generally a laminate of a heat-sealable film in which at least a heat-sealable film is formed on the outer layer / metal foil / outermost layer, and each constituent member is an adhesive composition (for example, they are bonded according to Patent Documents 1 to 5).
  • Step 2 In the battery container laminate, at least one outermost layer is a heat-fusible film having a heat-fusible film as an inner surface, and at least one end of the bag or tray is formed.
  • Step 3 In the obtained bag or tray, a plurality of electrode terminals connected to the secondary battery main body and the positive and negative electrodes of the secondary battery main body (the other end of the electrode terminals are arranged so as to protrude from the bag or tray. And electrolyte.
  • Step 4 Next, in the case of a bag shape, the heat-fusible films near the open end are opposed to each other, and the other end portion of the electrode terminal protrudes from the open end to the outside of the bag.
  • the secondary battery body, the electrolyte, and the like are sealed by heat-sealing the adhesive film.
  • the heat-fusible film constituting the flat laminate is opposed to the heat-fusible film on the edge of the tray, and the other end of the electrode terminal is placed from the tray edge to the outside of the tray.
  • the secondary battery main body and the electrolyte are sealed by thermally fusing the heat-fusible film at the edge of the tray in the protruding state.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-236932 discloses a battery package in which a modified olefin resin layer containing hydrotalcite, which is an acid receiving layer, is provided between a metal foil and an olefin resin layer. A material is disclosed. As the modified olefin resin, maleic anhydride polypropylene is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-123708 describes an unstretched polypropylene film formed using an adhesive composition containing a maleic acid-modified styrene thermoplastic elastomer (A) and a coupling agent (B).
  • a secondary battery using an adhesive layer / aluminum foil / nylon film as a packaging material is disclosed.
  • the adhesive composition may contain a tackifier.
  • Patent Document 3 International Publication No. 2004/0419564 discloses an adhesive composition containing a carboxyl group-containing thermoplastic elastomer, a polyolefin polyol, a tackifier, and a polyfunctional isocyanate.
  • the carboxyl group-containing thermoplastic elastomer is obtained by introducing a carboxyl group into the thermoplastic elastomer.
  • Preferred examples of the thermoplastic elastomer include a styrene-butadiene block copolymer.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2005-063685 discloses an adhesive composition containing polyolefin polyol and polyfunctional isocyanate as essential components.
  • the polyolefin polyol used as the main agent has a hydrocarbon skeleton similar to that of the low molecular weight polyolefin and has a plurality of hydroxyl groups. Examples thereof include polybutanediene diol and hydrogenated polybutadiene diol.
  • the adhesive composition may contain a thermoplastic elastomer such as a styrene elastomer and an olefin elastomer, and a tackifier.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-1071 discloses an adhesive / adhesive composition containing a block copolymer, a crosslinking agent, and a tackifier resin.
  • the block copolymer (a) is mainly composed of a polymer block composed mainly of an aromatic vinyl compound unit and mainly composed of a conjugated diene unit, and at least a part of the carbon-carbon unsaturated double bond is hydrogenated.
  • the block copolymer contains a block copolymer having hydroxyl groups at both ends; and the cross-linking agent (b) has a viscosity having at least two isocyanate groups in the molecule.
  • An adhesive composition is disclosed.
  • the battery container generally comprises a laminate of an outer layer / metal foil (aluminum foil) / inner layer as described above, and the constituent members are joined by an adhesive layer. Yes. Therefore, in order to achieve high reliability, it is important not only to optimize each component member and the combination thereof, but also to increase the reliability of the adhesive composition for joining them.
  • the adhesive layer formed from the adhesive composition is not easily damaged by the electrolyte itself, or the electrolyte is decomposed by moisture, and the resulting hydrolyzate or the like, or the solvent dissolving the electrolyte, It is important that the adhesive performance is not easily lowered.
  • the long usable time of the adhesive composition (hereinafter also referred to as “pot life”) means that the reliability of the adhesive composition, and further, a laminate having an adhesive layer formed using the adhesive composition, etc. It is demanded from the point of raising.
  • the present invention has been made in view of the above background, and its object is to provide a highly reliable laminate for a non-aqueous electrolyte secondary battery container, a method for producing the same, and a non-aqueous electrolyte two. It is to provide an adhesive composition suitable for forming a secondary battery and the aforementioned laminate for a nonaqueous electrolyte secondary battery container.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, and, as shown below, contain a component having a specific structure in a specific ratio, and the activity derived from a specific amount of a specific functional group in the constituent component. It has been found that the above-mentioned problems can be solved by satisfying all the conditions of having hydrogen and further having an isocyanate group at a specific ratio, and have completed the present invention.
  • the laminate for a non-aqueous electrolyte secondary battery container comprises at least a metal foil, a heat-fusible film, and an adhesive layer that joins the metal foil and the heat-fusible film.
  • the adhesive layer contains a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and the styrenic thermoplastic elastomer (A) and the tackifier.
  • the styrenic thermoplastic elastomer contains 20 to 90% by weight of the styrenic thermoplastic elastomer (A) and 10 to 80% by weight of the tackifier (B) in a total of 100% by weight with the agent (B).
  • (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or hydroxyl group, and the pressure-sensitive adhesive against 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A).
  • the active hydrogen derived from the functional group of the additive (B) is 0 to 15 mol
  • the polyisocyanate (C) includes the active hydrogen derived from the styrenic thermoplastic elastomer (A) and the tackifier (B ) Derived from an adhesive composition comprising an isocyanate group in a range of 3 to 150 mol with respect to a total of 1 mol of the above-mentioned active hydrogen.
  • a preferred position of the amino group or the hydroxyl group in the styrenic thermoplastic elastomer (A) is at least one position of the end of the main chain.
  • the adhesive composition further includes an elastomer composite resin (D), and the elastomer composite resin (D) includes at least one of a polyester resin portion and a polyurethane resin portion, a styrenic thermoplastic elastomer structure, It is preferable to contain.
  • a preferred example of the polyisocyanate (C) is an isocyanurate structure.
  • the content of the elastomer composite resin (D) is preferably 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B).
  • the adhesive strength of the laminate can be maintained at a high level even when contacting with the electrolyte by using the above-described adhesive composition. Therefore, a highly reliable laminate for a non-aqueous electrolyte secondary battery container can be provided. Further, since the adhesive composition to be used has an excellent effect that the pot life is long, the stability of the adhesive composition is improved, and the non-aqueous electrolyte secondary having the adhesive layer formed using the same is used. High reliability of the battery container laminate can be realized.
  • a non-aqueous electrolyte secondary battery according to the present invention includes a secondary battery body, a battery container that houses the secondary battery body, and an electrolyte sealed in the battery container.
  • the laminate for a non-aqueous electrolyte secondary battery container according to the above aspect is provided.
  • the adhesive composition according to the present invention contains a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and the styrenic thermoplastic elastomer (A),
  • the styrenic thermoplastic elastomer (A) is contained in an amount of 20 to 90% by weight and the tackifier (B) is contained in an amount of 10 to 80% by weight in a total of 100% by weight with the tackifier (B).
  • the thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or a hydroxyl group, and with respect to 1 mol of active hydrogen derived from the styrenic thermoplastic elastomer (A),
  • the active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol
  • the polyisocyanate (C) is the active water derived from the styrenic thermoplastic elastomer (A). If, with respect to the total 1 mol of the active hydrogen of the derived tackifier (B), and the isocyanate group is contained in the range of 3 to 150 mol.
  • the adhesive composition of this invention is used suitably for the use which forms the laminated body for nonaqueous electrolyte secondary battery containers.
  • a preferable position of the amino group or the hydroxyl group of the styrene-based thermoplastic elastomer (A) can include at least one end of the main chain. Moreover, the more preferable position of the said amino group or the said hydroxyl group in the said styrene-type thermoplastic elastomer (A) is making it only into the terminal of a principal chain.
  • a preferred example of the polyisocyanate (C) is an isocyanurate structure.
  • an elastomer composite resin (D) is included, and the elastomer composite resin (D) preferably includes at least one of a polyester resin portion and a polyurethane resin portion, and a styrene-based thermoplastic elastomer structure.
  • a preferable content of the elastomer composite resin (D) is in the range of 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). .
  • the adhesive composition of the above aspect is applied to one surface of a metal foil or a heat-fusible film and dried to be uncured. Forming an adhesive layer and forming the laminated structure of the metal foil, the adhesive layer, and the heat-fusible film on the surface of the uncured adhesive layer, or The metal foil is stacked, the uncured adhesive layer is cured, and the metal foil and the heat-fusible film are bonded together.
  • a highly reliable laminate for a nonaqueous electrolyte secondary battery container, a manufacturing method thereof, a nonaqueous electrolyte secondary battery, and the aforementioned laminate for a nonaqueous electrolyte secondary battery container are formed. It has the outstanding effect that the adhesive composition suitable for carrying out can be provided.
  • any number A to any number B means a range larger than the numbers A and A but smaller than the numbers B and B.
  • the expression “(meth) acrylate” described in the present specification and claims includes both the compound read as “acrylate” and the compound read as “methacrylate”.
  • the non-aqueous electrolyte secondary battery of the present invention includes a secondary battery body, a battery container that accommodates the secondary battery body, an electrolyte that is sealed in the battery container, and a plurality of joints that are respectively joined to the positive electrode and the negative electrode of the secondary battery body. And so on.
  • a battery container has the laminated body for nonaqueous electrolyte secondary battery containers formed by laminating
  • the electrolyte of this specification is generally a liquid thing, it includes a gel form and a solid form.
  • the liquid state includes an electrolyte solution in addition to the electrolyte itself being a liquid.
  • a layer positioned on the side closer to the electrolyte with the metal foil as a boundary is referred to as an “inner layer”, and a layer positioned on the side farther from the electrolyte with the metal foil as a boundary is referred to as an “outer layer”.
  • the laminate for a non-aqueous electrolyte secondary battery container of the present invention has at least a metal foil, a heat-fusible film, and an adhesive layer for joining them.
  • the heat-fusible film may be composed of a single-layer heat-fusible film, or may be composed of a multilayer laminate comprising the heat-fusible film.
  • the innermost layer surface (exposed surface in contact with the electrolyte) may be a heat-fusible film.
  • a heat-fusible film that is a multilayer laminate can be obtained, for example, by co-extrusion of different types of heat-fusible resins when forming a film.
  • the adhesive composition of the present invention has excellent chemical resistance as will be described later, it is particularly effective for bonding with an inner layer located on the inner side of the metal foil. Specifically, it is suitable for adhesion between the metal foil and the heat-fusible film. Moreover, when a heat-fusible film is a multilayer laminated body, it is suitable also for adhesion
  • Examples of the metal of the metal foil include aluminum, copper, and nickel. These metal foils may be subjected to various surface treatments. Examples of the surface treatment include, for example, physical treatment such as sand blast treatment and polishing treatment, degreasing treatment by vapor deposition, chemical treatment such as etching treatment and primer treatment applying a coupling agent.
  • the thickness of the metal foil is not particularly limited, and includes a thin film to a sheet. Moreover, plate shape may be sufficient.
  • heat-fusible film examples include polyolefin films such as polyethylene and polypropylene, and an unstretched film is particularly preferably used.
  • the thickness of the heat-fusible film is not limited within a range not departing from the gist of the present invention, and includes a thin film to a sheet / plate.
  • the laminate for a nonaqueous electrolyte secondary battery container may have an outer layer member such as an outer layer film disposed on a metal foil. That is, the metal foil may be sandwiched between the heat-fusible film and the outer layer member.
  • the outer layer member include stretched films such as polyester resin and polyamide resin (nylon).
  • a pouch type for a bag-like container There are two types of battery containers: a pouch type for a bag-like container and a tray-type container type formed by molding a flat laminate using a mold.
  • a bag-like container is illustrated in FIG. 8 of JP-A-2007-294381.
  • a tray-like container is shown in FIG. 9 of the publication, and the other form is shown in FIG.
  • the laminate using the adhesive composition of the present invention can be used to form both types of containers, bags and trays. In either case, a part of the heat-fusible film is heat-sealed in a state where the heat-fusible film faces inward and the tips of the plurality of terminals protrude to the outside. Seal the electrolyte.
  • the adhesive composition of the present invention comprises a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and the following (i) to (iv) The above conditions are satisfied. That is, (i) 20 to 90% by weight of the styrene-based thermoplastic elastomer (A) is added to the total amount of 100% by weight of the styrene-based thermoplastic elastomer (A) and the tackifier (B). 10 to 80% by weight of the agent (B) is contained.
  • the styrenic thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or a hydroxyl group.
  • the active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol with respect to 1 mol of active hydrogen derived from the styrene-based thermoplastic elastomer (A).
  • the polyisocyanate (C) contains 3 to 150 mol of isocyanate groups with respect to 1 mol in total of the active hydrogen of the styrenic thermoplastic elastomer (A) and the active hydrogen of the tackifier (B). It is included in the range.
  • thermoplastic elastomer (A) used in the present invention will be described.
  • the “thermoplastic elastomer” in the present invention refers to a resin that has a rubber elasticity at room temperature, that is, a thermoplastic resin that has a rubber elasticity without performing vulcanization treatment.
  • the chemical structure generally has an ABA type block or an (AB) n type multi-block structure.
  • the styrenic thermoplastic elastomer (A) preferably has a polystyrene structure in the molecule because of its excellent electrolyte resistance and heat resistance.
  • Specific examples include styrene-butadiene block copolymers, styrene- Ethylene propylene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylenepropylene-styrene copolymer, etc.
  • electrolytic resistance refers to resistance not only to the electrolyte but also to a substance that can be generated by using a nonaqueous electrolyte secondary battery.
  • an aromatic vinyl compound such as styrene and a conjugated diene compound are sequentially formed by anionic polymerization reaction in an inert solvent using a polymerization catalyst such as an organic lithium compound.
  • a polymerization catalyst such as an organic lithium compound.
  • polymerization is terminated by adding a compound containing active hydrogen such as alcohols and carboxylic acids (hereinafter referred to as a terminal modifier) to the living terminal.
  • a conjugated diene-containing copolymer is obtained.
  • the amount of the conjugated diene can be adjusted by subjecting the obtained copolymer to a hydrogenation reaction in the presence of a hydrogenation catalyst such as a Ziegler catalyst.
  • Styrenic thermoplastic elastomer (A) forms a crosslinked structure by reacting with polyisocyanate (C) described later.
  • the styrene-based thermoplastic elastomer (A) a single type may be used or a plurality of types may be used in combination.
  • the styrenic thermoplastic elastomer (A) contains 0.003 to 0.04 mmol / g of active hydrogen derived from amino groups or hydroxyl groups. Have. In other words, the active hydrogen is in the range of 0.003 to 0.04 mmol / g, and the functional group having active hydrogen is substantially derived from an amino group or a hydroxyl group.
  • the structure having active hydrogen composed of other functional groups is not excluded without departing from the spirit of the present invention.
  • the styrene thermoplastic elastomer (A) one having either an amino group or a hydroxyl group in one molecule is preferably used, and both functional groups of amino group and hydroxyl group are contained in one molecule. It may be included.
  • the styrene-type thermoplastic elastomer (A) which has an amino group, and the styrene-type thermoplastic elastomer (A) which has a hydroxyl group may be mixed.
  • Examples of a method for introducing an amino group or a hydroxyl group into the styrene-based thermoplastic elastomer (A) include a method in which a graft reaction is performed on the side chain of the elastomer (A), and a method in which the amino group or hydroxyl group is introduced into the main chain terminal of the elastomer (A).
  • a method for introducing an amino group or a hydroxyl group into the styrene-based thermoplastic elastomer (A) include a method in which a graft reaction is performed on the side chain of the elastomer (A), and a method in which the amino group or hydroxyl group is introduced into the main chain terminal of the elastomer (A).
  • Examples of the polymerizable monomer having an amino group or a hydroxyl group include, but are not limited to, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth). Examples include acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, caprolactone-modified hydroxy (meth) acrylate, and the like. These may be used alone or in any combination.
  • organic peroxide examples include, but are not limited to, di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene.
  • a method for introducing a functional group into the main chain terminal of the styrene-based thermoplastic elastomer (A) a method in which a terminal modifier is reacted at the living terminal when polymerizing the styrene-based elastomer, an amino group or a hydroxyl group is protected.
  • Examples thereof include a method of performing a deprotection reaction after polymerizing a styrene elastomer using a polymerization catalyst.
  • a method of introducing an amino group or a hydroxyl group using a terminal modifier at the main chain terminal of the styrene-based thermoplastic elastomer (A), for example, at the living terminal when synthesizing the styrene-based thermoplastic elastomer (A) examples thereof include a method in which an end modifier having an amino group or a hydroxyl group and / or a terminal modifier that forms an amino group or a hydroxyl group by reacting with a living end is subjected to an addition reaction.
  • the styrene-based thermoplastic elastomer (A) is a hydride of a styrene-based elastomer
  • an aminoalkali metal compound such as an organolithium compound is reacted with the styrenic thermoplastic elastomer (A), and the copolymer to which the organic alkali metal is added is added to the amino acid.
  • Examples thereof include a method in which an end modifier containing a group or a hydroxyl group is subjected to an addition reaction.
  • Examples of the terminal modifier for introducing an amino group having active hydrogen at the end of the main chain of the styrenic thermoplastic elastomer (A) include 1,3-dimethyl-2-imidazolidinone and 1,3-diethyl-2. -Imidazolidinone, N-methylpyrrolidone, N, N'-dimethylpropylene urea and the like.
  • Examples of the terminal modifier for introducing a hydroxyl group into the main chain terminal of the styrenic thermoplastic elastomer (A) include ⁇ -caprolactone, ⁇ -valerolactone, butyrolactone, ⁇ -caprolactone, ⁇ -valerolactone, and 4-methoxy.
  • Examples include benzophenone, 4-ethoxybenzophenone, 4,4′-bis (methoxy) benzophenone, 4,4′-bis (ethoxy) benzophenone, and the like.
  • the number of modifiers introduced into the ends of the main chain of the styrenic thermoplastic elastomer (A) is preferably in the range of 0.5 to 1 on average, and more preferably in the range of 0.7 to 1 on average.
  • the number of modifiers introduced at the end of the main chain of the elastomer (A) is less than 0.5 on average, the cross-linked structure formed by reaction with the polyisocyanate (C) described later becomes sparse, and sufficient adhesion Electrolyte resistance may not be obtained.
  • hydroxyl groups and amino groups generally become organometallic salts at the stage of reaction of the modifier.
  • a hydroxyl group, an amino group, or the like can be obtained by treatment with a compound having active hydrogen such as water or alcohol.
  • the amount of the terminal modifier used is preferably in the range of 0.5 to 10 equivalents, more preferably in the range of 1 to 4 equivalents with respect to 1 equivalent of the living terminal of the polymer.
  • the amount of the terminal modifier is less than 0.5 equivalent, sufficient functional groups cannot be introduced into the main chain terminal of the styrenic thermoplastic elastomer (A).
  • the terminal modifier denaturant to make worse adhesive force and pot life.
  • Examples of the deprotecting agent include proton acidic compounds such as hydrochloric acid, sulfonic acid and carboxylic acid, Lewis acidic compounds such as boron trifluoride and tin chloride, tetrabutylammonium fluoride, ammonium fluoride and potassium fluoride. And an alkaline fluorine-ison containing compound.
  • the styrene thermoplastic elastomer (A) preferably contains 5 to 60% by weight of styrene units in the elastomer (A), more preferably 10 to 40% by weight.
  • the styrene unit of the styrene-based thermoplastic elastomer (A) is less than 5% by weight, sufficient viscoelasticity may not be obtained.
  • the solubility in a solvent is increased. May decrease and impair solution stability.
  • the number average molecular weight of the styrenic thermoplastic elastomer (A) is preferably 30,000 to 300,000, and more preferably 40,000 to 150,000. When the number average molecular weight of the styrene-based thermoplastic elastomer (A) is lower than 30,000, sufficient viscoelasticity may not be obtained. When the number average molecular weight is higher than 300,000, the viscosity is too high and the coating property is large. May get worse.
  • the molecular weight is expressed in terms of polystyrene by gel permeation chromatography (GPC).
  • the styrenic thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from amino groups or hydroxyl groups.
  • the amount is preferably 0.005 to 0.035 mmol / g, and more preferably 0.008 to 0.03 mmol / g.
  • the amount of active hydrogen derived from the hydroxyl group or amino group of the styrene-based thermoplastic elastomer (A) is referred to as the amount of active hydrogen of the styrene-based thermoplastic elastomer (A).
  • the amount of active hydrogen in the styrene-based thermoplastic elastomer (A) can be obtained by the following formula (1).
  • Active hydrogen content of styrenic thermoplastic elastomer (A) (Number of active hydrogens derived from functional group of elastomer (A) ⁇ 1,000) / number average molecular weight of elastomer (A) (Formula 1)
  • the number of active hydrogens derived from the functional group is obtained by HPLC and NMR measurement of the number of modifiers introduced per molecule of the elastomer (A), and the number average molecular weight of the elastomer (A) is obtained by GPC measurement.
  • thermoplastic elastomers (A) used in the present invention include Tuftec MP10 (amino group main chain terminal modified SEBS) manufactured by Asahi Kasei Chemical Co., Ltd., and DYNARON 8630P (amino group main chain manufactured by JSR). End-modified SEBS), Kuraray Septon HG-252 (hydroxyl main chain terminal-modified SEEPS), and the like. These may be used alone or in any combination of two or more.
  • the crosslinking reaction gradually proceeds between the molecules of the elastomer (A).
  • a tackifier (B) or polyisocyanate (C) described later the crosslinking reaction gradually proceeds between the molecules of the elastomer (A).
  • thickening occurs.
  • the wettability to the substrate is lowered, and the adhesive strength is gradually lowered.
  • an elastomer (A) having a functional group responsible for crosslinking at the end, notably at one end of the main chain is used instead of the side chain of the main chain, the adhesive can be used even if the cross-linking reaction between the elastomer molecules proceeds. An increase in the viscosity of the composition can be effectively suppressed.
  • the styrenic thermoplastic elastomer (A) when the styrenic thermoplastic elastomer (A) has an amino group or a hydroxyl group only at the end of the main chain, the amino group or Compared with the case where the hydroxyl group is present in the side chain, the progress of the crosslinking reaction can be more effectively suppressed between the molecules of the elastomer (A), and the thickening can be further suppressed. Therefore, the styrenic thermoplastic elastomer (A) preferably has an amino group or a hydroxyl group only at the end of the main chain of the elastomer (A). When the increase in viscosity of the adhesive composition is small, high adhesive strength can be exhibited regardless of the elapsed time after the preparation of the adhesive composition. From this viewpoint, the elastomer (A) preferably has a functional group responsible for crosslinking only at the end of the main chain, particularly at one end of the main chain.
  • the adhesive composition of the present invention contains 0.003 to 0.04 mmol / g of a styrene thermoplastic elastomer (A) having an active hydrogen derived from an amino group or a hydroxyl group within predetermined conditions.
  • a styrenic thermoplastic elastomer that does not have a functional group derived from an amino group or a hydroxyl group may be included as long as the physical properties are not impaired.
  • the blending amount of such a styrenic thermoplastic elastomer having no functional group is within a range not departing from the gist of the present invention.
  • the styrenic thermoplastic elastomer (A) is 50 parts by weight or less, more preferably 30 parts by weight or less, based on 100 parts by weight of the styrenic thermoplastic elastomer (A).
  • A styrenic thermoplastic elastomer
  • the styrene thermoplastic elastomer (A) occupies the entire adhesive.
  • the proportion of the tackifier (B), and the polyisocyanate (C) described later is relatively reduced, and as a result, the cross-linked structure formed by the reaction with the polyisocyanate (C) described later becomes sparse and sufficient. Adhesion and electrolyte resistance may not be obtained.
  • the tackifier (B) used in the present invention will be described.
  • the tackifier (B) is used for imparting high adhesive strength between the metal foil and the heat-fusible film.
  • known ones can be used as the tackifier (B) used in the present invention.
  • Polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymer petroleum resins and water Examples include petroleum resin. These may be used alone or in any combination of two or more.
  • polyterpene-based resin examples include ⁇ -pinene polymers, ⁇ -pinene polymers, and copolymers thereof with phenol or bisphenol A.
  • examples of commercially available products include YS made by Yasuhara Chemical Co., Ltd. Resin PX, YS resin A, YS polyster T, etc. are mentioned.
  • rosin resin examples include natural rosin, polymerized rosin, and ester derivatives thereof.
  • Commercially available products include, for example, Pencel A, Superester A, Pine Crystal KR-85, KR- manufactured by Arakawa Chemical Industries, Ltd. 612, KR-614, KE-100, KE-311, KE-359, KE-604 and the like.
  • the aliphatic petroleum resin is generally a resin synthesized from a C5 fraction of petroleum.
  • Examples of commercially available products include Escorez manufactured by Tonex, Quinton manufactured by Zeon Corporation, and Wing Duck manufactured by Goodyear.
  • the alicyclic petroleum resin is a resin that is generally synthesized from a C9 fraction of petroleum.
  • Examples of commercially available products include Marukaretsu manufactured by Maruzen Petrochemical Co., Ltd.
  • the copolymerized petroleum resin is generally a resin obtained by copolymerizing petroleum C5 fraction / C9 fraction.
  • Examples of commercially available products include Toho High Resin from Toho Chemical Industry Co., Ltd.
  • the hydrogenated petroleum resin for example, the above-described tackifier resin is hydrogenated.
  • Commercially available products include, for example, Alcon manufactured by Arakawa Chemical Industries, Clearon manufactured by Yashara Chemical Co., and Escolez manufactured by Tonex.
  • the softening point of the tackifier (B) used in the present invention is preferably 60 to 160 ° C, and more preferably 80 to 150 ° C.
  • the softening point of the tackifier (B) is lower than 60 ° C., there is a possibility that sufficient effect of improving the adhesive strength cannot be obtained.
  • the softening point of a tackifier (B) is higher than 160 degreeC, there exists a possibility that the cohesive force of an adhesive agent may be impaired and the adhesive strength may fall.
  • the tackifier (B) used in the present invention may have a functional group having active hydrogen such as a carboxyl group or a hydroxyl group. Depending on the type of heat-fusible film used for the lamination, a higher adhesive strength may be obtained immediately after the lamination by using a tackifier having a carboxyl group.
  • the acid value of the tackifier (B) used in the present invention is preferably 0 to 150 mgKOH / g, more preferably 0 to 100 mgKOH / g. As described above, it may be preferable to use a tackifier resin (B) having an acid value. On the other hand, if the acid value is too large, it will be difficult to dissolve in toluene or the like used for the adhesive, or the compatibility with other components constituting the adhesive, such as the styrene-based thermoplastic elastomer (A), may be deteriorated. To do. Accordingly, the acid value of the tackifier (B) is preferably 0 to 150 mgKOH / g.
  • the hydroxyl value of the tackifier (B) used in the present invention is preferably 0 to 50 mgKOH / g. This is because even if the time after the preparation of the adhesive composition elapses, a high level of adhesive force can be stably expressed.
  • the adhesive composition of the present invention comprises 20 to 90% by weight of the elastomer (A) in the total of 100% by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). It is important to contain 10 to 80% by weight of B), preferably 30 to 80% by weight of the elastomer (A) and 20 to 70% by weight of the tackifier (B).
  • the adhesive composition may not have sufficient cohesive strength to obtain sufficient adhesive strength.
  • the content of the styrene-based thermoplastic elastomer (A) is less than 20% by weight, the adhesive composition may not have sufficient cohesive strength to obtain sufficient adhesive strength.
  • the content of the styrene-based thermoplastic elastomer (A) is less than 20% by weight, the adhesive composition may not have sufficient cohesive strength to obtain sufficient adhesive strength.
  • there is more content of styrene-type thermoplastic elastomer (A) than 90 weight% there exists a possibility that solution viscosity may become high too much and coating property may deteriorate.
  • the content of the tackifier (B) is less than 10% by weight, there is a possibility that the effect of improving the adhesive strength by adding the tackifier (B) may not be obtained.
  • the content of the tackifier (B) is less than 10% by weight, there is a possibility that the effect of improving the adhesive strength by adding the tackifier (B) may not be obtained.
  • there is more content of tackifier (B) than 80 weight% there exists a possibility that the cohesive force of an adhesive bond layer may become insufficient and sufficient adhesive strength may not be obtained.
  • the active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol relative to 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A). Is important, preferably 0 to 10 mol, and more preferably 0 to 1.5 mol. If the active hydrogen derived from the functional group of the tackifier (B) exceeds 15 moles, compatibility with other components deteriorates and sufficient adhesive strength cannot be obtained, or polyisocyanate (C) and styrene thermoplasticity. Since the reaction rate with the elastomer (A) may be reduced, sufficient electrolyte resistance may not be obtained.
  • the adhesive composition of the present invention contains polyisocyanate (C) as a curable component that reacts with the styrenic thermoplastic elastomer (A) and the tackifier (B).
  • the polyisocyanate (C) is not limited to the following, but known diisocyanates and compounds derived therefrom can be preferably used.
  • Diisocyanates such as diphenylmethane diisocyanate and compounds derived therefrom, that is, diisocyanurate, trimethylolpropane adduct, biuret type, prepolymer having an isocyanate residue (low polymer obtained from diisocyanate and polyol), Examples thereof include uretdione bodies having an isocyanate residue, allophanate bodies, and complexes thereof. In may be
  • the polyisocyanate (C) those having no urethane bond in the structure are preferable because of excellent electrolyte resistance.
  • a styrenic thermoplastic elastomer (A) having a hydroxyl group is used, the urethane bond formed by reaction with the polyisocyanate (C) has better electrolyte resistance than the urethane bond in the polyisocyanate (C) structure. ing. Possible reasons for this include steric hindrance and hydrophobicity due to the elastomer (A).
  • the number of isocyanate groups of the polyisocyanate (C) used in the present invention is preferably 2 to 7 on average per molecule, more preferably 2 to 3.5.
  • the number of isocyanate groups in one molecule of polyisocyanate (C) is less than 2, a sufficient amount of crosslinking cannot be obtained, and the electrolyte resistance may be deteriorated.
  • the number of isocyanate groups in one molecule of polyisocyanate (C) is more than 7, the possibility that a plurality of elastomers (A) react with one molecule of polyisocyanate (C) increases. There is a possibility that the coating property is deteriorated due to remarkable thickening.
  • the functional group amount of the isocyanate group of the polyisocyanate (C) is preferably in the range of 1.5 to 6 mmol / g, more preferably 2.0 to 5.5 mmol / g.
  • the functional group amount of the isocyanate group of the polyisocyanate (D) is less than 1.5 mmol / g, a sufficient cross-linked structure cannot be formed, and the electrolyte resistance may be deteriorated.
  • there are more functional group amounts of the isocyanate group of polyisocyanate (C) than 6 mmol / g there exists a possibility that compatibility with the component of an adhesive composition and a solvent may deteriorate.
  • the adhesive composition of the present invention comprises polyisocyanate (A) based on a total of 1 mole of active hydrogen derived from the functional group of the styrenic thermoplastic elastomer (A) and active hydrogen derived from the functional group of the tackifier (B).
  • C) is contained in the range of 3 to 150 mol of isocyanate groups, preferably in the range of 5 to 70 mol, more preferably in the range of 10 to 50 mol. If the isocyanate group is less than 3 mol, the amount of isocyanate group is small relative to the total of active hydrogen derived from the functional group of the styrene-based thermoplastic elastomer (A) and active hydrogen derived from the functional group of the tackifier (B).
  • the styrene-based thermoplastic elastomer (A) may be intermolecularly cross-linked through the polyisocyanate (C) to increase the molecular weight.
  • the molecular weight is increased, the viscosity of the adhesive composition is remarkably increased, and the coating property is deteriorated.
  • the adhesive strength is decreased.
  • the styrene-based thermoplastic elastomer (A) and the tackifier (B) the styrene-based thermoplastic elastomer ( Since the increase in the molecular weight due to the intermolecular crosslinking in A) is suppressed, the viscosity is hardly increased. That is, the elastomer (A) or tackifier (B) having an isocyanate group in which the functional groups in the styrene-based thermoplastic elastomer (A) or the tackifier (B) are sealed with an adequately large number of isocyanate groups. Is generated.
  • the isocyanate group in the adhesive composition reacts with the isocyanate group during lamination and during the aging process, or the functional group of the elastomer (A) or the tackifier (B) remains, It reacts with the remaining functional groups to form a sufficient crosslinked structure.
  • the blending amount of isocyanate groups is reasonably large, a laminate having excellent adhesive strength and electrolyte resistance can be obtained.
  • the amount of the isocyanate group is excessively large, specifically more than 150 moles, the proportion of the excess isocyanate group remaining unreacted even after aging increases. As a result, the adhesive layer There is a possibility that the adhesive strength is lowered due to the deterioration of elasticity or the electrolyte resistance is deteriorated.
  • a known additive may be blended in addition to the styrene-based thermoplastic elastomer (A) and the tackifier (B).
  • Various additives can be blended together with the polyisocyanate (C), or can be blended prior to blending the polyisocyanate (C).
  • the adhesive composition of the present invention comprises a styrenic thermoplastic elastomer structure and at least one of a polyester resin part and a polyurethane resin part in order to improve adhesion to a metal substrate and to express a greater adhesive force. It is preferable to further use the elastomer composite resin (D).
  • the elastomer composite polyester resin, elastomer composite polyurethane resin, and elastomer composite polyester polyurethane resin are collectively referred to as “elastomer composite resin (D)”.
  • the polyester resin portion and the polyurethane resin component in the elastomer composite resin (D) contribute to improving the adhesion to the metal substrate.
  • the elastomer composite resin (D) Since the elastomer composite resin (D) has a styrene-based thermoplastic elastomer structure, it contributes to improved compatibility with the styrene-based elastomer (A) and the tackifier (B).
  • the elastomer composite resin (D) only needs to have a styrene-based thermoplastic elastomer structure portion, a polyester resin portion, and a polyurethane resin portion, and the balance of each portion in the elastomer composite resin (D) is not particularly limited. .
  • the elastomer composite resin (D) There are various methods for producing the elastomer composite resin (D). For example, (1) a method in which a functional group of a polyester resin or the like and a functional group of a styrene thermoplastic elastomer are directly reacted, and (2) a polyester resin or the like and a styrene thermoplastic elastomer are bonded via a crosslinking agent. The method of letting it be mentioned.
