WO2012114420A1 - Cooling equipment, and motor and inverter equipped with cooling equipment - Google Patents

Cooling equipment, and motor and inverter equipped with cooling equipment Download PDF

Info

Publication number
WO2012114420A1
WO2012114420A1 PCT/JP2011/053651 JP2011053651W WO2012114420A1 WO 2012114420 A1 WO2012114420 A1 WO 2012114420A1 JP 2011053651 W JP2011053651 W JP 2011053651W WO 2012114420 A1 WO2012114420 A1 WO 2012114420A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
motor
cooling device
housing
refrigerant pipe
Prior art date
Application number
PCT/JP2011/053651
Other languages
French (fr)
Japanese (ja)
Inventor
横山篤
荒井雅嗣
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013500720A priority Critical patent/JP5676737B2/en
Priority to PCT/JP2011/053651 priority patent/WO2012114420A1/en
Publication of WO2012114420A1 publication Critical patent/WO2012114420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to a cooling device, and a motor and an inverter including the cooling device, and more particularly to a cooling device having a high cooling performance, and a motor and an inverter including the cooling device.
  • Patent Documents 1 and 2 disclose techniques for improving the cooling performance of such electric devices.
  • the motor cooling device disclosed in Patent Document 1 cools the motor by providing a frame on the outside of the motor and a cooling jacket on the frame, and circulating the refrigerant in the cooling jacket.
  • a relatively high cooling performance can be ensured by cooling the motor using a refrigerant that can be cooler than the cooling water.
  • the refrigerant flow path is formed by combining the members constituting the motor case, when high-pressure refrigerant flows in the refrigerant flow path, the refrigerant leaks from the connection portion between the members, and the cooling performance May be reduced.
  • a refrigerant flow path formed by combining members such as aluminum, it is necessary to improve the sealing performance of the connecting portion between the members, and it is extremely difficult to ensure high sealing performance against the high-pressure refrigerant. .
  • the cooling performance of the motor is improved by improving the sealing performance of the cooling water flow path. Efficiency can be increased.
  • the motor outer peripheral surface and the cooling water pipe having a circular cross section are in line contact, a gap exists between the motor and the cooling water pipe, and the thermal resistance between the motor outer peripheral surface and the cooling water pipe increases. Therefore, for example, even if a relatively low temperature refrigerant is used instead of the cooling water, a sufficient cooling effect cannot be obtained.
  • the pipe when the refrigerant flowing inside the pipe is cooler than the atmosphere around the motor, the pipe is exposed to the atmosphere around the motor, so that the refrigerant that should cool the motor is heated from the surrounding atmosphere. May be absorbed, and the cooling efficiency of the motor may be reduced.
  • the present invention has been made in view of the above problems, and the object of the present invention is to efficiently convert the heat of the electric device into the refrigerant when the electric device such as a motor is cooled using the refrigerant of the refrigeration cycle. Another object is to provide a cooling device capable of transmitting, and a motor and an inverter including the cooling device. Furthermore, a cooling device capable of effectively preventing the heat of the atmosphere around the cooling device from being absorbed by the refrigerant and ensuring higher cooling performance, and a motor and an inverter including the cooling device are provided. It is to provide.
  • a cooling device is a cooling device including a refrigerant pipe that cools an object to be cooled with a refrigerant, and the refrigerant pipe is formed into a plane shape as a whole with a long pipe.
  • One surface side of the surface shape is covered with a housing, and the other surface side is a contact portion with the object to be cooled, and the gap between the housing and the contact portion has a thermal conductivity higher than that of air.
  • It is a cooling device characterized by being filled with a substance having a high content.
  • the refrigerant pipe with a small number of connection portions formed as a whole with a long pipe as a whole, even when a high-pressure refrigerant of a refrigeration cycle is used for cooling an object to be cooled such as an electric device. It is possible to suppress the leakage of the refrigerant from the refrigerant flow path and suppress the deterioration of the cooling performance of the cooling device.
  • the refrigerant pipe is arranged in contact with the object to be cooled, so that the refrigerant can be arranged close to the object to be cooled, and the object to be cooled can be efficiently
  • the object to be cooled can be cooled by absorbing the heat released from.
  • a gap partially existing between the object to be cooled can be filled with the substance, and the heat released from the object to be cooled can be efficiently transferred to the refrigerant in the refrigerant pipe via the substance.
  • the cooling performance of the cooling device can be further enhanced.
  • the heat released from the object to be cooled can be efficiently obtained by filling the gap that can be generated between the refrigerant pipe and the object to be cooled with a substance having high thermal conductivity. Therefore, it is possible to transmit to the refrigerant in the refrigerant pipe, and to suppress an increase in the temperature of the object to be cooled, thereby realizing efficient operation of the object to be cooled.
  • Example 1 of the cooling device which concerns on this invention, and is the longitudinal cross-sectional view which showed the state applied to the motor.
  • FIG. 10 is a longitudinal sectional view in which an inverter is disposed between the motor and the cooling device shown in FIG. 9.
  • Example 1 and 2 show a first embodiment of a cooling device according to the present invention, which shows a state applied to a motor.
  • a motor 1000 shown in FIG. 1 is roughly composed of a motor main body 100 and a cooling device 200 for cooling the motor main body 100.
  • the motor main body 100 includes a rotating rotor 1 and a stator 2 disposed around the rotor 1 and wound with a coil 3, and a motor case 11 for housing them.
  • the motor body 100 includes a motor cover 12 having a rotation angle sensor 13 on the inner surface 12 ⁇ / b> A on the side, and the motor cover 12 is attached to the side surface of the motor case 11, so that the rotor 1 accommodated inside the motor body 100. And the stator 2 are protected from the external environment.
  • a signal such as the rotation speed of the rotor 1 detected by the rotation angle sensor 13 is transmitted to a rotation control device (not shown) and used to control the rotation of the rotor 1.
  • bearings 14 and 15 are provided between the motor case 11 and the rotor 1 and between the motor cover 12 and the rotor 1, and when the motor case 11 is fixedly attached to a vehicle or the like. In other words, the rotor 1 can rotate about the rotation axis L with respect to the motor case 11 and the motor cover 12.
  • a cooling device 200 for cooling the motor body 100 is disposed outside the motor body 100.
  • the cooling device 200 cools and circulates the refrigerant pipe 21 that is spirally configured to come into contact with the outer peripheral surface 11A of the motor case 11, the housing 26 that covers the outer peripheral side of the refrigerant pipe 21, and the refrigerant R.
  • a cooling device 20 constituting a refrigeration cycle, which is a kind of thermodynamic cycle, that is, a compressor 20A, a heat exchanger 20B, and a refrigerant pump 20C.
  • the refrigerant pipe 21 has fewer connection parts than a refrigerant flow path constituted by other parts formed by combining a plurality of members, for example, there are few seal members such as rubber used for the connection parts.
  • the refrigerant hardly leaks from the seal portion, and even when a high-pressure refrigerant circulates in the refrigerant pipe 21 through the refrigeration equipment 20 or the like, excellent sealing performance and non-leakage can be ensured.
  • the refrigerant pipe 21 has a substantially oval cross section at a portion located on the outer peripheral surface 11A of the motor case 11, and a cross section at a portion that directly contacts the outer peripheral surface 11A is linear and flat.
  • the cross-sectional shape of the refrigerant pipe 21 includes a polygonal shape such as a substantially triangular shape or a substantially quadrangular shape in addition to the illustrated elliptical shape.
  • a refrigerant discharge part 22 and a refrigerant supply part 23 extending in parallel with the direction of the rotation axis L of the rotor 1 are provided at both ends of the refrigerant pipe 21 wound spirally along the outer peripheral surface 11A of the motor case 11. Then, the refrigerant R that has absorbed the heat radiated from the motor main body 100 through the spiral refrigerant pipe 21 is sent to the refrigeration equipment 20 via the refrigerant discharge part 22 and the refrigerant hose 24 attached to the refrigerant discharge part 22. It is configured as follows.
  • the heat of the refrigerant R is released to the outside by the compressor 20 ⁇ / b> A, the heat exchanger 20 ⁇ / b> B, and the like described above, and the cooled refrigerant R is again supplied by the refrigerant pump 20 ⁇ / b> C via the refrigerant hose 25 and the refrigerant supply unit 23.
  • the refrigeration cycle is configured to be pressure-fed to the refrigerant pipe 21 around the motor body 100.
  • the cooling device 200 is made of a non-metallic material (for example, resin) that covers the refrigerant pipe 21, a part of the refrigerant discharge part 22, the refrigerant supply part 23, and the outer peripheral surface 11A of the motor case 11 (motor main body 100).
  • a housing 26 is further provided. Of the region defined by the inner peripheral surface 26A of the housing 26 and the outer peripheral surface 11A of the motor case 11, a region other than the refrigerant pipe 21, that is, the housing 26, the refrigerant pipe 21, and the motor case.
  • the space between the 11 contacting portions 21 ⁇ / b> A is filled with a substance F having a higher thermal conductivity than air, in particular, a fluid F having a high fluidity.
  • the fluid F is also filled in a gap 29 existing between the refrigerant pipe 21 and the outer peripheral surface 11 ⁇ / b> A of the motor case 11.
  • the fluid F (substance) is a liquid or a resin, and examples of the liquid include an antifreeze and an inert liquid having high thermal conductivity. Examples of the resin include a high thermal conductivity resin.
  • this fluid F has fluidity
  • the refrigerant R can be circulated only by the refrigerant pump 20C. Even when the cooling performance of the refrigeration cycle is lowered in this way, the refrigerant R can be cooled by the heat radiation from the surface of the cooling device 200, so that the cooling device 200 is operated efficiently, Temperature rise can be suppressed.
  • a procedure (process) for assembling the motor 1000 provided with the cooling device 200 will be described.
  • a procedure for assembling the motor main body 100 first, a rotor 1, a stator 2 around which a coil 3 is wound, and a motor case 11 having a bearing 14 at one end are prepared. Thereafter, the stator 2 is inserted into the motor case 11 until the step 16 provided on the inner peripheral surface of the motor case 11 and the corner of the stator 2 abut, and then the bearing 14 provided on the motor case 11 and the rotor 1 The rotor 1 is inserted until the step 4 comes into contact. Then, the motor cover 12 having the bearing 15 and the rotation angle sensor 13 disposed on one surface in advance is attached to the motor case 11.
  • the cooling device 200 is assembled in a process different from the process of assembling the motor body 100. First, after the refrigerant pipe 21 is formed in a substantially spiral shape, the refrigerant discharge part 22 and the refrigerant supply part 23 are formed with both ends of the refrigerant pipe 21 being linear. Then, the housing 26 is attached so as to cover a part of the refrigerant pipe 21, the refrigerant discharge part 22, and the refrigerant supply part 23.
  • the cooling device 200 is moved in the direction of the rotation axis L of the rotor 1 (arrow A direction) so as to cover the outer peripheral surface 11A of the motor main body 100 assembled in the above procedure, and the cooling device 200 is attached to the motor main body 100 to be integrated.
  • the flat surface of the refrigerant pipe 21 is disposed so as to contact the outer peripheral surface 11 ⁇ / b> A of the motor case 11.
  • a fluid F having a thermal conductivity higher than that of air is injected into the housing 26 from a fluid inlet 26B (see FIG. 2) provided in the housing 26.
  • the region defined by the peripheral surface 26A is filled with the fluid F.
  • the air gap 29 exists in the outer peripheral surface 11 ⁇ / b> A of the refrigerant pipe 21 and the motor case 11.
  • the fluid F enters the gap 29, and the gap 29 can be filled with the fluid F.
  • a refrigerant hose 24 is attached to the refrigerant discharge part 22 and connected to the refrigeration equipment 20 (compressor 20A, heat exchanger 20B, refrigerant pump 20C).
  • the refrigerant pump 20 ⁇ / b> C is connected to a refrigerant hose 25 attached to the refrigerant supply unit 23.
  • the fluid F when removing the cooling device 200 from the motor main body 100, the fluid F can be discharged
  • FIG. 2 for example, when a resin is used as the fluid F and the resin is solidified, a step of discharging the fluid F from the fluid outlet 26C becomes unnecessary.
  • the fluid inlet 26B and the fluid outlet 26C can be provided at any position of the housing 26.
  • the motor main body 100 and the cooling device 200 are individually assembled and separated after being integrated, so that the cooling device 200 can be separated from the motor main body 100 without disassembling the motor main body 100, for example. It can be detached, and the assembly and maintenance of the motor body 100 and the cooling device 200 can be improved.
  • FIG. 2 schematically shows the piping of the refrigerant pipe in the motor of the first embodiment.
  • a refrigerant pipe 21 is spirally wound around the motor case 11, and the refrigerant R supplied from the refrigerant supply unit 23 via the refrigerant hose 25 rotates the rotor 1 in the refrigerant pipe 21. It flows spirally around the axis L, and is discharged from the refrigerant discharge port 22 to the outside of the housing 26.
  • adjacent refrigerant pipes 21 are in contact with each other and are wound around the motor case 11 in a spiral shape.
  • the rotor 1 is rotationally driven by an inverter circuit (not shown), so that the refrigerant pipe having high hermeticity is mainly produced even when the copper loss of the stator 2 is converted into heat and the stator 2 generates heat.
  • 21 is arranged close to or in contact with the outer peripheral surface 11A of the motor main body 100, and the refrigerant pipe 21 having a sealed structure that hardly leaks the high-pressure refrigerant R flowing through the refrigeration equipment 20 of the refrigeration cycle is used.
  • the released heat (mainly heat generated from the stator 2) can be efficiently absorbed by the refrigerant R.
  • the heat released from the motor main body 100 can be efficiently transmitted to the refrigerant R in the refrigerant pipe 21 via the motor case 11 (in the direction of the arrow X1).
  • an area 29 defined by the outer peripheral surface 11A of the motor case 11 and the inner peripheral surface 26A of the housing 26, in particular, a gap 29 that can be generated between the outer peripheral surface 11A of the motor case 11 and the refrigerant pipe 21 is a fluid F.
  • the heat generated in the stator 2 and transferred to the motor case 11 can be efficiently transferred through the fluid F in the gap 29.
  • the heat can be transmitted to the refrigerant R in the pipe 21 (in the direction of the arrow X2), and the heat released from the motor body 100 can be effectively released to the outside of the motor body 100.
  • the refrigerant pipe 21 having a large shape variation due to manufacturing variation or the like is used by filling the region such as the gap 29 with the fluid F having high fluidity, the fluid F has the shape variation.
  • the area can be filled with the fluid F easily and uniformly.
  • the heat released from the motor main body 100 can be transmitted via the fluid F having a high thermal conductivity, it is not necessary to attach the refrigerant pipe 21 firmly to the motor case 11. . Therefore, the pressure acting when the refrigerant pipe 21 is attached can be reduced, so that the refrigerant pipe 21 can be prevented from being damaged, and the cooling device 200 can be removed from the motor body 100 and maintained separately.
  • the refrigerant pipe 21 can be easily detached from the motor case 11, and the maintainability thereof can be further improved.
  • the motor body 100 is driven at a relatively low temperature. That is, in such a case, the temperature of the refrigerant R circulating in the refrigerant pipe 21 is generally lower than the outside air temperature of the motor 1000.
  • the housing 26 is made of a material having high thermal conductivity such as metal, the low-temperature refrigerant R in the refrigerant pipe 21 absorbs the heat of the outside air and the temperature of the refrigerant R rises, and the cooling device The cooling efficiency of 200 may be reduced.
  • the housing 26 is made of a non-metallic material having a relatively low thermal conductivity, and the heat exchange between the refrigerant R and the outside air is suppressed, so that the temperature of the refrigerant R becomes the atmospheric temperature. Even when the temperature is relatively lower than the above, the heat absorption effect of the housing 26 can suppress the heat absorption of the refrigerant R to suppress the temperature rise of the refrigerant R, thereby suppressing the decrease in the cooling efficiency of the cooling device 200.
  • Example 2 3 and 4 show a second embodiment of the cooling device according to the present invention, which shows a state applied to a motor.
  • the motor main body used in Example 2 is the same as the motor main body 100 used in Example 1, the same code
  • the cooling device 300 according to the second embodiment shown in FIG. 3 is mainly shown in FIG. 1 in that adjacent refrigerant pipes 31 wound around the outer peripheral surface 11A of the motor main body 100 are arranged at a predetermined interval. This is different from the cooling device 200 of the first embodiment.
  • the cooling device 300 also includes a circulation path 331 for circulating the fluid F in the housing 36, a fluid pump 330A for the circulation path 331, and a radiator 330 for cooling the fluid F during circulation.
  • the refrigerant pipe 31 is wound around the outer peripheral surface 11A of the motor main body 100 at a predetermined interval, so that the fluid F existing in the gap 29 of the first embodiment, for example, is adjacent to the refrigerant pipe 31. It can flow radially outward with respect to the outer peripheral surface 11 ⁇ / b> A of the motor body 100 through a flow path (gap) 39 formed between them. Thereby, the fluid F can ensure the heat-transfer path
