WO2012111764A1 - Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein - Google Patents

Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein Download PDF

Info

Publication number
WO2012111764A1
WO2012111764A1 PCT/JP2012/053691 JP2012053691W WO2012111764A1 WO 2012111764 A1 WO2012111764 A1 WO 2012111764A1 JP 2012053691 W JP2012053691 W JP 2012053691W WO 2012111764 A1 WO2012111764 A1 WO 2012111764A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
resin composition
formula
epoxy
Prior art date
Application number
PCT/JP2012/053691
Other languages
French (fr)
Japanese (ja)
Inventor
久也 牛山
康裕 福原
古賀 一城
佐野 智雄
三谷 和民
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46672676&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012111764(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CA2827464A priority Critical patent/CA2827464C/en
Priority to CN201280009336.3A priority patent/CN103380161B/en
Priority to US13/985,743 priority patent/US9212295B2/en
Priority to EP12746965.8A priority patent/EP2676984B1/en
Priority to JP2012513380A priority patent/JP5949545B2/en
Publication of WO2012111764A1 publication Critical patent/WO2012111764A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a method for producing a good epoxy resin composition for obtaining fiber-reinforced plastics. A production method for obtaining a fiber-reinforced composite material by impregnating a fiber assembly with an epoxy resin composition and then curing the epoxy resin composition, wherein the epoxy resin composition contains a component [A], a component [B] and a component [C] respectively satisfying the conditions described below. When the blending amount of the component [B] is set to b parts by mass and the blending amount of the component [C] is set to c parts by mass relative to 100 parts by mass of the component [A] contained in the epoxy resin composition, formula (2) is satisfied within the range of formula (1), formula (4) is satisfied within the range of formula (3), and formula (6) is satisfied within the range of formula (5). The epoxy resin composition is blended at a temperature of 60-80˚C (inclusive).

Description

繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物Manufacturing method for obtaining fiber-reinforced composite material, and epoxy resin composition used therefor
本発明は、繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物に関する。本発明は、特に、航空機用構造材料用途をはじめとして、一般産業用途、自動車用途、船舶用途、スポーツ用途、その他用途に好適な繊維強化プラスチック(FRP)を得るための繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物に関するものである。 The present invention relates to a production method for obtaining a fiber-reinforced composite material and an epoxy resin composition used therefor. In particular, the present invention provides a fiber reinforced composite material for obtaining a fiber reinforced plastic (FRP) suitable for general industrial applications, automobile applications, marine applications, sports applications, and other applications, including aircraft structural material applications. The present invention relates to a method and an epoxy resin composition used therefor.
FRPは、軽量で強度、剛性、耐疲労性などの優れた機械特性を有するために、スポーツ用途、航空宇宙用途、一般産業用途等に広く用いられている。特に高性能が要求される用途においては、連続繊維を用いたFRPが用いられ、強化繊維としては炭素繊維が、マトリックス樹脂としては熱硬化性樹脂、特にエポキシ樹脂が多く用いられている。 FRP is lightweight and has excellent mechanical properties such as strength, rigidity, and fatigue resistance, and thus is widely used in sports applications, aerospace applications, general industrial applications, and the like. In applications that require particularly high performance, FRP using continuous fibers is used, carbon fibers are often used as reinforcing fibers, and thermosetting resins, especially epoxy resins, are often used as matrix resins.
FRPを生産する方法として、オートクレーブ成形、真空バッグ成形、フィラメントワインディング成形、プルトリュージョン成形、レジントランスファーモールディング(RTM)などの成形方法が知られており、目的とする成形物の形状や大きさ、生産数などにより適宜選択されている。特に高性能が要求される用途に対しては、強化繊維に未硬化のマトリックス樹脂が含浸されたシート状中間基材であるプリプレグを積層して硬化させるオートクレーブ成形法や真空バッグ成形法が多く用いられている。また、RTMは、繊維強化材としてのプリフォームを型内に装填した後、液状の樹脂を注入、硬化し、FRPを得るものであり、複雑な形状の成形物を容易に、かつ低コストで成形できる利点を持ち、さらには近年の技術開発により高い性能を示すFRPを製造する方法が開発されていることから、近年注目されており、航空機構造部材の成形方法としても適用されつつある。 As methods for producing FRP, there are known molding methods such as autoclave molding, vacuum bag molding, filament winding molding, pultrusion molding, resin transfer molding (RTM), and the shape and size of the target molded product. It is appropriately selected depending on the number of production. For applications that require particularly high performance, autoclave molding methods and vacuum bag molding methods that laminate and cure prepregs, which are sheet-like intermediate base materials in which unreinforced matrix resin is impregnated into reinforcing fibers, are often used. It has been. In addition, RTM is a method in which a preform as a fiber reinforcing material is loaded into a mold, and then a liquid resin is injected and cured to obtain FRP. Thus, a molded product having a complicated shape can be easily obtained at low cost. Since a method for producing FRP having an advantage that it can be molded and also exhibiting high performance by recent technological development has been developed, it has been attracting attention in recent years and is also being applied as a method for molding aircraft structural members.
FRPのマトリックス樹脂としてはエポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、ビニルエステル樹脂などの熱硬化性樹脂やポリプロピレン、メチルメタクリレート、ポリカーボネートなどの熱可塑性樹脂があるが、プリプレグ用やRTM用の樹脂としては熱硬化性樹脂が用いられ、高性能が要求される航空機分野では、耐熱性や靭性など物性に優れたエポキシ樹脂が広く用いられている。 FRP matrix resins include epoxy resins, phenol resins, bismaleimide resins, vinyl ester resins and other thermosetting resins, and polypropylene, methyl methacrylate, polycarbonate and other thermoplastic resins. For prepreg and RTM resins, In the aircraft field where thermosetting resins are used and high performance is required, epoxy resins having excellent physical properties such as heat resistance and toughness are widely used.
