WO2012113254A1 - 一种选择用于定位的参考标签的方法及装置 - Google Patents

一种选择用于定位的参考标签的方法及装置 Download PDF

Info

Publication number
WO2012113254A1
WO2012113254A1 PCT/CN2011/083513 CN2011083513W WO2012113254A1 WO 2012113254 A1 WO2012113254 A1 WO 2012113254A1 CN 2011083513 W CN2011083513 W CN 2011083513W WO 2012113254 A1 WO2012113254 A1 WO 2012113254A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
label
reference label
valid
group
Prior art date
Application number
PCT/CN2011/083513
Other languages
English (en)
French (fr)
Inventor
陈爱
潘璐伽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012113254A1 publication Critical patent/WO2012113254A1/zh
Priority to US13/687,823 priority Critical patent/US9202088B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to the field of wireless sensor technologies, and in particular, to a method and apparatus for selecting a reference tag for positioning.
  • a wireless sensor network is a multi-hop self-organizing network system formed by a large number of inexpensive micro sensor nodes deployed in a surveillance area. The purpose is to cooperatively perceive, collect and process network coverage areas. The information of the object is sensed and sent to the observer.
  • location information is critical to the detection activity of the sensor network. Determining where the event occurs or the location of the node that receives the message is one of the most basic functions of the sensor network, and is critical to the effectiveness of sensor network applications. effect.
  • the more common one is the positioning method based on signal attenuation model.
  • the basic principle of the method for positioning is: Electromagnetic waves propagating in space will produce energy attenuation, and the magnitude of the attenuation is related to the distance of the propagation distance. Therefore, the distance between the source and the receiver can be estimated based on the degree of attenuation of the radio wave energy. If the position of the receiver is known, the estimated distance can be used to locate the source.
  • This positioning method can achieve good positioning performance in the laboratory, but in the real environment, conditions such as temperature, obstacles, and propagation modes are often changed and unpredictable. Therefore, the measured reception is simply passed through the model. The method of converting power into an electromagnetic wave propagation path brings a large error.
  • the reference label is introduced in the prior art to perform auxiliary positioning.
  • the reference tag refers to a node in the sensor network whose location is known and fixed.
  • LANDMARC positioning technology is a typical application that uses reference tags for assisted positioning.
  • RF radio frequency
  • the RF reader can first detect the signal strength of each reference tag and the tag to be located, and then estimate the distance of each reference tag to the tag to be located according to the detected signal strength, and select the nearest tag to be located.
  • the reference label as a valid reference label, finally determines the position of the label to be located inside the polygon area composed of the vertices of the valid reference labels.
  • This implementation of assisted positioning by introducing a reference tag can reduce the influence of external conditions and is more suitable for positioning in a real environment. However, to achieve higher positioning accuracy, it depends on the deployment density of the reference label. Summary of the invention
  • the present invention provides a method and apparatus for selecting a reference tag for positioning that enables higher positioning accuracy without relying on the deployment density of the reference tag.
  • the invention provides the following solutions:
  • a method of selecting a reference tag for positioning including:
  • a valid reference tag group is selected as the reference tag for positioning according to the specified number of reference tags.
  • a device for selecting a reference tag for positioning comprising:
  • a signal strength acquiring unit configured to acquire a first signal strength sent by a reference tag detected by each radio frequency reader, and a second signal strength sent by the tag to be located;
  • a dividing line determining unit configured to determine a boundary line of the radio frequency reader according to the relationship between the first signal strength and the second signal strength, and divide the network into the first area and the second area by using the dividing line;
  • An estimation direction determining unit configured to determine an estimated direction of the to-be-positioned tag relative to the reference tag according to a relative position of the reference tag and the boundary line;
  • a reference label selection unit configured to select, according to the estimated direction, a valid reference label group as a reference label for positioning according to the specified number of reference labels.
  • the estimated direction of the label to be located relative to each reference label can be determined first, and then when the effective reference label group is selected, The estimated orientation of the tag to be located relative to each reference tag can be selected, and then the tag to be located is positioned by the effective reference tag group. Therefore, the location of the to-be-referenced tag located by the reference tag obtained by using the reference tag selection manner does not depend on the deployment density of the reference tag, even when the reference tag is deployed at a low density. Higher positioning accuracy.
  • Figure 1 is a schematic diagram of wireless sensor network deployment
  • 2(a), 2(b), 2(c) are schematic diagrams of an estimation direction determining process provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of symbol correction in an embodiment of the present invention.
  • FIG. 4(a) and 4(b) are schematic diagrams showing an effective reference label group selection method in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a two-point positioning method in an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for selecting a reference label for positioning according to an embodiment of the present invention
  • FIG. 7 is an experimental network deployment diagram in an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing the comparison of the positioning accuracy of the embodiment of the present invention and the conventional method in the case where the reference label is sparsely deployed;
  • FIG. 9 is a schematic diagram showing the comparison of the positioning accuracy of the embodiment of the present invention and the conventional method in the case where the reference tag is densely deployed;
  • FIG. 10 is a schematic diagram of a first device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a second device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a third device according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a fourth device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a fifth device according to an embodiment of the present invention. detailed description
  • A is a reference label
  • B is a label to be located
  • S1 to S16 are RF readers
  • line L is ⁇ perpendicular. Then, the RF readers S1 to S8 on the left side of the straight line L are closer to the reference label A, and the RF readers S9 to S16 on the right side of the line L are closer to the label B to be positioned. If it is assumed that M1 to M16 are the signal strength differences between the reference label A received by S1 and S16 and the label B to be located, then in an ideal case, M1 to M8 should be greater than 0, and M9 to M16 should be less than 0.
  • a reference tag A determines the signal strength of the reference tag A and the tag to be located respectively received by the RF reader, and calculate the difference between the former and the latter, assuming M; due to the location of each RF reader Different, therefore, the values of M are calculated according to different RF readers, and some are positive and some are negative. Then, the boundary of the RF reader is determined according to the positive and negative of M, so that the M value on one side of the boundary line is positive and the other side is negative. That is, the entire space is divided into two regions by a dividing line, one region is a positive region, and the other region is a negative region, and the reference label A is positioned in a positive region.
  • the approximate direction of the label to be positioned relative to the reference label can be estimated.
  • the boundary line of the RF reader is usually a straight line
  • a ray perpendicular to the boundary line and pointing to the negative value region can be made from the reference label A, and the extending direction of the ray can be used as the label to be positioned relative to the reference.
  • the estimated direction of label A it is also possible to make a specified angle from the reference label A to the boundary line and point to the ray of the negative value area, and the extending direction of the ray is used as the label to be positioned relative to the reference label A. Estimated direction.
  • the positive and negative of M " may be different for different RF readers.
  • M i4 ⁇ it can be represented by "-" at the RF reader S14.
  • the line L can be used as the boundary line of the RF reader.
  • the RF reader is represented by "+,”, so it is called a positive value area, and the reference label A is located in the positive value area.
  • the RF reader is denoted by "-”, so it is called a negative value area, and the label to be positioned should be located in the negative value area.
  • the final determined need to be explained is that the above is only an estimate of the estimated value of the label to be positioned relative to the reference label.
  • the direction, but the position of the label to be positioned that is finally located, is not necessarily on the straight line where the estimated direction of a reference label is located.
  • the boundary is not very clear. For example, in a certain area, most RF readers have positive M values, but individual RF readers calculate negative M values. At this point, the M value of such a small number of RF readers can be modified to modify the positive and negative conditions of the M values calculated by most of the surrounding RF readers. For example, the calculated positive and negative condition of the M value of each RF reader is as shown in FIG. 3.
  • the "-" at S3 can be first changed to "+”, and the "+” at S12 can be modified to Then determine the boundary line of the RF reader so that the symbols on the side of the boundary line are all the same as possible, thereby dividing the positive value area and the negative value area.
  • the valid reference tag group can be selected according to the number of designated reference tags according to each estimation direction, so as to perform multi-point positioning.
  • three-point positioning can be used, that is, the number of designated reference labels is three.
  • the so-called three-point positioning means that three valid reference labels are selected first, and that the to-be-positioned labels are located inside the triangular area with the three valid reference labels as vertices, and then a certain algorithm can be used to calculate the pending The location of the bit label. Therefore, how to choose a valid tag group to be located is the key to positioning.
