WO2012114454A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2012114454A1
WO2012114454A1 PCT/JP2011/053839 JP2011053839W WO2012114454A1 WO 2012114454 A1 WO2012114454 A1 WO 2012114454A1 JP 2011053839 W JP2011053839 W JP 2011053839W WO 2012114454 A1 WO2012114454 A1 WO 2012114454A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
refrigeration cycle
solenoid valve
heat exchanger
Prior art date
Application number
PCT/JP2011/053839
Other languages
French (fr)
Japanese (ja)
Inventor
小山 昌喜
小谷 正直
遼太 飯島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP20110859245 priority Critical patent/EP2679930A4/en
Priority to PCT/JP2011/053839 priority patent/WO2012114454A1/en
Priority to JP2013500750A priority patent/JP5965895B2/en
Priority to CN201180067090.0A priority patent/CN103380334B/en
Publication of WO2012114454A1 publication Critical patent/WO2012114454A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2521On-off valves controlled by pulse signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a refrigeration cycle apparatus including a capacity control compressor capable of capacity control.
  • the present invention is suitable for a refrigeration cycle apparatus such as an air-conditioning hot-water supply system for a new generation house having a high eco (environmental-friendly) effect, and can be operated in a wide range, and can efficiently operate even in an ultra-small capacity operation mode. It is particularly suitable for a refrigeration cycle apparatus having a scroll compressor that can be controlled.
  • a scroll compressor used in a refrigeration cycle apparatus such as an air conditioner or a water heater is required to be capable of capacity control over a wide range with a single unit. That is, in the cooling operation of the air conditioner, the room temperature is generally high at the start of operation, and thus it is necessary to operate rapidly. In such a case, high speed operation (high speed rotation) is performed at the time of start-up, but when the room is cooled to a certain degree and the state is shifted to a steady operation state, low speed operation (low speed rotation) is performed with a small capacity.
  • Patent Document 1 a high pressure chamber, a discharge chamber, and a low pressure suction pipe formed between an outer shell coupling fitting provided on one end side of a compressor and a piston connected to a non-orbiting scroll member are respectively interposed with solenoid valves.
  • PWM pulse width adjustment
  • the solenoid valve is turned off (closed) during normal capacity control, and the solenoid valve is turned on (opened) during small capacity control to suck the refrigerant gas on the low pressure side.
  • the amount of refrigerant gas discharged is adjusted by returning it to the tube, enabling a wide range of volume control from 0 to 100%.
  • the lower limit setting value of the motor rotation speed that cannot be actually implemented due to the problems of oil film breakage and torque fluctuation in the above-described slide bearing (the drive signal to the motor has a frequency of about 5 Hz.
  • Compression operation with a small capacity control (ultra-small capacity operation mode) corresponding to the following ultra-low speed operation is possible, and the compressed refrigerant gas is discharged into the discharge pipe.
  • the refrigerant gas can be circulated gently by being guided to the refrigeration cycle via the.
  • a scroll compressor provided with a bypass port, a flow path that opens the bypass port to an intake pressure atmosphere, a control valve that opens and closes the flow path, and a control valve are set according to the operating load of the air conditioner And a control means that opens and closes by a plurality of control patterns based on the short-period time distribution.
  • the air conditioner equipped with the scroll compressor according to Patent Document 2 it is possible to control the capacity by 60% by discharging the refrigerant gas being compressed into the suction chamber and reducing the confined volume when the suction is completed.
  • 60-100% capacity control operation is realized in stages by opening and closing a control valve for discharging refrigerant gas in the middle of compression to the suction chamber according to a plurality of patterns with a short-period time distribution. .
  • JP-A-8-334094 Japanese Patent Laid-Open No. 11-324951
  • the discharge pressure and the suction pressure vary due to the opening and closing of a control valve such as a solenoid valve for capacity control.
  • a control valve such as a solenoid valve for capacity control.
  • PWM control pulse width adjustment control
  • the suction pressure fluctuates greatly, and this capacity control method is used for the air conditioner.
  • the blowing temperature fluctuates and the comfort cannot be maintained.
  • a loss occurs when the control valve is opened and closed. Therefore, if the duty cycle is shortened, the fluctuation is reduced, but the loss is increased and the efficiency is lowered.
  • Patent Document 1 capacity adjustment is performed by PWM control of a solenoid valve to turn it on and off, and a wide range of capacity control is possible.
  • Patent Document 1 only describes that the solenoid valve is subjected to PWM control and the capacity control is performed by changing the on-off time ratio (duty ratio) in order to adjust the target capacity.
  • the on-off time ratio duty ratio
  • Patent Document 2 a load state of a refrigeration cycle is detected based on signals from a temperature sensor and a pressure sensor provided in a condenser and an evaporator, and a capacity control operation and a full load operation are switched. In the capacity control operation, the bypass operation is performed with a predetermined time distribution.
  • this Patent Document 2 as in Patent Document 1, no consideration is given to improving comfort while suppressing a decrease in efficiency.
  • An object of the present invention is to obtain a refrigeration cycle apparatus capable of efficient operation control even in an ultra-small capacity operation mode and improving comfort.
  • the present invention provides a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an opening controllable expansion valve, and an indoor heat exchanger, wherein refrigerant in the compressor is being compressed.
  • a bypass flow path for bypassing to the suction side a solenoid valve for opening and closing the bypass flow path, a time ( ⁇ 1) for opening (ON) state and a time ( ⁇ 2) for closing (OFF) the solenoid valve
  • the solenoid valve is controlled to be closed when the suction pressure (Ps0) before opening the noid valve is greater than an allowable deviation ( ⁇ P), and the
  • the refrigerant being compressed in the compressor is supplied to the suction side of the compressor A bypass flow path to be bypassed, a solenoid valve for opening and closing the bypass flow path, a time ( ⁇ 1) for opening (ON) state and a time ( ⁇ 2) for closing (OFF) the solenoid valve And a controller that controls the capacity by adjusting the flow rate of the refrigerant discharged from the compressor to the refrigeration cycle, and the controller controls the duty cycle (the sum of the opening time and the closing time of the solenoid valve).
  • the schematic block diagram which shows Example 1 of the refrigerating-cycle apparatus of this invention The diagram explaining the fluctuation
  • the schematic block diagram of the refrigerating-cycle apparatus which shows Example 3 of this invention.
  • the flowchart explaining the compressor rotation speed control routine in Example 3 of this invention The longitudinal section showing an example of the capacity control compressor used for the present invention.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus showing Embodiment 1 of the present invention, in which the present invention is used for a room air conditioner (air conditioner).
  • the refrigeration cycle apparatus shown in FIG. 1 will be described together with the operation during cooling operation.
  • the refrigerant compressed by the compressor 1 flows into the four-way valve 5 from the high-pressure side connection pipe 7, passes through the four-way valve 5, and flows out to the outdoor connection pipe 8. Thereafter, the refrigerant is condensed and liquefied by exchanging heat with the outdoor air in the outdoor heat exchanger 2 and dissipating heat, and is decompressed by the expansion valve 3.
  • the refrigerant that has been decompressed to low temperature and low pressure enters the indoor heat exchanger 4, cools the indoor air and evaporates / gases itself, and flows again into the four-way valve 5 from the indoor connection pipe 9. Circulates through the low-pressure side connection port, returns to the suction side of the compressor 1 and is compressed again.
  • the refrigerant pipe connection destination of the four-way valve 5 is switched.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 5 from the high-pressure side connection pipe 7, flows out into the indoor connection pipe 9, flows into the indoor heat exchanger 4, and dissipates heat to the indoor air. By doing this, it heats up and condenses itself.
  • the condensed refrigerant is decompressed by the expansion valve 3, exchanges heat with outdoor air in the outdoor heat exchanger 2, evaporates and gasifies, flows into the four-way valve 5 from the outdoor connection pipe 8, and then flows to the low-pressure side connection pipe 10. The circulation of returning to the suction side of the compressor 1 and being compressed again is repeated.
  • bypass pipe 11 is a bypass pipe (bypass flow path) that guides the refrigerant gas at the discharge pressure to the suction side of the compressor 1, and one end of the bypass pipe 11 is connected to the low-pressure side connection pipe 10 on the compressor suction side.
  • the bypass pipe 11 is provided with a solenoid valve 12 that is controlled to be opened (ON) and closed (OFF) by a pulse width adjustment (PWM) control signal.
  • PWM pulse width adjustment
  • the solenoid valve 12 is repeatedly operated in an open state and a closed state, and ON / OFF of the discharge-side refrigerant flowing into the suction side is repeated.
  • a capacity adjustment mechanism that performs small capacity control of refrigerant discharged from the compressor to the refrigeration cycle is realized.
  • Reference numeral 13 shown in FIG. 1 denotes a discharge temperature sensor attached to the discharge side pipe (high-pressure side connection pipe 7) of the compressor 1, and detects the refrigerant discharge temperature (refrigerant inlet temperature to the condenser) from the compressor.
  • Reference numeral 14 denotes an indoor heat exchanger temperature sensor attached at a substantially intermediate position of the indoor heat exchanger 4, and this temperature sensor 14 is used for the refrigerant during the cooling operation in which the indoor heat exchanger 4 functions as an evaporator. Used to detect the evaporation temperature.
  • reference numeral 15 denotes an outdoor heat exchanger temperature sensor attached at a substantially intermediate position of the outdoor heat exchanger 2, and this temperature sensor 15 is used for the refrigerant during the heating operation in which the outdoor heat exchanger 2 functions as an evaporator. Used to detect the evaporation temperature.
  • 16 is an indoor temperature sensor that detects the temperature of the room in which the indoor heat exchanger 4 is provided
  • 17 is an outdoor temperature sensor that detects the outside air temperature near the installation of the outdoor heat exchanger 2.
  • an inverter (motor drive circuit) 18 is connected to the compressor 1, and the inverter 18 is connected to a commercial AC power source 19.
  • the inverter 18 rectifies the voltage of the commercial AC power supply 19, converts it to a voltage having a frequency according to the command, and outputs the voltage to a motor provided in the compressor 1.
  • the inverter 18 is connected to the control unit 20 and drives the motor based on a command from the control unit 20.
  • the control unit 20 includes the four-way valve 5, the expansion valve 3, the outdoor fan 21, the indoor fan 22, the indoor heat exchanger temperature sensor 14, the outdoor heat exchanger temperature sensor 15, and the indoor temperature sensor 16.
  • the outdoor temperature sensor 17, the discharge temperature sensor 13, the suction pressure sensor 23, the inverter 18, and a remote control type operation device (not shown; hereinafter referred to as a remote controller) are connected to each other.
  • the unit 20 is configured to control the entire refrigeration cycle apparatus (room air conditioner).
  • the control unit 20 puts the four-way valve 5 in the state of the cooling operation, and operates the compressor 1, the outdoor fan 21 and the indoor fan 22 at a predetermined rotation speed set in advance as an initial value. .
  • the refrigerant discharged from the compressor 1 repeats circulation such as returning to the compressor 1 through the four-way valve 5, the outdoor heat exchanger 2, the expansion valve 3, the indoor heat exchanger 4, and the four-way valve 5 again.
  • the expansion valve 3 is constituted by an electronic expansion valve, for example, and rotates a pulse motor built in the electronic expansion valve so as to open at an initial predetermined opening.
  • the indoor heat exchanger (use side heat exchanger) 4 functions as an evaporator.
  • the room temperature is detected by the room temperature sensor 16 provided in the vicinity of the ventilation passage entrance of the indoor heat exchanger 4, and according to the difference from the set temperature set by the remote controller.
  • the controller 20 controls the inverter 18 to vary the compressor speed. Thereby, the operation of the compressor 1 according to the air conditioning load is performed.
  • the detected temperature (discharged refrigerant temperature) of the discharge temperature sensor 13 is detected every predetermined control time, and the detected temperature, the detected temperature (evaporation temperature) of the indoor heat exchanger temperature sensor 14, and the indoor temperature sensor 16 are detected.
  • the opening degree of the expansion valve 3 is controlled at each control time according to the difference between the detected temperature (indoor temperature) and the target discharge temperature determined from the rotational speed command values of the compressor 1 and the outdoor fan 21.
  • the operating frequency of the compressor 1 is reduced and the discharge refrigerant temperature is set to a set value until the detected temperature falls to a predetermined set value.
  • the opening of the expansion valve 3 is controlled so that By this discharge temperature control, the compressor 1 is prevented from being abnormally heated, and the compressor 1 is prevented from being damaged due to seizure or the like.
  • the control unit 20 switches the four-way valve 5 to the heating operation side, and operates the compressor 1, the outdoor fan 21, and the indoor fan 22 at a predetermined rotation speed set in advance as an initial value.
  • the refrigerant discharged from the compressor 1 sequentially flows through the four-way valve 5, the indoor heat exchanger 4, the expansion valve 3, and the outdoor heat exchanger 2, passes through the four-way valve 5 again, and returns to the compressor 1.
  • the indoor heat exchanger (use side heat exchanger) 4 functions as a condenser.
  • the controller 20 detects the difference between the set temperature by the remote controller and the room temperature detected by the room temperature sensor 16 as an air conditioning load, and the compressor operating frequency (the output frequency of the inverter 18) according to the air conditioning load. ) To control. Thereby, the operation of the compressor 1 according to the heating load is performed.
  • the discharge refrigerant temperature is detected by the discharge temperature sensor 13 every predetermined control time, and the detected discharge refrigerant temperature, the detected temperature (evaporation temperature) of the outdoor heat exchanger temperature sensor 15, and the outdoor temperature sensor 17 are detected.
  • the opening degree of the expansion valve 3 is controlled for each control time according to the difference between the detected temperature (outside air temperature) and the target discharge temperature determined from the rotational speed command values of the compressor 1 and the outdoor fan 21.
  • the operating frequency of the compressor 1 is reduced and the discharge refrigerant temperature is set to a set value until the detected temperature falls to a predetermined set value.
  • the opening of the expansion valve 3 is controlled so that By this discharge temperature control, the compressor 1 is prevented from being abnormally heated, and the compressor 1 is prevented from being damaged due to seizure or the like.
  • an ultra low load operation mode (ultra low capacity operation mode)
  • the solenoid valve 12 provided in the bypass pipe 11 is opened (ON) and closed (PWM) by pulse width adjustment (PWM) control.
  • PWM pulse width adjustment
  • the capacity can be adjusted by repeatedly operating the solenoid valve 12 between the open state and the closed state and repeatedly opening and closing the bypass pipe 11.
  • the fluctuation range of the evaporation pressure during the capacity adjustment operation using the bypass pipe 11 is ⁇ P1. Further, during this capacity adjustment operation, the evaporation pressure generally increases, and the average pressure of the fluctuating evaporation pressure increases by ⁇ P2 with respect to the evaporation pressure before the capacity adjustment operation. If ⁇ P1 during the capacity adjustment operation is large, the evaporation temperature fluctuates accordingly, and the amount of heat exchange in the evaporator fluctuates, so that the capacity of the refrigeration cycle apparatus fluctuates and the blowing temperature fluctuates. For this reason, in order to maintain comfortable air conditioning, it is desirable to reduce ⁇ P1. Further, if ⁇ P2 is large, the endothermic amount is reduced, so the heat exchange amount is also reduced.
  • an appropriate duty cycle is determined according to the flowcharts shown in FIGS. 3 and 4, and capacity adjustment operation control is performed. Yes.
  • the compressor rotation speed control routine will be described with reference to the flowchart shown in FIG.
  • the rotation speed of the compressor is set from the remote controller by reading the indoor temperature Tea in detected by the indoor temperature sensor 16 provided near the inlet of the ventilation passage of the indoor heat exchanger 4 (step 31). setting temperature determining a difference DerutaTea in between (room temperature target value) T * ea in (step 32), in response to the difference, thereby changing the rotational speed of the compressor 1 by an inverter 18 (step 33, 34).
  • the compressor rotational speed fz is controlled to become smaller.
  • step 35 the compressor rotational speed f z is the smaller than the rotational speed f z opt for the capacitive control operation starts, the compressor rotational speed is fixed to f z opt, from the difference between the indoor temperature and the indoor temperature target value
  • the timer of the control unit is also turned on at the same time as the PWM control signal is turned on, and measurement of the elapsed time ⁇ 1 is started.
  • the suction pressure sensor 23 starts measuring the suction pressure, and the PWM control signal is compared until the measured suction pressure Ps exceeds a preset allowable deviation ⁇ P as compared to the suction pressure Ps0 before the PWM control signal is turned on. Remains ON and the pressure measurement is repeated (steps 38 to 41).
  • the PWM control signal is turned OFF, the solenoid valve 12 is closed, the timer is turned OFF, the elapsed time measurement is finished, and ⁇ 1 is opened. The time is determined (step 42).
  • the closing time ⁇ 2 is determined from the opening time ⁇ 1 and the current duty ratio d, and the PWM capacity control operation is performed based on this duty cycle (step 43).
  • the fluctuation of the suction pressure due to the opening and closing of the solenoid valve is determined within the range of ⁇ P. Therefore, by setting the ⁇ P in a range that does not impair the air conditioning comfort, it is possible to operate with an optimal duty cycle. .
  • FIG. 4 is a flowchart for explaining an expansion valve opening control routine in the refrigeration cycle apparatus of the present embodiment.
  • step 45 the state quantity of the refrigeration cycle is read. That is, the indoor temperature, outdoor temperature, indoor heat exchanger temperature, outdoor heat exchanger temperature, and the like detected by each sensor are read, and the rotation speed of the compressor 1, the rotation speeds of the indoor and outdoor fans 21, 22 and expansion The opening degree of the valve 3 is read.
  • step 46 when the PWM control signal is OFF, the expansion valve 3 has a detected temperature (discharge refrigerant temperature) Td of the discharge temperature sensor 13 that is detected by the outdoor heat exchanger temperature sensor 15 (condensation temperature) Tao.
  • the detected temperature of the outdoor temperature sensor 17 (ambient temperature) Tai, is controlling the opening so as to approach the target discharge temperature Td * determined from the rotational speed command value fp of the rotational speed f z and the outdoor fan 21 of the compressor 1 ( Steps 47-51).
  • step 46 when the PWM control signal is ON, a corrected compressor rotational speed f z ′ obtained by dividing the compressor rotational speed f z opt at the start of the capacity control operation by the duty ratio d at that time is determined (step 52).
  • the corrected compressor rotational speed f z ′, the detected temperature (condensation temperature) Tao of the outdoor heat exchanger temperature sensor 15, the detected temperature (outside air temperature) Tai of the outdoor temperature sensor 17, and the rotational speed command value fp of the outdoor fan 21 The routine is switched to a routine for controlling the expansion valve 3 so that the detected temperature (discharge refrigerant temperature) Td of the discharge temperature sensor 13 approaches the target discharge temperature Td * determined from (steps 52 to 57).
  • the expansion valve opening degree is changed to an appropriate opening amount even with respect to the reduced refrigerant circulation amount during the PWM capacity control operation. And increase in ⁇ P2 can be prevented.
  • the fluctuation of the suction pressure (evaporation pressure) due to the opening and closing of the solenoid valve 12 is determined in a range based on the allowable deviation ⁇ P, so that the fluctuation of the evaporation pressure is suppressed within a certain range.
  • This makes it possible to improve comfort such as air conditioning and to prevent an increase in loss due to a too short duty cycle, thus enabling highly efficient capacity control operation.
  • FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus showing a second embodiment of the present invention, which is used for a room air conditioner as in the first embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • the difference from the first embodiment is that the suction pressure sensor is removed, and a blowout temperature sensor 24 is provided in the vicinity of the ventilation passage outlet of the indoor heat exchanger 4. This is the point that the blowing temperature is detected.
  • the temperature of the evaporator-side heat exchanger (the indoor heat exchanger 4 during the cooling operation, the outdoor heat exchanger 2 during the heating operation), and the blowout temperature of the indoor heat exchanger 4 measured by the blowout temperature sensor 24.
  • the fluctuation of the evaporation pressure can be estimated.
  • a compressor rotation speed control routine in the refrigeration cycle apparatus of the second embodiment will be described with reference to FIG.
  • Rotational speed of the compressor 1 as described above, read the indoor temperature Tea in detected by the indoor temperature sensor 16 provided near the ventilation passage inlet of the indoor heat exchanger 4 (step 31), is set from the remote controller
  • a difference ⁇ Tea in from the set temperature (target indoor temperature) T * ea in is obtained (step 32), and the rotation speed of the compressor 1 is varied by the inverter 18 in accordance with this difference (steps 33 and 34).
  • the compressor rotational speed fz is controlled to become smaller.
  • step 35 the compressor rotational speed f z is the smaller than the rotational speed f z opt for the capacitive control operation starts, the compressor rotational speed is fixed to f z opt, from the difference between the indoor temperature and the indoor temperature target value
  • the determined initial duty ratio d is determined (steps 36 and 37), and the PWM capacity control operation for turning the solenoid valve 12 on and off is performed.
  • the timer of the control unit is also turned on at the same time as the PWM control signal is turned on, and measurement of the elapsed time ⁇ 1 is started.