上記のプリプレグ用やRTM用のエポキシ樹脂とともに用いる硬化剤としては、脂肪族ポリアミン、芳香族ポリアミン、酸無水物、ルイス酸錯体などが知られている。特に航空機分野で用いるFRPは多くの場合、耐熱性が要求されるため、硬化剤としては芳香族ポリアミンが一般的である。中でもジアミノジフェニルスルホンは硬化後の耐熱性や弾性、靭性、吸湿特性といった物性に優れ、硬化前ではエポキシ樹脂と混合後の保存安定性が高い。そのため、エポキシ樹脂と混合した状態で保存できる、いわゆる1液型のエポキシ樹脂としての取り扱いが可能である。これらの特性により、特に耐熱性が求められる分野で広く用いられている。 As the curing agent used together with the above prepreg or RTM epoxy resin, aliphatic polyamines, aromatic polyamines, acid anhydrides, Lewis acid complexes, and the like are known. In particular, since FRP used in the aircraft field often requires heat resistance, aromatic polyamines are generally used as curing agents. Among these, diaminodiphenyl sulfone is excellent in physical properties such as heat resistance, elasticity, toughness and moisture absorption properties after curing, and has high storage stability after mixing with an epoxy resin before curing. Therefore, it can be handled as a so-called one-pack type epoxy resin that can be stored in a mixed state with an epoxy resin. Due to these characteristics, they are widely used particularly in fields requiring heat resistance.
しかしながら、上記のプリプレグを用いる成形方法やRTMといった成形方法では、ジアミノジフェニルスルホンなどの固体成分を硬化剤として用いて、フィラメント径が小さい強化繊維に樹脂を含浸する際や厚目付けのプリプレグを製造する際、また厚目付のプリフォームに樹脂を含浸する際には固体成分(硬化剤)のみが強化繊維表面に濾し取られるため、局所的な硬化剤の配合比が変わってしまい、硬化物(成形物)の硬化不良や、それに伴う物性低下の他、外観不良を引き起こすことがある。一般に成形されたCFRPはその表面を清掃するために溶剤でふき取ることが多いが、上記のような硬化不良がひどい場合、溶剤でふき取る際にCFRPの樹脂成分が溶解するなどして表面がべたついたり、表面の平滑性が失われるなどの問題が発生する。さらにひどい硬化不良の場合には、成形したCFRPの剛性が不足するため簡単に塑性変形してしまい。形状が安定しない問題が発生する。 However, in the molding method using the above prepreg and the molding method such as RTM, a solid component such as diaminodiphenylsulfone is used as a curing agent, and a reinforcing fiber having a small filament diameter is impregnated with a resin or a thick prepreg is manufactured. At the same time, when impregnating the thick preform with the resin, only the solid component (curing agent) is filtered out on the surface of the reinforcing fiber, so that the local mixing ratio of the curing agent changes, and the cured product (molding) In addition to poor curing of the material) and physical properties associated therewith, it may cause poor appearance. In general, molded CFRP is often wiped off with a solvent to clean the surface. However, when the above-mentioned curing failure is severe, the CFRP resin component dissolves when the solvent is wiped off. Problems such as loss of surface smoothness occur. Furthermore, in the case of severe curing failure, the molded CFRP is insufficiently rigid, so it is easily plastically deformed. The problem that the shape is not stable occurs.
硬化剤として3,3'-ジアミノジフェニルスルホンのみ、または4,4'-ジアミノジフェニルスルホンのみを含んだエポキシ樹脂組成物では120℃前後まで温度が上がらないと、硬化剤がエポキシ樹脂に溶解しない。したがって、これより低い温度、例えば80℃程度でエポキシ樹脂組成物を強化繊維に含浸させる場合には強化繊維のフィラメント径や強化繊維集合体の目付によっては硬化剤の濾別が起こり、FRPの物性の低下が起こってしまう。そのため、硬化剤の濾別を防ぐにはエポキシ樹脂組成物を120℃以上まで温めなければならない。しかしながら、この温度では硬化反応が進行するために製造工程の制御が極めて難しくなる。 In an epoxy resin composition containing only 3,3′-diaminodiphenylsulfone or only 4,4′-diaminodiphenylsulfone as a curing agent, the curing agent does not dissolve in the epoxy resin unless the temperature rises to around 120 ° C. Therefore, when the reinforcing fiber is impregnated with the epoxy resin composition at a temperature lower than this, for example, about 80 ° C., the curing agent may be separated by filtration depending on the filament diameter of the reinforcing fiber or the basis weight of the reinforcing fiber aggregate. Will fall. Therefore, to prevent the curing agent from being filtered off, the epoxy resin composition must be heated to 120 ° C. or higher. However, since the curing reaction proceeds at this temperature, it becomes extremely difficult to control the manufacturing process.
特許文献1には長時間低粘度を保持し、かつ耐熱性と靭性が高く、RTMによる成形時に硬化剤の濾別を低減するエポキシ樹脂組成物が開示されている。特許文献1に記載のエポキシ樹脂組成物を用いればFRP成形時の硬化剤の濾別を低減することが出来る。しかしながら、特許文献1において硬化剤を溶解させるためには、120℃までエポキシ樹脂組成物を加熱する必要があり、この温度では硬化反応が進行し始めてしまう。 Patent Document 1 discloses an epoxy resin composition that maintains a low viscosity for a long time, has high heat resistance and toughness, and reduces the separation of the curing agent during molding by RTM. If the epoxy resin composition of patent document 1 is used, the filtration separation of the hardening | curing agent at the time of FRP shaping | molding can be reduced. However, in order to dissolve the curing agent in Patent Document 1, it is necessary to heat the epoxy resin composition to 120 ° C., and at this temperature, the curing reaction starts to proceed.
