JP2015180151A - Cooling apparatus for closed circulatory refrigerant - Google Patents

Cooling apparatus for closed circulatory refrigerant Download PDF

Info

Publication number
JP2015180151A
JP2015180151A JP2014056780A JP2014056780A JP2015180151A JP 2015180151 A JP2015180151 A JP 2015180151A JP 2014056780 A JP2014056780 A JP 2014056780A JP 2014056780 A JP2014056780 A JP 2014056780A JP 2015180151 A JP2015180151 A JP 2015180151A
Authority
JP
Japan
Prior art keywords
cooling
pipe
closed circulation
refrigerant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056780A
Other languages
Japanese (ja)
Other versions
JP5973483B2 (en
Inventor
竜太郎 新井
Ryutaro Arai
竜太郎 新井
照文 村岡
Terufumi Muraoka
照文 村岡
浩 松下
Hiroshi Matsushita
浩 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2014056780A priority Critical patent/JP5973483B2/en
Publication of JP2015180151A publication Critical patent/JP2015180151A/en
Application granted granted Critical
Publication of JP5973483B2 publication Critical patent/JP5973483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To provide a cooling apparatus for cooling a closed circulatory refrigerant, which can be installed in an existing generator set.SOLUTION: A cooling apparatus 1, which is provided in a closed circulation cooling system 200 for circulating a closed circulatory refrigerant to cool a predetermined area near a generator 130 for generating electric power by a hydraulic turbine and the like and which cools the closed circulatory refrigerant, includes a heat exchanger detachably arranged along a surface of a pressure iron pipe 110, within which water flows, and performing heat exchange between the closed circulatory refrigerant and the water flowing through the pressure iron pipe 110.

Description

本発明は、水車発電機の軸受等の冷却に用いられた昇温した閉鎖循環冷媒の冷却に適用される、閉鎖循環冷媒の冷却装置に関する。   The present invention relates to a cooling device for a closed circulation refrigerant, which is applied to cooling a closed circulation refrigerant whose temperature has been increased and used for cooling a bearing or the like of a water turbine generator.

従来、発電機や電動機等、回転部を有する回転機械は、回転部を支えるために案内軸受や推力軸受を備えている。回転部が回転運動した際には、軸受の回転部と静止部との間に摩擦熱が発生し、これに伴い軸受油槽内の潤滑油の温度が上昇する。このため、回転機械を長時間連続運転するためには、この潤滑油を冷却する必要がある。また、発電機においては、固定子巻線等を冷却するために冷却空気を供給しているが、密閉式の回転機械においては冷却空気を循環させているので、この空気を冷却する必要がある。   2. Description of the Related Art Conventionally, a rotating machine having a rotating part such as a generator or an electric motor has a guide bearing and a thrust bearing to support the rotating part. When the rotating part rotates, frictional heat is generated between the rotating part and the stationary part of the bearing, and accordingly, the temperature of the lubricating oil in the bearing oil tank rises. For this reason, in order to continuously operate the rotating machine for a long time, it is necessary to cool the lubricating oil. In the generator, cooling air is supplied to cool the stator winding and the like. However, since the cooling air is circulated in the hermetic rotary machine, this air needs to be cooled. .

一般的に水力発電所の水車発電機においては、軸受油槽や固定子巻線が収納されている密閉式空間の空気を冷やす方法として、水圧鉄管や放水路から取水した水を冷媒とする冷却器によって熱交換を行っている。   Generally, in a turbine generator of a hydroelectric power plant, as a method of cooling the air in a sealed space in which bearing oil tanks and stator windings are housed, a cooler using water taken from a hydraulic iron pipe or a discharge channel as a refrigerant. Heat exchange.

しかし、河川水の水質が悪い(土砂流入や塵芥が多い)場合、冷却水の配管系統に設けられている土砂や塵芥等を除去するストレーナの目詰まりや、ストレーナで捕捉されずに通過した土砂等により冷却器の細管チューブが目詰まりを起こし、冷却性能が低下するという問題が発生する。   However, when the water quality of river water is poor (sediment inflow or dust is large), the strainer clogged in the cooling water piping system to remove soil or dust, or the soil that has passed without being captured by the strainer As a result, the capillary tube of the cooler is clogged, resulting in a problem that the cooling performance is deteriorated.

そこで、従来、閉鎖循環冷媒を循環させる閉鎖循環冷却系統を形成し、この閉鎖循環冷却系統において閉鎖循環冷媒を循環させることによって、発電機付近の所定部位の冷却、例えば、軸受油槽や固定子巻線が収納されている密閉式空間を冷却する。更に、この閉鎖循環冷却系統に、昇温した閉鎖循環冷媒を冷却するための熱交換器を接続し、この熱交換器によって閉鎖循環冷媒と水圧鉄管や放水路を流れる水との間で熱交換を行い、閉鎖循環冷媒を冷却する、といった技術が提案されている。   Therefore, conventionally, a closed circulation cooling system for circulating the closed circulation refrigerant is formed, and the closed circulation refrigerant is circulated in the closed circulation cooling system, thereby cooling a predetermined portion near the generator, for example, a bearing oil tank and a stator winding. Cool the enclosed space where the wires are stored. Furthermore, a heat exchanger for cooling the heated closed circulation refrigerant is connected to this closed circulation cooling system, and this heat exchanger exchanges heat between the closed circulation refrigerant and water flowing through the hydraulic iron pipe and the discharge channel. And a technique of cooling the closed circulation refrigerant has been proposed.

この技術によれば、水圧鉄管や放水路の水を、潤滑油の冷却や固定子巻線等を冷却するための冷媒として直接用いていないため、水圧鉄管や放水路の水に含まれる異物による冷却性能への影響を低減することができる。   According to this technology, the water in the hydraulic iron pipe and the discharge channel is not directly used as a coolant for cooling the lubricating oil and the stator windings, etc. The influence on the cooling performance can be reduced.

また、従来におけるこの種の技術として、特許文献1に記載された装置が提案されている。特許文献1によれば、水圧鉄管の内部に、閉鎖循環冷媒と熱交換を行う熱交換器を設け、水圧鉄管内を流れる水によって閉鎖循環冷媒を冷却する、といった技術が記載されている。   Further, as a conventional technique of this type, an apparatus described in Patent Document 1 has been proposed. According to Patent Document 1, a technique is described in which a heat exchanger that performs heat exchange with a closed circulation refrigerant is provided inside the hydraulic iron pipe, and the closed circulation refrigerant is cooled by water flowing in the hydraulic iron pipe.

特開2000−170638号公報JP 2000-170638 A

しかしながら、特許文献1記載の技術のように、水圧鉄管内に熱交換器を設置する場合には、負荷遮断時に水圧鉄管の内部に大きな水圧がかかることから、熱交換器はその水圧に耐え得る構造及び強度にする必要がある。この場合、熱交換器の強度を高めるために熱交換器が大型化するおそれがあり、熱交換器が大型化すると、熱交換器によって水の流れが阻害され、損失水頭が増加する。このため、発電効率が低下するおそれがある。   However, when a heat exchanger is installed in the hydraulic iron pipe as in the technique described in Patent Document 1, a large water pressure is applied to the inside of the hydraulic iron pipe when the load is interrupted, so that the heat exchanger can withstand the water pressure. Need to be structure and strength. In this case, the heat exchanger may be increased in size in order to increase the strength of the heat exchanger. When the heat exchanger is increased in size, the flow of water is inhibited by the heat exchanger and the loss head is increased. For this reason, there exists a possibility that electric power generation efficiency may fall.

また、水圧鉄管内に熱交換器を設置する場合には、閉鎖循環冷媒が通る配管を通すための配管穴を水圧鉄管に設けておく必要がある。しかし、既設の水圧鉄管に配管穴を設けることは、水圧鉄管の強度の低下につながることから配管穴は設けないことが望ましい。また、配管穴を設けるのであれば、水圧鉄管の強度を考慮して製作当初から設ける必要がある。このように、既設の水圧鉄管内に熱交換器を設置することは現状では困難である。   Moreover, when installing a heat exchanger in a hydraulic iron pipe, it is necessary to provide the hydraulic iron pipe with the piping hole for letting the piping through which a closed circulation refrigerant passes. However, providing a piping hole in an existing hydraulic iron pipe leads to a decrease in strength of the hydraulic iron pipe, so it is desirable not to provide a piping hole. Moreover, if a piping hole is provided, it is necessary to provide it from the beginning of manufacture in consideration of the strength of the hydraulic iron pipe. Thus, it is difficult at present to install a heat exchanger in an existing hydraulic iron pipe.

本発明は、このような問題点を解決し、既設の流水配管に設置可能な、閉鎖循環冷媒を冷却する冷却装置を提供することを目的とする。   An object of this invention is to provide the cooling device which solves such a problem and cools a closed circulation refrigerant | coolant which can be installed in existing flowing water piping.

前記目的を達成するため、本発明は、次に記載する構成を備えている。   In order to achieve the above object, the present invention has the following configuration.

(1) 閉鎖循環冷媒が循環することによって発電機付近の所定部位を冷却する閉鎖循環冷却系統に設けられ、前記閉鎖循環冷媒を冷却する冷却装置であって、内部に水が流れる流水配管の表面に沿って着脱自在に配置され、前記閉鎖循環冷媒と前記流水配管との間で熱交換を行う熱交換器を有することを特徴とする閉鎖循環冷媒の冷却装置。   (1) A cooling device that is provided in a closed circulation cooling system that cools a predetermined portion near a generator by circulating a closed circulation refrigerant, and cools the closed circulation refrigerant, and a surface of a flowing water pipe through which water flows. And a heat exchanger for exchanging heat between the closed circulation refrigerant and the flowing water pipe, and a closed circulation refrigerant cooling device.

(1)によれば、閉鎖循環冷却系統内の閉鎖循環冷媒を冷却するための熱交換器が、流水配管の外側から着脱自在に設置される。これにより、閉鎖循環冷媒と、内部を流れる水によって冷却された流水配管との間で熱交換が行われるようになり、閉鎖循環冷媒を冷却することが可能になる。
このため、従来のように、流水配管内に閉鎖循環冷媒が通る配管を通すための改造を流水配管に施す必要が無くなり、既設の流水配管に熱交換器を設置することによって、閉鎖循環冷媒を冷却することが可能になる。
また、熱交換器は、流水配管の外側に設置されているため、流水配管内の流水からの水圧を受けることがない。このため、熱交換器は、流水配管内部に設置する場合と比較して、水圧に耐えうる強度にするという点を考慮する必要がなくなり、熱交換器の材質を選定する際に、鋼材でなく銅を採用するなど、強度よりも熱伝導率を優先して材質を選定することができる。
また、熱交換器を外部から視認することができるため、熱交換器の外部点検が可能である。
According to (1), the heat exchanger for cooling the closed circulation refrigerant in the closed circulation cooling system is detachably installed from the outside of the running water pipe. As a result, heat exchange is performed between the closed circulation refrigerant and the flowing water pipe cooled by the water flowing inside, and the closed circulation refrigerant can be cooled.
For this reason, it is no longer necessary to modify the running water piping to pass the piping through which the closed circulating refrigerant passes through the running water piping as in the past, and by installing a heat exchanger in the existing running water piping, It becomes possible to cool.
Moreover, since the heat exchanger is installed outside the running water pipe, it does not receive water pressure from running water in the running water pipe. For this reason, it is not necessary to consider the point that the heat exchanger is strong enough to withstand water pressure compared to the case where it is installed inside running water piping. The material can be selected by giving priority to thermal conductivity over strength, such as adopting copper.
Moreover, since the heat exchanger can be visually recognized from the outside, the heat exchanger can be inspected outside.

(2) (1)において、前記熱交換器は、複数の熱交換部に分割可能であり、当該複数の熱交換部は、前記流水配管を囲むように配置されることを特徴とする閉鎖循環冷媒の冷却装置。   (2) In (1), the heat exchanger can be divided into a plurality of heat exchange units, and the plurality of heat exchange units are arranged so as to surround the flowing water pipe. Refrigerant cooling device.

(2)によれば、流水配管への熱交換器の設置が容易に可能となる。   According to (2), it is possible to easily install a heat exchanger in running water piping.

(3) (2)において、前記熱交換部は、前記閉鎖循環冷媒が通る1本の冷却用配管を有し、当該冷却用配管は、一端部から円弧状に湾曲させてから折り返すことを繰り返すことによって形成された複数の円弧状の部分を、前記流水配管が延びる方向に並べてなる蛇行構造を有することを特徴とする閉鎖循環冷媒の冷却装置。   (3) In (2), the heat exchanging part has one cooling pipe through which the closed circulation refrigerant passes, and the cooling pipe is repeatedly bent after being bent in an arc shape from one end. An apparatus for cooling a closed circulation refrigerant having a meandering structure in which a plurality of arc-shaped portions formed thereby are arranged in a direction in which the flowing water pipe extends.

(3)によれば、熱交換部が1本の冷却用配管を蛇行させた構造を有するため、冷却用配管を流れる閉鎖循環冷媒は比較的長い経路において熱交換される。これにより、閉鎖循環冷媒を確実に冷却することが可能になる。   According to (3), since the heat exchanging unit has a structure in which one cooling pipe meanders, the closed circulation refrigerant flowing through the cooling pipe is heat-exchanged in a relatively long path. This makes it possible to reliably cool the closed circulation refrigerant.

(4) (2)において、前記熱交換部は、円弧状に湾曲した複数の冷却用配管と、両端部が閉鎖された棒状の導入側配管と、両端部が閉鎖された棒状の排出側配管と、を有し、前記導入側配管は、前記閉鎖循環冷媒を導入する導入部を有し、前記排出側配管は、前記閉鎖循環冷媒を排出する排出部を有し、前記複数の冷却用配管は、前記導入側配管と前記排出側配管との間に配置され、一端部が前記導入側配管に、他端部が前記排出側配管にそれぞれ前記閉鎖循環冷媒が流通可能に接続され、前記流水配管が延びる方向に並べられていることを特徴とする閉鎖循環冷媒の冷却装置。   (4) In (2), the heat exchanging section includes a plurality of cooling pipes curved in an arc shape, a rod-shaped introduction side pipe closed at both ends, and a rod-shaped discharge side pipe closed at both ends. The introduction side pipe has an introduction part for introducing the closed circulation refrigerant, the discharge side pipe has a discharge part for discharging the closed circulation refrigerant, and the plurality of cooling pipes Is arranged between the introduction side pipe and the discharge side pipe, one end is connected to the introduction side pipe and the other end is connected to the discharge side pipe so that the closed circulation refrigerant can flow therethrough, An apparatus for cooling a closed circulation refrigerant, wherein the pipes are arranged in an extending direction.

(4)によれば、仮に、複数の冷却用配管の1つが塞がったとしても、他の冷却用配管を閉鎖循環冷媒が通るようになるため、閉鎖循環冷媒の冷却を安定して行うことが可能になる。   According to (4), even if one of the plurality of cooling pipes is blocked, the closed circulating refrigerant passes through the other cooling pipes, so that the closed circulating refrigerant can be cooled stably. It becomes possible.

(5) (1)〜(4)において、前記発電機は、水車発電機であり、前記流水配管内には、当該水車発電機の回転子を回転させるための水が流れていることを特徴とする閉鎖循環冷媒の冷却装置。   (5) In (1) to (4), the generator is a turbine generator, and water for rotating a rotor of the turbine generator flows in the flowing water pipe. A closed circulating refrigerant cooling device.

本発明によれば、既設の流水配管に設置可能な、閉鎖循環冷媒を冷却する冷却装置を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the cooling device which cools a closed circulation refrigerant | coolant which can be installed in existing flowing water piping.

本発明の実施形態における冷却装置1の、水力発電所設備100における配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning in the hydroelectric power plant equipment 100 of the cooling device 1 in embodiment of this invention. 本発明の第1実施形態における冷却装置1の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device 1 in 1st Embodiment of this invention. 本発明の第2実施形態における冷却装置1の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device 1 in 2nd Embodiment of this invention.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
図1は、本実施形態における冷却装置1の、水力発電所設備100における配置を示す説明図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing the arrangement of the cooling device 1 in the present embodiment in the hydroelectric power plant equipment 100.

水力発電所設備100は、流水配管に相当する水圧鉄管110と、入口弁120と、発電機130と、発電機上部軸受132と、発電機下部軸受134と、水車・発電機軸136と、発電機空気冷却管140と、水車150と、水車軸受152と、吸出し管160と、循環ポンプ170と、閉鎖循環冷却系統200と、を備えている。   The hydroelectric power plant equipment 100 includes a hydraulic iron pipe 110 corresponding to flowing water piping, an inlet valve 120, a generator 130, a generator upper bearing 132, a generator lower bearing 134, a turbine / generator shaft 136, a generator The air cooling pipe 140, the water wheel 150, the water wheel bearing 152, the suction pipe 160, the circulation pump 170, and the closed circulation cooling system 200 are provided.

水圧鉄管110は、貯水池(図示せず)から延設され、入口弁120を経て水車150に接続されている。水車150の下部は、吸出し管160に接続されている。   The hydraulic iron pipe 110 extends from a reservoir (not shown) and is connected to the water turbine 150 via the inlet valve 120. The lower part of the water turbine 150 is connected to the suction pipe 160.

入口弁120は、水圧鉄管110に設けられる弁である。この入口弁120を開放することによって、貯水池の水が水圧鉄管110から水車150を通って吸出し管160から外部に流れる。   The inlet valve 120 is a valve provided in the hydraulic iron pipe 110. By opening the inlet valve 120, the water in the reservoir flows from the hydraulic iron pipe 110 through the water turbine 150 to the outside through the suction pipe 160.

水車150は、内部に図示しない水車ランナを備えており、この水車ランナは、水車150を通過する流水の反動力又は衝動力によって回転する。   The water wheel 150 includes a water wheel runner (not shown), and the water wheel runner is rotated by a reaction force or impulsive force of flowing water passing through the water wheel 150.

水車150の上部には、発電機130が配設されている。発電機130は、回転子130aと固定子130bとを備えている。回転子130aと水車ランナ(図示せず)とは、水車・発電機軸136に同軸に固定されている。   A generator 130 is disposed on the top of the water turbine 150. The generator 130 includes a rotor 130a and a stator 130b. The rotor 130a and the water turbine runner (not shown) are coaxially fixed to the water turbine / generator shaft 136.

発電機上部軸受132、発電機下部軸受134及び水車軸受152は、水車・発電機軸136を回転自在に支持するものであり、発電機上部軸受132は発電機130の上部、発電機下部軸受134は発電機130の下部、水車軸受152は、発電機130の下部でかつ水車150の上部に設けられている。   The generator upper bearing 132, the generator lower bearing 134, and the water turbine bearing 152 rotatably support the turbine / generator shaft 136. The generator upper bearing 132 is an upper portion of the generator 130, and the generator lower bearing 134 is The lower part of the generator 130 and the water wheel bearing 152 are provided at the lower part of the generator 130 and at the upper part of the water wheel 150.

なお、図示していないが、発電機上部軸受132、発電機下部軸受134及び水車軸受152に対応してそれぞれ軸受油槽が設置されている。この軸受油槽内には潤滑油が収納されており、潤滑油が発電機上部軸受132、発電機下部軸受134及び水車軸受152に供給される。更に、発電機上部軸受132、発電機下部軸受134及び水車軸受152における回転による摩擦熱によって、軸受油槽内の潤滑油の温度が上昇するため、軸受油槽内の潤滑油の温度上昇を抑制する冷却器(図示せず)が設けられている。   Although not shown, bearing oil tanks are respectively installed corresponding to the generator upper bearing 132, the generator lower bearing 134, and the water turbine bearing 152. Lubricating oil is stored in the bearing oil tank, and the lubricating oil is supplied to the generator upper bearing 132, the generator lower bearing 134 and the water turbine bearing 152. Further, since the temperature of the lubricating oil in the bearing oil tank rises due to frictional heat due to rotation in the generator upper bearing 132, the generator lower bearing 134, and the water turbine bearing 152, the cooling that suppresses the temperature rise of the lubricating oil in the bearing oil tank. A vessel (not shown) is provided.

発電機空気冷却管140は、発電機130の周囲に設けられ、固定子130bを構成している発電機巻線を冷却するものである。   The generator air cooling pipe 140 is provided around the generator 130, and cools the generator windings constituting the stator 130b.

閉鎖循環冷却系統200は、冷却水配管210A、210a、210b、210c、210d、210Bによって構成された閉サイクルの冷却回路である。この閉鎖循環冷却系統200を、閉鎖循環冷媒に相当する冷却水220が循環することにより、発電機上部軸受132、発電機下部軸受134、水車軸受152に対応する冷却器(図示せず)及び発電機空気冷却管140等が冷却される。   The closed circulation cooling system 200 is a closed cycle cooling circuit configured by cooling water pipes 210A, 210a, 210b, 210c, 210d, and 210B. A cooling water (not shown) corresponding to the generator upper bearing 132, the generator lower bearing 134, and the water turbine bearing 152 and the power generation are generated by circulating the cooling water 220 corresponding to the closed circulation refrigerant through the closed circulation cooling system 200. The machine air cooling pipe 140 and the like are cooled.

循環ポンプ170は、閉鎖循環冷却系統200に取り付けられ、冷却水配管210A、210a、210b、210c、210d、210Bを冷却水220が循環するように、冷却水220に圧力を加えるものである。   The circulation pump 170 is attached to the closed circulation cooling system 200, and applies pressure to the cooling water 220 so that the cooling water 220 circulates through the cooling water pipes 210A, 210a, 210b, 210c, 210d, and 210B.

冷却装置1は、水圧鉄管110の端部に設置される。また、冷却装置1は、閉鎖循環冷却系統200の冷却水220を冷却するものである。冷却装置1の構成については、図2を用いて後述する。   The cooling device 1 is installed at the end of the hydraulic iron pipe 110. Moreover, the cooling device 1 cools the cooling water 220 of the closed circulation cooling system 200. The configuration of the cooling device 1 will be described later with reference to FIG.

冷却装置1は、流出側Aに往路の冷却水配管210Aが接続され、冷却水配管210Aは分岐部Bによって冷却水配管210aと冷却水配管210bとに分岐し、冷却水配管210aは、発電機上部軸受132の図示しない冷却器へ接続している。冷却水配管210bは、発電機空気冷却管140へ接続している。   The cooling device 1 has an outgoing cooling water pipe 210A connected to the outflow side A. The cooling water pipe 210A is branched into a cooling water pipe 210a and a cooling water pipe 210b by a branch part B, and the cooling water pipe 210a is a generator. The upper bearing 132 is connected to a cooler (not shown). The cooling water pipe 210 b is connected to the generator air cooling pipe 140.

また、冷却水配管210Aは、分岐部Cによって冷却水配管210cに分岐し、冷却水配管210cは、発電機下部軸受134の冷却器(図示せず)へ接続している。また、冷却水配管210Aは、分岐部Dによって冷却水配管210dに分岐し、冷却水配管210dは水車軸受152の冷却器(図示せず)に接続している。   Further, the cooling water pipe 210A is branched into the cooling water pipe 210c by the branch portion C, and the cooling water pipe 210c is connected to a cooler (not shown) of the generator lower bearing 134. Further, the cooling water pipe 210 </ b> A is branched to the cooling water pipe 210 d by the branch portion D, and the cooling water pipe 210 d is connected to a cooler (not shown) of the water turbine bearing 152.

上述した冷却水配管210aと冷却水配管210bと冷却水配管210cと冷却水配管210dとは、復路の冷却水配管210Bに接続され、冷却水配管210Bにおける流出側E,F,Gで合流する。冷却水配管210Bは循環ポンプ170に接続され、冷却装置1への流入側Hに接続される。   The cooling water pipe 210a, the cooling water pipe 210b, the cooling water pipe 210c, and the cooling water pipe 210d described above are connected to the cooling water pipe 210B on the return path and merge at the outflow sides E, F, and G in the cooling water pipe 210B. The cooling water pipe 210 </ b> B is connected to the circulation pump 170 and connected to the inflow side H to the cooling device 1.

次に、本発明の第1実施形態における冷却装置1の構成について、図2を参照しながら説明する。   Next, the configuration of the cooling device 1 according to the first embodiment of the present invention will be described with reference to FIG.

図2(a)は、冷却装置1の正面図、図2(b)は、冷却装置1の側面図である。
冷却装置1は、熱交換器10と、導入部20と、排出部30と、を備えている。
FIG. 2A is a front view of the cooling device 1, and FIG. 2B is a side view of the cooling device 1.
The cooling device 1 includes a heat exchanger 10, an introduction unit 20, and a discharge unit 30.

熱交換器10は、第1熱交換部12と、第2熱交換部14とからなり、第1熱交換部12と第2熱交換部14とが組み合わせられることによって円筒形状に形成され、水圧鉄管110の表面に沿って配設される。   The heat exchanger 10 includes a first heat exchange unit 12 and a second heat exchange unit 14, and is formed into a cylindrical shape by combining the first heat exchange unit 12 and the second heat exchange unit 14, and the water pressure It is disposed along the surface of the iron pipe 110.

第1熱交換部12及び第2熱交換部14は、円筒形状を、中心軸を含む仮想平面によって二分割してなる略半円筒形状である。   The 1st heat exchange part 12 and the 2nd heat exchange part 14 are substantially semi-cylindrical shapes formed by dividing a cylindrical shape into two by a virtual plane including a central axis.

第1熱交換部12は、1本の冷却用配管12aと、導入部20に連結する導入側連結部12bと、排出部30に連結する排出側連結部12cとからなる。   The first heat exchange unit 12 includes one cooling pipe 12 a, an introduction side connection part 12 b connected to the introduction part 20, and a discharge side connection part 12 c connected to the discharge part 30.

冷却用配管12aは、一端部から半円形に湾曲させてから折り返し、更に半円形に湾曲させてから折り返すことを繰り返す、というような蛇行構造を備えている。これにより、半円形部分が熱交換器10の中心軸方向、すなわち水圧鉄管110が延びる方向に並べられ、半円筒形状に形成される。導入側連結部12bは、冷却用配管12aの一端部に取り付けられ、排出側連結部12cは、冷却用配管12aの他端部に取り付けられる。   The cooling pipe 12a has a meandering structure in which it is bent after being bent into a semicircular shape from one end, and then repeatedly bent after being bent into a semicircular shape. Thus, the semicircular portions are arranged in the direction of the central axis of the heat exchanger 10, that is, the direction in which the hydraulic iron pipe 110 extends, and are formed in a semicylindrical shape. The introduction side connecting portion 12b is attached to one end portion of the cooling pipe 12a, and the discharge side connecting portion 12c is attached to the other end portion of the cooling pipe 12a.

第2熱交換部14は、1本の冷却用配管14aと、導入部20に連結する導入側連結部14bと、排出部30に連結する排出側連結部14cとからなる。   The second heat exchanging unit 14 includes one cooling pipe 14 a, an introduction side connection unit 14 b connected to the introduction unit 20, and a discharge side connection unit 14 c connected to the discharge unit 30.

冷却用配管14aは、一端部から半円形に湾曲させてから折り返し、更に半円形に湾曲させてから折り返すことを繰り返す、というような蛇行構造を備えている。これにより、半円形部分が熱交換器10の中心軸方向、すなわち水圧鉄管110が延びる方向に並べられて、半円筒形状に形成される。なお、冷却用配管12aによる半円筒形状と、冷却用配管14aによる半円筒形状とは、同一形状である。導入側連結部14bは、冷却用配管14aの一端部に取り付けられ、排出側連結部14cは、冷却用配管14aの他端部に取り付けられる。   The cooling pipe 14a has a meandering structure in which it is bent after being bent into a semicircular shape from one end, and then repeatedly bent after being bent into a semicircular shape. As a result, the semicircular portions are arranged in the direction of the central axis of the heat exchanger 10, that is, the direction in which the hydraulic iron pipe 110 extends to form a semicylindrical shape. The semi-cylindrical shape by the cooling pipe 12a and the semi-cylindrical shape by the cooling pipe 14a are the same shape. The introduction side connection portion 14b is attached to one end portion of the cooling pipe 14a, and the discharge side connection portion 14c is attached to the other end portion of the cooling pipe 14a.

第1熱交換部12と第2熱交換部14とを組み合わせて円筒形状にした場合に、導入側連結部12bと導入側連結部14bは互いに隣り合う位置に配置される。同様に、排出側連結部12cと排出側連結部14cも互いに隣り合う位置に配置される。   When the first heat exchange unit 12 and the second heat exchange unit 14 are combined into a cylindrical shape, the introduction-side coupling unit 12b and the introduction-side coupling unit 14b are arranged at positions adjacent to each other. Similarly, the discharge side connecting portion 12c and the discharge side connecting portion 14c are also arranged at positions adjacent to each other.

導入部20は、導入側連結部12bと、導入側連結部14bと、冷却水配管210Aと、に接続される三方向の継ぎ手からなる。   The introduction part 20 includes a three-way joint connected to the introduction side connection part 12b, the introduction side connection part 14b, and the cooling water pipe 210A.

排出部30は、排出側連結部12cと、排出側連結部14cと、冷却水配管210Bと、に接続される三方向の継ぎ手からなる。   The discharge part 30 consists of a three-way joint connected to the discharge side connection part 12c, the discharge side connection part 14c, and the cooling water pipe 210B.

そして、水圧鉄管110の端部に、第1熱交換部12と第2熱交換部14とを外側から被せ、水圧鉄管110の表面に沿うように配置して、円筒形になるように組み合わせる。更に、導入側連結部12b及び導入側連結部14bに導入部20を連結し、排出側連結部12c及び排出側連結部14cに排出部30を連結する。これにより、冷却装置1が水圧鉄管110に設置される。   And the 1st heat exchange part 12 and the 2nd heat exchange part 14 are covered from the outer side to the edge part of the hydraulic iron pipe 110, it arrange | positions along the surface of the hydraulic iron pipe 110, and it combines so that it may become a cylindrical shape. Furthermore, the introduction part 20 is connected to the introduction side connection part 12b and the introduction side connection part 14b, and the discharge part 30 is connected to the discharge side connection part 12c and the discharge side connection part 14c. Thereby, the cooling device 1 is installed in the hydraulic iron pipe 110.

更に、導入部20に冷却水配管210Bを連結し、排出部30に冷却水配管210Aを連結することにより、閉鎖循環冷却系統200を循環する冷却水220が、第1熱交換部12及び第2熱交換部14を通過するようになる。   Further, by connecting the cooling water pipe 210B to the introduction part 20 and the cooling water pipe 210A to the discharge part 30, the cooling water 220 circulating through the closed circulation cooling system 200 is supplied to the first heat exchange part 12 and the second heat exchange part 12. It passes through the heat exchange unit 14.

次に、第1実施形態の冷却装置1による、閉鎖循環冷却系統200を循環する冷却水220の冷却について説明する。   Next, cooling of the cooling water 220 circulating through the closed circulation cooling system 200 by the cooling device 1 of the first embodiment will be described.

水力発電所設備100においては、入口弁120を開放することによって貯水池の水が水圧鉄管110から水車150を通って吸出し管160に流れ、水車150内の水車ランナが、水車150を通過する流水の反動力又は衝動力によって回転する。水車ランナが回転すると、水車・発電機軸136が回転するとともに回転子130aが回転する。この回転子130aが回転することによって発電が行われる。   In the hydroelectric power plant equipment 100, the water in the reservoir flows from the hydraulic iron pipe 110 through the water turbine 150 to the suction pipe 160 by opening the inlet valve 120, and the water turbine runner in the water turbine 150 flows through the water flowing through the water turbine 150. It rotates by reaction force or impulse. When the water turbine runner rotates, the water turbine / generator shaft 136 rotates and the rotor 130a rotates. Electricity is generated by the rotation of the rotor 130a.

水車ランナが回転している状態においては循環ポンプ170が駆動状態に設定される。循環ポンプ170が駆動することにより、閉鎖循環冷却系統200内の冷却水220が循環移動する。冷却水配管210aを通る冷却水220は、発電機上部軸受132の潤滑油と熱交換を行い、冷却水配管210bを通る冷却水220は、発電機空気冷却管140の空気と熱交換を行い、冷却水配管210cを通る冷却水220は、発電機下部軸受134の潤滑油と熱交換を行い、冷却水配管210dを通る冷却水220は、水車軸受152の潤滑油と熱交換を行う。これらの熱交換によって昇温した冷却水220は、冷却水配管210Bを通って、冷却装置1に導入される。   In a state where the water turbine runner is rotating, the circulation pump 170 is set to a driving state. When the circulation pump 170 is driven, the cooling water 220 in the closed circulation cooling system 200 circulates and moves. The cooling water 220 passing through the cooling water pipe 210a exchanges heat with the lubricating oil of the generator upper bearing 132, and the cooling water 220 passing through the cooling water pipe 210b exchanges heat with the air of the generator air cooling pipe 140, The cooling water 220 passing through the cooling water pipe 210c exchanges heat with the lubricating oil of the generator lower bearing 134, and the cooling water 220 passing through the cooling water pipe 210d exchanges heat with the lubricating oil of the water turbine bearing 152. The cooling water 220 whose temperature has been increased by the heat exchange is introduced into the cooling device 1 through the cooling water pipe 210B.

冷却装置1に導入された冷却水220は、第1熱交換部12又は第2熱交換部14を通過する際に、内部を通る水流によって冷却された状態にある水圧鉄管110と熱交換が行われ、冷却水220が冷却される。そして、冷却装置1によって冷却された冷却水220は、冷却水配管210Aに送り出され、冷却水配管210Aから冷却水配管210a、210b、210c、210dに送り出される。   When the cooling water 220 introduced into the cooling device 1 passes through the first heat exchange unit 12 or the second heat exchange unit 14, heat exchange is performed with the hydraulic iron pipe 110 in a state cooled by the water flow passing through the inside. The cooling water 220 is cooled. Then, the cooling water 220 cooled by the cooling device 1 is sent out to the cooling water pipe 210A, and sent out from the cooling water pipe 210A to the cooling water pipes 210a, 210b, 210c, and 210d.

このように構成された第1実施形態の冷却装置1によれば、閉鎖循環冷却系統200内の冷却水220を冷却するための熱交換器10を、水圧鉄管110の外面に被せるように設置することが可能になる。このため、水力発電所において既設の水圧鉄管110に本実施形態の冷却装置1を配設することが可能になり、閉鎖循環冷却系統200内の冷却水220を冷却するためのシステムを容易に構築することが可能になる。   According to the cooling device 1 of the first embodiment configured as described above, the heat exchanger 10 for cooling the cooling water 220 in the closed circulation cooling system 200 is installed so as to cover the outer surface of the hydraulic iron pipe 110. It becomes possible. For this reason, it becomes possible to arrange | position the cooling device 1 of this embodiment to the existing hydraulic iron pipe 110 in a hydroelectric power station, and the system for cooling the cooling water 220 in the closed circulation cooling system 200 is constructed easily. It becomes possible to do.

また、第1実施形態によれば、熱交換器10は、従来のように水圧鉄管内に配置されていないために、水圧の影響を受けることがない。このため、水圧鉄管内部に熱交換器を設置する場合と比較して、熱交換器を水圧に耐えうる強度にするという点を考慮する必要がなくなり、熱交換器の材質を選定する際に、鋼材でなく銅を採用するなど、強度よりも熱伝導率を優先して材質を選定することができる。   Moreover, according to 1st Embodiment, since the heat exchanger 10 is not arrange | positioned in a hydraulic iron pipe like the past, it does not receive the influence of a hydraulic pressure. For this reason, it is not necessary to consider the point of making the heat exchanger strong enough to withstand water pressure compared to the case where a heat exchanger is installed inside the hydraulic iron pipe, and when selecting the material of the heat exchanger, The material can be selected giving priority to thermal conductivity over strength, such as adopting copper instead of steel.

また、第1実施形態によれば、熱交換器10を外部から視認することができるため、外部点検が可能である。   Moreover, according to 1st Embodiment, since the heat exchanger 10 can be visually recognized from the outside, external inspection is possible.

また、第1実施形態によれば、第1熱交換部12及び第2熱交換部14がそれぞれ1本の冷却用配管12a、14aからなるため、冷却用配管12a、14aを通る冷却水220が水圧鉄管110と熱交換を行う経路が長くなる。このため、冷却水220を確実に冷却することが可能になる。   Moreover, according to 1st Embodiment, since the 1st heat exchange part 12 and the 2nd heat exchange part 14 consist of one cooling pipe 12a and 14a, respectively, the cooling water 220 which passes through the cooling pipes 12a and 14a is obtained. The path for exchanging heat with the hydraulic iron pipe 110 becomes longer. For this reason, it becomes possible to cool the cooling water 220 reliably.

次に、本発明の第2実施形態における冷却装置2の構成について、図3を参照しながら説明する。
図3(a)は、冷却装置2の正面図、図3(b)は、冷却装置2の側面図である。
冷却装置2は、熱交換器50と、導入部60と、排出部70と、を備えている。
Next, the configuration of the cooling device 2 according to the second embodiment of the present invention will be described with reference to FIG.
FIG. 3A is a front view of the cooling device 2, and FIG. 3B is a side view of the cooling device 2.
The cooling device 2 includes a heat exchanger 50, an introduction unit 60, and a discharge unit 70.

熱交換器50は、第1熱交換部52と、第2熱交換部54とからなり、第1熱交換部52と第2熱交換部54とが組み合わせられることによって円筒形状に形成され、水圧鉄管110の表面に沿って配設される。   The heat exchanger 50 includes a first heat exchange part 52 and a second heat exchange part 54. The heat exchanger 50 is formed into a cylindrical shape by combining the first heat exchange part 52 and the second heat exchange part 54. It is disposed along the surface of the iron pipe 110.

第1熱交換部52及び第2熱交換部54は、略円筒形状を、中心軸を含む仮想平面によって二分割してなる半円筒形状である。   The 1st heat exchange part 52 and the 2nd heat exchange part 54 are semi-cylindrical shapes formed by dividing a substantially cylindrical shape into two by a virtual plane including a central axis.

第1熱交換部52は、半円形に湾曲した複数の冷却用配管52aと、両端部が閉鎖された棒状の導入側配管52bと、両端部が閉鎖された棒状の排出側配管52cと、導入部60に連結する導入側連結部52dと、排出部70に連結する排出側連結部52eとからなる。   The first heat exchange unit 52 includes a plurality of cooling pipes 52a curved in a semicircular shape, a rod-like introduction side pipe 52b closed at both ends, a rod-like discharge side pipe 52c closed at both ends, and an introduction The inlet side connection part 52d connected to the part 60 and the discharge side connection part 52e connected to the discharge part 70 are comprised.

導入側配管52bと排出側配管52cとは平行に配置されており、複数の冷却用配管52aは、一端部が導入側配管52bに、他端部が排出側配管52cに接続されている。また、複数の冷却用配管52aは、導入側配管52b及び排出側配管52cの軸方向、言い換えれば、水圧鉄管110が延びる方向に並べて配置されている。これにより、複数の冷却用配管52aによって半円筒形状が形成される。導入側連結部52dは導入側配管52bの中央部に取り付けられ、排出側連結部52eは、排出側配管52cの中央部に取り付けられる。   The introduction side pipe 52b and the discharge side pipe 52c are arranged in parallel, and one end of the plurality of cooling pipes 52a is connected to the introduction side pipe 52b and the other end is connected to the discharge side pipe 52c. Further, the plurality of cooling pipes 52a are arranged side by side in the axial direction of the introduction side pipe 52b and the discharge side pipe 52c, in other words, in the direction in which the hydraulic iron pipe 110 extends. Thereby, a semi-cylindrical shape is formed by the plurality of cooling pipes 52a. The introduction side connection part 52d is attached to the center part of the introduction side pipe 52b, and the discharge side connection part 52e is attached to the center part of the discharge side pipe 52c.

第1熱交換部52と第2熱交換部54とを組み合わせて円筒形状にした場合に、導入側連結部52dと導入側連結部54dは互いに隣り合う位置に配置される。同様に、排出側連結部52eと排出側連結部54eも互いに隣り合う位置に配置される。   When the first heat exchange part 52 and the second heat exchange part 54 are combined into a cylindrical shape, the introduction side connection part 52d and the introduction side connection part 54d are arranged at positions adjacent to each other. Similarly, the discharge side connection part 52e and the discharge side connection part 54e are also arranged at positions adjacent to each other.

導入部60は、導入側連結部52dと、導入側連結部54dと、冷却水配管210Bと、に接続される三方向の継ぎ手からなる。   The introduction part 60 includes three-way joints connected to the introduction side connection part 52d, the introduction side connection part 54d, and the cooling water pipe 210B.

排出部70は、排出側連結部52eと、排出側連結部54eと、冷却水配管210Aと、に接続される三方向の継ぎ手からなる。   The discharge part 70 consists of a three-way joint connected to the discharge side connection part 52e, the discharge side connection part 54e, and the cooling water pipe 210A.

そして、水圧鉄管110の端部に、第1熱交換部52と第2熱交換部54とを外側から被せ、水圧鉄管110の表面に沿うように配置する。更に、導入側連結部52d及び導入側連結部54dに導入部60を連結し、排出側連結部52e及び排出側連結部54eに排出部70を連結することによって、冷却装置2が水圧鉄管110に設置される。   And the 1st heat exchange part 52 and the 2nd heat exchange part 54 are covered from the outer side to the edge part of the hydraulic iron pipe 110, and it arrange | positions so that the surface of the hydraulic iron pipe 110 may be met. Furthermore, the cooling device 2 is connected to the hydraulic iron pipe 110 by connecting the introduction part 60 to the introduction side connection part 52d and the introduction side connection part 54d, and connecting the discharge part 70 to the discharge side connection part 52e and the discharge side connection part 54e. Installed.

更に、導入部60に冷却水配管210Bを連結し、排出部70に冷却水配管210Aを連結することにより、閉鎖循環冷却系統200を循環する冷却水220が、第1熱交換部52及び第2熱交換部54を通過するようになる。   Further, by connecting the cooling water pipe 210B to the introduction part 60 and connecting the cooling water pipe 210A to the discharge part 70, the cooling water 220 circulating through the closed circulation cooling system 200 is supplied to the first heat exchange part 52 and the second heat exchange part 52. It passes through the heat exchanging section 54.

第2実施形態の冷却装置2による冷却水220の冷却については、第1実施形態の冷却装置1とは冷却水220の移動経路が異なる以外は、第1実施形態の冷却装置1と同じである。   The cooling of the cooling water 220 by the cooling device 2 of the second embodiment is the same as that of the cooling device 1 of the first embodiment, except that the moving path of the cooling water 220 is different from that of the cooling device 1 of the first embodiment. .

このように構成された第2実施形態の冷却装置2によれば、第1実施形態の冷却装置1と同様に、水力発電所において既設の水圧鉄管110に本実施形態の冷却装置1を配設することが可能になり、閉鎖循環冷却系統200内の冷却水220を冷却するためのシステムを容易に構築することが可能になる。更に、熱交換器の材質を選定する際に強度よりも熱伝導率を優先して選定できる。また、熱交換器10を外部から視認することができるため、外部点検が可能である。   According to the cooling device 2 of the second embodiment configured as described above, the cooling device 1 of the present embodiment is disposed in the existing hydraulic iron pipe 110 in the hydroelectric power station, similarly to the cooling device 1 of the first embodiment. This makes it possible to easily construct a system for cooling the cooling water 220 in the closed circulation cooling system 200. Furthermore, when selecting the material of the heat exchanger, the heat conductivity can be given priority over the strength. Moreover, since the heat exchanger 10 can be visually recognized from the outside, external inspection is possible.

また、第2実施形態によれば、冷却水220が、導入側配管52b、54bから、複数の冷却用配管52aを通って、排出側配管52c、54cに移動するため、単位時間において熱交換器50に流れる冷却水220の量を、第1実施形態の熱交換器10よりも多くすることが可能になる。   In addition, according to the second embodiment, the cooling water 220 moves from the introduction side pipes 52b and 54b to the discharge side pipes 52c and 54c through the plurality of cooling pipes 52a. It becomes possible to increase the quantity of the cooling water 220 which flows into 50 rather than the heat exchanger 10 of 1st Embodiment.

また、第2実施形態によれば、複数の冷却用配管52aを有することにより、仮に、複数の冷却用配管52a、54aの一つが塞がったとしても、他の冷却用配管52a、54aを冷却水220が通るようになるため、冷却水220の冷却を安定して行うことが可能になる。   In addition, according to the second embodiment, by having the plurality of cooling pipes 52a, even if one of the plurality of cooling pipes 52a and 54a is blocked, the other cooling pipes 52a and 54a are connected to the cooling water. Since 220 passes, it becomes possible to cool the cooling water 220 stably.

以上、本発明の実施形態について説明したが、本発明の実施形態は上述した実施形態に限るものではない。例えば、上述した実施形態においては、熱交換器10を2分割しているが、それに限らず、3分割あるいは4分割であってもよい。この場合、冷却用配管12a、14a及び冷却用配管52a、54aは、円弧状に湾曲する。   As mentioned above, although embodiment of this invention was described, embodiment of this invention is not restricted to embodiment mentioned above. For example, in the embodiment described above, the heat exchanger 10 is divided into two parts, but is not limited thereto, and may be divided into three parts or four parts. In this case, the cooling pipes 12a and 14a and the cooling pipes 52a and 54a are curved in an arc shape.

また、上述した第1、2実施形態においては、冷却用配管が水圧鉄管110の円周面に沿うように半円状に湾曲したものを、水圧鉄管110が延びる方向に並べているが、それに限らず、冷却用配管を水圧鉄管110が延びる方向に直線状に延ばし、この直線部分を水圧鉄管110の円周面に沿って並べるようにしてもよい。   Moreover, in 1st, 2nd embodiment mentioned above, although the piping for cooling curved in the semicircle shape so that the circumferential surface of the hydraulic iron pipe 110 may be arranged in the direction where the hydraulic iron pipe 110 is extended, it is not restricted to it. Instead, the cooling pipe may be linearly extended in the direction in which the hydraulic iron pipe 110 extends, and this straight portion may be arranged along the circumferential surface of the hydraulic iron pipe 110.

また、上述した第1、2実施形態においては、熱交換器10、50の冷却用配管が円筒形であるが、それに限らず角筒であってもよい。   Moreover, in 1st, 2nd embodiment mentioned above, although the piping for cooling of the heat exchangers 10 and 50 is cylindrical, not only it but a square tube may be sufficient.

また、上述した第1、2実施形態においては、冷却装置1、2を水圧鉄管110に配設しているが、水圧鉄管110に限るものではなく、内部に冷たい水が流れている配管あるいはケース体のような物体であれば、本発明を適用することが可能である。   In the first and second embodiments described above, the cooling devices 1 and 2 are disposed in the hydraulic iron pipe 110. However, the cooling apparatus 1 and 2 are not limited to the hydraulic iron pipe 110, and are pipes or cases in which cold water flows. The present invention can be applied to any object such as a body.

また、上述した実施形態においては、水車を回転させることによって発電する水車発電機を具体例として説明したが、発電機の種類についてはそれに限るものではなく、本発明は、軸受を有する発電機であれば適用可能である。   In the above-described embodiment, the turbine generator that generates electricity by rotating the turbine has been described as a specific example. However, the type of the generator is not limited thereto, and the present invention is a generator having a bearing. Applicable if available.

1、2 冷却装置
10、50 熱交換器
12、52 第1熱交換部
12a、52a 冷却用配管
12b、52d 導入側連結部
12c、52e 排出側連結部
14、54 第2熱交換部
14a、54a 冷却用配管
14b、54d 導入側連結部
14c、54e 排出側連結部
20、60 導入部
30、70 排出部
52b、54b 導入側配管
52c、54c 排出側配管
100 水力発電所設備
110 水圧鉄管
120 入口弁
130 発電機
130a 回転子
130b 固定子
132 発電機上部軸受
134 発電機下部軸受
136 水車・発電機軸
140 発電機空気冷却管
150 水車
152 水車軸受
160 吸出し管
170 循環ポンプ
200 閉鎖循環冷却系統
210A、210B、210a、210b、210c、210d 冷却水配管
220 冷却水
1, 2 Cooling device 10, 50 Heat exchanger 12, 52 First heat exchange part 12a, 52a Cooling pipe 12b, 52d Inlet side connecting part 12c, 52e Discharge side connecting part 14, 54 Second heat exchanging part 14a, 54a Cooling piping 14b, 54d Inlet side connecting portion 14c, 54e Discharge side connecting portion 20, 60 Inlet portion 30, 70 Discharging portion 52b, 54b Inlet side piping 52c, 54c Discharge side piping 100 Hydroelectric power plant equipment 110 Hydraulic iron pipe 120 Inlet valve DESCRIPTION OF SYMBOLS 130 Generator 130a Rotor 130b Stator 132 Generator upper bearing 134 Generator lower bearing 136 Turbine / generator shaft 140 Generator air cooling pipe 150 Turbine 152 Turbine bearing 160 Suction pipe 170 Circulation pump 200 Closed circulation cooling system 210A, 210B, 210a, 210b, 210c, 210d Cooling water piping 220 Cooling water

Claims (5)

閉鎖循環冷媒が循環することによって発電機付近の所定部位を冷却する閉鎖循環冷却系統に設けられ、前記閉鎖循環冷媒を冷却する冷却装置であって、
内部に水が流れる流水配管の表面に沿って着脱自在に配置され、前記閉鎖循環冷媒と前記流水配管との間で熱交換を行う熱交換器を有することを特徴とする閉鎖循環冷媒の冷却装置。
A cooling device that is provided in a closed circulation cooling system that cools a predetermined portion near a generator by circulating a closed circulation refrigerant, and cools the closed circulation refrigerant,
An apparatus for cooling a closed circulation refrigerant, comprising a heat exchanger that is detachably disposed along a surface of a flowing water pipe through which water flows, and exchanges heat between the closed circulating refrigerant and the flowing water pipe. .
前記熱交換器は、複数の熱交換部に分割可能であり、
当該複数の熱交換部は、前記流水配管を囲むように配置されることを特徴とする請求項1記載の閉鎖循環冷媒の冷却装置。
The heat exchanger can be divided into a plurality of heat exchange units,
The cooling system for a closed circulation refrigerant according to claim 1, wherein the plurality of heat exchange portions are arranged so as to surround the flowing water pipe.
前記熱交換部は、前記閉鎖循環冷媒が通る1本の冷却用配管を有し、
当該冷却用配管は、一端部から円弧状に湾曲させてから折り返すことを繰り返すことによって形成された複数の円弧状の部分を、前記流水配管が延びる方向に並べてなる蛇行構造を有することを特徴とする請求項2記載の閉鎖循環冷媒の冷却装置。
The heat exchanging unit has one cooling pipe through which the closed circulation refrigerant passes,
The cooling pipe has a meandering structure in which a plurality of arc-shaped portions formed by repeatedly bending the arc from one end and then turning back are arranged in the direction in which the flowing water pipe extends. The cooling device for the closed circulation refrigerant according to claim 2.
前記熱交換部は、円弧状に湾曲した複数の冷却用配管と、両端部が閉鎖された棒状の導入側配管と、両端部が閉鎖された棒状の排出側配管と、を有し、
前記導入側配管は、前記閉鎖循環冷媒を導入する導入部を有し、
前記排出側配管は、前記閉鎖循環冷媒を排出する排出部を有し、
前記複数の冷却用配管は、前記導入側配管と前記排出側配管との間に配置され、一端部が前記導入側配管に、他端部が前記排出側配管にそれぞれ前記閉鎖循環冷媒が流通可能に接続され、前記流水配管が延びる方向に並べられていることを特徴とする請求項2記載の閉鎖循環冷媒の冷却装置。
The heat exchanging section has a plurality of cooling pipes that are curved in an arc shape, a rod-shaped introduction side pipe that is closed at both ends, and a rod-shaped discharge side pipe that is closed at both ends,
The introduction side pipe has an introduction part for introducing the closed circulation refrigerant,
The discharge side pipe has a discharge part for discharging the closed circulation refrigerant,
The plurality of cooling pipes are arranged between the introduction side pipe and the discharge side pipe, and the closed circulation refrigerant can flow through one end portion to the introduction side pipe and the other end portion to the discharge side pipe. The closed circulating refrigerant cooling device according to claim 2, wherein the cooling circuit is arranged in a direction in which the flowing water pipe extends.
前記発電機は、水車発電機であり、
前記流水配管内には、当該水車発電機の回転子を回転させるための水が流れていることを特徴とする請求項1乃至4のいずれか1項記載の閉鎖循環冷媒の冷却装置。
The generator is a water turbine generator;
5. The cooling system for a closed circulation refrigerant according to claim 1, wherein water for rotating a rotor of the water turbine generator flows in the flowing water pipe.
JP2014056780A 2014-03-19 2014-03-19 Closed circulation refrigerant cooling system Active JP5973483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056780A JP5973483B2 (en) 2014-03-19 2014-03-19 Closed circulation refrigerant cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056780A JP5973483B2 (en) 2014-03-19 2014-03-19 Closed circulation refrigerant cooling system

Publications (2)

Publication Number Publication Date
JP2015180151A true JP2015180151A (en) 2015-10-08
JP5973483B2 JP5973483B2 (en) 2016-08-23

Family

ID=54263824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056780A Active JP5973483B2 (en) 2014-03-19 2014-03-19 Closed circulation refrigerant cooling system

Country Status (1)

Country Link
JP (1) JP5973483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098224A1 (en) * 2017-11-17 2019-05-23 三菱自動車工業株式会社 Cooling device for rotary electric machine
JP7380303B2 (en) 2020-02-19 2023-11-15 中国電力株式会社 Cooling device for power generation equipment
JP7413825B2 (en) 2020-02-19 2024-01-16 中国電力株式会社 Cooling device for power generation equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139673U (en) * 1981-02-27 1982-09-01
JPH06199139A (en) * 1992-10-01 1994-07-19 Hitachi Ltd Cooling system for electric vehicle and electric motor used for it
JPH073757A (en) * 1993-06-22 1995-01-06 Kansai Electric Power Co Inc:The Device for cooling hydraulic power plant
JPH07180935A (en) * 1993-12-22 1995-07-18 Nippondenso Co Ltd Heat exchanger
JPH07288949A (en) * 1994-04-13 1995-10-31 Nippondenso Co Ltd Electric motor to drive vehicle
JP2007259679A (en) * 2006-03-27 2007-10-04 Hitachi Ltd Cooling system of generator bearing for water power station
WO2012114420A1 (en) * 2011-02-21 2012-08-30 株式会社日立製作所 Cooling equipment, and motor and inverter equipped with cooling equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139673U (en) * 1981-02-27 1982-09-01
JPH06199139A (en) * 1992-10-01 1994-07-19 Hitachi Ltd Cooling system for electric vehicle and electric motor used for it
JPH073757A (en) * 1993-06-22 1995-01-06 Kansai Electric Power Co Inc:The Device for cooling hydraulic power plant
JPH07180935A (en) * 1993-12-22 1995-07-18 Nippondenso Co Ltd Heat exchanger
JPH07288949A (en) * 1994-04-13 1995-10-31 Nippondenso Co Ltd Electric motor to drive vehicle
JP2007259679A (en) * 2006-03-27 2007-10-04 Hitachi Ltd Cooling system of generator bearing for water power station
WO2012114420A1 (en) * 2011-02-21 2012-08-30 株式会社日立製作所 Cooling equipment, and motor and inverter equipped with cooling equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098224A1 (en) * 2017-11-17 2019-05-23 三菱自動車工業株式会社 Cooling device for rotary electric machine
JP7380303B2 (en) 2020-02-19 2023-11-15 中国電力株式会社 Cooling device for power generation equipment
JP7413825B2 (en) 2020-02-19 2024-01-16 中国電力株式会社 Cooling device for power generation equipment

Also Published As

Publication number Publication date
JP5973483B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP6483158B2 (en) Ship pod propulsion unit
JP5260591B2 (en) Permanent magnet rotating electrical machine and wind power generation system
EP2518868B1 (en) Cooling arrangement for an electric machine
EP3024125A1 (en) Liquid-cooled electric motor
EP2916438B1 (en) An electrical turbo-machine and a power plant
JP2020528255A (en) In-wheel motor with cooling channel and cooling jacket
CN104937821A (en) Fluid device
JP2009284755A (en) Cooling element for electric machine
CN1989679A (en) Dynamoelectric machine with embedded heat exchanger
JP2015027871A (en) Ship&#39;s propulsion unit
JP5973483B2 (en) Closed circulation refrigerant cooling system
CN105391262A (en) Brushless rotating electrical machine
JP4561408B2 (en) Rotating electric machine
JP2018207673A (en) Rotary electric machine
JP2015165575A (en) Heat exchange type cooling apparatus for transformer
KR20110137830A (en) Generator cooling arrangement of a wind turbine
JP5676737B2 (en) Cooling device, and motor and inverter provided with the cooling device
CN102801249B (en) Integrated end cover type motor air cooler
KR20120080213A (en) A cooling system for an electrical machine
CA3035802C (en) Method for cooling the rotor of an electric generator
JP6877315B2 (en) Cooling structure of rotary electric machine
WO2016136043A1 (en) Compressor system
JP2008167575A (en) Stator of direct-drive liquid cooling motor
JP2000170638A (en) Close-circulation cooling device for rotary machine
CN104303400A (en) Rotating electrical machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150