  • each of the three reference tags is combined to form a plurality of reference tags to be determined.
  • Group for each group of reference tags to be determined, with three reference tags as vertices forming a triangle, determining whether the estimated directions determined for the three reference tags all point to the inside of the triangle, and if so, the three The reference label can form a valid reference label group.
  • Figure 4 (a) assuming that Al, A2, and A3 are three reference labels, the estimated directions of the labels to be located estimated for the three reference labels are respectively shown in the figure, and three estimates can be seen.
  • an optimal one of the valid reference label groups can be selected as the effective reference label group for final positioning. Specifically, when selecting the optimal effective reference label group, the Euclidean distance E between each two reference labels in each valid reference label group can be calculated, and finally the average value of E or the minimum of E is selected. A group, as the optimal set of valid reference labels, and using the set of valid reference labels to finally locate the location of the label to be located.
  • the specific algorithm for three-point positioning can be implemented in the manner of the prior art. For example, suppose the three reference labels in the valid reference label group are B1, B2, and B3, respectively, and the coordinates are ( ⁇ ⁇ ),
  • the similarity factor between the tag to be located and the reference tag is equivalent to the weight of the reference tag relative to the tag to be located, that is, the importance of the reference tag for locating the tag to be located.
  • the weight and reference are used.
  • the tag is related to the distance between the tag to be located and inversely proportional to the distance. That is, the closer the distance between the reference tag and the tag to be located is, the higher the weight is. On the contrary, the farther the distance between the reference tag and the tag to be located is, the lower the weight is.
  • the ECU between the reference tag and the tag to be located can be calculated.
  • Reed distance the Euclidean distance is not the physical distance between the reference label and the label to be located, but can reflect the physical distance between the reference label and the label to be located, and can be calculated according to the Euclidean distance.
  • the weight of each reference tag is used.
  • the signal strength vector of the tag to be located ( , '' ⁇ ), indicating the signal strength of the tag to be located received by the RF reader i;
  • the Euclidean distance between the reference tag and the tag to be located can be expressed as:
  • the formula (1) above represents the Euclidean distance between the reference label and the label to be located, wherein the smaller the E value is, the closer the distance between the reference label and the label to be located is. , the distance between the reference tag and the tag to be located is further.
  • the Euclidean distance between A and reference label B can be expressed
  • a tag to be located is located at the edge of the network, when a valid reference tag group is determined by using the method provided by the embodiment of the present invention, there may be cases where all tag groups are invalid.
  • the following may exist: Each of the three reference labels is combined, but finally, in each combination, there is a reference label whose estimated direction points to the outside of the triangle. This is generally because the tag to be located is located at the edge of the network. At this time, if the location of the tag to be located is still determined by using the three-point positioning method, the location of the finally determined tag to be located is likely to be inaccurate.
  • the embodiment of the present invention further provides a corresponding solution. That is, when a valid reference label group is selected according to a specified number, if there is no valid reference label group, the positioning can be performed by reducing the number of reference labels. For example, the three-point positioning method is used by default, but when it is found that no matter which three reference labels are invalid, the two-point positioning method can be used. Or, by default, the four-point positioning method is used, but it is found that no matter which four reference labels are invalid, the positioning can be performed again by using the three-point positioning method; if it is found that the three-point positioning is still not possible, When positioning, you can use the two-point positioning method.
  • the method of selecting the effective reference label group and the specific positioning method are different from those of the three-point or more positioning.
  • the weights of the respective reference labels relative to the labels to be located can be calculated according to the formula (1) and the formula (2), and then two sets of valid reference label groups whose weights meet the preset conditions are selected. For example, you can select two reference labels with the highest weight to form a valid reference label group.
  • a function relationship can be obtained according to the coordinates of the two reference labels, the weight, and the inverse relationship between the known weight and the distance, wherein the distance refers to the reference node and The physical distance between the tags to be located.
  • the distance between the reference tag a and tag may be positioned expressed as: 6 ⁇ ( ⁇ - ⁇ ⁇ ) 2 + ( " ⁇ ) 2, the reference tag ⁇
  • the position of the tag to be located can be determined based on the relationship between the function and the previously obtained estimated direction for the two reference tags. Specifically, it is assumed that the relationship between the estimated direction of the reference label A and the straight line is:
  • the effective reference label group is composed of reference labels A1 and A2, and the coordinates of Al and A2 and the weights are brought into the expression ( 6)
  • a function relation can be obtained, and a curve 51 can be drawn according to the function relationship.
  • the estimated direction of the label to be positioned determined for the reference label A1 is 52
  • the estimated direction of the label to be positioned for the reference label A2 is 53
  • the rays 52, 53 and 51 respectively have one
  • the intersection points are C and D respectively.
  • take the midpoint B of the line segment with C and D as the endpoints as the position where the label to be located is located.
  • the relationship between the weight and the distance is inversely determined, and the position of the label to be located is finally determined, so that the accuracy of the positioning can be improved.
  • the method for selecting a reference label for positioning includes the following steps:
  • S601 Obtain a first signal strength sent by a reference tag detected by each RF reader, and a second signal strength sent by the tag to be located;
  • S602 Determine, according to the magnitude relationship between the first signal strength and the second signal strength, a boundary line of the radio frequency reader, and divide the network into the first area and the second area by using the dividing line;
  • S603 Determine an estimated direction of the to-be-positioned tag relative to the reference tag according to a relative position of the reference tag and the boundary line;
  • the direction perpendicular to the boundary line and pointing to the second area may be determined as the label to be positioned relative to the reference label. Estimate the direction.
  • S604 Select, according to the estimated direction, a valid reference label group as a reference label for positioning according to the specified number of reference labels.
  • a valid reference label group When a valid reference label group is selected according to the specified number of reference labels, multiple valid reference label groups may be selected. In this case, an optimal valid reference label group may be further selected. Specifically, the optimal valid reference label group may be selected according to the Euclidean distance E between the reference labels in the valid reference label group. For example, the average value of E or the smallest group of E may be selected. As the optimal effective reference label group, and using the valid reference label of the group, the location of the label to be located is finally determined.
  • the number of the designated reference labels may also be reduced according to the embodiment of the present invention.
  • the number of reference labels selects a valid reference label group.
  • the following manner may be performed: Predetermining the number of reference labels in the valid reference label group, selecting the estimated direction indicated by the reference, whether all points to the inside of the polygon with the respective reference label as a vertex, and if so, the reference label group to be determined is a valid reference Label group.
  • the effective reference label group may be selected as follows: Calculate the weight of each reference label relative to the label to be located; The reference labels whose weights meet the preset conditions (for example, the maximum) constitute a valid reference label group. After selecting a valid reference tag group, the multi-point positioning can be performed using the valid reference tag group to determine the location of the tag to be located.
  • the method in the prior art can be used to determine the position of the label to be located.
  • the simultaneous equations (6) and (7) obtain the first system of equations, and obtain a solution as the coordinates of a point.
  • the simultaneous equations (6) and (8) obtain the second system of equations, and obtain another solution. The coordinates of another point;
  • the label positioning method in the wireless sensor network can select the estimated label of the label to be located with respect to each reference label, and then locate the label to be positioned by using the valid reference label group. Therefore, this positioning method does not depend on the deployment density of the reference label, and even in the case where the reference label is deployed at a low density, a high positioning accuracy can be achieved.
  • the positioning accuracy of the embodiment of the present invention is more obvious than that of the conventional positioning method, and the comparison result is as shown in FIG. 8.
  • the ordinate represents the positioning error, that is, the difference between the position of the label to be positioned and the real position of the label to be positioned, which is located by using the positioning algorithm;
  • the abscissa represents the distribution of the positioning error value in multiple experiments. happening. It can be seen from Fig.
  • each positioning error is less than 2.3, among which 75% is less than 1.9, 50% is less than 1.5, and 25% is less than 1.2; and for the method of the embodiment of the present invention, each positioning error is less than 1.8, wherein 75% is less than 1.6, and 50% is less than 1.3, 25% is less than 1.1. It can be seen that in each level, the positioning error of the embodiment of the invention is smaller than the positioning error of the conventional positioning method, and the advantage is obvious.