  • the motor main body 100 can be directly cooled by the fluid F without becoming high temperature, and the motor main body 100 can be efficiently cooled.
  • FIG. 4 schematically shows the piping of the refrigerant pipe in the motor of the second embodiment.
  • the refrigerant pipes 31 are wound around the refrigerant pipes 31 that are adjacent to each other outside the motor case 11 of the motor main body 100 at intervals.
  • a fluid outlet 332 for circulating the fluid F to the circulation path 331 is provided above the housing 36, and the fluid F circulated from the circulation path 331 is disposed below the housing 36.
  • the housing 36 is provided with a fluid inlet 36B and a fluid outlet 36C for injecting the fluid F.
  • the fluid outlet 332 and the fluid inlet 333 can also be used as a fluid inlet or a fluid outlet for injecting the fluid F into the housing 36.
  • the refrigerant pipes 31 are arranged at intervals to increase the fluidity of the fluid F in the housing 36, and the circulation path 331 for circulating and cooling the fluid F is provided.
  • the fluid F that can become high temperature in the housing 36 can be efficiently cooled to improve the cooling efficiency of the cooling device 300.
  • the heat dissipated when the rotor 1 rotates is mainly above the motor main body 100 ( The fluid F that has been radiated upward (in the vertical direction) and has reached a high temperature in the housing 36 also flows upward in the vertical direction.
  • the fluid F in the vertically upper part is relatively high in temperature with respect to the fluid F in the vertically lower part. Therefore, as shown in the figure, by providing a fluid outlet 332 to the circulation path 331 vertically above, the fluid F that can become high temperature in the housing 36 can be efficiently sent to the radiator 330 for cooling. .
  • the fluid F cooled by the radiator 330 can be returned to the housing 36 through the fluid inlet 333 provided vertically below the housing 36 to achieve efficient circulation.
  • the operating efficiency of 300 can be further increased.
  • the fluid outlet 332 of the circulation path 331 is arranged on the vertical upper side of the housing 36, and the fluid inlet 33 is set vertically. It is preferable to provide the lower side.
  • the compressor 30A and the refrigerant pump 30C of the refrigeration device 30 are stopped and only the fluid pump 330A is used. Can be driven. That is, the heat released from the motor main body 100 is absorbed by the fluid F in the flow path 39 in the housing 36, the fluid F is sent to the circulation path 331, and heat is exchanged by the radiator 330 to dissipate heat to the outside air.
  • the cooling of the motor main body 100 can be suppressed without cooling the motor main body 100 with the refrigerant R, so that the cooling device 300 can be operated efficiently.
  • Example 3 5 and 6 show a third embodiment of the cooling device according to the present invention, which shows a state applied to a motor.
  • the motor main body used in this Example 3 is the same as that of the motor main body 100 used in Example 1, the same code
  • the heat radiated when the rotor 1 rotates is mainly the motor.
  • Heat is dissipated upward (vertically upward) of the main body 100, and the fluid F that has reached a high temperature in the housing 46 also flows vertically upward.
  • the fluid F in the vertically upward direction particularly flows vertically downward. The temperature becomes relatively high with respect to the body F.
  • the refrigerant pipes 41 are concentrated on the upper side of the motor body 100 in the vertical direction.
  • the heat dissipated from the motor main body 100 can be efficiently transmitted to the refrigerant R in the refrigerant pipe 41, and the fluid F on the vertically upper side can be efficiently cooled by the refrigerant R. Therefore, the cooling device 400 can be reduced in size and weight while maintaining the cooling performance of the cooling device 400, and thus the motor 3000 can be reduced in size and weight.
  • FIG. 6 schematically shows the piping of the refrigerant pipe 41 of the motor 3000 shown in FIG.
  • the refrigerant pipe 41 is mainly disposed so as to be substantially parallel to the rotation axis L of the rotor 1 and meanders (zigzag) outside the motor case 11 in the circumferential direction. Are arranged in a plane shape as a whole.
  • the refrigerant supply unit 43 and the refrigerant discharge unit 42 can be provided at different positions on the outer peripheral surface 11A of the motor main body 100, and either the same direction in the rotation axis L direction of the motor main body 100 or the opposite direction. It can also be provided in the direction.
  • the refrigerant supply section 43 and the refrigerant discharge section 42 are provided in the same direction in the direction of the rotation axis L of the motor main body 100, so that the refrigerant pipe 41 is mounted in the state where the housing 46 is attached to the motor main body 100.
  • the cap 46B and the like can be pulled out (in the direction of arrow C) from the outer peripheral surface 11A of the motor main body 100 and removed.
  • the refrigerant pipe 41 can be separated without disassembling the motor main body 100 and the housing 46, and the assemblability and maintainability of the cooling device 400 can be further improved.
  • the cross-sectional shape of the refrigerant pipe 41 can be the same cross-sectional shape as in the first and second embodiments, that is, a cross-sectional shape that can come into surface contact with the outer peripheral surface of the motor case 11.
  • FIG. 7 schematically shows another embodiment of the refrigerant pipe piping in the motor of the third embodiment.
  • the refrigerant pipe 41 is mainly disposed so as to be perpendicular to the rotation axis L of the motor body 100, and is disposed so as to meander the outside of the motor case 11 in the direction of the rotation axis L.
  • the refrigerant supply unit 43 and the refrigerant discharge unit 42 can be provided in the same position on the outer peripheral surface 11 ⁇ / b> A of the motor case 11 in the direction opposite to the rotation axis L of the motor body 100.
  • the refrigerant R absorbs heat radiated from the motor main body 100 and heat of the fluid F, and enters the refrigeration equipment 40 via the refrigerant hose 44 attached to the housing 46. Then, it is cooled by the compressor 40A, the heat exchanger 40B, etc. of the refrigeration equipment 40, and is again pumped to the refrigerant pipe 41 via the refrigerant hose 45 by the refrigerant pump 40C.
  • the refrigerant pipe 41 and the refrigerant hoses 44 and 45 are connected via a housing cap 46B, and the housing 46 is sealed by the housing cap 46B.
  • Example 3 a circulation path for circulating the fluid F, a fluid pump, a radiator for cooling the fluid F, and the like are not provided.
  • the circulation path 47 in a region defined by the outer peripheral surface 11A of the motor case 11 and the inner peripheral surface 46A of the housing 46, the heat is absorbed and the temperature becomes relatively high, and the specific gravity is reduced.
  • the body F flows vertically upward, is cooled by the refrigerant R provided vertically above, and the fluid F having a higher specific gravity flows vertically downward. That is, the fluid F is circulated by the circulation passage 47 provided around the motor body 100 by natural convection utilizing the specific gravity difference of the fluid F in the housing 46 without using a circulation path or a pump. Can do.
  • the fluid pump or the like is not necessary, and further simplification of the configuration and size reduction of the physique can be achieved.
  • the refrigerant pipes 41 arranged on the outer peripheral surface 11A of the motor case 11 are spaced apart from each other as shown in FIG.
  • the flow path (gap) 49 for the fluid F is formed.
  • the refrigerant pipe 41 having a circular cross section shown in the figure can be configured in the same manner as in the first and second embodiments so that the refrigerant pipe 41 and the outer peripheral surface 11A of the motor main body 100 are brought into surface contact.
  • FIG. 8 is a fourth embodiment of the cooling device according to the present invention, and shows a state applied to an inverter, with a part cut away so that the inside of the inverter main body 150 and the cooling device 500 can be seen. It is a thing.
  • the inverter 4000 shown in the figure is generally composed of an approximately rectangular parallelepiped inverter main body 150 and a cooling device 500 for cooling the inverter main body 150.
  • the inverter main body 150 includes a substrate 112, an inverter case 111, and an electric element 101 made of a semiconductor element or a passive element.
  • the electric element 101 is placed on the substrate 112 and covered with the inverter case 111.
  • a cooling device 500 for cooling the inverter main body 150 is disposed on the outer peripheral side of the inverter main body 150 (on the upper surface 111A side of the inverter case 111).
  • the cooling device 500 includes a refrigerant pipe 51, a housing 56 made of a nonmetallic material for covering the outside of the refrigerant pipe 51, and a refrigeration apparatus 50 (which constitutes a refrigeration cycle for cooling and circulating the refrigerant R).
  • the compressor 50A, the heat exchanger 50B, and the refrigerant pump 50C) are generally configured.
  • the refrigerant pipe 51 is meandering (zigzag) so as to come into contact with the upper surface 111 ⁇ / b> A of the inverter case 111 and is arranged in a planar shape as a whole.
  • the refrigerant pipe 51 has the same configuration as the first embodiment in the contact portion 51A that contacts the upper surface 111A of the inverter case 111, and the upper surface 111A of the refrigerant pipe 51 and the inverter case 111. Are in surface contact.
  • the refrigerant pipe 51 in the housing 56 is disposed above the electric element 101 such as a transistor having a particularly large calorific value, so that the heat radiated from the electric element 101 can be efficiently transferred to the refrigerant R in the refrigerant pipe 51. Can be communicated to.
  • the refrigerant pipe 51 may be provided on the lower surface of the inverter main body 150 or may be provided so as to go around the inverter main body 150.
  • a refrigerant discharge part 52 and a refrigerant supply part 53 are provided at both ends of the refrigerant pipe 51 provided on the upper surface 111A of the inverter case 111, and the electric element 101 passes through the refrigerant pipe 51.
  • the refrigerant R that has absorbed the heat released from the refrigerant is sent to the refrigeration equipment 50 of the refrigeration cycle via the refrigerant discharge part 52 and the refrigerant hose 54 attached to the refrigerant discharge part 52.
  • the heat of the refrigerant R is released to the outside by the compressor 50A, the heat exchanger 50B, etc., and the refrigerant R cooled by the refrigerant R is again supplied to the refrigerant R through the refrigerant hose 55 and the refrigerant supply unit 53 by the refrigerant pump 50C. It is pumped to the pipe 51.
  • the cooling device 500 includes a region other than the refrigerant pipe 51 among regions defined by the inner peripheral surface 56A of the housing 56 and the upper surface 111A of the inverter case 111, that is, a contact portion 51A between the housing 56 and the refrigerant pipe 51.
  • the space between them is filled with the fluid F, and similarly to the second embodiment, a circulation path 551, an inverter 550, and a fluid pump 550A are provided.
  • the fluid F that has reached a high temperature in the housing 56 is sent to the circulation path 551 via the fluid outlet 552, and is heat-exchanged by the radiator 550 connected to the circulation path 551.
  • the cooled fluid F is pumped into the housing 56 via the fluid inlet 553 by the fluid pump 550A.
  • the adjacent refrigerant pipes 51 provided on the upper surface 111A of the inverter main body 150 are arranged at intervals from each other and flow from the inverter case 111. A heat transfer path for heat transferred to the body F is secured.
  • FIG. 9 is a fifth embodiment of the cooling device according to the present invention, and shows a state applied to a motor.
  • the motor main body used in the fifth embodiment has the same configuration as that of the motor main body 100 used in the first to fourth embodiments. Therefore, the same reference numerals are given and detailed description thereof is omitted.
  • the illustrated motor 5000 includes a circulation path 661 for circulating the fluid F in the housing 66, a fluid pump 660A, and a radiator 660 for cooling the fluid F.
  • the motor body 100 and the housing 66 of the cooling device 600 are integrally formed by an integral housing 69 in which a circulation path 67 is provided around the outer peripheral surface 11A of the motor case 11.
  • the housing 66 of the cooling device 600 and the circulation path 67 are connected by a connection path 72.
  • the fluid F that has flowed through the housing 66 and absorbed the heat released from the motor main body 100 is sent to the circulation path 67 by the connection path 72.
  • the fluid F flows around the motor body 100 along the circulation path 67 while further absorbing heat released from the motor body 100, and is provided in the circulation path 661 via the fluid outlet 662.
  • the heat is transferred to the pump 660A, the heat is radiated to the outside air by the radiator 660, and the cooled fluid F is sent to the heat exchanger 70 via the fluid inlet 663. To be pumped.
  • the heat exchanger 70 is provided in the housing 66 of the cooling device 600 through which the fluid F flows. That is, when flowing through the circulation path 67 provided on the outer peripheral surface 11 ⁇ / b> A of the motor main body 100, the fluid F that is heated to the heat dissipated from the motor main body 100 and sent to the heat exchanger 70 via the radiator 660 is Further, the heat exchanger 70 further cools by the refrigeration equipment 60 of the refrigeration cycle. That is, heat exchange is performed between the refrigerant R in the refrigerant pipe 61A supplied to the heat exchanger 70 via the refrigerant supply unit 63A and the fluid F flowing through the circulation path 661, and the fluid F further To be cooled.
  • the refrigerant R that has absorbed the heat of the fluid F is transferred to the refrigeration cycle cooling device 60 (the compressor 60A, the heat exchanger 60B, and the refrigerant pump 60C) connected to the refrigerant hose 64A via the refrigerant discharge portion 62A. Then, the pressure is again sent to the refrigerant pipe 61 in the housing 66 through the refrigerant hose 65 and the refrigerant supply unit 63.
  • the refrigerant R that has absorbed the heat of the motor main body 100 with the refrigerant pipe 61 arranged in, for example, a zigzag shape in the housing 66 is sent to the refrigerant hose 64 via the refrigerant discharge part 62 and supplied with the refrigerant hose 65A. It is sent to the heat exchanger 70 via the part 63A.
  • the fluid F cooled by the refrigerant R in the refrigerant pipe 61A is sent into the housing 66 through the connection path 71 and is radiated from the motor main body 100 while flowing in the housing 66 as described above.
  • the heat is absorbed and supplied again to the circulation path 67 disposed around the motor main body 100 by the connection path 72, and the motor main body 100 is cooled.
  • the fluid F in the housing 66 is circulated using the circulation path 661 and the like, and the fluid F used for cooling the motor main body 100 by the heat exchanger 70 and the refrigerant R in the refrigerant pipe 61A Since the fluid F flowing in the housing 66 of the cooling device 600 can be cooled more efficiently and the flow rate of the flowing fluid F can be further suppressed, the entire fluid F can be reduced. Thus, the fluid F can be cooled with good responsiveness.
  • FIG. 10 shows an arrangement in which an inverter is interposed between the motor and the cooling device shown in FIG. 9, and the cooling device is applied to an inverter main body 150 and a motor main body 100 that are integrated.
  • the illustrated inverter main body 150 is the same as the inverter main body 150 used in the fourth embodiment, and thus the same reference numerals are given and detailed description thereof is omitted.
  • the motor main body 100 and the inverter 150 are integrated with each other by an integral housing 69 of the motor main body 100, and a cooling device 600A is attached to the upper side.
  • the inverter main body 150 between the motor main body 100 and the cooling device 600A, the heat dissipated from the inverter main body 150 by the cooling device 600A can be absorbed, and the motor main body 100 and the inverter main body can be absorbed. Both 150 can be cooled. Moreover, compared with the case where the motor main body 100 and the inverter main body 150 are separately disposed and cooled by the cooling device, the length of the piping of the fluid F flowing through the entire motor 5000A can be suppressed, and the entire motor 5000A can be reduced. Smaller and lighter can be achieved.
  • the heat capacity of the fluid F is reduced by reducing the overall flow rate of the fluid F, thereby cooling the fluid F with high responsiveness.
  • the cooling efficiency of the cooling device 600A can be increased.
  • the inverter main body 150 may be attached to the opposite side of the motor main body 100 to which the cooling device is attached, or the cooling device may be interposed between the motor main body 100 and the inverter main body 150.
  • FIG. 11 shows another embodiment of the piping of the refrigerant pipe shown in FIG.
  • the inside of the housing 66 of the cooling device 600B is filled with only the fluid F, the fluid F is circulated through the circulation paths 67 and 661, and cooled by heat exchange in the radiator 660, so that the motor The main body 100 and the inverter main body 150 can also be cooled.
  • the heat exchanger 70 is provided in the motor 5000B, and the heat radiated from the motor main body 100 and the inverter main body 150 and absorbed by the fluid F flows into the refrigerant pipe 61A in the heat exchanger 70. It is transmitted to R and radiated to the outside of the motor 5000B.
  • the cooling performance of the cooling device is improved while using a refrigerant pipe having a sealed structure in which high-pressure refrigerant is difficult to leak.
  • the heat radiated from the body can be efficiently radiated to the outside.
  • the to-be-cooled body can be efficiently operated while suppressing the temperature rise of the to-be-cooled body.
  • by optimizing the arrangement of the refrigerant pipes it is possible to reduce the size and weight of the cooling device, and it is possible to reduce the overall size of the cooling device even when it is attached to an electric device or the like.
  • the cooling device detachable from the electric device without disassembling the electric device such as a motor, inverter, battery, etc., it is possible to improve the assemblability and maintainability of the electric device that is the cooling device and the cooled object. it can.
  • the present invention is not limited to the first to fifth embodiments described above, and includes various modifications.
  • the first to fifth embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.