  • step 61 the measurement of the evaporator side heat exchanger temperature Tev0 by the temperature sensor (14 or 15) of the heat exchanger on the evaporator side is started (step 61), and further the evaporator side heat exchanger temperature at the start of the measurement. and Tev0, from said air temperature Tea out of the air temperature sensor 24 indoor heat exchanger 4 detected by, according to the table to hold a predetermined control constant to calculate a tolerance DerutaTev (step 62).
  • the PWM control signal Compared to the evaporator side heat exchanger temperature Tev0 before the PWM control signal is turned ON, the PWM control signal remains ON until the measured evaporator side heat exchanger temperature Tev exceeds the allowable deviation ⁇ Tev, and the evaporator The measurement of the side heat exchanger temperature Tev is repeated (steps 63 to 65).
  • the PWM control signal is turned OFF, the solenoid valve 12 is closed, and the timer is turned OFF. Then, the elapsed time measurement is finished, and ⁇ 1 is determined as the opening time.
  • the closing time ⁇ 2 is determined from this ⁇ 1 and the current duty ratio d, and the PWM capacity control operation is performed based on this duty cycle (steps 66 and 67).
  • the opening degree control of the expansion valve 3 is controlled according to the same routine as the expansion valve opening degree control routine in the first embodiment shown in FIG.
  • the evaporation can be performed by setting the allowable range ⁇ Tev to an appropriate range. Even without a pressure sensor (suction pressure sensor) for measuring pressure, it is possible to suppress fluctuations in the evaporation pressure within a certain range, and it can be manufactured at a lower cost, and the capacity control operation with high air conditioning comfort and high efficiency. Can be realized.
  • FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus showing a third embodiment of the present invention, which is used for a room air conditioner as in the first and second embodiments.
  • the same reference numerals as those in FIGS. 1 and 5 denote the same or corresponding parts.
  • the difference from the first and second embodiments is that the suction pressure sensor 23 in the first embodiment and the blowout temperature provided in the vicinity of the ventilation passage outlet of the indoor heat exchanger 4 in the second embodiment. This is the point where the sensor 24 is removed.
  • the evaporator-side heat exchanger is operated under discharge superheat control so that the suction superheat degree is zero at the outlet, that is, the dryness is 1. Since the dryness is usually about 0.1 to 0.3 at the inlet of the evaporator-side heat exchanger, the heat exchanger has a distribution in which the dryness gradually increases from the inlet toward the outlet.
  • the amount of refrigerant circulating decreases, and the amount of refrigerant flowing out of the evaporator-side heat exchanger decreases relative to the amount of refrigerant flowing into the evaporator-side heat exchanger.
  • the evaporator side heat exchanger When the heat exchanger temperature sensor (14 or 15) is arranged near the center of the heat exchanger, the evaporator side heat exchanger temperature (evaporator temperature) Tev measured by this sensor is as shown in FIG. .
  • the evaporator temperature Tev gradually rises and gradually dries from the outlet side of the heat exchanger, so that the heat exchanger temperature sensor (14 or 15) is installed.
  • the measured temperature rises rapidly when the area around it is dry. For this reason, it becomes possible to grasp
  • the installation position of the heat exchanger temperature sensor 14 or 15 is set near the center of the heat exchanger in the present embodiment, the installation position may be appropriately selected so that the variation of the air conditioning capability can be appropriately allowed. .
  • a compressor rotation speed control routine in the refrigeration cycle apparatus of the third embodiment will be described with reference to FIG.
  • Rotational speed of the compressor 1 as described above, read the indoor temperature Tea in detected by the indoor temperature sensor 16 provided near the ventilation passage inlet of the indoor heat exchanger 4 (step 31), is set from the remote controller
  • a difference ⁇ Tea in from the set temperature (target indoor temperature) T * ea in is obtained (step 32), and the rotation speed of the compressor 1 is varied by the inverter 18 in accordance with this difference (steps 33 and 34).
  • the compressor rotational speed fz is controlled to become smaller.
  • step 35 the compressor rotational speed f z is the smaller than the rotational speed f z opt for the capacitive control operation starts, the compressor rotational speed is fixed to f z opt, from the difference between the indoor temperature and the indoor temperature target value
  • the determined initial duty ratio d is determined (steps 36 and 37), and the PWM capacity control operation for turning the solenoid valve 12 on and off is performed.
  • the timer of the control unit is turned ON and measurement of the elapsed time ⁇ 1 is started.
  • the measurement of the evaporator side heat exchanger temperature (evaporator temperature) Tev0 by the temperature sensor (14 or 15) of the heat exchanger on the evaporation side is started (step 61), and further the evaporator temperature at the start of the measurement. It is preset from Tev0 and the air temperature Tai or Tao measured by the indoor temperature sensor 16 or the outdoor temperature sensor 17 provided in the vicinity of the ventilation passage entrance of the indoor heat exchanger 4 or the outdoor heat exchanger 2 serving as an evaporator. The allowable deviation ⁇ Tev is calculated according to the table held as the control constant.
  • This allowable deviation ⁇ Tev is a temperature measurement position where the heat exchanger temperature sensor 14 or 15 is installed, after the heat exchanger dries (the degree of dryness of the refrigerant increases), resulting in a rapid temperature rise. (Step 68). Compared to the heat exchanger temperature Tev0 before the PWM control signal is turned ON, the PWM control signal remains ON until the measured heat exchanger temperature Tev exceeds the allowable deviation ⁇ Tev, and the evaporator side heat exchanger temperature Tev The measurement is repeated (steps 63 to 65).
  • the PWM control signal is turned OFF, the solenoid valve 12 is closed, and the timer is turned OFF. Then, the elapsed time measurement is finished, and ⁇ 1 is determined as the opening time.
  • the closing time ⁇ 2 is determined from this ⁇ 1 and the current duty ratio d, and the PWM capacity control operation is performed by this duty cycle (steps 66 and 67).
  • the opening degree control of the expansion valve 3 is controlled according to the same routine as the expansion valve opening degree control routine in the first embodiment shown in FIG.
  • the evaporation can be performed by setting the allowable range ⁇ Tev to an appropriate range. Even if there is no suction pressure sensor 23 (see FIG. 1) for measuring the pressure or a blowout temperature sensor 24 (see FIG. 5) for measuring the air blowing temperature into the room, the fluctuation of the evaporation pressure is kept within a certain range.
  • FIG. 10 is a longitudinal sectional view showing a scroll compressor as an example of a capacity control compressor used in the present invention
  • FIG. 11 is a diagram showing a normal operation of the scroll compressor shown in FIG. 10 (the solenoid valve 12 of the capacity adjusting mechanism is closed).
  • FIG. 12 is an enlarged cross-sectional view of the main part for explaining the flow of the refrigerant gas in the operation mode in the state
  • FIG. 12 is an operation in which the solenoid valve 12 of the capacity adjustment mechanism is in the open state during the bypass operation of the capacity control compressor shown in FIG. It is a principal part expanded sectional view explaining the flow of the refrigerant gas at the time of mode.
  • the scroll compressor 1 includes a fixed scroll 102 having a spiral wrap in a sealed case (chamber) 115 provided with a suction pipe 113 for sucking refrigerant gas and a discharge pipe 114 for discharging compressed refrigerant gas. And a compression mechanism portion composed of the orbiting scroll 101 having a spiral wrap meshing with the fixed scroll 102 is provided.
  • a motor 100 including a rotor 100a and a stator 100b is provided below the compression mechanism, and a crankshaft 106 serving as a rotation main shaft is integrally connected to the rotor 100a.
  • the crankshaft 106 is rotatably supported by a main bearing 105 a provided on the frame 105 and an auxiliary bearing 112 provided on the lower frame 111 below the sealed case 115.
  • An orbiting bearing 130 is provided on the back of the orbiting scroll 101, and an eccentric portion 106 a provided on the upper end side of the crankshaft 106 is inserted into the orbiting bearing 130.
  • Reference numeral 107 denotes an Oldham ring (rotation prevention member).
  • the spiral wraps provided on the respective end plates of the orbiting scroll 101 and the fixed scroll 102 are configured as asymmetric wraps having different winding angles, whereby the orbiting scroll 101 and the fixed scroll 102 are engaged with each other.
  • the two sealed chambers formed on the inner line side and the outer line side of the orbiting scroll wrap have asymmetric scroll shapes with different maximum sealed volumes.
  • compression chambers are formed on the outer line side and the inner line side of the wrap on the winding end side of the orbiting scroll 101, respectively.
  • the compression chamber formed on the outer line side and the compression chamber formed on the inner line side have different sizes and are formed with a phase shift of about 180 degrees with respect to the shaft rotation of the crankshaft 106. .
  • the discharge port 108 is opened near the center of the fixed scroll 102, and the winding end of the spiral wrap is about 180 degrees to the vicinity of the winding end of the spiral wrap of the orbiting scroll 101. It is extended. For this reason, when the spiral wraps of the orbiting scroll 101 and the fixed school 102 are combined to form a compression chamber, they are confined by the outer line side of the spiral scroll of the orbiting scroll 101 and the inner line side of the spiral wrap of the fixed scroll 102.
  • the size of the first compression chamber formed is different from the size of the second compression chamber formed by being confined by the inner side of the spiral wrap of the orbiting scroll 101 and the outer side of the spiral wrap of the fixed scroll 102.
  • the phase of the crankshaft 106 is shifted by about 180 degrees.
  • a release port 125 communicating with the compression chamber is formed on the outer peripheral side of the discharge port 108 in the fixed scroll 102, and a release valve 124, which is an overcompression prevention valve, is formed in the release port 125.
  • a discharge head cover 118 attached to the top plate (upper surface of the end plate) of the fixed scroll 102 forms a discharge head space 123 so as to cover the discharge port 108 and the release valve 124, and a through hole 119 provided at a predetermined location.
  • a discharge valve 121 ⁇ ⁇ ⁇ having a check valve action for opening or closing the valve is provided.
  • bypass pipe 11 guides the refrigerant gas in the discharge head space 123 to the outside of the sealed case 115, one end side is coupled to the discharge head cover 118, passes through the sealed case 115, and the other end side is outside the sealed case 115. Has been pulled out.
  • the other end of the bypass pipe 11 communicates with the suction pipe 113 for sucking refrigerant gas, and a solenoid valve 12 is provided in the middle of the bypass pipe 11.
  • the solenoid valve 12 is configured to be driven and controlled to an open state and a closed state by a pulse width adjustment (PWM) control signal described in each of the above-described embodiments.
  • PWM pulse width adjustment
  • the discharge head cover 118, the bypass pipe 11, and the solenoid valve 12 provide a bypass flow path for guiding the refrigerant gas in the discharge head space 123 from the bypass pipe 11 to the suction pipe 113 when the solenoid valve 12 is opened. Forming. Further, in the ultra-small capacity operation mode, the solenoid valve 12 is repeatedly operated between an open state and a closed state, and the presence or absence of use of the bypass flow path is repeated to act as a capacity adjustment mechanism for performing small capacity control.
  • the suction pipe 113 is for taking in the refrigerant gas of the refrigeration cycle, and is connected to the fixed scroll 102.
  • the lower end side of the crankshaft 106 in the sealed case 115 is an oil reservoir 116 that stores oil.
  • a flywheel 117 for stabilizing rotation is provided between the rotor 100 a and the auxiliary bearing 112 in the crankshaft 106.
  • the back pressure chamber (intermediate chamber) 109 formed by the fixed scroll 102, the orbiting scroll 101 ⁇ ⁇ , and the frame 105 oil supplied from the oil reservoir 116 is provided around the eccentric portion 106 a of the crankshaft 106. Guided through slewing bearing 130.
  • the back pressure chamber 109 is configured such that when the refrigerant gas in the oil is foamed and the pressure rises, the increased pressure is released to the suction side by a control valve (not shown) to maintain a predetermined pressure level. .
  • This suction side passes through a fixed outer peripheral groove provided on the outer periphery of the spiral body of the fixed scroll 102. Since this fixed outer peripheral groove reaches the refrigerant gas inlet, the fixed outer peripheral groove is always inhaled.
  • the discharge pressure acts on the central portion, and the intermediate pressure acts on the outer peripheral portion. For this reason, the orbiting scroll 101 is pressed against the fixed scroll 102 with an appropriate pressure, and the seal in the axial direction between the scroll wraps is maintained.
  • the refrigerant gas in the compression chamber is discharged through the release port 125 and the release valve 124 into the discharge head space. 123 is discharged.
  • the release valve 124 is closed, discharged from the discharge port 108 into the discharge head space 123, and further, the discharge valve 121 is pushed away from the through hole 119 to discharge chamber. 103 is discharged.
  • the refrigerant gas discharged into the discharge chamber 103 passes through the passage formed between the fixed scroll 102 and the frame 105 and the sealed case 115 and flows into the discharge space 104 where the motor 100 is provided.
  • the sealed case 115 has a high-pressure chamber structure in which a discharge pressure space is provided.
  • an inverter 18 that is a motor drive circuit for driving the motor 100 and a pulse width adjustment control signal for driving and controlling the open state and the closed state of the solenoid valve 12 are generated.
  • a control unit 20 as operation instruction control means for controlling operations of the inverter 18 and the solenoid drive circuit 12a according to operation instructions.
  • FIG. 11 shows the flow of the refrigerant gas in the first operation mode in which the solenoid valve 12 of the capacity adjustment mechanism provided in the scroll compressor is in the closed state.
  • the solenoid drive circuit 12a closes the solenoid valve 12 at the period ⁇ 2 of the falling edge of the rectangular wave of the pulse width adjustment control signal, and the inverter 18 drives the motor 100 to drive the rotor 100a. And the crankshaft 106 is rotated. Along with this, the orbiting scroll 101 starts the orbiting motion.
  • the first compression chamber and the second compression chamber formed by the engagement of the spiral bodies of the orbiting scroll 101 and the fixed scroll 102 move toward the center while reducing their volumes.
  • the refrigerant gas flowing in from the suction pipe 113 is compressed in the first compression chamber and the second compression chamber, and the high-pressure refrigerant gas is discharged from the discharge port 108 formed in the fixed scroll 102.
  • the ink is discharged into the head space 123.
  • the pressure in the compression chamber becomes higher than the pressure in the discharge head space 123 during the compression process, the refrigerant gas whose pressure has been increased through the release port 125 and the release valve 124 as described above enters the discharge head space 123. Discharged.
  • the release valve 124 indicates a valve plate portion attached to the tip of a coil spring 127 attached to the tip side of the holding portion 126, but a release valve mechanism including the holding portion 126 and the coil spring 127. The entire part is sometimes called a release valve.
  • the discharge valve 121 covering the through hole 119 of the discharge head cover 118 is pushed open, and the refrigerant gas is discharged into the discharge chamber 103. Discharged.
  • the solenoid valve 12 In the first operation mode, the solenoid valve 12 is closed and the refrigerant gas is allowed to flow to the refrigeration cycle side without using the bypass pipe 11, so it may be called a load operation.
  • FIG. 12 shows the flow of the refrigerant gas in the second operation mode in which the solenoid valve 12 of the capacity adjustment mechanism provided in the scroll compressor is in the open state.
  • the solenoid drive circuit 12a opens the solenoid valve 12 at the period ⁇ 1 of the rising edge of the rectangular wave of the pulse width adjustment control signal, and the inverter 18 drives the motor 100 to drive the rotor 100a and the crank.
  • the shaft 106 is rotated.
  • the orbiting scroll 101 starts the orbiting motion.
  • the first compression chamber and the second compression chamber formed by the engagement of the spiral bodies of the orbiting scroll 101 and the fixed scroll 102 are reduced in volume while being reduced in the center direction. Move to.
  • the pressure in the discharge head space 123 is lower than the pressure in the discharge chamber 103 and the discharge valve 121 covering the through hole 119 of the discharge head cover 118 is closed, so that the refrigerant gas is not discharged into the discharge chamber 103.
  • the pressure in the discharge head space 123 is higher than the pressure in the discharge head space 123. Therefore, the refrigerant gas is discharged into the discharge head space 123 through the release port 125 and the release valve 124.
  • the refrigerant gas in the compression chamber that has moved further to the center side than the release port 125 is discharged from the discharge port 108 into the discharge head space 123.
  • the refrigerant gas discharged into the discharge head space 123 flows to the suction pipe 113 through the bypass pipe 11 and the opened solenoid valve 12.
  • the solenoid valve 12 is opened, the refrigerant gas is returned from the bypass pipe 11 to the suction pipe 113 side, and the refrigerant gas is not discharged to the refrigeration cycle side. .
  • release port 125 and the release valve 124 are provided at a position where they are communicated with the compression chambers in all rotation angle regions. The reason is that the internal compression at the scroll wrap can be avoided and the compression operation at the unload operation becomes small.
  • the motor 100 is driven by the inverter 18 and the solenoid valve 12 is closed at the period ⁇ 2 of the rectangular wave falling section of the pulse width adjustment control signal from the solenoid drive circuit 12a.
  • the capacity control can be performed by switching between the load operation (first operation mode) and the unload operation (second operation mode) in which the solenoid valve 12 is opened at the period ⁇ 1 of the rectangular wave rising section. it can.
  • the capacity can be controlled by opening and closing the solenoid valve 12.
  • the high-speed rotation is slightly higher than the lower limit set value of the rotation speed driven by the motor.
  • the rotation speed control of the motor 100 is performed by the inverter 18, and when it is necessary to further reduce the capacity in the low speed rotation range below the predetermined set value, the small capacity control is performed. It is preferable to operate by changing the ratio of the load operation and the unload operation as an ultra-small capacity operation mode by operating the capacity adjusting mechanism (control of opening and closing of the bypass passage by a solenoid valve).
  • the capacity adjusting mechanism having a simple structure can efficiently perform the small capacity control even in the ultra-small capacity operation mode. That is, the compression operation in the ultra-small capacity control (ultra-small capacity operation mode) corresponding to the ultra-low speed operation below the lower limit set value of the rotation speed by the motor drive (frequency about 5 Hz in the drive signal to the motor 100). Can be executed without degrading the efficiency of motor drive, and an excellent scroll compressor capable of realizing a wide capacity control of 0 to 100% can be obtained. Further, since the capacity adjusting mechanism provided in the scroll compressor of this embodiment has a simple structure, the scroll compressor can be easily reduced in cost, size, weight and mass production.
  • the duty cycle which is the cycle of the switching time between the load operation and the unload operation, is controlled so that the deviation of the evaporation pressure is within a certain value.
  • an increase in loss due to an excessively short duty cycle can also be prevented, so that highly efficient operation can be realized, and excellent capacity control is possible with a wide range of 0 to 100% with high efficiency.
  • a refrigeration cycle apparatus with performance can be realized.
  • high-efficiency and wide-range capacity control can be realized with a simple configuration, so that the cost can be reduced.

Abstract

This refrigeration cycle apparatus is provided with a compressor (1), an outdoor heat exchanger (2), an expansion valve (3) having open degree thereof controllable, and an indoor heat exchanger (4). The refrigeration cycle apparatus is also provided with: a bypass flow channel (11) that makes a cooling medium being compressed by means of the compressor bypass to the suction side of the compressor; a solenoid valve (12), which opens/closes the bypass flow channel; and a control unit (20), which controls capacity by adjusting the flow volume of the cooling medium to be discharged to the refrigeration cycle from the compressor by controlling a period of time when the solenoid valve is in the open state, and a period of time when the solenoid valve is in the closed state. The control unit performs control on the basis of a duty ratio, which is a ratio of an open period of time to a duty cycle, i.e., a sum of a period of time when the solenoid valve is opened, and a period of time when the solenoid valve is closed, and when, in the state where the solenoid valve is in the open state, suction pressure of the compressor becomes equal to or higher than an allowable deviation with respect to suction pressure before the solenoid valve is opened, the control unit controls the solenoid valve to be in the closed state, and determines the closed period of time on the basis of the duty ratio.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、容量制御が可能な容量制御圧縮機を備えた冷凍サイクル装置に関する。また、本発明は、エコ(環境対応)効果が高い新世代住宅向けの空調給湯システムなどの冷凍サイクル装置に好適であると共に、ワイドレンジな運転が可能で、超小容量運転モードでも効率良く容量制御が可能なスクロール圧縮機を備えた冷凍サイクル装置に特に好適である。 The present invention relates to a refrigeration cycle apparatus including a capacity control compressor capable of capacity control. In addition, the present invention is suitable for a refrigeration cycle apparatus such as an air-conditioning hot-water supply system for a new generation house having a high eco (environmental-friendly) effect, and can be operated in a wide range, and can efficiently operate even in an ultra-small capacity operation mode. It is particularly suitable for a refrigeration cycle apparatus having a scroll compressor that can be controlled.
 近年、一般住宅において消費されるエネルギー、即ち、空調機で消費されるエネルギーや給湯機で消費されるエネルギーを低減する観点から、建物の断熱材に高断熱材を用いて熱負荷を低減する傾向が強まっている。また、太陽光発電や太陽熱温水器を装備することにより、1年間の積算消費電力をゼロにする化石燃料ゼロ化住宅を具現する構想もある。 In recent years, from the viewpoint of reducing the energy consumed in ordinary houses, that is, the energy consumed by air conditioners and the energy consumed by hot water heaters, there is a tendency to reduce the thermal load by using high thermal insulation for building insulation Is getting stronger. There is also a concept to realize a zero-fossil fuel-free house that is equipped with solar power generation and solar water heaters, so that the accumulated power consumption for one year is zero.