  • the comparison results are shown in Fig. 9. It can be seen that the present invention The positioning accuracy of the example is comparable to the traditional positioning method. However, by comparing FIG. 8 with FIG. 9, it can be seen that for the method of the embodiment of the present invention, when the reference label is sparse and dense, the positioning error is similar. It can be seen that the method of the embodiment of the invention is less affected by the distribution density of the reference label.
  • an embodiment of the present invention further provides a device for selecting a reference tag for positioning.
  • the device includes: a signal strength acquiring unit 1001. The first signal strength sent by the reference label detected by each radio frequency reader and the second signal strength sent by the label to be located are obtained.
  • a dividing line determining unit 1002 configured to determine a boundary line of the radio frequency reader according to the magnitude relationship between the first signal strength and the second signal strength, and divide the network into the first area and the second area by using the dividing line;
  • the estimation direction determining unit 1003 is configured to determine an estimated direction of the to-be-positioned label relative to the reference label according to a relative position of the reference label and the boundary line;
  • the reference label selection unit 1004 is configured to select a valid reference label group as the reference label for positioning according to the estimated direction according to the specified reference label number.
  • the device further includes:
  • the selecting unit 1005 is configured to select an optimal valid reference label group as the reference label for positioning according to the Euclidean distance between the reference labels in the valid reference label group.
  • the apparatus may further include:
  • the reselecting unit 1006 is configured to reduce the number of the specified reference labels, and select the valid reference label group as the reference label for positioning according to the reduced number of reference labels.
  • the reference tag selection unit 1004 may include the following sub-units:
  • a primary selection unit 10041 configured to select, according to the number of reference labels in the pre-selected valid reference label group, a reference label to form a reference label group to be determined; whether the estimated direction is determined, and all points to the vertex of the respective reference label Polygon interior, If yes, the reference tag group to be determined is a valid reference tag group.
  • the reference tag selection unit 1004 includes:
  • the calculating subunit 10043 is configured to calculate a weight of each reference label relative to the label to be located; and the determining subunit 10044 is configured to select two reference labels whose weights meet the preset condition to form a valid reference label group.
  • the estimated direction determining unit 1003 may be specifically configured to: determine a direction perpendicular to the boundary line and directed to the second area, to be the to-be-positioned The estimated direction of the tag relative to the reference tag.
  • an estimated direction of the label to be located relative to each reference label may be determined, and then when selecting a valid reference label group, the label to be located may be used to be relatively
  • the estimation direction of each reference tag is selected, and the tag to be located is positioned by using the effective reference tag group. Therefore, the location of the tag to be referenced by the reference tag obtained by using the reference tag selection manner does not depend on the deployment density of the reference tag, that is, even if the reference tag is deployed at a low density. Still able to achieve higher positioning accuracy.
  • the method of an embodiment of the invention may be performed by a general purpose integrated circuit (e.g., a central processing unit CPU) or an application specific integrated circuit (ASIC).
  • a general purpose integrated circuit e.g., a central processing unit CPU
  • ASIC application specific integrated circuit
  • the apparatus, module, and unit of the embodiments of the present invention may be a general-purpose integrated circuit (such as a central processing unit CPU) or an application specific integrated circuit (ASIC).