Abstract

Provided is cooling equipment which is capable of efficiently transferring heat from a body to be cooled, such as electric equipment, to a refrigerant inside refrigerant pipes, and which is capable of effectively preventing heat in the air surrounding the cooling equipment from being absorbed by the refrigerant, thereby ensuring greater cooling performance. Also provided are a motor and inverter equipped with the cooling equipment. The cooling equipment (200) is equipped with refrigerant pipes (21) that cool the motor (100) using the refrigerant (R). The refrigerant pipes (21) are long pipes formed in flat shape as a whole. One side of the flat shape is covered by a housing (26), and the other side serves as a contact section that comes into contact with the motor (100). The space between the housing (26) and the contact section is filled with a material (F) having a thermal conductivity higher than air.

Description

冷却装置、及び、該冷却装置を備えたモータとインバータCooling device, and motor and inverter provided with the cooling device
 本発明は冷却装置、及び該冷却装置を備えたモータとインバータに関し、特に、高い冷却性能を備えた冷却装置、及び該冷却装置を備えたモータとインバータに関する。 The present invention relates to a cooling device, and a motor and an inverter including the cooling device, and more particularly to a cooling device having a high cooling performance, and a motor and an inverter including the cooling device.
 近年、電気自動車、ハイブリッド自動車、電車等の輸送機器等の分野においては、環境負荷低減の観点から、小型軽量でありながら、高効率かつ高トルクを達成できるモータの開発が急速に進められている。また、当該分野では、このようなモータ自体の高効率化に加えて、モータとインバータを組み合わせて回転速度や出力トルクを調整することで、例えば交流モータ等のモータの高効率化が促進されている。 In recent years, in the field of transportation equipment such as electric vehicles, hybrid vehicles, and trains, development of motors that can achieve high efficiency and high torque while being small and light is being promoted rapidly from the viewpoint of reducing environmental impact. . In addition, in this field, in addition to increasing the efficiency of the motor itself, by combining the motor and the inverter and adjusting the rotation speed and output torque, the efficiency of the motor such as an AC motor is increased. Yes.
 ところで、一般に、上記モータやインバータ、バッテリ等の電動機器は、駆動される際のエネルギ損失によって発熱することが知られている。例えば、ロータ内部に磁石が埋設されたIPMモータ(Interior Permanent Magnet Motor)の場合、鉄損に起因する発熱によって磁石温度が上昇し、磁石温度が自らの限界温度を超えてしまうと、磁石が減磁してモータトルクが低下してしまう。このように、電動機器においては、自らの発熱等によってそれ自体の温度が耐熱温度に到達すると、電動機器の各種性能が低下してしまう可能性が高い。特に、小型且つ高出力の電動機器においては発熱等による温度上昇が顕著となるため、電動機器の性能低下や損傷を抑制するために、電動機器内部の熱を如何にその外部へ放熱して冷却するかが当該分野における急務の課題となっている。 Incidentally, it is generally known that electric devices such as the motor, inverter, and battery generate heat due to energy loss when driven. For example, in the case of an IPM motor (Interior / Permanent / Magnet / Motor) with a magnet embedded in the rotor, if the magnet temperature rises due to heat generation due to iron loss and the magnet temperature exceeds its own limit temperature, the magnet will decrease. Magnetization will cause the motor torque to drop. As described above, in the electric device, when the temperature of the electric device reaches the heat resistant temperature due to its own heat generation or the like, there is a high possibility that various performances of the electric device are deteriorated. In particular, in small and high-power electric devices, the temperature rise due to heat generation becomes significant, so in order to suppress the performance degradation and damage of the electric device, how to dissipate the heat inside the electric device to the outside and cool it down. There is an urgent issue in this field.
 このような電動機器の冷却性能を向上させる技術が特許文献1,2に開示されている。特許文献1に開示されているモータの冷却装置は、モータの外側にフレームを設けると共にこのフレームに冷却ジャケットを設け、当該冷却ジャケットに冷媒を還流させることによってモータを冷却するものである。 Patent Documents 1 and 2 disclose techniques for improving the cooling performance of such electric devices. The motor cooling device disclosed in Patent Document 1 cools the motor by providing a frame on the outside of the motor and a cooling jacket on the frame, and circulating the refrigerant in the cooling jacket.
 また、特許文献2に開示されているモータの冷却構造は、モータの外周面に冷却水パイプを巻き付け、この冷却水パイプを流れる冷却水によってモータを冷却するものである。
特開平8-251872号公報 特開平7-213019号公報
Moreover, the cooling structure of the motor currently disclosed by patent document 2 winds a cooling water pipe around the outer peripheral surface of a motor, and cools a motor with the cooling water which flows through this cooling water pipe.
JP-A-8-251872 Japanese Patent Laid-Open No. 7-213019
 特許文献1に開示されているモータの冷却装置によれば、冷却水よりも低温となり得る冷媒を用いてモータを冷却することで、比較的高い冷却性能を確保することができる。一方で、モータケースを構成する部材を組み合わせて冷媒流路が形成されているために、その冷媒流路内に高圧冷媒を流す場合には、その部材間の接続部から冷媒が漏れて冷却性能が低下する可能性がある。このように例えばアルミ等の部材を組み合わせて形成した冷媒流路においては、部材間の接続部のシール性を高める必要があり、高圧冷媒に対して高い密閉性を確保することは極めて困難である。 According to the motor cooling device disclosed in Patent Document 1, a relatively high cooling performance can be ensured by cooling the motor using a refrigerant that can be cooler than the cooling water. On the other hand, since the refrigerant flow path is formed by combining the members constituting the motor case, when high-pressure refrigerant flows in the refrigerant flow path, the refrigerant leaks from the connection portion between the members, and the cooling performance May be reduced. Thus, for example, in a refrigerant flow path formed by combining members such as aluminum, it is necessary to improve the sealing performance of the connecting portion between the members, and it is extremely difficult to ensure high sealing performance against the high-pressure refrigerant. .
 また、特許文献2に開示されているモータの冷却構造によれば、接続部の少ないパイプをモータ外周面に巻き付けるという簡易な構造を用いることで、冷却水流路の密閉性を高めてモータの冷却効率を高めることができる。一方で、モータ外周面と円形断面を有する冷却水パイプとは線接触しているため、モータと冷却水パイプ間に空隙が存在し、モータ外周面と冷却水パイプ間の熱抵抗が大きくなる。したがって、例えば冷却水に代えて比較的低温の冷媒を使用したとしても十分な冷却効果を得ることができない。また、パイプ内部を流れる冷媒がモータ周囲の雰囲気よりも低温である場合には、上記パイプがモータ周囲の雰囲気に曝されていることで、モータを冷却すべき冷媒が逆に周りの雰囲気から熱を吸収してしまい、モータの冷却効率が低下してしまう可能性がある。 Further, according to the motor cooling structure disclosed in Patent Document 2, by using a simple structure in which a pipe having a small number of connection portions is wound around the outer peripheral surface of the motor, the cooling performance of the motor is improved by improving the sealing performance of the cooling water flow path. Efficiency can be increased. On the other hand, since the motor outer peripheral surface and the cooling water pipe having a circular cross section are in line contact, a gap exists between the motor and the cooling water pipe, and the thermal resistance between the motor outer peripheral surface and the cooling water pipe increases. Therefore, for example, even if a relatively low temperature refrigerant is used instead of the cooling water, a sufficient cooling effect cannot be obtained. In addition, when the refrigerant flowing inside the pipe is cooler than the atmosphere around the motor, the pipe is exposed to the atmosphere around the motor, so that the refrigerant that should cool the motor is heated from the surrounding atmosphere. May be absorbed, and the cooling efficiency of the motor may be reduced.
 本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、冷凍サイクルの冷媒を用いてモータ等の電動機器を冷却する際に、電動機器の熱を効率良く冷媒へ伝達することのできる冷却装置、及び該冷却装置を備えたモータとインバータを提供することにある。さらに、当該冷却装置の周りの雰囲気の熱が冷媒へ吸熱されることを効果的に防止して、より高い冷却性能を確保することのできる冷却装置、及び該冷却装置を備えたモータとインバータを提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to efficiently convert the heat of the electric device into the refrigerant when the electric device such as a motor is cooled using the refrigerant of the refrigeration cycle. Another object is to provide a cooling device capable of transmitting, and a motor and an inverter including the cooling device. Furthermore, a cooling device capable of effectively preventing the heat of the atmosphere around the cooling device from being absorbed by the refrigerant and ensuring higher cooling performance, and a motor and an inverter including the cooling device are provided. It is to provide.
 上記する課題を解決するために、本発明に係る冷却装置は、被冷却体を冷媒によって冷却する冷媒パイプを備えた冷却装置であって、前記冷媒パイプは、長いパイプを全体として面形状に形成したものであり、該面形状の一面側がハウジングにより覆われ、他面側が前記被冷却体との接触部とされ、前記ハウジングと前記接触部との間の空隙には、空気よりも熱伝導率の高い物質が充填されていることを特徴とする冷却装置である。 In order to solve the above-described problem, a cooling device according to the present invention is a cooling device including a refrigerant pipe that cools an object to be cooled with a refrigerant, and the refrigerant pipe is formed into a plane shape as a whole with a long pipe. One surface side of the surface shape is covered with a housing, and the other surface side is a contact portion with the object to be cooled, and the gap between the housing and the contact portion has a thermal conductivity higher than that of air. It is a cooling device characterized by being filled with a substance having a high content.
 上記の構成によれば、長いパイプを全体として面形状に形成した接続部の少ない冷媒パイプを用いることで、例えば電動機器等の被冷却体の冷却用に冷凍サイクルの高圧冷媒を用いる場合にも冷媒流路からの冷媒の漏れを抑制して冷却装置の冷却性能の低下を抑制することができる。また、冷却装置が被冷却体に取り付けられた際に被冷却体に接触して冷媒パイプを配置することで、冷媒を被冷却体に近接して配置することができ、効率的に被冷却体から放出される熱を吸熱して該被冷却体を冷却することができる。さらに、被冷却体の面形状の一面側を覆うハウジングを設け、そのハウジングと被冷却体との接触部との間の空隙を空気よりも熱伝導率の高い物質で満たすことで、冷媒パイプと被冷却体との間に部分的に存在する空隙を前記物質で満たすことができ、被冷却体から放出される熱を前記物質を介して効率的に冷媒パイプ内の冷媒へ伝達させることができ、冷却装置の冷却性能を一層高めることができる。 According to the above configuration, by using a refrigerant pipe with a small number of connection portions formed as a whole with a long pipe as a whole, even when a high-pressure refrigerant of a refrigeration cycle is used for cooling an object to be cooled such as an electric device. It is possible to suppress the leakage of the refrigerant from the refrigerant flow path and suppress the deterioration of the cooling performance of the cooling device. In addition, when the cooling device is attached to the object to be cooled, the refrigerant pipe is arranged in contact with the object to be cooled, so that the refrigerant can be arranged close to the object to be cooled, and the object to be cooled can be efficiently The object to be cooled can be cooled by absorbing the heat released from. Furthermore, by providing a housing that covers one surface side of the surface shape of the object to be cooled, and filling the gap between the housing and the contact portion of the object to be cooled with a substance having a higher thermal conductivity than air, A gap partially existing between the object to be cooled can be filled with the substance, and the heat released from the object to be cooled can be efficiently transferred to the refrigerant in the refrigerant pipe via the substance. The cooling performance of the cooling device can be further enhanced.
 以上の説明から理解できるように、本発明によれば、冷媒パイプと被冷却体との間に生じ得る空隙を熱伝導率の高い物質で満たすことで、被冷却体から放出される熱を効率的に冷媒パイプ内の冷媒に伝達することができ、被冷却体の温度上昇を抑制して当該被冷却体の効率的な運転を実現することができる。 As can be understood from the above description, according to the present invention, the heat released from the object to be cooled can be efficiently obtained by filling the gap that can be generated between the refrigerant pipe and the object to be cooled with a substance having high thermal conductivity. Therefore, it is possible to transmit to the refrigerant in the refrigerant pipe, and to suppress an increase in the temperature of the object to be cooled, thereby realizing efficient operation of the object to be cooled.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明に係る冷却装置の実施例1であり、モータに適用した状態を示した縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is Example 1 of the cooling device which concerns on this invention, and is the longitudinal cross-sectional view which showed the state applied to the motor. 図1のモータにおける冷媒パイプの配管を模式的に示した斜視図。The perspective view which showed typically piping of the refrigerant | coolant pipe in the motor of FIG. 本発明に係る冷却装置の実施例2であり、モータに適用した状態を示した縦断面図。The longitudinal cross-sectional view which was the Example 2 of the cooling device which concerns on this invention, and showed the state applied to the motor. 図3のモータにおける冷媒パイプの配管を模式的に示した斜視図。The perspective view which showed typically piping of the refrigerant | coolant pipe in the motor of FIG. 本発明に係る冷却装置の実施例3であり、モータに適用した状態を示した図であり、(a)はその縦断面図、(b)は(a)のB-B矢視図。It is Example 3 of the cooling device which concerns on this invention, and is the figure which showed the state applied to the motor, (a) is the longitudinal cross-sectional view, (b) is the BB arrow line view of (a). 図5のモータのおける冷媒パイプの配管を模式的に示した斜視図。The perspective view which showed typically piping of the refrigerant | coolant pipe in the motor of FIG. 実施例3のモータにおける冷媒パイプの配管の他の実施の形態を模式的に示した斜視図。The perspective view which showed typically other embodiment of piping of the refrigerant | coolant pipe in the motor of Example 3. FIG. 本発明に係る冷却装置の実施例4であり、インバータに適用した状態を示した斜視図。The perspective view which was Example 4 of the cooling device which concerns on this invention, and showed the state applied to the inverter. 本発明に係る冷却装置の実施例5であり、モータに適用した状態を示した縦断面図。It is Example 5 of the cooling device which concerns on this invention, and is the longitudinal cross-sectional view which showed the state applied to the motor. 図9に示すモータと冷却装置の間にインバータを介在配置した縦断面図。FIG. 10 is a longitudinal sectional view in which an inverter is disposed between the motor and the cooling device shown in FIG. 9. 図10に示す冷媒パイプの配管の他の実施の形態を示した縦断面図。The longitudinal cross-sectional view which showed other embodiment of piping of the refrigerant | coolant pipe shown in FIG.
1 ロータ
2 ステータ
3 コイル
4 段差
11 モータケース
11A モータケース外周面
12 モータカバー
13 回転角センサ
14,15 ベアリング
16 段差
20,30,40,50,60 冷凍機器
20A,30A,40A,50A,60A 圧縮機
20B,30B,40B,50B,60B 熱交換器
20C,30C,40C,50C,60C 冷媒ポンプ
21,31,41,51,61 冷媒パイプ
22,32,42,52,62 冷媒排出部
23,33,43,53,63 冷媒供給部
24,25,34,35,44,45,54,55,64,65 冷媒ホース
26,36,46,56,66 ハウジング
26A,36A,46A,56A ハウジング内周面
26B,36B 流動体注入口
26C,36C 流動体排出口
47,67 循環路
70 熱交換器
71,72 連結路
100 モータ本体
101 電気素子
111 インバータケース
111A インバータケース上面
112 基板
150 インバータ本体
200,300,400,500,600 冷却装置
330,550,660 ラジエータ
330A,550A,660A 流動体ポンプ
331,551,661 循環路
332,552,662 流動体流出口
333,553,663 流動体流入口
1000,2000,3000,5000 モータ
4000 インバータ
F 流動体(物質)
L ロータ回転軸線
R 冷媒
DESCRIPTION OF SYMBOLS 1 Rotor 2 Stator 3 Coil 4 Level | step difference 11 Motor case 11A Motor case outer peripheral surface 12 Motor cover 13 Rotation angle sensor 14, 15 Bearing 16 Level | step difference 20, 30, 40, 50, 60 Refrigeration equipment 20A, 30A, 40A, 50A, 60A Compression Machine 20B, 30B, 40B, 50B, 60B Heat exchanger 20C, 30C, 40C, 50C, 60C Refrigerant pump 21, 31, 41, 51, 61 Refrigerant pipe 22, 32, 42, 52, 62 Refrigerant discharge part 23, 33 , 43, 53, 63 Refrigerant supply parts 24, 25, 34, 35, 44, 45, 54, 55, 64, 65 Refrigerant hoses 26, 36, 46, 56, 66 Housing 26A, 36A, 46A, 56A Housing inner circumference Surface 26B, 36B Fluid inlet 26C, 36C Fluid outlet 47, 67 Circuit 70 Heat exchange 71, 72 Connecting path 100 Motor body 101 Electric element 111 Inverter case 111A Inverter case upper surface 112 Substrate 150 Inverter body 200, 300, 400, 500, 600 Cooling device 330, 550, 660 Radiator 330A, 550A, 660A Fluid pump 331 551,661 Circulation path 332,552,662 Fluid outlet 333,553,663 Fluid inlet 1000,2000,3000,5000 Motor 4000 Inverter F Fluid (material)
L Rotor rotation axis R Refrigerant
 以下、本発明に係る冷却装置、及び該冷却装置を備えたモータとインバータの実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of a cooling device according to the present invention, and a motor and an inverter including the cooling device will be described with reference to the drawings.
[実施例1]
 図1及び図2は、本発明に係る冷却装置の実施例1であり、モータに適用した状態を示したものである。
[Example 1]
1 and 2 show a first embodiment of a cooling device according to the present invention, which shows a state applied to a motor.