 このような構想において、空調機や給湯機などの冷凍サイクル装置で用いられている、例えばスクロール圧縮機では、一台で広範囲に容量制御できることが要求されている。即ち、空調機における冷房運転では、運転開始時に室内の温度が高くなっているのが一般的であるため、急速に運転する必要がある。こうした場合、始動時には大容量で高速運転(高速回転)されるが、室内が或る程度冷えて定常運転状態に移行すると、小容量で低速運転(低速回転)される。この定常運転状態での低速運転では、特に最近の省エネルギー化を実施し、高断熱材が配備された建物に設備された空調機で使用される場合を想定すると、非常に低い回転速度で運転が行われることになる。 In such a concept, for example, a scroll compressor used in a refrigeration cycle apparatus such as an air conditioner or a water heater is required to be capable of capacity control over a wide range with a single unit. That is, in the cooling operation of the air conditioner, the room temperature is generally high at the start of operation, and thus it is necessary to operate rapidly. In such a case, high speed operation (high speed rotation) is performed at the time of start-up, but when the room is cooled to a certain degree and the state is shifted to a steady operation state, low speed operation (low speed rotation) is performed with a small capacity. In this low-speed operation in the steady-state operation state, especially when the recent energy-saving is implemented and the case where it is used in the air conditioner installed in the building where the high thermal insulation material is installed, the operation is performed at a very low rotational speed. Will be done.
 ところが、スクロール圧縮機で過度に低速回転を行うと、構造的にすべり軸受での油膜破断が生じて軸受が損傷し易く、また低速回転であるが故にクランクシャフトを回転させるためのモータ駆動が円滑に行われなくなる等、安定した運転動作が行われ難くなる。そこで、一般に小容量運転時には、回転速度を或る程度維持して容量制御を行うようにし、例えば室内が或る程度冷えたらスクロール圧縮機を停止し、室内の温度が上昇した場合に再び始動する運転パターンを繰り返すようにしている。 However, if the scroll compressor is rotated at an excessively low speed, the oil film breakage is structurally caused by the sliding bearing and the bearing is easily damaged, and the motor driving for rotating the crankshaft is smooth because of the low speed rotation. Therefore, it is difficult to perform a stable driving operation. Therefore, in general, during small capacity operation, capacity control is performed while maintaining a certain rotational speed. For example, when the room is cooled to some extent, the scroll compressor is stopped and restarted when the room temperature rises. The driving pattern is repeated.
 しかしながら、こうした小容量運転時に停止・始動を繰り返す運転パターンは効率が悪いばかりでなく、快適に空気調和を実施できないため、容量制御を工夫する技術が提案されている。一般に、スクロール圧縮機で容量制御を行う場合、モータ駆動による回転速度を制御するか、或いは一部の構造を改良し、回転速度を一定にして吐出量を可変にする制御を行うか、それらを併用する手法が採用されている。例えば吐出量を可変にする技術として、クランクシャフトの軸方向で封止(シール)を解除して圧縮しない構造にした容量調整機構を備えたスクロール式機械(特許文献1参照)が知られており、また、圧縮途中の冷媒ガスを吸入側に排出して圧縮開始を遅らせるようにした容量制御機構を備えたスクロール圧縮機を搭載する空気調和機(特許文献2参照)が知られている。 However, such an operation pattern that repeatedly stops and starts during small-capacity operation is not only inefficient, but also cannot comfortably perform air conditioning, and thus a technique for devising capacity control has been proposed. In general, when capacity control is performed by a scroll compressor, the rotational speed by motor drive is controlled, or a part of the structure is improved so that the rotational speed is constant and the discharge amount is variable. The method used in combination is adopted. For example, as a technique for making the discharge amount variable, a scroll-type machine (see Patent Document 1) having a capacity adjustment mechanism that releases a seal (seal) in the axial direction of the crankshaft and does not compress it is known. In addition, an air conditioner (see Patent Document 2) equipped with a scroll compressor provided with a capacity control mechanism that discharges refrigerant gas during compression to the suction side to delay the start of compression is known.
 特許文献1では、圧縮機の一端側に設けた外殻結合金具と非旋回スクロール部材に接続したピストンとの間に形成される高圧室、吐出室、低圧な吸入管をそれぞれソレノイド弁を介在させて配管で結合し、ソレノイド弁をパルス幅調整(PWM)制御してオン(開成)させたときに、高圧室から低圧な吸入管へ向かう管内が連通し、非旋回スクロール部材が外殻結合金具側へ移動し、クランクシャフトの軸方向でのシールが解除されて圧縮しなくなる。また、ソレノイド弁をオフ(閉成)させたときに、高圧室から吐出室へ向かう管内が連通し、非旋回スクロール部材が外殻結合金具と反対側のクランクシャフト側へ移動し、クランクシャフトの軸方向でのシールが行われて通常の圧縮動作が行われる。 In Patent Document 1, a high pressure chamber, a discharge chamber, and a low pressure suction pipe formed between an outer shell coupling fitting provided on one end side of a compressor and a piston connected to a non-orbiting scroll member are respectively interposed with solenoid valves. When the solenoid valve is turned on (opened) by pulse width adjustment (PWM) control, the pipe from the high pressure chamber to the low pressure suction pipe communicates, and the non-orbiting scroll member is the outer shell coupling fitting. The seal in the axial direction of the crankshaft is released, and compression is no longer possible. In addition, when the solenoid valve is turned off (closed), the inside of the pipe from the high pressure chamber to the discharge chamber communicates, and the non-orbiting scroll member moves to the crankshaft side opposite to the outer shell coupling fitting. Sealing in the axial direction is performed and a normal compression operation is performed.
 特許文献1に係るスクロール式機械によれば、通常の容量制御時にはソレノイド弁をオフ(閉成)させて運転させ、小容量制御時にはソレノイド弁をオン(開成)させて冷媒ガスを低圧側の吸入管へ戻すことにより冷媒ガスの吐出量を調整し、0~100%の広範囲な容量制御を可能にしている。この結果、上述したすべり軸受での油膜破断やトルク変動の問題により実際には実施できないモータ回転速度の下限設定値(モータへの駆動信号では周波数5Hz程度であるが、実際の設計上はそれよりも高い15~20Hz程度に設定される)以下の超低速運転を行った場合に相当する小容量制御(超小容量運転モード)での圧縮動作が可能となり、その圧縮した冷媒ガスを、吐出管を介して冷凍サイクルへ導くことにより、冷媒ガスを緩やかに循環させることができる。 According to the scroll type machine according to Patent Document 1, the solenoid valve is turned off (closed) during normal capacity control, and the solenoid valve is turned on (opened) during small capacity control to suck the refrigerant gas on the low pressure side. The amount of refrigerant gas discharged is adjusted by returning it to the tube, enabling a wide range of volume control from 0 to 100%. As a result, the lower limit setting value of the motor rotation speed that cannot be actually implemented due to the problems of oil film breakage and torque fluctuation in the above-described slide bearing (the drive signal to the motor has a frequency of about 5 Hz. Compression operation with a small capacity control (ultra-small capacity operation mode) corresponding to the following ultra-low speed operation is possible, and the compressed refrigerant gas is discharged into the discharge pipe. The refrigerant gas can be circulated gently by being guided to the refrigeration cycle via the.
 特許文献2では、バイパスポートを設けたスクロール圧縮機と、バイパスポートを吸入圧力雰囲気に開口する流路と、流路を開閉する制御弁と、制御弁を空気調和機の運転負荷に応じて設定された短周期の時間配分による複数の制御パターンにより開閉する制御手段とを備えている。 
 特許文献2に係るスクロール圧縮機を搭載する空気調和機によれば、圧縮途中の冷媒ガスを吸入室に排出し、吸入完了時の閉じ込め容積を小さくすることにより、60%の容量制御が可能となり、更に、圧縮途中の冷媒ガスを吸込室に排出するための制御弁を短周期の時間配分による複数のパターンにより開閉することで、60~100%の容量制御運転を段階的に実現している。
In Patent Document 2, a scroll compressor provided with a bypass port, a flow path that opens the bypass port to an intake pressure atmosphere, a control valve that opens and closes the flow path, and a control valve are set according to the operating load of the air conditioner And a control means that opens and closes by a plurality of control patterns based on the short-period time distribution.
According to the air conditioner equipped with the scroll compressor according to Patent Document 2, it is possible to control the capacity by 60% by discharging the refrigerant gas being compressed into the suction chamber and reducing the confined volume when the suction is completed. Furthermore, 60-100% capacity control operation is realized in stages by opening and closing a control valve for discharging refrigerant gas in the middle of compression to the suction chamber according to a plurality of patterns with a short-period time distribution. .
特開平8-334094号公報JP-A-8-334094 特開平11-324951号公報Japanese Patent Laid-Open No. 11-324951
 吐出量を可変制御する圧縮機を用いた容量制御運転では、容量制御のためのソレノイド弁等の制御弁の開閉により吐出圧力及び吸込圧力が変動する。特にパルス幅調整制御(以下、PWM制御と称す)でのオン(開成)-オフ(閉成)周期(デューティ周期)が大きいと吸込圧力の変動が大きく、空調機にこの容量制御方式を用いた場合、吹出温度が変動し、快適性が維持できなくなる。 また、この容量制御方式では制御弁の開閉時に損失が発生するため、デューティ周期を短くすると、変動は小さくなるものの、損失が大きくなり、効率が低下する。 
 上述した特許文献1のものは、ソレノイド弁をPWM制御してオン-オフさせることにより、容量調整を行うものであり、広範囲な容量制御が可能である。しかし、特許文献1のものでは、目標とする容量に調整するため、ソレノイド弁をPWM制御し、オン-オフ時間の比率(デューティ比)を変えて容量制御することが記載されているだけであり、効率低下を抑制しつつ快適性を向上させることに関しては配慮されていない。
In a capacity control operation using a compressor that variably controls the discharge amount, the discharge pressure and the suction pressure vary due to the opening and closing of a control valve such as a solenoid valve for capacity control. In particular, if the ON (open) -OFF (closed) cycle (duty cycle) in pulse width adjustment control (hereinafter referred to as PWM control) is large, the suction pressure fluctuates greatly, and this capacity control method is used for the air conditioner. In this case, the blowing temperature fluctuates and the comfort cannot be maintained. Further, in this capacity control method, a loss occurs when the control valve is opened and closed. Therefore, if the duty cycle is shortened, the fluctuation is reduced, but the loss is increased and the efficiency is lowered.
In the above-mentioned Patent Document 1, capacity adjustment is performed by PWM control of a solenoid valve to turn it on and off, and a wide range of capacity control is possible. However, Patent Document 1 only describes that the solenoid valve is subjected to PWM control and the capacity control is performed by changing the on-off time ratio (duty ratio) in order to adjust the target capacity. However, no consideration is given to improving comfort while suppressing a decrease in efficiency.
 また、特許文献2のものは、凝縮器及び蒸発器に設けた温度センサ及び圧力センサからの信号に基づき、冷凍サイクルの負荷状態を検知して、容量制御運転と全負荷運転の切り替えを行うもので、容量制御運転は予め決められた時間配分によりバイパス運転を行うようにしている。しかし、この特許文献2のものにも、特許文献1と同様に、効率低下を抑制しつつ快適性を向上させることに関しては配慮されていない。 Further, in Patent Document 2, a load state of a refrigeration cycle is detected based on signals from a temperature sensor and a pressure sensor provided in a condenser and an evaporator, and a capacity control operation and a full load operation are switched. In the capacity control operation, the bypass operation is performed with a predetermined time distribution. However, in this Patent Document 2, as in Patent Document 1, no consideration is given to improving comfort while suppressing a decrease in efficiency.
 本発明の目的は、超小容量運転モードでも効率の良い運転制御が可能でしかも快適性も向上できる冷凍サイクル装置を得ることにある。 An object of the present invention is to obtain a refrigeration cycle apparatus capable of efficient operation control even in an ultra-small capacity operation mode and improving comfort.
 上記目的を達成するため本発明は、圧縮機、室外熱交換器、開度制御可能な膨張弁及び室内熱交換器を備える冷凍サイクル装置において、前記圧縮機における圧縮途中の冷媒を該圧縮機の吸込側にバイパスさせるバイパス流路と、前記バイパス流路を開閉するためのソレノイド弁と、前記ソレノイド弁の開成(ON)状態の時間(τ1)と閉成(OFF)状態の時間(τ2)を制御することで圧縮機から冷凍サイクルへ吐出される冷媒の流量を調整して容量制御する制御部と、を備え、前記制御部は、前記ソレノイド弁の開成時間と閉成時間の和となるデューティ周期(T)に対する開成時間の比であるデューティ比(d)に基づいて制御を行うと共に、前記ソレノイド弁が開成状態のとき、前記圧縮機の吸込側の圧力(Ps)が、前記ソレノイド弁が開成される前の吸込圧力(Ps0)に対して許容偏差(ΔP)以上になると、前記ソレノイド弁を閉成状態に制御し、この閉成時間は前記デューティ比に基づいて決められるように制御することを特徴とする。 To achieve the above object, the present invention provides a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an opening controllable expansion valve, and an indoor heat exchanger, wherein refrigerant in the compressor is being compressed. A bypass flow path for bypassing to the suction side, a solenoid valve for opening and closing the bypass flow path, a time (τ1) for opening (ON) state and a time (τ2) for closing (OFF) the solenoid valve And a controller for controlling the capacity by adjusting the flow rate of the refrigerant discharged from the compressor to the refrigeration cycle by controlling the duty, which is the sum of the opening time and closing time of the solenoid valve Control is performed based on the duty ratio (d), which is the ratio of the opening time to the cycle (T), and when the solenoid valve is in the open state, the pressure (Ps) on the suction side of the compressor The solenoid valve is controlled to be closed when the suction pressure (Ps0) before opening the noid valve is greater than an allowable deviation (ΔP), and the closing time is determined based on the duty ratio. It is characterized by controlling to.
 本発明の他の特徴は、圧縮機、室外熱交換器、開度制御可能な膨張弁及び室内熱交換器を備える冷凍サイクル装置において、前記圧縮機における圧縮途中の冷媒を該圧縮機の吸込側にバイパスさせるバイパス流路と、前記バイパス流路を開閉するためのソレノイド弁と、前記ソレノイド弁の開成(ON)状態の時間(τ1)と閉成(OFF)状態の時間(τ2)を制御することで圧縮機から冷凍サイクルへ吐出される冷媒の流量を調整して容量制御する制御部と、を備え、前記制御部は、前記ソレノイド弁の開成時間と閉成時間の和となるデューティ周期(T)に対する開成時間の比であるデューティ比(d)に基づいて制御を行うと共に、前記ソレノイド弁が開成状態のとき、蒸発器となる前記室内熱交換器または室外熱交換器(蒸発器側熱交換器)の蒸発器温度(Tev)が、前記ソレノイド弁が開成される前の蒸発器温度(Tev0)に対して許容偏差(ΔTev)以上になると、前記ソレノイド弁を閉成状態に制御し、この閉成時間は前記デューティ比に基づいて決められるように制御することを特徴とする。 Another feature of the present invention is that in the refrigeration cycle apparatus including a compressor, an outdoor heat exchanger, an expansion valve capable of opening control, and an indoor heat exchanger, the refrigerant being compressed in the compressor is supplied to the suction side of the compressor A bypass flow path to be bypassed, a solenoid valve for opening and closing the bypass flow path, a time (τ1) for opening (ON) state and a time (τ2) for closing (OFF) the solenoid valve And a controller that controls the capacity by adjusting the flow rate of the refrigerant discharged from the compressor to the refrigeration cycle, and the controller controls the duty cycle (the sum of the opening time and the closing time of the solenoid valve). Control based on the duty ratio (d), which is the ratio of the opening time to T), and when the solenoid valve is in the open state, the indoor heat exchanger or outdoor heat exchanger (evaporator side) that becomes an evaporator When the evaporator temperature (Tev) of the heat exchanger becomes equal to or greater than an allowable deviation (ΔTev) with respect to the evaporator temperature (Tev0) before the solenoid valve is opened, the solenoid valve is controlled to be closed. The closing time is controlled to be determined based on the duty ratio.
 本発明によれば、超小容量運転モードでも効率の良い運転制御が可能でしかも快適性も向上できる冷凍サイクル装置を得ることができる。 According to the present invention, it is possible to obtain a refrigeration cycle apparatus capable of efficient operation control even in an ultra-small capacity operation mode and improving comfort.
本発明の冷凍サイクル装置の実施例1を示す概略構成図。The schematic block diagram which shows Example 1 of the refrigerating-cycle apparatus of this invention. 冷凍サイクル装置でのPWM制御と蒸発圧力の変動を説明する線図。The diagram explaining the fluctuation | variation of PWM control and evaporation pressure in a refrigeration cycle apparatus. 本発明の実施例1における圧縮機回転数制御ルーチンを説明するフローチャート。The flowchart explaining the compressor rotation speed control routine in Example 1 of this invention. 本発明の実施例1における膨張弁開度制御ルーチンを説明するフローチャート。The flowchart explaining the expansion valve opening degree control routine in Example 1 of this invention. 本発明の実施例2を示す冷凍サイクル装置の概略構成図。The schematic block diagram of the refrigerating-cycle apparatus which shows Example 2 of this invention. 本発明の実施例2における圧縮機回転数制御ルーチンを説明するフローチャート。The flowchart explaining the compressor rotation speed control routine in Example 2 of this invention. 本発明の実施例3を示す冷凍サイクル装置の概略構成図。The schematic block diagram of the refrigerating-cycle apparatus which shows Example 3 of this invention. 本発明の実施例3における冷凍サイクル装置でのPWM制御と蒸発温度の変動を説明する線図。The diagram explaining the fluctuation | variation of PWM control and evaporation temperature in the refrigerating-cycle apparatus in Example 3 of this invention. 本発明の実施例3における圧縮機回転数制御ルーチンを説明するフローチャート。The flowchart explaining the compressor rotation speed control routine in Example 3 of this invention. 本発明に用いられる容量制御圧縮機の一例を示す縦断面図。The longitudinal section showing an example of the capacity control compressor used for the present invention. 図10に示す容量制御圧縮機の通常運転時の冷媒ガスの流れを説明する要部拡大断面図。The principal part expanded sectional view explaining the flow of the refrigerant gas at the time of the normal driving | operation of the capacity control compressor shown in FIG. 図10に示す容量制御圧縮機のバイパス運転時の冷媒ガスの流れを説明する要部拡大断面図。The principal part expanded sectional view explaining the flow of the refrigerant gas at the time of the bypass operation of the capacity control compressor shown in FIG.
 以下、本発明の冷凍サイクル装置の具体的実施例を図面に基づいて説明する。 Hereinafter, specific examples of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings.
 本発明の冷凍サイクル装置の実施例1を図1~図4により説明する。 
 図1は本発明の実施例1を示す冷凍サイクル装置の概略構成図で、本発明をルームエアコン(空調機)に用いたものである。
A first embodiment of the refrigeration cycle apparatus of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus showing Embodiment 1 of the present invention, in which the present invention is used for a room air conditioner (air conditioner).
 図1に示す冷凍サイクル装置を、冷房運転時の動作と共に説明する。圧縮機1で圧縮された冷媒は、高圧側接続配管7から四方弁5に流入し、この四方弁5内を通って、室外接続配管8に流出する。その後冷媒は、室外熱交換器2で室外空気と熱交換して放熱することにより凝縮・液化し、膨張弁3によって減圧される。減圧されて低温・低圧となった冷媒は、室内熱交換器4に入り、室内空気を冷却すると共に自らは蒸発・ガス化し、室内接続配管9から前記四方弁5に再び流入後、四方弁5の低圧側接続口から流出して低圧側接続配管10を通り、前記圧縮機1の吸込側へ戻って再度圧縮されるという循環を繰り返す。 The refrigeration cycle apparatus shown in FIG. 1 will be described together with the operation during cooling operation. The refrigerant compressed by the compressor 1 flows into the four-way valve 5 from the high-pressure side connection pipe 7, passes through the four-way valve 5, and flows out to the outdoor connection pipe 8. Thereafter, the refrigerant is condensed and liquefied by exchanging heat with the outdoor air in the outdoor heat exchanger 2 and dissipating heat, and is decompressed by the expansion valve 3. The refrigerant that has been decompressed to low temperature and low pressure enters the indoor heat exchanger 4, cools the indoor air and evaporates / gases itself, and flows again into the four-way valve 5 from the indoor connection pipe 9. Circulates through the low-pressure side connection port, returns to the suction side of the compressor 1 and is compressed again.
