WO2012114611A1 - Cleaning gas and remote plasma cleaning method using same - Google Patents

Cleaning gas and remote plasma cleaning method using same Download PDF

Info

Publication number
WO2012114611A1
WO2012114611A1 PCT/JP2011/078855 JP2011078855W WO2012114611A1 WO 2012114611 A1 WO2012114611 A1 WO 2012114611A1 JP 2011078855 W JP2011078855 W JP 2011078855W WO 2012114611 A1 WO2012114611 A1 WO 2012114611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
gas
cleaning gas
remote plasma
reaction chamber
Prior art date
Application number
PCT/JP2011/078855
Other languages
French (fr)
Japanese (ja)
Inventor
智典 梅崎
啓之 大森
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2012114611A1 publication Critical patent/WO2012114611A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cleaning gas for a CVD apparatus and a remote plasma cleaning method using the same.
  • the CVD apparatus it is necessary to periodically remove unnecessary deposits generated on the inner wall of the reaction chamber and the wafer stage, for example, Si-containing materials, Ge-containing materials, or metal-containing materials.
  • active F radicals are generated by plasma discharge in the presence of a cleaning gas containing NF 3 or C 2 F 6 and the deposit is converted into a highly volatile substance.
  • a plasma cleaning method in which the gas is discharged out of the reaction chamber.
  • Plasma generation methods in plasma cleaning are roughly divided into two types.
  • One is a system that generates a plasma discharge inside the reaction chamber, such as a parallel plate type plasma generator, and the other is a system that introduces a plasma discharge gas outside the reaction chamber into the reaction chamber. This is called the remote plasma cleaning method.
  • the optimum method is selected as appropriate according to the specifications of the apparatus, and in particular, the remote plasma cleaning method is used when it is impossible to generate plasma discharge in the chamber, or parallel plate type plasma generation.
  • the remote plasma cleaning method is used when there is a concern about damage to an electrode substrate due to ion bombardment during plasma discharge by a cleaning gas component.
  • a cleaning gas diluted with NF 3 or C 2 F 6 is generally used.
  • NF 3 is currently most frequently used because of its high etching rate compared to other gases.
  • NF 3 and C 2 F 6 both have a high global warming potential (GWP), and thus have a drawback that the load on the environment is large.
  • GWP global warming potential
  • Non-Patent Document 1 carbonyl difluoride (CF 2 O) and trifluoromethyl hypofluorite (CF 3 OF), which have a GWP of 1 as a cleaning gas with a low global warming potential, have been developed and generate parallel plate plasma. A cleaning performance by an apparatus is disclosed (Non-Patent Document 1).
  • plasma cleaning with a gas having a low environmental impact when discharged into the atmosphere and a low global warming potential has a disadvantage that the etching rate is inferior to that of using NF 3 . Therefore, from the viewpoint of suppressing global warming and improving the efficiency of the plasma cleaning process, the plasma cleaning of deposits in the CVD apparatus uses NF 3 having a low global warming coefficient and a GWP of 17,000. There is a need to develop a cleaning gas that can achieve a high etching rate equivalent to or higher than the above.
  • the present invention is a cleaning gas for removing Si-containing material, Ge-containing material, or metal-containing material deposited in a reaction chamber of a CVD apparatus by a remote plasma cleaning method, and the cleaning gas has a general formula CF.
  • a cleaning gas is provided, which is a mixed gas containing N 2 and a compound represented by the formula:
  • the compound represented by the general formula CF x O y is preferably CF 3 OF or CF 2 O. Further, the concentration of the compound represented by the general formula CF x O y in the cleaning gas is 20 vol% or more and 99.5 vol% or less, and the concentration of N 2 in the cleaning gas is 0.5 vol% or more and 80 vol%. % Or less is preferable.
  • the cleaning gas may further contain at least one gas selected from the group consisting of He, Ar, and O 2 .
  • the present invention provides a remote plasma cleaning method for removing Si-containing materials, Ge-containing materials, or metal-containing materials deposited in a reaction chamber of a CVD apparatus using the above-described cleaning gas.
  • the cleaning gas of the present invention makes it possible to remove unnecessary deposits in the reaction chamber of the CVD apparatus at high speed without using NF 3 having a high global warming potential in the remote plasma cleaning of the CVD apparatus.
  • the schematic system diagram of the CVD apparatus used for the test is shown.
  • the relationship between the concentration of the gas component A as a fluorine radical source and the etching rate when the object to be cleaned is SiO 2 is shown.
  • concentration of the gas component A as a fluorine radical source and the etching rate in case cleaning object is Si is shown.
  • the object to be removed by the cleaning gas of the present invention is a Si-containing material, a Ge-containing material, or a metal-containing material deposited on the inner wall of the reaction chamber of the CVD apparatus.
  • Si-containing material a Ge-containing material
  • metal-containing material deposited on the inner wall of the reaction chamber of the CVD apparatus. Examples thereof include Si, Si oxide, Si nitride, SiGe, Ge, W, Ti, In, and Ir.
  • CF x O y are both mixed gases containing compound and N 2 represented by.
  • the concentration of the compound represented by the general formula CF x O y in the cleaning gas is preferably 20 vol% or more and 99.5 vol% or less, and more preferably 40 vol% or more and 99.5 vol% or less. It is desirable to obtain a high etching rate.
  • the concentration of N 2 is preferably 0.5 vol% or more and 80 vol% or less, and preferably 0.5 vol% or more and 60 vol% or less in order to obtain a higher etching rate.