  • the method includes the following steps: obtaining a first signal strength sent by a reference tag detected by each radio frequency reader, and a second signal strength sent by the tag to be located; according to the relationship between the first signal strength and the second signal strength Determining a boundary line of the radio frequency reader, and dividing the network into the first area and the second area by using the dividing line; determining, according to the relative position of the reference label and the dividing line, the label to be located relative to the Determining an estimated direction of the reference tag; according to the estimated direction, selecting a valid reference tag set as a reference tag for positioning according to the specified number of reference tags.
  • the storage medium is, for example, a ROM/RAM, a magnetic disk, an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

一种选择用于定位的参考标签的方法及装置
本申请要求于 2011 年 2 月 24 日提交中国专利局、 申请号为 201110044752.4、 发明名称为"一种选择用于定位的参考标签的方法及装置"的 中国专利申请的优先权, 其全部内容通过弓 I用结合在本申请中。
技术领域
本发明涉及无线传感器技术领域, 特别是涉及一种选择用于定位的参考标 签的方法及装置。
背景技术
无线传感器网络是由部署在监视区域内的大量廉价微型的传感器节点组 成,通过无线通信方式形成的一个多跳的自组织的网络系统, 其目的是协作地 感知、 釆集和处理网络覆盖区域中感知对象的信息, 并发送给观察者。 在无线 传感器网络中,位置信息对传感器网络的检测活动至关重要,确定事件发生的 位置或获取消息的节点位置是传感器网路最基本的功能之一 ,对传感器网络应 用的有效性起着关键作用。
目前, 无线传感器网络的定位方法有很多种, 其中比较常见的为基于信号 衰减模型的定位方法。该方法的进行定位的基本原理是: 电磁波在空间中传播 会产生能量衰减,其衰减的幅度与传播距离的远近有关。 所以根据无线电波能 量的衰减程度可以估算发射源和接收机之间的距离, 如果接收机的位置已知, 那么估算的距离就可以用来定位发射源。这种定位方法能够在实验室中取得良 好的定位性能, 但在现实环境中, 温度、 障碍物、 传播模式等条件往往都是变 化和不可预知的, 因此, 简单的通过模型把测量到的接收功率换算为电磁波传 播路径的方法, 会带来较大的误差。
为此, 现有技术中引入参考标签的方式来进行辅助定位。 其中, 参考标签 是指传感器网络中位置已知且固定的节点。 例如, LANDMARC定位技术就是 一种利用参考标签进行辅助定位的一种典型应用。 在 LANDMARC定位技术 中, 需要在网络中部署一定数量的无线射频(Radio Frequency , RF )阅读器, 以及一定数目的参考标签。 在进行定位时, 可以首先通过 RF阅读器来检测各 参考标签与待定位标签发出的信号强度,然后根据检测到的信号强度来估算各 个参考标签到待定位标签的距离,选择距离待定位标签最近的几个(例如三个) 参考标签, 作为有效参考标签, 最后, 在以这几个有效参考标签为顶点组成的 多边形区域内部, 确定出待定位标签的位置。
这种通过引入参考标签进行辅助定位的实现方式,可以降低外界条件的影 响, 更加适合于现实环境中的定位。 但是, 要想达到较高的定位精度, 则依赖 于参考标签的部署密度。 发明内容
本发明提供一种选择用于定位的参考标签的方法及装置,能够不依赖于参 考标签的部署密度, 便实现较高的定位精度。
本发明提供了如下方案:
一种选择用于定位的参考标签的方法, 包括:
获取各个无线射频阅读器检测到的参考标签发出的第一信号强度,及待定 位标签发出的第二信号强度;
根据所述第一信号强度与第二信号强度的大小关系 ,确定无线射频阅读器 的分界线, 通过所述分界线将网络划分为第一区域及第二区域;
根据所述参考标签与所述分界线的相对位置 ,确定所述待定位标签相对于 所述参考标签的估计方向;
根据所述估计方向,按照指定参考标签数目,选择有效参考标签组作为用 于定位的参考标签。
一种选择用于定位的参考标签的装置, 包括:
信号强度获取单元,用于获取各个无线射频阅读器检测到的参考标签发出 的第一信号强度, 及待定位标签发出的第二信号强度;
分界线确定单元, 用于根据所述第一信号强度与第二信号强度的大小关 系,确定无线射频阅读器的分界线,通过所述分界线将网络划分为第一区域及 第二区域;
估计方向确定单元, 用于根据所述参考标签与所述分界线的相对位置,确 定所述待定位标签相对于所述参考标签的估计方向;
参考标签选择单元, 用于根据所述估计方向, 按照指定参考标签数目, 选 择有效参考标签组作为用于定位的参考标签。 根据本发明提供的具体实施例, 本发明公开了以下技术效果: 在本发明实施例中,首先可以确定出待定位标签相对于各参考标签的估计 方向, 然后在选择有效参考标签组时, 就可以利用待定位标签相对于各参考标 签的估计方向进行选择, 进而利用有效参考标签组对待定位标签进行定位。 因 此, 利用这种参考标签选择方式得到的参考标签所定位出的待参考标签位置, 其定位精度不依赖于参考标签的部署密度,即使在参考标签的部署密度较低的 情况下, 仍然能够达到较高的定位精度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提 下, 还可以根据这些附图获得其他的附图。
图 1是无线传感器网络部署示意图;
图 2 ( a )、 2 ( b )、 2 ( c )是本发明实施例提供的估计方向确定过程示意 图;
图 3是本发明实施例中的符号矫正示意图;
图 4 ( a )、 4 ( b )是本发明实施例中的有效参考标签组选择方法示意图; 图 5是本发明实施例中两点定位方法示意图;
图 6是本发明实施例提供的选择用于定位的参考标签的方法的流程图; 图 7是本发明实施例中的实验网络部署图;
图 8是在参考标签稀疏部署情况下,本发明实施例与传统方法的定位精度 对比示意图;
图 9是在参考标签密集部署情况下,本发明实施例与传统方法的定位精度 对比示意图;
图 10是本发明实施例提供的第一装置的示意图;
图 11是本发明实施例提供的第二装置的示意图;
图 12是本发明实施例提供的第三装置的示意图; 图 13是本发明实施例提供的第四装置的示意图;
图 14是本发明实施例提供的第五装置的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部 的实施例。基于本发明中的实施例, 本领域普通技术人员所获得的所有其他实 施例, 都属于本发明保护的范围。
本发明人在实现本发明的过程中发现: 在图 1所示的网络部署图中,假设 A为一参考标签, B为待定位标签, S1至 S16为 RF阅读器, 直线 L为 ^的 中垂线。 则, 直线 L左边的 RF阅读器 S1至 S8距离参考标签 A比较近, 直 线 L右边的 RF阅读器 S9至 S16距离待定位标签 B比较近。 如果假设 Ml至 M16为 S1至 S16接收到的参考标签 A和待定位标签 B的信号强度差, 则在 理想情况下, Ml至 M8应该大于 0, M9至 M16应该小于 0。
基于上述特点, 在本发明实施例中, 在确定有效参考标签时, 可以釆用以 下方法:
首先, 针对一个参考标签 A, 确定 RF阅读器分别接收到的该参考标签 A 以及待定位标签的信号强度, 并计算前者与后者之差, 假设为 M; 由于各个 RF阅读器所处的位置不同, 因此, 根据不同的 RF阅读器计算出 M的值会不 同, 并且有的是正值, 有的是负值。 然后, 根据 M的正负确定出 RF阅读器的 分界线, 使得分界线一侧的 M值为正, 另一侧为负。 也即, 通过分界线, 将 整个空间划分成两个区域, 一个区域为正值区域, 另一个区域为负值区域, 并 且, 参考标签 A—定位于正值区域。
然后, 根据该参考标签 A与该分界线的位置关系, 便可以估算出待定位 标签相对于该参考标签的大致方向。 例如, 前述 RF阅读器的分界线通常是一 条直线, 则可以从参考标签 A作垂直于该分界线并且指向负值区域的射线, 该射线的延伸方向, 就可以作为待定位标签相对于该参考标签 A的估计方向。 当然, 在其他实施例中, 也可以从参考标签 A向分界线作某指定角度并且指 向负值区域的射线,将该射线的延伸方向作为待定位标签相对于该参考标签 A 的估计方向。
同样, 针对网络中的其他参考标签也可以做类似处理, 这样, 可以估计出 待定位标签相对各个参考标签的估计方向。
为了更形象地理解上述确定待定位标签相对于参考标签的估计方向的方 法, 下面通过图 2进行更为详细地描述。 在图 2中, 同样假设有 16个 RF阅 读器 S1至 S16。 假设 RF阅读器 S1接收到的参考标签 A的信号强度为 M" , 接收到的待定位节点 B的信号强度为 则 =^ "- 假设 M>0, 则可 以在 S1处用 "+" 表示。 同样, 针对其他 RF阅读器, 也可以 #丈同样处理。 也 即, 对于 RF阅读器 ( n=l , 2... ... 16 ), 可以计算出1 ^ "接收到的参考节点 A 的信号强度为 Μ"Α ,接收到的待定位节点 B的信号强度为 ,则 m 。 其中, 针对不同的 RF阅读器, M "的正负会有所不同。 例如, 对于 RF阅读器 S14, Mi4<0, 则可以在该 RF阅读器 S14处用 "-" 表示。