 図1に示すモータ1000は、モータ本体100と該モータ本体100を冷却するための冷却装置200とから大略構成されている。モータ本体100は、回転するロータ1と該ロータ1の周りに配置され、コイル3が巻き付けられたステータ2とを備えると共に、それらを収容するためのモータケース11を備えている。 A motor 1000 shown in FIG. 1 is roughly composed of a motor main body 100 and a cooling device 200 for cooling the motor main body 100. The motor main body 100 includes a rotating rotor 1 and a stator 2 disposed around the rotor 1 and wound with a coil 3, and a motor case 11 for housing them.
 また、モータ本体100は、内面12Aに回転角センサ13を備えたモータカバー12を側部に備えていて、モータケース11の側面にモータカバー12が取り付けられることで、内部に収容されるロータ1やステータ2が外部環境から保護されている。 Further, the motor body 100 includes a motor cover 12 having a rotation angle sensor 13 on the inner surface 12 </ b> A on the side, and the motor cover 12 is attached to the side surface of the motor case 11, so that the rotor 1 accommodated inside the motor body 100. And the stator 2 are protected from the external environment.
 なお、回転角センサ13で検出したロータ1の回転速度等の信号は、不図示の回転制御装置に送信されてロータ1を回転制御するのに使用されるようになっている。また、モータケース11とロータ1との間と、モータカバー12とロータ1との間とには、ベアリング14,15が設けられており、モータケース11が車両等に固定して取り付けられた際には、モータケース11やモータカバー12に対してロータ1が回転軸線Lを回転中心として回転できるようになっている。 A signal such as the rotation speed of the rotor 1 detected by the rotation angle sensor 13 is transmitted to a rotation control device (not shown) and used to control the rotation of the rotor 1. Further, bearings 14 and 15 are provided between the motor case 11 and the rotor 1 and between the motor cover 12 and the rotor 1, and when the motor case 11 is fixedly attached to a vehicle or the like. In other words, the rotor 1 can rotate about the rotation axis L with respect to the motor case 11 and the motor cover 12.
 モータ本体100の外側には、該モータ本体100を冷却するための冷却装置200が配置される。この冷却装置200は、モータケース11の外周面11Aに当接するように螺旋状に構成される冷媒パイプ21と、該冷媒パイプ21の外周側を覆うハウジング26と、冷媒Rを冷却して循環させるための熱力学的サイクルの一種である冷凍サイクルを構成する冷却機器20、即ち圧縮機20A、熱交換器20B、及び冷媒ポンプ20Cから大略構成されている。ここで、冷媒パイプ21は複数部材を組み合わせて形成された他の部分で構成される冷媒流路と比較して接続部が少ないので、例えば前記接続部に用いられるゴム等のシール部材が少ないので、該シール部分から冷媒が漏れることが少なく、冷凍機器20等を介して冷媒パイプ21内に高圧の冷媒が循環する場合においても、優れた密閉性・非漏洩性を確保することができる。また、冷媒パイプ21は、モータケース11の外周面11Aに位置する部分の断面が略楕円形状で、前記外周面11Aに直接当接する部分の断面は、直線状で扁平になっていて、冷媒パイプ21とモータケース11の外周面11Aとが面接触する断面形状に構成されている。冷媒パイプ21が前記形状を呈していることで、例えば冷媒パイプ21が円形断面を有している場合と比較して、冷媒パイプ21とモータ本体100の接触面積を増加させることができ、モータ本体100から放熱される熱を効果的に冷媒パイプ21内の冷媒Rへ伝達させることができる。なお、この冷媒パイプ21の断面形状としては、図示する楕円形状の他、略三角形状や略四角形等状の多角形状が挙げられる。 A cooling device 200 for cooling the motor body 100 is disposed outside the motor body 100. The cooling device 200 cools and circulates the refrigerant pipe 21 that is spirally configured to come into contact with the outer peripheral surface 11A of the motor case 11, the housing 26 that covers the outer peripheral side of the refrigerant pipe 21, and the refrigerant R. For this reason, it is mainly composed of a cooling device 20 constituting a refrigeration cycle, which is a kind of thermodynamic cycle, that is, a compressor 20A, a heat exchanger 20B, and a refrigerant pump 20C. Here, since the refrigerant pipe 21 has fewer connection parts than a refrigerant flow path constituted by other parts formed by combining a plurality of members, for example, there are few seal members such as rubber used for the connection parts. The refrigerant hardly leaks from the seal portion, and even when a high-pressure refrigerant circulates in the refrigerant pipe 21 through the refrigeration equipment 20 or the like, excellent sealing performance and non-leakage can be ensured. The refrigerant pipe 21 has a substantially oval cross section at a portion located on the outer peripheral surface 11A of the motor case 11, and a cross section at a portion that directly contacts the outer peripheral surface 11A is linear and flat. 21 and the outer peripheral surface 11A of the motor case 11 are configured to have a cross-sectional shape in surface contact. Since the refrigerant pipe 21 has the shape, for example, the contact area between the refrigerant pipe 21 and the motor main body 100 can be increased compared to a case where the refrigerant pipe 21 has a circular cross section. The heat radiated from 100 can be effectively transmitted to the refrigerant R in the refrigerant pipe 21. The cross-sectional shape of the refrigerant pipe 21 includes a polygonal shape such as a substantially triangular shape or a substantially quadrangular shape in addition to the illustrated elliptical shape.
 モータケース11の外周面11Aに沿って螺旋状に巻き付けられた冷媒パイプ21の両端部には、ロータ1の回転軸線L方向と平行に延びる冷媒排出部22と冷媒供給部23が設けられており、螺旋状の冷媒パイプ21を通り、モータ本体100から放熱される熱を吸熱した冷媒Rが冷媒排出部22と該冷媒排出部22に取り付けられた冷媒ホース24を介して冷凍機器20へ送られるように構成されている。冷媒機器20では、既述する圧縮機20Aや熱交換器20B等によって冷媒Rの熱が外部へ放出され、冷却された冷媒Rは冷媒ポンプ20Cによって冷媒ホース25と冷媒供給部23を介して再びモータ本体100周りの冷媒パイプ21へ圧送されるように冷凍サイクルが構成されている。 A refrigerant discharge part 22 and a refrigerant supply part 23 extending in parallel with the direction of the rotation axis L of the rotor 1 are provided at both ends of the refrigerant pipe 21 wound spirally along the outer peripheral surface 11A of the motor case 11. Then, the refrigerant R that has absorbed the heat radiated from the motor main body 100 through the spiral refrigerant pipe 21 is sent to the refrigeration equipment 20 via the refrigerant discharge part 22 and the refrigerant hose 24 attached to the refrigerant discharge part 22. It is configured as follows. In the refrigerant device 20, the heat of the refrigerant R is released to the outside by the compressor 20 </ b> A, the heat exchanger 20 </ b> B, and the like described above, and the cooled refrigerant R is again supplied by the refrigerant pump 20 </ b> C via the refrigerant hose 25 and the refrigerant supply unit 23. The refrigeration cycle is configured to be pressure-fed to the refrigerant pipe 21 around the motor body 100.
 この冷却装置200は、冷媒パイプ21と、冷媒排出部22と冷媒供給部23の一部と、モータケース11(モータ本体100)の外周面11Aとを覆う非金属性材料(例えば樹脂)からなるハウジング26をさらに備えており、該ハウジング26の内周面26Aとモータケース11の外周面11Aとで画定された領域のうち冷媒パイプ21以外の領域、即ち、ハウジング26と冷媒パイプ21とモータケース11の接触する部分21Aとの間の空隙は、空気よりも熱伝率の高い物質F、特に、流動性の高い流動体Fで満たされている。ここで、冷媒パイプ21とモータケース11の外周面11Aとの間に存在する空隙29にも前記流動体Fが充填されている。この流動体F(物質)は液体または樹脂であって、液体としては例えば不凍液や熱伝導率の高い不活性液体等を挙げることができ、樹脂としては例えば高熱伝導性樹脂を挙げることができる。なお、この流動体Fは、当該領域に充填される際に流動性を有していれば、充填後に固化される形態でも良い。 The cooling device 200 is made of a non-metallic material (for example, resin) that covers the refrigerant pipe 21, a part of the refrigerant discharge part 22, the refrigerant supply part 23, and the outer peripheral surface 11A of the motor case 11 (motor main body 100). A housing 26 is further provided. Of the region defined by the inner peripheral surface 26A of the housing 26 and the outer peripheral surface 11A of the motor case 11, a region other than the refrigerant pipe 21, that is, the housing 26, the refrigerant pipe 21, and the motor case. The space between the 11 contacting portions 21 </ b> A is filled with a substance F having a higher thermal conductivity than air, in particular, a fluid F having a high fluidity. Here, the fluid F is also filled in a gap 29 existing between the refrigerant pipe 21 and the outer peripheral surface 11 </ b> A of the motor case 11. The fluid F (substance) is a liquid or a resin, and examples of the liquid include an antifreeze and an inert liquid having high thermal conductivity. Examples of the resin include a high thermal conductivity resin. In addition, as long as this fluid F has fluidity | liquidity when filling the said area | region, the form solidified after filling may be sufficient.
 なお、モータ本体100の発熱が比較的少なく、冷凍サイクルの冷却機器20による冷却が不要な場合には、例えば内部の圧縮機20Aの回転速度を低下させ、または圧縮機20Aの回転を停止して、冷媒ポンプ20Cによってのみ冷媒Rを循環させることもできる。このように冷凍サイクルの冷却性能を低下させた場合にも、冷却装置200の表面からの放熱によって冷媒Rを冷却することができるため、冷却装置200を効率的に運転して、モータ本体100の温度上昇を抑制することができる。 In addition, when the heat generation of the motor body 100 is relatively small and cooling by the cooling device 20 of the refrigeration cycle is unnecessary, for example, the rotation speed of the internal compressor 20A is reduced or the rotation of the compressor 20A is stopped. The refrigerant R can be circulated only by the refrigerant pump 20C. Even when the cooling performance of the refrigeration cycle is lowered in this way, the refrigerant R can be cooled by the heat radiation from the surface of the cooling device 200, so that the cooling device 200 is operated efficiently, Temperature rise can be suppressed.
 次いで、この冷却装置200を備えたモータ1000を組み立てるための手順(工程)を説明する。モータ本体100を組み立てるための手順としては、まず、ロータ1と、コイル3が巻き付けられたステータ2と、一方の端部にベアリング14を備えたモータケース11を準備する。その後、モータケース11の内周面に設けられた段差16とステータ2の角部が当接するまでモータケース11内にステータ2を挿入し、次いでモータケース11に設けられたベアリング14とロータ1の段差4が当接するまでロータ1を挿入する。そして、予め一方の面にベアリング15と回転角センサ13を配置したモータカバー12をモータケース11に取り付ける。 Next, a procedure (process) for assembling the motor 1000 provided with the cooling device 200 will be described. As a procedure for assembling the motor main body 100, first, a rotor 1, a stator 2 around which a coil 3 is wound, and a motor case 11 having a bearing 14 at one end are prepared. Thereafter, the stator 2 is inserted into the motor case 11 until the step 16 provided on the inner peripheral surface of the motor case 11 and the corner of the stator 2 abut, and then the bearing 14 provided on the motor case 11 and the rotor 1 The rotor 1 is inserted until the step 4 comes into contact. Then, the motor cover 12 having the bearing 15 and the rotation angle sensor 13 disposed on one surface in advance is attached to the motor case 11.
 前記モータ本体100を組み立てる工程とは別の工程で冷却装置200を組み立てる。まず、冷媒パイプ21を略螺旋状に形成した後、該冷媒パイプ21の両端部を直線状として冷媒排出部22と冷媒供給部23を形成する。そして、冷媒パイプ21と冷媒排出部22と冷媒供給部23の一部を覆うようにハウジング26を取り付ける。 The cooling device 200 is assembled in a process different from the process of assembling the motor body 100. First, after the refrigerant pipe 21 is formed in a substantially spiral shape, the refrigerant discharge part 22 and the refrigerant supply part 23 are formed with both ends of the refrigerant pipe 21 being linear. Then, the housing 26 is attached so as to cover a part of the refrigerant pipe 21, the refrigerant discharge part 22, and the refrigerant supply part 23.
 上記手順で組み立てたモータ本体100の外周面11Aを覆うように冷却装置200をロータ1の回転軸線L方向(矢印A方向)へ移動させ、モータ本体100に冷却装置200を取り付けて一体とする。このとき、冷媒パイプ21の扁平面はモータケース11の外周面11Aと接触するように配置される。その後、ハウジング26に設けられた流動体注入口26B(図2参照)からハウジング26内に空気よりも熱伝導率の高い流動体Fを注入し、モータケース11の外周面11Aとケース26の内周面26Aとで画定された領域を流動体Fで充満する。ここで、流動体Fがハウジング26内に注入される際に所定の流動性を有していることで、冷媒パイプ21とモータケース11の外周面11Aに空隙29が存在する場合にも、この空隙29に流動体Fが入り込んで、空隙29を流動体Fで満たすことができる。 The cooling device 200 is moved in the direction of the rotation axis L of the rotor 1 (arrow A direction) so as to cover the outer peripheral surface 11A of the motor main body 100 assembled in the above procedure, and the cooling device 200 is attached to the motor main body 100 to be integrated. At this time, the flat surface of the refrigerant pipe 21 is disposed so as to contact the outer peripheral surface 11 </ b> A of the motor case 11. Thereafter, a fluid F having a thermal conductivity higher than that of air is injected into the housing 26 from a fluid inlet 26B (see FIG. 2) provided in the housing 26. The region defined by the peripheral surface 26A is filled with the fluid F. Here, since the fluid F has a predetermined fluidity when being injected into the housing 26, the air gap 29 exists in the outer peripheral surface 11 </ b> A of the refrigerant pipe 21 and the motor case 11. The fluid F enters the gap 29, and the gap 29 can be filled with the fluid F.
 また、前記冷媒排出部22には冷媒ホース24を取り付け、それを冷凍機器20(圧縮機20A、熱交換器20B、冷媒ポンプ20C)と接続する。この冷媒ポンプ20Cは、冷媒供給部23に取り付けられた冷媒ホース25と接続される。 Also, a refrigerant hose 24 is attached to the refrigerant discharge part 22 and connected to the refrigeration equipment 20 (compressor 20A, heat exchanger 20B, refrigerant pump 20C). The refrigerant pump 20 </ b> C is connected to a refrigerant hose 25 attached to the refrigerant supply unit 23.
 なお、冷却装置200をモータ本体100から取り外す際には、ハウジング26に設けられた流動体排出口26C(図2参照)から流動体Fを排出することができる。ここで、例えば流動体Fとして樹脂を用い、当該樹脂が固化している場合には、その流動体Fを流動体排出口26Cから排出する工程が不要となる。なお、流動体注入口26Bや流動体排出口26Cはハウジング26の任意の位置に設けることができる。 In addition, when removing the cooling device 200 from the motor main body 100, the fluid F can be discharged | emitted from the fluid discharge port 26C (refer FIG. 2) provided in the housing 26. FIG. Here, for example, when a resin is used as the fluid F and the resin is solidified, a step of discharging the fluid F from the fluid outlet 26C becomes unnecessary. The fluid inlet 26B and the fluid outlet 26C can be provided at any position of the housing 26.
 既述のように、モータ本体100と冷却装置200を個別に組み立て、それらを一体とした後も分離可能とすることで、例えばモータ本体100を分解せずに冷却装置200を当該モータ本体100から脱着することができ、モータ本体100と冷却装置200の組立性やメンテナンス性を向上させることができる。 As described above, the motor main body 100 and the cooling device 200 are individually assembled and separated after being integrated, so that the cooling device 200 can be separated from the motor main body 100 without disassembling the motor main body 100, for example. It can be detached, and the assembly and maintenance of the motor body 100 and the cooling device 200 can be improved.
 図2は、実施例1のモータにおける冷媒パイプの配管を模式的に示したものである。図示するように、冷媒パイプ21がモータケース11の周りに螺旋状に巻き付けられており、冷媒ホース25を介して冷媒供給部23から供給された冷媒Rは、冷媒パイプ21内をロータ1の回転軸線Lを中心として螺旋状に流れ、冷媒排出口22からハウジング26の外部へ排出される。なお、本実施例1においては、図示するように、隣接する冷媒パイプ21同士は、互いに当接してモータケース11に螺旋状に巻き付けられている。 FIG. 2 schematically shows the piping of the refrigerant pipe in the motor of the first embodiment. As shown in the figure, a refrigerant pipe 21 is spirally wound around the motor case 11, and the refrigerant R supplied from the refrigerant supply unit 23 via the refrigerant hose 25 rotates the rotor 1 in the refrigerant pipe 21. It flows spirally around the axis L, and is discharged from the refrigerant discharge port 22 to the outside of the housing 26. In the first embodiment, as illustrated, adjacent refrigerant pipes 21 are in contact with each other and are wound around the motor case 11 in a spiral shape.
 実施例1においては、インバータ回路(不図示)によってロータ1が回転駆動されることで、主としてステータ2の銅損が熱に変換されてステータ2が発熱した場合にも、密閉性の高い冷媒パイプ21をモータ本体100の外周面11Aに近接もしくは当接して配置し、冷凍サイクルの冷凍機器20を流れる高圧の冷媒Rを漏れにくい密閉構造からなる冷媒パイプ21を使用することで、モータ本体100から放出される熱(主にステータ2からの発熱)は冷媒Rにより効率的に吸収することができる。即ち、モータ本体100から放出される熱は、モータケース11を介して効率的に冷媒パイプ21内の冷媒Rへ伝達することができる(矢印X1方向)。また、モータケース11の外周面11Aとハウジング26の内周面26Aとで画定された領域、特にモータケース11の外周面11Aと冷媒パイプ21との間に生じ得る空隙29は、流動体Fで満たされることで、例えば当該空隙29に空気が存在する場合と比較して、ステータ2で発生してモータケース11に伝達された熱を、空隙29内の流動体Fを介して効率的に冷媒パイプ21内の冷媒Rへ伝達することができ(矢印X2方向)、モータ本体100から放出される熱を効果的にモータ本体100の外部へ放出することができる。 In the first embodiment, the rotor 1 is rotationally driven by an inverter circuit (not shown), so that the refrigerant pipe having high hermeticity is mainly produced even when the copper loss of the stator 2 is converted into heat and the stator 2 generates heat. 21 is arranged close to or in contact with the outer peripheral surface 11A of the motor main body 100, and the refrigerant pipe 21 having a sealed structure that hardly leaks the high-pressure refrigerant R flowing through the refrigeration equipment 20 of the refrigeration cycle is used. The released heat (mainly heat generated from the stator 2) can be efficiently absorbed by the refrigerant R. That is, the heat released from the motor main body 100 can be efficiently transmitted to the refrigerant R in the refrigerant pipe 21 via the motor case 11 (in the direction of the arrow X1). Further, an area 29 defined by the outer peripheral surface 11A of the motor case 11 and the inner peripheral surface 26A of the housing 26, in particular, a gap 29 that can be generated between the outer peripheral surface 11A of the motor case 11 and the refrigerant pipe 21 is a fluid F. By being satisfied, for example, as compared with the case where air is present in the gap 29, the heat generated in the stator 2 and transferred to the motor case 11 can be efficiently transferred through the fluid F in the gap 29. The heat can be transmitted to the refrigerant R in the pipe 21 (in the direction of the arrow X2), and the heat released from the motor body 100 can be effectively released to the outside of the motor body 100.