  • the cleaning gas in addition to the compound represented by the general formula CF x O y and N 2 , at least one gas selected from the group consisting of He, Ar, and O 2 may be mixed.
  • the concentration of at least one gas selected from the group consisting of He, Ar, and O 2 is not particularly limited, but is not more than the concentration obtained by subtracting the total concentration of the general formula CF x O y and N 2 from the cleaning gas. Gas other than the above may be contained.
  • the remote plasma cleaning method of the present invention is performed using a remote plasma generator connected to a reaction chamber of a CVD apparatus. Specifically, the cleaning gas adjusted and mixed in advance to a desired composition is supplied to the plasma generation source of the remote plasma generation apparatus to cause plasma discharge, and then introduced into the reaction chamber, thereby causing a reaction chamber of the CVD apparatus. The Si-containing material, the Ge-containing material, or the metal-containing material deposited on the inner wall or the wafer stage is removed.
  • the pressure in the reaction chamber during cleaning may be a pressure at which stable plasma discharge is obtained when plasma discharge is performed with a remote plasma generator, and is preferably 5 Pa or more and 3000 Pa or less.
  • deposits can be removed at a high etching rate equivalent to or higher than that of NF 3 having a high global warming potential.
  • Fig. 1 shows a schematic system diagram of the CVD apparatus used in this test.
  • the reaction chamber 1 of the CVD apparatus is equipped with a parallel plate type capacitively coupled plasma generator, and the high frequency power source 3 is connected to the plate electrode 4b in the reaction chamber 1 and the ground 9 is connected to the plate electrode 4a in the reaction chamber 1. did.
  • a pressure gauge 2 for detecting the pressure in the chamber was connected to the reaction chamber 1.
  • an exhaust gas line (not shown) was connected to the discharge port 7 of the reaction chamber 1 in order to discharge gas in the chamber such as volatile products generated by remote plasma cleaning and unreacted gas.
  • the CVD apparatus is provided with a remote plasma generator 6, and the flow rate of the cleaning gas is adjusted by a mass flow controller (not shown), and the reaction chamber is passed from the gas inlet 5 through the remote plasma generator 6 at a predetermined flow rate. 1 was introduced.
  • the remote plasma cleaning is performed by introducing a cleaning gas into the reaction chamber 1 from the gas inlet 5 while maintaining the discharge of the remote plasma generator 6, and adjusting the exhaust amount of the exhaust gas line to adjust the pressure in the chamber. The process proceeded in an adjusted state (the pressure at this time was the process pressure).
  • a test piece 8 made of SiO 2 or Si having a thickness of 0.5 mm and an area of 4 cm 2 is used as a cleaning target, and the test piece 8 is placed on the flat plate electrode 4a, under predetermined conditions. Remote plasma cleaning was performed. In all the tests, the total flow rate of the introduced cleaning gas was 100 sccm, and the cleaning time was 10 minutes.
  • the cleaning gas a mixed gas of a gas component A that is a fluorine radical source and N 2 and / or an added gas species was used.
  • the mass of the test piece 8 was measured before and after the test, and the etching rate of the test piece 8 was calculated by the following calculation formula (1).
  • Examples 1 to 20 and Reference Examples 1 to 14 In Examples 1 to 20, tests were performed using a cleaning gas containing CF 3 OF or CF 2 O as the gas component A. In Reference Examples 1 to 14, tests were conducted in the same manner as in Examples 1 to 7, 11, 13 to 16, 19, and 20 except that NF 3 was used as the gas component A.
  • the cleaning gas compositions, cleaning conditions and test results of Examples 1 to 20 and Reference Examples 1 to 14 are shown in Tables 1 and 2, respectively.
  • Example 1, ⁇ 6, CF 3 at binary cleaning gas composition between OF and N 2 the pressure in the chamber the material is with respect to SiO 2 of the test piece 8 53.
  • Remote plasma cleaning is performed at 2 Pa, and in Reference Examples 1 to 6, remote plasma cleaning is performed under the same conditions as in Examples 1 to 6 with a cleaning gas composition using NF 3 instead of CF 3 OF as gas component A. It was.
  • the etching rate tends to decrease as the concentration of CF 3 OF or NF 3 as the fluorine radical source decreases, and the case where CF 3 OF is used. The etching rate was equal to or higher than when NF 3 was used.
  • the results of cleaning in Reference Examples 1 and 8 to 13 performed by replacement were equivalent to or better.
  • Comparative Examples 1 to 15 In Comparative Examples 1 to 15, tests were performed in the same manner as in Examples 1 to 20, except that a cleaning gas containing no N 2 was used. Table 3 shows the cleaning gas compositions, cleaning conditions, and test results of Comparative Examples 1 to 15.
  • FIG. 2 a graph of the relationship between the etching rate and the concentration of the gas component A at a process pressure of 53.2 Pa is shown in FIG. 2 for the SiO 2 cleaning object and in FIG. 3 for the Si cleaning object. .
  • Comparative Examples 1 to 8 differ from Examples 1 to 6, 19 and 20 in that N 2 added to the gas component A is changed to another gas (O 2 or Ar).
  • the etching rates of the cleaning gases of Comparative Examples 1 to 8 to which other gases are added are higher than those of the cleaning gases of Examples 1 to 6, 19 and 20 containing N 2. It was extremely low.
  • the material of the specimen 8 for also Comparative Examples 9-11 was Si
  • the material of the test piece 8 is unchanged from Comparative Example 1-8 was SiO 2
  • the etching rate tends to extremely decrease in the case of the cleaning gas to which other gases are added.
  • Comparative Example 12 in which the gas component A was CF 2 O.
  • the cleaning gas of the present invention is useful for cleaning a CVD apparatus, and can be used as an alternative gas for NF 3 having a high global warming potential, particularly in a remote plasma cleaning method.