  • the functional group contributing to the reaction and the kind of the reaction are not particularly limited, and it is sufficient that the polyester resin portion and the styrene-based thermoplastic elastomer structure are provided as a result of the reaction.
  • examples of the method (1) include the following methods.
  • (1-1) a method of obtaining an elastomer composite resin (D) in which a polyester resin having a carboxyl group and a styrene-based thermoplastic elastomer having a hydroxyl group are esterified and bonded via an ester bond
  • (1-2) A method of obtaining an elastomer composite resin (D) obtained by reacting a polyurethane resin having an isocyanate group with a styrene thermoplastic elastomer having a hydroxyl group and bonding them via a urethane bond
  • examples of the method (2) include the following methods. For example, (2-1) a polyester resin having a hydroxyl group, a styrenic thermoplastic elastomer having a hydroxyl group, and a crosslinking agent having a plurality of functional groups capable of reacting with a hydroxyl group are reacted, and both portions are interposed via the crosslinking agent.
  • a styrenic thermoplastic elastomer is reacted with a cross-linking agent having a plurality of functional groups capable of reacting with a carboxyl group, and both are reacted via the cross-linking agent. Minute bound, a method for obtaining an elastomer composite resin (D), and the like.
  • the polyester resin, the styrene thermoplastic elastomer, and the crosslinking agent can be reacted at a stretch.
  • a polyester resin or the like and a crosslinking agent are reacted under an excess of the crosslinking agent to obtain a polyester resin or the like having a functional group derived from the crosslinking agent, and then the obtained polyester resin or the like having a functional group derived from the crosslinking agent is styrene. It can also be obtained by reacting with a thermoplastic elastomer.
  • the styrenic thermoplastic elastomer and the crosslinking agent are reacted under an excess of the crosslinking agent to obtain a styrene thermoplastic elastomer having a functional group derived from the crosslinking agent, and then having the functional group derived from the obtained crosslinking agent. It can also be obtained by reacting a styrenic thermoplastic elastomer with a polyester resin or the like.
  • thermoplastic elastomer having a hydroxyl group examples of the styrenic thermoplastic elastomer having a hydroxyl group and the styrenic thermoplastic elastomer having an amino group used in the above (1-1), (1-2), (2-1), and (2-2) are as described above. The same thing as the styrene-type thermoplastic elastomer (A) can be illustrated.
  • the styrene-based thermoplastic elastomer having a carboxyl group used in the above (1-3) and (2-3) is an appropriate amount in the polymerization of the monomer for producing the above-mentioned styrene-based thermoplastic elastomer.
  • styrene thermoplastic elastomers having a carboxyl group include Toughtech M1911, M1913 manufactured by Asahi Kasei Chemicals Co., Ltd., and Kraton FG1901 manufactured by Kraton Polymer Japan Co., Ltd. (above, carboxyl group-containing hydrogenated styrene-butadiene-styrene copolymer) Etc.
  • the polyester resin having a carboxyl group used in the above (1-1) and (2-3) can be obtained, for example, as follows.
  • a polyester resin is obtained by reacting a dibasic acid component with a diol component. If the dibasic acid component is used in excess of the diol component, a polyester resin having a carboxyl group can be obtained.
  • a polyester resin having a hydroxyl group can be obtained, and the carboxyl group can be introduced by reacting the hydroxyl group with an acid anhydride such as maleic anhydride.
  • the urethane resin is obtained by reacting a diol component and a diisocyanate component.
  • a urethane resin having a carboxyl group By using a diol component having a carboxyl group as the diol component, a urethane resin having a carboxyl group can be obtained. Alternatively, a urethane resin having a hydroxyl group can be obtained, and the carboxyl group can be introduced by reacting the hydroxyl group with an acid anhydride such as maleic anhydride.
  • diol component used for obtaining a polyester resin or a urethane resin examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1
  • polymer polyols such as polycarbonate polyol and polyether polyol are also included. These may be used alone or in any combination of two or more. Trifunctional or higher functional polyol components can also be used.
  • a polyester polyol can also be used.
  • diol component having a carboxyl group examples include dimethylolpropionic acid and dimethylolbutanoic acid.
  • the dibasic acid component used when obtaining a polyester resin includes isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, phthalic anhydride, adipic acid, azelaic acid, sebacic acid, succinic acid, glutaric acid, tetrahydrophthalic anhydride And dibasic acids such as hexahydrophthalic anhydride, maleic anhydride, itaconic anhydride, and ester compounds of these dibasic acids.
  • the dibasic acid and its ester compound are collectively referred to as “dibasic acid component”.
  • diisocyanate component used when obtaining the urethane resin well-known diisocyanates and compounds derived therefrom, such as those exemplified as polyisocyanate (C), can be preferably used.
  • An isocyanate component having more than two functional groups can be used as long as it does not gel.
  • a branched polyurethane resin can be obtained by using a component having a functional number higher than bifunctionality.
  • a diamine component as a chain extender can also be used.
  • the polyester resin having a hydroxyl group used in the above (1-3), (2-1), and (2-2) can be obtained, for example, as follows. If the diol component is used in excess as compared with the dibasic acid component, a polyester resin having a hydroxyl group can be obtained. If the diol component is used in excess as compared with the diisocyanate component, a urethane resin having a hydroxyl group can be obtained. Each component used when obtaining a polyester resin or a urethane resin is as described above.
  • the polyurethane resin having an isocyanate group used in the above (1-2) can be obtained, for example, as follows. If the diisocyanate component is used in excess as compared with the diol component, a urethane resin having an isocyanate group can be obtained.
  • the cross-linking agent that functions for both components having a hydroxyl group used in (2-1) has a polyfunctional isocyanate component such as a diisocyanate compound, a dibasic acid component, and a plurality of acid anhydrides in the molecule. Compounds and the like.
  • polyfunctional isocyanate component well-known diisocyanates and compounds derived from these as exemplified as polyisocyanate (C) can be preferably used.
  • polyfunctional isocyanate component as a crosslinking agent, an elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene thermoplastic elastomer having a hydroxyl group are bonded via a urethane bond can be obtained.
  • the dibasic acid component As the dibasic acid component, a well-known one exemplified as a constituent material of the polyester resin can be used. By using the dibasic acid component as a crosslinking agent, an elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene thermoplastic elastomer having a hydroxyl group are bonded via an ester bond can be obtained.
  • Elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene-based thermoplastic elastomer having a hydroxyl group are bonded via an ester bond by using a compound having a plurality of acid anhydrides in the molecule as a crosslinking agent can be obtained.
  • Examples of the crosslinking agent that functions for the component having a hydroxyl group and the component having an amino group used in the above (2-2) include polyfunctional isocyanate components such as a diisocyanate compound as in the case of (2-1). It is done.
  • Examples of the crosslinking agent that functions for both components having a carboxyl group used in the above (2-3) include a polyfunctional epoxy component, a polyfunctional aziridine component, a polyfunctional oxazoline component, a polyfunctional isocyanate component, and a polyfunctional carbodiimide component. Is mentioned. Moreover, when a carboxyl group is in the state of an acid anhydride, a polyfunctional polyol component, a polyfunctional polyamine component, etc. can also be used as a crosslinking agent.
  • the elastomer composite resin (D) in the present invention it is preferable to use 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). More preferably, it is 2 to 50 parts by weight.
  • an elastomer composite resin (D) exists in the said range, while improving the adhesiveness to a metal base material, electrolyte resistance can be maintained. If the amount of the elastomer composite resin (D) is too large, the ratio of the polyester resin portion and the polyurethane resin portion in the adhesive is relatively increased, which may deteriorate the electrolyte resistance.
  • Examples of commercially available products used as the elastomer composite resin (D) in the present invention include Kuraray's Septon S5265, S5865 (chemically bonded substance of polyurethane and hydrogenated styrene elastomer).
  • a known reaction accelerator can be used when it is desired to accelerate the curing reaction. In this case, it is preferable to blend prior to blending the polyisocyanate (C).
  • the reaction accelerator used in the present invention include metal catalysts such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, and dibutyltin dimaleate; 1,8-diaza-bicyclo (5,4,0) undecene And tertiary amines such as -7,1,5-diazabicyclo (4,3,0) nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) undecene-7. These may be used alone or in any combination of two or more.
  • the compounding amount of the reaction accelerator used in the present invention is in the range of 0.001 to 0.2 parts by weight with respect to 100 parts by weight in total of the styrenic thermoplastic elastomer (A) and the tackifier (B).
  • the amount is preferably 0.005 to 0.1 parts by weight. If the addition amount of the reaction accelerator is less than 0.001 part by weight, there is a possibility that a sufficient acceleration effect of the curing reaction may not be obtained. The pot life may be spoiled.
  • a laminate using the adhesive composition of the present invention can be obtained, for example, as follows.
  • One side of a metal foil (or heat-fusible film) is coated with the adhesive composition of the present invention, and the solvent is stripped (dried) to form an uncured adhesive layer.
  • a general coating machine such as a comma coater can be used for coating of the adhesive composition.
  • the thickness (amount) of the cured adhesive layer at the time of dry curing is preferably about 1 to 30 g / m 2 .
  • an exterior sheet When an exterior sheet is provided as an outer layer member, it is laminated on a metal foil in advance using an adhesive composition (which may be the same as or different from the adhesive composition of the present invention). Alternatively, after obtaining a laminate of a metal foil and a heat-fusible film using the adhesive composition of the present invention, an exterior sheet can be laminated on the metal foil.
  • the electrolyte starts to penetrate from the heat-fusible film toward the metal foil.
  • the electrolyte of a lithium battery includes a lithium salt such as lithium hexafluorophosphate and a solvent such as propylene carbonate, ethylene carbonate, diethyl carbonate, and dimethyl carbonate.
  • the solvent passes through the heat-fusible film, reaches the adhesive layer, and causes a decrease in the adhesive strength between the heat-fusible film and the metal foil.
  • a lithium salt such as lithium hexafluorophosphate reacts with water to generate hydrofluoric acid.
  • the generated hydrofluoric acid reaches the heat-fusible film and the adhesive layer, degrades the adhesive layer, and remarkably lowers the adhesive force between the heat-fusible film and the metal foil. Therefore, the adhesive layer for bonding the heat-fusible film and the metal foil is required to have resistance to the electrolyte.
  • the adhesive composition described in Patent Document 2 has insufficient electrolyte resistance, and the viscosity after mixing is quick because the reaction between the elastomer (A) and the coupling agent (B) is fast. There was a problem that the usable time (pot life) of the adhesive composition was short. Further, the adhesive described in Patent Document 3 has a problem that the viscosity of the adhesive and the adhesive force after sticking are not stable. This is because some of the acid in the elastomer is in the state of an anhydride derived from maleic acid, and after blending each component, the acid anhydride in the elastomer reacts with the polyolefin polyol as time passes.
  • the laminate for a non-aqueous electrolyte secondary battery container of the present invention a component having a specific structure is contained in a specific ratio as the adhesive composition, and the amount of active hydrogen having the specific structure described above is specified as described above. Furthermore, since the isocyanate group has the above-mentioned specific ratio, the pot life can be lengthened, and even when immersed in an electrolyte, the adhesive strength can be maintained at a high level. That is, the laminated body for nonaqueous electrolyte secondary battery containers which is excellent in chemical resistance can be provided. As a result, problems such as electrolyte leakage can be prevented, and a highly reliable laminate for a nonaqueous electrolyte secondary battery container can be provided.
  • a battery container formed using a laminate for a nonaqueous electrolyte secondary battery using the adhesive composition of the present invention can contribute to safety and life extension of the nonaqueous electrolyte secondary battery. Therefore, a highly reliable nonaqueous electrolyte secondary battery can be provided. Therefore, it leads to the spread of non-aqueous electrolyte secondary batteries, and contributes to environmental conservation from the viewpoint of highly efficient use of energy as a new energy material.
  • the number average molecular weight of the styrene-based thermoplastic elastomer (A) was measured using GPC (Gel Permeation Chromatography) “HPC-8020” manufactured by Tosoh Corporation, tetrahydrofuran as the solvent, and standard polystyrene conversion.
  • GPC Gel Permeation Chromatography
  • ⁇ Measurement of active hydrogen content of elastomer (A)> The average number of functional groups of one molecule of the synthesized styrene-based thermoplastic elastomer (A) was determined by HPLC and NMR measurement, and the amount of active hydrogen of the elastomer (A) was determined by the above mathematical formula (1). Specifically, the average number of functional groups of the elastomer (A) was divided by the number average molecular weight determined from GPC measurement to determine the amount of active hydrogen per gram (mmol / g).
  • the elastomer A-1 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-1 determined from GPC is 61,000, and from HPLC, the number of hydroxyl groups on the main chain terminal per molecule of the elastomer A-1. The number was 0.95. From the above measured values, the amount of active hydrogen in Elastomer A-1 can be calculated as 0.016 mmol / g.
  • the elastomer A-2 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-2 obtained from GPC is 61,000, and the number of main chain terminal hydroxyl groups per molecule of the elastomer A-2 is determined by HPLC. The number was 0.94. From the above measured values, the amount of active hydrogen in Elastomer A-2 can be calculated as 0.015 mmol / g.
  • the elastomer A-3 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-3 determined from GPC is 62,000, and from HPLC, the number of main chain terminal hydroxyl groups per molecule of the elastomer A-3. The number was 1.89. From the above measured values, the amount of active hydrogen in elastomer A-3 can be calculated as 0.03 mmol / g.
  • the elastomer A-4 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-4 determined from GPC is 61,000, and from HPLC, the main chain terminal amino groups per molecule of the elastomer A-3. The number of was 0.95. From the above measured values, the amount of active hydrogen in Elastomer A-4 can be calculated as 0.016 mmol / g.
  • styrene- (butadiene / isoprene) -styrene type block copolymer having no functional group was synthesized.
  • the block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product.
  • the solvent contained in the block copolymer thus obtained is distilled off under reduced pressure, and the resulting block copolymer solid is designated as elastomer A-4.
  • the elastomer A-5 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-5 determined from GPC is 62,000, and the amount of active hydrogen of the elastomer A-5 can be calculated as 0 mmol / g.
  • ⁇ Elastomer A-6> SEEPS having a hydroxyl group in the side chain
  • 500 g of elastomer A-5 and 200 g of toluene were added and heated and dissolved at 100 ° C. with stirring in a nitrogen atmosphere, and then 1.5 g of di-t-butyl peroxide and 2-methacrylic acid 2- 3 g of hydroxyethyl was added dropwise and reacted for 3 hours.
  • the solvent contained in the block copolymer thus obtained was distilled off under reduced pressure, and the resulting block copolymer solid was designated as elastomer A-6.
  • the elastomer A-6 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-6 obtained from GPC is 62,000, and from HPLC, the number of hydroxyl groups introduced into the side chain per molecule of the elastomer A-6. The number was 1.62. From the above measured values, the amount of active hydrogen of A-6 in the elastomer can be calculated as 0.026 mmol / g.
  • ⁇ Elastomer A-7> SEEPS having a hydroxyl group in the side chain
  • 500 g of elastomer A-5 and 200 g of toluene were added and heated and dissolved at 100 ° C. with stirring in a nitrogen atmosphere, and then 1.5 g of di-t-butyl peroxide and 2-methacrylic acid 2- Hydroxyethyl (5 g) was added dropwise and reacted for 3 hours.
  • the solvent contained in the block copolymer thus obtained was distilled off under reduced pressure, and the resulting block copolymer was designated as elastomer A-7.
  • the elastomer A-7 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-7 determined from GPC is 62,500, and from HPLC, the number of hydroxyl groups introduced into the side chain per molecule of the elastomer A-7. The number was 3.19. From the above measured values, the amount of active hydrogen of A-7 in the elastomer can be calculated as 0.051 mmol / g.
  • the elastomer A-8 has a styrene content of 18% by weight, the number average molecular weight of the elastomer A-1 determined from GPC is 35,000, and from HPLC, the number of main chain terminal hydroxyl groups per molecule of the elastomer A-8. The number was 0.98. From the above measured values, the amount of active hydrogen in Elastomer A-8 can be calculated as 0.028 mmol / g.
  • the elastomer A-9 has a styrene content of 40% by weight, the number average molecular weight of the elastomer A-9 determined from GPC is 110,000, and from HPLC, the number of hydroxyl groups on the main chain terminal per molecule of the elastomer A-9. The number was 0.97. From the above measured values, the amount of active hydrogen in Elastomer A-9 can be calculated as 0.009 mmol / g.
  • ⁇ Resin D-1> (Elastomer composite resin having SEEPS structure, number average molecular weight 62,800)
  • 500 g of elastomer A-1 having a hydroxyl group at the end of the main chain and 200 g of toluene were added and heated and dissolved at 80 ° C. with stirring in a nitrogen atmosphere, and then 1.78 g of isophorone diisocyanate was added dropwise. By making it react for 3 hours, SEEPS of the isocyanate group terminal was obtained.
  • Resin D-1 a polyester resin having a number average molecular weight of 2000 and a terminal hydroxyl group composed of isophthalic acid and 2-methyl-1,3-propanediol was added to the isocyanate group-terminated SEEPS, and the mixture was further reacted for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid matter) having a SEEPS structure is referred to as Resin D-1.
  • ⁇ Resin D-2> (Elastomer composite resin having a SEEPS structure, number average molecular weight 68,000) Add 10.0 g of diphenylmethane diisocyanate and 50 g of toluene to a pressure-resistant vessel equipped with a stirrer, and add 109.0 g of polyester polyol having a molecular weight of 3000 consisting of adipic acid and 1,4-butanediol while stirring in a nitrogen atmosphere. Was reacted at 80 ° C. for 3 hours to obtain an isocyanate group-terminated polyurethane resin.
  • Resin D-2 500 g of elastomer A-1 having a hydroxyl group at the main chain end was added to the isocyanate group-terminated polyurethane resin, and the mixture was further reacted for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid material) having a SEEPS structure is referred to as Resin D-2.
  • ⁇ Resin D-4> (Elastomer composite resin having a SEEPS structure, number average molecular weight 42,000)
  • a pressure-resistant vessel equipped with a stirrer 10.0 g of diphenylmethane diisocyanate and 50 g of toluene were added, and 84.2 g of polytetramethylene glycol having a molecular weight of 3000 was added while stirring in a nitrogen atmosphere, followed by reaction at 80 ° C. for 3 hours.
  • a base end polyurethane resin was obtained.
  • 900 g of elastomer A-8 having a hydroxyl group at the end of the main chain was added to the isocyanate group-terminated polyurethane resin, and the mixture was further reacted for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid material) having a SEEPS structure is referred to as Resin D-4.
  • ⁇ Resin D-5> (Elastomer composite resin having SEEPS structure, number average molecular weight 126,000)
  • a pressure vessel equipped with a stirrer 50 g of toluene, 10.0 g of diphenylmethane diisocyanate, 76.5 g of polyester polyol having a molecular weight of 2000 composed of adipic acid and 1,4-butanediol, elastomer A- having a hydroxyl group at the end of the main chain 400 g of 9 was added while stirring under a nitrogen atmosphere, and the mixture was reacted at 80 ° C. for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the obtained elastomer composite resin (solid matter) having a SEEPS structure is referred to as Resin D-5.
  • Elastomer A-2 SEBS having a hydroxyl group at one end of the main chain, styrene content 28 wt%, functional group content 0.015 mmol / g
  • Escorez 5320 softening point 125 ° C., no acid value
  • 60 parts in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2 at 3 ° C. The mixture was heated and stirred for a time to obtain a solution of the main agent 3 (solid content 30%).
  • ⁇ Main agent 4> 60 parts of elastomer A-2 as styrene-based thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 40 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 4 (solid content 30%).
  • Elastomer A-3 SEEPS having hydroxyl groups at both ends of the main chain, styrene content 28% by weight, functional group amount 0.03 mmol / g: 60 parts as a styrenic thermoplastic elastomer (A), tackifier (B) Arakawa Chemical Industries, Ltd.
  • SEEPS thermoplastic elastomer A-4
  • B Hydrogenated terpene resin Clearon P-85 (softening point 85 ° C., no acid value): 45 parts in a container, diluted with a mixed solvent of toluene
  • ⁇ Main agent 7> 55 parts of elastomer A-4 as styrenic thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 30 parts and rosin ester Pine Crystal KE-100 (softening point 100 ° C., acid value 6 mg / KOH) manufactured by Arakawa Chemical Industries, Ltd .: 15 parts are put in a container and diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2 to obtain 50 parts. The mixture was heated and stirred at 0 ° C. for 3 hours to obtain a solution of the main agent 7 (solid content 30%).
  • Elastomer A-6 as styrenic thermoplastic elastomer (A) (SEEPS having a hydroxyl group in the side chain, styrene content 28 wt%, functional group content 0.026 mmol / g): 70 parts, Tonex as tackifier (B) Company hydrogenated dicyclopentadiene resin Escorez 5320 (softening point 125 ° C., no acid value): 30 parts is placed in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2 and heated at 50 ° C. for 3 hours. The mixture was stirred to obtain a solution of the main agent 8 (solid content 30%).
  • ⁇ Main agent 9> 55 parts of an elastomer A-1 as a styrenic thermoplastic elastomer (A), and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as a tackifier (B): 45 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 9 (solid content 30%).
  • ⁇ Main agent 10> 55 parts of elastomer A-3 as styrenic thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 45 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 10 (solid content 30%).
  • tackifier (B) 40 parts and 10 parts of resin D-1 (elastomer composite resin having a SEEPS structure, number average molecular weight 62,800): 10 parts as an elastomer composite resin (D) having a styrene-based thermoplastic elastomer structure,
  • D-1 elastomer composite resin having a SEEPS structure, number average molecular weight 62,800
  • the resin D-1 is about 11.1 parts by weight relative to 100 parts by weight of the total of the elastomer A-1 and the tackifier (B).
  • ⁇ Main agent 12> to ⁇ Main agent 14> Main agents 12, 13, and 14 were obtained in the same manner as in the main agent 11, except that the amount of the resin D-1 was about 22.5 parts, about 48.4 parts, and about 60 parts, respectively.
  • the resin D-1 is about 25 parts by weight, 53.8 parts by weight, and about 66.7 parts by weight with respect to 100 parts by weight of the total of the elastomer A-1 and the tackifier (B).
  • ⁇ Main agent 15> to ⁇ Main agent 18> Main agents 15, 16, 17, and 18 were obtained in the same manner as in the case of Main agent 11, except that resin D-1 was Resin D-2, Resin D-3, Resin D-4, and Resin D-5, respectively. .
  • Main agent 19 and main agent 20 were obtained in the same manner as in main agent 11, except that resin A-1 was changed to resin A-8 and resin A-9, respectively.
  • ⁇ Main Example 102 for Comparative Example> 100 parts of elastomer A-4 as a styrenic thermoplastic elastomer (A) is put in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 102 (solid 30%).
  • ⁇ Main agent 103 for comparative example> 55 parts of elastomer A-4 as styrenic thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 45 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 103 (solid content 30%).
  • SEEPS having a hydroxyl group in the side chain, styrene content 28% by weight, functional group amount 0.051 mmol / g) as styrene thermoplastic elastomer (A): 55 parts, and Arakawa Chemical
  • A-4 55 parts as a styrenic thermoplastic elastomer (A), and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as a tackifier (B): 30 Rosin ester Pine Crystal KE
  • SEBS having a carboxyl group in the side chain, manufactured by Asahi Kasei Kogyo Co., Ltd., styrene content 30% by weight, carboxyl group amount 0.19 mmol / g as a styrene-based thermoplastic elastomer (A). 4 parts): 55 parts and, as a tackifier (B), Arakawa Chemical Industries, Ltd.
  • Curing agent 1 is obtained by diluting a trimer of isophorone diisocyanate (functional amount of isocyanate group: 4.08 mmol / g, average number of isocyanate groups per molecule: 3) with toluene to give a solid content of 50%.
  • a curing agent 2 is obtained by diluting a trimer of hexamethylene diisocyanate (functional amount of isocyanate group 5.19 mmol / g, average number of isocyanate groups 3 per molecule 3) with toluene to give a solid content of 50%. .
  • an unstretched polypropylene film (hereinafter referred to as CPP) having a thickness of 30 ⁇ m was superposed on the adhesive layer and passed between two rolls set at 60 ° C. to obtain a laminate. Thereafter, the obtained laminate was cured (aging) at 40 ° C. for 5 days to sufficiently cure the adhesive layer.
  • the aluminum foil / CPP laminate film thus obtained is hereinafter referred to as “Al / CPP laminate film”.
  • Al / CPP laminate film After preparing each adhesive agent solution and leaving still at 25 degreeC environment for 24 hours, the Al / CPP laminated film was produced similarly.
  • each Al / CPP laminated film was immersed in an electrolyte solution at 85 ° C. for 14 days, and the peel strength was determined in the same manner. The results are shown in Table 2A and Table 2B.
  • Table 1A and Table 1B Abbreviations shown in Table 1A and Table 1B are as follows. ⁇ Styrenic thermoplastic elastomer (A)> Tuftec M1913: SEBS (styrene-ethylene-butylene-styrene) manufactured by Asahi Kasei Kogyo Co., Ltd., styrene content: 30% by weight, number average molecular weight 60,000, carboxyl group content: 0.19 (mmol / g) per molecule Contains 11.4 carboxyl groups.
  • SEBS styrene-ethylene-butylene-styrene
  • Epol Hydrogenated polyolefin polyol manufactured by Idemitsu Kosan Co., Ltd., styrene content: 0% by weight, number average molecular weight: 2,500, active hydrogen: 0.91 (mmol / g)
  • IPDI trimer trimer of isophorone diisocyanate
  • HDI trimer trimer of hexamethylene diisocyanate
  • TDI-TMP adduct of tolylene diisocyanate with trimethylolpropane
  • the test piece after drying was subjected to a T-type peel test at a load rate of 300 mm / min using a tensile tester in an environment of 25 ° C. and a humidity of 65% according to the test method of ASTM-D1876-61.
  • the peel strength (N / 15 mm width) between the aluminum foil / CPP is shown as an average value of five test pieces.
  • the evaluation criteria are as follows.
  • Comparative Example 1 is an example in which the blending amount of the styrenic thermoplastic elastomer (A) is less than 20% by weight of the blending amount at which the effect of the present invention appears. As a result of the evaluation, there was obtained a result that the elasticity of the adhesive was not expressed and the adhesive strength was significantly reduced.
  • Comparative Example 2 is an example not containing a tackifier (B). As a result of the evaluation, the cohesive force of the adhesive was insufficient and the adhesive strength was significantly reduced.
  • Comparative Example 3 is an example in which the amount of polyisocyanate (C) is less than the specific range of the present invention.
  • the cross-linking reaction between the elastomer (A) and the polyisocyanate (C) proceeds while the adhesive is blended and allowed to stand for 24 hours, the viscosity increases, and the wettability to the aluminum foil or CPP film. was lower than that immediately after preparation, and the adhesive strength was significantly reduced.
  • Comparative Example 4 is an example in which the styrene-based thermoplastic elastomer (A) does not contain a functional group.
  • the compatibility with the other components of the adhesive composition is deteriorated, the viscoelasticity of the adhesive layer is deteriorated, and a crosslinked structure with the polyisocyanate (C) is not formed, and the adhesive strength is remarkably increased. The result of getting worse was obtained.
  • Comparative Example 5 is an example in which an elastomer having an active hydrogen amount derived from the functional group of the styrene-based thermoplastic elastomer (A) is larger than 0.04. As a result of the evaluation, it showed high adhesive strength and electrolyte resistance immediately after blending, but the cross-linking reaction between the elastomer (A) and the polyisocyanate (C) progressed while standing for 24 hours, resulting in significant thickening. As a result, the adhesive could not be applied and evaluated.
  • the amount of active hydrogen of the styrenic thermoplastic elastomer (A) is higher than 15.0 mol with respect to 1 mol of active hydrogen derived from the functional group of the tackifier (B) contained in the adhesive. This is an example of blending.
  • a cross-linked structure due to the reaction between the polyisocyanate (C) and the styrenic thermoplastic elastomer (A) is insufficient, and the adhesive strength and the electrolyte resistance are remarkably deteriorated.
  • the polyisocyanate (C) was compared with the sum of the amount of active hydrogen derived from the functional group of the styrenic thermoplastic elastomer (A) and the amount of active hydrogen derived from the functional group of the tackifier (B). It is an example mix
  • Comparative Example 8 is an example in which the styrenic thermoplastic elastomer (A) has a carboxyl group in the molecular chain and contains 11 carboxyls per molecule of the elastomer. As a result of the evaluation, it showed high adhesive strength and electrolyte resistance immediately after blending, but the cross-linking reaction between the elastomer (A) and the polyisocyanate (C) progressed while standing for 24 hours, resulting in significant thickening. As in Comparative Example 5, the result was that the adhesive could not be applied and evaluated.
  • Comparative Example 9 is an example in which a polyolefin polyol is used instead of a styrene elastomer as the styrene thermoplastic elastomer (A). As a result of the evaluation, it was found that sufficient adhesive strength could not be obtained and the electrolyte resistance was remarkably deteriorated.
  • Examples 1 to 21 satisfying all the conditions (i) to (iv) described above have initial adhesive strength, adhesive strength after aging, and adhesive strength after a moist heat resistance test. The result was that all were well-balanced.
  • Examples 7, 9, and 12 to 21 showed high performance in all tests.
  • the content of the styrenic thermoplastic elastomer (A) is in a preferable range of 30 to 80% by weight, and the content of the tackifier (B) is also 20 to 20%. It is considered that it was in the preferred range of 70%, had a good balance of viscoelasticity of the adhesive, and exhibited better adhesive strength and electrolyte resistance.
  • the adhesives of Examples 7, 9, and 12 to 21 are examples in which polyisocyanate (C) is blended at a suitable blending ratio in terms of the amount of isocyanate groups.
  • C polyisocyanate
  • the adhesives of Examples 7, 9, and 12 to 21 were derived from the functional group of the styrenic thermoplastic elastomer (A) with respect to 1 mol of active hydrogen derived from the functional group of the tackifier (B). This is an example in which the amount of active hydrogen is in a preferred range.
  • a sufficient cross-linked structure was obtained by the reaction of the styrenic thermoplastic elastomer (A) and the polyisocyanate (C) as compared with Example 5 outside the preferred range, and the adhesive strength and electrolyte resistance were good. I got a result.
  • the adhesives of Examples 7, 9, and 12 to 21 are examples in which the polyisocyanate (C) has an isocyanurate structure in the structure. As a result of the evaluation, it was found that the high resistance to the electrolytic solution was excellent as compared with Example 6 in which the polyisocyanate (C) did not contain an isocyanurate structure in the structure.
  • Example 8 using a styrenic thermoplastic elastomer (A) having a functional group introduced into the side chain, or a styrene thermoplastic elastomer (A) having a functional group introduced at both ends of the main chain is used.
  • Example 10 after the adhesive solution was prepared, the cross-linking reaction between the styrenic thermoplastic elastomer (A) and the polyisocyanate (C) progressed while standing for 24 hours. It was considered that the peel strength was slightly decreased because the wettability of the film was lower than that immediately after the preparation. In addition, it is thought that the adhesive strength is improved after the electrolyte resistance test afterwards because the wettability to the base material is improved by the heat during the electrolyte resistance test.
  • the elastomer composite resin (D) was blended in the adhesives of Examples 12 to 21 as compared with Examples 7 and 9, adhesion with the aluminum foil was improved and high adhesive strength was exhibited.
  • the adhesives of Examples 12 to 14 and 16 to 21 are blended in a suitable range of 2 to 60 parts by weight of the elastomer composite resin (D) as compared with Example 15, so that higher adhesive strength and resistance can be obtained. It showed electrolyte properties.
  • Example 22 [vinyl chloride vinyl acetate copolymer layer / CPP laminated film] Apply a carboxyl group-containing vinyl chloride vinyl acetate copolymer resin (SOLBIN M manufactured by Nissin Chemical Industry Co., Ltd.) methyl ethyl ketone solution adjusted to a solid content of 30% on the surface of 50 ⁇ m thick aluminum foil, heat and dry, Vinyl vinyl acetate copolymer layer (thickness: about 5 ⁇ m) / Al foil] was obtained. This is designated as a base material E-1.
  • SOLBIN M manufactured by Nissin Chemical Industry Co., Ltd.
  • Example 19 Except that the adhesive solution of Example 19 was coated on the vinyl chloride / vinyl acetate copolymer layer of the substrate E-1, CPP was overlaid on the adhesive layer in the same manner as in Example 19, and so on. Then, [vinyl chloride vinyl acetate copolymer layer / CPP laminated film] was obtained, and the adhesion performance was evaluated by the method described later.
  • Example 23 [Acid-modified polypropylene layer / CPP laminated film] After heat-extrusion of an acid-modified polypropylene grafted with an unsaturated carboxylic acid (Admer QE800 manufactured by Mitsui Chemicals, Inc.) with a T-die extruder to a thickness of 15 ⁇ m on the surface of an aluminum foil having a thickness of 50 ⁇ m, the polypropylene The surface of the layer was subjected to corona discharge treatment to obtain [acid-modified polypropylene layer / Al foil]. This is designated as a base material E-2.
  • Admer QE800 unsaturated carboxylic acid
  • Example 19 Except that the adhesive solution of Example 19 was coated on the acid-modified polypropylene layer of the substrate E-2, CPP was overlaid on the adhesive layer in the same manner as in Example 19, and thereafter [Acid Modified polypropylene layer / CPP laminated film] was obtained and evaluated in the same manner.
  • Example 24 [Nylon / CPP laminated film] A 25- ⁇ m thick Unitika Co., Ltd. biaxially stretched nylon film Emblem ON (single-sided corona treatment) was used as the base material E-3, and the adhesive solution of Example 19 was applied to the untreated surface of the base material E-3. In the same manner as in Example 19, CPP was superimposed on the adhesive layer, and thereafter, [Nylon / CPP laminated film] was obtained and evaluated in the same manner.
  • Example 25 [Polyethylene terephthalate / CPP laminated film] This was carried out except that a polyethylene terephthalate film S10 (single-sided corona treatment) manufactured by Toray Industries, Inc. with a thickness of 25 ⁇ m was used as the base E-4, and the adhesive solution of Example 19 was applied to the untreated side of the base E-4. In the same manner as in Example 19, CPP was superimposed on the adhesive layer, and thereafter, [Polyethylene terephthalate / CPP laminated film] was obtained and evaluated in the same manner.