 また、前記空隙29等の領域に流動性の高い流動体Fを充填することで、製造ばらつき等に起因する形状ばらつきの大きな冷媒パイプ21を使用する場合にも、流動体Fがそれらの形状ばらつきに追従して充満することができ、当該領域を容易且つ均一に流動体Fで満たすことができる。 Further, when the refrigerant pipe 21 having a large shape variation due to manufacturing variation or the like is used by filling the region such as the gap 29 with the fluid F having high fluidity, the fluid F has the shape variation. The area can be filled with the fluid F easily and uniformly.
 さらに、モータ本体100から放出される熱は、熱伝導率の高い流動体Fを介して伝達されることができるため、モータケース11に対して冷媒パイプ21を強固に密着して取り付ける必要がない。したがって、冷媒パイプ21の取付時に作用する圧力は低減できることで、冷媒パイプ21の破損等を抑制することができると共に、冷却装置200は、モータ本体100から取り外してそれらを別個にメンテナンスする際にも、モータケース11から冷媒パイプ21を容易に取り外すことが可能となり、それらのメンテナンス性を更に向上させることができる。 Furthermore, since the heat released from the motor main body 100 can be transmitted via the fluid F having a high thermal conductivity, it is not necessary to attach the refrigerant pipe 21 firmly to the motor case 11. . Therefore, the pressure acting when the refrigerant pipe 21 is attached can be reduced, so that the refrigerant pipe 21 can be prevented from being damaged, and the cooling device 200 can be removed from the motor body 100 and maintained separately. The refrigerant pipe 21 can be easily detached from the motor case 11, and the maintainability thereof can be further improved.
 また、本実施例1においては、例えばロータ1の回転数が比較的小さい場合には、モータ本体100が比較的低温のままで駆動されることとなる。即ち、このような場合には、一般に冷媒パイプ21を循環する冷媒Rの温度は、モータ1000の外気温よりも相対的に低くなる。しかし、例えばハウジング26が金属のような熱伝導率の高い材料から構成されていると、冷媒パイプ21内の低温の冷媒Rが外気の熱を吸収して冷媒Rの温度が上昇し、冷却装置200の冷却効率が低下してしまう可能性がある。 In the first embodiment, for example, when the rotational speed of the rotor 1 is relatively small, the motor body 100 is driven at a relatively low temperature. That is, in such a case, the temperature of the refrigerant R circulating in the refrigerant pipe 21 is generally lower than the outside air temperature of the motor 1000. However, for example, when the housing 26 is made of a material having high thermal conductivity such as metal, the low-temperature refrigerant R in the refrigerant pipe 21 absorbs the heat of the outside air and the temperature of the refrigerant R rises, and the cooling device The cooling efficiency of 200 may be reduced.
 そこで、本実施例1においては、ハウジング26を比較的熱伝導率の低い非金属性材料で作製し、冷媒Rと外気との間の熱交換を抑制することで、冷媒Rの温度が大気温度よりも相対的に低い場合にもハウジング26の断熱効果によって冷媒Rの吸熱を抑制して冷媒Rの温度上昇を抑制し、冷却装置200の冷却効率の低下を抑制することができる。 Therefore, in the first embodiment, the housing 26 is made of a non-metallic material having a relatively low thermal conductivity, and the heat exchange between the refrigerant R and the outside air is suppressed, so that the temperature of the refrigerant R becomes the atmospheric temperature. Even when the temperature is relatively lower than the above, the heat absorption effect of the housing 26 can suppress the heat absorption of the refrigerant R to suppress the temperature rise of the refrigerant R, thereby suppressing the decrease in the cooling efficiency of the cooling device 200.
[実施例2]
 図3及び図4は、本発明に係る冷却装置の実施例2であり、モータに適用した状態を示したものである。なお、実施例2で使用するモータ本体は実施例1で使用するモータ本体100と同様であるため、同一の符号を付してその詳細な説明は省略する。
[Example 2]
3 and 4 show a second embodiment of the cooling device according to the present invention, which shows a state applied to a motor. In addition, since the motor main body used in Example 2 is the same as the motor main body 100 used in Example 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 図3に示す実施例2の冷却装置300は、主としてモータ本体100の外周面11Aに巻き付けられた隣接する冷媒パイプ31同士が、所定の間隔を置いて配置されている点で、図1に示す実施例1の冷却装置200に対して相違している。また、冷却装置300は、ハウジング36内の流動体Fを循環させるための循環路331とそのための流動体ポンプ330Aと、循環中に流動体Fを冷却するためのラジエータ330とを備えている。 The cooling device 300 according to the second embodiment shown in FIG. 3 is mainly shown in FIG. 1 in that adjacent refrigerant pipes 31 wound around the outer peripheral surface 11A of the motor main body 100 are arranged at a predetermined interval. This is different from the cooling device 200 of the first embodiment. The cooling device 300 also includes a circulation path 331 for circulating the fluid F in the housing 36, a fluid pump 330A for the circulation path 331, and a radiator 330 for cooling the fluid F during circulation.
 このように、冷媒パイプ31が所定の間隔を置いてモータ本体100の外周面11Aに巻き付けられることで、例えば実施例1の空隙29内に存在している流動体Fは、隣接する冷媒パイプ31同士の間に形成された流路(空隙)39を通ってモータ本体100の外周面11Aに対して径方向外側へ流動することができる。これにより、流動体Fは、モータケース11側から外側方向への伝熱経路を確保することができ、冷媒パイプ31間にある流動体Fは、モータ本体100の外側へ流動させることができることで高温とはならず、且つ流動体Fによってモータ本体100を直接冷却することが可能となり、効率的にモータ本体100を冷却することができる。 As described above, the refrigerant pipe 31 is wound around the outer peripheral surface 11A of the motor main body 100 at a predetermined interval, so that the fluid F existing in the gap 29 of the first embodiment, for example, is adjacent to the refrigerant pipe 31. It can flow radially outward with respect to the outer peripheral surface 11 </ b> A of the motor body 100 through a flow path (gap) 39 formed between them. Thereby, the fluid F can ensure the heat-transfer path | route from the motor case 11 side to an outer side direction, and the fluid F between the refrigerant | coolant pipes 31 can be made to flow to the outer side of the motor main body 100. The motor main body 100 can be directly cooled by the fluid F without becoming high temperature, and the motor main body 100 can be efficiently cooled.
 また、モータ本体100の熱を吸熱してモータ本体100の外周面11Aに対して径方向外側へ流動した流動体Fは、流動体流出口332を介して循環路331へ流出し、その後循環路331に接続して設けられたラジエータ330へ送られる。そして、ラジエータ330で流動体Fの熱が熱交換されて外気へ放熱され、ラジエータ330で冷却された流動体Fは、流動体ポンプ330Aによって再び流動体流入口333を介してハウジング36内へ圧送される。なお、流動体Fとして例えば流動性の高い液体を用いることで、ハウジング36内や循環路331内で流動体Fを円滑に循環させることができる。 The fluid F that has absorbed the heat of the motor main body 100 and has flowed radially outward with respect to the outer peripheral surface 11A of the motor main body 100 flows out to the circulation path 331 via the fluid outlet 332, and then the circulation path. It is sent to a radiator 330 provided in connection with 331. Then, the heat of the fluid F is exchanged by the radiator 330 and is radiated to the outside air, and the fluid F cooled by the radiator 330 is again pumped into the housing 36 by the fluid pump 330A via the fluid inlet 333. Is done. Note that the fluid F can be smoothly circulated in the housing 36 or the circulation path 331 by using, for example, a liquid having high fluidity as the fluid F.
 図4は、実施例2のモータにおける冷媒パイプの配管を模式的に示したものである。図示するように、冷媒パイプ31は、モータ本体100のモータケース11の外側で隣接する冷媒パイプ31同士は、互いに間隔を置いて巻き付けられている。また、ハウジング36の上方には、流動体Fを循環路331に循環させるための流動体流出口332が設けられていると共に、ハウジング36の下方には、循環路331から循環された流動体Fがハウジング36内に流入するための流動体流入口333が設けられている。また、ハウジング36には、流動体Fを注入するための流動体注入口36Bと流動体排出口36Cとが設けられている。前記流動体流出口332と流動体流入口333とは、前記ハウジング36内に流動体Fを注入するための流動体注入口又は流動体排出口としても用いることができる。 FIG. 4 schematically shows the piping of the refrigerant pipe in the motor of the second embodiment. As shown in the figure, the refrigerant pipes 31 are wound around the refrigerant pipes 31 that are adjacent to each other outside the motor case 11 of the motor main body 100 at intervals. Further, a fluid outlet 332 for circulating the fluid F to the circulation path 331 is provided above the housing 36, and the fluid F circulated from the circulation path 331 is disposed below the housing 36. Is provided with a fluid inlet 333 for flowing into the housing 36. The housing 36 is provided with a fluid inlet 36B and a fluid outlet 36C for injecting the fluid F. The fluid outlet 332 and the fluid inlet 333 can also be used as a fluid inlet or a fluid outlet for injecting the fluid F into the housing 36.
 実施例2においては、冷媒パイプ31を間隔を置いて配置してハウジング36内の流動体Fの流動性を高めると共に、流動体Fを循環して冷却するための循環路331を設けたことで、ハウジング36内で高温となり得る流動体Fを効率的に冷却して冷却装置300の冷却効率を向上させることができる。ここで、図示するように、ロータ1の回転軸線Lが水平となるようにモータ本体100を配置して使用する場合には、ロータ1の回転時に放熱される熱は主としてモータ本体100の上方(鉛直上方)へ放熱されると共に、ハウジング36内で高温となった流動体Fも鉛直上方へ流動することとなる。すなわち、ハウジング36内においては、特に鉛直上方の流動体Fが鉛直下方の流動体Fに対して相対的に高温となる。そこで、図示するように、鉛直上方に循環路331への流動体流出口332を設けることで、ハウジング36内で高温となり得る流動体Fを効率的に冷却用のラジエータ330へ送出することができる。また、ラジエータ330によって冷却された流動体Fを、ハウジング36の鉛直下方に設けられた流動体流入口333を介してハウジング36内へ戻すことで効率的な循環を実現することができ、冷却装置300の運転効率を更に高めることができる。なお、回転軸線Lを垂直となるようにモータ2000を配置した場合には、循環路331の流動体流出口332をハウジング36の鉛直上方側となるように配置し、流動体流入口33を鉛直下方側に設けるのが好ましい。 In the second embodiment, the refrigerant pipes 31 are arranged at intervals to increase the fluidity of the fluid F in the housing 36, and the circulation path 331 for circulating and cooling the fluid F is provided. In addition, the fluid F that can become high temperature in the housing 36 can be efficiently cooled to improve the cooling efficiency of the cooling device 300. Here, as shown in the figure, when the motor main body 100 is arranged and used so that the rotation axis L of the rotor 1 is horizontal, the heat dissipated when the rotor 1 rotates is mainly above the motor main body 100 ( The fluid F that has been radiated upward (in the vertical direction) and has reached a high temperature in the housing 36 also flows upward in the vertical direction. That is, in the housing 36, the fluid F in the vertically upper part is relatively high in temperature with respect to the fluid F in the vertically lower part. Therefore, as shown in the figure, by providing a fluid outlet 332 to the circulation path 331 vertically above, the fluid F that can become high temperature in the housing 36 can be efficiently sent to the radiator 330 for cooling. . In addition, the fluid F cooled by the radiator 330 can be returned to the housing 36 through the fluid inlet 333 provided vertically below the housing 36 to achieve efficient circulation. The operating efficiency of 300 can be further increased. When the motor 2000 is arranged so that the rotation axis L is vertical, the fluid outlet 332 of the circulation path 331 is arranged on the vertical upper side of the housing 36, and the fluid inlet 33 is set vertically. It is preferable to provide the lower side.
 なお、モータ本体100の発熱が比較的少なく、冷凍サイクルの冷却機器30による冷却が不要な場合には、例えば冷凍機器30の圧縮機30Aや冷媒ポンプ30Cを停止して、流動体ポンプ330Aのみを駆動することができる。すなわち、モータ本体100から放出された熱をハウジング36内の流路39の流動体Fで吸熱し、その流動体Fを循環路331へ送出してラジエータ330で熱交換して、外気へ放熱して冷却することで、冷媒Rによるモータ本体100の冷却を行うことなく、モータ本体100の温度上昇を抑制することができるため、冷却装置300を効率的に運転することができる。 If the motor body 100 generates relatively little heat and cooling by the cooling device 30 in the refrigeration cycle is unnecessary, for example, the compressor 30A and the refrigerant pump 30C of the refrigeration device 30 are stopped and only the fluid pump 330A is used. Can be driven. That is, the heat released from the motor main body 100 is absorbed by the fluid F in the flow path 39 in the housing 36, the fluid F is sent to the circulation path 331, and heat is exchanged by the radiator 330 to dissipate heat to the outside air. Thus, the cooling of the motor main body 100 can be suppressed without cooling the motor main body 100 with the refrigerant R, so that the cooling device 300 can be operated efficiently.
 また、ラジエータ330から外気へ放熱する場合にも、モータ本体100から放出される熱の一部はモータケース11を介して冷媒パイプ31内の冷媒Rへ伝達されて流動体Fへと伝達される。よって、冷凍機器30の圧縮機30Aを停止した場合であっても冷媒ポンプ30Cのみを駆動させることで、冷媒Rを介した伝熱量を増加させることができ、流動体Fの伝熱性能をより一層向上させることができる。 Further, even when heat is radiated from the radiator 330 to the outside air, part of the heat released from the motor main body 100 is transmitted to the refrigerant R in the refrigerant pipe 31 via the motor case 11 and then transmitted to the fluid F. . Therefore, even if the compressor 30A of the refrigeration equipment 30 is stopped, the amount of heat transfer through the refrigerant R can be increased by driving only the refrigerant pump 30C, and the heat transfer performance of the fluid F can be further increased. This can be further improved.
[実施例3]
 図5及び図6は、本発明に係る冷却装置の実施例3であり、モータに適用した状態を示したものである。なお、この実施例3において使用するモータ本体は実施例1で使用するモータ本体100と同様であるため、同一の符号を付してその詳細な説明は省略する。
[Example 3]
5 and 6 show a third embodiment of the cooling device according to the present invention, which shows a state applied to a motor. In addition, since the motor main body used in this Example 3 is the same as that of the motor main body 100 used in Example 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 実施例2で説明したように、実施例3においても、モータ3000がロータ1の回転軸線Lが水平となるように車両に配置されている場合、ロータ1の回転時に放熱される熱は主としてモータ本体100の上方(鉛直上方)へ放熱されると共に、ハウジング46内で高温となった流動体Fも鉛直上方へ流動され、ハウジング46内においては、特に鉛直上方の流動体Fが鉛直下方の流動体Fに対して相対的に高温となる。 As described in the second embodiment, also in the third embodiment, when the motor 3000 is arranged in the vehicle so that the rotation axis L of the rotor 1 is horizontal, the heat radiated when the rotor 1 rotates is mainly the motor. Heat is dissipated upward (vertically upward) of the main body 100, and the fluid F that has reached a high temperature in the housing 46 also flows vertically upward. In the housing 46, the fluid F in the vertically upward direction particularly flows vertically downward. The temperature becomes relatively high with respect to the body F.
 そこで、実施例3においては、図5(a)に示すように、冷媒パイプ41をモータ本体100の鉛直方向上方側に集中して配置する。これにより、モータ本体100から放熱される熱を効率的に冷媒パイプ41内の冷媒Rへ伝達できると共に、鉛直上方側の流動体Fを効率的に冷媒Rで冷却することができる。よって、冷却装置400の冷却性能を維持しながら冷却装置400の小型軽量化を図ることができ、もってモータ3000の小型軽量化を実現することができる。 Therefore, in the third embodiment, as shown in FIG. 5A, the refrigerant pipes 41 are concentrated on the upper side of the motor body 100 in the vertical direction. Thereby, the heat dissipated from the motor main body 100 can be efficiently transmitted to the refrigerant R in the refrigerant pipe 41, and the fluid F on the vertically upper side can be efficiently cooled by the refrigerant R. Therefore, the cooling device 400 can be reduced in size and weight while maintaining the cooling performance of the cooling device 400, and thus the motor 3000 can be reduced in size and weight.
 図6は、図5に示すモータ3000の冷媒パイプ41の配管を模式的に示したものである。図示するように、実施例3においては、冷媒パイプ41が主としてロータ1の回転軸線Lと略平行となるように配置され、モータケース11の外側を周方向に向かって蛇行(ジグザグ状)するように全体として面形状に配置されている。 FIG. 6 schematically shows the piping of the refrigerant pipe 41 of the motor 3000 shown in FIG. As shown in the figure, in the third embodiment, the refrigerant pipe 41 is mainly disposed so as to be substantially parallel to the rotation axis L of the rotor 1 and meanders (zigzag) outside the motor case 11 in the circumferential direction. Are arranged in a plane shape as a whole.
 この形態とすれば、冷媒供給部43と冷媒排出部42をモータ本体100の外周面11Aの異なる位置に設けることができると共に、モータ本体100の回転軸線L方向の同方向、及び反対方向のいずれの方向にも設けることができる。特に、図示するように、冷媒供給部43と冷媒排出部42をモータ本体100の回転軸線L方向の同方向に設けることで、ハウジング46をモータ本体100に取り付けた状態で、冷媒パイプ41をハウジングキャップ46B等と共にモータ本体100の外周面11Aから(矢印C方向へ)引き抜いて取り外すことができる。これにより、モータ本体100やハウジング46を分解することなく冷媒パイプ41を分離することが可能となり、冷却装置400の組立性やメンテナンス性を更に向上させることができる。 With this configuration, the refrigerant supply unit 43 and the refrigerant discharge unit 42 can be provided at different positions on the outer peripheral surface 11A of the motor main body 100, and either the same direction in the rotation axis L direction of the motor main body 100 or the opposite direction. It can also be provided in the direction. In particular, as shown in the drawing, the refrigerant supply section 43 and the refrigerant discharge section 42 are provided in the same direction in the direction of the rotation axis L of the motor main body 100, so that the refrigerant pipe 41 is mounted in the state where the housing 46 is attached to the motor main body 100. The cap 46B and the like can be pulled out (in the direction of arrow C) from the outer peripheral surface 11A of the motor main body 100 and removed. As a result, the refrigerant pipe 41 can be separated without disassembling the motor main body 100 and the housing 46, and the assemblability and maintainability of the cooling device 400 can be further improved.