Abstract

Provided is a cleaning gas that is a mixed gas comprising a compound expressed by the following formula, CFxOy (where x is 2 or 4, and y = an integer from 1 to 3 when x = 2 or y = an integer from 1 to 4 when x = 4), and N2. The cleaning gas is used to remove Si content, Ge content, or metal content deposited in a reaction chamber of a CVD device by a remote plasma cleaning method. The cleaning gas achieves a lower global warming coefficient and a faster etching speed compared with conventional cleaning gas using NF3.

Description

クリーニングガス及びそれを用いたリモートプラズマクリーニング方法Cleaning gas and remote plasma cleaning method using the same
 本発明は、CVD装置のクリーニングガス及びそれを用いたリモートプラズマクリーニング方法に関する。 The present invention relates to a cleaning gas for a CVD apparatus and a remote plasma cleaning method using the same.
 CVD装置では、反応チャンバーの内壁やウェハステージ上に発生した不要な堆積物、例えば、Si含有物、Ge含有物、又は金属含有物を、定期的に除去する必要がある。その方法の一つとして、NF3又はC26等を含有するクリーニングガスの存在下でプラズマ放電させることにより、活性なFラジカルを発生させ、堆積物を揮発性の高い物質へと変換し、反応チャンバー外へと排出させるプラズマクリーニング法がある。 In the CVD apparatus, it is necessary to periodically remove unnecessary deposits generated on the inner wall of the reaction chamber and the wafer stage, for example, Si-containing materials, Ge-containing materials, or metal-containing materials. As one of the methods, active F radicals are generated by plasma discharge in the presence of a cleaning gas containing NF 3 or C 2 F 6 and the deposit is converted into a highly volatile substance. There is a plasma cleaning method in which the gas is discharged out of the reaction chamber.
 プラズマクリーニングにおけるプラズマ発生方法は2種類に大別される。一方は平行平板型のプラズマ発生装置など、反応チャンバー内でプラズマ放電を発生させる方式のものであり、もう一方は反応チャンバー外でプラズマ放電させたガスを反応チャンバー内に導入させる方式のもので、リモートプラズマクリーニング法と呼ばれている。 Plasma generation methods in plasma cleaning are roughly divided into two types. One is a system that generates a plasma discharge inside the reaction chamber, such as a parallel plate type plasma generator, and the other is a system that introduces a plasma discharge gas outside the reaction chamber into the reaction chamber. This is called the remote plasma cleaning method.
 両者は、装置の仕様等に応じて適宜最適な方式が選択されており、特にリモートプラズマクリーニング法は、チャンバー内でプラズマ放電を発生させることが不可能な場合や、あるいは平行平板型のプラズマ発生装置において、クリーニングガス成分によるプラズマ放電時のイオン衝撃により、電極基板へのダメージが懸念される場合に用いられている。 In both cases, the optimum method is selected as appropriate according to the specifications of the apparatus, and in particular, the remote plasma cleaning method is used when it is impossible to generate plasma discharge in the chamber, or parallel plate type plasma generation. In an apparatus, it is used when there is a concern about damage to an electrode substrate due to ion bombardment during plasma discharge by a cleaning gas component.
 リモートプラズマクリーニング法では、一般的にNF3やC26を希釈したクリーニングガスが用いられている。とりわけ、NF3はその他のガスと比較して、高いエッチング速度が得られるため現在最も多く使用されている。しかしながら、NF3やC26はいずれも地球温暖化係数(GWP)が高いため、環境への負荷が大きいという欠点がある。 In the remote plasma cleaning method, a cleaning gas diluted with NF 3 or C 2 F 6 is generally used. In particular, NF 3 is currently most frequently used because of its high etching rate compared to other gases. However, NF 3 and C 2 F 6 both have a high global warming potential (GWP), and thus have a drawback that the load on the environment is large.
 近年、地球温暖化係数の低いクリーニングガスとしてGWPが1である、二フッ化カルボニル(CF2O)やトリフルオロメチルハイポフルオライト(CF3OF)が開発されており、平行平板型のプラズマ発生装置によるクリーニング性能が開示されている(非特許文献1)。 In recent years, carbonyl difluoride (CF 2 O) and trifluoromethyl hypofluorite (CF 3 OF), which have a GWP of 1 as a cleaning gas with a low global warming potential, have been developed and generate parallel plate plasma. A cleaning performance by an apparatus is disclosed (Non-Patent Document 1).
 従来、大気中へ排出された際の環境負荷が小さい地球温暖化係数が低いガスによるプラズマクリーニングでは、エッチング速度に関してはNF3を用いる場合と比較して、劣るという欠点があった。そこで、地球温暖化抑制の観点と、プラズマクリーニングプロセスの効率化の観点より、CVD装置内の堆積物のプラズマクリーニングでは、地球温暖化係数が低く、かつ、GWPが17000であるNF3を用いる場合と同等以上の高いエッチング速度が得られるクリーニングガスの開発が求められている。 Conventionally, plasma cleaning with a gas having a low environmental impact when discharged into the atmosphere and a low global warming potential has a disadvantage that the etching rate is inferior to that of using NF 3 . Therefore, from the viewpoint of suppressing global warming and improving the efficiency of the plasma cleaning process, the plasma cleaning of deposits in the CVD apparatus uses NF 3 having a low global warming coefficient and a GWP of 17,000. There is a need to develop a cleaning gas that can achieve a high etching rate equivalent to or higher than the above.
 本発明では、リモートプラズマクリーニング法に用いられるクリーニングガスにおいて、地球温暖化係数が低く、かつ、高いエッチング速度が得られるクリーニングガス、及びそれを用いたリモートプラズマクリーニング方法を提供することを目的とする。 It is an object of the present invention to provide a cleaning gas that has a low global warming potential and a high etching rate in a cleaning gas used in a remote plasma cleaning method, and a remote plasma cleaning method using the same. .
 本発明者らは、鋭意検討を重ねた結果、クリーニングガスとして、地球温暖化係数の低い、ケトン基又はOF基を有する一般式CFxy[但し、xは2又は4であり、x=2のときy=1~3の整数、x=4のときy=1~4の整数を表す。]で表される化合物にN2を添加した混合ガスを用いてリモートプラズマクリーニングをすることにより、NF3を用いた場合と同等の高いエッチング速度にてチャンバー内堆積物のクリーニングが可能となることを見出し、本発明に至った。 As a result of intensive studies, the present inventors have determined that the cleaning gas has a general formula CF x O y having a low global warming potential and having a ketone group or an OF group [where x is 2 or 4, and x = 2 represents an integer of y = 1 to 3, and x = 4 represents an integer of y = 1 to 4. By performing remote plasma cleaning using a mixed gas in which N 2 is added to the compound represented by the above formula, it becomes possible to clean the deposits in the chamber at a high etching rate equivalent to that using NF 3. And found the present invention.