 また、一方でRTMによる成形では、硬化剤の濾別を防ぎ、含浸を容易にするために液状の硬化剤を用いることが多い、特に液状の酸無水物硬化剤や液状のアミン型硬化剤が一般的に用いられる。しかしながら、これらの液状硬化剤はエポキシ樹脂との混合後の保存安定性が低いために、エポキシ樹脂と混合すると徐々に反応が進み、粘度の増加が起こる。このため、1液型のエポキシ樹脂としての取り扱いができず、主剤と硬化剤を別々に用意しておき、含浸工程の直前で混合、計量する必要がある(2液型エポキシ樹脂)。また、酸無水物硬化剤は硬化剤が吸湿により変性し、硬化性や硬化物の耐熱性が低下するといった問題や硬化後の吸湿特性に問題がある。液状のアミン型硬化剤では硬化物の耐熱性や剛性、線膨張係数、吸湿特性が上記のジアミノジフェニルスルホンに比べ見劣りする。 On the other hand, in the molding by RTM, a liquid curing agent is often used to prevent filtration of the curing agent and facilitate impregnation. In particular, a liquid acid anhydride curing agent or a liquid amine curing agent is used. Generally used. However, since these liquid curing agents have low storage stability after being mixed with the epoxy resin, when they are mixed with the epoxy resin, the reaction gradually proceeds to increase the viscosity. For this reason, it cannot be handled as a one-pack type epoxy resin, and it is necessary to prepare a main agent and a curing agent separately, and mix and measure immediately before the impregnation step (two-pack type epoxy resin). In addition, the acid anhydride curing agent has a problem that the curing agent is denatured by moisture absorption and the curability and heat resistance of the cured product are lowered, and the moisture absorption property after curing is problematic. A liquid amine-type curing agent is inferior to the above-mentioned diaminodiphenyl sulfone in the heat resistance, rigidity, linear expansion coefficient, and moisture absorption characteristics of the cured product.
 特許文献2には、高耐熱性、および高室温下、高温高湿下で高い弾性率と低い吸水率を有する硬化物を与えるエポキシ樹脂組成物、及びプリプレグ、繊維強化複合材料が開示されている。特許文献2に記載のエポキシ樹脂組成物を使えば、プリプレグを用いた繊維強化複合材料として硬化後の諸物性に優れるが、樹脂組成物の粘度が高い上に、硬化剤として粉体のジアミノジフェニルスルホンを用いているため、RTM成形や厚目付けのプリプレグを製造する際に、硬化剤の濾別による含浸不良が発生してしまうという問題がある。 Patent Document 2 discloses an epoxy resin composition, a prepreg, and a fiber-reinforced composite material that give a cured product having high heat resistance and high elastic modulus and low water absorption at high room temperature, high temperature and high humidity. . If the epoxy resin composition described in Patent Document 2 is used, it is excellent in various physical properties after curing as a fiber-reinforced composite material using a prepreg, but the viscosity of the resin composition is high, and powder diaminodiphenyl is used as a curing agent. Since sulfone is used, there is a problem that impregnation failure occurs due to filtration of the curing agent when producing RTM molding or thick prepreg.
 特許文献3には、硬化剤としてジアミノジフェニルスルホンを用い、オートクレーブを用いなくとも成形性に優れるエポキシ樹脂組成物及びプリプレグ、炭素繊維複合材料が開示されている。また、特許文献3の実施例ではジアミノジフェニルスルホンを溶解して用いる例が記載されており、樹脂含浸時の硬化剤の濾別による含浸不良を防ぐことができると思われる。しかしながら、その樹脂組成物は粘度が高い上に、ジアミノジフェニルスルホンを溶解させるために高温環境下に樹脂を保持する必要がある。このためジアミノジフェニルスルホン溶解時に樹脂が増粘してしまい、結果としてRTM成形や厚目付けのプリプレグを製造する際に、含浸不良が発生してしまうという問題がある。さらにはジアミノジフェニルスルホンを溶解する工程ではジアミノジフェニルスルホンによる硬化反応が始まっているため、樹脂組成物の粘度をコントロールすることが難しく、製造されるプリプレグの品質を一定に保つことが非常に困難だという問題がある。 Patent Document 3 discloses an epoxy resin composition, a prepreg, and a carbon fiber composite material that use diaminodiphenylsulfone as a curing agent and have excellent moldability without using an autoclave. Moreover, in the Example of patent document 3, the example which melt | dissolves and uses diamino diphenyl sulfone is described, and it seems that the impregnation defect by filtration separation of the hardening | curing agent at the time of resin impregnation can be prevented. However, the resin composition has a high viscosity and it is necessary to hold the resin in a high temperature environment in order to dissolve diaminodiphenyl sulfone. For this reason, the resin thickens when diaminodiphenylsulfone is dissolved, and as a result, there is a problem that impregnation failure occurs when RTM molding or thick prepreg is produced. Furthermore, in the process of dissolving diaminodiphenylsulfone, since the curing reaction with diaminodiphenylsulfone has started, it is difficult to control the viscosity of the resin composition, and it is very difficult to maintain the quality of the prepreg produced. There is a problem.