  • a polyethylene terephthalate film S10 single-sided corona treatment manufactured by Toray Industries, Inc. with a thickness of 25 ⁇ m
  • Example 26> ⁇ Comparative example 10> [Polyethylene terephthalate / CPP laminated film]
  • the adhesive solution used in Example 12 was used in place of the adhesive solution used in Example 19, and Comparative Example 10 was used except that the adhesive solution used in Comparative Example 4 was used.
  • [Polyethylene terephthalate / CPP laminated film] was obtained in the same manner as in Example 24 and evaluated in the same manner.
  • Comparative Example 10 As shown in Table 3, since the styrenic thermoplastic elastomer (A) does not contain a functional group, the compatibility with the other components of the adhesive composition deteriorates, and the viscoelasticity of the adhesive layer In addition, since the crosslinked structure with the polyisocyanate (C) was not formed, the adhesive strength was significantly deteriorated. Even in the alcohol resistance test, the adhesive strength swelled due to insufficient rack strength, resulting in a significant decrease in adhesive strength.
  • Examples 22 to 26 which are examples satisfying all the conditions (i) to (iv) described above, have initial adhesive strength, alcohol, etc., even in configurations other than the Al / CPP laminated film. All the adhesive strengths after immersion were satisfied in a well-balanced manner. In particular, the adhesive of Example 26 showed higher adhesion strength with improved adhesion to the substrate interface as compared with the adhesives of Examples 22-25. This is considered to be an effect by blending the elastomer composite resin (D).
  • an adhesive composition excellent in pot life can be provided.
  • the adhesive composition which can maintain adhesive strength at a high level even if immersed in an electrolyte can be provided. Therefore, it can be particularly suitably used for adhesion to a film inside the metal foil of the laminate for a nonaqueous electrolyte secondary battery container.
  • it can be suitably applied to various adhesive applications including joining of the outer layer of the non-aqueous electrolyte secondary battery and the metal foil.
  • the laminate bonded with the adhesive composition of the present invention is excellent in chemical resistance of the adhesive layer, it can be used, for example, for forming a laminate of a packaging material for pharmaceuticals and foodstuffs.
  • the heat-fusible film can also be used in a wide range of resin films including polyolefin resins.
  • the adhesive composition of the present invention is also suitable for joining resin films such as heat-fusible films including polyolefin resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a highly reliable laminate for a nonaqueous electrolyte secondary cell container. This laminate for a nonaqueous electrolyte secondary cell container comprises a metal foil, a thermofusible film, and an adhesive layer for joining the foil and the film. The adhesive layer comprises styrene thermoplastic elastomer (A), adhesion-imparting agent (B), and polyisocyanate (C). A total 100 wt% of elastomer (A) and adhesion-imparting agent (B) consists of 20 to 90 wt% of elastomer (A) and 10 to 80 wt% of adhesion-imparting agent (B); elastomer (A) has 0.003 to 0.04 mmol/g of amino group- or hydroxyl group-derived active hydrogen; the ratio of functional group-derived active hydrogen in adhesion-imparting agent (B) is 0 to 15 mol per 1 mol of elastomer (A)-derived active hydrogen; and the ratio of isocyanate groups in polyisocyanate (C) is within a range of 3 to 15 mol per a total of 1 mol of active hydrogen derived from elastomer(A) and adhesion-imparting agent (B).

Description

非水電解質二次電池容器用積層体、及びその製造方法、並びに非水電解質二次電池、及び接着剤組成物Non-aqueous electrolyte secondary battery container laminate, manufacturing method thereof, non-aqueous electrolyte secondary battery, and adhesive composition
 本発明は、非水電解質二次電池の電池容器形成用の積層体に好適に適用できる接着剤組成物に関する。また、その接着剤組成物を用いて形成した非水電解質二次電池容器用積層体、及びその製造方法に関する。更に、その非水電解質二次電池容器用積層体を具備する非水電解質二次電池に関する。 The present invention relates to an adhesive composition that can be suitably applied to a laminate for forming a battery container of a non-aqueous electrolyte secondary battery. Moreover, it is related with the laminated body for nonaqueous electrolyte secondary battery containers formed using the adhesive composition, and its manufacturing method. Furthermore, it is related with the nonaqueous electrolyte secondary battery which comprises the laminated body for the nonaqueous electrolyte secondary battery container.
 近年、携帯電話、携帯型パソコン等の電子機器の急速な成長により、軽量かつ小型の非水電解質二次電池の需要が増大している。なかでも、より軽量コンパクト化が可能な、アルミニウム箔に代表される金属箔と樹脂フィルム等の複合材料からなるラミネートフィルムを用いてなる、袋状やトレイ状の電池容器を用いたものが注目を集めている。 In recent years, with the rapid growth of electronic devices such as mobile phones and portable personal computers, the demand for lightweight and small non-aqueous electrolyte secondary batteries is increasing. In particular, the use of bag-like or tray-like battery containers made of a composite film such as a metal foil represented by aluminum foil and a resin film that can be made lighter and more compact is drawing attention. Collecting.
 袋状やトレイ状の電池容器を用いた二次電池は、多くの場合、以下のようにして得る。
工程1: 袋状やトレイ状の電池容器を形成するための電池容器用積層体を形成する。電池容器用積層体は、一般に、外層/金属箔/最表層に少なくとも熱融着性フィルムが形成された熱融着性フィルムを積層した形態のものであり、各構成部材は接着剤組成物(例えば、特許文献1~5)により接着されている。
工程2: 電池容器用積層体において、少なくとも最表層が熱融着性フィルムである熱融着性フィルムを内面とする、少なくとも一方の端が空いた状態の袋やトレイを形成する。
工程3: 得られた袋やトレイ内に、二次電池本体、二次電池本体の正極・負極にそれぞれ接続する複数の電極端子(電極端子の他端部は袋やトレイから突出するように配する)、及び電解質を入れる。
工程4: 次いで、袋状の場合は、開放端近傍の熱融着性フィルム同士を対向させ、開放端から電極端子の他端部を袋外に突出させた状態で、開放端近傍の熱融着性フィルムを熱融着させることにより、二次電池本体、及び電解質等を密封する。一方、トレイ状の場合は、トレイ縁部の熱融着性フィルムに、平板状の積層体を構成する熱融着性フィルムを対向させ、電極端子の他端部をトレイ縁部からトレイ外部に突出させた状態で、トレイ縁部の熱融着性フィルムを熱融着させることにより、二次電池本体および電解質等を密封する。
A secondary battery using a bag-like or tray-like battery container is often obtained as follows.
Step 1: A battery container laminate for forming a bag-shaped or tray-shaped battery container is formed. The battery container laminate is generally a laminate of a heat-sealable film in which at least a heat-sealable film is formed on the outer layer / metal foil / outermost layer, and each constituent member is an adhesive composition ( For example, they are bonded according to Patent Documents 1 to 5).
Step 2: In the battery container laminate, at least one outermost layer is a heat-fusible film having a heat-fusible film as an inner surface, and at least one end of the bag or tray is formed.
Step 3: In the obtained bag or tray, a plurality of electrode terminals connected to the secondary battery main body and the positive and negative electrodes of the secondary battery main body (the other end of the electrode terminals are arranged so as to protrude from the bag or tray. And electrolyte.
Step 4: Next, in the case of a bag shape, the heat-fusible films near the open end are opposed to each other, and the other end portion of the electrode terminal protrudes from the open end to the outside of the bag. The secondary battery body, the electrolyte, and the like are sealed by heat-sealing the adhesive film. On the other hand, in the case of a tray shape, the heat-fusible film constituting the flat laminate is opposed to the heat-fusible film on the edge of the tray, and the other end of the electrode terminal is placed from the tray edge to the outside of the tray. The secondary battery main body and the electrolyte are sealed by thermally fusing the heat-fusible film at the edge of the tray in the protruding state.
 二次電池および電解質を封入する電池容器を形成する電池容器用積層体においては、各フィルム材を接合するための接着剤組成物の性能が、耐久性、電解質の漏れ防止の観点から重要であり、従来より種々の提案がなされてきた。特許文献1(特開2001-236932号公報)には、金属箔とオレフィン系樹脂層との間に、受酸層であるハイドロタルサイトを含有する変性オレフィン系樹脂層を設けてなる電池の包材が開示されている。変性オレフィン系樹脂としては、無水マレイン酸ポリプロピレンが開示されている。 In laminates for battery containers forming a battery container enclosing a secondary battery and an electrolyte, the performance of the adhesive composition for joining the film materials is important from the viewpoint of durability and prevention of electrolyte leakage. Various proposals have heretofore been made. Patent Document 1 (Japanese Patent Laid-Open No. 2001-236932) discloses a battery package in which a modified olefin resin layer containing hydrotalcite, which is an acid receiving layer, is provided between a metal foil and an olefin resin layer. A material is disclosed. As the modified olefin resin, maleic anhydride polypropylene is disclosed.
 特許文献2(特開2003-123708号公報)には、マレイン酸変性スチレン系熱可塑性エラストマー(A)及びカップリング剤(B)を含有する接着剤組成物を用いて形成した未延伸ポリプロピレンフィルム/接着剤層/アルミニウム箔/ナイロンフィルムを包装材として用いた二次電池が開示されている。また、接着剤組成物には、粘着付与剤を含んでもよい旨が記載されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-123708) describes an unstretched polypropylene film formed using an adhesive composition containing a maleic acid-modified styrene thermoplastic elastomer (A) and a coupling agent (B). A secondary battery using an adhesive layer / aluminum foil / nylon film as a packaging material is disclosed. In addition, it is described that the adhesive composition may contain a tackifier.
 特許文献3(国際公開第2004/041954号)には、カルボキシル基含有熱可塑性エラストマー、ポリオレフィンポリオール、粘着付与剤、及び多官能イソシアネートを含有する接着剤組成物が開示されている。カルボキシル基含有熱可塑性エラストマーは、熱可塑性エラストマーにカルボキシル基を導入することにより得られるものであり、熱可塑性エラストマーの好ましい例として、スチレン-ブタジエンブロック共重合体等が挙げられている。 Patent Document 3 (International Publication No. 2004/041954) discloses an adhesive composition containing a carboxyl group-containing thermoplastic elastomer, a polyolefin polyol, a tackifier, and a polyfunctional isocyanate. The carboxyl group-containing thermoplastic elastomer is obtained by introducing a carboxyl group into the thermoplastic elastomer. Preferred examples of the thermoplastic elastomer include a styrene-butadiene block copolymer.
 特許文献4(特開2005-063685号公報)には、ポリオレフィンポリオールと多官能イソシアネートとを必須成分とする接着剤組成物が開示されている。主剤として用いるポリオレフィンポリオールとしては、低分子量ポリオレフィンと同様な炭化水素骨格を持ち、複数の水酸基を有しているものであり、ポリブタンジエンジオール、水素化ポリブタジエンジオール等が挙げられている。なお、接着剤組成物には、スチレン系エラストマーおよびオレフィン系エラストマー等の熱可塑性エラストマーや、粘着付与剤を含有していてもよいことが記載されている。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2005-063685) discloses an adhesive composition containing polyolefin polyol and polyfunctional isocyanate as essential components. The polyolefin polyol used as the main agent has a hydrocarbon skeleton similar to that of the low molecular weight polyolefin and has a plurality of hydroxyl groups. Examples thereof include polybutanediene diol and hydrogenated polybutadiene diol. It is described that the adhesive composition may contain a thermoplastic elastomer such as a styrene elastomer and an olefin elastomer, and a tackifier.
 また、特許文献5(特開2004-10719号公報)には、ブロック共重合体と架橋剤と粘着付与樹脂とを含有する粘・接着剤組成物が開示されている。具体的には、ブロック共重合体(a)が、主として芳香族ビニル化合物単位からなる重合体ブロックと、主として共役ジエン単位からなり、炭素-炭素不飽和二重結合の少なくとも一部が水素添加されていてもよい重合体ブロックとを含み、かつブロック共重合体が両末端に水酸基を有するブロック共重合体を含有する;及び架橋剤(b)が分子内に少なくとも2個のイソシアネート基を有する粘・接着剤組成物が開示されている。 Further, Patent Document 5 (Japanese Patent Application Laid-Open No. 2004-10719) discloses an adhesive / adhesive composition containing a block copolymer, a crosslinking agent, and a tackifier resin. Specifically, the block copolymer (a) is mainly composed of a polymer block composed mainly of an aromatic vinyl compound unit and mainly composed of a conjugated diene unit, and at least a part of the carbon-carbon unsaturated double bond is hydrogenated. And the block copolymer contains a block copolymer having hydroxyl groups at both ends; and the cross-linking agent (b) has a viscosity having at least two isocyanate groups in the molecule. An adhesive composition is disclosed.
特開2001-236932号公報JP 2001-236932 A 特開2003-123708号公報JP 2003-123708 A 国際公開第2004/041954号International Publication No. 2004/041954 特開2005-063685号公報Japanese Patent Laying-Open No. 2005-063685 特開2004-010719号公報JP 2004-010719 A
 袋状やトレイ状の電池容器は、軽量、コンパクト化を実現できる一方、電解質の漏れ出し等がない密封性が極めて重要となる。電池容器は、これらの諸特性を満足させるために、前述したように一般的に外層/金属箔(アルミ箔)/内層の積層体を成し、各構成部材間は接着剤層によって接合されている。従って、高信頼性化を実現するためには、各構成部材自体、及びその組み合わせの最適化を行うのみならず、これらを接合するための接着剤組成物の高信頼性化が重要となる。即ち、接着剤組成物から形成される接着剤層が、電解質そのもの、あるいは電解質が水分によって分解し、生じたフッ酸等の分解物、あるいは電解質を溶解している溶剤等によるダメージを受け難く、接着性能が低下し難いことが重要となる。また、接着剤組成物の使用可能時間(以下、「ポットライフ」ともいう)が長いことが、接着剤組成物、さらには、これを用いて形成した接着剤層を有する積層体等の信頼性を高める点から求められている。 袋 Bag-shaped and tray-shaped battery containers can realize light weight and compactness, but the sealing performance without leakage of electrolyte is extremely important. In order to satisfy these various characteristics, the battery container generally comprises a laminate of an outer layer / metal foil (aluminum foil) / inner layer as described above, and the constituent members are joined by an adhesive layer. Yes. Therefore, in order to achieve high reliability, it is important not only to optimize each component member and the combination thereof, but also to increase the reliability of the adhesive composition for joining them. That is, the adhesive layer formed from the adhesive composition is not easily damaged by the electrolyte itself, or the electrolyte is decomposed by moisture, and the resulting hydrolyzate or the like, or the solvent dissolving the electrolyte, It is important that the adhesive performance is not easily lowered. In addition, the long usable time of the adhesive composition (hereinafter also referred to as “pot life”) means that the reliability of the adhesive composition, and further, a laminate having an adhesive layer formed using the adhesive composition, etc. It is demanded from the point of raising.
 本発明は、上記背景に鑑みてなされてなされたものであり、その目的とするところは、信頼性の高い非水電解質二次電池容器用積層体、及びその製造方法、並びに、非水電解質二次電池、及び前述の非水電解質二次電池容器用積層体を形成するのに好適な接着剤組成物を提供することである。 The present invention has been made in view of the above background, and its object is to provide a highly reliable laminate for a non-aqueous electrolyte secondary battery container, a method for producing the same, and a non-aqueous electrolyte two. It is to provide an adhesive composition suitable for forming a secondary battery and the aforementioned laminate for a nonaqueous electrolyte secondary battery container.
 本発明者らは、上記課題を解決すべく鋭意検討を重ね、以下に示すように、特定構造の成分を特定比率で含有させ、かつ、構成成分中に、特定量の特定官能基由来の活性水素を有し、更に、イソシアネート基を特定比率とするという全ての条件を満足することにより、上記課題を解決することを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and, as shown below, contain a component having a specific structure in a specific ratio, and the activity derived from a specific amount of a specific functional group in the constituent component. It has been found that the above-mentioned problems can be solved by satisfying all the conditions of having hydrogen and further having an isocyanate group at a specific ratio, and have completed the present invention.
 本発明に係る非水電解質二次電池容器用積層体は、金属箔と、熱融着性フィルムと、前記金属箔と前記熱融着性フィルムとを接合する接着剤層とを、少なくとも具備し、前記接着剤層は、スチレン系熱可塑性エラストマー(A)と、粘着付与剤(B)と、ポリイソシアネート(C)と、を含有し、前記スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量%中に、前記スチレン系熱可塑性エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含み、前記スチレン系熱可塑性エラストマー(A)は、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有し、前記スチレン系熱可塑性エラストマー(A)由来の前記活性水素1モルに対して、前記粘着付与剤(B)の官能基由来の活性水素が0~15モルであり、前記ポリイソシアネート(C)は、前記スチレン系熱可塑性エラストマー(A)由来の前記活性水素と、前記粘着付与剤(B)由来の前記活性水素との合計1モルに対して、イソシアネート基が3~150モルとなる範囲で含まれているものからなる接着剤組成物から形成されたものである。
 前記スチレン系熱可塑性エラストマー(A)中の前記アミノ基または前記水酸基の好ましい位置は、主鎖の末端の少なくとも一方の位置である。また、前記スチレン系熱可塑性エラストマー(A)中の前記アミノ基または前記水酸基のより好ましい位置は、主鎖の末端のみに位置とすることである。
 前記接着剤組成物は、更に、エラストマー複合樹脂(D)を含み、前記エラストマー複合樹脂(D)は、ポリエステル樹脂部分、及びポリウレタン樹脂部分の少なくともいずれか一方と、スチレン系熱可塑性エラストマー構造と、を含むことが好ましい。
 前記ポリイソシアネート(C)の好ましい例として、イソシアヌレート構造が挙げられる。
 前記エラストマー複合樹脂(D)の含有量は、前記スチレン系熱可塑性エラストマー(A)と前記粘着付与剤(B)との合計100重量部に対して、2~60重量部含有することが好ましい。
The laminate for a non-aqueous electrolyte secondary battery container according to the present invention comprises at least a metal foil, a heat-fusible film, and an adhesive layer that joins the metal foil and the heat-fusible film. The adhesive layer contains a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and the styrenic thermoplastic elastomer (A) and the tackifier. The styrenic thermoplastic elastomer contains 20 to 90% by weight of the styrenic thermoplastic elastomer (A) and 10 to 80% by weight of the tackifier (B) in a total of 100% by weight with the agent (B). (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or hydroxyl group, and the pressure-sensitive adhesive against 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A). The active hydrogen derived from the functional group of the additive (B) is 0 to 15 mol, and the polyisocyanate (C) includes the active hydrogen derived from the styrenic thermoplastic elastomer (A) and the tackifier (B ) Derived from an adhesive composition comprising an isocyanate group in a range of 3 to 150 mol with respect to a total of 1 mol of the above-mentioned active hydrogen.
A preferred position of the amino group or the hydroxyl group in the styrenic thermoplastic elastomer (A) is at least one position of the end of the main chain. Moreover, the more preferable position of the said amino group or the said hydroxyl group in the said styrene-type thermoplastic elastomer (A) is making it only into the terminal of a principal chain.
The adhesive composition further includes an elastomer composite resin (D), and the elastomer composite resin (D) includes at least one of a polyester resin portion and a polyurethane resin portion, a styrenic thermoplastic elastomer structure, It is preferable to contain.
A preferred example of the polyisocyanate (C) is an isocyanurate structure.
The content of the elastomer composite resin (D) is preferably 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B).
 本発明に係る非水電解質二次電池容器用積層体によれば、上述した接着剤組成物を用いることによって、電解質と接触した場合においても積層体の接着強度を高いレベルで維持できる。従って、信頼性の高い非水電解質二次電池容器用積層体を提供することができる。また、用いる接着剤組成物は、ポットライフが長いという優れた効果を有するものであるので、接着剤組成物の安定性を高め、これを用いて形成した接着剤層を有する非水電解質二次電池容器用積層体の高信頼性化を実現できる。 According to the laminate for a non-aqueous electrolyte secondary battery container according to the present invention, the adhesive strength of the laminate can be maintained at a high level even when contacting with the electrolyte by using the above-described adhesive composition. Therefore, a highly reliable laminate for a non-aqueous electrolyte secondary battery container can be provided. Further, since the adhesive composition to be used has an excellent effect that the pot life is long, the stability of the adhesive composition is improved, and the non-aqueous electrolyte secondary having the adhesive layer formed using the same is used. High reliability of the battery container laminate can be realized.
 本発明に係る非水電解質二次電池は、二次電池本体と、前記二次電池本体を収容する電池容器と、前記電池容器内に密封された電解質と、を具備し、前記電池容器は、上記態様の非水電解質二次電池容器用積層体を具備するものである A non-aqueous electrolyte secondary battery according to the present invention includes a secondary battery body, a battery container that houses the secondary battery body, and an electrolyte sealed in the battery container. The laminate for a non-aqueous electrolyte secondary battery container according to the above aspect is provided.
 本発明に係る接着剤組成物は、スチレン系熱可塑性エラストマー(A)と、粘着付与剤(B)と、ポリイソシアネート(C)と、を含有し、前記スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量%中に、前記スチレン系熱可塑性エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含み、前記スチレン系熱可塑性エラストマー(A)が、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有し、前記スチレン系熱可塑性エラストマー(A)由来の活性水素1モルに対して、前記粘着付与剤(B)の官能基由来の活性水素が0~15モルであり、前記ポリイソシアネート(C)は、前記スチレン系熱可塑性エラストマー(A)由来の前記活性水素と、前記粘着付与剤(B)由来の前記活性水素との合計1モルに対して、イソシアネート基が3~150モルとなる範囲で含まれているものである。
 本発明の接着剤組成物は、非水電解質二次電池容器用の積層体を形成する用途に好適に用いられる。
 前記スチレン系熱可塑性エラストマー(A)の前記アミノ基または前記水酸基の好ましい位置は、主鎖の少なくとも一方の末端を挙げることができる。また、前記スチレン系熱可塑性エラストマー(A)中の前記アミノ基または前記水酸基のより好ましい位置は、主鎖の末端のみに位置とすることである。
 前記ポリイソシアネート(C)の好ましい例として、イソシアヌレート構造が挙げられる。
 更に、エラストマー複合樹脂(D)を含み、前記エラストマー複合樹脂(D)は、ポリエステル樹脂部分およびポリウレタン樹脂部分の少なくともいずれか一方と、スチレン系熱可塑性エラストマー構造と、を含むことが好ましい。
 前記エラストマー複合樹脂(D)の好ましい含有量は、前記スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量部に対して、2~60重量部の範囲である。
The adhesive composition according to the present invention contains a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and the styrenic thermoplastic elastomer (A), The styrenic thermoplastic elastomer (A) is contained in an amount of 20 to 90% by weight and the tackifier (B) is contained in an amount of 10 to 80% by weight in a total of 100% by weight with the tackifier (B). The thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or a hydroxyl group, and with respect to 1 mol of active hydrogen derived from the styrenic thermoplastic elastomer (A), The active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol, and the polyisocyanate (C) is the active water derived from the styrenic thermoplastic elastomer (A). If, with respect to the total 1 mol of the active hydrogen of the derived tackifier (B), and the isocyanate group is contained in the range of 3 to 150 mol.
The adhesive composition of this invention is used suitably for the use which forms the laminated body for nonaqueous electrolyte secondary battery containers.
A preferable position of the amino group or the hydroxyl group of the styrene-based thermoplastic elastomer (A) can include at least one end of the main chain. Moreover, the more preferable position of the said amino group or the said hydroxyl group in the said styrene-type thermoplastic elastomer (A) is making it only into the terminal of a principal chain.
A preferred example of the polyisocyanate (C) is an isocyanurate structure.
Furthermore, an elastomer composite resin (D) is included, and the elastomer composite resin (D) preferably includes at least one of a polyester resin portion and a polyurethane resin portion, and a styrene-based thermoplastic elastomer structure.
A preferable content of the elastomer composite resin (D) is in the range of 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). .
 本発明に係る非水電解質二次電池容器用積層体の製造方法は、金属箔または熱融着性フィルムの一方の面に、上記態様の接着剤組成物を塗工・乾燥して未硬化の接着剤層を形成し、前記金属箔、前記接着剤層、前記熱融着性フィルムの積層構造が形成されるように、前記未硬化の接着剤層の表面に前記熱融着性フィルム、若しくは前記金属箔を重ね、前記未硬化の接着剤層を硬化し、前記金属箔と前記熱融着性フィルムとを貼り合わせるものである。 In the method for producing a laminate for a nonaqueous electrolyte secondary battery container according to the present invention, the adhesive composition of the above aspect is applied to one surface of a metal foil or a heat-fusible film and dried to be uncured. Forming an adhesive layer and forming the laminated structure of the metal foil, the adhesive layer, and the heat-fusible film on the surface of the uncured adhesive layer, or The metal foil is stacked, the uncured adhesive layer is cured, and the metal foil and the heat-fusible film are bonded together.
 本発明によれば、信頼性の高い非水電解質二次電池容器用積層体、及びその製造方法、並びに、非水電解質二次電池、及び前述の非水電解質二次電池容器用積層体を形成するのに好適な接着剤組成物を提供することができるという優れた効果を有している。 According to the present invention, a highly reliable laminate for a nonaqueous electrolyte secondary battery container, a manufacturing method thereof, a nonaqueous electrolyte secondary battery, and the aforementioned laminate for a nonaqueous electrolyte secondary battery container are formed. It has the outstanding effect that the adhesive composition suitable for carrying out can be provided.
 以下、本発明の実施の形態を、詳細に説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得る。また、本明細書において「任意の数A~任意の数B」なる記載は、数A及び数Aより大きい範囲であって、数B及び数Bより小さい範囲を意味する。また、本明細書及び請求の範囲において記載する「(メタ)アクリレート」という表記は、「アクリレート」に読み替えた化合物、及び「メタアクリレート」に読み替えた化合物の何れも含むものとする。 Hereinafter, embodiments of the present invention will be described in detail. In addition, as long as it agree | coincides with the meaning of this invention, other embodiment can also belong to the category of this invention. In the present specification, the description “any number A to any number B” means a range larger than the numbers A and A but smaller than the numbers B and B. In addition, the expression “(meth) acrylate” described in the present specification and claims includes both the compound read as “acrylate” and the compound read as “methacrylate”.
 本発明の非水電解質二次電池は、二次電池本体と、これを収容する電池容器と、電池容器内に密封された電解質と、二次電池本体の正極と負極にそれぞれ接合されてなる複数の端子等を有するものである。電池容器は、後述する本発明の接着剤組成物を介して、金属箔と熱融着性フィルムとが積層されてなる非水電解質二次電池容器用積層体を有する。この積層体の内層側に設けられた熱融着性フィルムの一部の熱融着によって、複数の端子の他端部を電池容器から突出させた状態で、二次電池本体、複数の端子、及び電解質が電池容器内部に密封されている。なお、本明細書の電解質とは、一般的には液状のものであるが、ゲル状、固体状のものを含む。液状とは、電解質自体が液体であることの他、電解質溶液も含む。また、本発明では、金属箔を境に電解質に近い側に位置する層を「内層」と称し、金属箔を境に電解質から遠い側に位置する層を「外層」と称する。 The non-aqueous electrolyte secondary battery of the present invention includes a secondary battery body, a battery container that accommodates the secondary battery body, an electrolyte that is sealed in the battery container, and a plurality of joints that are respectively joined to the positive electrode and the negative electrode of the secondary battery body. And so on. A battery container has the laminated body for nonaqueous electrolyte secondary battery containers formed by laminating | stacking metal foil and a heat-fusible film through the adhesive composition of this invention mentioned later. In a state where the other end portions of the plurality of terminals protrude from the battery container by heat fusion of a part of the heat-fusible film provided on the inner layer side of the laminate, the secondary battery body, the plurality of terminals, And the electrolyte is sealed inside the battery container. In addition, although the electrolyte of this specification is generally a liquid thing, it includes a gel form and a solid form. The liquid state includes an electrolyte solution in addition to the electrolyte itself being a liquid. In the present invention, a layer positioned on the side closer to the electrolyte with the metal foil as a boundary is referred to as an “inner layer”, and a layer positioned on the side farther from the electrolyte with the metal foil as a boundary is referred to as an “outer layer”.
 本発明の非水電解質二次電池容器用積層体は、金属箔と、熱融着性フィルムと、これらを接合する接着剤層とを、少なくとも有するものである。熱融着性フィルムは、単層の熱融着性フィルムから構成されていてもよく、熱融着性フィルムを具備する多層積層体からなっていてもよい。多層積層体の場合、最内層表面(電解質と接する露出面)が熱融着性フィルムであればよい。多層積層体である熱融着性フィルムは、例えば、フィルム化する際、異なる種類の熱融着性樹脂を共押出しすることによって得ることができる。あるいは、熱融着性フィルムと他のフィルムとを接着剤を用いて積層したりすることによって得ることもできる。本発明の接着剤組成物は、後述するように耐薬品性に優れているので、金属箔よりも内部側に位置する内層との接着用途に特に威力を発揮する。具体的には、金属箔と熱融着性フィルムとの接着に好適である。また、熱融着性フィルムが多層積層体の場合には、各層の接着にも好適である。また、耐薬品性が求められる積層体の接着に好適に利用できる。無論、本発明の接着剤組成物は、外層と金属箔との接着にも好適に用いられる。また、上述した以外の各種部材の接着にも利用できる。 The laminate for a non-aqueous electrolyte secondary battery container of the present invention has at least a metal foil, a heat-fusible film, and an adhesive layer for joining them. The heat-fusible film may be composed of a single-layer heat-fusible film, or may be composed of a multilayer laminate comprising the heat-fusible film. In the case of a multilayer laminate, the innermost layer surface (exposed surface in contact with the electrolyte) may be a heat-fusible film. A heat-fusible film that is a multilayer laminate can be obtained, for example, by co-extrusion of different types of heat-fusible resins when forming a film. Or it can also obtain by laminating | stacking a heat-fusible film and another film using an adhesive agent. Since the adhesive composition of the present invention has excellent chemical resistance as will be described later, it is particularly effective for bonding with an inner layer located on the inner side of the metal foil. Specifically, it is suitable for adhesion between the metal foil and the heat-fusible film. Moreover, when a heat-fusible film is a multilayer laminated body, it is suitable also for adhesion | attachment of each layer. Moreover, it can utilize suitably for adhesion | attachment of the laminated body by which chemical resistance is calculated | required. Of course, the adhesive composition of the present invention is also suitably used for adhesion between the outer layer and the metal foil. Moreover, it can utilize also for adhesion | attachment of various members other than having mentioned above.
 金属箔の金属としては、アルミニウム、銅、ニッケル等が挙げられる。これらの金属箔は、各種表面処理を施したものであってもよい。表面処理の例としては、例えば、サンドブラスト処理、研磨処理などの物理的処理や蒸着による脱脂処理、エッチング処理やカップリング剤を塗布するプライマー処理などの化学処理がある。本発明において、金属箔の厚みは、特に限定されず、薄膜状のものから、シート状のものも含む。また、板状であってもよい。 Examples of the metal of the metal foil include aluminum, copper, and nickel. These metal foils may be subjected to various surface treatments. Examples of the surface treatment include, for example, physical treatment such as sand blast treatment and polishing treatment, degreasing treatment by vapor deposition, chemical treatment such as etching treatment and primer treatment applying a coupling agent. In the present invention, the thickness of the metal foil is not particularly limited, and includes a thin film to a sheet. Moreover, plate shape may be sufficient.
 熱融着性フィルムとしては、ポリエチレン、ポリプロピレン等のポリオレフィンフィルムが挙げられ、特に未延伸のフィルムが好適に用いられる。熱融着性フィルムの厚みは、本発明の趣旨を逸脱しない範囲で限定されず、薄膜状のものから、シート状・板状のものまで含むものとする。 Examples of the heat-fusible film include polyolefin films such as polyethylene and polypropylene, and an unstretched film is particularly preferably used. The thickness of the heat-fusible film is not limited within a range not departing from the gist of the present invention, and includes a thin film to a sheet / plate.
 非水電解質二次電池容器用積層体は、金属箔上に外層フィルム等の外層部材が配されていてもよい。即ち、金属箔が熱融着性フィルムと外層部材によって、挟まれた構造となっていてもよい。外層部材の例としては、ポリエステル樹脂やポリアミド樹脂(ナイロン)等の延伸フィルム等が挙げられる。 The laminate for a nonaqueous electrolyte secondary battery container may have an outer layer member such as an outer layer film disposed on a metal foil. That is, the metal foil may be sandwiched between the heat-fusible film and the outer layer member. Examples of the outer layer member include stretched films such as polyester resin and polyamide resin (nylon).
 電池容器には、袋状用の容器のパウチタイプと、金型を用いて平板状の積層体を成型加工してなるトレイ状容器タイプとがある。袋状用の容器の一形態が、特開2007-294381号公報の図8に例示される。また、トレイ状容器の一形態が同公報の図9に示され、他の形態が図2に示される。本発明の接着剤組成物を用いてなる積層体は、袋状、トレイ状、両方のタイプの容器の形成に使用できる。いずれの場合も、熱融着性フィルムが内側を向くように配し、複数の端子の先端部を外部に突出した状態で、熱融着性フィルムの一部を熱融着し、電池本体及び電解質を密封する。 There are two types of battery containers: a pouch type for a bag-like container and a tray-type container type formed by molding a flat laminate using a mold. One form of a bag-like container is illustrated in FIG. 8 of JP-A-2007-294381. Further, one form of the tray-like container is shown in FIG. 9 of the publication, and the other form is shown in FIG. The laminate using the adhesive composition of the present invention can be used to form both types of containers, bags and trays. In either case, a part of the heat-fusible film is heat-sealed in a state where the heat-fusible film faces inward and the tips of the plurality of terminals protrude to the outside. Seal the electrolyte.