 すなわち、本発明は、CVD装置の反応チャンバー内に堆積した、Si含有物、Ge含有物、又は金属含有物を、リモートプラズマクリーニング法により除去するクリーニングガスであって、該クリーニングガスは一般式CFxy[但し、xは2又は4であり、x=2のときy=1~3の整数、x=4のときy=1~4の整数を表す。]で表される化合物とN2が含有されている混合ガスであることを特徴とする、クリーニングガスを提供するものである。 That is, the present invention is a cleaning gas for removing Si-containing material, Ge-containing material, or metal-containing material deposited in a reaction chamber of a CVD apparatus by a remote plasma cleaning method, and the cleaning gas has a general formula CF. x O y [wherein x is 2 or 4, y = 1 to 3 when x = 2, and y = 1 to 4 when x = 4. A cleaning gas is provided, which is a mixed gas containing N 2 and a compound represented by the formula:
 前記一般式CFxyで表される化合物は、CF3OF又はCF2Oであることが好ましい。また、クリーニングガス中の前記一般式CFxyで表される化合物の濃度が20vol%以上99.5vol%以下であり、かつ、前記クリーニングガス中のN2の濃度が0.5vol%以上80vol%以下であることが好ましい。クリーニングガス中に、さらに、He、Ar、O2からなる群から選ばれる少なくとも1種類のガスが含有されていてもよい。 The compound represented by the general formula CF x O y is preferably CF 3 OF or CF 2 O. Further, the concentration of the compound represented by the general formula CF x O y in the cleaning gas is 20 vol% or more and 99.5 vol% or less, and the concentration of N 2 in the cleaning gas is 0.5 vol% or more and 80 vol%. % Or less is preferable. The cleaning gas may further contain at least one gas selected from the group consisting of He, Ar, and O 2 .
 さらに、本発明は、上記のクリーニングガスを用いた、CVD装置の反応チャンバー内に堆積した、Si含有物、Ge含有物、又は金属含有物を除去するリモートプラズマクリーニング方法を提供するものである。 Furthermore, the present invention provides a remote plasma cleaning method for removing Si-containing materials, Ge-containing materials, or metal-containing materials deposited in a reaction chamber of a CVD apparatus using the above-described cleaning gas.
 本発明のクリーニングガスにより、CVD装置のリモートプラズマクリーニングにおいて、地球温暖化係数の高いNF3を用いなくてもCVD装置の反応チャンバー内の不要堆積物を高速に除去することが可能となる。 The cleaning gas of the present invention makes it possible to remove unnecessary deposits in the reaction chamber of the CVD apparatus at high speed without using NF 3 having a high global warming potential in the remote plasma cleaning of the CVD apparatus.
試験に用いたCVD装置の概略系統図を示す。The schematic system diagram of the CVD apparatus used for the test is shown. クリーニング対象がSiO2の場合のフッ素ラジカル源としてのガス成分Aの濃度とエッチング速度の関係を示す。The relationship between the concentration of the gas component A as a fluorine radical source and the etching rate when the object to be cleaned is SiO 2 is shown. クリーニング対象がSiの場合のフッ素ラジカル源としてのガス成分Aの濃度とエッチング速度の関係を示す。The relationship between the density | concentration of the gas component A as a fluorine radical source and the etching rate in case cleaning object is Si is shown.
 まず、本発明のクリーニングガスについて説明する。 First, the cleaning gas of the present invention will be described.
 本発明のクリーニングガスによる除去対象となるものは、CVD装置の反応チャンバー内壁に堆積した、Si含有物、Ge含有物、又は金属含有物である。例えば、Si、Si酸化物、Si窒化物、SiGe、Ge、W、Ti、In、Irが挙げられる。 The object to be removed by the cleaning gas of the present invention is a Si-containing material, a Ge-containing material, or a metal-containing material deposited on the inner wall of the reaction chamber of the CVD apparatus. Examples thereof include Si, Si oxide, Si nitride, SiGe, Ge, W, Ti, In, and Ir.
 本発明のクリーニングガスは、少なくとも一般式CFxy[但し、xは2又は4であり、x=2のときy=1~3の整数、x=4のときy=1~4の整数を表す。]で表される化合物とN2を共に含有する混合ガスである。上記一般式CFxyで表される化合物としては、例えば、x=2の場合は、CF2O、CF(OF)O、C(OF)2O、x=4の場合は、CF3OF、CF2(OF)2、CF(OF)3、C(OF)4などが挙げられる。 The cleaning gas of the present invention has at least the general formula CF x O y [where x is 2 or 4, y is an integer from 1 to 3 when x = 2, and y is an integer from 1 to 4 when x = 4 Represents. ] Are both mixed gases containing compound and N 2 represented by. As the compound represented by the general formula CF x O y , for example, when x = 2, CF 2 O, CF (OF) O, C (OF) 2 O, and when x = 4, CF 3 OF, CF 2 (OF) 2 , CF (OF) 3 , C (OF) 4 and the like can be mentioned.
 クリーニングガス中の上記一般式CFxyで表される化合物の濃度は、20vol%以上99.5vol%以下であることが好ましく、更には40vol%以上99.5vol%以下であることが、より高いエッチング速度を得るためには望ましい。又、N2の濃度は0.5vol%以上80vol%以下であることが好ましく、0.5vol%以上60vol%以下であることが、より高いエッチング速度を得るためには望ましい。 The concentration of the compound represented by the general formula CF x O y in the cleaning gas is preferably 20 vol% or more and 99.5 vol% or less, and more preferably 40 vol% or more and 99.5 vol% or less. It is desirable to obtain a high etching rate. The concentration of N 2 is preferably 0.5 vol% or more and 80 vol% or less, and preferably 0.5 vol% or more and 60 vol% or less in order to obtain a higher etching rate.
 クリーニングガス中には、上記一般式CFxyで表される化合物とN2以外にも、He、Ar、O2からなる群から選ばれる少なくとも1種類のガスが混合されていてもよい。He、Ar、O2からなる群から選ばれる少なくとも1種類のガスの濃度は特に限定されないが、上記一般式CFxyとN2との合計の濃度をクリーニングガスから差引いた濃度以下であり、上記以外のガスが含有されてよい。 In the cleaning gas, in addition to the compound represented by the general formula CF x O y and N 2 , at least one gas selected from the group consisting of He, Ar, and O 2 may be mixed. The concentration of at least one gas selected from the group consisting of He, Ar, and O 2 is not particularly limited, but is not more than the concentration obtained by subtracting the total concentration of the general formula CF x O y and N 2 from the cleaning gas. Gas other than the above may be contained.
 次に、本発明のリモートプラズマクリーニング方法について説明する。 Next, the remote plasma cleaning method of the present invention will be described.