 なお、冷房運転から暖房運転へ切換える場合には、前記四方弁5の冷媒配管接続先を切り替える。暖房運転時には、圧縮機101から吐出された高温・高圧の冷媒は高圧側接続配管7から四方弁5を通り、室内接続配管9へ流出して室内熱交換器4へ流れ、室内空気へ放熱することによって暖房運転を行い、自らは凝縮する。その後凝縮した冷媒は、膨張弁3で減圧され、室外熱交換器2で室外空気と熱交換して蒸発・ガス化し、室外接続配管8から四方弁5に流入した後、低圧側接続配管10へ流れ、圧縮機1の吸込側へ戻って再度圧縮されるという循環を繰り返す。 In addition, when switching from the cooling operation to the heating operation, the refrigerant pipe connection destination of the four-way valve 5 is switched. During the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 5 from the high-pressure side connection pipe 7, flows out into the indoor connection pipe 9, flows into the indoor heat exchanger 4, and dissipates heat to the indoor air. By doing this, it heats up and condenses itself. Thereafter, the condensed refrigerant is decompressed by the expansion valve 3, exchanges heat with outdoor air in the outdoor heat exchanger 2, evaporates and gasifies, flows into the four-way valve 5 from the outdoor connection pipe 8, and then flows to the low-pressure side connection pipe 10. The circulation of returning to the suction side of the compressor 1 and being compressed again is repeated.
 11は、吐出圧力の冷媒ガスを圧縮機1の吸込側に導くバイパス配管(バイパス流路)で、このバイパス配管11は圧縮機吸込側の前記低圧側接続配管10に一端が接続されている。このバイパス配管11には、パルス幅調整(PWM)制御信号により、開成(ON)状態と閉成(OFF)状態に制御されるソレノイド弁12が設けられており、バイパス配管11と前記低圧側接続配管10との連通をON-OFFするように構成されている。 11 is a bypass pipe (bypass flow path) that guides the refrigerant gas at the discharge pressure to the suction side of the compressor 1, and one end of the bypass pipe 11 is connected to the low-pressure side connection pipe 10 on the compressor suction side. The bypass pipe 11 is provided with a solenoid valve 12 that is controlled to be opened (ON) and closed (OFF) by a pulse width adjustment (PWM) control signal. The communication with the pipe 10 is configured to be turned on and off.
 例えば、超低負荷運転モード(超小容量運転モード)時には、前記ソレノイド弁12における開成状態と閉成状態とを反復動作させ、吐出側冷媒の吸込側への流入のON-OFFを繰り返すことにより、圧縮機から冷凍サイクルに吐出される冷媒の小容量制御を行う容量調整機構を実現している。 For example, in the ultra-low load operation mode (ultra-small capacity operation mode), the solenoid valve 12 is repeatedly operated in an open state and a closed state, and ON / OFF of the discharge-side refrigerant flowing into the suction side is repeated. In addition, a capacity adjustment mechanism that performs small capacity control of refrigerant discharged from the compressor to the refrigeration cycle is realized.
 次に、図1に示す冷凍サイクル装置の制御系統について説明する。図1に示す13は、圧縮機1の吐出側配管(高圧側接続配管7)に取り付けられた吐出温度センサで、圧縮機からの冷媒吐出温度(凝縮器への冷媒入口温度)を検出する。また、14は、室内熱交換器4のほぼ中間位置に取り付けられた室内熱交換器温度センサで、この温度センサ14は、前記室内熱交換器4が蒸発器として機能する冷房運転時には、冷媒の蒸発温度を検出するために用いられる。更に、15は、室外熱交換器2のほぼ中間位置に取り付けられた室外熱交換器温度センサで、この温度センサ15は、前記室外熱交換器2が蒸発器として機能する暖房運転時には、冷媒の蒸発温度を検出するために用いられる。なお、16は前記室内熱交換器4が設けられている部屋の温度を検出する室内温度センサ、17は前記室外熱交換器2の設置付近の外気温度を検出する室外温度センサである。 Next, the control system of the refrigeration cycle apparatus shown in FIG. 1 will be described. Reference numeral 13 shown in FIG. 1 denotes a discharge temperature sensor attached to the discharge side pipe (high-pressure side connection pipe 7) of the compressor 1, and detects the refrigerant discharge temperature (refrigerant inlet temperature to the condenser) from the compressor. Reference numeral 14 denotes an indoor heat exchanger temperature sensor attached at a substantially intermediate position of the indoor heat exchanger 4, and this temperature sensor 14 is used for the refrigerant during the cooling operation in which the indoor heat exchanger 4 functions as an evaporator. Used to detect the evaporation temperature. Further, reference numeral 15 denotes an outdoor heat exchanger temperature sensor attached at a substantially intermediate position of the outdoor heat exchanger 2, and this temperature sensor 15 is used for the refrigerant during the heating operation in which the outdoor heat exchanger 2 functions as an evaporator. Used to detect the evaporation temperature. In addition, 16 is an indoor temperature sensor that detects the temperature of the room in which the indoor heat exchanger 4 is provided, and 17 is an outdoor temperature sensor that detects the outside air temperature near the installation of the outdoor heat exchanger 2.
 一方、前記圧縮機1にはインバ-タ(モータ駆動回路)18が接続され、このインバ-タ18は商用交流電源19に接続されている。インバータ18は、商用交流電源19の電圧を整流し、指令に応じた周波数の電圧に変換し、その電圧を上記圧縮機1内に設けられたモ-タに出力するようになっている。また、前記インバータ18は制御部20に接続されており、この制御部20からの指令に基づいて前記モータを駆動する。なお、この制御部20には、前記四方弁5、前記膨張弁3、室外ファン21、室内ファン22、前記室内熱交換器温度センサ14、前記室外熱交換器温度センサ15、前記室内温度センサ16、前記室外温度センサ17、前記吐出温度センサ13、吸込圧力センサ23、前記インバータ18、及びリモートコントロール式の操作器(図示せず;以下、リモコンと称す)などがそれぞれ接続されており、この制御部20により、冷凍サイクル装置(ルームエアコン)全体を制御するように構成されている。 Meanwhile, an inverter (motor drive circuit) 18 is connected to the compressor 1, and the inverter 18 is connected to a commercial AC power source 19. The inverter 18 rectifies the voltage of the commercial AC power supply 19, converts it to a voltage having a frequency according to the command, and outputs the voltage to a motor provided in the compressor 1. The inverter 18 is connected to the control unit 20 and drives the motor based on a command from the control unit 20. The control unit 20 includes the four-way valve 5, the expansion valve 3, the outdoor fan 21, the indoor fan 22, the indoor heat exchanger temperature sensor 14, the outdoor heat exchanger temperature sensor 15, and the indoor temperature sensor 16. The outdoor temperature sensor 17, the discharge temperature sensor 13, the suction pressure sensor 23, the inverter 18, and a remote control type operation device (not shown; hereinafter referred to as a remote controller) are connected to each other. The unit 20 is configured to control the entire refrigeration cycle apparatus (room air conditioner).
 次に、上述した冷凍サイクル装置における冷房運転時の動作について説明する。冷房運転の開始時には、上記制御部20は、四方弁5を冷房運転時の状態にし、初期値として予め設定されている所定の回転数で圧縮機1、室外ファン21及び室内ファン22を運転する。圧縮機1から吐出される冷媒は、前記四方弁5、室外熱交換器2、膨張弁3、室内熱交換器4、そして再び前記四方弁5を通って前記圧縮機1に戻るという循環を繰り返すことで、冷房運転が為される。前記膨張弁3は例えば電子膨張弁で構成され、初期の所定開度に開くよう電子膨張弁に内蔵されているパルスモータを回転させる。この冷房運転時には、前記室内熱交換器(利用側熱交換器)4は蒸発器として機能する。 Next, the operation during the cooling operation in the above-described refrigeration cycle apparatus will be described. At the start of the cooling operation, the control unit 20 puts the four-way valve 5 in the state of the cooling operation, and operates the compressor 1, the outdoor fan 21 and the indoor fan 22 at a predetermined rotation speed set in advance as an initial value. . The refrigerant discharged from the compressor 1 repeats circulation such as returning to the compressor 1 through the four-way valve 5, the outdoor heat exchanger 2, the expansion valve 3, the indoor heat exchanger 4, and the four-way valve 5 again. Thus, cooling operation is performed. The expansion valve 3 is constituted by an electronic expansion valve, for example, and rotates a pulse motor built in the electronic expansion valve so as to open at an initial predetermined opening. During the cooling operation, the indoor heat exchanger (use side heat exchanger) 4 functions as an evaporator.
 冷凍サイクル装置としてのルームエアコンでは、前記室内熱交換器4の通風通路入口付近に設けられた室内温度センサ16により室内温度を検出し、また前記リモコンで設定された設定温度との差に応じて、前記制御部20はインバータ18を制御して圧縮機回転数を可変させる。これにより、空調負荷に応じた圧縮機1の運転が行われる。 In the room air conditioner as the refrigeration cycle apparatus, the room temperature is detected by the room temperature sensor 16 provided in the vicinity of the ventilation passage entrance of the indoor heat exchanger 4, and according to the difference from the set temperature set by the remote controller. The controller 20 controls the inverter 18 to vary the compressor speed. Thereby, the operation of the compressor 1 according to the air conditioning load is performed.
 更に、前記吐出温度センサ13の検知温度(吐出冷媒温度)を所定の制御時間毎に検出し、この検知温度と、前記室内熱交換器温度センサ14の検知温度(蒸発温度)、室内温度センサ16の検出温度(室内温度)、前記圧縮機1及び室外ファン21の回転数指令値から決まる目標吐出温度との差に応じて、前記膨張弁3の開度を上記制御時間毎に制御する。この吐出過熱度制御により、圧縮機1の吸込側の吸込過熱度がほぼゼロになるよう制御され、冷凍サイクル装置の成績係数が良好に保たれる。 Further, the detected temperature (discharged refrigerant temperature) of the discharge temperature sensor 13 is detected every predetermined control time, and the detected temperature, the detected temperature (evaporation temperature) of the indoor heat exchanger temperature sensor 14, and the indoor temperature sensor 16 are detected. The opening degree of the expansion valve 3 is controlled at each control time according to the difference between the detected temperature (indoor temperature) and the target discharge temperature determined from the rotational speed command values of the compressor 1 and the outdoor fan 21. By this discharge superheat degree control, the suction superheat degree on the suction side of the compressor 1 is controlled to be substantially zero, and the coefficient of performance of the refrigeration cycle apparatus is kept good.
 一方、前記吐出温度センサ13で検知される吐出冷媒温度が設定値以上になると、その検知温度が所定の設定値に下がるまで、圧縮機1の運転周波数を低減すると共に、吐出冷媒温度が設定値になるように前記膨張弁3の開度を制御する。この吐出温度制御により、圧縮機1が異常に加熱することを防止し、圧縮機1の焼き付き等による破損を防止する。 On the other hand, when the discharge refrigerant temperature detected by the discharge temperature sensor 13 is equal to or higher than a set value, the operating frequency of the compressor 1 is reduced and the discharge refrigerant temperature is set to a set value until the detected temperature falls to a predetermined set value. The opening of the expansion valve 3 is controlled so that By this discharge temperature control, the compressor 1 is prevented from being abnormally heated, and the compressor 1 is prevented from being damaged due to seizure or the like.
 次に、上述した冷凍サイクル装置における暖房運転時の動作について説明する。暖房運転時には、上記制御部20は、四方弁5を暖房運転側へ切換え、また初期値として予め設定されている所定の回転数で圧縮機1、室外ファン21及び室内ファン22を運転する。圧縮機1から吐出される冷媒は、四方弁5、室内熱交換器4、膨張弁3、室外熱交換器2と順次流れ、再び前記四方弁5を通過して前記圧縮機1に戻るという循環を繰り返すことで、暖房運転が為される。この暖房運転時には、前記室内熱交換器(利用側熱交換器)4は凝縮器として機能する。 Next, the operation during heating operation in the above-described refrigeration cycle apparatus will be described. During the heating operation, the control unit 20 switches the four-way valve 5 to the heating operation side, and operates the compressor 1, the outdoor fan 21, and the indoor fan 22 at a predetermined rotation speed set in advance as an initial value. The refrigerant discharged from the compressor 1 sequentially flows through the four-way valve 5, the indoor heat exchanger 4, the expansion valve 3, and the outdoor heat exchanger 2, passes through the four-way valve 5 again, and returns to the compressor 1. By repeating the above, heating operation is performed. During the heating operation, the indoor heat exchanger (use side heat exchanger) 4 functions as a condenser.
 前記制御部20は、リモコンによる設定温度と、前記室内温度センサ16で検知される室内温度との差を空調負荷として検出し、その空調負荷に応じて圧縮機の運転周波数(インバータ18の出力周波数)を制御する。これにより、暖房負荷に応じた圧縮機1の運転が行われる。 The controller 20 detects the difference between the set temperature by the remote controller and the room temperature detected by the room temperature sensor 16 as an air conditioning load, and the compressor operating frequency (the output frequency of the inverter 18) according to the air conditioning load. ) To control. Thereby, the operation of the compressor 1 according to the heating load is performed.
 更に、前記吐出温度センサ13により吐出冷媒温度を所定の制御時間毎に検出し、この検知された吐出冷媒温度と、室外熱交換器温度センサ15の検知温度(蒸発温度)、室外温度センサ17の検出温度(外気温度)、圧縮機1及び室外ファン21の回転数指令値から決まる目標吐出温度との差に応じて、膨張弁3の開度を上記制御時間毎に制御する。この吐出過熱度制御により、圧縮機1の吸込側の吸込過熱度がほぼゼロになるよう制御され、冷凍サイクル装置の成績係数が良好に保たれる。 Further, the discharge refrigerant temperature is detected by the discharge temperature sensor 13 every predetermined control time, and the detected discharge refrigerant temperature, the detected temperature (evaporation temperature) of the outdoor heat exchanger temperature sensor 15, and the outdoor temperature sensor 17 are detected. The opening degree of the expansion valve 3 is controlled for each control time according to the difference between the detected temperature (outside air temperature) and the target discharge temperature determined from the rotational speed command values of the compressor 1 and the outdoor fan 21. By this discharge superheat degree control, the suction superheat degree on the suction side of the compressor 1 is controlled to be substantially zero, and the coefficient of performance of the refrigeration cycle apparatus is kept good.
 一方、前記吐出温度センサ13で検知される吐出冷媒温度が設定値以上になると、その検知温度が所定の設定値に下がるまで、圧縮機1の運転周波数を低減すると共に、吐出冷媒温度が設定値になるように前記膨張弁3の開度を制御する。この吐出温度制御により、圧縮機1が異常に加熱することを防止し、圧縮機1の焼き付き等による破損を防止する。 On the other hand, when the discharge refrigerant temperature detected by the discharge temperature sensor 13 is equal to or higher than a set value, the operating frequency of the compressor 1 is reduced and the discharge refrigerant temperature is set to a set value until the detected temperature falls to a predetermined set value. The opening of the expansion valve 3 is controlled so that By this discharge temperature control, the compressor 1 is prevented from being abnormally heated, and the compressor 1 is prevented from being damaged due to seizure or the like.
 次に、超低負荷時に圧縮機から冷凍サイクルに吐出される冷媒の小容量制御を行う容量調整機構を使用した制御、即ち超低負荷運転モード(超小容量運転モード)について説明する。この超低負荷運転モードで超小容量制御を行う容量調整機構では、前記バイパス配管11に設けられた前記ソレノイド弁12を、パルス幅調整(PWM)制御により、開成(ON)状態と閉成(OFF)状態に制御することにより、容量調整運転を行う。 Next, control using a capacity adjustment mechanism that performs small capacity control of refrigerant discharged from the compressor to the refrigeration cycle at an ultra low load, that is, an ultra low load operation mode (ultra low capacity operation mode) will be described. In the capacity adjustment mechanism that performs ultra-small capacity control in this ultra-low load operation mode, the solenoid valve 12 provided in the bypass pipe 11 is opened (ON) and closed (PWM) by pulse width adjustment (PWM) control. The capacity adjustment operation is performed by controlling to the OFF state.
 ソレノイド弁12が開成状態の時には、圧縮室1の出口に設けられた逆止弁121(図10参照)が閉じ、吐出冷媒ガスはバイパス配管11を通って低圧側接続配管(吸込管)に流れる。このため、冷媒は四方弁5側へは流れず、冷凍サイクルでの冷媒流量が減少するから、能力が減少する。一方、前記ソレノイド弁12を閉成状態にすると、圧縮機からの吐出冷媒ガスを前記四方弁5側に流すことができる。 When the solenoid valve 12 is in the open state, the check valve 121 (see FIG. 10) provided at the outlet of the compression chamber 1 is closed, and the discharged refrigerant gas flows through the bypass pipe 11 to the low-pressure side connection pipe (suction pipe). . For this reason, a refrigerant | coolant does not flow to the four-way valve 5 side, but since the refrigerant | coolant flow volume in a refrigerating cycle reduces, a capability reduces. On the other hand, when the solenoid valve 12 is closed, the refrigerant gas discharged from the compressor can flow to the four-way valve 5 side.
 従って、前記容量調整機構を働かせる超低負荷運転モード時には、前記ソレノイド弁12を開成状態と閉成状態とに反復動作させ、バイパス配管11の開閉を繰り返すことで容量調整を行うことができる。 Therefore, in the ultra-low load operation mode in which the capacity adjusting mechanism is operated, the capacity can be adjusted by repeatedly operating the solenoid valve 12 between the open state and the closed state and repeatedly opening and closing the bypass pipe 11.
 このソレノイド弁12のPWM制御時の蒸発圧力の変動の様子を図2により説明する。PWM制御信号がON(ソレノイド弁が開成状態)となることにより、蒸発圧力は上昇する。また、PWM制御信号がOFF(ソレノイド弁が閉成状態)になると前記蒸発圧力は低下する。このようにソレノイド弁12のON-OFFに伴い、蒸発圧力の変動が繰り返えされる。 The state of fluctuation of the evaporation pressure during PWM control of the solenoid valve 12 will be described with reference to FIG. When the PWM control signal is turned on (the solenoid valve is opened), the evaporation pressure increases. Further, when the PWM control signal is turned off (the solenoid valve is closed), the evaporation pressure decreases. Thus, the fluctuation of the evaporation pressure is repeated with the ON / OFF of the solenoid valve 12.
 上記バイパス配管11を利用した容量調整運転時の蒸発圧力の変動幅をΔP1とする。また、この容量調整運転時には蒸発圧力は全体的に上昇し、変動する蒸発圧力の平均圧力は、容量調整運転前の蒸発圧力に対しΔP2だけ上昇する。容量調整運転時のΔP1が大きいとそれに伴い蒸発温度が変動し、蒸発器での熱交換量が変動するため、冷凍サイクル装置の能力が変動し、吹出し温度の変動が発生する。このため、快適な空調を維持するためにはΔP1を小さくすることが望ましい。また、ΔP2が大きいと吸熱量が減少するため、熱交換量も減少する。前記ΔP1及びΔP2を小さくするためにはPWM制御信号のデューディ周期T(=τ1+τ2)を小さくすればよいが、PWM容量制御運転ではソレノイド弁12の開閉時に吐出冷媒ガスの逆流、バイパス配管11の圧力損失等によりエネルギー損失が発生する。このため、効率よく容量制御運転するためには前記デューティ周期Tを小さくしないほうが好ましい。 Suppose that the fluctuation range of the evaporation pressure during the capacity adjustment operation using the bypass pipe 11 is ΔP1. Further, during this capacity adjustment operation, the evaporation pressure generally increases, and the average pressure of the fluctuating evaporation pressure increases by ΔP2 with respect to the evaporation pressure before the capacity adjustment operation. If ΔP1 during the capacity adjustment operation is large, the evaporation temperature fluctuates accordingly, and the amount of heat exchange in the evaporator fluctuates, so that the capacity of the refrigeration cycle apparatus fluctuates and the blowing temperature fluctuates. For this reason, in order to maintain comfortable air conditioning, it is desirable to reduce ΔP1. Further, if ΔP2 is large, the endothermic amount is reduced, so the heat exchange amount is also reduced. In order to reduce ΔP1 and ΔP2, the duty cycle T (= τ1 + τ2) of the PWM control signal may be reduced. However, in the PWM capacity control operation, the reverse flow of the discharged refrigerant gas when the solenoid valve 12 is opened and closed, the pressure of the bypass pipe 11 Energy loss occurs due to loss. For this reason, it is preferable not to reduce the duty cycle T in order to efficiently perform the capacity control operation.
 そこで、本実施例では、高効率で且つ蒸発圧力変動の小さい快適な空調を行うため、図3及び図4に示すフローチャートに従って、適切なデューティ周期を決定し、容量調整運転制御を行うようにしている。 Therefore, in this embodiment, in order to perform comfortable air conditioning with high efficiency and small fluctuations in evaporation pressure, an appropriate duty cycle is determined according to the flowcharts shown in FIGS. 3 and 4, and capacity adjustment operation control is performed. Yes.