 なお、冷媒パイプ41の断面形状は、実施例1,2と同様の断面形状、即ち、モータケース11の外周面と面接触できる断面形状とすることができる。

The cross-sectional shape of the refrigerant pipe 41 can be the same cross-sectional shape as in the first and second embodiments, that is, a cross-sectional shape that can come into surface contact with the outer peripheral surface of the motor case 11.
 図7は、実施例3のモータにおける冷媒パイプの配管の他の実施の形態を模式的に示したものである。この形態とすれば、冷媒パイプ41が主としてモータ本体100の回転軸線Lと垂直となるように配置され、モータケース11の外側を回転軸線L方向に向かって蛇行するように配置されている。これにより、冷媒供給部43と冷媒排出部42を、モータ本体100の回転軸線Lの反対向きであってモータケース11の外周面11Aの同じ位置に設けることができる。 FIG. 7 schematically shows another embodiment of the refrigerant pipe piping in the motor of the third embodiment. With this configuration, the refrigerant pipe 41 is mainly disposed so as to be perpendicular to the rotation axis L of the motor body 100, and is disposed so as to meander the outside of the motor case 11 in the direction of the rotation axis L. Thereby, the refrigerant supply unit 43 and the refrigerant discharge unit 42 can be provided in the same position on the outer peripheral surface 11 </ b> A of the motor case 11 in the direction opposite to the rotation axis L of the motor body 100.
 なお、図5(a)に示すように、冷媒Rは、モータ本体100から放熱される熱や流動体Fの熱を吸熱し、ハウジング46に取り付けられた冷媒ホース44を介して冷凍機器40に送られ、冷凍機器40の圧縮機40Aや熱交換器40B等で冷却されて、冷媒ポンプ40Cによって冷媒ホース45を介して再び冷媒パイプ41に圧送される。ここで、冷媒パイプ41と冷媒ホース44,45は、ハウジングキャップ46Bを介して接続されており、ハウジング46は、このハウジングキャップ46Bによって密閉されている。 As shown in FIG. 5A, the refrigerant R absorbs heat radiated from the motor main body 100 and heat of the fluid F, and enters the refrigeration equipment 40 via the refrigerant hose 44 attached to the housing 46. Then, it is cooled by the compressor 40A, the heat exchanger 40B, etc. of the refrigeration equipment 40, and is again pumped to the refrigerant pipe 41 via the refrigerant hose 45 by the refrigerant pump 40C. Here, the refrigerant pipe 41 and the refrigerant hoses 44 and 45 are connected via a housing cap 46B, and the housing 46 is sealed by the housing cap 46B.
 また、実施例3においては、流動体Fを循環させるための循環路や流動体ポンプ、流動体Fを冷却させるためのラジエータ等を備えていない。しかしながら、モータケース11の外周面11Aとハウジング46の内周面46Aで画定される領域の循環路47を備えていることで、熱を吸熱して相対的に高温となり、比重が軽くなった流動体Fが鉛直上方に流動し、鉛直上方に設けられた冷媒Rで冷却され、比重が重くなった流動体Fは鉛直下方へ流動する。即ち、循環路やポンプ等を使用しなくてもハウジング46内の流動体Fの比重差を利用した自然対流によって、モータ本体100の周りに設けられた循環路47によって流動体Fを循環させることができる。これにより、上記流動体ポンプ等が不要となり、更なる構成の簡略化と体格の小型化を図ることができる。 In Example 3, a circulation path for circulating the fluid F, a fluid pump, a radiator for cooling the fluid F, and the like are not provided. However, by providing the circulation path 47 in a region defined by the outer peripheral surface 11A of the motor case 11 and the inner peripheral surface 46A of the housing 46, the heat is absorbed and the temperature becomes relatively high, and the specific gravity is reduced. The body F flows vertically upward, is cooled by the refrigerant R provided vertically above, and the fluid F having a higher specific gravity flows vertically downward. That is, the fluid F is circulated by the circulation passage 47 provided around the motor body 100 by natural convection utilizing the specific gravity difference of the fluid F in the housing 46 without using a circulation path or a pump. Can do. As a result, the fluid pump or the like is not necessary, and further simplification of the configuration and size reduction of the physique can be achieved.
 なお、ハウジング46内での流動体Fの流動性を高めるために、図5(b)に示すように、モータケース11の外周面11Aに配される冷媒パイプ41同士は、互いに間隔を置いて配置され、流動体Fのための流路(空隙)49が形成されている。また、図示する円形断面の冷媒パイプ41を実施例1,2と同様の構成として冷媒パイプ41とモータ本体100の外周面11Aを面接触させることもできる。 In order to enhance the fluidity of the fluid F in the housing 46, the refrigerant pipes 41 arranged on the outer peripheral surface 11A of the motor case 11 are spaced apart from each other as shown in FIG. The flow path (gap) 49 for the fluid F is formed. Further, the refrigerant pipe 41 having a circular cross section shown in the figure can be configured in the same manner as in the first and second embodiments so that the refrigerant pipe 41 and the outer peripheral surface 11A of the motor main body 100 are brought into surface contact.
[実施例4]
 図8は、本発明に係る冷却装置の実施例4であり、インバータに適用した状態を示したものであり、インバータ本体150と冷却装置500の内部を視認できるように一部を切り欠いて示したものである。
[Example 4]
FIG. 8 is a fourth embodiment of the cooling device according to the present invention, and shows a state applied to an inverter, with a part cut away so that the inside of the inverter main body 150 and the cooling device 500 can be seen. It is a thing.
 図示するインバータ4000は、略直方体形状のインバータ本体150と該インバータ本体150を冷却するための冷却装置500から大略構成されている。インバータ本体150は、基板112とインバータケース111と半導体素子や受動素子からなる電気素子101とを備え、基板112上に電気素子101が載置されてインバータケース111で覆われている。 The inverter 4000 shown in the figure is generally composed of an approximately rectangular parallelepiped inverter main body 150 and a cooling device 500 for cooling the inverter main body 150. The inverter main body 150 includes a substrate 112, an inverter case 111, and an electric element 101 made of a semiconductor element or a passive element. The electric element 101 is placed on the substrate 112 and covered with the inverter case 111.
 インバータ本体150の外周側(インバータケース111の上面111A側)には、インバータ本体150を冷却するための冷却装置500が配置される。この冷却装置500は、冷媒パイプ51と、該冷媒パイプ51の外側を覆うための非金属性材料からなるハウジング56と、冷媒Rを冷却して循環させるための冷凍サイクルを構成する冷凍機器50(圧縮機50A、熱交換器50B、冷媒ポンプ50C)から大略構成されている。また、冷媒パイプ51は、インバータケース111の上面111Aに当接するように蛇行(ジグザグ状)して全体として面形状に配置されている。なお、本実施例4においても、冷媒パイプ51は、インバータケース111の上面111Aと当接する前記接触部分51Aが実施例1と同様の構成になっていて、冷媒パイプ51とインバータケース111の上面111Aとが面接触している。また、ハウジング56内の冷媒パイプ51が、特に発熱量の大きいトランジスタ等の電気素子101の上方に配置されることで、電気素子101から放熱される熱を効率的に冷媒パイプ51内の冷媒Rに伝達できるようになっている。なお、この冷媒パイプ51をインバータ本体150の下面にも設けたり、インバータ本体150の周りを周回するように設けたりすることもできる。 A cooling device 500 for cooling the inverter main body 150 is disposed on the outer peripheral side of the inverter main body 150 (on the upper surface 111A side of the inverter case 111). The cooling device 500 includes a refrigerant pipe 51, a housing 56 made of a nonmetallic material for covering the outside of the refrigerant pipe 51, and a refrigeration apparatus 50 (which constitutes a refrigeration cycle for cooling and circulating the refrigerant R). The compressor 50A, the heat exchanger 50B, and the refrigerant pump 50C) are generally configured. Further, the refrigerant pipe 51 is meandering (zigzag) so as to come into contact with the upper surface 111 </ b> A of the inverter case 111 and is arranged in a planar shape as a whole. In the fourth embodiment as well, the refrigerant pipe 51 has the same configuration as the first embodiment in the contact portion 51A that contacts the upper surface 111A of the inverter case 111, and the upper surface 111A of the refrigerant pipe 51 and the inverter case 111. Are in surface contact. Further, the refrigerant pipe 51 in the housing 56 is disposed above the electric element 101 such as a transistor having a particularly large calorific value, so that the heat radiated from the electric element 101 can be efficiently transferred to the refrigerant R in the refrigerant pipe 51. Can be communicated to. The refrigerant pipe 51 may be provided on the lower surface of the inverter main body 150 or may be provided so as to go around the inverter main body 150.
 他の実施例と同様に、インバータケース111の上面111Aに設けられた冷媒パイプ51の両端部には冷媒排出部52と冷媒供給部53が設けられており、冷媒パイプ51を通り、電気素子101から放出される熱を吸熱した冷媒Rは冷媒排出部52とこの冷媒排出部52に取り付けられた冷媒ホース54を介して冷凍サイクルの冷凍機器50へ送られる。冷媒機器50では、圧縮機50Aや熱交換器50B等によって冷媒Rの熱が外部へ放出され、それにより冷却された冷媒Rは冷媒ポンプ50Cによって冷媒ホース55と冷媒供給部53を介して再び冷媒パイプ51へ圧送される。 Similarly to the other embodiments, a refrigerant discharge part 52 and a refrigerant supply part 53 are provided at both ends of the refrigerant pipe 51 provided on the upper surface 111A of the inverter case 111, and the electric element 101 passes through the refrigerant pipe 51. The refrigerant R that has absorbed the heat released from the refrigerant is sent to the refrigeration equipment 50 of the refrigeration cycle via the refrigerant discharge part 52 and the refrigerant hose 54 attached to the refrigerant discharge part 52. In the refrigerant device 50, the heat of the refrigerant R is released to the outside by the compressor 50A, the heat exchanger 50B, etc., and the refrigerant R cooled by the refrigerant R is again supplied to the refrigerant R through the refrigerant hose 55 and the refrigerant supply unit 53 by the refrigerant pump 50C. It is pumped to the pipe 51.
 また、この冷却装置500は、ハウジング56の内周面56Aとインバータケース111の上面111Aとで画定された領域のうち冷媒パイプ51以外の領域、即ちハウジング56と冷媒パイプ51の接触部分51Aとの間の空隙が、流動体Fで満たされていると共に、実施例2と同様に、循環路551やインバータ550、流動体ポンプ550Aを備えている。これにより、ハウジング56内で高温となった流動体Fは、流動体流出口552を介して循環路551に送られ、循環路551と接続されたラジエータ550で熱交換されて流動体Fの熱が外気へ放熱され、冷却された流動体Fは流動体ポンプ550Aによって流動体流入口553を介してハウジング56内へ圧送される。なお、ハウジング56内の流動体Fの流動性を高めるために、インバータ本体150の上面111Aに設けられた隣接する冷媒パイプ51同士は、互いに間隔を置いて配置されており、インバータケース111から流動体Fへ伝達された熱の伝熱経路が確保されている。 In addition, the cooling device 500 includes a region other than the refrigerant pipe 51 among regions defined by the inner peripheral surface 56A of the housing 56 and the upper surface 111A of the inverter case 111, that is, a contact portion 51A between the housing 56 and the refrigerant pipe 51. The space between them is filled with the fluid F, and similarly to the second embodiment, a circulation path 551, an inverter 550, and a fluid pump 550A are provided. As a result, the fluid F that has reached a high temperature in the housing 56 is sent to the circulation path 551 via the fluid outlet 552, and is heat-exchanged by the radiator 550 connected to the circulation path 551. Is radiated to the outside air, and the cooled fluid F is pumped into the housing 56 via the fluid inlet 553 by the fluid pump 550A. In order to improve the fluidity of the fluid F in the housing 56, the adjacent refrigerant pipes 51 provided on the upper surface 111A of the inverter main body 150 are arranged at intervals from each other and flow from the inverter case 111. A heat transfer path for heat transferred to the body F is secured.
[実施例5]
 図9は、本発明に係る冷却装置の実施例5であり、モータに適用した状態を示したものである。なお、本実施例5で使用するモータ本体は、実施例1~4で使用するモータ本体100と同様の構成であるため、同一の符号を付してその詳細な説明は省略する。
[Example 5]
FIG. 9 is a fifth embodiment of the cooling device according to the present invention, and shows a state applied to a motor. The motor main body used in the fifth embodiment has the same configuration as that of the motor main body 100 used in the first to fourth embodiments. Therefore, the same reference numerals are given and detailed description thereof is omitted.