 本発明のリモートプラズマクリーニング方法は、CVD装置の反応チャンバーに接続されているリモートプラズマ発生装置を用いて実施する。具体的には、予め所望の組成に調整混合した上記クリーニングガスを、リモートプラズマ発生装置のプラズマ発生源へ供給してプラズマ放電させ、その後、反応チャンバー内に導入させることにより、CVD装置の反応チャンバー内の内壁又はウェハステージ上に堆積している、Si含有物、Ge含有物、又は金属含有物を除去する。 The remote plasma cleaning method of the present invention is performed using a remote plasma generator connected to a reaction chamber of a CVD apparatus. Specifically, the cleaning gas adjusted and mixed in advance to a desired composition is supplied to the plasma generation source of the remote plasma generation apparatus to cause plasma discharge, and then introduced into the reaction chamber, thereby causing a reaction chamber of the CVD apparatus. The Si-containing material, the Ge-containing material, or the metal-containing material deposited on the inner wall or the wafer stage is removed.
 クリーニング中の反応チャンバー内の圧力は、リモートプラズマ発生装置にてプラズマ放電をさせた際に、安定したプラズマ放電が得られる圧力であればよく、5Pa以上3000Pa以下であることが好ましい。 The pressure in the reaction chamber during cleaning may be a pressure at which stable plasma discharge is obtained when plasma discharge is performed with a remote plasma generator, and is preferably 5 Pa or more and 3000 Pa or less.
 上記クリーニングガスを用いた本発明のリモートプラズマクリーニング方法では、地球温暖化係数の高いNF3と同等以上の高いエッチング速度での堆積物除去が可能となる。 In the remote plasma cleaning method of the present invention using the cleaning gas, deposits can be removed at a high etching rate equivalent to or higher than that of NF 3 having a high global warming potential.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 以下の実施例、参考例、比較例では、CVD装置を用いてリモートプラズマクリーニング試験を行った。 In the following examples, reference examples, and comparative examples, a remote plasma cleaning test was performed using a CVD apparatus.
 図1に本試験で用いたCVD装置の概略系統図を示す。CVD装置の反応チャンバー1には、平行平板型の容量結合型プラズマ発生装置が備え付けられ、高周波電源3を反応チャンバー1内の平板電極4bに、アース9を反応チャンバー1内の平板電極4aに接続した。チャンバー内の圧力を検出する圧力計2を反応チャンバー1に接続した。さらに、リモートプラズマクリーニングにより発生する揮発性生成物や未反応のガスなど、チャンバー内のガスを排出するため、反応チャンバー1の排出口7に排ガスライン(図中省略)を接続した。また、CVD装置にはリモートプラズマ発生装置6が設けられ、クリーニングガスをマスフローコントローラ(図中省略)により流量調整して、所定の流量でガス導入口5よりリモートプラズマ発生装置6を介して反応チャンバー1に導入した。本試験において、リモートプラズマクリーニングは、リモートプラズマ発生装置6の放電を維持しつつ、クリーニングガスをガス導入口5から反応チャンバー1内に導入し、排ガスラインの排気量の調節によりチャンバー内の圧力が調整された状態(このときの圧力がプロセス圧力)で進行した。 Fig. 1 shows a schematic system diagram of the CVD apparatus used in this test. The reaction chamber 1 of the CVD apparatus is equipped with a parallel plate type capacitively coupled plasma generator, and the high frequency power source 3 is connected to the plate electrode 4b in the reaction chamber 1 and the ground 9 is connected to the plate electrode 4a in the reaction chamber 1. did. A pressure gauge 2 for detecting the pressure in the chamber was connected to the reaction chamber 1. Further, an exhaust gas line (not shown) was connected to the discharge port 7 of the reaction chamber 1 in order to discharge gas in the chamber such as volatile products generated by remote plasma cleaning and unreacted gas. In addition, the CVD apparatus is provided with a remote plasma generator 6, and the flow rate of the cleaning gas is adjusted by a mass flow controller (not shown), and the reaction chamber is passed from the gas inlet 5 through the remote plasma generator 6 at a predetermined flow rate. 1 was introduced. In this test, the remote plasma cleaning is performed by introducing a cleaning gas into the reaction chamber 1 from the gas inlet 5 while maintaining the discharge of the remote plasma generator 6, and adjusting the exhaust amount of the exhaust gas line to adjust the pressure in the chamber. The process proceeded in an adjusted state (the pressure at this time was the process pressure).
 尚、本試験では、クリーニング対象として厚さが0.5mm厚、面積4cm2のSiO2或いはSi材質の試験片8を用い、試験片8を平板電極4a上に設置して、所定の条件でリモートプラズマクリーニングを行った。いずれの試験でも、導入したクリーニングガスの総流量は100sccm、クリーニング時間は10分間であった。また、クリーニングガスとして、フッ素ラジカル源であるガス成分AとN2及び/又は添加ガス種との混合ガスを用いた。 In this test, a test piece 8 made of SiO 2 or Si having a thickness of 0.5 mm and an area of 4 cm 2 is used as a cleaning target, and the test piece 8 is placed on the flat plate electrode 4a, under predetermined conditions. Remote plasma cleaning was performed. In all the tests, the total flow rate of the introduced cleaning gas was 100 sccm, and the cleaning time was 10 minutes. As the cleaning gas, a mixed gas of a gas component A that is a fluorine radical source and N 2 and / or an added gas species was used.
 試験の前後で試験片8の質量をそれぞれ測定し、下記算出式(1)により試験片8のエッチング速度を算出した。
Figure JPOXMLDOC01-appb-M000001
The mass of the test piece 8 was measured before and after the test, and the etching rate of the test piece 8 was calculated by the following calculation formula (1).
Figure JPOXMLDOC01-appb-M000001
 [実施例1~20及び参考例1~14]
 実施例1~20では、ガス成分AとしてCF3OF又はCF2Oを含むクリーニングガスを用いて試験を行った。また、参考例1~14では、ガス成分AとしてNF3を用いたこと以外は実施例1~7、11、13~16、19、20と同様に試験を行った。実施例1~20及び参考例1~14のクリーニングガス組成、クリーニング条件及び試験結果をそれぞれ表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[Examples 1 to 20 and Reference Examples 1 to 14]