特開2008-169291号公報JP 2008-169291 A 特開2002-363253号公報JP 2002-363253 A 特開2005-105267号公報JP 2005-105267 A
上述したように単一構造のジアミノジフェニルスルホンのみを用いると120℃以上の高温にしないと硬化剤を溶解することは出来ないため、より温和な条件でエポキシ樹脂組成物を強化繊維に含浸させると上述した硬化剤の濾別が起こり、FRPの物性低下を引き起こす。また、120℃以上の高温にすると、硬化剤の溶解過程において硬化反応が進行するために製造工程の制御が極めて難しくなる。 As described above, if only diaminodiphenyl sulfone having a single structure is used, the curing agent cannot be dissolved unless the temperature is raised to 120 ° C. or higher. Therefore, when the epoxy fiber composition is impregnated into the reinforcing fiber under milder conditions. The above-mentioned curing agent is separated by filtration, causing a decrease in physical properties of FRP. On the other hand, when the temperature is higher than 120 ° C., the curing reaction proceeds during the dissolution process of the curing agent, and thus the control of the manufacturing process becomes extremely difficult.
本発明者は、上記課題を解決するため鋭意研究を進めた結果、以下の構成からなる繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物によって課題を解決できることを見出した。よって、本発明の態様は、以下のようである。 As a result of diligent research to solve the above problems, the present inventor has found that the problems can be solved by a production method for obtaining a fiber-reinforced composite material having the following constitution and an epoxy resin composition used therefor. Therefore, the aspects of the present invention are as follows.
 態様(1) 繊維集合体にエポキシ樹脂組成物を含浸させ、硬化させて繊維強化複合材料を得る製造方法であって、
前記エポキシ樹脂組成物は、
エポキシ樹脂組成物に含まれる構成要素[A]100質量部に対して、構成要素[B]の配合量をb質量部、構成要素[C]の配合量をc質量部としたとき、
式(1)の範囲においては式(2)を満たし、
式(3)の範囲においては式(4)を満たし、
式(5)の範囲においては式(6)を満たす前記エポキシ樹脂組成物を60℃以上80℃以下の温度で混合させて以下の条件を満たす構成要素[A]、構成要素[B]および構成要素[C]を含んでなるエポキシ樹脂組成物とすることを含む製造方法、
構成要素[A]:換算分子量aのエポキシ樹脂
構成要素[B]:3,3'-ジアミノジフェニルスルホン
構成要素[C]:4,4'-ジアミノジフェニルスルホン
150<a≦200…(1)
0<b/(b+c)<1…(2)
200<a≦350…(3)
0.002a-0.35≦b/(b+c)≦-0.002a+1.35…(4)
350<a…(5)
0.35≦b/(b+c)≦0.65…(6)
ここで、換算分子量aの定義は下記の通りである。エポキシ樹脂[A]として1種のエポキシ樹脂のみを用いる場合には、用いるエポキシ樹脂のエポキシ当量とエポキシ樹脂1分子中に含まれるエポキシ基数の積を換算分子量aとする。また、エポキシ樹脂[A]として複数種のエポキシ樹脂成分を用いる場合にはエポキシ樹脂成分毎にエポキシ当量とエポキシ樹脂成分1分子中に含まれるエポキシ基数の積をそれぞれ算出し、算出した各々の、エポキシ樹脂成分のエポキシ当量とエポキシ基数の積をエポキシ樹脂[A]を構成する各成分の配合比で加重平均した値を換算分子量aとする。
Aspect (1) A manufacturing method for obtaining a fiber-reinforced composite material by impregnating an epoxy resin composition into a fiber assembly and curing it.
The epoxy resin composition is
When 100 parts by mass of the component [A] contained in the epoxy resin composition is b parts by mass of the component [B] and c parts by mass of the component [C],
In the range of the formula (1), the formula (2) is satisfied,
In the range of the formula (3), the formula (4) is satisfied,
In the range of the formula (5), the epoxy resin composition satisfying the formula (6) is mixed at a temperature of 60 ° C. or higher and 80 ° C. or lower to satisfy the following components [A], [B] and the configuration A production method comprising making an epoxy resin composition comprising the element [C],
Component [A]: Epoxy resin component [B]: 3,3′-diaminodiphenylsulfone component [C]: 4,4′-diaminodiphenylsulfone 150 <a ≦ 200 (1)
0 <b / (b + c) <1 (2)
200 <a ≦ 350 (3)
0.002a−0.35 ≦ b / (b + c) ≦ −0.002a + 1.35 (4)
350 <a (5)
0.35 ≦ b / (b + c) ≦ 0.65 (6)
Here, the definition of the converted molecular weight a is as follows. When only one type of epoxy resin is used as the epoxy resin [A], the product of the epoxy equivalent of the epoxy resin to be used and the number of epoxy groups contained in one molecule of the epoxy resin is defined as a converted molecular weight a. Moreover, when using multiple types of epoxy resin components as the epoxy resin [A], the product of the epoxy equivalent and the number of epoxy groups contained in one molecule of the epoxy resin component is calculated for each epoxy resin component, A value obtained by weighted averaging the product of the epoxy equivalent of the epoxy resin component and the number of epoxy groups by the blending ratio of each component constituting the epoxy resin [A] is defined as a converted molecular weight a.
 態様(2) 前記エポキシ樹脂組成物がさらに、式(7)を満たす態様(1)に記載の繊維強化複合材料を得る製造方法、
15≦(b+c)≦70・・・(7)。
Aspect (2) The method for producing the fiber-reinforced composite material according to aspect (1), wherein the epoxy resin composition further satisfies the formula (7),
15 ≦ (b + c) ≦ 70 (7).