 まず、図3に示すフローチャートにより、圧縮機回転数制御ルーチンを説明する。圧縮機の回転数は、前述したように、室内熱交換器4の通風通路入口付近に設けられた室内温度センサ16によって検出された室内温度Teainを読み込み(ステップ31)、リモコンから設定された設定温度(室内温度目標値)Teainとの差ΔTeainを求め(ステップ32)、この差に応じて、インバータ18により圧縮機1の回転数を可変させる(ステップ33,34)。ここで、前記設定温度と検出される前記室内温度との差が小さくなるにつれ、圧縮機回転数fは小さくなるように制御される。 First, the compressor rotation speed control routine will be described with reference to the flowchart shown in FIG. As described above, the rotation speed of the compressor is set from the remote controller by reading the indoor temperature Tea in detected by the indoor temperature sensor 16 provided near the inlet of the ventilation passage of the indoor heat exchanger 4 (step 31). setting temperature determining a difference DerutaTea in between (room temperature target value) T * ea in (step 32), in response to the difference, thereby changing the rotational speed of the compressor 1 by an inverter 18 (step 33, 34). Here, as the difference between the set temperature and the detected room temperature becomes smaller, the compressor rotational speed fz is controlled to become smaller.
 ステップ35では、圧縮機回転数fが、容量制御運転開始時の回転数foptより小さくなると、圧縮機回転数はfoptに固定され、室内温度と室内温度目標値との差から決められる初期デューティ比d(d=τ1/(τ1+τ2))を決定し(ステップ36,37)、ソレノイド弁12をON-OFFするPWM容量制御運転を行う。このとき、PWM制御信号がONになると同時に制御部のタイマーもONにし、経過時間τ1の計測を始める。また、吸込圧力センサ23による吸込圧力の測定を開始し、PWM制御信号がONになる前の吸込圧力Ps0に比べ、計測される吸込圧力Psが予め設定される許容偏差ΔPを超えるまでPWM制御信号はONのままとなり、圧力測定が繰り返される(ステップ38~41)。計測されるPsと初期吸込圧力Ps0の差がΔPを超えると、PWM制御信号はOFFとなり、ソレノイド弁12は閉成状態になると共に、タイマーをOFFにし、経過時間測定を終了し、τ1を開成時間として決定する(ステップ42)。この開成時間τ1と現在のデューティ比dとから、閉成時間τ2を決定し、このデューティ周期によりPWM容量制御運転が為される(ステップ43)。これにより、ソレノイド弁の開閉による吸込圧力の変動はΔPの範囲に決められるため、前記ΔPを、空調快適性を損なわない範囲に設定することにより、最適なデューティ周期により運転することが可能となる。 In step 35, the compressor rotational speed f z is the smaller than the rotational speed f z opt for the capacitive control operation starts, the compressor rotational speed is fixed to f z opt, from the difference between the indoor temperature and the indoor temperature target value The determined initial duty ratio d (d = τ1 / (τ1 + τ2)) is determined (steps 36, 37), and PWM capacity control operation for turning the solenoid valve 12 on and off is performed. At this time, the timer of the control unit is also turned on at the same time as the PWM control signal is turned on, and measurement of the elapsed time τ1 is started. Further, the suction pressure sensor 23 starts measuring the suction pressure, and the PWM control signal is compared until the measured suction pressure Ps exceeds a preset allowable deviation ΔP as compared to the suction pressure Ps0 before the PWM control signal is turned on. Remains ON and the pressure measurement is repeated (steps 38 to 41). When the difference between the measured Ps and the initial suction pressure Ps0 exceeds ΔP, the PWM control signal is turned OFF, the solenoid valve 12 is closed, the timer is turned OFF, the elapsed time measurement is finished, and τ1 is opened. The time is determined (step 42). The closing time τ2 is determined from the opening time τ1 and the current duty ratio d, and the PWM capacity control operation is performed based on this duty cycle (step 43). As a result, the fluctuation of the suction pressure due to the opening and closing of the solenoid valve is determined within the range of ΔP. Therefore, by setting the ΔP in a range that does not impair the air conditioning comfort, it is possible to operate with an optimal duty cycle. .
 図4は本実施例の冷凍サイクル装置における膨張弁開度制御ルーチンを説明するフローチャートである。図3に述べた圧縮機回転数制御ルーチンによりPWM容量制御運転が始まると蒸発温度が上昇し、容量制御運転前の蒸発圧力に対しΔP2(図2参照)だけ大きくなる。このΔP2をできるだけ小さくするために膨張弁3の開度制御が行われる。 FIG. 4 is a flowchart for explaining an expansion valve opening control routine in the refrigeration cycle apparatus of the present embodiment. When the PWM capacity control operation is started by the compressor rotation speed control routine described in FIG. 3, the evaporation temperature rises and increases by ΔP2 (see FIG. 2) with respect to the evaporation pressure before the capacity control operation. In order to make ΔP2 as small as possible, the opening degree of the expansion valve 3 is controlled.
 まず、ステップ45で、冷凍サイクルの状態量が読み込まれる。即ち、前記各センサで検出された室内温度、室外温度、室内熱交換器温度、室外熱交換器温度などが読み込まれ、更に圧縮機1の回転数、室内外ファン21,22の回転数、膨張弁3の開度などが読み込まれる。次に、ステップ46で、PWM制御信号がOFFの時には、膨張弁3は、吐出温度センサ13の検知温度(吐出冷媒温度)Tdが、室外熱交換器温度センサ15の検知温度(凝縮温度)Tao、室外温度センサ17の検出温度(外気温度)Tai、圧縮機1の回転数f及び室外ファン21の回転数指令値fpから決まる目標吐出温度Tdに近づくように開度を制御される(ステップ47~51)。 First, at step 45, the state quantity of the refrigeration cycle is read. That is, the indoor temperature, outdoor temperature, indoor heat exchanger temperature, outdoor heat exchanger temperature, and the like detected by each sensor are read, and the rotation speed of the compressor 1, the rotation speeds of the indoor and outdoor fans 21, 22 and expansion The opening degree of the valve 3 is read. Next, in step 46, when the PWM control signal is OFF, the expansion valve 3 has a detected temperature (discharge refrigerant temperature) Td of the discharge temperature sensor 13 that is detected by the outdoor heat exchanger temperature sensor 15 (condensation temperature) Tao. , the detected temperature of the outdoor temperature sensor 17 (ambient temperature) Tai, is controlling the opening so as to approach the target discharge temperature Td * determined from the rotational speed command value fp of the rotational speed f z and the outdoor fan 21 of the compressor 1 ( Steps 47-51).
 前記ステップ46で、PWM制御信号がONの時には、その時のデューティ比dで容量制御運転開始時の圧縮機回転数foptを除した修正圧縮機回転数f′を決定し(ステップ52)、この修正圧縮機回転数f′と、室外熱交換器温度センサ15の検知温度(凝縮温度)Tao、室外温度センサ17の検出温度(外気温度)Tai、室外ファン21の回転数指令値fpから決まる目標吐出温度Tdに、吐出温度センサ13の検知温度(吐出冷媒温度)Tdが近づくように、膨張弁3を制御するルーチンに切り替える(ステップ52~57)。PWM容量制御運転時はデューティ比dが大きいほどサイクル冷媒循環量が減少するため、これにより膨張弁開度はPWM容量制御運転時の減少した冷媒循環量に対しても適切な開度に変更することができ、ΔP2の上昇を防止することができる。 In step 46, when the PWM control signal is ON, a corrected compressor rotational speed f z ′ obtained by dividing the compressor rotational speed f z opt at the start of the capacity control operation by the duty ratio d at that time is determined (step 52). The corrected compressor rotational speed f z ′, the detected temperature (condensation temperature) Tao of the outdoor heat exchanger temperature sensor 15, the detected temperature (outside air temperature) Tai of the outdoor temperature sensor 17, and the rotational speed command value fp of the outdoor fan 21 The routine is switched to a routine for controlling the expansion valve 3 so that the detected temperature (discharge refrigerant temperature) Td of the discharge temperature sensor 13 approaches the target discharge temperature Td * determined from (steps 52 to 57). Since the cycle refrigerant circulation amount decreases as the duty ratio d increases during the PWM capacity control operation, the expansion valve opening degree is changed to an appropriate opening amount even with respect to the reduced refrigerant circulation amount during the PWM capacity control operation. And increase in ΔP2 can be prevented.
 本実施例の冷凍サイクル装置によれば、ソレノイド弁12の開閉による吸込圧力(蒸発圧力)の変動は、前記許容偏差ΔPに基づく範囲に決められるため、蒸発圧力の変動を一定範囲内に抑えることが可能となり、空調などの快適性を向上でき、しかもデューティ周期を短くし過ぎることによる損失増加も防止することができるから、高効率な容量制御運転も可能となる。また、0~100%の広範囲な容量制御を簡便な構造で実現できる効果も得られる。 According to the refrigeration cycle apparatus of the present embodiment, the fluctuation of the suction pressure (evaporation pressure) due to the opening and closing of the solenoid valve 12 is determined in a range based on the allowable deviation ΔP, so that the fluctuation of the evaporation pressure is suppressed within a certain range. This makes it possible to improve comfort such as air conditioning and to prevent an increase in loss due to a too short duty cycle, thus enabling highly efficient capacity control operation. In addition, there is an effect that a wide range of capacity control of 0 to 100% can be realized with a simple structure.
 従って、本実施例によれば、超小容量運転モードでも効率の良い運転制御が可能でしかも快適性も向上できる冷凍サイクル装置を得ることができる。 Therefore, according to this embodiment, it is possible to obtain a refrigeration cycle apparatus capable of efficient operation control even in the ultra-small capacity operation mode and improving comfort.
 図5は、本発明の実施例2を示す冷凍サイクル装置の概略構成図で、実施例1と同様、ルームエアコンに用いたものである。この図5において、上記図1と同一符号を付した部分は同一または相当する部分を示している。また、この実施例2おいて、実施例1との相違点は、吸込圧力センサを取り除き、代わりに室内熱交換器4の通風通路出口付近に吹出温度センサ24を設け、この吹出温度センサ24によって吹出温度を検出するようにしている点である。 FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus showing a second embodiment of the present invention, which is used for a room air conditioner as in the first embodiment. In FIG. 5, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts. Further, in the second embodiment, the difference from the first embodiment is that the suction pressure sensor is removed, and a blowout temperature sensor 24 is provided in the vicinity of the ventilation passage outlet of the indoor heat exchanger 4. This is the point that the blowing temperature is detected.
 小容量制御を行う容量調整機構を使用した制御を行う場合、PWM制御信号がON(即ち、ソレノイド弁12が開成状態)となることにより、蒸発圧力は上昇し、PWM制御信号がOFF(即ち、ソレノイド弁12が閉成状態)になると蒸発圧力は低下する。この時、蒸発温度も変動することとなり、蒸発器での熱交換量が変動するため、冷凍サイクルが変動し、吹出温度の変動や冷凍能力の変動が発生する。このため、蒸発器側熱交換器(冷房運転時は室内熱交換器4、暖房運転時は室外熱交換器2)の温度と、前記吹出温度センサ24により計測された室内熱交換機4の吹出温度とにより、蒸発圧力の変動を推算できる。 When performing control using a capacity adjustment mechanism that performs small capacity control, when the PWM control signal is turned on (i.e., the solenoid valve 12 is in an open state), the evaporation pressure rises and the PWM control signal is turned off (i.e., When the solenoid valve 12 is in the closed state, the evaporation pressure decreases. At this time, the evaporation temperature also fluctuates, and the amount of heat exchange in the evaporator fluctuates. Therefore, the refrigeration cycle fluctuates, and fluctuations in the blowing temperature and refrigeration capacity occur. For this reason, the temperature of the evaporator-side heat exchanger (the indoor heat exchanger 4 during the cooling operation, the outdoor heat exchanger 2 during the heating operation), and the blowout temperature of the indoor heat exchanger 4 measured by the blowout temperature sensor 24. Thus, the fluctuation of the evaporation pressure can be estimated.
 本実施例2の冷凍サイクル装置における圧縮機回転数制御ルーチンを図6により説明する。圧縮機1の回転数は、前述したように、室内熱交換器4の通風通路入口付近に設けられた室内温度センサ16によって検出された室内温度Teainを読み込み(ステップ31)、リモコンから設定された設定温度(室内温度目標値)Teainとの差ΔTeainを求め(ステップ32)、この差に応じて、インバータ18により圧縮機1の回転数を可変させる(ステップ33,34)。ここで、前記設定温度と検出される前記室内温度との差が小さくなるにつれ、圧縮機回転数fは小さくなるように制御される。 A compressor rotation speed control routine in the refrigeration cycle apparatus of the second embodiment will be described with reference to FIG. Rotational speed of the compressor 1, as described above, read the indoor temperature Tea in detected by the indoor temperature sensor 16 provided near the ventilation passage inlet of the indoor heat exchanger 4 (step 31), is set from the remote controller A difference ΔTea in from the set temperature (target indoor temperature) T * ea in is obtained (step 32), and the rotation speed of the compressor 1 is varied by the inverter 18 in accordance with this difference (steps 33 and 34). Here, as the difference between the set temperature and the detected room temperature becomes smaller, the compressor rotational speed fz is controlled to become smaller.
 ステップ35では、圧縮機回転数fが、容量制御運転開始時の回転数foptより小さくなると、圧縮機回転数はfoptに固定され、室内温度と室内温度目標値との差から決められる初期デューティ比dを決定し(ステップ36,37)、ソレノイド弁12をON-OFFするPWM容量制御運転を行う。このとき、PWM制御信号がONになると同時に制御部のタイマーもONにし、経過時間τ1の計測を始める。また、蒸発器側となる熱交換器の温度センサ(14または15)による蒸発器側熱交換器温度Tev0の測定を開始し(ステップ61)、更にその測定開始時の蒸発器側熱交換器温度Tev0と、前記吹出温度センサ24で検出された室内熱交換器4の吹出温度Teaoutから、予め設定され制御定数として保持する表に従い、許容偏差ΔTevを算出する(ステップ62)。PWM制御信号がONになる前の蒸発器側熱交換器温度Tev0に比べ、計測される蒸発器側熱交換器温度Tevが前記許容偏差ΔTevを超えるまでPWM制御信号はONのままとなり、蒸発器側熱交換器温度Tevの測定が繰り返される(ステップ63~65)。計測される蒸発器側熱交換器温度Tevと初期熱交換器温度Tev0の差が前記許容偏差ΔTevを超えると、PWM制御信号はOFFとなり、ソレノイド弁12は閉成状態となると共に、タイマーをOFFにして経過時間測定を終了し、τ1を開成時間として決定する。このτ1と現在のデューティ比dとから、閉成時間τ2を決定し、このデューティ周期によりPWM容量制御運転が為される(ステップ66,67)。 In step 35, the compressor rotational speed f z is the smaller than the rotational speed f z opt for the capacitive control operation starts, the compressor rotational speed is fixed to f z opt, from the difference between the indoor temperature and the indoor temperature target value The determined initial duty ratio d is determined (steps 36 and 37), and the PWM capacity control operation for turning the solenoid valve 12 on and off is performed. At this time, the timer of the control unit is also turned on at the same time as the PWM control signal is turned on, and measurement of the elapsed time τ1 is started. Further, the measurement of the evaporator side heat exchanger temperature Tev0 by the temperature sensor (14 or 15) of the heat exchanger on the evaporator side is started (step 61), and further the evaporator side heat exchanger temperature at the start of the measurement. and Tev0, from said air temperature Tea out of the air temperature sensor 24 indoor heat exchanger 4 detected by, according to the table to hold a predetermined control constant to calculate a tolerance DerutaTev (step 62). Compared to the evaporator side heat exchanger temperature Tev0 before the PWM control signal is turned ON, the PWM control signal remains ON until the measured evaporator side heat exchanger temperature Tev exceeds the allowable deviation ΔTev, and the evaporator The measurement of the side heat exchanger temperature Tev is repeated (steps 63 to 65). When the difference between the measured evaporator side heat exchanger temperature Tev and the initial heat exchanger temperature Tev0 exceeds the allowable deviation ΔTev, the PWM control signal is turned OFF, the solenoid valve 12 is closed, and the timer is turned OFF. Then, the elapsed time measurement is finished, and τ1 is determined as the opening time. The closing time τ2 is determined from this τ1 and the current duty ratio d, and the PWM capacity control operation is performed based on this duty cycle (steps 66 and 67).
 一方、膨張弁3の開度制御は、図4に示した実施例1での膨張弁開度制御ルーチンと同じルーチンに従って制御される。 
 本実施例によれば、ソレノイド弁12の開閉による吸込圧力(蒸発圧力)の変動は、前記許容偏差ΔTevに基づく範囲に決められるため、前記許容範囲ΔTevを適切な範囲に設定することにより、蒸発圧力を計測するための圧力センサ(吸込圧力センサ)がなくても蒸発圧力の変動を一定範囲内に抑えることが可能となり、より安価に製作でき、しかも空調快適性が高く高効率な容量制御運転が可能な冷凍サイクル装置を実現できる。
On the other hand, the opening degree control of the expansion valve 3 is controlled according to the same routine as the expansion valve opening degree control routine in the first embodiment shown in FIG.
According to this embodiment, since the fluctuation of the suction pressure (evaporation pressure) due to the opening and closing of the solenoid valve 12 is determined in a range based on the allowable deviation ΔTev, the evaporation can be performed by setting the allowable range ΔTev to an appropriate range. Even without a pressure sensor (suction pressure sensor) for measuring pressure, it is possible to suppress fluctuations in the evaporation pressure within a certain range, and it can be manufactured at a lower cost, and the capacity control operation with high air conditioning comfort and high efficiency. Can be realized.
 図7は、本発明の実施例3を示す冷凍サイクル装置の概略構成図で、実施例1や2と同様、ルームエアコンに用いたものである。この図7において、上記図1や図5と同一符号を付した部分は同一または相当する部分を示している。また、この実施例3おいて、実施例1や2との相違点は、実施例1における吸込圧力センサ23や、実施例2における室内熱交換器4の通風通路出口付近に設けられた吹出温度センサ24を取り除いた点である。 FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus showing a third embodiment of the present invention, which is used for a room air conditioner as in the first and second embodiments. In FIG. 7, the same reference numerals as those in FIGS. 1 and 5 denote the same or corresponding parts. Further, in the third embodiment, the difference from the first and second embodiments is that the suction pressure sensor 23 in the first embodiment and the blowout temperature provided in the vicinity of the ventilation passage outlet of the indoor heat exchanger 4 in the second embodiment. This is the point where the sensor 24 is removed.
 小容量制御を行う容量調整機構を使用した制御を行う場合、PWM制御信号がON(即ち、ソレノイド弁12が開成状態)となることにより、蒸発圧力は上昇し、PWM制御信号がOFF(即ち、ソレノイド弁12が閉成状態)になると蒸発圧力は低下する。この時、蒸発温度も変動することとなり、蒸発器での熱交換量が変動するため、冷凍サイクルが変動し、吹出温度の変動や冷凍能力の変動が発生する。このため、蒸発器側熱交換器(冷房運転時は室内熱交換器4、暖房運転時は室外熱交換器2)の温度を計測することにより、蒸発圧力の変動を推算して制御を行うことができる。 When performing control using a capacity adjustment mechanism that performs small capacity control, when the PWM control signal is turned on (i.e., the solenoid valve 12 is in an open state), the evaporation pressure rises and the PWM control signal is turned off (i.e., When the solenoid valve 12 is in the closed state, the evaporation pressure decreases. At this time, the evaporation temperature also fluctuates, and the amount of heat exchange in the evaporator fluctuates. Therefore, the refrigeration cycle fluctuates, and fluctuations in the blowing temperature and refrigeration capacity occur. For this reason, by controlling the temperature of the evaporator side heat exchanger (the indoor heat exchanger 4 during the cooling operation and the outdoor heat exchanger 2 during the heating operation), the fluctuation of the evaporation pressure is estimated and controlled. Can do.