In Examples 1 to 20, tests were performed using a cleaning gas containing CF 3 OF or CF 2 O as the gas component A. In Reference Examples 1 to 14, tests were conducted in the same manner as in Examples 1 to 7, 11, 13 to 16, 19, and 20 except that NF 3 was used as the gas component A. The cleaning gas compositions, cleaning conditions and test results of Examples 1 to 20 and Reference Examples 1 to 14 are shown in Tables 1 and 2, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び表2に示すように、実施例1~6では、CF3OFとN2との2元系クリーニングガス組成にて、材質がSiO2の試験片8に対してチャンバー内圧力53.2Paでリモートプラズマクリーニングを行い、参考例1~6では、ガス成分AとしてCF3OFの代わりにNF3を用いたクリーニングガス組成にて、実施例1~6と同条件でリモートプラズマクリーニングを行った。実施例1~6及び参考例1~6ではいずれも同様に、フッ素ラジカル源であるCF3OFあるいはNF3濃度が減少するにつれてエッチング速度が減少する傾向があり、CF3OFを用いた場合のエッチング速度はNF3を用いた場合と同等以上であった。また、CF3OFとN2以外にAr、O2、又はHeをさらに添加したクリーニングガス組成を用いた実施例7~10、クリーニング時のチャンバー内圧力を5Pa、500Pa、3000Paに変更した実施例11~13、試験片8の材質をSiとした実施例14~16、ガス成分AとしてCF3OFの代わりにCF2Oを用いた実施例17、18についても、ガス成分AをNF3に置き換えて行なった参考例1、8~13のクリーニング結果と同等以上であった。 As shown in Table 1 and Table 2, Example 1, ~ 6, CF 3 at binary cleaning gas composition between OF and N 2, the pressure in the chamber the material is with respect to SiO 2 of the test piece 8 53. Remote plasma cleaning is performed at 2 Pa, and in Reference Examples 1 to 6, remote plasma cleaning is performed under the same conditions as in Examples 1 to 6 with a cleaning gas composition using NF 3 instead of CF 3 OF as gas component A. It was. In each of Examples 1 to 6 and Reference Examples 1 to 6, similarly, the etching rate tends to decrease as the concentration of CF 3 OF or NF 3 as the fluorine radical source decreases, and the case where CF 3 OF is used. The etching rate was equal to or higher than when NF 3 was used. Examples 7 to 10 using cleaning gas compositions in which Ar, O 2 or He was further added in addition to CF 3 OF and N 2 , Examples in which the pressure in the chamber during cleaning was changed to 5 Pa, 500 Pa and 3000 Pa 11 to 13, Examples 14 to 16 in which the material of the test piece 8 was Si, and Examples 17 and 18 in which CF 2 O was used instead of CF 3 OF as the gas component A, the gas component A was changed to NF 3 The results of cleaning in Reference Examples 1 and 8 to 13 performed by replacement were equivalent to or better.
 [比較例1~15]
 比較例1~15では、N2を含有しないクリーニングガスを用いたこと以外は実施例1~20と同様にして、試験を行った。比較例1~15のクリーニングガス組成、クリーニング条件及び試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
[Comparative Examples 1 to 15]
In Comparative Examples 1 to 15, tests were performed in the same manner as in Examples 1 to 20, except that a cleaning gas containing no N 2 was used. Table 3 shows the cleaning gas compositions, cleaning conditions, and test results of Comparative Examples 1 to 15.
Figure JPOXMLDOC01-appb-T000004
 さらに、以上の試験結果から、プロセス圧力が53.2Paにおけるガス成分Aの濃度に対するエッチング速度の関係のグラフを、クリーニング対象がSiO2については図2に、クリーニング対象がSiについては図3に示す。 Further, from the above test results, a graph of the relationship between the etching rate and the concentration of the gas component A at a process pressure of 53.2 Pa is shown in FIG. 2 for the SiO 2 cleaning object and in FIG. 3 for the Si cleaning object. .
 表3に示すように、比較例1~8はガス成分Aに添加するN2を他のガス(O2又はAr)に変更した点で実施例1~6、19、及び20と異なるが、図2に示すように、N2を含有する実施例1~6、19、及び20のクリーニングガスの場合に比べ、他のガスを添加した比較例1~8のクリーニングガスの場合はエッチング速度が極端に低下していた。図3に示すように、試験片8の材質がSiであった比較例9~11についても、試験片8の材質がSiO2であった比較例1~8と変わらず、N2を含有するクリーニングガスの場合に比べ、他のガスを添加したクリーニングガスの場合はエッチング速度が極端に低下する傾向があった。ガス成分AをCF2Oとした比較例12についても同様であった。 As shown in Table 3, Comparative Examples 1 to 8 differ from Examples 1 to 6, 19 and 20 in that N 2 added to the gas component A is changed to another gas (O 2 or Ar). As shown in FIG. 2, the etching rates of the cleaning gases of Comparative Examples 1 to 8 to which other gases are added are higher than those of the cleaning gases of Examples 1 to 6, 19 and 20 containing N 2. It was extremely low. As shown in FIG. 3, the material of the specimen 8 for also Comparative Examples 9-11 was Si, the material of the test piece 8 is unchanged from Comparative Example 1-8 was SiO 2, containing N 2 Compared to the cleaning gas, the etching rate tends to extremely decrease in the case of the cleaning gas to which other gases are added. The same was true for Comparative Example 12 in which the gas component A was CF 2 O.
 所定量のN2をCF3OFに添加したガス組成にてリモートプラズマクリーニングをすることにより、地球温暖化係数が低いCF3OFを用いてもNF3の場合と同程度以上のエッチング速度でクリーニングが進行していることが判る。また、ガスAとしてCF2Oを用いた場合においても同様にNF3の場合と同程度以上のエッチング速度でクリーニングが進行していることが判る。即ち、地球温暖化係数の低い化合物CFxy(例えば、CF3OF、CF2O等)であってもNF3と同等以上のクリーニング性能が得られると言える。 Cleaning a predetermined amount of N 2 by a remote plasma cleaning by the added gas composition CF 3 OF, if the same degree or more etch rate also NF 3 using a low CF 3 OF global warming potential Can be seen as progressing. It can also be seen that when CF 2 O is used as the gas A, the cleaning progresses at the same or higher etching rate as in the case of NF 3 . That is, it can be said that a cleaning performance equal to or higher than that of NF 3 can be obtained even with a compound CF x O y having a low global warming potential (for example, CF 3 OF, CF 2 O, etc.).
 以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。 Although the embodiments of the present invention have been described above, it is needless to say that the following embodiments can be appropriately changed and improved based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Absent.
 本発明のクリーニングガスは、CVD装置のクリーニングに有用であり、特にリモートプラズマクリーニング法において、地球温暖化係数の高いNF3の代替ガスとして利用可能である。 The cleaning gas of the present invention is useful for cleaning a CVD apparatus, and can be used as an alternative gas for NF 3 having a high global warming potential, particularly in a remote plasma cleaning method.
 1・・・反応チャンバー
 2・・・圧力計
 3・・・高周波電源
 4a、4b・・・平板電極
 5・・・ガス導入口
 6・・・リモートプラズマ発生装置
 7・・・排出口
 8・・・試験片
 9・・・アース
DESCRIPTION OF SYMBOLS 1 ... Reaction chamber 2 ... Pressure gauge 3 ... High frequency power supply 4a, 4b ... Flat plate electrode 5 ... Gas inlet 6 ... Remote plasma generator 7 ... Discharge port 8 ....・ Test specimen 9 ... Earth