假设 M "的正负如图 2 ( a ) 所示, 则在确定 RF阅读器的分界线时, 可以 如图 2 ( b )所示, 直线 L即可作为 RF阅读器的分界线。 可以看出, 在直线 L 的一侧, RF 阅读器处都用 "+,, 表示, 因此称为正值区域, 并且参考标签 A 位于该正值区域内。 在直线 L的另一侧, RF阅读器处都用 "-" 表示, 因此称 为负值区域, 并且待定位标签应该位于该负值区域。接下来, 就可以从参考标 签 A做垂直与该直线 L并指向负值区域的射线, 该射线的延伸方向就可以作 为待定位标签相对该参考标签 A的估计方向, 如图 2 ( c )所示。 其他参考标 签也都做类似处理。 当然, 在确定估计方向时, 也不是一定要按照以上方式, 例如,还可以从参考标签 A做与直线 L成某预置角度并指向负值区域的射线, 等等, 各种其他方式这里不再一一赘述。
其中, 具体确定分界线时, 可以如下进行:
找出所有相邻的分别标号为正与负的 PF阅读器的连线的中点, 然后通过 这样的任意两个中点可以得到多条直线, 并且可以得到每条直线的函数关系 式; 从这些直线中可以找出一条最优的直线, 使得该直线两侧的 RF阅读器的 标号相反, 这条最优的直线就可以作为 RF阅读器的分界线。 也即, 由于 RF 阅读器的坐标是已知的, 因此, 具体实现时, RF阅读器的分界线可以用一个 函数关系式来表示, 前述 "画线,, 的过程, 就相当于是获取这个函数关系式的 过程。 相应的, 对于待定位标签相对于参考标签的估计方向而言, 实际上也相 当于是一条射线, 并且由于参考标签的坐标也是已知的, 因此, 也可以用函数 关系式的方式来表达前述估计方向。
例如, 假设获取到的分界线的函数关系式是 = +1), 其中 a、 b常数; 并 假设参考标签的坐标为 (xl , yl )。 相当于那么在已知以下条件: 估计方向所 在直线经过点(xl , yl ), 并且与直线 y=ax+b垂直, 根据这两个条件, 就可以 获取到估计方向所在直线的函数关系式, 例如, 假设为 y=cx+d, 则对于估计 方向, 如果要体现出方向的概念, 则可以再对 X的取值进行限制。 例如, 对于 图 2 ( b ) 中所示的参考标签与分界线之间的位置关系而言, 最终确定出的待 需要说明的是,以上仅仅是大致估计出待定位标签相对于参考标签的估计 方向,但最终定位出的待定位标签的位置, 并不一定在某参考标签的估计方向 所在的直线上。
另外需要说明的是, 在实际应用中, 计算出各个 RF阅读器的 M值之后, 可能会发现界限并不是很清晰。 例如, 在某一区域, 多数 RF阅读器的 M值都 是正值, 但是个别的 RF阅读器计算出的 M值却是负值。 此时, 可以对这种少 数 RF阅读器的 M值进行修正, 将其修改为周围多数 RF阅读器计算出的 M 值的正负情况。 例如, 计算出的各 RF阅读器的 M值的正负情况如图 3所示, 此时, 就可以首先将 S3处的 "-" 修改为 "+" , 将 S12处的 "+" 修改为 然后再确定 RF阅读器的分界线, 使得尽量保证分界线一侧的符号全部相同, 从而划分出正值区域及负值区域。
在确定了待定位标签相对于各个参考标签的估计方向之后,就可以根据各 个估计方向, 按照指定参考标签数目, 选择有效参考标签组, 以便进行多点定 位。 例如, 可以釆用三点定位, 也即指定参考标签数目为三。 所谓三点定位, 是指, 首先选出三个有效的参考标签, 并认为待定位标签位于以这三个有效的 参考标签为顶点的三角形区域内部, 然后就可以利用一定的算法,计算出待定 位标签所在的位置。 因此, 如何选择有效待定位标签组是定位的关键。
在本发明实施例中, 可以如下进行: 在确定了待定位标签相对于各个参考 标签的估计方向之后,将每三个参考标签进行组合,组成多个待确定参考标签 组, 针对每个待确定参考标签组, 以其中的三个参考标签为顶点组成三角形, 判断针对这三个参考标签确定出的估计方向是否全部指向该三角形的内部,如 果是, 则这三个参考标签就能够组成一个有效参考标签组。 例如, 如图 4 (a) 所示, 假设 Al、 A2、 A3 为三个参考标签, 针对这三个参考标签估计出的待 定位标签的估计方向分别如图所示,可以看出三个估计方向都指向三角形的内 部, 因此, 参考标签 Al、 A2、 A3 就形成一个有效参考标签组。 否则如果针 对某参考标签估计出的待定位标签的估计方向指向三角形外部,则这三个参考 标签不能组成一个有效参考标签组。 如图 4 (b) 所示, 同样假设 Al、 A2、 A3为三个参考标签, 针对这三个参考标签估计出的待定位标签的估计方向如 图所示, 可以看出针对参考标签 A3估计出的待定位标签的估计方向指向三角 形的外部, 因此, 参考标签 Al、 A2、 A3就不能形成一组有效的参考标签。
这样, 最终选择出的有效参考标签组可能有多个, 此时, 还可以从中选择 出最优的一个有效参考标签组作为最终定位使用的有效参考标签组。其中, 具 体在选择最优的有效参考标签组时, 可以计算每组有效参考标签组中,每两个 参考标签之间的欧几里德距离 E, 最后选择 E的平均值或 E的和最小的一组, 作为最优的有效参考标签组, 并利用该组有效参考标签, 最终定位出待定位标 签的位置。
之所以这样选择, 是因为, 如果某组有效参考标签中, E的平均值或 E的 和最小, 则证明以这几个有效参考标签为顶点组成的多边形的面积是最小的, 该最小的面积中进行定位, 可以提高定位的精度。
下面对于前文涉及到的两个具体的计算过程进行简单地介绍。
首先,关于三点定位的具体算法,可以釆用已有技术中的方式实现。例如, 假设有效参考标签组内的三个参考标签分别为 B1、B2、B3,坐标分别为( χι^ι)、
( ¾,73); 算出待定位标签与这几个参考标签之间的相似度因子 (参 考标签相对于待定位标签的权值)分别为 ^, w2 , w3 (不同算法计算出的相 似度因子可能会有所不 同 ); 这样, 待定位标签的横坐标为 x = (wlxxl +w2 xx2 + w3 xx3)/(Wl +w2 +w3) ^ 纵坐标类似; 如果对权值进行了归一 化, 即 ^ + w2 + w3 = 1 , 则 X = (wx X + w2 x x2 + w3 x x3 )。 一般可以默认对权值进行 了归一化处理。 其中, 所谓待定位标签与参考标签之间的相似度因子, 就相当于参考标签 相对于待定位标签的权值, 也就是参考标签对于定位待定位标签的重要程度, 通常,该权值与参考标签与待定位标签之间的距离有关,并且与该距离成反比。 也即, 参考标签与待定位标签之间的距离越近, 则权值越高, 反之, 参考标签 与待定位标签之间的距离越远, 则权值越低。 当然, 在得到待定位标签的具体 位置之前, 无法得到准确的参考标签与待定位标签之间的距离的值, 因此, 在 一种算法下, 可以计算参考标签与待定位标签之间的欧几里德距离, 该欧几里 德距离虽然不是参考标签与待定位标签之间的物理距离,但是可以反映出参考 标签与待定位标签之间的物理距离,根据该欧几里德距离即可计算出各个参考 标签的权值。
例如, 假设共有 n个 RF阅读器, m个参考标签, 并假设待定位标签的信 号强度矢量为 = ( , ''· ), 表示 RF阅读器 i接收到的待定位标签的信号 强度; 参考标签的信号强度矢量为1 ^ = ^ι A… ) , 其中, 表示 RF阅读器 i 接收到的参考标签的信号强度。则参考标签与待定位标签之间的欧几里德距离 可以表示为:
Figure imgf000010_0001
上述公式(1 ) 即可表示参考标签与待定位标签之间的欧几里德距离, 其 中, E值越小, 则表示参考标签与待定位标签之间的距离越近,反之, E越大, 则表示参考标签与待定位标签之间的距离越远。
接下来, 就可以根据 E的值计算出参考节点的权值:
1 k 1
EJ j--l Ej ( 2 ) 其中, k代表定位所用到的 k个参考标签, 例如, 当进行三点定位时, k 的值为 3 , 为定位所用到的 k个参考标签与待定位标签之间的欧几里德距离。 然后, 可以根据以下公式来计算待定位标签的坐标:
k
^ ( 3 )
此外,对于两个参考标签之间的欧几里德距离而言, 可以参考前文所述计 算参考标签与待定位标签之间的欧几里德距离的方法。例如, 可以通过以下公 式计算得到: 假设共有 n个 RF阅读器, 假设参考标签 A的信号强度矢量为 S = (S S2 - Sn ) ^ 其中, 表示 RF阅读器 i接收到的参考标签 A的信号强度, (1,"); 假设参考标签 B的信号强度矢量为 P = W,A… ), 其中, 表示 RF 阅读器 i接收到的参考标签 B的信号强度, i G ^。 则参考标签 A与参考标 签 B之间的欧几里德距离可以表示
Figure imgf000011_0001
在本发明的其他实施例中,如果某待定位标签位于网络的边缘, 则利用本 发明实施例提供的方法确定有效的参考标签组时,还可能存在所有标签组都无 效的情况。 例如, 同样以三点定位为例, 则可能存在以下情况: 将所有参考标 签中的每三个进行组合,但最后发现每种组合中,都存在估计方向指向三角形 外部的参考标签。 这一般是由于待定位标签位于网络边缘造成的, 此时, 如果 仍然釆用三点定位的方法来确定待定位标签的位置,最终确定出的待定位标签 的位置很可能是不准确的。
针对这种情况, 本发明实施例还提供了相应的解决方法。 也即, 当按照某 指定数目选择有效参考标签组时,如果不存在有效参考标签组, 则可以釆用减 少参考标签数目的方式来进行定位。 例如, 默认情况下釆用三点定位的方式, 但是, 当发现无论哪三个参考标签都无效时, 则可以釆用两点定位的方式。 又 或者,在默认情况下釆用四点定位的方式,但是发现无论哪四个参考标签都无 效时, 则可以釆用三点定位的方式, 重新进行定位; 如果发现使用三点定位仍 然无法进行定位时, 则再釆用两点定位的方式。
其中, 对于两点定位, 由于两个参考标签无法组成一个多边形, 因此, 选 择有效参考标签组的方法, 以及具体的定位方法, 与三点或更多点定位时釆用 的方法都会有所不同, 这里对此进行介绍。 首先, 可以根据公式( 1 )及公式(2)计算出各个参考标签相对于待定位 标签的权值, 然后从中选择权值符合预置条件的两个组成有效参考标签组。例 如, 可以选择权值最大的两个参考标签组成有效参考标签组。
在选定有效参考标签组之后, 可以根据这两个参考标签的坐标、权值, 以 及已知的权值与距离之间的反比关系, 得到一个函数关系式, 其中, 距离是指 参考节点与待定位标签之间的物理距离。例如,假设有效参考标签组中的两个 参考标签分别为 A、 B, 两者的坐标是已知的, 分别为 , )及 02,^), 并假 设参考标签 A、B的权值分别为1 待定位标签的坐标是未知的,设为 0, , 则参考标签 A与待定位标签之间的距离可以表示为: 6ι (χ- χι)2 +("ι)2 , 参考标签 Β 与待定位标签之间的距离可以表示为: b2 =^-^)2 +(y-y2)2 , 这样, 根据前述权值与距离之间成反比, 可得以下函数关系式:
b2 =w2l Wj ( 5 ) 也即:
Figure imgf000012_0001
需要说明的是, 在确定了有效参考标签组之后, 在上述函数关系式中, 只 有 X、 y是未知数, 其他均为已知数。
然后, 就可以根据跟函数关系式, 以及之前得到的针对两个参考标签的估 计方向, 来确定待定位标签的位置。 具体的, 假设参考标签 A的估计方向所 在直线的函数关系式为 :
y = clx + dl ( 7 ) 参考标签 B的估计方向所在直线的函数关系式为:
y = c2x + d2 (8) 这样, 分别联立函数关系式(6)与 (7), 以及(6)与 (8), 可以分别求 解出一对 x、 y的值。 例如, 分别为( ,^)、 (¾^4), 这在坐标系中对应着两 个点。 然后, 可以取以这两个点为端点的线段的中点, 并将该中点作为最终确 定出的待定位标签的位置。
为了更好地理解上述两点定位的方法, 下面通过图 5 进行更加形象地介 例如, 假设有效参考标签组由参考标签 Al、 A2组成, 将 Al、 A2的坐标 以及权值带入表达式(6 )可以得到一个函数关系式, 根据该函数关系式可以 画出一条曲线 51。 同时,假设针对参考标签 A1确定出的待定位标签的估计方 向所在射线为 52,针对参考标签 A2确定出的待定位标签的估计方向所在射线 为 53 , 则射线 52、 53与曲线 51分别有一个交点, 分别为 C、 D。 然后, 取以 C、 D为端点的线段的中点 B作为待定位标签所在的位置即可。
在两点定位时, 之所以釆用上述方式, 是因为:
依据欧几里德原理,在一个平面上, 两条互相不平行的直线有且只有一个 交点。 并且经过两点, 有且只有一条直线。 这样, 当待定位标签与两个参考标 签都在一个平面内时, 经过待定位标签与一个参考标签 A有且只有一条直线 m; 经过待定位标签与另一个参考标签 B有且只有一条直线 n; 直线 m和 n有 且只有一个交点, 那这个交点必然是待定位标签所在的点。
因此,如果能够得到待定位标签与两个参考标签的准确的方向关系,再加 上已知了两个参考标签的准确位置,就可以准确的画出 m和 n (实际的算法只 要得到 m和 n的函数表达式), 从而得到它们的交点, 即待定位标签所在的位 置。
而在本发明实施例中,由于只能知道待定位标签与两个参考标签之间大致 的方向关系,如果直接取两条直线的交点来确定待定位标签的位置, 则显然是 不正确的, 因此, 在本发明实施例中, 还借助了 "权值与距离之间成反比" 这 一关系, 最终确定出待定位标签的位置, 这样可以提高定位的准确性。
综上, 参见图 6, 本发明实施例提供的选择用于定位的参考标签的方法包 括以下步骤:
S601 : 获取各个 RF阅读器检测到的参考标签发出的第一信号强度, 及待 定位标签发出的第二信号强度;
S602: 根据所述第一信号强度与第二信号强度的大小关系,确定无线射频 阅读器的分界线, 通过所述分界线将网络划分为第一区域及第二区域; S603: 根据所述参考标签与所述分界线的相对位置,确定所述待定位标签 相对于所述参考标签的估计方向;
其中,在根据参考标签与分界线的相对位置,确定待定位标签相对于参考 标签的估计方向时, 可以将垂直于分界线且指向第二区域的方向,确定为待定 位标签相对于参考标签的估计方向。
S604: 根据所述估计方向, 按照指定的参考标签数目, 选择有效参考标签 组作为用于定位的参考标签。
具体实现时, 可以首先按照指定的参考标签数目, 选择有效参考标签组。 例如, 指定的有效参考标签数目为三, 则相当于是要进行三点定位, 因此, 要 选择由三个参考标签组成的有效参考标签组。
其中,按照指定的参考标签数目选择有效参考标签组时, 可能会选择到多 个有效参考标签组, 此时, 还可以进一步选择出一个最优的有效参考标签组。 具体的, 可以根据有效参考标签组内的参考标签两两之间的欧几里德距离 E, 选择最优的有效参考标签组, 例如, 可以选择 E的平均值或 E的和最小的一 组, 作为最优的有效参考标签组, 并利用该组有效参考标签, 最终确定出待定 位标签的位置。
当然,按照指定的参考标签数目选择有效参考标签组时,还可能会存在所 有的参考标签组都无效的情况, 此时, 本发明实施例还可以减小该指定参考标 签数目, 按照减小后的参考标签数目选择有效参考标签组。
具体在选择有效参考标签组时,如果预选择的有效参考标签组中的参考标 签数目大于或等于三,也即需要进行三点或三点以上的多点定位, 则可以按照 以下方式进行: 按照预选择的有效参考标签组中的参考标签数目,选择参考标 出的所述估计方向,是否全部指向以该各个参考标签为顶点的多边形内部,如 果是, 则该待确定参考标签组为有效参考标签组。
如果预选择的有效参考标签组中的参考标签数目为二,也即需要进行两点 定位, 则可以按照以下方式选择有效参考标签组: 计算各个参考标签相对于待 定位标签的权值; 选择两个权值符合预置条件(例如最大)的参考标签组成有 效参考标签组。 在选择出有效参考标签组之后, 就可以利用有效参考标签组进行多点定 位, 以确定所述待定位标签的位置。
其中,在进行三点或三点以上的多点定位时,可以釆用已有技术中的方法, 来确定待定位标签的位置。
在进行两点定位时, 可以釆用以下方法进行:
联立方程(6 )、 (7 )得到第一方程组, 求得一个解, 作为一个点的坐标; 联立方程(6 )、 (8 )得到第二方程组, 求得另一个解, 作为另一个点的坐 标;
取以这两个点为端点的线段的中点位置, 作为待定位标签的位置。
总之,根据本发明实施例提供的无线传感器网络中的标签定位方法, 由于 可以利用待定位标签相对于各参考标签的估计方向进行选择,进而利用有效参 考标签组对待定位标签进行定位。 因此, 这种定位方式不依赖于参考标签的部 署密度, 即使在参考标签的部署密度较低的情况下,仍然能够达到较高的定位 精度。
关于上述效果的描述, 可以通过实验室仿真结果得到证明。 如图 7所示, 其为仿真环境的部署图, 其中, RF阅读器的数目为 9个, 分别为 S1至 S9; 参考标签的数目为 6个, 分别为 A1至 A6, B为待定位标签。 其中, RF阅读 器组成 3*3 , 间距为 2米的网格。 通过实验可以得到以下结论:
对于参考标签比较稀疏的情况,本发明实施例的定位精度相对于传统定位 方法的优势比较明显,比较结果如图 8所示。在图 8中,纵坐标代表定位误差, 也即利用定位算法定位出的待定位标签的位置与待定位标签的真实位置之间 的差异;横坐标代表在多次试验中,定位误差值的分布情况。图 8中可以看出, 将各次试验中所有产生了定位误差的情况选出来, 则经过统计发现, 定位误差 具有如下特点:对于传统定位方法而言,每次定位误差均小于 2.3 ,其中有 75% 小于 1.9,有 50%小于 1.5 ,有 25%小于 1.2; 而对于本发明实施例的方法而言, 每次定位误差均小于 1.8, 其中有 75%小于 1.6, 有 50%小于 1.3 , 有 25%小于 1.1。 可见, 在各个等级中, 发明实施例的定位误差都会小于传统定位方法的 定位误差, 优势比较明显。
而对于参考标签密集的情况, 比较结果如图 9所示。 可以看出, 本发明实 施例的定位精度与传统定位方法相当。 但是, 通过比较图 8与图 9可以看出, 对于本发明实施例的方法而言,当参考标签稀疏与密集时,定位误差相差不多。 由此可见, 本发明实施例的方法受参考标签分布密度的影响较小。
与本发明实施例提供的选择用于定位的参考标签的方法相对应 ,本发明实 施例还提供了一种选择用于定位的参考标签的装置, 参见图 10, 该装置包括: 信号强度获取单元 1001 , 用于获取各个无线射频阅读器检测到的参考标 签发出的第一信号强度, 及待定位标签发出的第二信号强度;
分界线确定单元 1002, 用于根据所述第一信号强度与第二信号强度的大 小关系,确定无线射频阅读器的分界线,通过所述分界线将网络划分为第一区 域及第二区域;
估计方向确定单元 1003 , 用于根据所述参考标签与所述分界线的相对位 置, 确定所述待定位标签相对于所述参考标签的估计方向;
参考标签选择单元 1004, 用于根据所述估计方向, 按照指定参考标签数 目, 选择有效参考标签组作为用于定位的参考标签。
其中,如果按照指定参考标签数目选择有效参考标签组时,存在多个有效 参考标签组, 则参见图 11 , 该装置还包括:
优选单元 1005 , 用于根据有效参考标签组内的参考标签两两之间的欧几 里德距离, 选择最优的有效参考标签组作为用于定位的参考标签。
如果按照指定参考标签数目选择有效参考标签组时,不存在有效参考标签 组, 则参见图 12, 该装置还可以包括:
重选单元 1006, 用于减小该指定参考标签数目, 按照减小后的参考标签 数目选择有效参考标签组作为用于定位的参考标签。
如果预选择的有效参考标签组中的参考标签数目大于或等于三,也即进行 三点或三点以上的多点定位, 则参见图 13 , 参考标签选择单元 1004可以包括 以下子单元:
初选子单元 10041 , 用于按照预选择的有效参考标签组中的参考标签数 目, 选择参考标签组成待确定参考标签组; 定出的所述估计方向, 是否全部指向以该各个参考标签为顶点的多边形内部 , 如果是, 则该待确定参考标签组为有效参考标签组。
如果预选择的有效参考标签组中的参考标签数目为二, 则参见图 14, 参 考标签选择单元 1004包括:
计算子单元 10043 , 用于计算各个参考标签相对于待定位标签的权值; 确定子单元 10044, 用于选择两个权值符合预置条件的参考标签组成有效 参考标签组。
具体实现时,如果所述参考标签位于所述第一区域, 则估计方向确定单元 1003 具体可以用于: 将垂直于所述分界线且指向所述第二区域的方向, 确定 为所述待定位标签相对于所述参考标签的估计方向。
在本发明实施例提供的选择用于定位的参考标签的装置中,首先可以确定 出待定位标签相对于各参考标签的估计方向, 然后在选择有效参考标签组时, 就可以利用待定位标签相对于各参考标签的估计方向进行选择,进而利用有效 参考标签组对待定位标签进行定位。 因此, 利用这种参考标签选择方式得到的 参考标签所定位出的待参考标签位置,其定位精度不依赖于参考标签的部署密 度, 也即, 即使在参考标签的部署密度较低的情况下, 仍然能够达到较高的定 位精度。