 態様(3) 以下の構成要素[A]、構成要素[B]、および構成要素[C]を含んでなるエポキシ樹脂組成物であって、該エポキシ樹脂組成物に含まれる構成要素[A]100質量部に対して、構成要素[B]の配合量をb質量部、構成要素[C]の配合量をc質量部としたとき、
式(8)の範囲においては式(9)を満たし、
式(10)の範囲においては式(11)を満たし、
式(12)の範囲においては式(13)を満たすことを特徴とするエポキシ樹脂組成物、
構成要素[A]:換算分子量aのエポキシ樹脂
構成要素[B]:3,3'-ジアミノジフェニルスルホン
構成要素[C]:4,4'-ジアミノジフェニルスルホン
150<a≦200…(8)
0<b/(b+c)<1…(9)
200<a≦350…(10)
0.002a-0.35≦b/(b+c)≦-0.002a+1.35…(11)
350<a…(12)
0.35≦b/(b+c)≦0.65…(13)
ここで、換算分子量aの定義は下記の通りである。エポキシ樹脂[A]として1種のエポキシ樹脂のみを用いる場合には、用いるエポキシ樹脂のエポキシ当量とエポキシ樹脂1分子中に含まれるエポキシ基数の積を換算分子量aとする。また、エポキシ樹脂[A]として複数種のエポキシ樹脂成分を用いる場合にはエポキシ樹脂成分毎にエポキシ当量とエポキシ樹脂成分1分子中に含まれるエポキシ基数の積をそれぞれ算出し、算出した各々の、エポキシ樹脂成分のエポキシ当量とエポキシ基数の積をエポキシ樹脂[A]を構成する各成分の配合比で加重平均した値を換算分子量aとする。
Aspect (3) An epoxy resin composition comprising the following component [A], component [B], and component [C], the component [A] 100 included in the epoxy resin composition When the blending amount of the component [B] is b parts by mass and the blending amount of the component [C] is c parts by mass with respect to parts by mass,
In the range of the formula (8), the formula (9) is satisfied,
In the range of the formula (10), the formula (11) is satisfied,
In the range of the formula (12), an epoxy resin composition characterized by satisfying the formula (13),
Component [A]: Epoxy resin component [B]: 3,3′-diaminodiphenylsulfone component [C]: 4,4′-diaminodiphenylsulfone 150 <a ≦ 200 (8)
0 <b / (b + c) <1 (9)
200 <a ≦ 350 (10)
0.002a−0.35 ≦ b / (b + c) ≦ −0.002a + 1.35 (11)
350 <a (12)
0.35 ≦ b / (b + c) ≦ 0.65 (13)
Here, the definition of the converted molecular weight a is as follows. When only one type of epoxy resin is used as the epoxy resin [A], the product of the epoxy equivalent of the epoxy resin to be used and the number of epoxy groups contained in one molecule of the epoxy resin is defined as a converted molecular weight a. Moreover, when using multiple types of epoxy resin components as the epoxy resin [A], the product of the epoxy equivalent and the number of epoxy groups contained in one molecule of the epoxy resin component is calculated for each epoxy resin component, A value obtained by weighted averaging the product of the epoxy equivalent of the epoxy resin component and the number of epoxy groups by the blending ratio of each component constituting the epoxy resin [A] is defined as a converted molecular weight a.
 態様(4) さらに、式(14)の範囲においては式(15)を満たし、
式(16)の範囲においては式(17)を満たし、
式(18)の範囲においては式(19)を満たすことを特徴とする態様(3)に記載のエポキシ樹脂組成物、
150<a≦190…(14)
0.1≦b/(b+c)≦0.9…(15)
190<a≦365…(16)
0.0020a-0.28≦b/(b+c)≦-0.0017a+1.23…(17)
365<a…(18)
0.45≦b/(b+c)≦0.60…(19)。
Aspect (4) Further, in the range of the formula (14), the formula (15) is satisfied,
In the range of the equation (16), the equation (17) is satisfied,
In the range of the formula (18), the epoxy resin composition according to the aspect (3), which satisfies the formula (19),
150 <a ≦ 190 (14)
0.1 ≦ b / (b + c) ≦ 0.9 (15)
190 <a ≦ 365 (16)
0.0020a−0.28 ≦ b / (b + c) ≦ −0.0017a + 1.23 (17)
365 <a (18)
0.45 ≦ b / (b + c) ≦ 0.60 (19).
 態様(5) さらに、式(20)を満たすことを特徴とする態様(3)または(4)のいずれか一つに記載のエポキシ樹脂組成物、
150<a<800・・・(20)。
Aspect (5) Furthermore, the epoxy resin composition according to any one of aspects (3) or (4), characterized by satisfying formula (20),
150 <a <800 (20).
 態様(6) さらに、式(21)、(22)を満たすことを特徴とする態様(3)~(5)のいずれか一つに記載のエポキシ樹脂組成物、
150≦a≦357・・・(21)
0.00169a-0.103≦b/(b+c)≦-0.0019a+1.19・・・(22)。
Aspect (6) The epoxy resin composition according to any one of aspects (3) to (5), further satisfying the formulas (21) and (22):
150 ≦ a ≦ 357 (21)
0.00169a−0.103 ≦ b / (b + c) ≦ −0.0019a + 1.19 (22).
 態様(7) さらに、式(23)、(24)を満たすことを特徴とする態様(3)~(6)のいずれか一つに記載のエポキシ樹脂組成物、
150≦a≦300・・・(23)
0.00169a-0.103≦b/(b+c)≦-0.0010a+0.90・・・(24)。
Aspect (7) The epoxy resin composition according to any one of aspects (3) to (6), further satisfying the formulas (23) and (24):
150 ≦ a ≦ 300 (23)
0.00169a−0.103 ≦ b / (b + c) ≦ −0.0010a + 0.90 (24).
 態様(8) さらに、式(25)を満たすことを特徴とする態様(3)~(7)のいずれか一つに記載のエポキシ樹脂組成物、
15≦(b+c)≦70・・・(25)。
Aspect (8) Furthermore, the epoxy resin composition according to any one of aspects (3) to (7), characterized by satisfying formula (25),
15 ≦ (b + c) ≦ 70 (25).