 図示するモータ5000は、ハウジング66内の流動体Fを循環させるための循環路661と流動体ポンプ660Aと、流動体Fを冷却するためのラジエータ660を備えている。なお、モータ5000においては、モータケース11の外周面11Aの周りに循環路67が設けられた一体用ハウジング69によって、モータ本体100と冷却装置600のハウジング66とが一体に構成されており、該冷却装置600のハウジング66と循環路67とは連結路72によって接続されている。これにより、ハウジング66内を流れ、モータ本体100から放出される熱を吸熱した流動体Fは連結路72によって循環路67へ送られる。その後、流動体Fは、モータ本体100から放出される熱を更に吸熱しながら循環路67に沿ってモータ本体100周りを流れ、流動体流出口662を介して循環路661に設けられた流動体ポンプ660Aへ送られ、ラジエータ660でそれらの熱が熱交換により外気へ放熱されて、冷却された流動体Fが流動体流入口663を介して熱交換器70へ送られた後、再びハウジング66へ圧送される。 The illustrated motor 5000 includes a circulation path 661 for circulating the fluid F in the housing 66, a fluid pump 660A, and a radiator 660 for cooling the fluid F. In the motor 5000, the motor body 100 and the housing 66 of the cooling device 600 are integrally formed by an integral housing 69 in which a circulation path 67 is provided around the outer peripheral surface 11A of the motor case 11. The housing 66 of the cooling device 600 and the circulation path 67 are connected by a connection path 72. As a result, the fluid F that has flowed through the housing 66 and absorbed the heat released from the motor main body 100 is sent to the circulation path 67 by the connection path 72. Thereafter, the fluid F flows around the motor body 100 along the circulation path 67 while further absorbing heat released from the motor body 100, and is provided in the circulation path 661 via the fluid outlet 662. The heat is transferred to the pump 660A, the heat is radiated to the outside air by the radiator 660, and the cooled fluid F is sent to the heat exchanger 70 via the fluid inlet 663. To be pumped.
 本実施例5においては、流動体Fが流れる冷却装置600のハウジング66に熱交換器70が設けられている。すなわち、モータ本体100の外周面11Aに設けられた循環路67を流れる際に、モータ本体100から放熱される熱によって高温となり、ラジエータ660を介して熱交換器70へ送られた流動体Fは、この熱交換器70で冷凍サイクルの冷凍機器60によって更に冷却される。即ち、冷媒供給部63Aを介して熱交換器70へ供給された冷媒パイプ61A内の冷媒Rと、循環路661を流れてきた流動体Fとの間で熱交換を行い、流動体Fが更に冷却される。なお、流動体Fの有する熱を吸熱した冷媒Rは、冷媒排出部62Aを介して冷媒ホース64Aと接続された冷凍サイクルの冷却機器60(圧縮機60A、熱交換器60B、冷媒ポンプ60C)へ送られ、再び冷媒ホース65と冷媒供給部63を介してハウジング66内の冷媒パイプ61へ圧送される。そして、該ハウジング66内の例えばジグザグ状に配置された冷媒パイプ61でモータ本体100の熱を吸熱した冷媒Rは、冷媒排出部62を介して冷媒ホース64へ送られて冷媒ホース65Aと冷媒供給部63Aを介して熱交換器70へ送られる。 In the fifth embodiment, the heat exchanger 70 is provided in the housing 66 of the cooling device 600 through which the fluid F flows. That is, when flowing through the circulation path 67 provided on the outer peripheral surface 11 </ b> A of the motor main body 100, the fluid F that is heated to the heat dissipated from the motor main body 100 and sent to the heat exchanger 70 via the radiator 660 is Further, the heat exchanger 70 further cools by the refrigeration equipment 60 of the refrigeration cycle. That is, heat exchange is performed between the refrigerant R in the refrigerant pipe 61A supplied to the heat exchanger 70 via the refrigerant supply unit 63A and the fluid F flowing through the circulation path 661, and the fluid F further To be cooled. The refrigerant R that has absorbed the heat of the fluid F is transferred to the refrigeration cycle cooling device 60 (the compressor 60A, the heat exchanger 60B, and the refrigerant pump 60C) connected to the refrigerant hose 64A via the refrigerant discharge portion 62A. Then, the pressure is again sent to the refrigerant pipe 61 in the housing 66 through the refrigerant hose 65 and the refrigerant supply unit 63. Then, the refrigerant R that has absorbed the heat of the motor main body 100 with the refrigerant pipe 61 arranged in, for example, a zigzag shape in the housing 66 is sent to the refrigerant hose 64 via the refrigerant discharge part 62 and supplied with the refrigerant hose 65A. It is sent to the heat exchanger 70 via the part 63A.
 また、冷媒パイプ61A内の冷媒Rによって冷却された流動体Fは、連結路71を介してハウジング66内へ送られ、既述するようにハウジング66内を流れる間にモータ本体100から放熱される熱を吸熱して、連結路72によって再びモータ本体100の周りに配置された循環路67へ供給されて、モータ本体100が冷却される。 Further, the fluid F cooled by the refrigerant R in the refrigerant pipe 61A is sent into the housing 66 through the connection path 71 and is radiated from the motor main body 100 while flowing in the housing 66 as described above. The heat is absorbed and supplied again to the circulation path 67 disposed around the motor main body 100 by the connection path 72, and the motor main body 100 is cooled.
 このように、循環路661等を使用してハウジング66内の流動体Fを循環させると共に、熱交換器70でモータ本体100の冷却に使用される流動体Fと冷媒パイプ61A内の冷媒Rとの熱交換を行うことで、冷却装置600のハウジング66内を流れる流動体Fをより効率的に冷却することができ、流れる流動体Fの流量を更に抑制することができるため、流動体F全体の熱容量を低減して流動体Fを応答性良く冷却することができる。 In this way, the fluid F in the housing 66 is circulated using the circulation path 661 and the like, and the fluid F used for cooling the motor main body 100 by the heat exchanger 70 and the refrigerant R in the refrigerant pipe 61A Since the fluid F flowing in the housing 66 of the cooling device 600 can be cooled more efficiently and the flow rate of the flowing fluid F can be further suppressed, the entire fluid F can be reduced. Thus, the fluid F can be cooled with good responsiveness.
 図10は、図9に示すモータと冷却装置の間にインバータを介在配置したものであり、インバータ本体150とモータ本体100とを一体構成としたものに前記冷却装置を適用したものである。なお、図示するインバータ本体150は、実施例4で使用するインバータ本体150と同様であるため、同一の符号を付してその詳細な説明は省略する。 FIG. 10 shows an arrangement in which an inverter is interposed between the motor and the cooling device shown in FIG. 9, and the cooling device is applied to an inverter main body 150 and a motor main body 100 that are integrated. The illustrated inverter main body 150 is the same as the inverter main body 150 used in the fourth embodiment, and thus the same reference numerals are given and detailed description thereof is omitted.
 図示するように、モータ本体100の一体用ハウジング69によって該モータ本体100とインバータ150が一体とされ、その上方に冷却装置600Aが取り付けられている。 As shown in the figure, the motor main body 100 and the inverter 150 are integrated with each other by an integral housing 69 of the motor main body 100, and a cooling device 600A is attached to the upper side.
 このように、モータ本体100と冷却装置600Aとの間にインバータ本体150を介在配置することで、冷却装置600Aでインバータ本体150から放熱される熱を吸収することができ、モータ本体100とインバータ本体150の双方を冷却することができる。また、モータ本体100とインバータ本体150を個別に配置して冷却装置で冷却する場合と比較して、モータ5000A全体を流れる流動体Fの配管の長さを抑制することができ、モータ5000A全体の小型軽量化を図ることができる。また、例えば流動体Fが水等の熱容量が大きな液体からなる場合には、流動体Fの全体流量を少なくすることで、流動体Fの熱容量を低減して流動体Fを応答性良く冷却することができ、冷却装置600Aの冷却効率を高めることができる。 Thus, by disposing the inverter main body 150 between the motor main body 100 and the cooling device 600A, the heat dissipated from the inverter main body 150 by the cooling device 600A can be absorbed, and the motor main body 100 and the inverter main body can be absorbed. Both 150 can be cooled. Moreover, compared with the case where the motor main body 100 and the inverter main body 150 are separately disposed and cooled by the cooling device, the length of the piping of the fluid F flowing through the entire motor 5000A can be suppressed, and the entire motor 5000A can be reduced. Smaller and lighter can be achieved. In addition, for example, when the fluid F is made of a liquid having a large heat capacity such as water, the heat capacity of the fluid F is reduced by reducing the overall flow rate of the fluid F, thereby cooling the fluid F with high responsiveness. The cooling efficiency of the cooling device 600A can be increased.
 なお、モータ本体100とインバータ本体150を一体としたものに冷却装置を取り付ける場合には、モータ本体100とインバータ本体150の双方にそれぞれ別個の冷却装置を取り付けてもよい。また、モータ本体100の冷却装置が取り付けられた側とは反対側にインバータ本体150を取り付けてもよいし、冷却装置をモータ本体100とインバータ本体150の間に介在配置してもよい。 In addition, when attaching a cooling device to what united the motor main body 100 and the inverter main body 150, you may attach a separate cooling device to both the motor main body 100 and the inverter main body 150, respectively. Moreover, the inverter main body 150 may be attached to the opposite side of the motor main body 100 to which the cooling device is attached, or the cooling device may be interposed between the motor main body 100 and the inverter main body 150.
 また、図11は、図10に示す冷媒パイプの配管の他の実施の形態を示したものである。 FIG. 11 shows another embodiment of the piping of the refrigerant pipe shown in FIG.
 図示するように、冷却装置600Bのハウジング66内を流動体Fのみで充填し、この流動体Fを循環路67,661を介して循環させ、ラジエータ660での熱交換により冷却することで、モータ本体100やインバータ本体150を冷却することもできる。なお、モータ5000Bには熱交換器70が設けられており、モータ本体100やインバータ本体150から放熱され、流動体Fにより吸熱された熱は、熱交換器70内の冷媒パイプ61A内を流れる冷媒Rに伝達されてモータ5000Bの外部へ放熱される。 As shown in the figure, the inside of the housing 66 of the cooling device 600B is filled with only the fluid F, the fluid F is circulated through the circulation paths 67 and 661, and cooled by heat exchange in the radiator 660, so that the motor The main body 100 and the inverter main body 150 can also be cooled. In addition, the heat exchanger 70 is provided in the motor 5000B, and the heat radiated from the motor main body 100 and the inverter main body 150 and absorbed by the fluid F flows into the refrigerant pipe 61A in the heat exchanger 70. It is transmitted to R and radiated to the outside of the motor 5000B.
 以上、本発明の5つの実施例について説明したが、本発明は前記実施例に限定されるものではなく、請求の範囲に記載された発明の精神を逸脱することなく、設計において種々の変更ができるものである。上記実施例においては、本発明に係る冷却装置を用いてモータやインバータ等の電動機器からなる被冷却体を冷却する実施例について説明したが、当該冷却装置をバッテリに適用することもできる。 Although five embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes in design can be made without departing from the spirit of the invention described in the claims. It can be done. In the said Example, although the Example which cools the to-be-cooled body which consists of electric equipments, such as a motor and an inverter, using the cooling device which concerns on this invention was described, the said cooling device can also be applied to a battery.
 以上の説明から理解できるように、実施例1~5によれば、高圧の冷媒が漏れにくい密閉構造からなる冷媒パイプを用いながら、冷却装置の冷却性能を高めて、例えば電動機器等の被冷却体から放熱される熱を効率的にその外部へ放熱することができる。これにより、被冷却体の温度上昇を抑制して被冷却体を効率的に運転することができる。また、冷媒パイプの配置を最適化することによって冷却装置の小型軽量化を図ることができ、それが電動機器等に取り付けられた際にもその全体の体格の小型化を図ることができる。さらに、モータやインバータ、バッテリ等の電動機器を分解せずに冷却装置を電動機器に着脱自在とすることで、冷却装置や被冷却体である電動機器の組立性やメンテナンス性を向上させることもできる。 As can be understood from the above description, according to the first to fifth embodiments, the cooling performance of the cooling device is improved while using a refrigerant pipe having a sealed structure in which high-pressure refrigerant is difficult to leak. The heat radiated from the body can be efficiently radiated to the outside. Thereby, the to-be-cooled body can be efficiently operated while suppressing the temperature rise of the to-be-cooled body. Further, by optimizing the arrangement of the refrigerant pipes, it is possible to reduce the size and weight of the cooling device, and it is possible to reduce the overall size of the cooling device even when it is attached to an electric device or the like. Furthermore, by making the cooling device detachable from the electric device without disassembling the electric device such as a motor, inverter, battery, etc., it is possible to improve the assemblability and maintainability of the electric device that is the cooling device and the cooled object. it can.
 なお、本発明は上記した実施例1~5に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例1~5は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例1~5の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the first to fifth embodiments described above, and includes various modifications. For example, the first to fifth embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configurations of the first to fifth embodiments.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.