本发明实施例的方法可以由通用集成电路(如中央处理器 CPU)或专用集成电路(ASIC) 执行。 本发明实施例的装置、 模块、 单元可以是通用集成电路 (如中央处理器 CPU) 或专 用集成电路 (ASIC) 等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可 读取存储介质中, 该程序在执行时, 包括如下步骤: 获取各个无线射频阅读器 检测到的参考标签发出的第一信号强度, 及待定位标签发出的第二信号强度; 根据所述第一信号强度与第二信号强度的大小关系,确定无线射频阅读器的分 界线,通过所述分界线将网络划分为第一区域及第二区域; 根据所述参考标签 与所述分界线的相对位置 ,确定所述待定位标签相对于所述参考标签的估计方 向; 根据所述估计方向, 按照指定参考标签数目, 选择有效参考标签组作为用 于定位的参考标签。 所述的存储介质, 如: ROM/RAM、 磁碟、 光盘等。
以上对本发明所提供的一种选择用于定位的参考标签的方法及装置,进行 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于 本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均 会有改变之处。 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种选择用于定位的参考标签的方法, 其特征在于, 包括:
获取各个无线射频阅读器检测到的参考标签发出的第一信号强度,及待定 位标签发出的第二信号强度;
根据所述第一信号强度与第二信号强度的大小关系,确定所述各个无线射 频阅读器的分界线, 并通过所述分界线将网络划分为第一区域及第二区域; 根据所述参考标签与所述分界线的相对位置 ,确定所述待定位标签相对于 所述参考标签的估计方向;
根据所述估计方向和指定参考标签数目,选择有效参考标签组作为用于定 位的参考标签。
2、 根据权利要求 1所述的方法, 其特征在于, 在存在多个所述有效参考 标签组的情况下, 所述选择有效参考标签组作为用于定位的参考标签, 包括: 根据所述多个有效参考标签组内的参考标签两两之间的欧几里德距离,选 择最优的有效参考标签组作为用于定位的参考标签。
3、 根据权利要求 1所述的方法, 其特征在于, 在不存在所述有效参考标 签组的情况下, 则所述选择有效参考标签组作为用于定位的参考标签, 包括: 减小所述指定参考标签数目,并按照减小后的参考标签数目选择有效参考 标签组作为用于定位的参考标签。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 如果预选择的 有效参考标签组中的参考标签数目大于或等于三,则所述根据所述估计方向和 指定参考标签数目, 选择有效参考标签组, 包括:
按照预选择的有效参考标签组中的参考标签数目,选择参考标签并组成待 确定参考标签组; 向, 是否全部指向以所述各个参考标签为顶点的多边形内部, 如果是, 则确定 所述待确定参考标签组为有效参考标签组。
5、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 如果预选择的 有效参考标签组中的参考标签数目为二,所述根据所述估计方向和指定参考标 签数目, 选择有效参考标签组, 包括: 计算各个所述参考标签相对于待定位标签的权值;
选择两个所述权值符合预置条件的参考标签组成有效参考标签组。
6、 根据权利要求 5所述的方法, 其特征在于, 如果预选择的有效参考标 签组中的参考标签数目为二, 则按照以下方式确定所述待定位标签的位置: 求解 得到第一点的坐标; 求解
Figure imgf000020_0001
得到第二点的坐标; 将以所述第一点及第二点为端点的线段的中点位置,确定为所述待定位标 签的位置;
其中:
wi为:所述有效参考标签组内的第一参考标签相对于所述待定位标签的权 值;
w2为: 所述有效参考标签组内的第二参考标签相对于所述待定位标签的 权值;
χι为: 所述第一参考标签的横坐标;
为: 所述第一参考标签的纵坐标:
^为: 所述第二参考标签的横坐标
为: 所述第二参考标签的纵坐标
y = Clx + 为: 针对所述第一参考标签确定出的所述估计方向所在直线的 函数关系式, Ci、 为实数;
y = c2x + ί 2为: 针对所述第二参考标签确定出的所述估计方向所在直线的 函数关系式, C2、 ^为实数。
7、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述参考标签 位于所述第一区域, 所述根据所述参考标签与所述分界线的相对位置,确定所 述待定位标签相对于所述参考标签的估计方向, 包括:
将垂直于所述分界线且指向所述第二区域的方向,确定为所述待定位标签 相对于所述参考标签的估计方向。
8、 一种选择用于定位的参考标签的装置, 其特征在于, 包括: 信号强度获取单元,用于获取各个无线射频阅读器检测到的参考标签发出 的第一信号强度, 及待定位标签发出的第二信号强度;
分界线确定单元, 用于根据所述第一信号强度与第二信号强度的大小关 系,确定所述各个无线射频阅读器的分界线, 并通过所述分界线将网络划分为 第一区域及第二区域;
估计方向确定单元, 用于根据所述参考标签与所述分界线的相对位置,确 定所述待定位标签相对于所述参考标签的估计方向;
参考标签选择单元, 用于根据所述估计方向和指定参考标签数目,选择有 效参考标签组作为用于定位的参考标签。
9、 根据权利要求 8所述的装置, 其特征在于, 在存在多个所述有效参考 标签组的情况下, 所述选择有效参考标签组作为用于定位的参考标签, 包括: 优选单元,用于根据所述多个有效参考标签组内的参考标签两两之间的欧 几里德距离, 选择最优的有效参考标签组作为用于定位的参考标签。
10、 根据权利要求 8所述的装置, 其特征在于, 在不存在所述有效参考标 签组的情况下, 则所述选择有效参考标签组作为用于定位的参考标签, 包括: 重选单元, 用于减小所述指定参考标签数目, 并按照减小后的参考标签数 目选择有效参考标签组作为用于定位的参考标签。
11、 根据权利要求 8至 10任一项所述的装置, 其特征在于, 如果预选择 的有效参考标签组中的参考标签数目大于或等于三,则所述参考标签选择单元 包括:
初选子单元, 用于按照预选择的有效参考标签组中的参考标签数目,选择 参考标签组成待确定参考标签组; 出的所述估计方向, 是否全部指向以所述各个参考标签为顶点的多边形内部, 如果是, 则确定所述待确定参考标签组为有效参考标签组。
12、 根据权利要求 8至 10任一项所述的装置, 其特征在于, 如果预选择 的有效参考标签组中的参考标签数目为二, 所述参考标签选择单元包括: 计算子单元, 用于计算各个所述参考标签相对于待定位标签的权值; 确定子单元,用于选择两个所述权值符合预置条件的参考标签组成有效参 考标签组。
13、 根据权利要求 8至 10任一项所述的装置, 其特征在于, 所述参考标 签位于所述第一区域, 所述估计方向确定单元具体用于: 将垂直于所述分界线 且指向所述第二区域的方向,确定为所述待定位标签相对于所述参考标签的估 计方向。
PCT/CN2011/083513 2011-02-24 2011-12-06 一种选择用于定位的参考标签的方法及装置 WO2012113254A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/687,823 US9202088B2 (en) 2011-02-24 2012-11-28 Method and apparatus for selecting reference tag used for positioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100447524A CN102111876B (zh) 2011-02-24 2011-02-24 一种选择用于定位的参考标签的方法及装置
CN201110044752.4 2011-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/687,823 Continuation US9202088B2 (en) 2011-02-24 2012-11-28 Method and apparatus for selecting reference tag used for positioning

Publications (1)

Publication Number Publication Date
WO2012113254A1 true WO2012113254A1 (zh) 2012-08-30

Family

ID=44175859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083513 WO2012113254A1 (zh) 2011-02-24 2011-12-06 一种选择用于定位的参考标签的方法及装置

Country Status (3)

Country Link
US (1) US9202088B2 (zh)
CN (1) CN102111876B (zh)
WO (1) WO2012113254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390433A (zh) * 2021-07-20 2021-09-14 上海擎朗智能科技有限公司 一种机器人定位方法、装置、机器人和存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111876B (zh) 2011-02-24 2013-10-09 华为技术有限公司 一种选择用于定位的参考标签的方法及装置
CN103712618B (zh) * 2013-12-20 2016-07-13 杭州银江智慧医疗集团有限公司 一种非测距的人员快速定位方法及其系统
US9733335B2 (en) * 2014-11-13 2017-08-15 Symbol Technologies, Llc RFID tag locationing using dynamic beacon tag association
CN106054127B (zh) * 2016-05-20 2018-05-29 太原理工大学 无线传感器网络智能修正测距定位方法
CN105824007B (zh) * 2016-05-20 2018-05-01 太原理工大学 无线传感器网络测距定位方法