本発明の繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物によれば、低温でエポキシ樹脂にジアミノジフェニルスルホンを溶解することが出来、FRPの成形時に硬化剤の濾別を低減出来るため、硬化不良による物性低下などの諸問題を抑制することができる。 According to the production method for obtaining the fiber-reinforced composite material of the present invention and the epoxy resin composition used therefor, diaminodiphenyl sulfone can be dissolved in the epoxy resin at a low temperature, and filtration of the curing agent can be reduced at the time of FRP molding. Therefore, various problems such as deterioration of physical properties due to poor curing can be suppressed.
図1は、本発明の一態様に係る成形の様子を示す図である。FIG. 1 is a diagram illustrating a state of molding according to an aspect of the present invention. 図2は、本発明の一態様に係る成形における時間に対する温度および圧力のプロファイルを示す図である。FIG. 2 is a diagram illustrating a temperature and pressure profile with respect to time in molding according to an aspect of the present invention.
本発明の繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物について、以下に本発明の好ましい実施の形態を説明するが、本発明はこれらの形態のみに限定されるものではない。 Preferred embodiments of the present invention will be described below with respect to the production method for obtaining the fiber-reinforced composite material of the present invention and the epoxy resin composition used therefor, but the present invention is not limited only to these embodiments.
[エポキシ樹脂組成物]
<エポキシ樹脂[A]>
エポキシ樹脂[A]は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂など各エポキシ樹脂メーカーから様々な商品が市販されている。例えば、セロキサイド(商標)3000(ダイセル化学工業(株)製)、GAN(日本化薬(株)製)、jER630(三菱化学(株)製)、HP4032(DIC(株)製)、セロキサイド(商標)2081(ダイセル化学工業(株)製)、jER828(三菱化学(株)製)、jER807(三菱化学(株)製)、jER152(三菱化学(株)製)、jER604(三菱化学(株)製)、MY-0500(ハンツマン(株)製)、MY-0600(ハンツマン(株)製)、TETRAD-X(三菱瓦斯化学(株)製)、SR-HHPA(阪本薬品工業(株)製)、EXA-4580-1000(DIC(株)製)、EX-201(ナガセケムテックス(株)製)、1500NP(共栄社化学(株)製)などを例示することが出来るが、これらに限定されるものではない。また、前記エポキシ樹脂は1種単独で用いても、2種以上を併用してもよい。
[Epoxy resin composition]
<Epoxy resin [A]>
As the epoxy resin [A], various products such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, and alicyclic epoxy resin are commercially available. For example, Celoxide (trademark) 3000 (manufactured by Daicel Chemical Industries, Ltd.), GAN (manufactured by Nippon Kayaku Co., Ltd.), jER630 (manufactured by Mitsubishi Chemical Corporation), HP4032 (manufactured by DIC Corporation), Celoxide (trademark) ) 2081 (manufactured by Daicel Chemical Industries, Ltd.), jER828 (manufactured by Mitsubishi Chemical Corporation), jER807 (manufactured by Mitsubishi Chemical Corporation), jER152 (manufactured by Mitsubishi Chemical Corporation), jER604 (manufactured by Mitsubishi Chemical Corporation) ), MY-0500 (manufactured by Huntsman), MY-0600 (manufactured by Huntsman), TETRAD-X (manufactured by Mitsubishi Gas Chemical), SR-HHPA (manufactured by Sakamoto Pharmaceutical Co., Ltd.), Examples include EXA-4580-1000 (manufactured by DIC Corporation), EX-201 (manufactured by Nagase ChemteX Corporation), 1500NP (manufactured by Kyoeisha Chemical Co., Ltd.), etc. The present invention is not limited to these. Moreover, the said epoxy resin may be used individually by 1 type, or may use 2 or more types together.
<3,3'-ジアミノジフェニルスルホン[B]>
本発明で用いられる3,3'-ジアミノジフェニルスルホン[B]は、硬化剤として使用される。3,3'-ジアミノジフェニルスルホン[B]のD90は、30μm以下が好ましく、10μm以下がより好ましい。3,3'-ジアミノジフェニルスルホン[B]のD90が小さいほど、3,3'-ジアミノジフェニルスルホン[B]をエポキシ樹脂[A]に溶解する際の作業時間を短縮できるので好ましい。なお、上述したD90の定義は下記の通りとする。
D90:硬化剤の粒子径分布が粒子径の小さいものから体積で積算して全粒子の90%となるときの粒子径
<3,3′-Diaminodiphenylsulfone [B]>
3,3′-Diaminodiphenylsulfone [B] used in the present invention is used as a curing agent. D90 of 3,3′-diaminodiphenylsulfone [B] is preferably 30 μm or less, and more preferably 10 μm or less. The smaller D90 of 3,3′-diaminodiphenylsulfone [B] is preferable because the working time for dissolving 3,3′-diaminodiphenylsulfone [B] in epoxy resin [A] can be shortened. The definition of D90 described above is as follows.
D90: Particle size when the particle size distribution of the curing agent is 90% of all particles when the particle size is integrated from the smallest particle size.
<4,4'-ジアミノジフェニルスルホン[C]>
本発明で用いられる4,4'-ジアミノジフェニルスルホン[C]は、硬化剤として使用される。4,4'-ジアミノジフェニルスルホン[C]のD90は、30μm以下が好ましく、10μm以下がより好ましい。4,4'-ジアミノジフェニルスルホン[C]のD90が小さいほど、4,4'-ジアミノジフェニルスルホン[C]をエポキシ樹脂[A]に溶解する際の作業時間を短縮できるので好ましい。なお、上述したD90の定義は下記の通りとする。
D90:硬化剤の粒子径分布が粒子径の小さいものから体積で積算して全粒子の90%となるときの粒子径
<4,4′-Diaminodiphenylsulfone [C]>
4,4′-Diaminodiphenyl sulfone [C] used in the present invention is used as a curing agent. D90 of 4,4′-diaminodiphenylsulfone [C] is preferably 30 μm or less, and more preferably 10 μm or less. The smaller D90 of 4,4′-diaminodiphenylsulfone [C] is preferable because the working time for dissolving 4,4′-diaminodiphenylsulfone [C] in epoxy resin [A] can be shortened. The definition of D90 described above is as follows.