 本発明の接着剤組成物は、スチレン系熱可塑性エラストマー(A)と、粘着付与剤(B)と、ポリイソシアネート(C)と、を含有するものであり、以下の(i)~(iv)の条件を満足するものである。即ち、(i)スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量%中に、前記スチレン系熱可塑性エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含む。(ii)スチレン系熱可塑性エラストマー(A)が、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有する。(iii)スチレン系熱可塑性エラストマー(A)由来の活性水素1モルに対して、前記粘着付与剤(B)の官能基由来の活性水素が0~15モルである。(iv)ポリイソシアネート(C)は、スチレン系熱可塑性エラストマー(A)の前記活性水素と、粘着付与剤(B)の前記活性水素との合計1モルに対して、イソシアネート基が3~150モルとなる範囲で含まれている。 The adhesive composition of the present invention comprises a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and the following (i) to (iv) The above conditions are satisfied. That is, (i) 20 to 90% by weight of the styrene-based thermoplastic elastomer (A) is added to the total amount of 100% by weight of the styrene-based thermoplastic elastomer (A) and the tackifier (B). 10 to 80% by weight of the agent (B) is contained. (Ii) The styrenic thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or a hydroxyl group. (Iii) The active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol with respect to 1 mol of active hydrogen derived from the styrene-based thermoplastic elastomer (A). (Iv) The polyisocyanate (C) contains 3 to 150 mol of isocyanate groups with respect to 1 mol in total of the active hydrogen of the styrenic thermoplastic elastomer (A) and the active hydrogen of the tackifier (B). It is included in the range.
 本発明で使用されるスチレン系熱可塑性エラストマー(A)(以下、単に「エラストマー(A)」とも称する)について説明する。本発明における「熱可塑性エラストマー」とは、加硫処理を行わなくても、その成形品が常温でゴム弾性を有する樹脂、即ち熱可塑性樹脂にしてかつゴム弾性を有する物を指す。化学構造的にはABA型のブロックまたは(A-B)n型のマルチブロック構造を有するものが一般的である。 The styrenic thermoplastic elastomer (A) (hereinafter also simply referred to as “elastomer (A)”) used in the present invention will be described. The “thermoplastic elastomer” in the present invention refers to a resin that has a rubber elasticity at room temperature, that is, a thermoplastic resin that has a rubber elasticity without performing vulcanization treatment. The chemical structure generally has an ABA type block or an (AB) n type multi-block structure.
 スチレン系熱可塑性エラストマー(A)は、耐電解質性および耐熱性が優れるという理由から、ポリスチレン構造を分子中に有しているものが好ましく、具体例としてはスチレン-ブタジエンブロック共重合体、スチレン-エチレンプロピレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-エチレン-ブチレン-スチレンブロック共重合体、スチレン-エチレンプロピレン-スチレン共重合体等が挙げられる。なお、本明細書でいう「耐電解質性」とは、電解質のみならず、非水電解質二次電池を使用することによって発生し得る物質に対する耐性をいうものとする。 The styrenic thermoplastic elastomer (A) preferably has a polystyrene structure in the molecule because of its excellent electrolyte resistance and heat resistance. Specific examples include styrene-butadiene block copolymers, styrene- Ethylene propylene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylenepropylene-styrene copolymer, etc. Can be mentioned. As used herein, “electrolytic resistance” refers to resistance not only to the electrolyte but also to a substance that can be generated by using a nonaqueous electrolyte secondary battery.
 スチレン系熱可塑性エラストマー(A)の重合法としては、一般的に、有機リチウム化合物などの重合触媒を用いて不活性溶媒中でアニオン重合反応によりスチレンなどの芳香族ビニル化合物、共役ジエン化合物を逐次重合させ、リビング末端に対してアルコール類やカルボン酸類などの活性水素を含有する化合物(以下、末端変性剤と呼ぶ)を添加して重合停止する方法がある。これにより、共役ジエン含有の共重合体が得られる。得られた共重合体は、チーグラー系の触媒などの水添触媒の存在下で水素添加反応することにより共役ジエン量を調整することができる。 As a polymerization method of the styrenic thermoplastic elastomer (A), generally, an aromatic vinyl compound such as styrene and a conjugated diene compound are sequentially formed by anionic polymerization reaction in an inert solvent using a polymerization catalyst such as an organic lithium compound. There is a method in which polymerization is terminated by adding a compound containing active hydrogen such as alcohols and carboxylic acids (hereinafter referred to as a terminal modifier) to the living terminal. Thereby, a conjugated diene-containing copolymer is obtained. The amount of the conjugated diene can be adjusted by subjecting the obtained copolymer to a hydrogenation reaction in the presence of a hydrogenation catalyst such as a Ziegler catalyst.
 スチレン系熱可塑性エラストマー(A)は、後述のポリイソシアネート(C)と反応させることで架橋構造を形成する。スチレン系熱可塑性エラストマー(A)は、単一種類を用いる他、複数種類を併用してもよい。接着剤組成物の高い接着強度および優れた耐電解質性を実現するために、スチレン系熱可塑性エラストマー(A)は、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有する。換言すると、活性水素を0.003~0.04mmol/gの範囲とし、活性水素を有する官能基は、実質的に、アミノ基または水酸基に由来するものとする。但し、本発明の趣旨を逸脱しない範囲において、他の官能基からなる活性水素を有する構造を排除するものではない。また、スチレン系熱可塑性エラストマー(A)は、一分子中にアミノ基か水酸基のいずれか一方が含まれているものが好適に用いられるが、一分子中にアミノ基と水酸基の両官能基が含まれているものでもよい。また、アミノ基を有するスチレン系熱可塑性エラストマー(A)と、水酸基を有するスチレン系熱可塑性エラストマー(A)が混合されていてもよい。 Styrenic thermoplastic elastomer (A) forms a crosslinked structure by reacting with polyisocyanate (C) described later. As the styrene-based thermoplastic elastomer (A), a single type may be used or a plurality of types may be used in combination. In order to realize high adhesive strength and excellent electrolyte resistance of the adhesive composition, the styrenic thermoplastic elastomer (A) contains 0.003 to 0.04 mmol / g of active hydrogen derived from amino groups or hydroxyl groups. Have. In other words, the active hydrogen is in the range of 0.003 to 0.04 mmol / g, and the functional group having active hydrogen is substantially derived from an amino group or a hydroxyl group. However, the structure having active hydrogen composed of other functional groups is not excluded without departing from the spirit of the present invention. In addition, as the styrene thermoplastic elastomer (A), one having either an amino group or a hydroxyl group in one molecule is preferably used, and both functional groups of amino group and hydroxyl group are contained in one molecule. It may be included. Moreover, the styrene-type thermoplastic elastomer (A) which has an amino group, and the styrene-type thermoplastic elastomer (A) which has a hydroxyl group may be mixed.
 スチレン系熱可塑性エラストマー(A)に、アミノ基や水酸基を導入する方法として、エラストマー(A)の側鎖にグラフト反応させる方法や、エラストマー(A)の主鎖末端に導入する方法が挙げられる。これら方法を併用することで、主鎖末端および側鎖にアミノ基や水酸基を導入することもできる。 Examples of a method for introducing an amino group or a hydroxyl group into the styrene-based thermoplastic elastomer (A) include a method in which a graft reaction is performed on the side chain of the elastomer (A), and a method in which the amino group or hydroxyl group is introduced into the main chain terminal of the elastomer (A). By using these methods in combination, amino groups and hydroxyl groups can be introduced into the main chain terminals and side chains.
 スチレン系熱可塑性エラストマー(A)の側鎖にアミノ基や水酸基を導入する方法としては、スチレン系エラストマーと、アミノ基や水酸基を有する重合性モノマーとを有機過酸化物を用いてグラフト反応させる方法が挙げられる。 As a method for introducing an amino group or a hydroxyl group into the side chain of the styrene thermoplastic elastomer (A), a method of grafting a styrene elastomer and a polymerizable monomer having an amino group or a hydroxyl group using an organic peroxide. Is mentioned.
 前記アミノ基や水酸基を有する重合性モノマーとしては、これらに限定されるものではないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート等が挙げられる。これらは単独で使用してもよいし、任意の組合せで併用してもよい。 Examples of the polymerizable monomer having an amino group or a hydroxyl group include, but are not limited to, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth). Examples include acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, caprolactone-modified hydroxy (meth) acrylate, and the like. These may be used alone or in any combination.
 前記有機過酸化物としては、これに限定されるものではないが、例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクエトエート等が挙げられる。これらは単独で使用してもよいし、任意の組合せで併用してもよい。 Examples of the organic peroxide include, but are not limited to, di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene. Hydroperoxide, t-butyl hydroperoxide, 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, cyclohexanone Oxide, t-butylperoxybenzoate, t-butylperoxyisobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-2-ethylhexanoate, t- Butyl peroxy isopropyl carbonate, cumyl par Kishio Que door benzoate, and the like. These may be used alone or in any combination.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に官能基を導入する方法としては、スチレン系エラストマーを重合する際にリビング末端に末端変性剤を反応させる方法や、アミノ基や水酸基が保護された重合触媒を使用してスチレン系エラストマーを重合した後に脱保護反応を行う方法が挙げられる。これらの方法を併用することで、エラストマー(A)の主鎖両末端、若しくは主鎖の片末端にアミノ基や水酸基を導入することができる。 As a method for introducing a functional group into the main chain terminal of the styrene-based thermoplastic elastomer (A), a method in which a terminal modifier is reacted at the living terminal when polymerizing the styrene-based elastomer, an amino group or a hydroxyl group is protected. Examples thereof include a method of performing a deprotection reaction after polymerizing a styrene elastomer using a polymerization catalyst. By using these methods in combination, an amino group or a hydroxyl group can be introduced into both ends of the main chain of the elastomer (A) or one end of the main chain.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に末端変性剤を使用してアミノ基や水酸基を導入する方法としては、例えば、スチレン系熱可塑性エラストマー(A)を合成する際のリビング末端に、アミノ基や水酸基を有する末端変性剤および/またはリビング末端と反応させることでアミノ基や水酸基を形成する末端変性剤を付加反応させる方法が挙げられる。また、スチレン系熱可塑性エラストマー(A)がスチレン系エラストマーの水素化物である場合、これに対し有機リチウム化合物などの有機アルカリ金属化合物を反応させ、有機アルカリ金属が付加した共重合体に対してアミノ基や水酸基を含有した末端変性剤を付加反応させる方法が挙げられる。 As a method of introducing an amino group or a hydroxyl group using a terminal modifier at the main chain terminal of the styrene-based thermoplastic elastomer (A), for example, at the living terminal when synthesizing the styrene-based thermoplastic elastomer (A), Examples thereof include a method in which an end modifier having an amino group or a hydroxyl group and / or a terminal modifier that forms an amino group or a hydroxyl group by reacting with a living end is subjected to an addition reaction. Further, when the styrene-based thermoplastic elastomer (A) is a hydride of a styrene-based elastomer, an aminoalkali metal compound such as an organolithium compound is reacted with the styrenic thermoplastic elastomer (A), and the copolymer to which the organic alkali metal is added is added to the amino acid. Examples thereof include a method in which an end modifier containing a group or a hydroxyl group is subjected to an addition reaction.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に活性水素を有するアミノ基を導入するための末端変性剤としては、例えば、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチルー2-イミダゾリジノン、N-メチルピロリドン、N,N'-ジメチルプロピレンウレア等が挙げられる。 Examples of the terminal modifier for introducing an amino group having active hydrogen at the end of the main chain of the styrenic thermoplastic elastomer (A) include 1,3-dimethyl-2-imidazolidinone and 1,3-diethyl-2. -Imidazolidinone, N-methylpyrrolidone, N, N'-dimethylpropylene urea and the like.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に水酸基を導入するための末端変性剤としては、例えば、ε-カプロラクトン、δ-バレロラクトン、ブチロラクトン、γ-カプロラクトン、γ-バレロラクトン、4-メトキシベンゾフェノン、4-エトキシベンゾフェノン、4,4'-ビス(メトキシ)ベンゾフェノン、4,4'-ビス(エトキシ)ベンゾフェノン等が挙げられる。 Examples of the terminal modifier for introducing a hydroxyl group into the main chain terminal of the styrenic thermoplastic elastomer (A) include ε-caprolactone, δ-valerolactone, butyrolactone, γ-caprolactone, γ-valerolactone, and 4-methoxy. Examples include benzophenone, 4-ethoxybenzophenone, 4,4′-bis (methoxy) benzophenone, 4,4′-bis (ethoxy) benzophenone, and the like.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に導入された変性剤の個数は、平均0.5~1個の範囲が好ましく、更に好ましくは平均0.7~1個の範囲である。エラストマー(A)の主鎖末端に導入された変性剤の個数が平均0.5より少ない時、後述のポリイソシアネート(C)との反応により形成される架橋構造が疎となり、十分な接着性や耐電解質性が得られないおそれがある。 The number of modifiers introduced into the ends of the main chain of the styrenic thermoplastic elastomer (A) is preferably in the range of 0.5 to 1 on average, and more preferably in the range of 0.7 to 1 on average. When the number of modifiers introduced at the end of the main chain of the elastomer (A) is less than 0.5 on average, the cross-linked structure formed by reaction with the polyisocyanate (C) described later becomes sparse, and sufficient adhesion Electrolyte resistance may not be obtained.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に上記官能基を導入する際に使用した変性剤の種類により、変性剤を反応させた段階で一般に水酸基やアミノ基等は有機金属塩となっていることがあるが、その場合には、水やアルコール等の活性水素を有する化合物で処理することにより、水酸基やアミノ基などにすることができる。 Depending on the type of modifier used when introducing the functional group at the end of the main chain of the styrenic thermoplastic elastomer (A), hydroxyl groups and amino groups generally become organometallic salts at the stage of reaction of the modifier. In that case, a hydroxyl group, an amino group, or the like can be obtained by treatment with a compound having active hydrogen such as water or alcohol.
 前記末端変性剤の使用量は、重合体のリビング末端1当量に対して、0.5~10当量の範囲が好ましく、更に好ましくは1~4当量の範囲である。末端変性剤の配合量が0.5当量より少ない場合、スチレン系熱可塑性エラストマー(A)の主鎖末端に十分な官能基を導入することができず、10当量よりも多い場合、過剰に残存する末端変性剤が接着力やポットライフを悪化させるおそれがある。 The amount of the terminal modifier used is preferably in the range of 0.5 to 10 equivalents, more preferably in the range of 1 to 4 equivalents with respect to 1 equivalent of the living terminal of the polymer. When the amount of the terminal modifier is less than 0.5 equivalent, sufficient functional groups cannot be introduced into the main chain terminal of the styrenic thermoplastic elastomer (A). There exists a possibility that the terminal modifier | denaturant to make worse adhesive force and pot life.
 スチレン系熱可塑性エラストマー(A)の主鎖末端に前記官能基が保護された重合触媒を使用して前記官能基を導入する方法としては、3-(t-ブチルジメチルシロキシ)-2,2-ジメチル-1-プロピルリチウム、3-(トリメチルシロキシ)-2,2-ジメチル-1-プロピルリチウム、3-(t-ブトキシ)-2,2-ジメチル-1-プロピルリチウムなどの、官能基が保護された重合開始剤を用いてスチレン系エラストマーを重合した後に、脱保護剤を反応させる方法が挙げられる。 As a method of introducing the functional group using a polymerization catalyst in which the functional group is protected at the end of the main chain of the styrenic thermoplastic elastomer (A), 3- (t-butyldimethylsiloxy) -2,2- Functional groups such as dimethyl-1-propyllithium, 3- (trimethylsiloxy) -2,2-dimethyl-1-propyllithium, 3- (t-butoxy) -2,2-dimethyl-1-propyllithium are protected A method of reacting a deprotecting agent after polymerizing a styrene-based elastomer using the prepared polymerization initiator is mentioned.
 前記脱保護剤としては、例えば、塩酸、スルホン酸、カルボン酸などのプロトン酸性化合物、3フッ化ホウ素、4塩化錫などのルイス酸性化合物、フッ化テトラブチルアンモニウム、フッ化アンモニウム、フッ化カリウムなどのアルカリ性フッ素イソン含有化合物等が挙げられる。 Examples of the deprotecting agent include proton acidic compounds such as hydrochloric acid, sulfonic acid and carboxylic acid, Lewis acidic compounds such as boron trifluoride and tin chloride, tetrabutylammonium fluoride, ammonium fluoride and potassium fluoride. And an alkaline fluorine-ison containing compound.
 スチレン系熱可塑性エラストマー(A)は、エラストマー(A)中にスチレン単位が5~60重量%含まれることが好ましく、更に好ましくは10~40重量%である。スチレン系熱可塑性エラストマー(A)のスチレン単位が5重量%よりも少ない時は、十分な粘弾性が得られないおそれがあり、スチレン単位が60重量%よりも多い時は、溶剤への溶解性が低下し溶液安定性を損ねてしまうおそれがある。 The styrene thermoplastic elastomer (A) preferably contains 5 to 60% by weight of styrene units in the elastomer (A), more preferably 10 to 40% by weight. When the styrene unit of the styrene-based thermoplastic elastomer (A) is less than 5% by weight, sufficient viscoelasticity may not be obtained. When the styrene unit is more than 60% by weight, the solubility in a solvent is increased. May decrease and impair solution stability.
 スチレン系熱可塑性エラストマー(A)の数平均分子量は、3万~30万が好ましく、更に好ましくは4万~15万である。スチレン系熱可塑性エラストマー(A)の数平均分子量が3万より低い場合は、十分な粘弾性が得られないおそれがあり、30万よりも大きい場合は、粘度が高すぎるため塗工性が大きく悪化するおそれがある。分子量はゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算分子量で表される。 The number average molecular weight of the styrenic thermoplastic elastomer (A) is preferably 30,000 to 300,000, and more preferably 40,000 to 150,000. When the number average molecular weight of the styrene-based thermoplastic elastomer (A) is lower than 30,000, sufficient viscoelasticity may not be obtained. When the number average molecular weight is higher than 300,000, the viscosity is too high and the coating property is large. May get worse. The molecular weight is expressed in terms of polystyrene by gel permeation chromatography (GPC).
 スチレン系熱可塑性エラストマー(A)は、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有する。好ましくは0.005~0.035mmol/gであり、更に好ましくは0.008~0.03mmol/gである。以下、スチレン系熱可塑性エラストマー(A)の水酸基またはアミノ基に由来する活性水素量のことを、スチレン系熱可塑性エラストマー(A)の活性水素量と呼ぶ。
 なお、スチレン系熱可塑性エラストマー(A)の活性水素量は、以下の数式(1)によりようにして求められる。
[数1]
スチレン系熱可塑性エラストマー(A)の活性水素量
=(エラストマー(A)の官能基に由来する活性水素の個数×1,000)/エラストマー(A)の数平均分子量・・・(数式1)
 官能基に由来する活性水素の個数は、エラストマー(A)1分子あたりに導入された変性剤の個数をHPLCおよびNMR測定により求められ、エラストマー(A)の数平均分子量はGPC測定から求められる。
The styrenic thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from amino groups or hydroxyl groups. The amount is preferably 0.005 to 0.035 mmol / g, and more preferably 0.008 to 0.03 mmol / g. Hereinafter, the amount of active hydrogen derived from the hydroxyl group or amino group of the styrene-based thermoplastic elastomer (A) is referred to as the amount of active hydrogen of the styrene-based thermoplastic elastomer (A).
The amount of active hydrogen in the styrene-based thermoplastic elastomer (A) can be obtained by the following formula (1).
[Equation 1]
Active hydrogen content of styrenic thermoplastic elastomer (A)
= (Number of active hydrogens derived from functional group of elastomer (A) × 1,000) / number average molecular weight of elastomer (A) (Formula 1)
The number of active hydrogens derived from the functional group is obtained by HPLC and NMR measurement of the number of modifiers introduced per molecule of the elastomer (A), and the number average molecular weight of the elastomer (A) is obtained by GPC measurement.
 本発明で使用されるスチレン系熱可塑性エラストマー(A)は、市販品としては、例えば、旭化成ケミカル社製のタフテックMP10(アミノ基主鎖末端変性SEBS)、JSR社製のDYNARON8630P(アミノ基主鎖末端変性SEBS)、クラレ社製のセプトンHG-252(水酸基主鎖末端変性SEEPS)等が挙げられる。これらは単独で使用してもよいし、2種以上を任意に組合せて使用してもよい。 Examples of commercially available styrenic thermoplastic elastomers (A) used in the present invention include Tuftec MP10 (amino group main chain terminal modified SEBS) manufactured by Asahi Kasei Chemical Co., Ltd., and DYNARON 8630P (amino group main chain manufactured by JSR). End-modified SEBS), Kuraray Septon HG-252 (hydroxyl main chain terminal-modified SEEPS), and the like. These may be used alone or in any combination of two or more.
 接着剤組成物を調製すると、即ち、エラストマー(A)と後述する粘着付与剤(B)やポリイソシアネート(C)とを配合すると、エラストマー(A)の分子間で架橋反応が徐々に進行する。架橋反応が進行すると増粘が生じる。その結果、基材への濡れ性が低下して、徐々に接着強度が低下していくことになる。しかし、架橋を担う官能基を主鎖の側鎖ではなく、末端に、とりわけ主鎖の一方の末端に有するエラストマー(A)を用いると、エラストマー分子間の架橋反応が進行しても、接着剤組成物の粘度増加を効果的に抑制できる。換言すると、スチレン系熱可塑性エラストマー(A)の主鎖末端のみにアミノ基や水酸基を有している場合、接着剤組成物を調製してから長時間塗工作業を行う際に、アミノ基や水酸基が側鎖に有している場合に比してエラストマー(A)の分子間で架橋反応の進行をより効果的に抑制でき、増粘をより抑えることができる。従って、スチレン系熱可塑性エラストマー(A)は、アミノ基または水酸基をエラストマー(A)の主鎖末端にのみ有していることが好ましい。接着剤組成物の粘度増加が小さいと、接着剤組成物を調製した後の経過時間によらず、高い接着強度を発揮できる。かかる観点から、エラストマー(A)は、架橋を担う官能基を主鎖末端にのみ、とりわけ主鎖の一方の末端に有することが好ましい。 When the adhesive composition is prepared, that is, when the elastomer (A) is combined with a tackifier (B) or polyisocyanate (C) described later, the crosslinking reaction gradually proceeds between the molecules of the elastomer (A). As the crosslinking reaction proceeds, thickening occurs. As a result, the wettability to the substrate is lowered, and the adhesive strength is gradually lowered. However, when an elastomer (A) having a functional group responsible for crosslinking at the end, notably at one end of the main chain, is used instead of the side chain of the main chain, the adhesive can be used even if the cross-linking reaction between the elastomer molecules proceeds. An increase in the viscosity of the composition can be effectively suppressed. In other words, when the styrenic thermoplastic elastomer (A) has an amino group or a hydroxyl group only at the end of the main chain, the amino group or Compared with the case where the hydroxyl group is present in the side chain, the progress of the crosslinking reaction can be more effectively suppressed between the molecules of the elastomer (A), and the thickening can be further suppressed. Therefore, the styrenic thermoplastic elastomer (A) preferably has an amino group or a hydroxyl group only at the end of the main chain of the elastomer (A). When the increase in viscosity of the adhesive composition is small, high adhesive strength can be exhibited regardless of the elapsed time after the preparation of the adhesive composition. From this viewpoint, the elastomer (A) preferably has a functional group responsible for crosslinking only at the end of the main chain, particularly at one end of the main chain.
 本発明の接着剤組成物には、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有するスチレン系熱可塑性エラストマー(A)が所定の条件内で含まれていればよく、物性を損なわない範囲でアミノ基または水酸基に由来する官能基を有さないスチレン系熱可塑性エラストマーが含まれていてもよい。このような官能基を有さないスチレン系熱可塑性エラストマーの配合量は、本発明の趣旨を逸脱しない範囲内とする。例えば、スチレン系熱可塑性エラストマー(A)100重量部に対して50重量部以下であり、更に好ましくは30重量部以下である。スチレン系熱可塑性エラストマー(A)100重量部に対して、官能基を有さないスチレン系熱可塑性エラストマーが50重量部より多く配合された場合、接着剤全体に占めるスチレン系熱可塑性エラストマー(A)、粘着付与剤(B)、及び後述のポリイソシアネート(C)の割合が相対的に少なくなり、その結果、後述のポリイソシアネート(C)との反応により形成される架橋構造が疎となり、十分な接着性や耐電解質性が得られないおそれがある。 The adhesive composition of the present invention contains 0.003 to 0.04 mmol / g of a styrene thermoplastic elastomer (A) having an active hydrogen derived from an amino group or a hydroxyl group within predetermined conditions. In addition, a styrenic thermoplastic elastomer that does not have a functional group derived from an amino group or a hydroxyl group may be included as long as the physical properties are not impaired. The blending amount of such a styrenic thermoplastic elastomer having no functional group is within a range not departing from the gist of the present invention. For example, it is 50 parts by weight or less, more preferably 30 parts by weight or less, based on 100 parts by weight of the styrenic thermoplastic elastomer (A). When more than 50 parts by weight of a styrene thermoplastic elastomer having no functional group is blended with 100 parts by weight of the styrene thermoplastic elastomer (A), the styrene thermoplastic elastomer (A) occupies the entire adhesive. , The proportion of the tackifier (B), and the polyisocyanate (C) described later is relatively reduced, and as a result, the cross-linked structure formed by the reaction with the polyisocyanate (C) described later becomes sparse and sufficient. Adhesion and electrolyte resistance may not be obtained.
 次に、本発明で使用される粘着付与剤(B)について説明する。本発明において、粘着付与剤(B)は金属箔と熱融着性フィルム間の高度な接着強度を付与するために使用される。本発明で使用される粘着付与剤(B)としては、公知のものを利用できるが、ポリテルペン樹脂、ロジン系樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、共重合系石油樹脂および水添石油樹脂等が挙げられる。これらは単独で用いてもよいし、2種以上を任意に組み合わせて使用してもよい。 Next, the tackifier (B) used in the present invention will be described. In the present invention, the tackifier (B) is used for imparting high adhesive strength between the metal foil and the heat-fusible film. As the tackifier (B) used in the present invention, known ones can be used. Polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymer petroleum resins and water Examples include petroleum resin. These may be used alone or in any combination of two or more.
 前記ポリテルペン系樹脂の具体例としては、α-ピネン重合体、β-ピネン重合体およびこれらとフェノールあるいはビスフェノールAとの共重合体などが挙げられ、市販品としては、例えば、ヤスハラケミカル社製のYSレジンPX、YSレジンA、YSポリスターT等が挙げられる。 Specific examples of the polyterpene-based resin include α-pinene polymers, β-pinene polymers, and copolymers thereof with phenol or bisphenol A. Examples of commercially available products include YS made by Yasuhara Chemical Co., Ltd. Resin PX, YS resin A, YS polyster T, etc. are mentioned.
 前記ロジン系樹脂としては、天然ロジン、重合ロジンおよびこれらのエステル誘導体などが挙げられ、市販品としては、例えば、荒川化学工業社製のペンセルA、スーパーエステルA、パインクリスタルKR-85、KR-612、KR-614、KE-100、KE-311、KE-359、KE-604等が挙げられる。 Examples of the rosin resin include natural rosin, polymerized rosin, and ester derivatives thereof. Commercially available products include, for example, Pencel A, Superester A, Pine Crystal KR-85, KR- manufactured by Arakawa Chemical Industries, Ltd. 612, KR-614, KE-100, KE-311, KE-359, KE-604 and the like.
 前記脂肪族系石油樹脂としては、一般に石油のC5留分より合成される樹脂である。市販品としては、例えば、トーネックス社製のエスコレッツ、日本ゼオン社製のクイントン、グッドイヤー社製のウィングダック等が挙げられる。 The aliphatic petroleum resin is generally a resin synthesized from a C5 fraction of petroleum. Examples of commercially available products include Escorez manufactured by Tonex, Quinton manufactured by Zeon Corporation, and Wing Duck manufactured by Goodyear.
 前記脂環族系石油樹脂としては、一般に石油のC9留分より合成される樹脂である。市販品としては、例えば、丸善石油化学社製のマルカレッツ等がある。 The alicyclic petroleum resin is a resin that is generally synthesized from a C9 fraction of petroleum. Examples of commercially available products include Marukaretsu manufactured by Maruzen Petrochemical Co., Ltd.
 前記共重合石油樹脂としては、一般に石油のC5留分/C9留分を共重合した樹脂である。市販品としては、例えば、東邦化学工業株式会社のトーホーハイレジン等がある。 The copolymerized petroleum resin is generally a resin obtained by copolymerizing petroleum C5 fraction / C9 fraction. Examples of commercially available products include Toho High Resin from Toho Chemical Industry Co., Ltd.
 前記水添石油樹脂としては、例えば、上記の粘着付与剤樹脂を水素添加したものである。市販品としては、例えば、荒川化学工業社製のアルコン、ヤスハラケミカル社製のクリアロン、トーネックス社製のエスコレッツ等がある。 As the hydrogenated petroleum resin, for example, the above-described tackifier resin is hydrogenated. Commercially available products include, for example, Alcon manufactured by Arakawa Chemical Industries, Clearon manufactured by Yashara Chemical Co., and Escolez manufactured by Tonex.
 本発明で使用される粘着付与剤(B)の軟化点は、60~160℃であることが好ましく、80~150℃であることがより好ましい。粘着付与剤(B)の軟化点が60℃よりも低い時は、十分な接着強度向上の効果が得られないおそれがある。また、粘着付与剤(B)の軟化点が160℃よりも高い時は、接着剤の凝集力を損ない接着強度が低下してしまうおそれがある。 The softening point of the tackifier (B) used in the present invention is preferably 60 to 160 ° C, and more preferably 80 to 150 ° C. When the softening point of the tackifier (B) is lower than 60 ° C., there is a possibility that sufficient effect of improving the adhesive strength cannot be obtained. Moreover, when the softening point of a tackifier (B) is higher than 160 degreeC, there exists a possibility that the cohesive force of an adhesive agent may be impaired and the adhesive strength may fall.
 本発明で使用される粘着付与剤(B)は、カルボキシル基や水酸基などの活性水素を有する官能基を有していてもよい。ラミネートに使用する熱融着性フィルムの種類によっては、カルボキシル基を有する粘着付与剤を使用した方がラミネート直後から高い接着強度が得られる場合がある。 The tackifier (B) used in the present invention may have a functional group having active hydrogen such as a carboxyl group or a hydroxyl group. Depending on the type of heat-fusible film used for the lamination, a higher adhesive strength may be obtained immediately after the lamination by using a tackifier having a carboxyl group.
 本発明で使用される粘着付与剤(B)の酸価は、0~150mgKOH/gであることが好ましく、0~100mgKOH/gであることがより好ましい。上記したように、酸価を有する粘着付与樹脂(B)を用いることが好ましい場合がある。一方、酸価が大きすぎると、接着剤に使用されるトルエン等に溶解しにくくなったり、接着剤を構成する他の成分、例えばスチレン系熱可塑性エラストマー(A)との相溶性が悪くなったりする。従って、粘着付与剤(B)の酸価は0~150mgKOH/gであることが好ましい。 The acid value of the tackifier (B) used in the present invention is preferably 0 to 150 mgKOH / g, more preferably 0 to 100 mgKOH / g. As described above, it may be preferable to use a tackifier resin (B) having an acid value. On the other hand, if the acid value is too large, it will be difficult to dissolve in toluene or the like used for the adhesive, or the compatibility with other components constituting the adhesive, such as the styrene-based thermoplastic elastomer (A), may be deteriorated. To do. Accordingly, the acid value of the tackifier (B) is preferably 0 to 150 mgKOH / g.
 本発明で使用される粘着付与剤(B)の水酸基価は、0~50mgKOH/gであることが好ましい。接着剤組成物の調製後の時間が経過しても、高度なレベルの接着力を安定して発現できるからである。 The hydroxyl value of the tackifier (B) used in the present invention is preferably 0 to 50 mgKOH / g. This is because even if the time after the preparation of the adhesive composition elapses, a high level of adhesive force can be stably expressed.
 本発明の接着剤組成物は、前記スチレン系熱可塑性エラストマー(A)と粘着付与剤(B)の合計100重量%中に、前記エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含むことが重要であり、前記エラストマー(A)を30~80重量%、前記粘着付与剤(B)を20~70重量%含むことが好ましい。 The adhesive composition of the present invention comprises 20 to 90% by weight of the elastomer (A) in the total of 100% by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). It is important to contain 10 to 80% by weight of B), preferably 30 to 80% by weight of the elastomer (A) and 20 to 70% by weight of the tackifier (B).
 スチレン系熱可塑性エラストマー(A)の含有量が20重量%より少ない場合、接着剤組成物の凝集力が不足し十分な接着強度が得られないおそれがある。また、スチレン系熱可塑性エラストマー(A)の含有量が90重量%より多い場合、溶液粘度が高くなりすぎて塗工性が悪化してしまったりするおそれがある。 When the content of the styrene-based thermoplastic elastomer (A) is less than 20% by weight, the adhesive composition may not have sufficient cohesive strength to obtain sufficient adhesive strength. Moreover, when there is more content of styrene-type thermoplastic elastomer (A) than 90 weight%, there exists a possibility that solution viscosity may become high too much and coating property may deteriorate.
 一方、粘着付与剤(B)の含有量が10重量%より少ない場合、粘着付与剤(B)の添加による十分な接着強度向上の効果が得られなくなるおそれがある。また、粘着付与剤(B)の含有量が80重量%より多い場合、接着剤層の凝集力が不足し十分な接着強度が得られないおそれがある。 On the other hand, when the content of the tackifier (B) is less than 10% by weight, there is a possibility that the effect of improving the adhesive strength by adding the tackifier (B) may not be obtained. Moreover, when there is more content of tackifier (B) than 80 weight%, there exists a possibility that the cohesive force of an adhesive bond layer may become insufficient and sufficient adhesive strength may not be obtained.
 更に、本発明の接着剤組成物は、スチレン系熱可塑性エラストマー(A)由来の活性水素1モルに対して、粘着付与剤(B)の官能基由来の活性水素が0~15モルであることが重要であり、好ましくは0~10モルであり、0~1.5モルであることがより好ましい。
 粘着付与剤(B)の官能基由来の活性水素が15モルを越えると、他の成分との相溶性が悪化し十分な接着強度が得られなかったり、ポリイソシアネート(C)とスチレン系熱可塑性エラストマー(A)との反応率が低下したりしてしまうため、十分な耐電解質性が得られないおそれがある。
Furthermore, in the adhesive composition of the present invention, the active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol relative to 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A). Is important, preferably 0 to 10 mol, and more preferably 0 to 1.5 mol.
If the active hydrogen derived from the functional group of the tackifier (B) exceeds 15 moles, compatibility with other components deteriorates and sufficient adhesive strength cannot be obtained, or polyisocyanate (C) and styrene thermoplasticity. Since the reaction rate with the elastomer (A) may be reduced, sufficient electrolyte resistance may not be obtained.