Claims (5)

  1. CVD装置の反応チャンバー内に堆積した、Si含有物、Ge含有物、又は金属含有物を、リモートプラズマクリーニング法により除去するクリーニングガスにおいて、該クリーニングガスは一般式CFxy[但し、xは2又は4であり、x=2のときy=1~3の整数、x=4のときy=1~4の整数を表す。]で表される化合物とN2が含有されている混合ガスであることを特徴とする、クリーニングガス。 In the cleaning gas for removing the Si-containing material, the Ge-containing material, or the metal-containing material deposited in the reaction chamber of the CVD apparatus by a remote plasma cleaning method, the cleaning gas has the general formula CF x O y [where x is 2 or 4; when x = 2, y = 1 to an integer of 3, and when x = 4, y = 1 to an integer of 4. A cleaning gas, which is a mixed gas containing N 2 and a compound represented by the formula:
  2. 一般式CFxyで表される化合物は、CF3OF又はCF2Oであることを特徴とする、請求項1に記載のクリーニングガス。 The cleaning gas according to claim 1, wherein the compound represented by the general formula CF x O y is CF 3 OF or CF 2 O.
  3. クリーニングガス中の一般式CFxyで表される化合物の濃度が20vol%以上99.5vol%以下であり、かつ、クリーニングガス中のN2の濃度が0.5vol%以上80vol%以下であることを特徴とする、請求項1又は2に記載のクリーニングガス。 The concentration of the compound represented by the general formula CF x O y in the cleaning gas is 20 vol% or more and 99.5 vol% or less, and the concentration of N 2 in the cleaning gas is 0.5 vol% or more and 80 vol% or less. The cleaning gas according to claim 1 or 2, wherein
  4. 混合ガス中には、He、Ar、O2からなる群から選ばれる少なくとも1種類のガスがさらに含有されていることを特徴とする、請求項1~3のいずれか1項に記載のクリーニングガス。 The cleaning gas according to any one of claims 1 to 3, wherein the mixed gas further contains at least one gas selected from the group consisting of He, Ar, and O 2. .
  5. CVD装置の反応チャンバー内に堆積した、Si含有物、Ge含有物、又は金属含有物を除去するリモートプラズマクリーニング方法において、請求項1~4のいずれか1項に記載のクリーニングガスを用いることを特徴とする、リモートプラズマクリーニング方法。 5. The remote plasma cleaning method for removing Si-containing material, Ge-containing material, or metal-containing material deposited in a reaction chamber of a CVD apparatus, wherein the cleaning gas according to claim 1 is used. A remote plasma cleaning method characterized by the above.
PCT/JP2011/078855 2011-02-22 2011-12-14 Cleaning gas and remote plasma cleaning method using same WO2012114611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-036238 2011-02-22
JP2011036238A JP2012174922A (en) 2011-02-22 2011-02-22 Cleaning gas and remote plasma cleaning method using the same