 前述したように、通常運転時には、蒸発器側熱交換器はその出口において吸込過熱度がゼロ、即ち乾き度が1となるように、吐出過熱度制御が為されて運転される。蒸発器側熱交換器の入口では、通常乾き度は0.1~0.3程度であるため、熱交換器内では入口から出口に向かい次第に乾き度が大きくなるような分布を持つ。容量制御運転時には冷媒の循環量が減少し、蒸発器側熱交換器に流入してくる冷媒の量に対し、蒸発器側熱交換器から流出していく冷媒量は減少するため、蒸発圧力が上昇し、蒸発温度が上昇するが、空気との熱交換により蒸発器内の液冷媒は液相から気相に相変化し、乾き度が大きくなっていく。従って、蒸発器側熱交換器内では、その出口側から徐々に乾いていき、出口に近い側から熱交換量が極端に小さくなる。熱交換器温度センサ(14または15)を当該熱交換器の中央付近に配置した場合、このセンサにより測定される蒸発器側熱交換器温度(蒸発器温度)Tevは図8に示すようになる。即ち、PWM制御信号がONになると前記蒸発器温度Tevは緩やかに上昇し、熱交換器の出口側から徐々に乾いていくことから、前記熱交換器温度センサ(14または15)が設置されている付近が乾いてくると測定温度は急激に上昇する。このため、蒸発器側熱交換器内の温度測定位置により、蒸発器内の乾き度分布を把握することが可能になる。従って、PWM制御信号をOFFにするタイミングを、前記蒸発器温度の許容偏差ΔTevを急激な温度上昇が起こった後の値とすることにより、温度測定位置での乾き具合に応じてデューティ周期Tを決めることができる。 As described above, during normal operation, the evaporator-side heat exchanger is operated under discharge superheat control so that the suction superheat degree is zero at the outlet, that is, the dryness is 1. Since the dryness is usually about 0.1 to 0.3 at the inlet of the evaporator-side heat exchanger, the heat exchanger has a distribution in which the dryness gradually increases from the inlet toward the outlet. During capacity control operation, the amount of refrigerant circulating decreases, and the amount of refrigerant flowing out of the evaporator-side heat exchanger decreases relative to the amount of refrigerant flowing into the evaporator-side heat exchanger. Although the temperature rises and the evaporation temperature rises, the liquid refrigerant in the evaporator changes from the liquid phase to the gas phase due to heat exchange with air, and the dryness increases. Therefore, in the evaporator side heat exchanger, it gradually dries from the outlet side, and the heat exchange amount becomes extremely small from the side close to the outlet. When the heat exchanger temperature sensor (14 or 15) is arranged near the center of the heat exchanger, the evaporator side heat exchanger temperature (evaporator temperature) Tev measured by this sensor is as shown in FIG. . That is, when the PWM control signal is turned ON, the evaporator temperature Tev gradually rises and gradually dries from the outlet side of the heat exchanger, so that the heat exchanger temperature sensor (14 or 15) is installed. The measured temperature rises rapidly when the area around it is dry. For this reason, it becomes possible to grasp | ascertain the dryness distribution in an evaporator with the temperature measurement position in an evaporator side heat exchanger. Therefore, the duty cycle T is set according to the dryness at the temperature measurement position by setting the allowable deviation ΔTev of the evaporator temperature to the value after the rapid temperature rise occurs when turning off the PWM control signal. I can decide.
 前記熱交換器温度センサ14または15の設置位置を本実施例では熱交換器の中央付近としたが、空調能力の変動を適切に許容できる範囲になるように、前記設置位置を適宜選択すると良い。 Although the installation position of the heat exchanger temperature sensor 14 or 15 is set near the center of the heat exchanger in the present embodiment, the installation position may be appropriately selected so that the variation of the air conditioning capability can be appropriately allowed. .
 本実施例3の冷凍サイクル装置における圧縮機回転数制御ルーチンを図9により説明する。圧縮機1の回転数は、前述したように、室内熱交換器4の通風通路入口付近に設けられた室内温度センサ16によって検出された室内温度Teainを読み込み(ステップ31)、リモコンから設定された設定温度(室内温度目標値)Teainとの差ΔTeainを求め(ステップ32)、この差に応じて、インバータ18により圧縮機1の回転数を可変させる(ステップ33,34)。ここで、前記設定温度と検出される前記室内温度との差が小さくなるにつれ、圧縮機回転数fは小さくなるように制御される。 A compressor rotation speed control routine in the refrigeration cycle apparatus of the third embodiment will be described with reference to FIG. Rotational speed of the compressor 1, as described above, read the indoor temperature Tea in detected by the indoor temperature sensor 16 provided near the ventilation passage inlet of the indoor heat exchanger 4 (step 31), is set from the remote controller A difference ΔTea in from the set temperature (target indoor temperature) T * ea in is obtained (step 32), and the rotation speed of the compressor 1 is varied by the inverter 18 in accordance with this difference (steps 33 and 34). Here, as the difference between the set temperature and the detected room temperature becomes smaller, the compressor rotational speed fz is controlled to become smaller.
 ステップ35では、圧縮機回転数fが、容量制御運転開始時の回転数foptより小さくなると、圧縮機回転数はfoptに固定され、室内温度と室内温度目標値との差から決められる初期デューティ比dを決定し(ステップ36,37)、ソレノイド弁12をON-OFFするPWM容量制御運転を行う。このとき、PWM制御信号がONになると同時に制御部のタイマーをONにし、経過時間τ1の計測を始める。また、蒸発側となる熱交換器の温度センサ(14または15)による蒸発器側熱交換器温度(蒸発器温度)Tev0の測定を開始し(ステップ61)、更にその測定開始時の蒸発器温度Tev0と、蒸発器となる室内熱交換器4或いは室外熱交換器2の通風通路入口付近に設けられた室内温度センサ16或いは室外温度センサ17により測定される空気温度TaiまたはTaoから、予め設定され、制御定数として保持する表に従い、許容偏差ΔTevを算出する。この許容偏差ΔTevは、前記熱交換器温度センサ14または15が設置されている温度測定位置で、熱交換器が乾く(冷媒の乾き度が大きくなる)ことにより、急激な温度上昇が起こった後の値となるよう設定する(ステップ68)。PWM制御信号がONになる前の熱交換器温度Tev0に比べ、計測される熱交換器温度Tevが許容偏差ΔTevを超えるまでPWM制御信号はONのままとなり、蒸発器側熱交換器温度Tevの測定が繰り返される(ステップ63~65)。計測される蒸発器側熱交換器温度Tevと初期熱交換器温度Tev0の差が前記許容偏差ΔTevを超えると、PWM制御信号はOFFとなり、ソレノイド弁12は閉成状態になると共に、タイマーをOFFにして経過時間測定を終了し、τ1を開成時間として決定する。このτ1と現在のデューティ比dとから、閉成時間τ2を決定し、このデューティ周期によりPWM容量制御運転される(ステップ66,67)。 In step 35, the compressor rotational speed f z is the smaller than the rotational speed f z opt for the capacitive control operation starts, the compressor rotational speed is fixed to f z opt, from the difference between the indoor temperature and the indoor temperature target value The determined initial duty ratio d is determined (steps 36 and 37), and the PWM capacity control operation for turning the solenoid valve 12 on and off is performed. At this time, as soon as the PWM control signal is turned ON, the timer of the control unit is turned ON and measurement of the elapsed time τ1 is started. Further, the measurement of the evaporator side heat exchanger temperature (evaporator temperature) Tev0 by the temperature sensor (14 or 15) of the heat exchanger on the evaporation side is started (step 61), and further the evaporator temperature at the start of the measurement. It is preset from Tev0 and the air temperature Tai or Tao measured by the indoor temperature sensor 16 or the outdoor temperature sensor 17 provided in the vicinity of the ventilation passage entrance of the indoor heat exchanger 4 or the outdoor heat exchanger 2 serving as an evaporator. The allowable deviation ΔTev is calculated according to the table held as the control constant. This allowable deviation ΔTev is a temperature measurement position where the heat exchanger temperature sensor 14 or 15 is installed, after the heat exchanger dries (the degree of dryness of the refrigerant increases), resulting in a rapid temperature rise. (Step 68). Compared to the heat exchanger temperature Tev0 before the PWM control signal is turned ON, the PWM control signal remains ON until the measured heat exchanger temperature Tev exceeds the allowable deviation ΔTev, and the evaporator side heat exchanger temperature Tev The measurement is repeated (steps 63 to 65). When the difference between the measured evaporator-side heat exchanger temperature Tev and the initial heat exchanger temperature Tev0 exceeds the allowable deviation ΔTev, the PWM control signal is turned OFF, the solenoid valve 12 is closed, and the timer is turned OFF. Then, the elapsed time measurement is finished, and τ1 is determined as the opening time. The closing time τ2 is determined from this τ1 and the current duty ratio d, and the PWM capacity control operation is performed by this duty cycle (steps 66 and 67).
 一方、膨張弁3の開度制御は、図4に示した実施例1での膨張弁開度制御ルーチンと同じルーチンに従って制御される。 
 本実施例によれば、ソレノイド弁12の開閉による吸込圧力(蒸発圧力)の変動は、前記許容偏差ΔTevに基づく範囲に決められるため、前記許容範囲ΔTevを適切な範囲に設定することにより、蒸発圧力を計測するための吸込圧力センサ23(図1参照)や室内への空気吹出温度を計測するための吹出温度センサ24(図5参照)がなくても、蒸発圧力の変動を一定範囲内に抑えることが可能となり、更に安価に製作できる上に、空調快適性が高く高効率な容量制御運転が可能な冷凍サイクル装置を実現できる。
On the other hand, the opening degree control of the expansion valve 3 is controlled according to the same routine as the expansion valve opening degree control routine in the first embodiment shown in FIG.
According to this embodiment, since the fluctuation of the suction pressure (evaporation pressure) due to the opening and closing of the solenoid valve 12 is determined in a range based on the allowable deviation ΔTev, the evaporation can be performed by setting the allowable range ΔTev to an appropriate range. Even if there is no suction pressure sensor 23 (see FIG. 1) for measuring the pressure or a blowout temperature sensor 24 (see FIG. 5) for measuring the air blowing temperature into the room, the fluctuation of the evaporation pressure is kept within a certain range. In addition, it is possible to realize a refrigeration cycle apparatus that can be manufactured at a lower cost and that is capable of air-conditioning comfort and high-efficiency capacity control operation.
 次に、本発明の上述した各実施例の冷凍サイクル装置に用いられる容量制御圧縮機の一例を説明する。図10は本発明に用いられる容量制御圧縮機の一例としてのスクロール圧縮機を示す縦断面図、図11は図10に示すスクロール圧縮機の通常運転時(容量調整機構のソレノイド弁12が閉成状態にある運転モード時)の冷媒ガスの流れを説明する要部拡大断面図、図12は図10に示す容量制御圧縮機のバイパス運転時(容量調整機構のソレノイド弁12が開成状態にある運転モード時)の冷媒ガスの流れを説明する要部拡大断面図である。 Next, an example of a capacity control compressor used in the refrigeration cycle apparatus of each of the above-described embodiments of the present invention will be described. 10 is a longitudinal sectional view showing a scroll compressor as an example of a capacity control compressor used in the present invention, and FIG. 11 is a diagram showing a normal operation of the scroll compressor shown in FIG. 10 (the solenoid valve 12 of the capacity adjusting mechanism is closed). FIG. 12 is an enlarged cross-sectional view of the main part for explaining the flow of the refrigerant gas in the operation mode in the state, and FIG. 12 is an operation in which the solenoid valve 12 of the capacity adjustment mechanism is in the open state during the bypass operation of the capacity control compressor shown in FIG. It is a principal part expanded sectional view explaining the flow of the refrigerant gas at the time of mode.
 スクロール圧縮機1は、冷媒ガスを吸入する吸入管113と、圧縮された冷媒ガスを吐出する吐出管114とが設けられた密閉ケース(チャンバ)115内に、渦巻状のラップを有する固定スクロール102と、この固定スクロール102と噛合う渦巻状のラップを有する旋回スクロール101とで構成された圧縮機構部が設けられている。また、この圧縮機構部の下方にはロータ100a及びステータ100bから成るモータ100が設けられ、前記ロータ100aには回転主軸となるクランク軸106が一体に連結されている。このクランク軸106はフレーム105に設けられた主軸受105aと、密閉ケース115内の下方の下フレーム111に設けられた副軸受112とにより回転支持されている。前記旋回スクロール101の背面には旋回軸受130が設けられており、前記クランク軸106の上端側に設けられた偏心部106aは前記旋回軸受130に挿入されている。107はオルダムリング(自転防止部材)で、このオルダムリング107により、前記クランク軸106が回転すると、旋回スクロール101は自転することなく旋回運動を行い、前記吸入管113から吸入された冷媒ガスを圧縮する。 The scroll compressor 1 includes a fixed scroll 102 having a spiral wrap in a sealed case (chamber) 115 provided with a suction pipe 113 for sucking refrigerant gas and a discharge pipe 114 for discharging compressed refrigerant gas. And a compression mechanism portion composed of the orbiting scroll 101 having a spiral wrap meshing with the fixed scroll 102 is provided. A motor 100 including a rotor 100a and a stator 100b is provided below the compression mechanism, and a crankshaft 106 serving as a rotation main shaft is integrally connected to the rotor 100a. The crankshaft 106 is rotatably supported by a main bearing 105 a provided on the frame 105 and an auxiliary bearing 112 provided on the lower frame 111 below the sealed case 115. An orbiting bearing 130 is provided on the back of the orbiting scroll 101, and an eccentric portion 106 a provided on the upper end side of the crankshaft 106 is inserted into the orbiting bearing 130. Reference numeral 107 denotes an Oldham ring (rotation prevention member). When the crankshaft 106 is rotated by the Oldham ring 107, the orbiting scroll 101 performs a revolving motion without rotating and compresses the refrigerant gas sucked from the suction pipe 113. To do.
 前記旋回スクロール101及び固定スクロール102のそれぞれの端板に設けられた前記渦巻状ラップは、互いに巻角が異なる非対称ラップに構成されており、これにより前記旋回スクロール101と固定スクロール102との噛合いにより旋回スクロールラップの内線側と外線側にそれぞれ形成される2つの圧縮室の最大密閉容積が異なる非対称スクロール形状を成している。 The spiral wraps provided on the respective end plates of the orbiting scroll 101 and the fixed scroll 102 are configured as asymmetric wraps having different winding angles, whereby the orbiting scroll 101 and the fixed scroll 102 are engaged with each other. As a result, the two sealed chambers formed on the inner line side and the outer line side of the orbiting scroll wrap have asymmetric scroll shapes with different maximum sealed volumes.
 即ち、旋回スクロール101及び固定スクロール102のインボリュート曲線で形成された各渦巻状ラップを互いに噛み合わせることで、旋回スクロール101の巻き終わり側のラップの外線側と内線側にそれぞれ圧縮室が形成されるが、外線側に形成される圧縮室と、内線側に形成される圧縮室とは大きさが異なり、クランク軸106の軸回転に対して位相が約180度ずれて形成されているものである。 That is, by engaging the spiral wraps formed by the involute curves of the orbiting scroll 101 and the fixed scroll 102 with each other, compression chambers are formed on the outer line side and the inner line side of the wrap on the winding end side of the orbiting scroll 101, respectively. However, the compression chamber formed on the outer line side and the compression chamber formed on the inner line side have different sizes and are formed with a phase shift of about 180 degrees with respect to the shaft rotation of the crankshaft 106. .
 具体的には、前記固定スクロール102は、中央近くに吐出ポート108が開口されており、その渦巻状ラップの内線側の巻き終わりが、旋回スクロール101の渦巻状ラップの巻き終わり付近まで約180度延長している。このため、旋回スクロール101及び固定スクール102の各渦巻状ラップを組み合わせ圧縮室を形成したとき、旋回スクロール101の渦巻状ラップの外線側と固定スクロール102の渦巻状ラップの内線側とにより閉じ込められて形成される第1の圧縮室と、旋回スクロール101の渦巻状ラップの内線側と固定スクロール102の渦巻状ラップの外線側とによって閉じ込められて形成される第2の圧縮室とは大きさが異なり、クランクシャフト106の回転に対して位相が約180度ずれて形成される。 Specifically, the discharge port 108 is opened near the center of the fixed scroll 102, and the winding end of the spiral wrap is about 180 degrees to the vicinity of the winding end of the spiral wrap of the orbiting scroll 101. It is extended. For this reason, when the spiral wraps of the orbiting scroll 101 and the fixed school 102 are combined to form a compression chamber, they are confined by the outer line side of the spiral scroll of the orbiting scroll 101 and the inner line side of the spiral wrap of the fixed scroll 102. The size of the first compression chamber formed is different from the size of the second compression chamber formed by being confined by the inner side of the spiral wrap of the orbiting scroll 101 and the outer side of the spiral wrap of the fixed scroll 102. The phase of the crankshaft 106 is shifted by about 180 degrees.
 また、このスクロール圧縮機では、固定スクロール102における吐出ポート108の外周側には圧縮室へ連通するリリースポート125が形成されており、このリリースポート125には過圧縮防止弁であるリリース弁124が設けられている。固定スクロール102の天板(端板上面)に取り付けられた吐出ヘッドカバー118は、前記吐出ポート108及びリリース弁124を覆って吐出ヘッド空間123を形成すると共に、所定の箇所に設けられた貫通孔119を開成又は閉成するための逆止弁作用を持つ吐出弁121 を備えている。 In this scroll compressor, a release port 125 communicating with the compression chamber is formed on the outer peripheral side of the discharge port 108 in the fixed scroll 102, and a release valve 124, which is an overcompression prevention valve, is formed in the release port 125. Is provided. A discharge head cover 118 attached to the top plate (upper surface of the end plate) of the fixed scroll 102 forms a discharge head space 123 so as to cover the discharge port 108 and the release valve 124, and a through hole 119 provided at a predetermined location. A discharge valve 121 を 持 つ having a check valve action for opening or closing the valve is provided.
 更に、バイパス配管11は、前記吐出ヘッド空間123内の冷媒ガスを密閉ケース115外へ導くもので、吐出ヘッドカバー118に一端側が結合され、密閉ケース115を貫通し、且つ他端側が密閉ケース115外へ引き出されている。このバイパス配管11の他端側は、冷媒ガスを吸入するための前記吸入管113と連通されており、また前記バイパス配管11の途中にはソレノイド弁12が設けられている。このソレノイド弁12は、上述した各実施例で説明したパルス幅調整(PWM)制御信号により、開成状態と閉成状態とに駆動制御されるように構成されている。 Further, the bypass pipe 11 guides the refrigerant gas in the discharge head space 123 to the outside of the sealed case 115, one end side is coupled to the discharge head cover 118, passes through the sealed case 115, and the other end side is outside the sealed case 115. Has been pulled out. The other end of the bypass pipe 11 communicates with the suction pipe 113 for sucking refrigerant gas, and a solenoid valve 12 is provided in the middle of the bypass pipe 11. The solenoid valve 12 is configured to be driven and controlled to an open state and a closed state by a pulse width adjustment (PWM) control signal described in each of the above-described embodiments.
 前記吐出ヘッドカバー118、バイパス配管11、及びソレノイド弁12は、ソレノイド弁12が開成状態としたときに、吐出ヘッド空間123内の冷媒ガスをバイパス配管11から吸入管113へ導くためのバイパス流路を形成している。また、超小容量運転モード時にはソレノイド弁12における開成状態と閉成状態とを反復動作させ、バイパス流路の使用の有無を繰り返すことにより、小容量制御を行うための容量調整機構として働かせる。 The discharge head cover 118, the bypass pipe 11, and the solenoid valve 12 provide a bypass flow path for guiding the refrigerant gas in the discharge head space 123 from the bypass pipe 11 to the suction pipe 113 when the solenoid valve 12 is opened. Forming. Further, in the ultra-small capacity operation mode, the solenoid valve 12 is repeatedly operated between an open state and a closed state, and the presence or absence of use of the bypass flow path is repeated to act as a capacity adjustment mechanism for performing small capacity control.
 前記吸入管113は、冷凍サイクルの冷媒ガスを取り入れるためのもので、固定スクロール102に連連している。前記密閉ケース115内のクランク軸106の下端側は油を貯める油貯め116となっている。また、クランク軸106における前記ロータ100aと前記副軸受112との間には回転を安定させるためのフライホイール117が設けられている。 The suction pipe 113 is for taking in the refrigerant gas of the refrigeration cycle, and is connected to the fixed scroll 102. The lower end side of the crankshaft 106 in the sealed case 115 is an oil reservoir 116 that stores oil. Further, a flywheel 117 for stabilizing rotation is provided between the rotor 100 a and the auxiliary bearing 112 in the crankshaft 106.
 固定スクロール102、旋回スクロール101 、及びフレーム105により形成される背圧室(中間室)109には、前記油貯め116から供給される油が、クランク軸106の偏心部106aの周りに設けられた旋回軸受130を通って導かれる。背圧室109では、油中の冷媒ガスが発泡して圧力上昇したとき、その上昇圧力を制御弁(図示せず)で吸入側に逃がして所定の圧力レベルを保持するように構成されている。この吸入側は固定スクロール102の渦巻体の外周に設けられた固定外周溝に達通しているが、この固定外周溝は冷媒ガスの吸込口に達通しているため、固定外周溝内は常に吸入圧となる。旋回スクロール101においては、中央部分に吐出圧力が作用し、その外周側の部分には中間圧力が作用する。このため、旋回スクロール101は固定スクロール102に対して適正な圧力で押し付けられ、スクロールラップ間の軸方向におけるシールが保たれる。 In the back pressure chamber (intermediate chamber) 109 formed by the fixed scroll 102, the orbiting scroll 101 及 び, and the frame 105, oil supplied from the oil reservoir 116 is provided around the eccentric portion 106 a of the crankshaft 106. Guided through slewing bearing 130. The back pressure chamber 109 is configured such that when the refrigerant gas in the oil is foamed and the pressure rises, the increased pressure is released to the suction side by a control valve (not shown) to maintain a predetermined pressure level. . This suction side passes through a fixed outer peripheral groove provided on the outer periphery of the spiral body of the fixed scroll 102. Since this fixed outer peripheral groove reaches the refrigerant gas inlet, the fixed outer peripheral groove is always inhaled. Pressure. In the orbiting scroll 101, the discharge pressure acts on the central portion, and the intermediate pressure acts on the outer peripheral portion. For this reason, the orbiting scroll 101 is pressed against the fixed scroll 102 with an appropriate pressure, and the seal in the axial direction between the scroll wraps is maintained.