 本発明の接着剤組成物は、スチレン系熱可塑性エラストマー(A)や粘着付与剤(B)と反応する硬化性成分として、ポリイソシアネート(C)を含む。 The adhesive composition of the present invention contains polyisocyanate (C) as a curable component that reacts with the styrenic thermoplastic elastomer (A) and the tackifier (B).
 ポリイソシアネート(C)としては、以下に限定されるものではないが、周知のジイソシアネート及びこれらから誘導された化合物を好ましく用いることができる。
 例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、1,5-ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、ビス(4-イソシアネートシクロヘキシル)メタン、若しくは水添化ジフェニルメタンジイソシアネート等のジイソシアネートおよびこれらから誘導された化合物、即ち、前記ジイソシアネートヌレート体、トリメチロールプロパンアダクト体、ビウレット型、イソシアネート残基を有するプレポリマー(ジイソシアネートとポリオールから得られる低重合体)、イソシアネート残基を有するウレトジオン体、アロファネート体、若しくはこれらの複合体等が挙げられ、これらを単独で使用してもよいし、2種以上を任意に組み合わせても使用してもよい。
The polyisocyanate (C) is not limited to the following, but known diisocyanates and compounds derived therefrom can be preferably used.
For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, hexamethylene diisocyanate, bis (4-isocyanatocyclohexyl) methane, or water Diisocyanates such as diphenylmethane diisocyanate and compounds derived therefrom, that is, diisocyanurate, trimethylolpropane adduct, biuret type, prepolymer having an isocyanate residue (low polymer obtained from diisocyanate and polyol), Examples thereof include uretdione bodies having an isocyanate residue, allophanate bodies, and complexes thereof. In may be used, may also be used in an arbitrary combination of two or more thereof.
 ポリイソシアネート(C)として、耐電解質性が優れるという理由から、構造中にウレタン結合を有さないものが好ましい。スチレン系熱可塑性エラストマー(A)として水酸基を有するものを使用した場合、ポリイソシアネート(C)との反応形成されたウレタン結合は、ポリイソシアネート(C)構造中のウレタン結合よりも耐電解質性が優れている。この理由としてはエラストマー(A)による立体障害や疎水性などが考えられる。 As the polyisocyanate (C), those having no urethane bond in the structure are preferable because of excellent electrolyte resistance. When a styrenic thermoplastic elastomer (A) having a hydroxyl group is used, the urethane bond formed by reaction with the polyisocyanate (C) has better electrolyte resistance than the urethane bond in the polyisocyanate (C) structure. ing. Possible reasons for this include steric hindrance and hydrophobicity due to the elastomer (A).
 本発明で使用されるポリイソシアネート(C)のイソシアネート基の数は、1分子中、平均して2~7個が好ましく、更に好ましくは2~3.5個である。ポリイソシアネート(C)1分子中のイソシアネート基の数が2個より少ないと、十分な架橋量を得ることができず、電解液耐性が悪化するおそれがある。また、ポリイソシアネート(C)1分子中のイソシアネート基の数が7個より多いと、ポリイソシアネート(C)1分子に対してエラストマー(A)が複数個反応する可能性が高くなるため、塗工中に著しい増粘を生じ、塗工性が悪化してしまうおそれがある。 The number of isocyanate groups of the polyisocyanate (C) used in the present invention is preferably 2 to 7 on average per molecule, more preferably 2 to 3.5. When the number of isocyanate groups in one molecule of polyisocyanate (C) is less than 2, a sufficient amount of crosslinking cannot be obtained, and the electrolyte resistance may be deteriorated. Also, if the number of isocyanate groups in one molecule of polyisocyanate (C) is more than 7, the possibility that a plurality of elastomers (A) react with one molecule of polyisocyanate (C) increases. There is a possibility that the coating property is deteriorated due to remarkable thickening.
 ポリイソシアネート(C)のイソシアネート基の官能基量は、1.5~6mmol/gの範囲が好ましく、更に好ましくは2.0~5.5mmol/gである。ポリイソシアネート(D)のイソシアネート基の官能基量が1.5mmol/gより少ないと、十分な架橋構造を形成することができず、電解液耐性が悪化するおそれがある。また、ポリイソシアネート(C)のイソシアネート基の官能基量が6mmol/gより多いと、接着剤組成物の成分や溶剤との相溶性が悪化してしまうおそれがある。 The functional group amount of the isocyanate group of the polyisocyanate (C) is preferably in the range of 1.5 to 6 mmol / g, more preferably 2.0 to 5.5 mmol / g. When the functional group amount of the isocyanate group of the polyisocyanate (D) is less than 1.5 mmol / g, a sufficient cross-linked structure cannot be formed, and the electrolyte resistance may be deteriorated. Moreover, when there are more functional group amounts of the isocyanate group of polyisocyanate (C) than 6 mmol / g, there exists a possibility that compatibility with the component of an adhesive composition and a solvent may deteriorate.
 本発明の接着剤組成物は、スチレン系熱可塑性エラストマー(A)の官能基由来の活性水素と粘着付与剤(B)の官能基由来の活性水素との合計1モルに対して、ポリイソシアネート(C)を、イソシアネート基が3~150モルとなる範囲で含み、5~70モルの範囲で含むことが好ましく、10~50モルの範囲で含むことがより好ましい。
 イソシアネート基が3モル未満だと、スチレン系熱可塑性エラストマー(A)の官能基由来の活性水素と粘着付与剤(B)の官能基由来の活性水素の合計に対してイソシアネート基の配合量が少ないために、接着剤組成物を調製後、スチレン系熱可塑性エラストマー(A)がポリイソシアネート(C)を介して分子間架橋し、高分子量化してしまうおそれがある。高分子量化すると接着剤組成物の粘度が著しく大きくなり、塗工性が悪化してしまう。しかも、粘度増加により塗工時の濡れ性が低下する結果、接着強度が低下してしまう。
 一方、スチレン系熱可塑性エラストマー(A)および粘着付与剤(B)由来の活性水素に対してイソシアネート基の配合量が適度に十分多いと、接着剤組成物を調製後、スチレン系熱可塑性エラストマー(A)の分子間架橋による高分子量化が抑制されるので、粘度増加し難い。即ち、スチレン系熱可塑性エラストマー(A)や粘着付与剤(B)中の官能基が、適度に十分多いイソシアネート基で封止された、イソシアネート基を有するエラストマー(A)や粘着付与剤(B)が生成される。そして、接着剤組成物中のイソシアネート基は、ラミネート時およびエージング工程中に、イソシアネート基同士が反応したり、エラストマー(A)や粘着付与剤(B)の官能基が残っている場合には、残存官能基と反応したりして、十分な架橋構造を形成する。その結果、イソシアネート基の配合量が適度に十分多い場合には、接着強度や耐電解質性に優れる積層体を得ることができる。
 しかし、イソシアネート基の配合量が過度に多い場合、具体的には150モルよりも多い場合、エージングしても過剰のイソシアネート基が未反応のまま残る割合が多くなり、その結果、接着剤層の弾性悪化により接着強度が低下したり、耐電解質性が悪化したりするおそれがある。
The adhesive composition of the present invention comprises polyisocyanate (A) based on a total of 1 mole of active hydrogen derived from the functional group of the styrenic thermoplastic elastomer (A) and active hydrogen derived from the functional group of the tackifier (B). C) is contained in the range of 3 to 150 mol of isocyanate groups, preferably in the range of 5 to 70 mol, more preferably in the range of 10 to 50 mol.
If the isocyanate group is less than 3 mol, the amount of isocyanate group is small relative to the total of active hydrogen derived from the functional group of the styrene-based thermoplastic elastomer (A) and active hydrogen derived from the functional group of the tackifier (B). For this reason, after preparing the adhesive composition, the styrene-based thermoplastic elastomer (A) may be intermolecularly cross-linked through the polyisocyanate (C) to increase the molecular weight. When the molecular weight is increased, the viscosity of the adhesive composition is remarkably increased, and the coating property is deteriorated. Moreover, as a result of the decrease in wettability during coating due to the increase in viscosity, the adhesive strength is decreased.
On the other hand, if the amount of the isocyanate group is moderately large relative to the active hydrogen derived from the styrene-based thermoplastic elastomer (A) and the tackifier (B), the styrene-based thermoplastic elastomer ( Since the increase in the molecular weight due to the intermolecular crosslinking in A) is suppressed, the viscosity is hardly increased. That is, the elastomer (A) or tackifier (B) having an isocyanate group in which the functional groups in the styrene-based thermoplastic elastomer (A) or the tackifier (B) are sealed with an adequately large number of isocyanate groups. Is generated. And when the isocyanate group in the adhesive composition reacts with the isocyanate group during lamination and during the aging process, or the functional group of the elastomer (A) or the tackifier (B) remains, It reacts with the remaining functional groups to form a sufficient crosslinked structure. As a result, when the blending amount of isocyanate groups is reasonably large, a laminate having excellent adhesive strength and electrolyte resistance can be obtained.
However, when the amount of the isocyanate group is excessively large, specifically more than 150 moles, the proportion of the excess isocyanate group remaining unreacted even after aging increases. As a result, the adhesive layer There is a possibility that the adhesive strength is lowered due to the deterioration of elasticity or the electrolyte resistance is deteriorated.
 本発明の接着剤組成物において、上記スチレン系熱可塑性エラストマー(A)、粘着付与剤(B)の他に、公知の添加剤を配合してもよい。各種添加剤は、ポリイソシアネート(C)と共に配合することもできるし、ポリイソシアネート(C)の配合に先んじて配合することもできる。 In the adhesive composition of the present invention, a known additive may be blended in addition to the styrene-based thermoplastic elastomer (A) and the tackifier (B). Various additives can be blended together with the polyisocyanate (C), or can be blended prior to blending the polyisocyanate (C).
 本発明の接着剤組成物は、金属基材への密着性を向上し、より大きな接着力を発現するために、スチレン系熱可塑性エラストマー構造と、ポリエステル樹脂部分およびポリウレタン樹脂部分の少なくともいずれかとを有する、エラストマー複合樹脂(D)を更に使用することが好ましい。エラストマー複合ポリエステル樹脂、エラストマー複合ポリウレタン樹脂、エラストマー複合ポリエステルポリウレタン樹脂を合わせて、「エラストマー複合樹脂(D)」という。
 エラストマー複合樹脂(D)中のポリエステル樹脂部分、ポリウレタン樹脂分は、金属基材への密着性向上に寄与する。エラストマー複合樹脂(D)は、スチレン系熱可塑性エラストマー構造を有しているので、スチレン系エラストマー(A)や粘着付与剤(B)との相溶性向上に寄与する。
 エラストマー複合樹脂(D)は、スチレン系熱可塑性エラストマー構造部分と、ポリエステル樹脂部分やポリウレタン樹脂部分を有していればよく、エラストマー複合樹脂(D)中に占めるそれぞれの部分のバランスは特に限定されない。
The adhesive composition of the present invention comprises a styrenic thermoplastic elastomer structure and at least one of a polyester resin part and a polyurethane resin part in order to improve adhesion to a metal substrate and to express a greater adhesive force. It is preferable to further use the elastomer composite resin (D). The elastomer composite polyester resin, elastomer composite polyurethane resin, and elastomer composite polyester polyurethane resin are collectively referred to as “elastomer composite resin (D)”.
The polyester resin portion and the polyurethane resin component in the elastomer composite resin (D) contribute to improving the adhesion to the metal substrate. Since the elastomer composite resin (D) has a styrene-based thermoplastic elastomer structure, it contributes to improved compatibility with the styrene-based elastomer (A) and the tackifier (B).
The elastomer composite resin (D) only needs to have a styrene-based thermoplastic elastomer structure portion, a polyester resin portion, and a polyurethane resin portion, and the balance of each portion in the elastomer composite resin (D) is not particularly limited. .
 エラストマー複合樹脂(D)の製造法としては、種々の方法が挙げられる。例えば、(1)ポリエステル樹脂等の有する官能基と、スチレン系熱可塑性エラストマーの有する官能基とを直接反応させる方法、(2)架橋剤を介して、ポリエステル樹脂等とスチレン系熱可塑性エラストマーを結合させる方法が挙げられる。反応に寄与する官能基や反応の種類は特に限定はなく、反応の結果、ポリエステル樹脂部分と、スチレン系熱可塑性エラストマー構造とを有すればよい。 There are various methods for producing the elastomer composite resin (D). For example, (1) a method in which a functional group of a polyester resin or the like and a functional group of a styrene thermoplastic elastomer are directly reacted, and (2) a polyester resin or the like and a styrene thermoplastic elastomer are bonded via a crosslinking agent. The method of letting it be mentioned. The functional group contributing to the reaction and the kind of the reaction are not particularly limited, and it is sufficient that the polyester resin portion and the styrene-based thermoplastic elastomer structure are provided as a result of the reaction.
 以下の方法に限定されるわけではないが、前記(1)の方法としては以下の方法等が挙げられる。例えば、(1-1)カルボキシル基を有するポリエステル樹脂等と、水酸基を有するスチレン系熱可塑性エラストマーとをエステル化反応させ、エステル結合を介して結合した、エラストマー複合樹脂(D)を得る方法や;(1-2)イソシアネート基を有するポリウレタン樹脂等と、水酸基を有するスチレン系熱可塑性エラストマーとを反応させ、ウレタン結合を介して結合した、エラストマー複合樹脂(D)を得る方法や;(1-3)水酸基を有するポリエステル樹脂等と、カルボキシル基を有するスチレン系熱可塑性エラストマーとをエステル化反応させ、エステル結合を介して結合した、エラストマー複合樹脂(D)を得る方法、が挙げられる。 Although not limited to the following methods, examples of the method (1) include the following methods. For example, (1-1) a method of obtaining an elastomer composite resin (D) in which a polyester resin having a carboxyl group and a styrene-based thermoplastic elastomer having a hydroxyl group are esterified and bonded via an ester bond; (1-2) A method of obtaining an elastomer composite resin (D) obtained by reacting a polyurethane resin having an isocyanate group with a styrene thermoplastic elastomer having a hydroxyl group and bonding them via a urethane bond; ) A method of obtaining an elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene-based thermoplastic elastomer having a carboxyl group are esterified and bonded via an ester bond.
 以下の方法に限定されるわけではないが、前記(2)の方法としては以下の方法等が挙げられる。例えば、(2-1)水酸基を有するポリエステル樹脂等と、水酸基を有するスチレン系熱可塑性エラストマーと、水酸基と反応し得る官能基を複数有する架橋剤とを反応させ、架橋剤を介して両部分が結合した、エラストマー複合樹脂(D)を得る方法や;(2-2)水酸基を有するポリエステル樹脂等と、アミノ基を有するスチレン系熱可塑性エラストマーと、水酸基及びアミノ基のいずれとも反応し得る官能基を複数有する架橋剤とを反応させ、架橋剤を介して両部分が結合した、エラストマー複合樹脂(D)を得る方法や;(2-3)カルボキシル基を有するポリエステル樹脂等と、カルボキシル基を有するスチレン系熱可塑性エラストマーと、カルボキシル基と反応し得る官能基を複数有する架橋剤とを反応させ、架橋剤を介して両部分が結合した、エラストマー複合樹脂(D)を得る方法、が挙げられる。 Although not limited to the following methods, examples of the method (2) include the following methods. For example, (2-1) a polyester resin having a hydroxyl group, a styrenic thermoplastic elastomer having a hydroxyl group, and a crosslinking agent having a plurality of functional groups capable of reacting with a hydroxyl group are reacted, and both portions are interposed via the crosslinking agent. A method for obtaining a bonded elastomer composite resin (D); (2-2) a polyester resin having a hydroxyl group, a styrenic thermoplastic elastomer having an amino group, and a functional group capable of reacting with both the hydroxyl group and the amino group A method of obtaining an elastomer composite resin (D) in which both parts are bonded via a crosslinking agent; (2-3) a polyester resin having a carboxyl group and the like, and a carboxyl group A styrenic thermoplastic elastomer is reacted with a cross-linking agent having a plurality of functional groups capable of reacting with a carboxyl group, and both are reacted via the cross-linking agent. Minute bound, a method for obtaining an elastomer composite resin (D), and the like.
 上記(2-1)、(2-2)、(2-3)の方法の場合、ポリエステル樹脂等とスチレン系熱可塑性エラストマーと架橋剤とを一気に反応させることができる。ポリエステル樹脂等と架橋剤とを、架橋剤過剰の条件下に反応させ、架橋剤由来の官能基を有するポリエステル樹脂等を得、次いで得られた架橋剤由来の官能基を有するポリエステル樹脂等をスチレン系熱可塑性エラストマーと反応させることによって得ることもできる。あるいは、スチレン系熱可塑性エラストマーと架橋剤とを架橋剤過剰の条件下に反応させ、架橋剤由来の官能基を有するスチレン系熱可塑性エラストマーを得、次いで得られた架橋剤由来の官能基を有するスチレン系熱可塑性エラストマーを、ポリエステル樹脂等と反応させることによって得ることもできる。 In the case of the above methods (2-1), (2-2), and (2-3), the polyester resin, the styrene thermoplastic elastomer, and the crosslinking agent can be reacted at a stretch. A polyester resin or the like and a crosslinking agent are reacted under an excess of the crosslinking agent to obtain a polyester resin or the like having a functional group derived from the crosslinking agent, and then the obtained polyester resin or the like having a functional group derived from the crosslinking agent is styrene. It can also be obtained by reacting with a thermoplastic elastomer. Alternatively, the styrenic thermoplastic elastomer and the crosslinking agent are reacted under an excess of the crosslinking agent to obtain a styrene thermoplastic elastomer having a functional group derived from the crosslinking agent, and then having the functional group derived from the obtained crosslinking agent. It can also be obtained by reacting a styrenic thermoplastic elastomer with a polyester resin or the like.
 前記(1-1)、(1-2)、(2-1)、(2-2)において用いられる、水酸基を有するスチレン系熱可塑性エラストマーやアミノ基を有するスチレン系熱可塑性エラストマーとしては、前述のスチレン系熱可塑性エラストマー(A)と同様のものが例示できる。 Examples of the styrenic thermoplastic elastomer having a hydroxyl group and the styrenic thermoplastic elastomer having an amino group used in the above (1-1), (1-2), (2-1), and (2-2) are as described above. The same thing as the styrene-type thermoplastic elastomer (A) can be illustrated.
 また、前記(1-3)、(2-3)において用いられる、カルボキシル基を有するスチレン系熱可塑性エラストマーとしては、上述のスチレン系熱可塑性エラストマーを製造するためのモノマーの重合の際に、適量のマレイン酸や無水マレイン酸等のエチレン性不飽和カルボン酸や前記不飽和カルボン酸の無水物を共重合させる方法や、スチレン系熱可塑性エラストマーを合成した後に、適量のマレイン酸や無水マレイン酸等のエチレン性不飽和カルボン酸や前記不飽和カルボン酸の無水物と過酸化物を用いてグラフト化反応させる方法等により得ることができる。
 カルボキシル基を有するスチレン系熱可塑性エラストマーの市販品としては、旭化成ケミカルズ社製のタフテックM1911、M1913、クレイトンポリマージャパン社製のクレイトンFG1901(以上、カルボキシル基含有水素化スチレン-ブタジエン-スチレン共重合体)等が挙げられる。
The styrene-based thermoplastic elastomer having a carboxyl group used in the above (1-3) and (2-3) is an appropriate amount in the polymerization of the monomer for producing the above-mentioned styrene-based thermoplastic elastomer. A method of copolymerizing an ethylenically unsaturated carboxylic acid such as maleic acid or maleic anhydride or an anhydride of the unsaturated carboxylic acid, or synthesizing a styrenic thermoplastic elastomer, and then an appropriate amount of maleic acid or maleic anhydride It can be obtained by a grafting reaction method using an ethylenically unsaturated carboxylic acid or an anhydride of the unsaturated carboxylic acid and a peroxide.
Commercially available styrene thermoplastic elastomers having a carboxyl group include Toughtech M1911, M1913 manufactured by Asahi Kasei Chemicals Co., Ltd., and Kraton FG1901 manufactured by Kraton Polymer Japan Co., Ltd. (above, carboxyl group-containing hydrogenated styrene-butadiene-styrene copolymer) Etc.
 前記(1-1)、(2-3)において用いられる、カルボキシル基を有するポリエステル樹脂等は、例えば以下のようにして得られる。
 一般に、ポリエステル樹脂は、二塩基酸成分とジオール成分とを反応させて得られる。ジオール成分に比して二塩基酸成分を過剰に用いれば、カルボキシル基を有するポリエステル樹脂を得ることができる。あるいは、水酸基を有するポリエステル樹脂を得、前記水酸基と、無水マレイン酸のような酸無水物を反応させ、カルボキシル基を導入することもできる。
 一般に、ウレタン樹脂は、ジオール成分とジイソシアネート成分とを反応させて得られる。ジオール成分として、カルボキシル基を有するジオール成分を用いることによって、カルボキシル基を有するウレタン樹脂を得ることができる。あるいは、水酸基を有するウレタン樹脂を得、前記水酸基と、無水マレイン酸のような酸無水物を反応させ、カルボキシル基を導入することもできる。
The polyester resin having a carboxyl group used in the above (1-1) and (2-3) can be obtained, for example, as follows.
In general, a polyester resin is obtained by reacting a dibasic acid component with a diol component. If the dibasic acid component is used in excess of the diol component, a polyester resin having a carboxyl group can be obtained. Alternatively, a polyester resin having a hydroxyl group can be obtained, and the carboxyl group can be introduced by reacting the hydroxyl group with an acid anhydride such as maleic anhydride.
In general, the urethane resin is obtained by reacting a diol component and a diisocyanate component. By using a diol component having a carboxyl group as the diol component, a urethane resin having a carboxyl group can be obtained. Alternatively, a urethane resin having a hydroxyl group can be obtained, and the carboxyl group can be introduced by reacting the hydroxyl group with an acid anhydride such as maleic anhydride.
 ポリエステル樹脂やウレタン樹脂を得る際に用いられる、前記ジオール成分としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、トリメチロールプロパン、グリセリンなどの低分子ポリオールの他、ポリカーボネートポリオール、ポリエーテルポリオールなどの高分子ポリオールも挙げられる。これらは単独で使用してもよいし、2種以上を任意に組み合わせて使用してもよい。また、3官能以上のポリオール成分も使用できる。ウレタン樹脂を得る場合には、ポリエステルポリオールを用いることもできる。カルボキシル基を有するジオール成分としては、ジメチロールプロピオン酸、ジメチロールブタン酸等が挙げられる。 Examples of the diol component used for obtaining a polyester resin or a urethane resin include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1 In addition to low-molecular polyols such as 1,5-pentanediol, trimethylolpropane, and glycerin, polymer polyols such as polycarbonate polyol and polyether polyol are also included. These may be used alone or in any combination of two or more. Trifunctional or higher functional polyol components can also be used. In the case of obtaining a urethane resin, a polyester polyol can also be used. Examples of the diol component having a carboxyl group include dimethylolpropionic acid and dimethylolbutanoic acid.
 ポリエステル樹脂を得る際に用いられる、前記二塩基酸成分としては、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、無水フタル酸、アジピン酸、アゼライン酸、セバシン酸、コハク酸、グルタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水マレイン酸、無水イタコン酸等の二塩基酸、及びこれら二塩基酸のエステル化合物を例示できる。二塩基酸、及びそのエステル化合物を、まとめて「二塩基酸成分」という。 The dibasic acid component used when obtaining a polyester resin includes isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, phthalic anhydride, adipic acid, azelaic acid, sebacic acid, succinic acid, glutaric acid, tetrahydrophthalic anhydride And dibasic acids such as hexahydrophthalic anhydride, maleic anhydride, itaconic anhydride, and ester compounds of these dibasic acids. The dibasic acid and its ester compound are collectively referred to as “dibasic acid component”.
 ウレタン樹脂を得る際に用いられる、ジイソシアネート成分としては、ポリイソシアネート(C)として例示したような、周知のジイソシアネート及びこれらから誘導された化合物を好ましく用いることができる。ゲル化しない範囲で、2官能よりも多くの官能基を有するイソシアネート成分も用いることができる。このような2官能よりも多い官能数の成分を使用することで分岐状のポリウレタン樹脂を得ることができる。また、鎖延長剤としてのジアミン成分も使用することができる。 As the diisocyanate component used when obtaining the urethane resin, well-known diisocyanates and compounds derived therefrom, such as those exemplified as polyisocyanate (C), can be preferably used. An isocyanate component having more than two functional groups can be used as long as it does not gel. A branched polyurethane resin can be obtained by using a component having a functional number higher than bifunctionality. A diamine component as a chain extender can also be used.
 前記(1-3)、(2-1)、(2-2)において用いられる、水酸基を有するポリエステル樹脂等は、例えば以下のようにして得られる。二塩基酸成分に比してジオール成分を過剰に用いれば、水酸基を有するポリエステル樹脂を得ることができる。ジイソシアネート成分に比してジオール成分を過剰に用いれば、水酸基を有するウレタン樹脂を得ることができる。ポリエステル樹脂やウレタン樹脂を得る際に用いられる、各成分については前述の通りである。 The polyester resin having a hydroxyl group used in the above (1-3), (2-1), and (2-2) can be obtained, for example, as follows. If the diol component is used in excess as compared with the dibasic acid component, a polyester resin having a hydroxyl group can be obtained. If the diol component is used in excess as compared with the diisocyanate component, a urethane resin having a hydroxyl group can be obtained. Each component used when obtaining a polyester resin or a urethane resin is as described above.
 前記(1-2)において用いられる、イソシアネート基を有するポリウレタン樹脂等は、例えば以下のようにして得られる。ジオール成分に比してジイソシアネート成分を過剰に用いれば、イソシアネート基を有するウレタン樹脂を得ることができる。 The polyurethane resin having an isocyanate group used in the above (1-2) can be obtained, for example, as follows. If the diisocyanate component is used in excess as compared with the diol component, a urethane resin having an isocyanate group can be obtained.
 前記(2-1)において用いられる、水酸基を有する両成分に対し機能する架橋剤としては、ジイソシアネート化合物などの多官能イソシアネート成分や、二塩基酸成分や、酸無水物を分子中に複数個有する化合物等が挙げられる。 The cross-linking agent that functions for both components having a hydroxyl group used in (2-1) has a polyfunctional isocyanate component such as a diisocyanate compound, a dibasic acid component, and a plurality of acid anhydrides in the molecule. Compounds and the like.
 多官能イソシアネート成分としては、ポリイソシアネート(C)として例示したような、周知のジイソシアネートおよびこれらから誘導された化合物を好ましく用いることができる。多官能イソシアネート成分を架橋剤として用いることによって、水酸基を有するポリエステル樹脂等と、水酸基を有するスチレン系熱可塑性エラストマーとがウレタン結合を介して結合したエラストマー複合樹脂(D)を得ることができる。 As the polyfunctional isocyanate component, well-known diisocyanates and compounds derived from these as exemplified as polyisocyanate (C) can be preferably used. By using the polyfunctional isocyanate component as a crosslinking agent, an elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene thermoplastic elastomer having a hydroxyl group are bonded via a urethane bond can be obtained.
 二塩基酸成分としては、ポリエステル樹脂の構成原料として例示したような、周知のものを用いることができる。二塩基酸成分を架橋剤として用いることによって、水酸基を有するポリエステル樹脂等と、水酸基を有するスチレン系熱可塑性エラストマーとがエステル結合を介して結合したエラストマー複合樹脂(D)を得ることができる。 As the dibasic acid component, a well-known one exemplified as a constituent material of the polyester resin can be used. By using the dibasic acid component as a crosslinking agent, an elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene thermoplastic elastomer having a hydroxyl group are bonded via an ester bond can be obtained.
 酸無水物を分子中に複数個有する化合物としては、無水ピロメリット酸のような化合物を用いることができる。酸無水物を分子中に複数個有する化合物を架橋剤として用いることによって、水酸基を有するポリエステル樹脂等と、水酸基を有するスチレン系熱可塑性エラストマーとがエステル結合を介して結合したエラストマー複合樹脂(D)を得ることができる。 As the compound having a plurality of acid anhydrides in the molecule, a compound such as pyromellitic anhydride can be used. Elastomer composite resin (D) in which a polyester resin having a hydroxyl group and a styrene-based thermoplastic elastomer having a hydroxyl group are bonded via an ester bond by using a compound having a plurality of acid anhydrides in the molecule as a crosslinking agent Can be obtained.
 前記(2-2)において用いられる、水酸基を有する成分及びアミノ基を有する成分に対し機能する架橋剤としては、(2-1)の場合と同様に、ジイソシアネート化合物などの多官能イソシアネート成分が挙げられる。 Examples of the crosslinking agent that functions for the component having a hydroxyl group and the component having an amino group used in the above (2-2) include polyfunctional isocyanate components such as a diisocyanate compound as in the case of (2-1). It is done.
 前記(2-3)において用いられる、カルボキシル基を有する両成分に対し機能する架橋剤としては、多官能エポキシ成分、多官能アジリジン成分、多官能オキサゾリン成分、多官能イソシアネート成分、多官能カルボジイミド成分等が挙げられる。また、カルボキシル基が酸無水物の状態である場合、多官能ポリオール成分、多官能ポリアミン成分等も架橋剤として用いることができる。 Examples of the crosslinking agent that functions for both components having a carboxyl group used in the above (2-3) include a polyfunctional epoxy component, a polyfunctional aziridine component, a polyfunctional oxazoline component, a polyfunctional isocyanate component, and a polyfunctional carbodiimide component. Is mentioned. Moreover, when a carboxyl group is in the state of an acid anhydride, a polyfunctional polyol component, a polyfunctional polyamine component, etc. can also be used as a crosslinking agent.
 本発明においてエラストマー複合樹脂(D)を使用する場合には、前記スチレン系熱可塑性エラストマー(A)と粘着付与剤(B)合計100重量部に対して2~60重量部使用することが好ましく、更に好ましくは2~50重量部である。
 エラストマー複合樹脂(D)が上記範囲にある場合に、金属基材への密着性を向上すると共に、耐電解質性を維持することができる。エラストマー複合樹脂(D)が多すぎると、接着剤中のポリエステル樹脂部分やポリウレタン樹脂部分の占める割合が相対的に多くなるため、耐電解質性が悪化してしまう可能性がある。
When using the elastomer composite resin (D) in the present invention, it is preferable to use 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). More preferably, it is 2 to 50 parts by weight.
When an elastomer composite resin (D) exists in the said range, while improving the adhesiveness to a metal base material, electrolyte resistance can be maintained. If the amount of the elastomer composite resin (D) is too large, the ratio of the polyester resin portion and the polyurethane resin portion in the adhesive is relatively increased, which may deteriorate the electrolyte resistance.
 本発明においてエラストマー複合樹脂(D)として用いられる市販品としては、クラレ社製のセプトン S5265、S5865(ポリウレタンと水添スチレン系エラストマーの化学結合物質)等が挙げられる。 Examples of commercially available products used as the elastomer composite resin (D) in the present invention include Kuraray's Septon S5265, S5865 (chemically bonded substance of polyurethane and hydrogenated styrene elastomer).
 本発明で使用される公知の添加剤として、硬化反応を促進させたい場合、公知の反応促進剤を使用することができる。この場合、ポリイソシアネート(C)の配合に先んじて配合することが好ましい。
 本発明で使用される反応促進剤としては、たとえば、ジブチルチンジアセテート、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジマレート等金属系触媒;1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザビシクロ(4,3,0)ノネン-5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)ウンデセン-7等の3級アミン等が挙げられる。これらは単独で使用してもよいし、2種以上を任意に組み合わせて使用してもよい。
As a known additive used in the present invention, a known reaction accelerator can be used when it is desired to accelerate the curing reaction. In this case, it is preferable to blend prior to blending the polyisocyanate (C).
Examples of the reaction accelerator used in the present invention include metal catalysts such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, and dibutyltin dimaleate; 1,8-diaza-bicyclo (5,4,0) undecene And tertiary amines such as -7,1,5-diazabicyclo (4,3,0) nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) undecene-7. These may be used alone or in any combination of two or more.
 本発明で使用される反応促進剤の配合量としては、スチレン系熱可塑性エラストマー(A)、粘着付与剤(B)の合計100重量部に対して、0.001~0.2重量部の範囲が好ましく、更に好ましくは0.005~0.1重量部である。反応促進剤の添加量が0.001重量部未満であると、硬化反応の十分な促進効果が得られないおそれがあり、0.2重量部よりも大きいと、硬化反応が早すぎるため接着剤のポットライフを損ねてしまうおそれがある。 The compounding amount of the reaction accelerator used in the present invention is in the range of 0.001 to 0.2 parts by weight with respect to 100 parts by weight in total of the styrenic thermoplastic elastomer (A) and the tackifier (B). The amount is preferably 0.005 to 0.1 parts by weight. If the addition amount of the reaction accelerator is less than 0.001 part by weight, there is a possibility that a sufficient acceleration effect of the curing reaction may not be obtained. The pot life may be spoiled.
 本発明の接着剤組成物を用いてなる積層体は、例えば、以下のようにして得ることができる。金属箔(または熱融着性フィルム)の一方の面に、本発明の接着剤組成物を塗工し、溶剤を揮散させ(乾燥させ)、未硬化の接着剤層を形成し、60~150℃、加圧下に前記未硬化の接着剤層の表面に、熱融着性フィルム(または金属箔)を重ねた後、40~80℃で3~7日程度静置し、接着剤層を十分硬化させ(エージングとも称する)、金属箔と熱融着性フィルムとを貼り合わせる。接着剤組成物の塗工には、コンマコーター等の一般的な塗工機を用いることができる。また、乾燥硬化時の硬化接着剤層の厚み(量)は、1~30g/m2程度であることが好ましい。 A laminate using the adhesive composition of the present invention can be obtained, for example, as follows. One side of a metal foil (or heat-fusible film) is coated with the adhesive composition of the present invention, and the solvent is stripped (dried) to form an uncured adhesive layer. After applying a heat-sealable film (or metal foil) on the surface of the uncured adhesive layer under pressure at ℃, leave it still at 40-80 ℃ for about 3-7 days. It is cured (also referred to as aging), and the metal foil and the heat-fusible film are bonded together. For coating of the adhesive composition, a general coating machine such as a comma coater can be used. The thickness (amount) of the cured adhesive layer at the time of dry curing is preferably about 1 to 30 g / m 2 .