Publications (1)

Publication Number Publication Date
WO2012114611A1 true WO2012114611A1 (en) 2012-08-30

Family

ID=46720413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078855 WO2012114611A1 (en) 2011-02-22 2011-12-14 Cleaning gas and remote plasma cleaning method using same

Country Status (3)

Country Link
JP (1) JP2012174922A (en)
TW (1) TW201237210A (en)
WO (1) WO2012114611A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190148167A1 (en) * 2017-11-16 2019-05-16 Wonik Materials Etching gas mixture, method of forming pattern by using the same, and method of manufacturing integrated circuit device by using the etching gas mixture
EP4099365A4 (en) * 2020-01-30 2023-08-16 Resonac Corporation Etching method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102443097B1 (en) * 2015-01-22 2022-09-14 치아 선 찬 Non-thermal soft plasma cleaning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236561A (en) * 1997-12-18 1999-08-31 Central Glass Co Ltd Cleaning gas
JP2006035213A (en) * 2004-07-22 2006-02-09 Air Products & Chemicals Inc Method for removing titanium nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236561A (en) * 1997-12-18 1999-08-31 Central Glass Co Ltd Cleaning gas
JP2006035213A (en) * 2004-07-22 2006-02-09 Air Products & Chemicals Inc Method for removing titanium nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190148167A1 (en) * 2017-11-16 2019-05-16 Wonik Materials Etching gas mixture, method of forming pattern by using the same, and method of manufacturing integrated circuit device by using the etching gas mixture
US10872784B2 (en) * 2017-11-16 2020-12-22 Samsung Electronics Co., Ltd. Etching gas mixture, method of forming pattern by using the same, and method of manufacturing integrated circuit device by using the etching gas mixture
EP4099365A4 (en) * 2020-01-30 2023-08-16 Resonac Corporation Etching method

Also Published As

Publication number Publication date
JP2012174922A (en) 2012-09-10
TW201237210A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
US6923189B2 (en) Cleaning of CVD chambers using remote source with cxfyoz based chemistry
JP2009503270A (en) Use of NF3 to remove surface deposits
JP2004343026A (en) Cvd apparatus and method of cleaning cvd apparatus
TW583736B (en) Plasma cleaning gas and plasma cleaning method
KR20120036245A (en) Plasma processing method and plasma processing apparatus
WO2012114611A1 (en) Cleaning gas and remote plasma cleaning method using same
TW201812897A (en) Plasma processing method
JP6480417B2 (en) Hydrofluoroolefin etching gas mixture
JP5214316B2 (en) Cleaning method of plasma film forming apparatus
TWI477485B (en) In-situ generation of the molecular etcher carbonyl fluoride or any of its variants and its use
TW201529141A (en) Self-cleaning vacuum processing chamber
JP2009065171A (en) Film forming method using cvd device
WO2012014565A1 (en) Plasma cleaning method for parallel plate electrodes
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
JP2003158123A (en) Plasma cleaning gas and method therefor
US7138364B2 (en) Cleaning gas and etching gas
EP2944385A1 (en) A process for etching and chamber cleaning and a gas therefor
CN100393913C (en) Dry cleaning process in polycrystal silicon etching
JP4531467B2 (en) Cleaning method in chamber of semiconductor thin film forming apparatus
JP2003229365A (en) Mixed cleaning gas composition
JP2008223093A (en) Cleaning method for film deposition system
CN115274388A (en) Cleaning method of wafer-free plasma chamber
JP2003297757A (en) Method for cleaning film-forming device
JP2003218100A (en) Mixture cleaning gas composition
JP2008277843A (en) Method of cleaning semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859396

Country of ref document: EP

Kind code of ref document: A1