 このスクロール圧縮機の場合、圧縮室で圧縮された冷媒ガスが前記吐出ヘッド空間123内の圧力以上になると、前記圧縮室の冷媒ガスは、前記リリースポート125及びリリース弁124を介して吐出ヘッド空間123に吐出される。前記吐出ヘッド空間123内の圧力未満の場合には、前記リリース弁124は閉じられ、吐出ポート108から前記吐出ヘッド空間123内に吐出され、更に前記貫通孔119から吐出弁121を押しのけて吐出室103に吐出される。吐出室103に吐出された冷媒ガスは、前記固定スクロール102及びフレーム105と前記密閉ケース115との間に形成された通路を通って、モータ100が設けられている吐出空間104に流入し、ここから前記吐出管114を介して冷凍サイクルへと吐出される構成となっている。従って、前記密閉ケース115内は吐出圧力の空間となっている高圧チャンバ方式の構造となっている。 In the case of this scroll compressor, when the refrigerant gas compressed in the compression chamber becomes equal to or higher than the pressure in the discharge head space 123, the refrigerant gas in the compression chamber is discharged through the release port 125 and the release valve 124 into the discharge head space. 123 is discharged. When the pressure is less than the pressure in the discharge head space 123, the release valve 124 is closed, discharged from the discharge port 108 into the discharge head space 123, and further, the discharge valve 121 is pushed away from the through hole 119 to discharge chamber. 103 is discharged. The refrigerant gas discharged into the discharge chamber 103 passes through the passage formed between the fixed scroll 102 and the frame 105 and the sealed case 115 and flows into the discharge space 104 where the motor 100 is provided. To the refrigeration cycle via the discharge pipe 114. Accordingly, the sealed case 115 has a high-pressure chamber structure in which a discharge pressure space is provided.
 スクロール圧縮機1の外部には、モータ100を駆動するためのモータ駆動回路であるインバータ18と、前記ソレノイド弁12の開成状態と閉成状態とを駆動制御するためのパルス幅調整制御信号を生成するソレノイド駆動回路12aと、これらインバータ18及びソレノイド駆動回路12aの動作を操作指示により制御する操作指示制御手段としての制御部20とが備えられている。 Outside the scroll compressor 1, an inverter 18 that is a motor drive circuit for driving the motor 100 and a pulse width adjustment control signal for driving and controlling the open state and the closed state of the solenoid valve 12 are generated. And a control unit 20 as operation instruction control means for controlling operations of the inverter 18 and the solenoid drive circuit 12a according to operation instructions.
 このスクロール圧縮機の圧縮動作は、ソレノイド弁12の閉成状態での第1の運転モードと、ソレノイド弁12の開成状態での第2の運転モードとに分けられる。 
 図11は、スクロール圧縮機に備えられる容量調整機構のソレノイド弁12が閉成状態にある第1の運転モードのときの冷媒ガスの流れを示している。
The compression operation of the scroll compressor is divided into a first operation mode when the solenoid valve 12 is closed and a second operation mode when the solenoid valve 12 is open.
FIG. 11 shows the flow of the refrigerant gas in the first operation mode in which the solenoid valve 12 of the capacity adjustment mechanism provided in the scroll compressor is in the closed state.
 第1の運転モードでは、ソレノイド駆動回路12aがパルス幅調整制御信号の矩形波の立ち下がり区間の周期τ2でソレノイド弁12を閉成状態にすると共に、インバータ18がモータ100を駆動してロータ100a及びクランク軸106を回転させる。これに伴って旋回スクロール101が旋回運動を開始する。この動作により、旋回スクロール101及び固定スクロール102の渦巻体の噛み合いにより形成された第1の圧縮室及び第2の圧縮室がその容積を減少しながら中心方向に移動する。 In the first operation mode, the solenoid drive circuit 12a closes the solenoid valve 12 at the period τ2 of the falling edge of the rectangular wave of the pulse width adjustment control signal, and the inverter 18 drives the motor 100 to drive the rotor 100a. And the crankshaft 106 is rotated. Along with this, the orbiting scroll 101 starts the orbiting motion. By this operation, the first compression chamber and the second compression chamber formed by the engagement of the spiral bodies of the orbiting scroll 101 and the fixed scroll 102 move toward the center while reducing their volumes.
 これにより、吸入管113から流入した冷媒ガスは、前記第1の庄縮室及び第2の圧縮室で圧縮され、高圧化された冷媒ガスが、固定スクロール102に形成された吐出ポート108から吐出ヘッド空間123に吐出される。この圧縮の過程で吐出ヘッド空間123の圧力よりも圧縮室の圧力の方が高くなると、前述したように前記リリースポート125及びリリース弁124を介して高圧化された冷媒ガスが吐出ヘッド空間123に吐出される。 Thereby, the refrigerant gas flowing in from the suction pipe 113 is compressed in the first compression chamber and the second compression chamber, and the high-pressure refrigerant gas is discharged from the discharge port 108 formed in the fixed scroll 102. The ink is discharged into the head space 123. When the pressure in the compression chamber becomes higher than the pressure in the discharge head space 123 during the compression process, the refrigerant gas whose pressure has been increased through the release port 125 and the release valve 124 as described above enters the discharge head space 123. Discharged.
 尚、リリース弁124は、押さえ部126の先端側に取り付けられたコイルばね127の先端に装着されている弁板部分を示すものであるが、押さえ部126やコイルばね127も含んだリリース弁機構部全体をリリース弁と呼ぶこともある。 The release valve 124 indicates a valve plate portion attached to the tip of a coil spring 127 attached to the tip side of the holding portion 126, but a release valve mechanism including the holding portion 126 and the coil spring 127. The entire part is sometimes called a release valve.
 前記吐出ヘッド空間123の冷媒ガス圧力が吐出圧力よりも僅かに高く、吐出室103の圧力よりも高くなると、吐出ヘッドカバー118の貫通孔119を覆う吐出弁121を押し開き、冷媒ガスは吐出室103に吐出される。 When the refrigerant gas pressure in the discharge head space 123 is slightly higher than the discharge pressure and higher than the pressure in the discharge chamber 103, the discharge valve 121 covering the through hole 119 of the discharge head cover 118 is pushed open, and the refrigerant gas is discharged into the discharge chamber 103. Discharged.
 前記第1の運転モードでは、前記ソレノイド弁12を閉成状態にしてバイパス配管11を使わずに、冷媒ガスを冷凍サイクル側に流すので、ロード運転と呼んでも良い。 In the first operation mode, the solenoid valve 12 is closed and the refrigerant gas is allowed to flow to the refrigeration cycle side without using the bypass pipe 11, so it may be called a load operation.
 図12は、スクロール圧縮機に備えられる容量調整機構のソレノイド弁12が開成状態にある第2の運転モードのときの冷媒ガスの流れを示している。 FIG. 12 shows the flow of the refrigerant gas in the second operation mode in which the solenoid valve 12 of the capacity adjustment mechanism provided in the scroll compressor is in the open state.
 第2の運転モードでは、ソレノイド駆動回路12aがパルス幅調整制御信号の矩形波の立ち上がり区間の周期τ1でソレノイド弁12を開成状態とすると共に、インバータ18がモータ100を駆動してロータ100a及びクランクシャフト106を回転させる。これに伴って、旋回スクロール101が旋回運動を開始する。この動作により、前記第1の運転モードと同様に、旋回スクロール101及び固定スクロール102の渦巻体の噛み合いにより形成された第1の圧縮室及び第2の圧縮室がその容積を減少しながら中心方向に移動する。 In the second operation mode, the solenoid drive circuit 12a opens the solenoid valve 12 at the period τ1 of the rising edge of the rectangular wave of the pulse width adjustment control signal, and the inverter 18 drives the motor 100 to drive the rotor 100a and the crank. The shaft 106 is rotated. Along with this, the orbiting scroll 101 starts the orbiting motion. By this operation, as in the first operation mode, the first compression chamber and the second compression chamber formed by the engagement of the spiral bodies of the orbiting scroll 101 and the fixed scroll 102 are reduced in volume while being reduced in the center direction. Move to.
 この第2の運転モードでは、ソレノイド弁12が開成状態となっているため、前記吐出ヘッド空間123内の冷媒ガスは、前記吐出ヘッド空間123と前記吸入管113を接続している前記バイパス配管11を介して、吸入管113へ流れ込む。このため前記吐出ヘッド空間123内の圧力は、吸入圧力よりも僅かに高い程度のほぼ吸入圧力まで低下する。 In this second operation mode, since the solenoid valve 12 is in an open state, the refrigerant gas in the discharge head space 123 causes the bypass pipe 11 connecting the discharge head space 123 and the suction pipe 113. Through the suction pipe 113. For this reason, the pressure in the discharge head space 123 is reduced to almost the suction pressure that is slightly higher than the suction pressure.
 このため、吐出ヘッド空間123の圧力は吐出室103の圧力よりも低くなり、吐出ヘッドカバー118の貫通孔119を覆う吐出弁121が塞がれるので、冷媒ガスは吐出室103には吐出されない。この第2の運転モードの状態では、吸入管113から流入した冷媒ガスが第1の圧縮室及び第2の圧縮室で圧縮されると、その圧力は前記吐出ヘッド空間123の圧力よりも高くなるので、冷媒ガスは、前記リリースポート125及びリリース弁124を介して吐出ヘッド空間123に吐出される。また、前記リリースポート125の部分よりも更に中心側まで移動した圧縮室内の冷媒ガスは、吐出ポート108から吐出ヘッド空間123に吐出される。吐出ヘッド空間123に吐出された冷媒ガスは、前記バイパス配管11及び開成状態のソレノイド弁12を通って前記吸入管113へ流れる。 For this reason, the pressure in the discharge head space 123 is lower than the pressure in the discharge chamber 103 and the discharge valve 121 covering the through hole 119 of the discharge head cover 118 is closed, so that the refrigerant gas is not discharged into the discharge chamber 103. In the state of the second operation mode, when the refrigerant gas flowing in from the suction pipe 113 is compressed in the first compression chamber and the second compression chamber, the pressure becomes higher than the pressure in the discharge head space 123. Therefore, the refrigerant gas is discharged into the discharge head space 123 through the release port 125 and the release valve 124. The refrigerant gas in the compression chamber that has moved further to the center side than the release port 125 is discharged from the discharge port 108 into the discharge head space 123. The refrigerant gas discharged into the discharge head space 123 flows to the suction pipe 113 through the bypass pipe 11 and the opened solenoid valve 12.
 前記第2の運転モードでは、前記ソレノイド弁12を開成状態にしてバイパス配管11から冷媒ガスを吸入管113側に戻し、冷媒ガスを冷凍サイクル側には吐出しないので、アンロード運転と呼んでも良い。 In the second operation mode, the solenoid valve 12 is opened, the refrigerant gas is returned from the bypass pipe 11 to the suction pipe 113 side, and the refrigerant gas is not discharged to the refrigeration cycle side. .
 尚、前記リリースポート125とリリース弁124は、全ての回転角度領域の圧縮室と連通される位置に設けられていることが望ましい。その理由は、スクロールラップでの内部圧縮を回避でき、アンロード運転での圧縮動作が小さくなるためである。 Note that it is desirable that the release port 125 and the release valve 124 are provided at a position where they are communicated with the compression chambers in all rotation angle regions. The reason is that the internal compression at the scroll wrap can be avoided and the compression operation at the unload operation becomes small.
 実施例1に係るスクロール圧縮機では、インバータ18によるモータ100の駆動と共に、ソレノイド駆動回路12aからのパルス幅調整制御信号の矩形波の立ち下がり区間の周期τ2でソレノイド弁12を閉成状態とするロード運転(第1の運転モード)と、前記矩形波の立ち上がり区間の周期τ1でソレノイド弁12を開成状態とするアンロード運転(第2の運転モード)とを切り替えて、容量制御を行うことができる。 In the scroll compressor according to the first embodiment, the motor 100 is driven by the inverter 18 and the solenoid valve 12 is closed at the period τ2 of the rectangular wave falling section of the pulse width adjustment control signal from the solenoid drive circuit 12a. The capacity control can be performed by switching between the load operation (first operation mode) and the unload operation (second operation mode) in which the solenoid valve 12 is opened at the period τ1 of the rectangular wave rising section. it can.
 スクロール圧縮機を比較的高速で運転する高速運転モード時でも、前記ソレノイド弁12の開閉による容量制御も可能であるが、高速回転から、モータ駆動による回転速度の下限設定値よりも幾分高い所定の設定値までの回転範囲では、インバータ18によるモータ100の回転数制御を実施し、前記所定の設定値以下の低速回転範囲で更に容量を低減させる必要がある場合には、小容量制御を行う前記容量調整機構(ソレノイド弁によるバイパス通路の開閉制御)を働かせて、超小容量運転モードとして、前記ロード運転とアンロード運転との比率を変えて運転することが好ましい。 Even in the high-speed operation mode in which the scroll compressor is operated at a relatively high speed, the capacity can be controlled by opening and closing the solenoid valve 12. However, the high-speed rotation is slightly higher than the lower limit set value of the rotation speed driven by the motor. In the rotation range up to the set value, the rotation speed control of the motor 100 is performed by the inverter 18, and when it is necessary to further reduce the capacity in the low speed rotation range below the predetermined set value, the small capacity control is performed. It is preferable to operate by changing the ratio of the load operation and the unload operation as an ultra-small capacity operation mode by operating the capacity adjusting mechanism (control of opening and closing of the bypass passage by a solenoid valve).
 上述したような容量調整機構を備えたスクロール圧縮機では、簡便な構造の容量調整機構により、前記超小容量運転モード時にも効率良く小容量制御を行うことができる。即ち、モータ駆動による回転速度の下限設定値(モータ100への駆動信号では周波数5Hz程度)以下の超低速運転を行った場合に相当する超小容量制御(超小容量運転モード)での圧縮動作を、モータ駆動の効率を劣化させることなく実行可能となり、0~100%の広範囲な容量制御を実現できる優れたスクロール圧縮機が得られる。また、本実施例のスクロール圧縮機に備えられている前記容量調整機構は、簡便な構造であるから、スクロール圧縮機の低コスト化、小型化、軽量化及び量産化も容易に実現できる。 In the scroll compressor provided with the capacity adjusting mechanism as described above, the capacity adjusting mechanism having a simple structure can efficiently perform the small capacity control even in the ultra-small capacity operation mode. That is, the compression operation in the ultra-small capacity control (ultra-small capacity operation mode) corresponding to the ultra-low speed operation below the lower limit set value of the rotation speed by the motor drive (frequency about 5 Hz in the drive signal to the motor 100). Can be executed without degrading the efficiency of motor drive, and an excellent scroll compressor capable of realizing a wide capacity control of 0 to 100% can be obtained. Further, since the capacity adjusting mechanism provided in the scroll compressor of this embodiment has a simple structure, the scroll compressor can be easily reduced in cost, size, weight and mass production.
 以上述べたように、本実施例の冷凍サイクル装置によれば、ロード運転とアンロード運転の切り替え時間の周期であるデューティ周期が、蒸発圧力の偏差が一定値以内になるように制御されるので、吸込圧力の上昇及び変動を閾値以内に抑えることが可能となり、快適な空調など快適性を向上することができる。しかも本実施例によれば、デューティ周期を短くし過ぎることによる損失増加も防止できるから、効率の高い運転も実現でき、高効率で且つ0~100%の広範囲な容量制御が可能となる優れた性能を持つ冷凍サイクル装置を実現できる。また、本実施例によれば、高効率で広範囲な容量制御を、簡単な構成で実現できるから、低コスト化も可能になる。 As described above, according to the refrigeration cycle apparatus of the present embodiment, the duty cycle, which is the cycle of the switching time between the load operation and the unload operation, is controlled so that the deviation of the evaporation pressure is within a certain value. In addition, it is possible to suppress the rise and fluctuation of the suction pressure within a threshold value, and it is possible to improve comfort such as comfortable air conditioning. In addition, according to the present embodiment, an increase in loss due to an excessively short duty cycle can also be prevented, so that highly efficient operation can be realized, and excellent capacity control is possible with a wide range of 0 to 100% with high efficiency. A refrigeration cycle apparatus with performance can be realized. In addition, according to the present embodiment, high-efficiency and wide-range capacity control can be realized with a simple configuration, so that the cost can be reduced.
1:圧縮機、
2:室外熱交換器、
3:膨張弁、
4:室内熱交換器、
5:四方弁、
7:高圧側接続配管、8:室外接続配管、9:室内接続配管、10:低圧側接続配管、
11:バイパス配管(バイパス流路)、
12:ソレノイド弁、12a:ソレノイド駆動回路、
13:吐出温度センサ、14:室内熱交換器温度センサ、
15:室外熱交換器温度センサ、
16:室内温度センサ、17:室外温度センサ、
18:インバータ、19:商用交流電源、
20:制御部、
21:室外ファン、22:室内ファン、
23:吸込圧力センサ、24:吹出温度センサ、
100:モータ(100a:ロータ、100b:ステータ)、
101:旋回スクロール、102:固定スクロール、103:吐出室、
104:吐出空間、105:フレーム、105a:主軸受、
106:クランク軸、106a:偏心部、107:オルダムリング、
108:吐出ポート、109:背圧室(中間室)、
111:下フレーム、112:副軸受、
113:吸入管、114:吐出管、
115:密閉ケース、116:油貯め、
117:フライホイール、
118:吐出ヘッドカバー、119:貫通孔、
121:吐出弁、
123:吐出ヘッド空間、
124:リリース弁、125:リリースポート、126:押さえ部、
127:コイルばね、
130:旋回軸受。
1: compressor,
2: Outdoor heat exchanger,
3: expansion valve,
4: Indoor heat exchanger,
5: Four-way valve,
7: High-pressure side connection piping, 8: Outdoor connection piping, 9: Indoor connection piping, 10: Low-pressure side connection piping,
11: Bypass piping (bypass flow path),
12: Solenoid valve, 12a: Solenoid drive circuit,
13: Discharge temperature sensor, 14: Indoor heat exchanger temperature sensor,
15: Outdoor heat exchanger temperature sensor,
16: Indoor temperature sensor, 17: Outdoor temperature sensor,
18: Inverter, 19: Commercial AC power supply,
20: control unit,
21: Outdoor fan, 22: Indoor fan,
23: Suction pressure sensor, 24: Blowing temperature sensor,
100: motor (100a: rotor, 100b: stator),
101: Orbiting scroll, 102: Fixed scroll, 103: Discharge chamber,
104: discharge space, 105: frame, 105a: main bearing,
106: Crankshaft, 106a: Eccentric part, 107: Oldham ring,
108: discharge port, 109: back pressure chamber (intermediate chamber),
111: Lower frame, 112: Secondary bearing,
113: suction pipe, 114: discharge pipe,
115: Sealed case, 116: Oil storage,
117: Flywheel,
118: Discharge head cover, 119: Through hole,
121: discharge valve,
123: Discharge head space
124: Release valve, 125: Release port, 126: Holding part,
127: coil spring,
130: Slewing bearing.

Claims (16)

  1.  圧縮機、室外熱交換器、開度制御可能な膨張弁及び室内熱交換器を備える冷凍サイクル装置において、
     前記圧縮機における圧縮途中の冷媒を該圧縮機の吸込側にバイパスさせるバイパス流路と、
     前記バイパス流路を開閉するためのソレノイド弁と、
     前記ソレノイド弁の開成(ON)状態の時間と閉成(OFF)状態の時間を制御することで圧縮機から冷凍サイクルへ吐出される冷媒の流量を調整して容量制御する制御部と、を備え、
     前記制御部は、前記ソレノイド弁の開成時間と閉成時間の和となるデューティ周期に対する開成時間の比であるデューティ比に基づいて制御を行うと共に、
     前記ソレノイド弁が開成状態のとき、前記圧縮機の吸込側の圧力が、前記ソレノイド弁が開成される前の吸込圧力に対して許容偏差以上になると、前記ソレノイド弁を閉成状態に制御し、この閉成時間は前記デューティ比に基づいて決められるように制御する
     ことを特徴とする冷凍サイクル装置。
    In a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion valve capable of opening control, and an indoor heat exchanger,
    A bypass flow path for bypassing the refrigerant being compressed in the compressor to the suction side of the compressor;
    A solenoid valve for opening and closing the bypass flow path;
    A controller for controlling the capacity by adjusting the flow rate of the refrigerant discharged from the compressor to the refrigeration cycle by controlling the time of opening (ON) and the time of closing (OFF) of the solenoid valve. ,
    The control unit performs control based on a duty ratio that is a ratio of an opening time to a duty cycle that is a sum of the opening time and the closing time of the solenoid valve,
    When the solenoid valve is in an open state, when the pressure on the suction side of the compressor is equal to or larger than an allowable deviation with respect to the suction pressure before the solenoid valve is opened, the solenoid valve is controlled to be in a closed state, The refrigeration cycle apparatus is controlled such that the closing time is determined based on the duty ratio.