 また、外層部材として外装シートを設ける場合には、予め接着剤組成物(本発明の接着剤組成物と同じであってもよいし、異なっていてもよい)を用いて、金属箔に積層されていてもよいし、本発明の接着剤組成物を用いて金属箔と熱融着性フィルムとの積層体を得た後、金属箔に外装シートを積層することもできる。 When an exterior sheet is provided as an outer layer member, it is laminated on a metal foil in advance using an adhesive composition (which may be the same as or different from the adhesive composition of the present invention). Alternatively, after obtaining a laminate of a metal foil and a heat-fusible film using the adhesive composition of the present invention, an exterior sheet can be laminated on the metal foil.
 非水電解質二次電池においては、電解質は、熱融着性フィルムから金属箔に向かって浸透し始める。例えば、リチウム電池の電解質は、六フッ化リン酸リチウムのようなリチウム塩と、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート等の溶剤とを含む。二次電池容器に電解質を入れると、溶剤が熱融着性フィルムを通り抜け、接着剤層に達し、熱融着性フィルムと金属箔との接着力低下を引き起こす。更に、二次電池容器外部から電解質に水分が浸入すると、六フッ化リン酸リチウムのようなリチウム塩と水とが反応し、フッ酸が発生する。発生したフッ酸は熱融着性フィルム及び接着剤層に達し、接着剤層を劣化させ、熱融着性フィルムと金属箔との接着力を著しく低下させる。そこで、熱融着性フィルムと金属箔とを貼りあわせる接着剤層には、電解質に対する耐性が求められる。 In the nonaqueous electrolyte secondary battery, the electrolyte starts to penetrate from the heat-fusible film toward the metal foil. For example, the electrolyte of a lithium battery includes a lithium salt such as lithium hexafluorophosphate and a solvent such as propylene carbonate, ethylene carbonate, diethyl carbonate, and dimethyl carbonate. When the electrolyte is put into the secondary battery container, the solvent passes through the heat-fusible film, reaches the adhesive layer, and causes a decrease in the adhesive strength between the heat-fusible film and the metal foil. Further, when moisture enters the electrolyte from the outside of the secondary battery container, a lithium salt such as lithium hexafluorophosphate reacts with water to generate hydrofluoric acid. The generated hydrofluoric acid reaches the heat-fusible film and the adhesive layer, degrades the adhesive layer, and remarkably lowers the adhesive force between the heat-fusible film and the metal foil. Therefore, the adhesive layer for bonding the heat-fusible film and the metal foil is required to have resistance to the electrolyte.
 特許文献2に記載されている接着剤組成物は、耐電解質性が不十分であり、また、エラストマー(A)とカップリング剤(B)の反応が早いため調液した後の増粘が早く、接着剤組成物の使用可能時間(ポットライフ)が短いという問題があった。また、特許文献3に記載されている接着剤は、接着剤の粘度や貼着後の接着力が安定しないという問題があった。これは、エラストマーの有する酸の一部がマレイン酸由来の無水物の状態にあるため、各成分を配合した後、時間が経つに従って、エラストマー中の酸無水物が、ポリオレフィンポリオールと反応したり、接着剤中に混在する水と反応したり、接着剤の置かれる環境の湿度(水分)と反応したりして、マレイン酸由来の無水物が開環するためである。また、元々粘度の高いエラストマーと硬化剤である多官能イソシアネートとの反応が早いため、接着剤の塗工中に接着剤の粘度が短持間で増大し、塗工安定性の面で問題があった。また、特許文献4においては、接着強度において課題があった。 The adhesive composition described in Patent Document 2 has insufficient electrolyte resistance, and the viscosity after mixing is quick because the reaction between the elastomer (A) and the coupling agent (B) is fast. There was a problem that the usable time (pot life) of the adhesive composition was short. Further, the adhesive described in Patent Document 3 has a problem that the viscosity of the adhesive and the adhesive force after sticking are not stable. This is because some of the acid in the elastomer is in the state of an anhydride derived from maleic acid, and after blending each component, the acid anhydride in the elastomer reacts with the polyolefin polyol as time passes. This is because the anhydride derived from maleic acid opens by reacting with water mixed in the adhesive or reacting with the humidity (moisture) of the environment where the adhesive is placed. In addition, since the reaction between the inherently high-viscosity elastomer and the polyfunctional isocyanate that is the curing agent is fast, the viscosity of the adhesive increases in a short period of time during the coating of the adhesive, and there is a problem in terms of coating stability. there were. Moreover, in patent document 4, there existed a subject in adhesive strength.
 一方、本発明の非水電解質二次電池容器用積層体によれば、接着剤組成物として特定構造の成分を特定比率で含有させ、かつ、上述した特定構造の活性水素の量を上記の特定の範囲にし、更に、イソシアネート基を前述の特定比率にしているので、ポットライフを長くすることが可能となり、かつ電解質に浸漬した場合においても接着強度を高いレベルを維持できる。即ち、耐薬品性に優れている非水電解質二次電池容器用積層体を提供できる。その結果、電解質の液漏れ等の問題を防止して信頼性の高い非水電解質二次電池容器用積層体を提供することができる。 On the other hand, according to the laminate for a non-aqueous electrolyte secondary battery container of the present invention, a component having a specific structure is contained in a specific ratio as the adhesive composition, and the amount of active hydrogen having the specific structure described above is specified as described above. Furthermore, since the isocyanate group has the above-mentioned specific ratio, the pot life can be lengthened, and even when immersed in an electrolyte, the adhesive strength can be maintained at a high level. That is, the laminated body for nonaqueous electrolyte secondary battery containers which is excellent in chemical resistance can be provided. As a result, problems such as electrolyte leakage can be prevented, and a highly reliable laminate for a nonaqueous electrolyte secondary battery container can be provided.
 また、本発明の接着剤組成物を用いてなる非水電解質二次電池用積層体を用いて形成した電池容器は、非水電解質二次電池の安全性、寿命延長に寄与することができる。従って、信頼性の高い非水電解質二次電池を提供することができる。従って、非水電解質二次電池の普及につながり、新規エネルギー材料としてエネルギーの高効率利用という観点から環境保全に寄与することにもなる。 In addition, a battery container formed using a laminate for a nonaqueous electrolyte secondary battery using the adhesive composition of the present invention can contribute to safety and life extension of the nonaqueous electrolyte secondary battery. Therefore, a highly reliable nonaqueous electrolyte secondary battery can be provided. Therefore, it leads to the spread of non-aqueous electrolyte secondary batteries, and contributes to environmental conservation from the viewpoint of highly efficient use of energy as a new energy material.
≪実施例≫
 以下、実施例により、本発明を更に詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例中における各評価は下記の方法に従った。なお、実施例中、部は重量部、%は重量%、酸価はmgKOH/gをそれぞれ示す。
<Example>
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, a following example does not restrict | limit the right range of this invention at all. In addition, each evaluation in an Example followed the following method. In the examples, parts are parts by weight,% is% by weight, and the acid value is mgKOH / g.
<数平均分子量の測定>
 スチレン系熱可塑性エラストマー(A)の数平均分子量は、東ソー社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC-8020」を用い、溶媒はテトラヒドロフランを用い、標準ポリスチレン換算により測定を行った。
<Measurement of number average molecular weight>
The number average molecular weight of the styrene-based thermoplastic elastomer (A) was measured using GPC (Gel Permeation Chromatography) “HPC-8020” manufactured by Tosoh Corporation, tetrahydrofuran as the solvent, and standard polystyrene conversion.
<エラストマー(A)の活性水素量の測定>
 合成したスチレン系熱可塑性エラストマー(A)1分子の平均の官能基数を、HPLCおよびNMR測定により求め、前述の数式(1)にてエラストマー(A)の活性水素量を求めた。具体的には、前記エラストマー(A)の平均官能基数を、GPC測定から求めた数平均分子量で除し、1g当たりの活性水素量(mmol/g)を求めた。
<Measurement of active hydrogen content of elastomer (A)>
The average number of functional groups of one molecule of the synthesized styrene-based thermoplastic elastomer (A) was determined by HPLC and NMR measurement, and the amount of active hydrogen of the elastomer (A) was determined by the above mathematical formula (1). Specifically, the average number of functional groups of the elastomer (A) was divided by the number average molecular weight determined from GPC measurement to determine the amount of active hydrogen per gram (mmol / g).
<エラストマーA-1>(主鎖末端に水酸基を有するSEEPS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン182gおよびsec-ブチルリチウムのシクロヘキサン溶液(11重量%)を59.3g加え、40℃で1時間重合反応を行った。次いで、イソプレンとブタジエンの混合物(モル比1:1)935gを加えて1時間重合反応を行い、更にその後スチレンを182g加えて1時間重合反応を行った。その後にエチレンオキサイド10gを加え、最後にメタノールを添加して反応を停止し、片末端に水酸基を有するスチレン-(ブタジエン/イソプレン)-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-1とする。
 エラストマーA-1のスチレン含量は28重量%であり、GPCから求めたエラストマーA-1の数平均分子量は61,000であり、HPLCから、エラストマーA-1の1分子あたりの主鎖末端水酸基の数は0.95個であった。以上の測定値からエラストマーA-1の活性水素量は0.016mmol/gと計算できる。
<Elastomer A-1> (SEEPS having a hydroxyl group at the end of the main chain)
In a pressure vessel equipped with a stirrer, 5.06 kg of cyclohexane, 182 g of sufficiently dehydrated styrene and 59.3 g of a cyclohexane solution of sec-butyllithium (11 wt%) were added, and a polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 935 g of a mixture of isoprene and butadiene (molar ratio 1: 1) was added to carry out a polymerization reaction for 1 hour, and then 182 g of styrene was added to carry out the polymerization reaction for 1 hour. Thereafter, 10 g of ethylene oxide was added, and finally methanol was added to stop the reaction, thereby synthesizing a styrene- (butadiene / isoprene) -styrene type block copolymer having a hydroxyl group at one end. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. The solvent contained in the block copolymer thus obtained is distilled off under reduced pressure, and the resulting block copolymer solid is designated as elastomer A-1.
The elastomer A-1 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-1 determined from GPC is 61,000, and from HPLC, the number of hydroxyl groups on the main chain terminal per molecule of the elastomer A-1. The number was 0.95. From the above measured values, the amount of active hydrogen in Elastomer A-1 can be calculated as 0.016 mmol / g.
<エラストマーA-2>(主鎖末端に水酸基を有するSEBS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン182gおよびsec-ブチルリチウムのシクロヘキサン溶液(11重量%)を59.3g加え、40℃で1時間重合反応を行った。次いで、ブタジエンの935gを加えて1時間重合反応を行い、更にその後スチレンを182g加えて1時間重合反応を行った。その後にエチレンオキサイド10gを加え、最後にメタノールを添加して反応を停止し、片末端に水酸基を有するスチレン-ブタジエン-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-2とする。
 エラストマーA-2のスチレン含量は28重量%であり、GPCから求めたエラストマーA-2の数平均分子量は61,000であり、HPLCから、エラストマーA-2の1分子あたりの主鎖末端水酸基の数は0.94個であった。以上の測定値からエラストマーA-2の活性水素量は0.015mmol/gと計算できる。
<Elastomer A-2> (SEBS having a hydroxyl group at the end of the main chain)
In a pressure vessel equipped with a stirrer, 5.06 kg of cyclohexane, 182 g of sufficiently dehydrated styrene and 59.3 g of a cyclohexane solution of sec-butyllithium (11 wt%) were added, and a polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 935 g of butadiene was added to conduct a polymerization reaction for 1 hour, and then 182 g of styrene was added to conduct a polymerization reaction for 1 hour. Thereafter, 10 g of ethylene oxide was added, and finally methanol was added to stop the reaction, thereby synthesizing a styrene-butadiene-styrene type block copolymer having a hydroxyl group at one end. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. The solvent contained in the block copolymer thus obtained is distilled off under reduced pressure, and the resulting block copolymer solid is designated as elastomer A-2.
The elastomer A-2 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-2 obtained from GPC is 61,000, and the number of main chain terminal hydroxyl groups per molecule of the elastomer A-2 is determined by HPLC. The number was 0.94. From the above measured values, the amount of active hydrogen in Elastomer A-2 can be calculated as 0.015 mmol / g.
<エラストマーA-3>(主鎖末端に水酸基を有するSEEPS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン182gおよび3-(t-ブチルジメチルシロキシ)-2,2-ジメチル-1-プロピルリチウムのシクロヘキサン溶液(18重量%)を59.3g加え、40℃で1時間重合反応を行った。次いで、イソプレンとブタジエンの混合物(モル比1:1)935gを加えて1時間重合反応を行い、更にその後スチレンを182g加えて1時間重合反応を行った。その後にエチレンオキサイド10gを加え、最後にメタノールを添加して反応を停止し、片末端に水酸基を有し、逆末端に保護された水酸基を有するスチレン-(ブタジエン/イソプレン)-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。更に得られた水素添加物をテトラヒドロフラン中、塩酸を用いて60℃で7時間脱保護反応を行い、両末端に水酸基を有するSEEPSを得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-3とする。
 エラストマーA-3のスチレン含量は28重量%であり、GPCから求めたエラストマーA-3の数平均分子量は62,000であり、HPLCから、エラストマーA-3の1分子あたりの主鎖末端水酸基の数は1.89個であった。以上の測定値からエラストマーA-3の活性水素量は0.03mmol/gと計算できる
<Elastomer A-3> (SEEPS having a hydroxyl group at the end of the main chain)
In a pressure vessel equipped with a stirrer, 5.06 kg of cyclohexane, 182 g of fully dehydrated styrene and a cyclohexane solution (18 wt%) of 3- (t-butyldimethylsiloxy) -2,2-dimethyl-1-propyllithium (59 wt%) 3 g was added and the polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 935 g of a mixture of isoprene and butadiene (molar ratio 1: 1) was added to carry out a polymerization reaction for 1 hour, and then 182 g of styrene was added to carry out the polymerization reaction for 1 hour. Thereafter, 10 g of ethylene oxide is added, and finally methanol is added to stop the reaction. A styrene- (butadiene / isoprene) -styrene block copolymer having a hydroxyl group at one end and a protected hydroxyl group at the other end is added. A polymer was synthesized. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. Further, the obtained hydrogenated product was subjected to deprotection reaction at 60 ° C. for 7 hours using hydrochloric acid in tetrahydrofuran to obtain SEEPS having hydroxyl groups at both ends. The solvent contained in the block copolymer thus obtained is distilled off under reduced pressure, and the resulting block copolymer solid is designated as elastomer A-3.
The elastomer A-3 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-3 determined from GPC is 62,000, and from HPLC, the number of main chain terminal hydroxyl groups per molecule of the elastomer A-3. The number was 1.89. From the above measured values, the amount of active hydrogen in elastomer A-3 can be calculated as 0.03 mmol / g.
<エラストマーA-4>(主鎖末端にアミノ基を有するSEEPS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン182gおよびsec-ブチルリチウムのシクロヘキサン溶液(11重量%)を59.3g加え、40℃で1時間重合反応を行った。次いで、イソプレンとブタジエンの混合物(モル比1:1)935gを加えて1時間重合反応を行い、更にその後スチレンを182g加えて1時間重合反応を行った。その後にN-メチルピロリドン12gを加え、最後にメタノールを添加して反応を停止し、片末端にアミノ基を有するスチレン-(ブタジエン/イソプレン)-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-4とする。
 エラストマーA-4のスチレン含量は28重量%であり、GPCから求めたエラストマーA-4の数平均分子量は61,000であり、HPLCから、エラストマーA-3の1分子あたりの主鎖末端アミノ基の数は0.95個であった。以上の測定値からエラストマーA-4の活性水素量は0.016mmol/gと計算できる。
<Elastomer A-4> (SEEPS having an amino group at the end of the main chain)
In a pressure vessel equipped with a stirrer, 5.06 kg of cyclohexane, 182 g of sufficiently dehydrated styrene and 59.3 g of a cyclohexane solution of sec-butyllithium (11 wt%) were added, and a polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 935 g of a mixture of isoprene and butadiene (molar ratio 1: 1) was added to carry out a polymerization reaction for 1 hour, and then 182 g of styrene was added to carry out the polymerization reaction for 1 hour. Thereafter, 12 g of N-methylpyrrolidone was added, and finally methanol was added to stop the reaction, thereby synthesizing a styrene- (butadiene / isoprene) -styrene type block copolymer having an amino group at one end. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. The solvent contained in the block copolymer thus obtained is distilled off under reduced pressure, and the resulting block copolymer solid is designated as elastomer A-4.
The elastomer A-4 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-4 determined from GPC is 61,000, and from HPLC, the main chain terminal amino groups per molecule of the elastomer A-3. The number of was 0.95. From the above measured values, the amount of active hydrogen in Elastomer A-4 can be calculated as 0.016 mmol / g.
<エラストマーA-5>(官能基を有さないSEEPS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン182gおよびsec-ブチルリチウムのシクロヘキサン溶液(11重量%)を59.3g加え、40℃で1時間重合反応を行った。次いで、イソプレンとブタジエンの混合物(モル比1:1)935gを加えて1時間重合反応を行い、更にその後スチレンを182g加えて1時間重合反応を行った。その後にメタノールを添加して反応を停止し、官能基を有さないスチレン-(ブタジエン/イソプレン)-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-4とする。
 エラストマーA-5のスチレン含量は28重量%であり、GPCから求めたエラストマーA-5の数平均分子量は62,000であり、エラストマーA-5の活性水素量は0mmol/gと計算できる。
<Elastomer A-5> (SEEPS without functional groups)
In a pressure vessel equipped with a stirrer, 5.06 kg of cyclohexane, 182 g of sufficiently dehydrated styrene and 59.3 g of a cyclohexane solution of sec-butyllithium (11 wt%) were added, and a polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 935 g of a mixture of isoprene and butadiene (molar ratio 1: 1) was added to carry out a polymerization reaction for 1 hour, and then 182 g of styrene was added to carry out the polymerization reaction for 1 hour. Thereafter, methanol was added to stop the reaction, and a styrene- (butadiene / isoprene) -styrene type block copolymer having no functional group was synthesized. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. The solvent contained in the block copolymer thus obtained is distilled off under reduced pressure, and the resulting block copolymer solid is designated as elastomer A-4.
The elastomer A-5 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-5 determined from GPC is 62,000, and the amount of active hydrogen of the elastomer A-5 can be calculated as 0 mmol / g.
<エラストマーA-6>(側鎖に水酸基を有するSEEPS)
 攪拌装置付き耐圧容器中にエラストマーA-5を500g、トルエンを200g加え、窒素雰囲気下で攪拌しながら100℃で加熱溶解させた後、ジ-t-ブチルパーオキサイド1.5gとメタクリル酸2-ヒドロキシエチル3gを滴下し、3時間反応させた。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-6とする。
 エラストマーA-6のスチレン含量は28重量%であり、GPCから求めたエラストマーA-6の数平均分子量は62,000であり、HPLCから、エラストマーA-6の1分子あたりの側鎖導入水酸基の数は1.62個であった。以上の測定値からエラストマーのA-6の活性水素量は0.026mmol/gと計算できる。
<Elastomer A-6> (SEEPS having a hydroxyl group in the side chain)
In a pressure vessel equipped with a stirrer, 500 g of elastomer A-5 and 200 g of toluene were added and heated and dissolved at 100 ° C. with stirring in a nitrogen atmosphere, and then 1.5 g of di-t-butyl peroxide and 2-methacrylic acid 2- 3 g of hydroxyethyl was added dropwise and reacted for 3 hours. The solvent contained in the block copolymer thus obtained was distilled off under reduced pressure, and the resulting block copolymer solid was designated as elastomer A-6.
The elastomer A-6 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-6 obtained from GPC is 62,000, and from HPLC, the number of hydroxyl groups introduced into the side chain per molecule of the elastomer A-6. The number was 1.62. From the above measured values, the amount of active hydrogen of A-6 in the elastomer can be calculated as 0.026 mmol / g.
<エラストマーA-7>(側鎖に水酸基を有するSEEPS)
 攪拌装置付き耐圧容器中にエラストマーA-5を500g、トルエンを200g加え、窒素雰囲気下で攪拌しながら100℃で加熱溶解させた後、ジ-t-ブチルパーオキサイド1.5gとメタクリル酸2-ヒドロキシエチル5gを滴下し、3時間反応させた。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体をエラストマーA-7とする。
 エラストマーA-7のスチレン含量は28重量%であり、GPCから求めたエラストマーA-7の数平均分子量は62,500であり、HPLCから、エラストマーA-7の1分子あたりの側鎖導入水酸基の数は3.19個であった。以上の測定値から、エラストマーのA-7の活性水素量は0.051mmol/gと計算できる。
<Elastomer A-7> (SEEPS having a hydroxyl group in the side chain)
In a pressure vessel equipped with a stirrer, 500 g of elastomer A-5 and 200 g of toluene were added and heated and dissolved at 100 ° C. with stirring in a nitrogen atmosphere, and then 1.5 g of di-t-butyl peroxide and 2-methacrylic acid 2- Hydroxyethyl (5 g) was added dropwise and reacted for 3 hours. The solvent contained in the block copolymer thus obtained was distilled off under reduced pressure, and the resulting block copolymer was designated as elastomer A-7.
The elastomer A-7 has a styrene content of 28% by weight, the number average molecular weight of the elastomer A-7 determined from GPC is 62,500, and from HPLC, the number of hydroxyl groups introduced into the side chain per molecule of the elastomer A-7. The number was 3.19. From the above measured values, the amount of active hydrogen of A-7 in the elastomer can be calculated as 0.051 mmol / g.
<エラストマーA-8>(主鎖末端に水酸基を有するSEEPS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン117gおよびsec-ブチルリチウムのシクロヘキサン溶液(11重量%)を120.3g加え、40℃で1時間重合反応を行った。次いで、イソプレンとブタジエンの混合物(モル比1:1)1065gを加えて1時間重合反応を行い、更にその後スチレンを117g加えて1時間重合反応を行った。その後にエチレンオキサイド10gを加え、最後にメタノールを添加して反応を停止し、片末端に水酸基を有するスチレン-(ブタジエン/イソプレン)-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-8とする。
 エラストマーA-8のスチレン含量は18重量%であり、GPCから求めたエラストマーA-1の数平均分子量は35,000であり、HPLCから、エラストマーA-8の1分子あたりの主鎖末端水酸基の数は0.98個であった。以上の測定値からエラストマーA-8の活性水素量は0.028mmol/gと計算できる。
<Elastomer A-8> (SEEPS having a hydroxyl group at the end of the main chain)
In a pressure-resistant vessel equipped with a stirrer, 5.06 kg of cyclohexane, 117 g of sufficiently dehydrated styrene and 120.3 g of a cyclohexane solution of sec-butyllithium (11 wt%) were added, and a polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 1065 g of a mixture of isoprene and butadiene (molar ratio 1: 1) was added to conduct a polymerization reaction for 1 hour, and then 117 g of styrene was added to carry out the polymerization reaction for 1 hour. Thereafter, 10 g of ethylene oxide was added, and finally methanol was added to stop the reaction, thereby synthesizing a styrene- (butadiene / isoprene) -styrene type block copolymer having a hydroxyl group at one end. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. The solvent contained in the block copolymer thus obtained was distilled off under reduced pressure, and the resulting block copolymer solid was designated as elastomer A-8.
The elastomer A-8 has a styrene content of 18% by weight, the number average molecular weight of the elastomer A-1 determined from GPC is 35,000, and from HPLC, the number of main chain terminal hydroxyl groups per molecule of the elastomer A-8. The number was 0.98. From the above measured values, the amount of active hydrogen in Elastomer A-8 can be calculated as 0.028 mmol / g.
<エラストマーA-9>(主鎖末端に水酸基を有するSEEPS)
 攪拌装置付き耐圧容器中にシクロヘキサン5.06kg、十分に脱水したスチレン260gおよびsec-ブチルリチウムのシクロヘキサン溶液(11重量%)を120.3g加え、40℃で1時間重合反応を行った。次いで、イソプレンとブタジエンの混合物(モル比1:1)779gを加えて1時間重合反応を行い、更にその後スチレンを260g加えて1時間重合反応を行った。その後にエチレンオキサイド10gを加え、最後にメタノールを添加して反応を停止し、片末端に水酸基を有するスチレン-(ブタジエン/イソプレン)-スチレン型のブロック共重合体を合成した。こうして得られたブロック共重合体を、チーグラー系触媒を用いて、水素雰囲気下にて90℃で7時間水素添加反応を行い、水素添加物を得た。こうして得られたブロック共重合体に含まれる溶剤を減圧留去し、得られたブロック共重合体固形物をエラストマーA-9とする。
 エラストマーA-9のスチレン含量は40重量%であり、GPCから求めたエラストマーA-9の数平均分子量は110,000であり、HPLCから、エラストマーA-9の1分子あたりの主鎖末端水酸基の数は0.97個であった。以上の測定値からエラストマーA-9の活性水素量は0.009mmol/gと計算できる。
<Elastomer A-9> (SEEPS having a hydroxyl group at the end of the main chain)
In a pressure vessel equipped with a stirrer, 5.06 kg of cyclohexane, 260 g of sufficiently dehydrated styrene and 120.3 g of a cyclohexane solution of sec-butyllithium (11 wt%) were added, and a polymerization reaction was carried out at 40 ° C. for 1 hour. Next, 779 g of a mixture of isoprene and butadiene (molar ratio 1: 1) was added to perform a polymerization reaction for 1 hour, and then 260 g of styrene was added to perform a polymerization reaction for 1 hour. Thereafter, 10 g of ethylene oxide was added, and finally methanol was added to stop the reaction, thereby synthesizing a styrene- (butadiene / isoprene) -styrene type block copolymer having a hydroxyl group at one end. The block copolymer thus obtained was subjected to a hydrogenation reaction at 90 ° C. for 7 hours under a hydrogen atmosphere using a Ziegler catalyst to obtain a hydrogenated product. The solvent contained in the block copolymer thus obtained was distilled off under reduced pressure, and the resulting block copolymer solid was designated as elastomer A-9.
The elastomer A-9 has a styrene content of 40% by weight, the number average molecular weight of the elastomer A-9 determined from GPC is 110,000, and from HPLC, the number of hydroxyl groups on the main chain terminal per molecule of the elastomer A-9. The number was 0.97. From the above measured values, the amount of active hydrogen in Elastomer A-9 can be calculated as 0.009 mmol / g.
<樹脂D-1>(SEEPS構造を有する、エラストマー複合樹脂、数平均分子量62,800)
 攪拌装置付き耐圧容器中に主鎖末端に水酸基を有するエラストマーA-1を500g、トルエンを200g加え、窒素雰囲気下で攪拌しながら80℃で加熱溶解させた後、イソホロンジイソシアネートを1.78g滴下し、3時間反応させることでイソシアネート基末端のSEEPSを得た。
 前記イソシアネート基末端のSEEPSに、イソフタル酸、2-メチル-1,3-プロパンジオールにより構成される数平分子量2000、末端が水酸基のポリエステル樹脂を8.8g加え、更に3時間反応させた。その後、溶剤を減圧留去し、得られたSEEPS構造を有する、エラストマー複合樹脂(固形物)を樹脂D-1とする。
<Resin D-1> (Elastomer composite resin having SEEPS structure, number average molecular weight 62,800)
In a pressure vessel equipped with a stirrer, 500 g of elastomer A-1 having a hydroxyl group at the end of the main chain and 200 g of toluene were added and heated and dissolved at 80 ° C. with stirring in a nitrogen atmosphere, and then 1.78 g of isophorone diisocyanate was added dropwise. By making it react for 3 hours, SEEPS of the isocyanate group terminal was obtained.
8.8 g of a polyester resin having a number average molecular weight of 2000 and a terminal hydroxyl group composed of isophthalic acid and 2-methyl-1,3-propanediol was added to the isocyanate group-terminated SEEPS, and the mixture was further reacted for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid matter) having a SEEPS structure is referred to as Resin D-1.
<樹脂D-2>(SEEPS構造を有するエラストマー複合樹脂、数平均分子量68,000)
 攪拌装置付き耐圧容器中にジフェニルメタンジイソシアネート10.0g、トルエンを50g加え窒素雰囲気下で攪拌しながら、アジピン酸、1,4-ブタンジオールにより構成された数平分子量3000のポリエステルポリオール109.0gを加えて80℃で3時間反応させることでイソシアネート基末端のポリウレタン樹脂を得た。
 前記イソシアネート基末端のポリウレタン樹脂に、主鎖末端に水酸基を有するエラストマーA-1を500g加え、更に3時間反応させた。その後、溶剤を減圧留去し、得られたSEEPS構造を有するエラストマー複合樹脂(固形物)を樹脂D-2とする。
<Resin D-2> (Elastomer composite resin having a SEEPS structure, number average molecular weight 68,000)
Add 10.0 g of diphenylmethane diisocyanate and 50 g of toluene to a pressure-resistant vessel equipped with a stirrer, and add 109.0 g of polyester polyol having a molecular weight of 3000 consisting of adipic acid and 1,4-butanediol while stirring in a nitrogen atmosphere. Was reacted at 80 ° C. for 3 hours to obtain an isocyanate group-terminated polyurethane resin.
500 g of elastomer A-1 having a hydroxyl group at the main chain end was added to the isocyanate group-terminated polyurethane resin, and the mixture was further reacted for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid material) having a SEEPS structure is referred to as Resin D-2.
<樹脂D-3>(SEEPS構造を有するエラストマー複合樹脂、数平均分子量74,000)
 攪拌装置付き耐圧容器中にトルエンを200g、1,6-ヘキサンジオール:3-メチル-1,5-ペンタンジオール=1:1の組成比である数平分子量2000のポリカーボネートポリオールとイソホロンジイソシアネートから構成される分子量12,000、末端がイソシアネート基のポリウレタン樹脂を50g加え、主鎖末端にアミノ基を有するエラストマーA-4を572.9g加え、窒素雰囲気下で攪拌しながら80℃で加熱溶解させ、3時間反応させた。その後、溶剤を減圧留去し、得られたSEEPS構造を有する、エラストマー複合樹脂(固形物)を樹脂D-3とする。
<Resin D-3> (Elastomer composite resin having a SEEPS structure, number average molecular weight 74,000)
200 g of toluene in a pressure-resistant vessel equipped with a stirrer, composed of polycarbonate polyol having a molecular weight of 2000 having a composition ratio of 1,6-hexanediol: 3-methyl-1,5-pentanediol = 1: 1 and isophorone diisocyanate 50 g of a polyurethane resin having a molecular weight of 12,000 and an isocyanate group at the end and 572.9 g of an elastomer A-4 having an amino group at the end of the main chain are added and dissolved by heating at 80 ° C. with stirring in a nitrogen atmosphere. Reacted for hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid matter) having a SEEPS structure is referred to as Resin D-3.
<樹脂D-4>(SEEPS構造を有する、エラストマー複合樹脂、数平均分子量42,000)
 攪拌装置付き耐圧容器中にジフェニルメタンジイソシアネート10.0g、トルエンを50g加え窒素雰囲気下で攪拌しながら、数平分子量3000のポリテトラメチレングリコール84.2gを加えて80℃で3時間反応させることでイソシアネート基末端のポリウレタン樹脂を得た。
 前記イソシアネート基末端のポリウレタン樹脂に、主鎖末端に水酸基を有するエラストマーA-8を900g加え、更に3時間反応させた。その後、溶剤を減圧留去し、得られたSEEPS構造を有する、エラストマー複合樹脂(固形物)を樹脂D-4とする。
<Resin D-4> (Elastomer composite resin having a SEEPS structure, number average molecular weight 42,000)
In a pressure-resistant vessel equipped with a stirrer, 10.0 g of diphenylmethane diisocyanate and 50 g of toluene were added, and 84.2 g of polytetramethylene glycol having a molecular weight of 3000 was added while stirring in a nitrogen atmosphere, followed by reaction at 80 ° C. for 3 hours. A base end polyurethane resin was obtained.
900 g of elastomer A-8 having a hydroxyl group at the end of the main chain was added to the isocyanate group-terminated polyurethane resin, and the mixture was further reacted for 3 hours. Thereafter, the solvent is distilled off under reduced pressure, and the resulting elastomer composite resin (solid material) having a SEEPS structure is referred to as Resin D-4.
<樹脂D-5>(SEEPS構造を有する、エラストマー複合樹脂、数平均分子量126,000)
 攪拌装置付き耐圧容器中にトルエン50g、ジフェニルメタンジイソシアネート10.0g、アジピン酸、1,4-ブタンジオールにより構成された数平分子量2000のポリエステルポリオール76.5g、主鎖末端に水酸基を有するエラストマーA-9を400g加え窒素雰囲気下で攪拌しながら、を加えて80℃で3時間反応させた。
 その後、溶剤を減圧留去し、得られたSEEPS構造を有する、エラストマー複合樹脂(固形物)を樹脂D-5とする。
<Resin D-5> (Elastomer composite resin having SEEPS structure, number average molecular weight 126,000)
In a pressure vessel equipped with a stirrer, 50 g of toluene, 10.0 g of diphenylmethane diisocyanate, 76.5 g of polyester polyol having a molecular weight of 2000 composed of adipic acid and 1,4-butanediol, elastomer A- having a hydroxyl group at the end of the main chain 400 g of 9 was added while stirring under a nitrogen atmosphere, and the mixture was reacted at 80 ° C. for 3 hours.
Thereafter, the solvent is distilled off under reduced pressure, and the obtained elastomer composite resin (solid matter) having a SEEPS structure is referred to as Resin D-5.
<主剤1>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-1(主鎖片末端に水酸基を有するSEEPS、スチレン含量28重量%、官能基量0.016mmol/g):85部と、粘着付与剤(B)として荒川化学工業社製ロジンエステル パインクリスタル KE-100(軟化点100℃、酸価6mgKOH/g):15部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して、50℃で3時間加熱攪拌し、主剤1の溶液(固形分30%)を得た。
<Main agent 1>
Elastomer A-1 (SEEPS having a hydroxyl group at one end of the main chain, styrene content 28% by weight, functional group content 0.016 mmol / g): 85 parts as a styrenic thermoplastic elastomer (A), tackifier (B) As a rosin ester pine crystal KE-100 (softening point 100 ° C., acid value 6 mg KOH / g): 15 parts, put into a container and diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 The mixture was stirred at 3 ° C. for 3 hours to obtain a solution of the main agent 1 (solid content 30%).