Claims (30)

  1.  被冷却体を冷媒によって冷却する冷媒パイプを備えた冷却装置であって、
     前記冷媒パイプは、長いパイプを全体として面形状に形成したものであり、該面形状の一面側がハウジングにより覆われ、他面側が前記被冷却体との接触部とされ、
     前記ハウジングと前記接触部との間の空隙には、空気よりも熱伝導率の高い物質が充填されていることを特徴とする冷却装置。
    A cooling device including a refrigerant pipe for cooling an object to be cooled with a refrigerant,
    The refrigerant pipe is a long pipe formed into a surface shape as a whole, one surface side of the surface shape is covered with a housing, and the other surface side is a contact portion with the object to be cooled,
    A cooling device, wherein a gap between the housing and the contact portion is filled with a substance having a higher thermal conductivity than air.
  2.  前記冷媒パイプは、該冷媒パイプを螺旋状に形成した面形状であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the refrigerant pipe has a surface shape in which the refrigerant pipe is formed in a spiral shape.
  3.  前記冷媒パイプは、該冷媒パイプをジグザグ状に形成した面形状であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the refrigerant pipe has a surface shape in which the refrigerant pipe is formed in a zigzag shape.
  4.  前記冷媒パイプは、前記面形状の隣接する各パイプを平行な方向にジグザグ状に形成されていることを特徴とする請求項3に記載の冷却装置。 The cooling device according to claim 3, wherein the refrigerant pipe is formed in a zigzag shape in a parallel direction with respect to the adjacent pipes having the planar shape.
  5.  前記冷媒パイプは、前記面形状の隣接するパイプ間が相互に間隔を置いて配置されていることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the refrigerant pipes are arranged such that adjacent pipes having the planar shape are spaced apart from each other.
  6.  前記冷媒パイプは、該冷媒パイプの前記被冷却体との接触部が該被冷却体と面として接触できる断面形状であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the refrigerant pipe has a cross-sectional shape in which a contact portion of the refrigerant pipe with the object to be cooled can come into contact with the object to be cooled as a surface.
  7.  前記断面形状は、楕円形状、三角形状や四角形状等の多角形状であることを特徴とする請求項6に記載の冷却装置。 The cooling device according to claim 6, wherein the cross-sectional shape is an elliptical shape, a polygonal shape such as a triangular shape or a quadrangular shape.
  8.  前記物質は、高熱伝導性樹脂であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the substance is a high thermal conductive resin.
  9.  前記物質は、液体であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the substance is a liquid.
  10.  前記液体は、不凍液もしくは不活性液体であることを特徴とする請求項9に記載の冷却装置。 10. The cooling apparatus according to claim 9, wherein the liquid is an antifreeze liquid or an inert liquid.
  11.  前記ハウジングは、非金属性材料であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the housing is made of a non-metallic material.
  12.  前記冷媒パイプは、圧縮機、熱交換器、冷媒ポンプ等の冷却機器とで冷媒を循環させる冷凍サイクルを構成していることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the refrigerant pipe constitutes a refrigeration cycle in which the refrigerant is circulated with a cooling device such as a compressor, a heat exchanger, and a refrigerant pump.
  13.  前記被冷却体は、電動機器であることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the object to be cooled is an electric device.
  14.  前記電動機器は、バッテリ、モータ及び/又はインバータであることを特徴とする請求項13に記載の冷却装置。 14. The cooling device according to claim 13, wherein the electric device is a battery, a motor and / or an inverter.
  15.  請求項1に記載の冷却装置を備えたモータであって、
     前記モータは、回転するロータと、該ロータの周囲に配置されるステータと、該ロータと該ステータとを覆うモータケースと、を有するモータ本体を備え、
     前記冷却装置は、前記冷媒パイプの前記面形状の前記接触部を、前記モータケースの外周に接触して配置していることを特徴とするモータ。
    A motor comprising the cooling device according to claim 1,
    The motor includes a motor body having a rotating rotor, a stator disposed around the rotor, and a motor case covering the rotor and the stator,
    The said cooling device has arrange | positioned the said contact part of the said surface shape of the said refrigerant | coolant pipe in contact with the outer periphery of the said motor case.
  16.  前記ハウジングは、非金属性材料であることを特徴とする請求項15に記載のモータ。 The motor according to claim 15, wherein the housing is made of a non-metallic material.
  17.  前記冷媒パイプは、圧縮機、熱交換器、冷媒ポンプ等の冷却機器とで冷媒を循環させる冷凍サイクルを構成していることを特徴とする請求項15に記載のモータ。 The motor according to claim 15, wherein the refrigerant pipe constitutes a refrigeration cycle in which the refrigerant is circulated with a cooling device such as a compressor, a heat exchanger, and a refrigerant pump.
  18.  前記物質は、高熱伝導性樹脂であることを特徴とする請求項15に記載のモータ。 The motor according to claim 15, wherein the substance is a high thermal conductive resin.
  19.  前記物質は、液体であることを特徴とする請求項15に記載のモータ。 The motor according to claim 15, wherein the substance is a liquid.
  20.  前記冷媒パイプは、該冷媒パイプを螺旋状に形成した面形状であり、前記面形状の隣接するパイプ間が相互に間隔を置いて配置されていることを特徴とする請求項19に記載のモータ。 The motor according to claim 19, wherein the refrigerant pipe has a surface shape in which the refrigerant pipe is formed in a spiral shape, and adjacent pipes having the surface shape are spaced apart from each other. .
  21.  前記冷却装置は、前記ハウジングと前記接触部との間の空隙に充填されている前記液体を循環させる循環路と流動体ポンプ、及び前記液体を冷却するラジェータとを備えていることを特徴とする請求項20に記載のモータ。 The cooling device includes a circulation path that circulates the liquid filled in a gap between the housing and the contact portion, a fluid pump, and a radiator that cools the liquid. The motor according to claim 20.
  22.  前記冷媒パイプは、前記パイプをジグザグ状に形成した面形状であり、前記面形状の隣接するパイプ間が相互に間隔を置いて配置されていることを特徴とする請求項19に記載のモータ。 The motor according to claim 19, wherein the refrigerant pipe has a surface shape in which the pipe is formed in a zigzag shape, and adjacent pipes of the surface shape are arranged with a space therebetween.
  23.  前記冷媒パイプは、前記面形状の隣接する各パイプが前記ロータの回転軸線方向と平行な方向もしくはその方向と直行する方向にジグザグ状に形成されていることを特徴とする請求項22に記載のモータ。 The said refrigerant | coolant pipe is formed in the zigzag shape in the direction in which each said pipe of the said surface shape is parallel to the rotation-axis direction of the said rotor, or the direction orthogonal to the direction, It is characterized by the above-mentioned. motor.
  24.  前記モータは、前記ハウジングと前記接触部との間の空隙以外に、前記ハウジングの内周面と前記モータケースの外周面との間に前記液体の循環路を備えていることを特徴とする請求項23に記載のモータ。 The said motor is provided with the circulation path of the said liquid between the internal peripheral surface of the said housing, and the outer peripheral surface of the said motor case other than the space | gap between the said housing and the said contact part. Item 24. The motor according to Item 23.
  25.  前記冷却装置は、前記ハウジングと前記接触部との間の空隙に充填されている前記液体を循環させる循環路と流動体ポンプ、及び前記液体を冷却するラジェータとを備えていることを特徴とする請求項23に記載のモータ。 The cooling device includes a circulation path that circulates the liquid filled in a gap between the housing and the contact portion, a fluid pump, and a radiator that cools the liquid. The motor according to claim 23.
  26.  前記モータは、前記ラジエータを通過した前記液体を前記冷却装置の前記冷媒で冷却する熱交換器を備えていることを特徴とする請求項25に記載のモータ。 26. The motor according to claim 25, further comprising a heat exchanger that cools the liquid that has passed through the radiator with the refrigerant of the cooling device.
  27.  前記モータ本体と前記冷却装置の前記ハウジングとの間に、インバータ本体が介在配置されていることを特徴とする請求項26に記載のモータ。 27. The motor according to claim 26, wherein an inverter main body is interposed between the motor main body and the housing of the cooling device.
  28.  請求項1に記載の冷却装置を備えたインバータであって、
     前記インバータは、基板と電気素子とインバータケースとを有するインバータ本体を備え、
     前記冷却装置は、前記冷媒パイプの前記面形状の前記接触部を、前記インバータケースの外周に接触して配置していることを特徴とするインバータ。
    An inverter comprising the cooling device according to claim 1,
    The inverter includes an inverter body having a substrate, an electric element, and an inverter case,
    The said cooling device has arrange | positioned the said contact part of the said surface shape of the said refrigerant | coolant pipe in contact with the outer periphery of the said inverter case, The inverter characterized by the above-mentioned.
  29.  前記ハウジングは、非金属性材料であることを特徴とする請求項28に記載のインバータ。 The inverter according to claim 28, wherein the housing is made of a non-metallic material.
  30.  前記冷媒パイプは、該冷媒パイプをジグザグ状に形成した面形状であり、前記面形状の隣接するパイプ間が相互に間隔を置いて配置され、圧縮機、熱交換器、冷媒ポンプ等の冷却機器とで冷媒を循環させる冷凍サイクルを構成し、
     前記冷却装置は、前記ハウジングと前記接触部との間の空隙に充填されている空気よりも熱伝導率の高い物質である液体を循環させる循環路と流動体ポンプ、及び前記液体を冷却するラジェータとを備えていることを特徴とする請求項28に記載のインバータ。
    The refrigerant pipe has a surface shape in which the refrigerant pipe is formed in a zigzag shape, and adjacent pipes of the surface shape are arranged with a space between each other, and a cooling device such as a compressor, a heat exchanger, a refrigerant pump, or the like Constitute a refrigeration cycle that circulates refrigerant,
    The cooling device includes a circulation path and a fluid pump for circulating a liquid that is a substance having a higher thermal conductivity than air filled in a gap between the housing and the contact portion, and a radiator for cooling the liquid The inverter according to claim 28, comprising:
PCT/JP2011/053651 2011-02-21 2011-02-21 Cooling equipment, and motor and inverter equipped with cooling equipment WO2012114420A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013500720A JP5676737B2 (en) 2011-02-21 2011-02-21 Cooling device, and motor and inverter provided with the cooling device
PCT/JP2011/053651 WO2012114420A1 (en) 2011-02-21 2011-02-21 Cooling equipment, and motor and inverter equipped with cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053651 WO2012114420A1 (en) 2011-02-21 2011-02-21 Cooling equipment, and motor and inverter equipped with cooling equipment

Publications (1)

Publication Number Publication Date
WO2012114420A1 true WO2012114420A1 (en) 2012-08-30

Family

ID=46720242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053651 WO2012114420A1 (en) 2011-02-21 2011-02-21 Cooling equipment, and motor and inverter equipped with cooling equipment

Country Status (2)

Country Link
JP (1) JP5676737B2 (en)
WO (1) WO2012114420A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180151A (en) * 2014-03-19 2015-10-08 中国電力株式会社 Cooling apparatus for closed circulatory refrigerant
KR20160028711A (en) * 2014-09-04 2016-03-14 한온시스템 주식회사 Electric compressor
JP2017011946A (en) * 2015-06-25 2017-01-12 株式会社日立製作所 Rotary electric machine and cooling system of the same
WO2019098224A1 (en) * 2017-11-17 2019-05-23 三菱自動車工業株式会社 Cooling device for rotary electric machine
CN115603517A (en) * 2022-10-17 2023-01-13 浙江威本工贸有限公司(Cn) Environment-friendly efficient energy-saving automobile generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614209A (en) * 2020-07-10 2020-09-01 合肥巨一动力系统有限公司 Automatic temperature-adjusting heat-dissipating water channel applied to electric drive system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364379A (en) * 1991-06-10 1992-12-16 Mitsubishi Electric Corp Inverter
JPH07288949A (en) * 1994-04-13 1995-10-31 Nippondenso Co Ltd Electric motor to drive vehicle
JPH07322640A (en) * 1994-05-27 1995-12-08 Nippondenso Co Ltd Inverter
JPH08251872A (en) * 1995-03-10 1996-09-27 Yaskawa Electric Corp Cooler of motor
JP2001169501A (en) * 1999-11-11 2001-06-22 Hilti Ag Electric motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364379A (en) * 1991-06-10 1992-12-16 Mitsubishi Electric Corp Inverter
JPH07288949A (en) * 1994-04-13 1995-10-31 Nippondenso Co Ltd Electric motor to drive vehicle
JPH07322640A (en) * 1994-05-27 1995-12-08 Nippondenso Co Ltd Inverter
JPH08251872A (en) * 1995-03-10 1996-09-27 Yaskawa Electric Corp Cooler of motor
JP2001169501A (en) * 1999-11-11 2001-06-22 Hilti Ag Electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180151A (en) * 2014-03-19 2015-10-08 中国電力株式会社 Cooling apparatus for closed circulatory refrigerant
KR20160028711A (en) * 2014-09-04 2016-03-14 한온시스템 주식회사 Electric compressor
KR102130404B1 (en) * 2014-09-04 2020-07-07 한온시스템 주식회사 Electric compressor
JP2017011946A (en) * 2015-06-25 2017-01-12 株式会社日立製作所 Rotary electric machine and cooling system of the same
WO2019098224A1 (en) * 2017-11-17 2019-05-23 三菱自動車工業株式会社 Cooling device for rotary electric machine
CN115603517A (en) * 2022-10-17 2023-01-13 浙江威本工贸有限公司(Cn) Environment-friendly efficient energy-saving automobile generator
CN115603517B (en) * 2022-10-17 2023-06-02 浙江威本工贸有限公司 Environment-friendly, efficient and energy-saving automobile generator

Also Published As

Publication number Publication date
JPWO2012114420A1 (en) 2014-07-07
JP5676737B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5676737B2 (en) Cooling device, and motor and inverter provided with the cooling device
CN202513756U (en) Motor utilizing shallow-layer thermal energy body and exchange fluid for dissipating heat
US20150097450A1 (en) System and method for cooling an electric motor
CN201994738U (en) Enclosed self-cooling motor
US20070273220A1 (en) Apparatus for controller-integrated motor
KR20130141502A (en) Coolant channels for electric machine stator
KR101714842B1 (en) Motor for Electric Vehicle
CN1989679A (en) Dynamoelectric machine with embedded heat exchanger
US8890643B2 (en) Heat exchange type cooling apparatus for a transformer
JP2013179746A (en) Rotary electric machine and electric vehicle
CN102638133A (en) Permanent magnet motor
CN108859731A (en) With electric assembly in wireless wheel cooling in integrated form wheel and it is combined with the vehicle of the component
CN109428422B (en) Motor winding end cooling device and cooling system
KR102258377B1 (en) Motor
EP2490323B1 (en) Cooling of permanent magnet electric machine
JP2010213495A (en) Toroidal winding motor
JPH07288949A (en) Electric motor to drive vehicle
CN212751999U (en) Heat radiation structure of automobile micro motor
CN102577045A (en) A cooling system for an electrical machine
JP2013179745A (en) Rotary electric machine and electric vehicle
CN115498316A (en) Passive heat dissipation device of lithium ion battery
WO2022176723A1 (en) Electric power converting device
CN211744251U (en) Mine electromechanical device motor with heat radiation structure
JP2011250601A (en) Electric motor
CN107846094A (en) A kind of rotor with cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859136

Country of ref document: EP

Kind code of ref document: A1