CN106019219B (zh) * 2016-05-20 2018-05-29 太原理工大学 无线传感器网络智能测距定位方法
CN106767815B (zh) * 2016-11-30 2019-09-03 天津大学 基于相位差欧氏距离测距的加权最小二乘室内定位方法
CN106778981B (zh) * 2016-12-31 2019-10-18 山东大学 一种基于rfid的室内三维定位平台及其定位方法
CN109727475A (zh) * 2017-10-27 2019-05-07 中移(杭州)信息技术有限公司 基于停车场的车辆查找方法、装置和通信设备
CN110858952B (zh) * 2018-08-22 2021-07-30 阿里巴巴集团控股有限公司 电子标签组件的定位方法、定位基站、服务器及管理系统
CN109951793B (zh) * 2019-01-28 2022-08-02 深圳壹账通智能科技有限公司 室内定位方法、装置、计算机设备和存储介质
CN110210268A (zh) * 2019-06-05 2019-09-06 北京京投信安科技发展有限公司 基于landmarc算法的rfid高精度定位技术
CN110366114B (zh) * 2019-06-14 2020-09-08 深圳市觅拓物联信息技术有限公司 一种定位方法和定位装置
CN110996388B (zh) * 2019-12-11 2020-09-15 河南工业大学 基于锚节点选择及随机抽样粒子群的DV-Hop定位方法
CN111343714B (zh) * 2020-02-09 2021-06-04 北京小米移动软件有限公司 终端定位方法、装置、电子设备及存储介质
CN115698746A (zh) * 2020-10-30 2023-02-03 Oppo广东移动通信有限公司 一种定位方法、定位设备及定位系统
CN112911509A (zh) * 2021-03-03 2021-06-04 深圳市富临通实业股份有限公司 物联网的室内定位方法、装置、终端设备和存储介质
CN114245291A (zh) * 2021-11-19 2022-03-25 中国矿业大学 参考节点虚拟化为未知节点的测距定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131432A (zh) * 2007-09-18 2008-02-27 澳门科技大学 无线射频识别系统的定位方法及其装置
CN101191833A (zh) * 2007-12-12 2008-06-04 北京航空航天大学 一种基于接收信号强度的射频识别室内定位检测方法
CN101349745A (zh) * 2008-09-06 2009-01-21 黄以华 一种采用区域划分算法的无线射频定位方法
CN102111876A (zh) * 2011-02-24 2011-06-29 华为技术有限公司 一种选择用于定位的参考标签的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362731B1 (en) * 2000-12-06 2002-03-26 Eaton Corporation Tire pressure monitor and location identification system and method
KR100735397B1 (ko) * 2006-06-08 2007-07-04 삼성전자주식회사 휴대단말기의 블루투스 통신 수행방법
CN101363910B (zh) * 2008-09-26 2011-10-05 黄以华 一种基于贝叶斯理论的无线射频定位方法
US8953570B2 (en) * 2010-11-23 2015-02-10 Symbol Technologies, Inc. Radio frequency identification system and related operating methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131432A (zh) * 2007-09-18 2008-02-27 澳门科技大学 无线射频识别系统的定位方法及其装置
CN101191833A (zh) * 2007-12-12 2008-06-04 北京航空航天大学 一种基于接收信号强度的射频识别室内定位检测方法
CN101349745A (zh) * 2008-09-06 2009-01-21 黄以华 一种采用区域划分算法的无线射频定位方法
CN102111876A (zh) * 2011-02-24 2011-06-29 华为技术有限公司 一种选择用于定位的参考标签的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390433A (zh) * 2021-07-20 2021-09-14 上海擎朗智能科技有限公司 一种机器人定位方法、装置、机器人和存储介质

Also Published As

Publication number Publication date
US20130088334A1 (en) 2013-04-11
US9202088B2 (en) 2015-12-01
CN102111876B (zh) 2013-10-09
CN102111876A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
WO2012113254A1 (zh) 一种选择用于定位的参考标签的方法及装置
Chang et al. Estimation bounds for localization
Liu et al. Anchor-free backscatter positioning for RFID tags with high accuracy
Liu et al. Adaptive sampling of RF fingerprints for fine-grained indoor localization
Niu et al. WicLoc: An indoor localization system based on WiFi fingerprints and crowdsourcing
Rahman et al. RSS-based indoor localization algorithm for wireless sensor network using generalized regression neural network
Meng et al. Secure and robust Wi-Fi fingerprinting indoor localization
US8994590B2 (en) Wi-Fi position fix
He et al. A novel radio map construction method to reduce collection effort for indoor localization
CN109633526A (zh) 基于方向函数的非均匀圆阵相位干涉仪测向解模糊方法
Wang et al. A grid-based localization algorithm for wireless sensor networks using connectivity and RSS rank
Han et al. A barycentric coordinate based approach to three-dimensional distributed localization for wireless sensor networks
Prashar et al. Distance error correction based hop localization algorithm for wireless sensor network
Fang et al. Fingerprint localisation algorithm for noisy wireless sensor network based on multi‐objective evolutionary model
WO2017067479A1 (zh) 一种节点定位的方法及设备
Dai et al. Localisation algorithm for large-scale and low-density wireless sensor networks
CN110057355A (zh) 一种室内定位方法、装置、系统及计算设备
Wang et al. Hyperbolic positioning using RIPS measurements for wireless sensor networks
WO2023134430A1 (zh) AoA估计方法、装置、基站、存储介质和计算机程序产品
Prashar et al. A comparison of distributed range free localization algorithms in wireless sensor networks
Zhang et al. Beyond rss: a prr and snr aided localization system for transceiver-free target in sparse wireless networks
Yu et al. Indoor localization algorithm for TDOA measurement in NLOS environments
Shao et al. Novel closed-form auxiliary variables based algorithms for sensor node localization using AOA
Mailaender Bounds for 2-D angle-of-arrival estimation with separate and joint processing
Tian et al. SAPIL: single access point based indoor localisation using Wi‐Fi L‐shaped antenna array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859612

Country of ref document: EP

Kind code of ref document: A1