<主剤2>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-1:23部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):77部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤2の溶液(固形分30%)を得た。
<Main agent 2>
Elastomer A-1: 23 parts as a styrenic thermoplastic elastomer (A), and Arakawa Chemical Industries, Ltd. fully hydrogenated C9 resin Alcon P-140 (softening point 140 ° C., no acid value) as a tackifier (B): 77 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 2 (solid content 30%).
<主剤3>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-2(主鎖片末端に水酸基を有するSEBS、スチレン含量28重量%、官能基量0.015mmol/g):40部と、粘着付与剤(B)としてトーネックス社製水添化ジシクロペンタジエン樹脂 エスコレッツ 5320(軟化点125℃、酸価なし):60部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤3の溶液(固形分30%)を得た。
<Main agent 3>
Elastomer A-2 (SEBS having a hydroxyl group at one end of the main chain, styrene content 28 wt%, functional group content 0.015 mmol / g): 40 parts as a styrenic thermoplastic elastomer (A), tackifier (B) As a hydrogenated dicyclopentadiene resin Escorez 5320 (softening point 125 ° C., no acid value): 60 parts in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 at 3 ° C. The mixture was heated and stirred for a time to obtain a solution of the main agent 3 (solid content 30%).
<主剤4>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-2:60部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):40部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤4の溶液(固形分30%)を得た。
<Main agent 4>
60 parts of elastomer A-2 as styrene-based thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 40 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 4 (solid content 30%).
<主剤5>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-3(主鎖両末端に水酸基を有するSEEPS、スチレン含量28重量%、官能基量0.03mmol/g):60部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):25部および荒川化学工業社製ロジンエステル パインクリスタル KR-50M(軟化点150℃、酸価95mgKOH/g):15部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤5の溶液(固形分30%)を得た。
<Main agent 5>
Elastomer A-3 (SEEPS having hydroxyl groups at both ends of the main chain, styrene content 28% by weight, functional group amount 0.03 mmol / g): 60 parts as a styrenic thermoplastic elastomer (A), tackifier (B) Arakawa Chemical Industries, Ltd. fully hydrogenated C9 resin Alcon P-140 (softening point 140 ° C., no acid value): 25 parts and Arakawa Chemical Industries rosin ester Pine Crystal KR-50M (softening point 150 ° C., acid value 95 mg KOH) / G): 15 parts were put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 5 (solid content 30%).
<主剤6>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-4(主鎖片末端にアミノ基を有するSEEPS、スチレン含量28重量%、官能基量0.016mmol/g):55部と、粘着付与剤(B)としてヤスハラケミカル社製水添テルペン樹脂 クリアロン P-85(軟化点85℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤6の溶液(固形分30%)を得た。
<Main agent 6>
As a styrenic thermoplastic elastomer (A), elastomer A-4 (SEEPS having an amino group at one end of a main chain, styrene content 28 wt%, functional group content 0.016 mmol / g): 55 parts, a tackifier (B ) Hydrogenated terpene resin Clearon P-85 (softening point 85 ° C., no acid value): 45 parts in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and 3 at 50 ° C. The mixture was heated and stirred for a time to obtain a solution of the main agent 6 (solid content 30%).
<主剤7>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-4:55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):30部および荒川化学工業社製ロジンエステル パインクリスタル KE-100(軟化点100℃、酸価6mg/KOH):15部を容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤7の溶液(固形分30%)を得た。
<Main agent 7>
55 parts of elastomer A-4 as styrenic thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 30 parts and rosin ester Pine Crystal KE-100 (softening point 100 ° C., acid value 6 mg / KOH) manufactured by Arakawa Chemical Industries, Ltd .: 15 parts are put in a container and diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 to obtain 50 parts. The mixture was heated and stirred at 0 ° C. for 3 hours to obtain a solution of the main agent 7 (solid content 30%).
<主剤8>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-6(側鎖に水酸基を有するSEEPS、スチレン含量28重量%、官能基量0.026mmol/g):70部と、粘着付与剤(B)としてトーネックス社製水添化ジシクロペンタジエン樹脂 エスコレッツ 5320(軟化点125℃、酸価なし):30部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤8の溶液(固形分30%)を得た。
<Main agent 8>
Elastomer A-6 as styrenic thermoplastic elastomer (A) (SEEPS having a hydroxyl group in the side chain, styrene content 28 wt%, functional group content 0.026 mmol / g): 70 parts, Tonex as tackifier (B) Company hydrogenated dicyclopentadiene resin Escorez 5320 (softening point 125 ° C., no acid value): 30 parts is placed in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 and heated at 50 ° C. for 3 hours. The mixture was stirred to obtain a solution of the main agent 8 (solid content 30%).
<主剤9>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-1:55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤9の溶液(固形分30%)を得た。
<Main agent 9>
55 parts of an elastomer A-1 as a styrenic thermoplastic elastomer (A), and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as a tackifier (B): 45 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 9 (solid content 30%).
<主剤10>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-3:55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤10の溶液(固形分30%)を得た。
<Main agent 10>
55 parts of elastomer A-3 as styrenic thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 45 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 10 (solid content 30%).
<主剤11>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-1:50部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):40部と、スチレン系熱可塑性エラストマー構造を有する、エラストマー複合樹脂(D)として樹脂D-1(SEEPS構造を有する、エラストマー複合樹脂、数平均分子量62,800):10部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤11の溶液(固形分30%)を得た。なお、エラストマーA-1と粘着付与剤(B)との合計100重量部に対する、樹脂D-1は約11.1重量部である。
<Main agent 11>
50 parts of elastomer A-1 as styrene-based thermoplastic elastomer (A), and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 40 parts and 10 parts of resin D-1 (elastomer composite resin having a SEEPS structure, number average molecular weight 62,800): 10 parts as an elastomer composite resin (D) having a styrene-based thermoplastic elastomer structure, The mixture was diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 11 (solid content 30%). The resin D-1 is about 11.1 parts by weight relative to 100 parts by weight of the total of the elastomer A-1 and the tackifier (B).
<主剤12>~<主剤14>
 樹脂D-1の量をそれぞれ約22.5部、約48.4部、約60部とした以外は、主剤11の場合と同様にして、主剤12、13、14を得た。なお、エラストマーA-1と粘着付与剤(B)との合計100重量部に対する、樹脂D-1はそれぞれ約25重量部、53.8重量部、約66.7重量部である。
<Main agent 12> to <Main agent 14>
Main agents 12, 13, and 14 were obtained in the same manner as in the main agent 11, except that the amount of the resin D-1 was about 22.5 parts, about 48.4 parts, and about 60 parts, respectively. The resin D-1 is about 25 parts by weight, 53.8 parts by weight, and about 66.7 parts by weight with respect to 100 parts by weight of the total of the elastomer A-1 and the tackifier (B).
<主剤15>~<主剤18>
 樹脂D-1をそれぞれ樹脂D-2、樹脂D-3、樹脂D-4、樹脂D-5とした以外は、主剤11の場合と同様にして、主剤15、16、17、18を得た。
<Main agent 15> to <Main agent 18>
Main agents 15, 16, 17, and 18 were obtained in the same manner as in the case of Main agent 11, except that resin D-1 was Resin D-2, Resin D-3, Resin D-4, and Resin D-5, respectively. .
<主剤19>~<主剤20>
 樹脂A-1をそれぞれ樹脂A-8、樹脂A-9とした以外は、主剤11の場合と同様にして、主剤19、主剤20を得た。
<Main agent 19> to <Main agent 20>
Main agent 19 and main agent 20 were obtained in the same manner as in main agent 11, except that resin A-1 was changed to resin A-8 and resin A-9, respectively.
<比較例用主剤101>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-4:5部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):95部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤101の溶液(固形分30%)を得た。
<Main agent 101 for comparative example>
Elastomer A-4: 5 parts as a styrenic thermoplastic elastomer (A), and fully hydrogenated C9 resin Alcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as a tackifier (B): 95 parts were put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 101 (solid content 30%).
<比較例用主剤102>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-4:100部を容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤102の溶液(固形分30%)を得た。
<Main Example 102 for Comparative Example>
100 parts of elastomer A-4 as a styrenic thermoplastic elastomer (A) is put in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 102 (solid 30%).
<比較例用主剤103>
 スチレン系熱可塑性エラストマー(A)としてエラストマーA-4:55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤103の溶液(固形分30%)を得た。
<Main agent 103 for comparative example>
55 parts of elastomer A-4 as styrenic thermoplastic elastomer (A) and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as tackifier (B): 45 parts was put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 103 (solid content 30%).
<比較例用主剤104>
 スチレン系熱可塑性エラストマー(A)としてA-5(官能基を有さないSEEPS、スチレン含量28重量%、官能基量0mmol/g):55部と、粘着付与剤(B)として荒川化学工業社製ロジンエステル パインクリスタル KE-100(軟化点100℃、酸価6mgKOH/g):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤104の溶液(固形分30%)を得た。
<Main Example 104 for Comparative Example>
A-5 (SEEPS without functional group, styrene content 28% by weight, functional group amount 0 mmol / g): 55 parts as styrenic thermoplastic elastomer (A), and Arakawa Chemical Industries, Ltd. as tackifier (B) Rosin ester Pine Crystal KE-100 (softening point 100 ° C., acid value 6 mg KOH / g): 45 parts is put into a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours. As a result, a solution of the main agent 104 (solid content 30%) was obtained.
<比較例用主剤105>
 スチレン系熱可塑性エラストマー(A)としてA-7(側鎖に水酸基を有するSEEPS、スチレン含量28重量%、官能基量0.051mmol/g):55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤105の溶液(固形分30%)を得た。 
<Main agent 105 for comparative example>
A-7 (SEEPS having a hydroxyl group in the side chain, styrene content 28% by weight, functional group amount 0.051 mmol / g) as styrene thermoplastic elastomer (A): 55 parts, and Arakawa Chemical as tackifier (B) Completely hydrogenated C9 resin Alcon P-140 (softening point 140 ° C., no acid value): 45 parts in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and stirred at 50 ° C. for 3 hours The mixture was heated and stirred to obtain a solution of main agent 105 (solid content 30%).
<比較例用主剤106>
 スチレン系熱可塑性エラストマー(A)としてA-4:55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):30部および荒川化学工業社製ロジンエステル パインクリスタル KE-85(軟化点85℃、酸価170mg/KOH):15部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤106の溶液(固形分30%)を得た。 
<Main Example 106 for Comparative Example>
A-4: 55 parts as a styrenic thermoplastic elastomer (A), and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries, Ltd. as a tackifier (B): 30 Rosin ester Pine Crystal KE-85 (softening point 85 ° C., acid value 170 mg / KOH): 15 parts in a container and diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 The mixture was heated and stirred at 0 ° C. for 3 hours to obtain a solution of the main agent 106 (solid content 30%).
<比較例用主剤107>
 スチレン系熱可塑性エラストマー(A)としてA-4:55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤107の溶液(固形分30%)を得た。
<Main Example 107 for Comparative Example>
A-4: 55 parts as a styrenic thermoplastic elastomer (A), and fully hydrogenated C9 resin Arcon P-140 (softening point 140 ° C., no acid value) manufactured by Arakawa Chemical Industries as a tackifier (B): 45 Was diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2, and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 107 (solid content 30%).
<比較例用主剤108>
 スチレン系熱可塑性エラストマー(A)としてタフテックM1913(側鎖にカルボキシル基を有するSEBS、旭化成工業社製、スチレン含量30重量%、カルボキシル基量0.19mmol/g、1分子あたりにカルボキシル基を11.4個含有):55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤108の溶液(固形分30%)を得た。
<Main agent 108 for comparative example>
Tuftec M1913 (SEBS having a carboxyl group in the side chain, manufactured by Asahi Kasei Kogyo Co., Ltd., styrene content 30% by weight, carboxyl group amount 0.19 mmol / g as a styrene-based thermoplastic elastomer (A). 4 parts): 55 parts and, as a tackifier (B), Arakawa Chemical Industries, Ltd. fully hydrogenated C9 resin Alcon P-140 (softening point 140 ° C., no acid value): 45 parts in a container The mixture was diluted with a mixed solvent of / methyl ethyl ketone = 8/2 and heated and stirred at 50 ° C. for 3 hours to obtain a solution of the main agent 108 (solid content 30%).
<比較例用主剤109>
 スチレン系熱可塑性エラストマー(A)としてエポール(ポリオレフィンポリオール、出光興産社製、スチレン含量0重量%、活性水素量0.91mmol/g):55部と、粘着付与剤(B)として荒川化学工業社製完全水添C9樹脂 アルコン P-140(軟化点140℃、酸価なし):45部とを容器に入れ、トルエン/メチルエチルケトン=8/2の混合溶剤で希釈して50℃で3時間加熱攪拌し、主剤109の溶液(固形分30%)を得た。
<Main agent 109 for comparative example>
Epaul (polyolefin polyol, manufactured by Idemitsu Kosan Co., Ltd., styrene content 0% by weight, active hydrogen content 0.91 mmol / g): 55 parts as styrene thermoplastic elastomer (A), and Arakawa Chemical Industries, Ltd. as tackifier (B) Completely hydrogenated C9 resin Alcon P-140 (softening point 140 ° C., no acid value): 45 parts is placed in a container, diluted with a mixed solvent of toluene / methyl ethyl ketone = 8/2 and stirred at 50 ° C. for 3 hours. As a result, a solution of the main agent 109 (solid content 30%) was obtained.
<硬化剤1>
 イソホロンジイソシアネートの三量体(イソシアネート基の官能基量4.08mmol/g、1分子あたりの平均イソシアネート基数3)をトルエンで希釈して固形分50%の溶液としたものを硬化剤1とする。
<Curing agent 1>
Curing agent 1 is obtained by diluting a trimer of isophorone diisocyanate (functional amount of isocyanate group: 4.08 mmol / g, average number of isocyanate groups per molecule: 3) with toluene to give a solid content of 50%.
<硬化剤2>
 ヘキサメチレンジイソシアネートの三量体(イソシアネート基の官能基量5.19mmol/g、1分子あたりの平均イソシアネート基数3)をトルエンで希釈して固形分50%の溶液としたものを硬化剤2とする。
<Curing agent 2>
A curing agent 2 is obtained by diluting a trimer of hexamethylene diisocyanate (functional amount of isocyanate group 5.19 mmol / g, average number of isocyanate groups 3 per molecule 3) with toluene to give a solid content of 50%. .
<硬化剤3>
 トリレンジイソシアネートのトリメチロールプロパンとのアダクト体(イソシアネート基の官能基量4.13mmol/g、1分子あたりの平均イソシアネート基数3)をトルエンで希釈して固形分50%の溶液としたものを硬化剤3とする。
<Curing agent 3>
Curing a tolylene diisocyanate adduct with trimethylolpropane (functional amount of isocyanate group 4.13 mmol / g, average number of isocyanate groups 3 per molecule) diluted with toluene to give a solution with a solid content of 50% Agent 3 is used.
<実施例1~21>、<比較例1~9>
 スチレン系熱可塑性エラストマー(A)の官能基由来の活性水素と粘着付与剤(B)の官能基由来の活性水素との合計1モルに対して、ポリイソシアネート(C)のイソシアネート基の量が表1A、表1B、表2A、表2Bに示す値となるように、各種主剤溶液と硬化剤溶液を配合し、トルエンで希釈して固形分20%に調整した溶液を接着剤溶液とする。
 各接着剤溶液を調製後、直ちに、厚み50μmのアルミニウム箔の片面に塗布し、100℃、1分間乾燥した(乾燥時接着剤量:2~3g/m)。次いで、前記接着剤層上に、厚み30μmの未延伸ポリプロピレンフィルム(以下CPPと呼ぶ)を重ね合わせ、60℃に設定した2つのロール間を通過させることにより積層体を得た。その後、得られた積層体を40℃、5日間の硬化(エージング)を行い、接着剤層を十分硬化させた。こうして、得られたアルミニウム箔/CPPラミネートフィルムを、以下「Al/CPP積層フィルム」と呼ぶ。
 また、各接着剤溶液を調製後、25℃環境下で24時間静置した後に、同様にAl/CPP積層フィルムを作製した。
 それぞれのAl/CPP積層フィルムについて、後述する方法にての剥離強度を求めた。更に、それぞれのAl/CPP積層フィルムを電解液に85℃の環境下で14日間浸漬した後、同様にして剥離強度を求めた。結果を表2A,表2Bに示す。
<Examples 1 to 21>, <Comparative Examples 1 to 9>
The amount of the isocyanate group of the polyisocyanate (C) is expressed with respect to 1 mol in total of the active hydrogen derived from the functional group of the styrenic thermoplastic elastomer (A) and the active hydrogen derived from the functional group of the tackifier (B). Various main agent solutions and curing agent solutions are blended so as to have the values shown in 1A, Table 1B, Table 2A, and Table 2B, and diluted with toluene to adjust the solid content to 20%.
Immediately after preparing each adhesive solution, it was applied to one side of an aluminum foil having a thickness of 50 μm and dried at 100 ° C. for 1 minute (adhesive amount when dried: 2 to 3 g / m 2 ). Next, an unstretched polypropylene film (hereinafter referred to as CPP) having a thickness of 30 μm was superposed on the adhesive layer and passed between two rolls set at 60 ° C. to obtain a laminate. Thereafter, the obtained laminate was cured (aging) at 40 ° C. for 5 days to sufficiently cure the adhesive layer. The aluminum foil / CPP laminate film thus obtained is hereinafter referred to as “Al / CPP laminate film”.
Moreover, after preparing each adhesive agent solution and leaving still at 25 degreeC environment for 24 hours, the Al / CPP laminated film was produced similarly.
About each Al / CPP laminated film, the peeling strength by the method mentioned later was calculated | required. Further, each Al / CPP laminated film was immersed in an electrolyte solution at 85 ° C. for 14 days, and the peel strength was determined in the same manner. The results are shown in Table 2A and Table 2B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1A、表1B中に示す略語は以下の通り。
<スチレン系熱可塑性エラストマー(A)>
・タフテックM1913:旭化成工業社製SEBS(スチレン-エチレン-ブチレン-スチレン)、スチレン含量:30重量%、数平均分子量60,000、カルボキシル基量:0.19(mmol/g)、1分子あたりにカルボキシル基を11.4個含有
・エポール:出光興産社製水素添加ポリオレフィンポリオール、スチレン含量:0重量%、数平均分子量:2,500、活性水素:0.91(mmol/g)
Abbreviations shown in Table 1A and Table 1B are as follows.
<Styrenic thermoplastic elastomer (A)>
Tuftec M1913: SEBS (styrene-ethylene-butylene-styrene) manufactured by Asahi Kasei Kogyo Co., Ltd., styrene content: 30% by weight, number average molecular weight 60,000, carboxyl group content: 0.19 (mmol / g) per molecule Contains 11.4 carboxyl groups. Epol: Hydrogenated polyolefin polyol manufactured by Idemitsu Kosan Co., Ltd., styrene content: 0% by weight, number average molecular weight: 2,500, active hydrogen: 0.91 (mmol / g)
<粘着付与剤(B)>
・パインクリスタルKE-100:荒川化学工業社製ロジンエステル、軟化点:100℃、酸価:6(mgKOH/g)
・パインクリスタルKR-50M:荒川化学工業社製ロジンエステル、軟化点:150℃、酸価:95(mgKOH/g)
・パインクリスタルKE-85:荒川化学工業社製ロジンエステル、軟化点:85℃、酸価:170(mgKOH/g)
・アルコンP-140:荒川化学工業社製完全水添C9樹脂、軟化点:140℃、酸価:0(mgKOH/g)
・クリアロンP-85:ヤスハラケミカル社製水添テルペン樹脂、軟化点:85℃、酸価:0(mgKOH/g)
・エスコレッツ5320:トーネックス社製水添ジシクロペンタジエン樹脂、軟化点:125℃、酸価:0(mgKOH/g)
<Tackifier (B)>
Pine crystal KE-100: rosin ester manufactured by Arakawa Chemical Industries, softening point: 100 ° C., acid value: 6 (mgKOH / g)
Pine crystal KR-50M: Rosin ester manufactured by Arakawa Chemical Industries, softening point: 150 ° C., acid value: 95 (mgKOH / g)
Pine crystal KE-85: Rosin ester manufactured by Arakawa Chemical Industries, softening point: 85 ° C., acid value: 170 (mgKOH / g)
Alcon P-140: Completely hydrogenated C9 resin manufactured by Arakawa Chemical Industries, softening point: 140 ° C., acid value: 0 (mgKOH / g)
Clearon P-85: Hydrogenated terpene resin manufactured by Yasuhara Chemical Co., Ltd., softening point: 85 ° C., acid value: 0 (mgKOH / g)
Escoretz 5320: Hydrogenated dicyclopentadiene resin manufactured by Tonex, softening point: 125 ° C., acid value: 0 (mgKOH / g)
<ポリイソシアネート(C)>
・IPDIトリマー:イソホロンジイソシアネートの三量体
・HDIトリマー:ヘキサメチレンジイソシアネートの三量体
・TDI-TMP:トリレンジイソシアネートのトリメチロールプロパンとのアダクト体
<Polyisocyanate (C)>
IPDI trimer: trimer of isophorone diisocyanate HDI trimer: trimer of hexamethylene diisocyanate TDI-TMP: adduct of tolylene diisocyanate with trimethylolpropane
<エラストマー複合樹脂(D)>
・樹脂D-1:SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレン)構造を有する、変性ポリエステル樹脂、数平均分子量:62,800
・樹脂D-2:SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレン)構造を有する、変性ポリウレタン樹脂、数平均分子量:68,000
・樹脂D-3:SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレン)構造を有する、変性ポリウレタン樹脂、数平均分子量:74,000
・樹脂D-4:SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレン)構造を有する、変性ポリウレタン樹脂、数平均分子量:42,000
・樹脂D-5:SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレン)構造を有する、変性ポリウレタン樹脂、数平均分子量:126,000
<Elastomer composite resin (D)>
Resin D-1: Modified polyester resin having a SEEPS (styrene-ethylene-ethylene-propylene-styrene) structure, number average molecular weight: 62,800
Resin D-2: Modified polyurethane resin having a SEEPS (styrene-ethylene-ethylene-propylene-styrene) structure, number average molecular weight: 68,000
Resin D-3: Modified polyurethane resin having a SEEPS (styrene-ethylene-ethylene-propylene-styrene) structure, number average molecular weight: 74,000
Resin D-4: Modified polyurethane resin having a SEEPS (styrene-ethylene-ethylene-propylene-styrene) structure, number average molecular weight: 42,000
Resin D-5: Modified polyurethane resin having a SEEPS (styrene-ethylene-ethylene-propylene-styrene) structure, number average molecular weight: 126,000
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<性能試験・評価基準>
[25℃剥離試験]
 各Al/CPP積層フィルムを、25℃、湿度65%の環境下で6時間静置後、それぞれ200mm×15mmの大きさに切断し、ASTM-D1876-61の試験法に準じ、引張り試験機を用いて、25℃、湿度65%の環境下で、荷重速度300mm/分でT型剥離試験をおこなった。アルミニウム箔/CPP間の剥離強度(N/15mm巾)を5個の試験片の平均値で示す。
 ◎ 実用上優れる:7N/15mm以上
 ○ 実用域:5~7N/15mm
 △ 実用下限:2~5N/15mm
 × 実用不可:2N/15mm未満
<Performance tests and evaluation criteria>
[25 ° C peeling test]
Each Al / CPP laminated film was allowed to stand for 6 hours in an environment of 25 ° C. and 65% humidity, then cut to a size of 200 mm × 15 mm, and a tensile tester was applied in accordance with the test method of ASTM-D1876-61. The T-type peel test was performed at a load rate of 300 mm / min in an environment of 25 ° C. and 65% humidity. The peel strength (N / 15 mm width) between the aluminum foil / CPP is shown as an average value of five test pieces.
◎ Excellent in practical use: 7N / 15mm or more ○ Practical range: 5-7N / 15mm
△ Practical lower limit: 2-5N / 15mm
× Not practical: Less than 2N / 15mm
[耐電解質試験]
 各Al/CPP積層フィルムを、25℃、湿度65%の環境下で1日間静置後、それぞれ200mm×15mmの大きさに切断し、この試験片を電解質[6フッ化リン酸リチウムをエチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(容積比)に溶解し、1mol/Lの6フッ化リン酸リチウム溶液としたもの]に85℃で14日間浸漬させた。その後、試験片を取り出し約10分程度流水で洗浄し、ペーパーワイパーで水を拭き取った後、25℃、湿度65%の環境下で1日間静置し、乾燥させた。
 乾燥後の試験片を、ASTM-D1876-61の試験法に準じ、引張り試験機を用いて、25℃、湿度65%の環境下で、荷重速度300mm/分でT型剥離試験をおこなった。アルミニウム箔/CPP間の剥離強度(N/15mm巾)を5個の試験片の平均値で示す。なお、評価の基準は以下の通り。
 ◎ 実用上優れる:耐電解質試験前後で剥離強度の保持率が90%以上
 ○ 実用域:耐電解質試験前後で剥離強度の保持率が60%~90%
 △ 実用下限:耐電解質試験前後で剥離強度の保持率が20%~60%
 × 実用不可:耐電解質試験前後で剥離強度の保持率が20%未満、若しくはデラミネート
[Electrolytic resistance test]
Each Al / CPP laminated film was allowed to stand in an environment of 25 ° C. and 65% humidity for 1 day, and then cut into a size of 200 mm × 15 mm, and the test piece was subjected to electrolyte [lithium hexafluorophosphate in ethylene carbonate. / Diethyl carbonate / dimethyl carbonate = 1/1/1 (volume ratio) and a 1 mol / L lithium hexafluorophosphate solution] was immersed at 85 ° C. for 14 days. Thereafter, the test piece was taken out, washed with running water for about 10 minutes, wiped off with a paper wiper, then allowed to stand in an environment of 25 ° C. and humidity 65% for 1 day and dried.
The test piece after drying was subjected to a T-type peel test at a load rate of 300 mm / min using a tensile tester in an environment of 25 ° C. and a humidity of 65% according to the test method of ASTM-D1876-61. The peel strength (N / 15 mm width) between the aluminum foil / CPP is shown as an average value of five test pieces. The evaluation criteria are as follows.
◎ Excellent in practical use: 90% or higher peel strength retention before and after electrolyte resistance test ○ Practical range: 60% to 90% peel strength retention before and after electrolyte resistance test
△ Practical lower limit: 20% to 60% retention of peel strength before and after electrolyte resistance test
× Not practical: The peel strength retention before and after the electrolyte resistance test is less than 20%, or delaminate
 表2Bに示すように、比較例1は、スチレン系熱可塑性エラストマー(A)の配合量が本発明の効果が現れる配合量の20重量%よりも少ない例である。評価の結果、接着剤の弾性が発現せず、接着強度が著しく低下するという結果を得た。 As shown in Table 2B, Comparative Example 1 is an example in which the blending amount of the styrenic thermoplastic elastomer (A) is less than 20% by weight of the blending amount at which the effect of the present invention appears. As a result of the evaluation, there was obtained a result that the elasticity of the adhesive was not expressed and the adhesive strength was significantly reduced.
 比較例2は、粘着付与剤(B)を含有しない例である。評価の結果、接着剤の凝集力が不足し、接着強度が著しく低下するという結果を得た。 Comparative Example 2 is an example not containing a tackifier (B). As a result of the evaluation, the cohesive force of the adhesive was insufficient and the adhesive strength was significantly reduced.
 比較例3は、ポリイソシアネート(C)の量が本発明の特定範囲よりも少ない例である。評価の結果、接着剤を配合して24時間静置している間にエラストマー(A)とポリイソシアネート(C)との架橋反応が進行し、粘度増加し、アルミニウム箔やCPPフィルムへの濡れ性が調製直後よりも低下し、接着強度が著しく低下するという結果を得た。 Comparative Example 3 is an example in which the amount of polyisocyanate (C) is less than the specific range of the present invention. As a result of the evaluation, the cross-linking reaction between the elastomer (A) and the polyisocyanate (C) proceeds while the adhesive is blended and allowed to stand for 24 hours, the viscosity increases, and the wettability to the aluminum foil or CPP film. Was lower than that immediately after preparation, and the adhesive strength was significantly reduced.
 比較例4は、スチレン系熱可塑性エラストマー(A)が官能基を含有しない例である。評価の結果、接着剤組成物の他の成分との相溶性が悪化し、接着剤層の粘弾性が悪化し、また、ポリイソシアネート(C)との架橋構造が形成されず、接着強度が著しく悪化するという結果を得た。 Comparative Example 4 is an example in which the styrene-based thermoplastic elastomer (A) does not contain a functional group. As a result of the evaluation, the compatibility with the other components of the adhesive composition is deteriorated, the viscoelasticity of the adhesive layer is deteriorated, and a crosslinked structure with the polyisocyanate (C) is not formed, and the adhesive strength is remarkably increased. The result of getting worse was obtained.
 比較例5は、スチレン系熱可塑性エラストマー(A)の官能基由来の活性水素量が0.04よりも多いエラストマーを使用している例である。評価の結果、配合直後では高い接着強度、耐電解質性を示したが、24時間静置している間にエラストマー(A)とポリイソシアネート(C)との架橋反応が進行し、大幅な増粘が生じ、接着剤の塗工および評価ができないという結果を得た。 Comparative Example 5 is an example in which an elastomer having an active hydrogen amount derived from the functional group of the styrene-based thermoplastic elastomer (A) is larger than 0.04. As a result of the evaluation, it showed high adhesive strength and electrolyte resistance immediately after blending, but the cross-linking reaction between the elastomer (A) and the polyisocyanate (C) progressed while standing for 24 hours, resulting in significant thickening. As a result, the adhesive could not be applied and evaluated.
 比較例6は、接着剤に含まれる粘着付与剤(B)の官能基由来の活性水素量1モルに対して、スチレン系熱可塑性エラストマー(A)の活性水素量が15.0モルよりも高くなるように配合されている例である。評価の結果、ポリイソシアネート(C)とスチレン系熱可塑性エラストマー(A)との反応による架橋構造が不足し、接着強度および耐電解質性が著しく悪化するという結果を得た。 In Comparative Example 6, the amount of active hydrogen of the styrenic thermoplastic elastomer (A) is higher than 15.0 mol with respect to 1 mol of active hydrogen derived from the functional group of the tackifier (B) contained in the adhesive. This is an example of blending. As a result of the evaluation, a cross-linked structure due to the reaction between the polyisocyanate (C) and the styrenic thermoplastic elastomer (A) is insufficient, and the adhesive strength and the electrolyte resistance are remarkably deteriorated.
 比較例7は、ポリイソシアネート(C)がスチレン系熱可塑性エラストマー(A)の官能基由来の活性水素量と粘着付与剤(B)の官能基由来の活性水素量の和に比して、本発明の特定した範囲から過量に配合された例である。評価の結果、余剰なポリイソシアネート(C)が接着剤の粘弾性を悪化させ、接着強度および耐電解質性が著しく悪化するという結果を得た。 In Comparative Example 7, the polyisocyanate (C) was compared with the sum of the amount of active hydrogen derived from the functional group of the styrenic thermoplastic elastomer (A) and the amount of active hydrogen derived from the functional group of the tackifier (B). It is an example mix | blended in excess from the specified range of invention. As a result of the evaluation, it was obtained that the excess polyisocyanate (C) deteriorates the viscoelasticity of the adhesive, and the adhesive strength and the electrolyte resistance are remarkably deteriorated.
 比較例8は、スチレン系熱可塑性エラストマー(A)が分子鎖にカルボキシル基を有しており、エラストマー1分子あたりカルボキシル11個含有している例である。評価の結果、配合直後では高い接着強度、耐電解質性を示したが、24時間静置している間にエラストマー(A)とポリイソシアネート(C)との架橋反応が進行し、大幅な増粘が生じ、比較例5と同様に接着剤の塗工および評価ができないという結果を得た。 Comparative Example 8 is an example in which the styrenic thermoplastic elastomer (A) has a carboxyl group in the molecular chain and contains 11 carboxyls per molecule of the elastomer. As a result of the evaluation, it showed high adhesive strength and electrolyte resistance immediately after blending, but the cross-linking reaction between the elastomer (A) and the polyisocyanate (C) progressed while standing for 24 hours, resulting in significant thickening. As in Comparative Example 5, the result was that the adhesive could not be applied and evaluated.
 比較例9は、スチレン系熱可塑性エラストマー(A)として、スチレン系エラストマーではなくポリオレフィンポリオールを使用した例である。評価の結果、十分な接着強度が得られず、耐電解質性も著しく悪化するという結果を得た。 Comparative Example 9 is an example in which a polyolefin polyol is used instead of a styrene elastomer as the styrene thermoplastic elastomer (A). As a result of the evaluation, it was found that sufficient adhesive strength could not be obtained and the electrolyte resistance was remarkably deteriorated.
 一方、前述の(i)~(iv)の全ての条件を満たした実施例1~21は、表2Aに示すように、初期接着力、エージング後の接着力、耐湿熱性試験後の接着力を全てバランスよく満たすという結果を得た。 On the other hand, as shown in Table 2A, Examples 1 to 21 satisfying all the conditions (i) to (iv) described above have initial adhesive strength, adhesive strength after aging, and adhesive strength after a moist heat resistance test. The result was that all were well-balanced.
 中でも実施例7、9、12~21がすべての試験で高い性能を示した。実施例7、9、12~21の接着剤は、スチレン系熱可塑性エラストマー(A)の含有量が30~80重量%の好適範囲にあり、更に粘着付与剤(B)の含有量も20~70%の好適範囲にあり、接着剤の粘弾性のバランスが良く、より優れた接着強度および耐電解質性を示したものと考察している。 Among them, Examples 7, 9, and 12 to 21 showed high performance in all tests. In the adhesives of Examples 7, 9, and 12 to 21, the content of the styrenic thermoplastic elastomer (A) is in a preferable range of 30 to 80% by weight, and the content of the tackifier (B) is also 20 to 20%. It is considered that it was in the preferred range of 70%, had a good balance of viscoelasticity of the adhesive, and exhibited better adhesive strength and electrolyte resistance.
 また、実施例7、9、12~21の接着剤は、イソシアネート基の量の点でもポリイソシアネート(C)が好適な配合比で配合されている例である。評価の結果、実施例3、4、11と比較して優れた接着強度、耐電解質性が得られるという結果を得た。これは、十分な架橋密度と粘弾性が得られているためと考察している。 The adhesives of Examples 7, 9, and 12 to 21 are examples in which polyisocyanate (C) is blended at a suitable blending ratio in terms of the amount of isocyanate groups. As a result of the evaluation, it was found that superior adhesive strength and electrolyte resistance were obtained as compared with Examples 3, 4, and 11. This is considered because sufficient crosslinking density and viscoelasticity are obtained.
 また、実施例7、9、12~21の接着剤は、粘着付与剤(B)の官能基由来の活性水素量1モルに対して、前記スチレン系熱可塑性エラストマー(A)の官能基由来の活性水素量が好適範囲である例である。評価の結果、好適範囲外の実施例5と比較してスチレン系熱可塑性エラストマー(A)とポリイソシアネート(C)との反応により十分な架橋構造が得られ、接着強度および耐電解質性が良好であるという結果を得た。
 また、実施例7、9,12~21の接着剤は、ポリイソシアネート(C)が構造中にイソシアヌレート構造を有している例である。評価の結果、ポリイソシアネート(C)が構造中にイソシアヌレート構造を含有していない実施例6と比較すると、高い電解液耐性が優れているという結果を得た。
The adhesives of Examples 7, 9, and 12 to 21 were derived from the functional group of the styrenic thermoplastic elastomer (A) with respect to 1 mol of active hydrogen derived from the functional group of the tackifier (B). This is an example in which the amount of active hydrogen is in a preferred range. As a result of the evaluation, a sufficient cross-linked structure was obtained by the reaction of the styrenic thermoplastic elastomer (A) and the polyisocyanate (C) as compared with Example 5 outside the preferred range, and the adhesive strength and electrolyte resistance were good. I got a result.
The adhesives of Examples 7, 9, and 12 to 21 are examples in which the polyisocyanate (C) has an isocyanurate structure in the structure. As a result of the evaluation, it was found that the high resistance to the electrolytic solution was excellent as compared with Example 6 in which the polyisocyanate (C) did not contain an isocyanurate structure in the structure.
 また、官能基が側鎖に導入されているスチレン系熱可塑性エラストマー(A)を使用した実施例8や、官能基が主鎖両末端に導入されているスチレン系熱可塑性エラストマー(A)を使用した実施例10は、接着剤溶液調製後、24時間静置している間にスチレン系熱可塑性エラストマー(A)とポリイソシアネート(C)との架橋反応が進行した結果、アルミニウム箔やCPPフィルムへの濡れ性が、調製直後よりも低下したので、剥離強度がやや低下したものと考えられる。なお、その後、耐電解質試験後に接着強度が向上しているのは、耐電解質試験時の熱で基材への濡れ性が改善したためだと考えられる。 In addition, Example 8 using a styrenic thermoplastic elastomer (A) having a functional group introduced into the side chain, or a styrene thermoplastic elastomer (A) having a functional group introduced at both ends of the main chain is used. In Example 10, after the adhesive solution was prepared, the cross-linking reaction between the styrenic thermoplastic elastomer (A) and the polyisocyanate (C) progressed while standing for 24 hours. It was considered that the peel strength was slightly decreased because the wettability of the film was lower than that immediately after the preparation. In addition, it is thought that the adhesive strength is improved after the electrolyte resistance test afterwards because the wettability to the base material is improved by the heat during the electrolyte resistance test.
 一方、実施例7、9、12~21の接着剤は、スチレン系エラストマー(A)の主鎖末端に官能基が導入されているため、ポリイソシアネート(C)との架橋反応が過度に進行しないので、調製直後の接着剤を使用しても調製後24時間経過後の接着剤を使用しても、高レベルで安定した剥離強度を示す。 On the other hand, in the adhesives of Examples 7, 9, and 12 to 21, since a functional group is introduced at the main chain terminal of the styrene elastomer (A), the crosslinking reaction with the polyisocyanate (C) does not proceed excessively. Therefore, even if it uses the adhesive immediately after preparation or the adhesive 24 hours after preparation, it shows the peel strength stable at a high level.
 実施例12~21の接着剤は、実施例7、9と比較してエラストマー複合樹脂(D)が配合されているため、アルミニウム箔との密着性が向上し高い接着強度を示した。特に実施例12~14、16~21の接着剤は、実施例15と比較してエラストマー複合樹脂(D)が2~60重量部という好適範囲で配合されているため、より高い接着強度および耐電解質性を示した。 Since the elastomer composite resin (D) was blended in the adhesives of Examples 12 to 21 as compared with Examples 7 and 9, adhesion with the aluminum foil was improved and high adhesive strength was exhibited. In particular, the adhesives of Examples 12 to 14 and 16 to 21 are blended in a suitable range of 2 to 60 parts by weight of the elastomer composite resin (D) as compared with Example 15, so that higher adhesive strength and resistance can be obtained. It showed electrolyte properties.
<実施例22>[塩化ビニル酢酸ビニル共重合体層/CPP積層フィルム]
 厚さ50μmのアルミニウム箔表面に、固形分30%に調整したカルボキシル基含有塩化ビニル酢酸ビニル共重合樹脂(日信化学工業株式会社製 SOLBIN M)メチルエチルケトン溶液を塗布し、加熱・乾燥し、[塩化ビニル酢酸ビニル共重合体層(厚さ:約5μm)/Al箔]を得た。これを基材E-1とする。
 基材E-1の塩化ビニル酢酸ビニル共重合体層上に、実施例19接着剤溶液を塗工した以外は、実施例19と同様にして、接着剤層にCPPを重ね合わせ、以下同様にして、[塩化ビニル酢酸ビニル共重合体層/CPP積層フィルム]を得、後述する方法で接着性能を評価した。
<Example 22> [vinyl chloride vinyl acetate copolymer layer / CPP laminated film]
Apply a carboxyl group-containing vinyl chloride vinyl acetate copolymer resin (SOLBIN M manufactured by Nissin Chemical Industry Co., Ltd.) methyl ethyl ketone solution adjusted to a solid content of 30% on the surface of 50 μm thick aluminum foil, heat and dry, Vinyl vinyl acetate copolymer layer (thickness: about 5 μm) / Al foil] was obtained. This is designated as a base material E-1.
Except that the adhesive solution of Example 19 was coated on the vinyl chloride / vinyl acetate copolymer layer of the substrate E-1, CPP was overlaid on the adhesive layer in the same manner as in Example 19, and so on. Then, [vinyl chloride vinyl acetate copolymer layer / CPP laminated film] was obtained, and the adhesion performance was evaluated by the method described later.
<実施例23>[酸変性ポリプロピレン層/CPP積層フィルム]
 厚さ50μmのアルミニウム箔表面に、不飽和カルボン酸でグラフト変性した酸変性ポリプロピレン(三井化学株式会社製 アドマーQE800)を15μmの厚さとなるようにTダイ押出機で加熱溶融押出しした後に、前記ポリプロピレン層表面をコロナ放電処理し、[酸変性ポリプロピレン層/Al箔]を得た。これを基材E-2とする。基材E-2の酸変性ポリプロピレン層上に、実施例19接着剤溶液を塗工した以外は、実施例19と同様にして、接着剤層にCPPを重ね合わせ、以下同様にして、[酸変性ポリプロピレン層/CPP積層フィルム]を得、同様に評価した。
<Example 23> [Acid-modified polypropylene layer / CPP laminated film]
After heat-extrusion of an acid-modified polypropylene grafted with an unsaturated carboxylic acid (Admer QE800 manufactured by Mitsui Chemicals, Inc.) with a T-die extruder to a thickness of 15 μm on the surface of an aluminum foil having a thickness of 50 μm, the polypropylene The surface of the layer was subjected to corona discharge treatment to obtain [acid-modified polypropylene layer / Al foil]. This is designated as a base material E-2. Except that the adhesive solution of Example 19 was coated on the acid-modified polypropylene layer of the substrate E-2, CPP was overlaid on the adhesive layer in the same manner as in Example 19, and thereafter [Acid Modified polypropylene layer / CPP laminated film] was obtained and evaluated in the same manner.
<実施例24>[ナイロン/CPP積層フィルム]
 厚さ25μmのユニチカ株式会社製 二軸延伸ナイロンフィルム エンブレムON(片面コロナ処理)を基材E-3とし、基材E-3の未処理面に、実施例19接着剤溶液を塗工した以外は、実施例19と同様にして、接着剤層にCPPを重ね合わせ、以下同様にして、[ナイロン/CPP積層フィルム]を得、同様に評価した。
<Example 24> [Nylon / CPP laminated film]
A 25-μm thick Unitika Co., Ltd. biaxially stretched nylon film Emblem ON (single-sided corona treatment) was used as the base material E-3, and the adhesive solution of Example 19 was applied to the untreated surface of the base material E-3. In the same manner as in Example 19, CPP was superimposed on the adhesive layer, and thereafter, [Nylon / CPP laminated film] was obtained and evaluated in the same manner.
<実施例25>[ポリエチレンテレフタレート/CPP積層フィルム]
 厚さ25μmの東レ株式会社製 ポリエチレンテレフタレートフィルム S10(片面コロナ処理)を基材E-4とし、基材E-4の未処理面に、実施例19接着剤溶液を塗工した以外は、実施例19と同様にして、接着剤層にCPPを重ね合わせ、以下同様にして、[ポリエチレンテレフタレート/CPP積層フィルム]を得、同様に評価した。
<Example 25> [Polyethylene terephthalate / CPP laminated film]
This was carried out except that a polyethylene terephthalate film S10 (single-sided corona treatment) manufactured by Toray Industries, Inc. with a thickness of 25 μm was used as the base E-4, and the adhesive solution of Example 19 was applied to the untreated side of the base E-4. In the same manner as in Example 19, CPP was superimposed on the adhesive layer, and thereafter, [Polyethylene terephthalate / CPP laminated film] was obtained and evaluated in the same manner.
<実施例26>、<比較例10>[ポリエチレンテレフタレート/CPP積層フィルム]
 実施例26では、実施例19で用いた接着剤溶液の代わりに実施例12で用いた接着剤溶液を用い、比較例10では比較例4で用いた接着剤溶液を用いた以外は、それぞれ実施例24と同様にして、[ポリエチレンテレフタレート/CPP積層フィルム]を得、同様に評価した。
<Example 26>, <Comparative example 10> [Polyethylene terephthalate / CPP laminated film]
In Example 26, the adhesive solution used in Example 12 was used in place of the adhesive solution used in Example 19, and Comparative Example 10 was used except that the adhesive solution used in Comparative Example 4 was used. [Polyethylene terephthalate / CPP laminated film] was obtained in the same manner as in Example 24 and evaluated in the same manner.
<性能試験・評価基準>
[初期剥離強度]
 実施例22~26、比較例10で得た各CPP積層フィルムを、25℃、湿度65%の環境下で6時間静置後、それぞれ200mm×15mmの大きさに切断した。そして、ASTM-D1876-61の試験法に準じ、引張り試験機を用いて、25℃、湿度65%の環境下で、荷重速度300mm/分でT型剥離試験をおこなった。接着剤層の剥離強度(N/15mm巾)を5個の試験片の平均値で示す。
 ◎ 実用上優れる:7N/15mm以上
 ○ 実用域:5~7N/15mm
 △ 実用下限:2~5N/15mm
 × 実用不可:2N/15mm未満
<Performance tests and evaluation criteria>
[Initial peel strength]
Each CPP laminated film obtained in Examples 22 to 26 and Comparative Example 10 was allowed to stand for 6 hours in an environment of 25 ° C. and 65% humidity, and then cut into a size of 200 mm × 15 mm. Then, according to the test method of ASTM-D1876-61, a T-type peel test was performed at a load speed of 300 mm / min using a tensile tester in an environment of 25 ° C. and a humidity of 65%. The peel strength (N / 15 mm width) of the adhesive layer is shown as an average value of five test pieces.
◎ Excellent in practical use: 7N / 15mm or more ○ Practical range: 5-7N / 15mm
△ Practical lower limit: 2-5N / 15mm
× Not practical: Less than 2N / 15mm
[アルコール浸漬後剥離強度]
 実施例22~26、比較例10で得た各CPP積層フィルムを、25℃、湿度65%の環境下で1日間静置後、それぞれ200mm×15mmの大きさに切断し、この試験片をエタノールに65℃で14日間浸漬させた。その後、試験片を取り出し約10分程度流水で洗浄し、ペーパーワイパーで水を拭き取った後、25℃、湿度65%の環境下で1日間静置し、乾燥した。
 乾燥後の試験片の接着剤層の剥離強度を、上記初期剥離強度測定の場合と同様にして、測った。なお、評価の基準は以下の通り。
 ◎ 実用上優れる:耐アルコール試験前後で剥離強度の保持率が90%以上
 ○ 実用域:耐アルコール試験前後で剥離強度の保持率が60%~90%
 △ 実用下限:耐アルコール試験前後で剥離強度の保持率が20%~60%
 × 実用不可:耐アルコール試験前後で剥離強度の保持率が20%未満、若しくはデラミネート
[Peel strength after alcohol immersion]
Each CPP laminated film obtained in Examples 22 to 26 and Comparative Example 10 was allowed to stand for 1 day in an environment of 25 ° C. and a humidity of 65%, and then cut into a size of 200 mm × 15 mm. For 14 days at 65 ° C. Thereafter, the test piece was taken out, washed with running water for about 10 minutes, wiped off with a paper wiper, then allowed to stand in an environment of 25 ° C. and a humidity of 65% for 1 day and dried.
The peel strength of the adhesive layer of the test piece after drying was measured in the same manner as in the initial peel strength measurement. The evaluation criteria are as follows.
◎ Excellent in practical use: 90% or higher peel strength retention before and after alcohol resistance test ○ Practical range: 60% to 90% peel strength retention before and after alcohol resistance test
△ Practical lower limit: 20% to 60% peel strength retention before and after alcohol resistance test
× Not practical: Retention strength retention less than 20% before or after alcohol resistance test, or delaminate
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例10は、表3に示すように、スチレン系熱可塑性エラストマー(A)が官能基を含有しないため、接着剤組成物の他の成分との相溶性が悪化し、接着剤層の粘弾性が悪化し、また、ポリイソシアネート(C)との架橋構造が形成されなかったことから接着強度が著しく悪化した。耐アルコール試験においても架強度が不足しているため接着剤が膨潤し、著しい接着強度の低下が生じた。 In Comparative Example 10, as shown in Table 3, since the styrenic thermoplastic elastomer (A) does not contain a functional group, the compatibility with the other components of the adhesive composition deteriorates, and the viscoelasticity of the adhesive layer In addition, since the crosslinked structure with the polyisocyanate (C) was not formed, the adhesive strength was significantly deteriorated. Even in the alcohol resistance test, the adhesive strength swelled due to insufficient rack strength, resulting in a significant decrease in adhesive strength.
 一方、前述した(i)~(iv)の条件を全て満たしている例である実施例22~26は、表3に示すように、Al/CPP積層フィルム以外の構成においても初期接着力、アルコール浸漬後の接着力をすべてバランスよく満たしていた。中でも実施例26の接着剤は実施例22~25の接着剤と比較して基材界面との密着性が向上し高い接着強度を示した。これは、エラストマー複合樹脂(D)が配合されていることによる効果と考察している。 On the other hand, as shown in Table 3, Examples 22 to 26, which are examples satisfying all the conditions (i) to (iv) described above, have initial adhesive strength, alcohol, etc., even in configurations other than the Al / CPP laminated film. All the adhesive strengths after immersion were satisfied in a well-balanced manner. In particular, the adhesive of Example 26 showed higher adhesion strength with improved adhesion to the substrate interface as compared with the adhesives of Examples 22-25. This is considered to be an effect by blending the elastomer composite resin (D).
 この出願は、2011年2月25日に出願された日本出願特願2011-039145を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-039145 filed on February 25, 2011, the entire disclosure of which is incorporated herein.
 本発明の接着剤組成物によれば、ポットライフに優れた接着剤組成物を提供できる。また、電解質に浸漬されても接着強度を高いレベルで維持できる接着剤組成物を提供できる。従って、非水電解質二次電池容器用積層体の金属箔より内側のフィルムとの接着に特に好適に利用できる。無論、非水電解質二次電池の外層と金属箔との接合をはじめとする、各種接着用途に好適に適用できる。特に、本発明の接着剤組成物を用いて接合した積層体は、接着剤層の耐薬品性に優れるので、例えば、医薬品、食料品の包装材の積層体形成用にも利用できる。また、接着対象として、金属箔のみならず金属材料全般との接合に好適に利用できる。熱融着性フィルムについても、ポリオレフィン系樹脂をはじめとする樹脂フィルム等において広範囲に利用できる。更に、ポリオレフィン系樹脂をはじめとする熱融着性フィルム等の樹脂フィルム同士の接合にも本発明の接着剤組成物は好適である。 According to the adhesive composition of the present invention, an adhesive composition excellent in pot life can be provided. Moreover, the adhesive composition which can maintain adhesive strength at a high level even if immersed in an electrolyte can be provided. Therefore, it can be particularly suitably used for adhesion to a film inside the metal foil of the laminate for a nonaqueous electrolyte secondary battery container. Of course, it can be suitably applied to various adhesive applications including joining of the outer layer of the non-aqueous electrolyte secondary battery and the metal foil. In particular, since the laminate bonded with the adhesive composition of the present invention is excellent in chemical resistance of the adhesive layer, it can be used, for example, for forming a laminate of a packaging material for pharmaceuticals and foodstuffs. Moreover, it can utilize suitably for joining with not only metal foil but general metal materials as adhesion object. The heat-fusible film can also be used in a wide range of resin films including polyolefin resins. Furthermore, the adhesive composition of the present invention is also suitable for joining resin films such as heat-fusible films including polyolefin resins.

Claims (15)

  1.  金属箔と、
     熱融着性フィルムと、
     前記金属箔と前記熱融着性フィルムとを接合する接着剤層とを、少なくとも具備し、
     前記接着剤層は、スチレン系熱可塑性エラストマー(A)と、粘着付与剤(B)と、ポリイソシアネート(C)と、を含有し、
     前記スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量%中に、前記スチレン系熱可塑性エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含み、
     前記スチレン系熱可塑性エラストマー(A)は、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有し、
     前記スチレン系熱可塑性エラストマー(A)由来の前記活性水素1モルに対して、前記粘着付与剤(B)の官能基由来の活性水素が0~15モルであり、
     前記ポリイソシアネート(C)は、前記スチレン系熱可塑性エラストマー(A)由来の前記活性水素と、前記粘着付与剤(B)由来の前記活性水素との合計1モルに対して、イソシアネート基が3~150モルとなる範囲で含まれているものからなる接着剤組成物から形成されたものである、非水電解質二次電池容器用積層体。
    Metal foil,
    A heat-fusible film;
    Comprising at least an adhesive layer for joining the metal foil and the heat-fusible film;
    The adhesive layer contains a styrenic thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C),
    In a total of 100% by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B), 20 to 90% by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B) 10 to 80% by weight,
    The styrenic thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or a hydroxyl group,
    The active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol relative to 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A),
    The polyisocyanate (C) has 3 to 3 isocyanate groups for a total of 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A) and the active hydrogen derived from the tackifier (B). A laminate for a non-aqueous electrolyte secondary battery container, which is formed from an adhesive composition that is contained within a range of 150 moles.
  2.  前記アミノ基または前記水酸基は、前記スチレン系熱可塑性エラストマー(A)の主鎖の末端の少なくとも一方に位置することを特徴とする請求項1に記載の非水電解質二次電池容器用積層体。 The laminate for a nonaqueous electrolyte secondary battery container according to claim 1, wherein the amino group or the hydroxyl group is located at least one of the ends of the main chain of the styrene-based thermoplastic elastomer (A).
  3.  前記アミノ基または前記水酸基は、前記スチレン系熱可塑性エラストマー(A)の主鎖の片末端のみに位置することを特徴とする請求項1又は2に記載の非水電解質二次電池容器用積層体。 The laminate for a nonaqueous electrolyte secondary battery container according to claim 1 or 2, wherein the amino group or the hydroxyl group is located only at one end of the main chain of the styrenic thermoplastic elastomer (A). .
  4.  前記接着剤組成物は、更に、エラストマー複合樹脂(D)を含み、
     前記エラストマー複合樹脂(D)は、ポリエステル樹脂部分、及びポリウレタン樹脂部分の少なくともいずれか一方と、スチレン系熱可塑性エラストマー構造と、を含むことを特徴とする請求項1~3のいずれか1項に記載の非水電解質二次電池容器用積層体。
    The adhesive composition further includes an elastomer composite resin (D),
    The elastomer composite resin (D) according to any one of claims 1 to 3, wherein the elastomer composite resin (D) includes at least one of a polyester resin portion and a polyurethane resin portion, and a styrenic thermoplastic elastomer structure. The laminated body for nonaqueous electrolyte secondary battery containers as described.
  5.  前記ポリイソシアネート(C)が、イソシアヌレート構造を有することを特徴とする請求1~4のいずれか1項に記載の非水電解質二次電池容器用積層体。 The laminate for a nonaqueous electrolyte secondary battery container according to any one of claims 1 to 4, wherein the polyisocyanate (C) has an isocyanurate structure.
  6.  前記スチレン系熱可塑性エラストマー(A)と前記粘着付与剤(B)との合計100重量部に対して、前記エラストマー複合樹脂(D)を、2~60重量部含有することを特徴とする請求項4に記載の非水電解質二次電池容器用積層体。 The elastomer composite resin (D) is contained in an amount of 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). 4. A laminate for a non-aqueous electrolyte secondary battery container according to 4.
  7.  二次電池本体と、
     前記二次電池本体を収容する電池容器と、
     前記電池容器内に密封された電解質と、を具備し、
     前記電池容器は、請求項1~6のいずれか1項に記載の非水電解質二次電池容器用積層体を具備するものである非水電解質二次電池。
    A secondary battery body;
    A battery container containing the secondary battery body;
    An electrolyte sealed in the battery container,
    The non-aqueous electrolyte secondary battery, wherein the battery container comprises the laminate for a non-aqueous electrolyte secondary battery container according to any one of claims 1 to 6.
  8.  スチレン系熱可塑性エラストマー(A)と、
     粘着付与剤(B)と、
     ポリイソシアネート(C)と、を含有し、
     前記スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量%中に、前記スチレン系熱可塑性エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含み、
     前記スチレン系熱可塑性エラストマー(A)が、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有し、
     前記スチレン系熱可塑性エラストマー(A)由来の活性水素1モルに対して、前記粘着付与剤(B)の官能基由来の活性水素が0~15モルであり、
     前記ポリイソシアネート(C)は、前記スチレン系熱可塑性エラストマー(A)由来の前記活性水素と、前記粘着付与剤(B)由来の前記活性水素との合計1モルに対して、イソシアネート基が3~150モルとなる範囲で含まれている接着剤組成物。
    A styrenic thermoplastic elastomer (A);
    A tackifier (B);
    Polyisocyanate (C), and
    In a total of 100% by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B), 20 to 90% by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B) 10 to 80% by weight,
    The styrenic thermoplastic elastomer (A) has 0.003 to 0.04 mmol / g of active hydrogen derived from an amino group or a hydroxyl group,
    The active hydrogen derived from the functional group of the tackifier (B) is 0 to 15 mol relative to 1 mol of active hydrogen derived from the styrenic thermoplastic elastomer (A),
    The polyisocyanate (C) has 3 to 3 isocyanate groups for a total of 1 mol of the active hydrogen derived from the styrenic thermoplastic elastomer (A) and the active hydrogen derived from the tackifier (B). An adhesive composition contained in a range of 150 moles.
  9.  非水電解質二次電池容器用の積層体を形成する用途に用いられることを特徴とする請求項8に記載の接着剤組成物。 The adhesive composition according to claim 8, which is used for forming a laminate for a nonaqueous electrolyte secondary battery container.
  10.  前記アミノ基または前記水酸基が、前記スチレン系熱可塑性エラストマー(A)の主鎖の少なくとも一方の末端に位置することを特徴とする請求項8または9に記載の接着剤組成物。 The adhesive composition according to claim 8 or 9, wherein the amino group or the hydroxyl group is located at at least one end of the main chain of the styrenic thermoplastic elastomer (A).
  11.  前記アミノ基または前記水酸基は、前記スチレン系熱可塑性エラストマー(A)の主鎖の片末端のみに位置することを特徴とする請求項8~10のいずれか1項に記載の接着剤組成物。 The adhesive composition according to any one of claims 8 to 10, wherein the amino group or the hydroxyl group is located only at one end of the main chain of the styrenic thermoplastic elastomer (A).
  12.  前記ポリイソシアネート(C)が、イソシアヌレート構造を有することを特徴とする請求8~11のいずれか1項に記載の接着剤組成物。 The adhesive composition according to any one of claims 8 to 11, wherein the polyisocyanate (C) has an isocyanurate structure.
  13.  更に、エラストマー複合樹脂(D)を含み、
     前記エラストマー複合樹脂(D)は、ポリエステル樹脂部分およびポリウレタン樹脂部分の少なくともいずれか一方と、スチレン系熱可塑性エラストマー構造と、を含むことを特徴とする請求項8~12のいずれか1項に記載の接着剤組成物。
    Furthermore, an elastomer composite resin (D) is included,
    The elastomer composite resin (D) includes at least one of a polyester resin portion and a polyurethane resin portion, and a styrenic thermoplastic elastomer structure, according to any one of claims 8 to 12. Adhesive composition.
  14.  前記スチレン系熱可塑性エラストマー(A)と、前記粘着付与剤(B)との合計100重量部に対して、2~60重量部の前記エラストマー複合樹脂(D)を含有することを特徴とする請求項13に記載の接着剤組成物。 The elastomer composite resin (D) is contained in an amount of 2 to 60 parts by weight with respect to a total of 100 parts by weight of the styrenic thermoplastic elastomer (A) and the tackifier (B). Item 14. The adhesive composition according to Item 13.
  15.  金属箔または熱融着性フィルムの一方の面に、
     請求項8~14のいずれか1項に記載の接着剤組成物を塗工・乾燥して未硬化の接着剤層を形成し、
     前記金属箔、前記接着剤層、前記熱融着性フィルムの積層構造が形成されるように、前記未硬化の接着剤層の表面に前記熱融着性フィルム、若しくは前記金属箔を重ね、
     前記未硬化の接着剤層を硬化し、前記金属箔と前記熱融着性フィルムとを貼り合わせる非水電解質二次電池容器用積層体の製造方法。
    On one side of the metal foil or heat-fusible film,
    The adhesive composition according to any one of claims 8 to 14 is applied and dried to form an uncured adhesive layer,
    Overlaying the heat-fusible film or the metal foil on the surface of the uncured adhesive layer so that a laminated structure of the metal foil, the adhesive layer, and the heat-fusible film is formed,
    The manufacturing method of the laminated body for nonaqueous electrolyte secondary battery containers which hardens the said uncured adhesive bond layer, and bonds the said metal foil and the said heat-fusible film.
PCT/JP2012/001309 2011-02-25 2012-02-24 Laminate for nonaqueous electrolyte secondary cell container, method for producing same, nonaqueous electrolyte secondary cell, and adhesive composition WO2012114776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013500913A JP6020438B2 (en) 2011-02-25 2012-02-24 Non-aqueous electrolyte secondary battery container laminate, manufacturing method thereof, non-aqueous electrolyte secondary battery, and adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011039145 2011-02-25
JP2011-039145 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012114776A1 true WO2012114776A1 (en) 2012-08-30

Family

ID=46720566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001309 WO2012114776A1 (en) 2011-02-25 2012-02-24 Laminate for nonaqueous electrolyte secondary cell container, method for producing same, nonaqueous electrolyte secondary cell, and adhesive composition

Country Status (2)

Country Link
JP (1) JP6020438B2 (en)
WO (1) WO2012114776A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011825A1 (en) * 2011-07-19 2013-01-24 昭和電工株式会社 Adhesive composition for battery packaging materials
WO2013099761A1 (en) * 2011-12-26 2013-07-04 昭和電工株式会社 Laminate for battery packages, battery case using laminate, and battery
WO2015045887A1 (en) * 2013-09-24 2015-04-02 凸版印刷株式会社 Outer package for power storage device
WO2015133368A1 (en) * 2014-03-06 2015-09-11 凸版印刷株式会社 Sheathing material for lithium batteries
JP2015170462A (en) * 2014-03-06 2015-09-28 凸版印刷株式会社 Cladding material for lithium battery
JP2015170461A (en) * 2014-03-06 2015-09-28 凸版印刷株式会社 Cladding material for lithium battery
WO2016031883A1 (en) * 2014-08-29 2016-03-03 日本製紙株式会社 Block copolymer and resin composition
WO2016199551A1 (en) * 2015-06-10 2016-12-15 昭和電工株式会社 Adhesive for laminating metal foil and resin film, laminated body, packaging material for battery exterior, and battery case and method for manufacturing same
JP2018049849A (en) * 2017-12-27 2018-03-29 凸版印刷株式会社 Lithium battery outer packaging material
WO2021251404A1 (en) * 2020-06-10 2021-12-16 日東シンコー株式会社 Curable composition
CN114976489A (en) * 2022-07-01 2022-08-30 珠海冠宇电池股份有限公司 Coating and diaphragm and battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958270A (en) * 2022-05-24 2022-08-30 广东汇齐新材料有限公司 Ultralow-hardness low-temperature activated thermoplastic polyurethane hot-melt adhesive film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123709A (en) * 2001-10-17 2003-04-25 Toagosei Co Ltd Liquid adhesive composition for nonaqueous electrolyte secondary battery
JP2008287971A (en) * 2007-05-16 2008-11-27 Sony Corp Layered package material, outer package material for battery, and the battery
JP2010102935A (en) * 2008-10-23 2010-05-06 Toppan Printing Co Ltd Cladding material for lithium battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360325B2 (en) * 2002-11-06 2009-11-11 東亞合成株式会社 Adhesive composition and bonding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123709A (en) * 2001-10-17 2003-04-25 Toagosei Co Ltd Liquid adhesive composition for nonaqueous electrolyte secondary battery
JP2008287971A (en) * 2007-05-16 2008-11-27 Sony Corp Layered package material, outer package material for battery, and the battery
JP2010102935A (en) * 2008-10-23 2010-05-06 Toppan Printing Co Ltd Cladding material for lithium battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011825A1 (en) * 2011-07-19 2013-01-24 昭和電工株式会社 Adhesive composition for battery packaging materials
WO2013099761A1 (en) * 2011-12-26 2013-07-04 昭和電工株式会社 Laminate for battery packages, battery case using laminate, and battery
WO2015045887A1 (en) * 2013-09-24 2015-04-02 凸版印刷株式会社 Outer package for power storage device
JPWO2015045887A1 (en) * 2013-09-24 2017-03-09 凸版印刷株式会社 Power storage device exterior materials
JP2015170462A (en) * 2014-03-06 2015-09-28 凸版印刷株式会社 Cladding material for lithium battery
JP2015170461A (en) * 2014-03-06 2015-09-28 凸版印刷株式会社 Cladding material for lithium battery
WO2015133368A1 (en) * 2014-03-06 2015-09-11 凸版印刷株式会社 Sheathing material for lithium batteries
US10581032B2 (en) 2014-03-06 2020-03-03 Toppan Printing Co., Ltd. Lithium battery packaging material
WO2016031883A1 (en) * 2014-08-29 2016-03-03 日本製紙株式会社 Block copolymer and resin composition
US10435558B2 (en) 2014-08-29 2019-10-08 Nippon Paper Industries Co., Ltd. Block copolymer and resin composition
WO2016199551A1 (en) * 2015-06-10 2016-12-15 昭和電工株式会社 Adhesive for laminating metal foil and resin film, laminated body, packaging material for battery exterior, and battery case and method for manufacturing same
JP2018049849A (en) * 2017-12-27 2018-03-29 凸版印刷株式会社 Lithium battery outer packaging material
WO2021251404A1 (en) * 2020-06-10 2021-12-16 日東シンコー株式会社 Curable composition
JP7550543B2 (en) 2020-06-10 2024-09-13 日東シンコー株式会社 Curable Composition
CN114976489A (en) * 2022-07-01 2022-08-30 珠海冠宇电池股份有限公司 Coating and diaphragm and battery comprising same
CN114976489B (en) * 2022-07-01 2024-04-05 珠海冠宇电池股份有限公司 Coating, separator comprising same and battery

Also Published As

Publication number Publication date
JP6020438B2 (en) 2016-11-02
JPWO2012114776A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6020438B2 (en) Non-aqueous electrolyte secondary battery container laminate, manufacturing method thereof, non-aqueous electrolyte secondary battery, and adhesive composition
TWI579358B (en) Laminating adhesive, laminate obtained therefrom and secondary battery
JP6143147B1 (en) Laminate adhesive, multilayer film, and secondary battery using the same
WO2014068986A1 (en) Polyurethane adhesive for packaging materials for batteries, packaging material for batteries, battery container, and battery
JP6179265B2 (en) Adhesive composition, battery packaging material, and battery container
JP6288539B1 (en) Laminate adhesive composition, laminate, and secondary battery
TWI835903B (en) Adhesive composition and thermally fusible member using thereof
JP5589897B2 (en) Adhesive composition, laminate using the same, and secondary battery
JP6065570B2 (en) Non-aqueous electrolyte secondary battery container laminate, manufacturing method thereof, non-aqueous electrolyte secondary battery, and adhesive composition
CN114761508B (en) Polyolefin adhesive composition
JP2013112697A (en) Adhesive composition, laminate using the same, and secondary battery
JP7215091B2 (en) Polyolefin adhesive composition
JP2020029557A (en) Adhesive composition, laminate, and packaging material for lithium ion battery
JPWO2017187904A1 (en) Laminate adhesive composition, laminate, and secondary battery
JP5527192B2 (en) Adhesive composition, laminate using the same, and secondary battery
CN111971360B (en) Polyolefin adhesive composition
JP2012056974A (en) Adhesive composition, and laminate and secondary battery using the same
JP2003123709A (en) Liquid adhesive composition for nonaqueous electrolyte secondary battery
JP6435092B2 (en) Modified polyolefin resin
JP5527143B2 (en) Adhesive composition, laminate using the same, and secondary battery
JP2018193556A (en) Adhesive composition, packaging material for cell, and container for cell
JP6809509B2 (en) Adhesive compositions, battery packaging, and battery containers
CN115305040A (en) Water-blocking composite hot melt adhesive and method for sealing electrode plate by using same
JP2018161895A (en) Adhesive composition, packaging material for cell, and container for cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750016

Country of ref document: EP

Kind code of ref document: A1