D90: Particle size when the particle size distribution of the curing agent is 90% of all particles when the particle size is integrated from the smallest particle size.
なお、ジアミノジフェニルスルホンの配合量は、エポキシ樹脂[A]100質量部に対して、3,3'-ジアミノジフェニルスルホン[B]と4,4'-ジアミノジフェニルスルホン[C]を合計した量(b+c)が15~70質量部であることが好ましい。15質量部未満の場合は、エポキシ樹脂組成物を加熱しても硬化しない、硬化不良のため硬化物の剛性不足が発生する、硬化不良のため溶剤により樹脂成分が溶解するなどして硬化物の表面がべたつく、硬化物の耐熱性が低く脆い、といった諸問題が発生することがある。一方(b+c)が70質量部を超える場合、組成物中に含まれる粉体成分の比率が多くなるため、エポキシ樹脂[A]に3,3'-ジアミノジフェニルスルホン[B]と4,4'-ジアミノジフェニルスルホン[C]を混錬することが難しくなる。あわせて、エポキシ樹脂組成物を加熱しても硬化しない、硬化不良のため硬化物の剛性不足が発生する、硬化不良のため溶剤により樹脂成分が溶解するなどして硬化物の表面がべたつく、硬化物の耐熱性が低く脆い、といった諸問題が発生する場合がある。 The blending amount of diaminodiphenylsulfone is the total amount of 3,3′-diaminodiphenylsulfone [B] and 4,4′-diaminodiphenylsulfone [C] with respect to 100 parts by mass of epoxy resin [A] ( b + c) is preferably 15 to 70 parts by mass. In the case of less than 15 parts by mass, the epoxy resin composition does not cure even when heated, the cured product has insufficient rigidity due to poor curing, the resin component dissolves in the solvent due to poor curing, etc. Various problems such as stickiness of the surface and low heat resistance of the cured product may occur. On the other hand, when (b + c) exceeds 70 parts by mass, the proportion of the powder component contained in the composition increases, so that 3,3′-diaminodiphenylsulfone [B] and 4,4 ′ are added to the epoxy resin [A]. -It becomes difficult to knead diaminodiphenyl sulfone [C]. In addition, the epoxy resin composition does not cure even when heated, the cured product has insufficient rigidity due to poor curing, the resin component dissolves in the solvent due to poor curing, etc. Problems such as low heat resistance and brittleness may occur.
モル比としては、エポキシ樹脂[A]のエポキシ基1molに対して、3,3'-ジアミノジフェニルスルホン[B]と4,4'-ジアミノジフェニルスルホン[C]を合計したアミノ基由来の活性水素量が0.4mol~1.5molが好ましく、0.8mol~1.2molがより好ましい。活性水素量が0.4mol未満であったり、1.5molを超えたりすると、エポキシ樹脂組成物を硬化させて得られる硬化物の耐熱性や靭性が著しく低下する恐れがある。 As the molar ratio, active hydrogen derived from amino groups in which 3,3′-diaminodiphenylsulfone [B] and 4,4′-diaminodiphenylsulfone [C] are added to 1 mol of epoxy group of epoxy resin [A]. The amount is preferably 0.4 mol to 1.5 mol, more preferably 0.8 mol to 1.2 mol. If the amount of active hydrogen is less than 0.4 mol or exceeds 1.5 mol, the heat resistance and toughness of the cured product obtained by curing the epoxy resin composition may be significantly reduced.
エポキシ樹脂[A]および3,3'-ジアミノジフェニルスルホン[B]、4,4'-ジアミノジフェニルスルホン[C]はそれぞれ、態様(3)に記載の要件を満たすことが好ましい。態様(3)に記載の要件を満たすことで、単一構造のジアミノジフェニルスルホンが溶解する温度(120℃程度)よりも、より温和な条件(例えば80℃環境下で1時間暴露)で硬化剤をエポキシ樹脂[A]に溶解させることが出来る。また、エポキシ樹脂[A]および3,3'-ジアミノジフェニルスルホン[B]、4,4'-ジアミノジフェニルスルホン[C]はそれぞれ、態様(4)に記載の要件を満たすことがさらに好ましい。態様(4)に記載の要件を満たすことで、態様(3)に記載のエポキシ樹脂組成物中の硬化剤を溶解させるよりも、さらに温和な条件(例えば70℃環境下で2時間暴露)で硬化剤をエポキシ樹脂[A]に溶解させることが出来る。
 さらにはエポキシ樹脂[A]換算分子量aは態様(5)に記載の要件を満たすことがさらに好ましい。換算分子量aが150を下回る場合、エポキシ樹脂の主骨格を構成する原子数を多くできない。そのため、硬化後の架橋構造において十分な剛性や耐熱性、靭性を持たせることが困難である。一方、換算分子量aが800を超える場合、樹脂組成物の粘度が高くなりすぎるため、ジアミノジフェニルスルホンを混合することが困難になってしまう。
 さらにはエポキシ樹脂[A]および3,3'-ジアミノジフェニルスルホン[B]、4,4'-ジアミノジフェニルスルホン[C]はそれぞれ、態様(6)に記載の要件を満たすことがさらに好ましい。態様(6)に記載の要件を満たすことで、態様(3)~(5)に記載のエポキシ樹脂組成物中の硬化剤を溶解させるよりも、さらに温和な条件(例えば65℃環境下で1時間暴露)で硬化剤をエポキシ樹脂[A]に溶解させることが出来るので好ましい。
 ただし、液状の芳香族ジアミンと構成要素[B]と構成要素[C]を組み合わせて用いる場合には、液状の芳香族ジアミンから構成要素[B]と構成要素[C]が析出しないようにするため、構成要素[B]と構成要素[C]の配合量を少なくする必要があり、硬化後の耐熱性や弾性、靭性、吸湿特性といった物性の改善効果は限定されたり、1液型エポキシ樹脂としての取り扱いができなかったりするので、好ましくない。
The epoxy resin [A] and 3,3′-diaminodiphenylsulfone [B] and 4,4′-diaminodiphenylsulfone [C] preferably each satisfy the requirements described in the embodiment (3). By satisfying the requirements described in the aspect (3), the curing agent under a milder condition (for example, 1 hour exposure in an environment at 80 ° C.) than the temperature (about 120 ° C.) at which the diaminodiphenyl sulfone having a single structure is dissolved. Can be dissolved in the epoxy resin [A]. Further, it is more preferable that the epoxy resin [A] and 3,3′-diaminodiphenylsulfone [B] and 4,4′-diaminodiphenylsulfone [C] each satisfy the requirements described in the embodiment (4). By satisfying the requirements described in the aspect (4), the conditions are milder than the curing agent in the epoxy resin composition described in the aspect (3) is dissolved (for example, exposure at 70 ° C. for 2 hours). The curing agent can be dissolved in the epoxy resin [A].