  2.  請求項1に記載の冷凍サイクル装置において、前記デューティ比は、室内温度と、設定された室内温度目標値との差に基づいて決められることを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the duty ratio is determined based on a difference between an indoor temperature and a set indoor temperature target value.
  3.  請求項1に記載の冷凍サイクル装置において、前記制御部は、前記圧縮機から吐出される吐出冷媒温度が、目標吐出温度に近づくように、前記膨張弁の開度を制御することを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the control unit controls an opening degree of the expansion valve so that a discharge refrigerant temperature discharged from the compressor approaches a target discharge temperature. Refrigeration cycle equipment.
  4.  請求項3に記載の冷凍サイクル装置において、前記目標吐出温度は、前記ソレノイド弁が閉成状態に制御されているときには、前記室外熱交換器の温度(凝縮温度)、外気温度、圧縮機の回転数及び室外ファンの回転数指令値に基づいて決められ、前記ソレノイド弁が開成状態に制御されているときには、その時のデューティ比を、前記ソレノイド弁の開閉制御開始時の圧縮機回転数に乗じた修正圧縮機回転数を決定し、この修正圧縮機回転数と、室外熱交換器の温度(凝縮温度)、外気温度及び室外ファンの回転数指令値に基づいて決められることを特徴とする冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein when the solenoid valve is controlled to be in a closed state, the target discharge temperature is the temperature of the outdoor heat exchanger (condensation temperature), the outside air temperature, and the rotation of the compressor. When the solenoid valve is controlled to be in an open state, the duty ratio at that time is multiplied by the compressor rotational speed at the start of the solenoid valve opening / closing control. The refrigeration cycle is determined based on the corrected compressor rotational speed, the outdoor heat exchanger temperature (condensation temperature), the outdoor air temperature, and the outdoor fan rotational speed command value. apparatus.
  5.  請求項1に記載の冷凍サイクル装置において、前記圧縮機の吸込側の圧力は、前記圧縮機の吸込側に設けられた吸込圧力センサにより検出されることを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the pressure on the suction side of the compressor is detected by a suction pressure sensor provided on the suction side of the compressor.
  6.  請求項1に記載の冷凍サイクル装置において、前記圧縮機の吸込側の圧力が、前記ソレノイド弁が開成される前の吸込圧力に対して許容偏差以上になることは、蒸発器となる前記室内熱交換器または室外熱交換器の温度と、前記室内熱交換器の吹出温度に基づき蒸発圧力の変動を推算することで判断されることを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the pressure on the suction side of the compressor exceeds an allowable deviation with respect to the suction pressure before the solenoid valve is opened, the indoor heat serving as an evaporator. A refrigeration cycle apparatus characterized in that it is determined by estimating a fluctuation in evaporation pressure based on a temperature of an exchanger or an outdoor heat exchanger and a blowing temperature of the indoor heat exchanger.
  7.  請求項1に記載の冷凍サイクル装置において、蒸発器となる前記室内熱交換器または室外熱交換器の中央付近の温度を検出する温度センサを設け、この温度センサで検出された温度に基づいて蒸発圧力の変動を推算し、前記圧縮機の吸込側の圧力が、前記ソレノイド弁が開成される前の吸込圧力に対して許容偏差以上になることを判断することを特徴とする冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, further comprising a temperature sensor that detects a temperature near a center of the indoor heat exchanger or the outdoor heat exchanger that serves as an evaporator, and evaporates based on the temperature detected by the temperature sensor. A refrigeration cycle apparatus characterized by estimating a pressure fluctuation and determining that the pressure on the suction side of the compressor is equal to or greater than an allowable deviation with respect to the suction pressure before the solenoid valve is opened.
  8.  圧縮機、室外熱交換器、開度制御可能な膨張弁及び室内熱交換器を備える冷凍サイクル装置において、
     前記圧縮機における圧縮途中の冷媒を該圧縮機の吸込側にバイパスさせるバイパス流路と、
     前記バイパス流路を開閉するためのソレノイド弁と、
     前記ソレノイド弁の開成(ON)状態の時間と閉成(OFF)状態の時間を制御することで圧縮機から冷凍サイクルへ吐出される冷媒の流量を調整して容量制御する制御部と、を備え、
     前記制御部は、前記ソレノイド弁の開成時間と閉成時間の和となるデューティ周期に対する開成時間の比であるデューティ比に基づいて制御を行うと共に、
     前記ソレノイド弁が開成状態のとき、蒸発器となる前記室内熱交換器または室外熱交換器(蒸発器側熱交換器)の蒸発器温度が、前記ソレノイド弁が開成される前の蒸発器温度に対して許容偏差以上になると、前記ソレノイド弁を閉成状態に制御し、この閉成時間は前記デューティ比に基づいて決められるように制御する
     ことを特徴とする冷凍サイクル装置。
    In a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion valve capable of opening control, and an indoor heat exchanger,
    A bypass flow path for bypassing the refrigerant being compressed in the compressor to the suction side of the compressor;
    A solenoid valve for opening and closing the bypass flow path;
    A controller for controlling the capacity by adjusting the flow rate of the refrigerant discharged from the compressor to the refrigeration cycle by controlling the time of opening (ON) and the time of closing (OFF) of the solenoid valve. ,
    The control unit performs control based on a duty ratio that is a ratio of an opening time to a duty cycle that is a sum of the opening time and the closing time of the solenoid valve,
    When the solenoid valve is in the open state, the evaporator temperature of the indoor heat exchanger or the outdoor heat exchanger (evaporator side heat exchanger) serving as an evaporator becomes the evaporator temperature before the solenoid valve is opened. On the other hand, when the deviation exceeds an allowable deviation, the solenoid valve is controlled to be in a closed state, and the closing time is controlled based on the duty ratio.
  9.  請求項8に記載の冷凍サイクル装置において、前記室内熱交換器の通風路出口付近に吹出温度センサを設け、前記許容偏差は、前記ソレノイド弁が開成される前の蒸発器温度と、前記吹出温度センサで検出された室内熱交換器の吹出温度から、予め設定され制御定数として保持する表に従い算出されることを特徴とする冷凍サイクル装置。 9. The refrigeration cycle apparatus according to claim 8, wherein a blowout temperature sensor is provided in the vicinity of a ventilation path outlet of the indoor heat exchanger, and the allowable deviation is calculated based on an evaporator temperature before the solenoid valve is opened, and the blowout temperature. A refrigeration cycle apparatus that is calculated from a blowout temperature of an indoor heat exchanger detected by a sensor according to a table that is preset and held as a control constant.
  10.  請求項8に記載の冷凍サイクル装置において、前記蒸発器側熱交換器の中央付近の温度を検出する蒸発器温度センサと、前記蒸発器側熱交換器の通風通路入口付近に設けられた温度センサとを備え、前記許容偏差は、前記蒸発器温度センサで検出された測定開始時の蒸発器温度と、前記蒸発器側熱交換器の通風通路入口付近に設けられた温度センサにより測定される空気温度から、予め設定され制御定数として保持する表に従い算出されることを特徴とする冷凍サイクル装置。 9. The refrigeration cycle apparatus according to claim 8, wherein an evaporator temperature sensor that detects a temperature near a center of the evaporator-side heat exchanger, and a temperature sensor that is provided near a ventilation passage inlet of the evaporator-side heat exchanger. And the allowable deviation is measured by an evaporator temperature at the start of measurement detected by the evaporator temperature sensor and an air measured by a temperature sensor provided in the vicinity of the ventilation passage inlet of the evaporator-side heat exchanger. A refrigeration cycle apparatus which is calculated from a temperature according to a table which is set in advance and held as a control constant.
  11.  請求項8に記載の冷凍サイクル装置において、前記デューティ比は、室内温度と、設定された室内温度目標値との差に基づいて決められることを特徴とする冷凍サイクル装置。 9. The refrigeration cycle apparatus according to claim 8, wherein the duty ratio is determined based on a difference between an indoor temperature and a set indoor temperature target value.
  12.  請求項8に記載の冷凍サイクル装置において、前記制御部は、前記圧縮機から吐出される吐出冷媒温度が、目標吐出温度に近づくように、前記膨張弁の開度を制御することを特徴とする冷凍サイクル装置。 9. The refrigeration cycle apparatus according to claim 8, wherein the control unit controls the opening degree of the expansion valve so that a discharge refrigerant temperature discharged from the compressor approaches a target discharge temperature. Refrigeration cycle equipment.
  13.  請求項12に記載の冷凍サイクル装置において、前記目標吐出温度は、前記ソレノイド弁が閉成状態に制御されているときには、前記室外熱交換器の温度(凝縮温度)、外気温度、圧縮機の回転数及び室外ファンの回転数指令値に基づいて決められ、前記ソレノイド弁が開成状態に制御されているときには、その時のデューティ比を、前記ソレノイド弁の開閉制御開始時の圧縮機回転数に乗じた修正圧縮機回転数を決定し、この修正圧縮機回転数と、室外熱交換器の温度(凝縮温度)、外気温度及び室外ファンの回転数指令値に基づいて決められることを特徴とする冷凍サイクル装置。 13. The refrigeration cycle apparatus according to claim 12, wherein the target discharge temperature is the temperature of the outdoor heat exchanger (condensation temperature), the outside air temperature, and the rotation of the compressor when the solenoid valve is controlled to be closed. When the solenoid valve is controlled to be in an open state, the duty ratio at that time is multiplied by the compressor rotational speed at the start of the solenoid valve opening / closing control. The refrigeration cycle is determined based on the corrected compressor rotational speed, the outdoor heat exchanger temperature (condensation temperature), the outdoor air temperature, and the outdoor fan rotational speed command value. apparatus.
  14.  請求項1に記載の冷凍サイクル装置において、前記圧縮機は、密閉ケース内で旋回スクロールの渦巻体と固定スクロールの渦巻体とが互いに噛み合わせられて圧縮室を形成し、前記固定スクロールは、中央部分に吐出ポートが形成されると共に、該吐出ポートの外周側には前記圧縮室に連通するリリースポートと、このリリースポートを開閉するリリース弁が設けられているスクロール圧縮機であることを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the compressor is configured such that a spiral body of the orbiting scroll and a spiral body of the fixed scroll are meshed with each other in a sealed case to form a compression chamber. The present invention is a scroll compressor in which a discharge port is formed in a portion, a release port communicating with the compression chamber is provided on the outer peripheral side of the discharge port, and a release valve that opens and closes the release port. Refrigeration cycle equipment.
  15.  請求項14に記載の冷凍サイクル装置において、前記バイパス流路は、前記スクロール圧縮機に設けられたリリースポートと、前記スクロール圧縮機の吸入側に設けられた吸入管とを接続するバイパス配管であり、このバイパス配管に前記ソレノイド弁が設けられていることを特徴とする冷凍サイクル装置。 15. The refrigeration cycle apparatus according to claim 14, wherein the bypass flow path is a bypass pipe that connects a release port provided in the scroll compressor and a suction pipe provided on a suction side of the scroll compressor. The refrigeration cycle apparatus is characterized in that the bypass valve is provided with the solenoid valve.
  16.  請求項15に記載の冷凍サイクル装置において、前記スクロール圧縮機は、前記固定スクロールの天板に取り付けられて前記吐出ポート及びリリース弁を覆って吐出ヘッド空間を形成する吐出ヘッドカバーを備え、この吐出ヘッドカバーには、前記密閉ケース内の吐出室に連通する貫通孔と、この貫通孔を開閉する吐出弁を備えると共に、前記吐出ヘッド空間と前記吸入管とを接続するように前記バイパス配管が設けられており、前記ソレノイド弁は、パルス幅調整(PWM)制御信号により開成状態と閉成状態とに駆動制御されるように構成されていることを特徴とする冷凍サイクル装置。 16. The refrigeration cycle apparatus according to claim 15, wherein the scroll compressor includes a discharge head cover that is attached to a top plate of the fixed scroll and covers the discharge port and the release valve to form a discharge head space. Includes a through hole communicating with the discharge chamber in the sealed case and a discharge valve for opening and closing the through hole, and the bypass pipe is provided to connect the discharge head space and the suction pipe. The refrigeration cycle apparatus is configured so that the solenoid valve is driven and controlled to an open state and a closed state by a pulse width adjustment (PWM) control signal.
PCT/JP2011/053839 2011-02-22 2011-02-22 Refrigeration cycle apparatus WO2012114454A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20110859245 EP2679930A4 (en) 2011-02-22 2011-02-22 Refrigeration cycle apparatus
PCT/JP2011/053839 WO2012114454A1 (en) 2011-02-22 2011-02-22 Refrigeration cycle apparatus
JP2013500750A JP5965895B2 (en) 2011-02-22 2011-02-22 Refrigeration cycle equipment
CN201180067090.0A CN103380334B (en) 2011-02-22 2011-02-22 Freezing cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053839 WO2012114454A1 (en) 2011-02-22 2011-02-22 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2012114454A1 true WO2012114454A1 (en) 2012-08-30

Family

ID=46720274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053839 WO2012114454A1 (en) 2011-02-22 2011-02-22 Refrigeration cycle apparatus

Country Status (4)

Country Link
EP (1) EP2679930A4 (en)
JP (1) JP5965895B2 (en)
CN (1) CN103380334B (en)
WO (1) WO2012114454A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109411A (en) * 2012-12-03 2014-06-12 Rinnai Corp Heat pump heating system
CN103994616A (en) * 2013-02-18 2014-08-20 力博特公司 Scroll compressor differential pressure control techniques
US9476624B2 (en) 2013-02-18 2016-10-25 Liebert Corporation Scroll compressor differential pressure control during compressor shutdown transitions
JPWO2015004747A1 (en) * 2013-07-10 2017-02-23 三菱電機株式会社 Refrigeration cycle equipment
US9829233B2 (en) 2013-02-18 2017-11-28 Liebert Corporation Scroll compressor differential pressure control during compressor startup transitions
WO2023115919A1 (en) * 2021-12-23 2023-06-29 青岛海尔空调器有限总公司 Method and apparatus for adjusting refrigerant of air conditioner, and air conditioner and storage medium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215008B (en) * 2014-10-08 2016-05-25 烟台荏原空调设备有限公司 A kind of method and system of screw refrigerator capacity regulating
JP6767841B2 (en) * 2016-10-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2019020080A (en) * 2017-07-20 2019-02-07 三菱重工サーマルシステムズ株式会社 Air conditioning device and operation method therefor
DE102017123560A1 (en) * 2017-10-10 2019-04-11 Eut Edelstahl Umformtechnik Gmbh Self-regulating adjusting device for a flow control valve, a tempering system as well as a distributor device with the same, and method for this
KR102052341B1 (en) * 2017-11-29 2019-12-04 (주)퓨처시스텍 A Electrical Expanding Control Valve for A Refrigerator Vehicle to Applying Various Refrigerants
EP3809064A4 (en) * 2018-06-15 2021-09-22 Mitsubishi Electric Corporation Refrigeration cycle device
JP7332882B2 (en) * 2019-09-30 2023-08-24 ダイキン工業株式会社 Refrigeration cycle device and four-way valve
CN113670969A (en) * 2021-09-09 2021-11-19 中国矿业大学(北京) Freeze-thaw cycle simulation device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193055A (en) * 1982-05-04 1983-11-10 株式会社東芝 Heat pump type air conditioner
JPS62126289A (en) * 1985-11-25 1987-06-08 Toshiba Corp Air conditioner
JPH0277555U (en) * 1988-11-30 1990-06-14
JPH04340058A (en) * 1991-01-28 1992-11-26 Toshiba Corp Refrigeration cycle device
JPH05149608A (en) * 1991-11-29 1993-06-15 Daikin Ind Ltd Controller of air conditioner operation
JPH0626470A (en) * 1992-07-09 1994-02-01 Toshiba Corp Scroll compressor
JPH08334094A (en) 1995-06-07 1996-12-17 Copeland Corp Scroll type machine with volume control mechanism
JPH0942783A (en) * 1995-07-31 1997-02-14 Matsushita Electric Ind Co Ltd Controller for expansion valve for air conditioner
JPH11324951A (en) 1998-05-19 1999-11-26 Mitsubishi Electric Corp Air conditioner
JP2003028517A (en) * 2001-07-11 2003-01-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2005016884A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Air conditioner
JP2008180420A (en) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp Operation control method for air conditioning system, and air conditioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106922A (en) * 1991-10-18 1993-04-27 Hitachi Ltd Control system for refrigerating equipment
US6213731B1 (en) * 1999-09-21 2001-04-10 Copeland Corporation Compressor pulse width modulation
ES2692800T3 (en) * 2005-10-26 2018-12-05 Carrier Corporation Coolant system with pulse width modulation components and variable speed compressor
US8276395B2 (en) * 2007-02-15 2012-10-02 Carrier Corporation Pulse width modulation with reduced suction pressure to improve efficiency
US8047012B2 (en) * 2007-05-24 2011-11-01 Computer Process Controls, Inc. Refrigeration system and method using multiple variable capacity devices

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193055A (en) * 1982-05-04 1983-11-10 株式会社東芝 Heat pump type air conditioner
JPS62126289A (en) * 1985-11-25 1987-06-08 Toshiba Corp Air conditioner
JPH0277555U (en) * 1988-11-30 1990-06-14
JPH04340058A (en) * 1991-01-28 1992-11-26 Toshiba Corp Refrigeration cycle device
JPH05149608A (en) * 1991-11-29 1993-06-15 Daikin Ind Ltd Controller of air conditioner operation
JPH0626470A (en) * 1992-07-09 1994-02-01 Toshiba Corp Scroll compressor
JPH08334094A (en) 1995-06-07 1996-12-17 Copeland Corp Scroll type machine with volume control mechanism
JPH0942783A (en) * 1995-07-31 1997-02-14 Matsushita Electric Ind Co Ltd Controller for expansion valve for air conditioner
JPH11324951A (en) 1998-05-19 1999-11-26 Mitsubishi Electric Corp Air conditioner
JP2003028517A (en) * 2001-07-11 2003-01-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2005016884A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Air conditioner
JP2008180420A (en) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp Operation control method for air conditioning system, and air conditioning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679930A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109411A (en) * 2012-12-03 2014-06-12 Rinnai Corp Heat pump heating system
CN103994616A (en) * 2013-02-18 2014-08-20 力博特公司 Scroll compressor differential pressure control techniques
EP2767780A3 (en) * 2013-02-18 2015-11-18 Liebert Corporation Scroll compressor differential pressure control techniques
US9477235B2 (en) 2013-02-18 2016-10-25 Liebert Corporation Methods of controlling a cooling system based on pressure differences across a scroll compressor
US9476624B2 (en) 2013-02-18 2016-10-25 Liebert Corporation Scroll compressor differential pressure control during compressor shutdown transitions
CN103994616B (en) * 2013-02-18 2017-04-12 力博特公司 Scroll compressor differential pressure control techniques
US9829233B2 (en) 2013-02-18 2017-11-28 Liebert Corporation Scroll compressor differential pressure control during compressor startup transitions
JPWO2015004747A1 (en) * 2013-07-10 2017-02-23 三菱電機株式会社 Refrigeration cycle equipment
US10113763B2 (en) 2013-07-10 2018-10-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2023115919A1 (en) * 2021-12-23 2023-06-29 青岛海尔空调器有限总公司 Method and apparatus for adjusting refrigerant of air conditioner, and air conditioner and storage medium

Also Published As

Publication number Publication date
EP2679930A1 (en) 2014-01-01
EP2679930A4 (en) 2015-04-29
CN103380334A (en) 2013-10-30
JPWO2012114454A1 (en) 2014-07-07
JP5965895B2 (en) 2016-08-10
CN103380334B (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5965895B2 (en) Refrigeration cycle equipment
EP2565555B1 (en) Refrigeration cycle apparatus
JP5169295B2 (en) Refrigeration equipment
KR100208322B1 (en) Heat pump airconditioner for cold area
CN103216963B (en) Air-conditioning and its startup control method
WO2004063642A1 (en) Refrigeration apparatus
WO2009119023A1 (en) Freezing apparatus
WO2013030896A1 (en) Refrigeration cycle device
WO2009147826A1 (en) Refrigeration cycle device
WO2008079122A1 (en) Pulse width modulation with discharge to suction bypass
WO2011117924A1 (en) Refrigeration cycle apparatus and method for operating same
JP2009236397A (en) Air conditioner
WO2009098899A1 (en) Refrigeration system
US7779642B2 (en) Air conditioner and driving method thereof
US20100307177A1 (en) Rapid compressor cycling
JP6005002B2 (en) Air conditioner
JP5698727B2 (en) Scroll compressor
JP5517891B2 (en) Air conditioner
JP5971633B2 (en) Refrigeration cycle equipment
JP4307878B2 (en) Refrigerant cycle equipment
EP3798534B1 (en) A heat pump
JP2013096602A (en) Refrigeration cycle device
WO2009098900A1 (en) Refrigeration system
KR100710311B1 (en) Air-conditioning system and controlling method for the same
KR100865144B1 (en) Air conditioner and driving method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180067090.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500750

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011859245

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE