WO2012113293A1 - Antenne à double réflecteur - Google Patents

Antenne à double réflecteur Download PDF

Info

Publication number
WO2012113293A1
WO2012113293A1 PCT/CN2012/071077 CN2012071077W WO2012113293A1 WO 2012113293 A1 WO2012113293 A1 WO 2012113293A1 CN 2012071077 W CN2012071077 W CN 2012071077W WO 2012113293 A1 WO2012113293 A1 WO 2012113293A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting surface
antenna
dual
radome
sub
Prior art date
Application number
PCT/CN2012/071077
Other languages
English (en)
Chinese (zh)
Inventor
唐振宇
王少龙
廖星
肖凌文
郭智力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012113293A1 publication Critical patent/WO2012113293A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • Double Reflector Antenna This application claims priority to Chinese Application No. 201120045781.8, entitled “Double Reflector Antenna”, which is hereby incorporated by reference.
  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a dual-reflecting surface antenna. Background technique
  • Microwave communication is a communication system in which a microwave is used as a carrier.
  • an antenna is used to perform a conversion of a guided wave to a radiated wave.
  • the radio frequency signal is converted into electromagnetic wave to space radiation on the transmitting link, and the electromagnetic wave is converted into a radio frequency signal on the receiving link.
  • the structure of the antenna in microwave communication is usually in the form of a parabolic antenna.
  • the common parabolic antenna is divided into a feedforward antenna and a feedforward antenna.
  • 1 is a cross-sectional view of a feedforward antenna in the prior art.
  • the primary lobe pattern of the feedforward antenna is determined by feed 1.
  • the feed 1 is mounted on the focus of the parabolic reflecting surface 2.
  • 2 is a cross-sectional view of a feedforward antenna in the prior art.
  • the primary lobe pattern of the feedforward antenna is determined by a composite feed system composed of a feed 3 and a sub-reflection surface 4.
  • the feed 3 is mounted at the center of the parabolic reflecting surface 5, and the virtual focus of the secondary reflecting surface 4 coincides with the real focus of the parabolic reflecting surface 5.
  • the feed 3 is a primary antenna that radiates electromagnetic waves toward the secondary reflecting surface 4.
  • the parabolic reflecting surface 5 is a passive device that reflects the energy radiated from the feed 3 reflected by the sub-reflecting surface 4, and the reflected beam has a certain directivity and has the same phase in a plane perpendicular to the propagation direction.
  • the secondary reflecting surface 4 is usually formed by spraying metal powder on the surface of the medium.
  • the feed-back antenna structure is an antenna with a double reflection surface, wherein the parabolic reflection surface 5 is a main reflection surface, and the sub-reflection surface 4 is a sub-reflection surface. Therefore, the feedforward antenna can also be called a double reflector antenna.
  • FIG. 3 is a cross-sectional view of a prior art dual-reflector antenna.
  • the double-reflecting surface antenna shown in FIG. 3 is based on the antenna structure shown in FIG. 2, and the metal supporting rod 6 is used, and the metal supporting rod 6 is mounted on the parabolic reflecting surface 5 to support the sub-reflecting surface 4, The sub-reflecting surface 4 is fixed above the parabolic reflecting surface 5.
  • four metal support rods 6 can generally be used.
  • FIG. 4 is a cross-sectional view showing another dual-reflecting surface antenna of the prior art.
  • the double-reflecting surface antenna shown in FIG. 4 is based on the antenna structure shown in FIG. 2, and a dielectric support rod 7 is used, which is supported by connecting the medium support rod 7 above the feed source 3.
  • a radome 8 may be disposed above the parabolic reflecting surface 5.
  • the prior art dual-reflecting surface antenna shown in Fig. 3 uses a metal support rod to block the aperture of the antenna, causing the side lobes to rise and affecting the antenna efficiency.
  • the prior art dual-reflection antenna shown in Fig. 4 uses the dielectric support rod in electrical performance, and the introduction of the medium causes loss and affects the antenna efficiency.
  • the existing two double-reflecting surface antennas have high requirements on the mounting accuracy of the metal support rod 6 or the medium support rod 7. If the installation is not standard, the working efficiency of the hyperboloid antenna is lowered. Summary of the invention
  • the embodiment of the invention provides a double-reflecting surface antenna for solving the defect that the antenna working efficiency is low due to the double-reflecting surface antenna structure in the prior art.
  • An embodiment of the present invention provides a dual-reflecting surface antenna, including a feed, a main reflecting surface, and a radome, wherein the feeding source is located at a center of the main reflecting surface, and the radome is disposed above the main reflecting surface; A sub-reflecting surface is disposed in a central region of the radome; a virtual focus of the sub-reflecting surface coincides with a real focus of the main reflecting surface.
  • the dual-reflecting surface antenna described above wherein the secondary reflecting surface comprises a parabolic substrate, and a layer of metal powder sprayed on the parabolic substrate in a direction toward the feed.
  • the dual-reflection surface antenna described above wherein a center of the main reflection surface, a center of the sub-reflection surface, and a center of the feed are collinear.
  • the double-reflecting surface antenna described above wherein the main reflecting surface and the sub-reflecting surface are parabolic surfaces, rotating hyperboloids, or elliptical surfaces.
  • the dual-reflecting surface antenna of the embodiment of the present invention by providing a sub-reflecting surface in the central region of the radome, there is no occlusion between the feeding source and the sub-reflecting surface, thereby reducing transmission loss and improving the working efficiency of the hyperbolic antenna, and
  • the double-reflecting surface antenna of the embodiment of the invention has a structural unit. Compared with the prior art, the installation of the metal support rod or the medium support rod is omitted, the installation operation is easier, and the maintenance and disassembly is very convenient.
  • FIG. 1 is a cross-sectional view of a feedforward antenna in the prior art.
  • FIG. 2 is a cross-sectional view of a feedforward antenna in the prior art.
  • FIG 3 is a cross-sectional view of a prior art dual-reflection antenna.
  • FIG. 4 is a cross-sectional view of another dual-reflecting surface antenna of the prior art.
  • FIG. 5 is a cross-sectional view of a dual-reflecting surface antenna according to an embodiment of the present invention. detailed description
  • FIG. 5 is a cross-sectional view of a dual-reflecting surface antenna according to an embodiment of the present invention.
  • the dual-reflecting surface antenna of this embodiment includes a feed 10, a main reflecting surface 11 and a radome 12, wherein the feeding source 10 is located at the center of the main reflecting surface 11, and the radome 12 is disposed at the main reflecting surface 11.
  • a sub-reflecting surface 13 is provided in a central region of the radome 12; a virtual focal point of the secondary reflecting surface 13 coincides with a real focal point of the main reflecting surface 11.
  • the main reflecting surface 11 and the sub-reflecting surface 13 may each be a paraboloid, a rotating hyperboloid, or an elliptical surface, as long as the virtual focus of the sub-reflecting surface 13 and the real focal point of the main reflecting surface 13 coincide.
  • the main reflecting surface 11 in this embodiment is exemplified by a standard paraboloid.
  • the feed 10 here can be a circular waveguide type feed or a horn shape.
  • the difference between the maximum phase and the minimum phase on the radiation phase pattern of the horn is less than or equal to be regarded as the phase center.
  • the radome 12 is used to protect the feed 10 and the main reflective surface 11 of the dual-reflector antenna from the natural environment.
  • the radome 12 needs to provide a suitable interface to maintain the structure, temperature and air. At the same time as the dynamic characteristics, the radome 12 is required to have minimal impact on the electrical performance of the antenna.
  • the dual-reflection antenna of this embodiment is used as follows:
  • the microwave signal enters the feed 10 from the input 9 of the dual-reflector antenna, and the microwave signal is radiated from the feed 10 through its open aperture 101.
  • the microwave signal is transmitted to the sub-reflecting surface 13 of the central region of the radome 12, since the virtual focus of the secondary reflecting surface 13 coincides with the phase center of the feed 10 at the position A (at the same time, the real focus of the main reflecting surface 11 at the position A)
  • the microwave signal is transmitted to the main reflection surface 11 by one reflection. Since the microwave signal is transmitted from the real focus of the main reflection surface 11, that is, the position A, the microwave signal is reflected from the main reflection surface 11 in the form of a plane wave.
  • the portion of the radome 12 that is not blocked by the sub-reflecting surface is radiated.
  • the dual-reflecting surface antenna of the embodiment by providing a sub-reflecting surface in the central region of the radome, there is no occlusion between the feeding source and the sub-reflecting surface, which can reduce transmission loss and improve the operation of the hyperboloid antenna.
  • the efficiency, and the double-reflecting surface antenna of the embodiment is structurally simple. Compared with the prior art, the installation of the metal support rod or the medium support rod is omitted, the installation operation is easier, and the maintenance and disassembly is very convenient.
  • the radome 12 when the sub-reflecting surface 13 is disposed in the central region of the radome 12, the radome 12 may be directly shaped to form a parabolic shape in the central region of the radome 12.
  • the sub-reflecting surface 13, that is, the sub-reflecting surface 13 and the radome 12 may have an integrated structure.
  • the sub-reflecting surface 13 may be disposed independently of the radome 12 and disposed on the radome 12.
  • the secondary reflecting surface 13 may include a parabolic substrate, and a layer of metal powder sprayed on the parabolic substrate in the direction toward the feed 10 to form the secondary reflecting surface 13.
  • the center of the main reflecting surface at the position of the input end 9 > the center 121 of the sub-reflecting surface and the center of the feed ( For example, the center of the bell mouth) should always be on the same line.
  • the transmission between the feed and the sub-reflecting surface of the double-reflecting surface antenna is not blocked, and the transmission loss can be effectively reduced, and the structure of the double-reflecting surface antenna of the embodiment is simple and easy to disassemble.
  • the double-reflecting surface antenna of this embodiment is easy to implement in the process and has high achievability.
  • the secondary reflecting surface of the double-reflecting surface antenna of the embodiment can be integrated with the radome, which can reduce the material for fabricating the antenna and reduce the cost of fabricating the double-reflecting antenna.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

Les modes de réalisation de la présente invention concernent une antenne à double réflecteur. L'antenne à double réflecteur comprend une source d'alimentation, un réflecteur principal et un carter d'antenne, la source d'alimentation étant située au centre du réflecteur principal ; le carter d'antenne est placé au-dessus du réflecteur principal ; un sous-réflecteur est implanté dans la région centrale du carter d'antenne ; le point focal virtuel du sous-réflecteur coïncide avec le point focal réel du réflecteur principal. L'antenne à double réflecteur selon la présente invention permet de réduire les pertes de transmission et d'améliorer l'efficacité du fonctionnement de l'antenne à double surface courbe, en implantant le sous-réflecteur dans la région centrale du carter d'antenne, sans blindage entre la source d'alimentation et le sous-réflecteur. En outre, l'antenne à double réflecteur selon les modes de réalisation de la présente invention présente une structure simple. Par comparaison avec l'état de la technique, elle évite d'avoir à monter des tiges métalliques de support ou des tiges de support de diélectrique, elle est plus simple à monter et à faire fonctionner et elle est très facile à maintenir et à démonter.
PCT/CN2012/071077 2011-02-21 2012-02-13 Antenne à double réflecteur WO2012113293A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120045781.8 2011-02-21
CN 201120045781 CN202042599U (zh) 2011-02-21 2011-02-21 双反射面天线

Publications (1)

Publication Number Publication Date
WO2012113293A1 true WO2012113293A1 (fr) 2012-08-30

Family

ID=44970025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071077 WO2012113293A1 (fr) 2011-02-21 2012-02-13 Antenne à double réflecteur

Country Status (2)

Country Link
CN (1) CN202042599U (fr)
WO (1) WO2012113293A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634373B2 (en) 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
CN202042599U (zh) * 2011-02-21 2011-11-16 华为技术有限公司 双反射面天线
CN102570050B (zh) * 2011-12-19 2014-04-09 西安普天天线有限公司 长焦后馈超高性能微波抛物面天线
CN102820550B (zh) * 2012-07-31 2015-05-27 深圳光启创新技术有限公司 副反射面为金属椭球面和类椭球型超材料的微波天线
CN103682663B (zh) * 2012-08-31 2017-11-24 深圳光启创新技术有限公司 一种超材料微波天线
CN103682661B (zh) * 2012-08-31 2017-10-20 深圳光启岗达创新科技有限公司 一种超材料微波天线
CN103682662B (zh) * 2012-08-31 2018-02-23 深圳光启创新技术有限公司 一种超材料微波天线
CN103682664B (zh) * 2012-08-31 2017-09-19 深圳光启创新技术有限公司 一种超材料微波天线
CN103682666B (zh) * 2012-08-31 2017-10-20 深圳光启岗达创新科技有限公司 一种超材料微波天线
CN103682669B (zh) * 2012-08-31 2017-09-19 深圳光启创新技术有限公司 一种超材料微波天线
CN103682671B (zh) * 2012-08-31 2017-10-31 深圳光启创新技术有限公司 一种超材料微波天线
CN103682665B (zh) * 2012-08-31 2018-05-22 深圳光启创新技术有限公司 一种超材料微波天线
US9270013B2 (en) * 2012-10-25 2016-02-23 Cambium Networks, Ltd Reflector arrangement for attachment to a wireless communications terminal
US20160218406A1 (en) 2013-02-04 2016-07-28 John R. Sanford Coaxial rf dual-polarized waveguide filter and method
WO2015054567A1 (fr) 2013-10-11 2015-04-16 Ubiquiti Networks, Inc. Optimisation de système radio sans fil par analyse continue du spectre
PL3127187T3 (pl) 2014-04-01 2021-05-31 Ubiquiti Inc. Zespół antenowy
FR3020505B1 (fr) * 2014-04-25 2016-05-13 Thales Sa Ensemble de deux antennes a double reflecteurs montees sur un support commun et un satellite comportant cet ensemble
CN106233797B (zh) 2014-06-30 2019-12-13 优倍快网络公司 无线电设备对准工具及方法
US9716320B2 (en) * 2014-10-10 2017-07-25 Cambium Networks Limited Patch antenna-based wideband antenna system
CN108353232B (zh) 2015-09-11 2020-09-29 优倍快公司 紧凑型播音接入点装置
CN106129639A (zh) * 2016-08-09 2016-11-16 苏州市吴通天线有限公司 小型双极化高隔离可折叠式天线
CN109301498A (zh) * 2018-09-13 2019-02-01 芜湖博高光电科技股份有限公司 一种新型3mm波段天线塑料镀膜副反射面支架
CN112997360B (zh) * 2018-11-06 2022-04-26 华为技术有限公司 一种用于通信的射频天线、应用该天线的微波设备和通信系统
CN109616776A (zh) * 2018-12-27 2019-04-12 中国联合网络通信集团有限公司 全向天线及设备
CN112993587A (zh) * 2021-02-03 2021-06-18 北京邮电大学 圆极化反射面天线及通信设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE422313C (de) * 1921-06-14 1925-11-28 Rieri Werk Elisabeth Richter Verfahren zur Herstellung und Verwendung eines Adsorptionsmittels zur Reinigung von Alkoholen und OElen
CN2408577Y (zh) * 2000-03-02 2000-11-29 寰波科技股份有限公司 抛物面反射器天线
US6184840B1 (en) * 2000-03-01 2001-02-06 Smartant Telecomm Co., Ltd. Parabolic reflector antenna
WO2003090384A1 (fr) * 2002-04-19 2003-10-30 Imego Ab Agencement de transmission et/ou reception de signaux electromagnetiques
US20060267852A1 (en) * 2005-05-31 2006-11-30 Jiho Ahn Antenna-feeder device and antenna
CN202042599U (zh) * 2011-02-21 2011-11-16 华为技术有限公司 双反射面天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE422313C (de) * 1921-06-14 1925-11-28 Rieri Werk Elisabeth Richter Verfahren zur Herstellung und Verwendung eines Adsorptionsmittels zur Reinigung von Alkoholen und OElen
US6184840B1 (en) * 2000-03-01 2001-02-06 Smartant Telecomm Co., Ltd. Parabolic reflector antenna
CN2408577Y (zh) * 2000-03-02 2000-11-29 寰波科技股份有限公司 抛物面反射器天线
WO2003090384A1 (fr) * 2002-04-19 2003-10-30 Imego Ab Agencement de transmission et/ou reception de signaux electromagnetiques
US20060267852A1 (en) * 2005-05-31 2006-11-30 Jiho Ahn Antenna-feeder device and antenna
CN202042599U (zh) * 2011-02-21 2011-11-16 华为技术有限公司 双反射面天线

Also Published As

Publication number Publication date
CN202042599U (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2012113293A1 (fr) Antenne à double réflecteur
EP2912719B1 (fr) Arrangement de communication
JP5679820B2 (ja) 複反射鏡アンテナの副反射鏡
US10727607B2 (en) Horn antenna
US4626863A (en) Low side lobe Gregorian antenna
US3195137A (en) Cassegrainian antenna with aperture blocking correction
US10741930B2 (en) Enhanced directivity feed and feed array
KR20080028714A (ko) 원편파 유전체 혼 파라볼라 안테나
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
WO2019011096A1 (fr) Ensemble source d'alimentation à double fréquence et antenne à micro-ondes à double fréquence
CN108346852A (zh) 一种用于定位的毫米波多波束天线
CN109411870B (zh) 一种双频共用的抛物面天线馈源
CN115621738B (zh) 一种微波天线馈源结构及微波天线系统
KR20110006953A (ko) 역중앙 급전방식의 헬릭스 급전 광대역 안테나
CN102456951A (zh) 一种基站天线
KR102332501B1 (ko) 원편파 윈도우 및 이를 포함하는 안테나
JP2016092633A (ja) リフレクトアレーアンテナ
CN112542681A (zh) 一种E-band双频段抛物面天线
US2644092A (en) Antenna
CN220553598U (zh) 一种天线单元、天线及基站
WO2024044956A1 (fr) Antenne et dispositif de communication
TWI732453B (zh) 碟型天線結構
JP2024089150A (ja) 送信装置及びその製造方法
Song et al. Offset-feeding cassegrain H-plane horn antenna based on substrate integrated waveguide
Chen et al. Design of sector antenna with wideband 2d hat-fed reflector for wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749097

Country of ref document: EP

Kind code of ref document: A1