Furthermore, it is more preferable that the epoxy resin [A] equivalent molecular weight a satisfies the requirements described in the embodiment (5). When the converted molecular weight a is less than 150, the number of atoms constituting the main skeleton of the epoxy resin cannot be increased. Therefore, it is difficult to give sufficient rigidity, heat resistance, and toughness in the crosslinked structure after curing. On the other hand, when the converted molecular weight a exceeds 800, the viscosity of the resin composition becomes too high, so that it is difficult to mix diaminodiphenylsulfone.
Furthermore, it is more preferable that the epoxy resin [A] and 3,3′-diaminodiphenylsulfone [B] and 4,4′-diaminodiphenylsulfone [C] each satisfy the requirements described in the embodiment (6). By satisfying the requirements described in the embodiment (6), the conditions (3) to (5) are more mild than the curing agent in the epoxy resin composition described in the embodiments (3) to (5). This is preferable because the curing agent can be dissolved in the epoxy resin [A] by time exposure.
However, when the liquid aromatic diamine, the constituent element [B], and the constituent element [C] are used in combination, the constituent element [B] and the constituent element [C] are not precipitated from the liquid aromatic diamine. Therefore, it is necessary to reduce the blending amount of the component [B] and the component [C], and the effect of improving physical properties such as heat resistance, elasticity, toughness, moisture absorption characteristics after curing is limited, or one-pack type epoxy resin It is not preferable because it cannot be handled.
本発明に用いるエポキシ樹脂組成物は、必要に応じて種々の添加剤を含むことができる。例えば、反応性を向上させるための硬化促進剤や、流動性コントロールのための熱可塑性樹脂、エポキシ樹脂組成物に靭性を付与するためのゴム粒子、エポキシ樹脂組成物の揺変性付与や剛性向上のための無機粒子、強化繊維との濡れ性向上のための界面活性剤などを挙げることができるが、これらに限定されるものではない。 The epoxy resin composition used for this invention can contain a various additive as needed. For example, a curing accelerator for improving reactivity, a thermoplastic resin for fluidity control, rubber particles for imparting toughness to the epoxy resin composition, imparting thixotropic properties to the epoxy resin composition and improving rigidity Examples of the inorganic particles include surfactants for improving wettability with reinforcing fibers, but are not limited thereto.
硬化促進剤の好ましい例としてはイミダゾール化合物、フェニルジメチルウレア(PDMU)などのウレア化合物、三フッ化モノエチルアミン、三塩化ホウ素アミン錯体などのアミン錯体が挙げられる。 Preferable examples of the curing accelerator include urea compounds such as imidazole compounds and phenyldimethylurea (PDMU), and amine complexes such as monoethylamine trifluoride and boron trichloride amine complexes.
熱可塑性樹脂の好ましい例としては、ポリアクリレート、ポリアミド、ポリアラミド、ポリエステル、ポリカーボネート、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリイミド、ポリエーテルイミド、ポリスルホンおよびポリエーテルスルホンが挙げられる。これらの熱可塑性樹脂は、エポキシ樹脂組成物中に溶解した状態で配合されてもよく、微粒子、長繊維、短繊維、織物、不織布、メッシュ、パルプなどの形状でプリプレグやプリフォームの表層に配置されてもよい。また、熱可塑性樹脂は、単独で用いても、2種以上を併用してもよい。 Preferable examples of the thermoplastic resin include polyacrylate, polyamide, polyaramid, polyester, polycarbonate, polyphenylene sulfide, polybenzimidazole, polyimide, polyetherimide, polysulfone and polyethersulfone. These thermoplastic resins may be blended in the state of being dissolved in the epoxy resin composition and arranged on the surface layer of the prepreg or preform in the form of fine particles, long fibers, short fibers, woven fabric, nonwoven fabric, mesh, pulp, etc. May be. Moreover, a thermoplastic resin may be used independently or may use 2 or more types together.
ゴム粒子としては、架橋ゴム粒子、及び架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。ゴムの種類は制限されず、例えばブタジエンゴム、アクリルゴム、シリコンゴム、ブチルゴム、NBR,SBRなどが用いられる。 As the rubber particles, cross-linked rubber particles and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like. The type of rubber is not limited, and for example, butadiene rubber, acrylic rubber, silicon rubber, butyl rubber, NBR, SBR, or the like is used.
架橋ゴム粒子の好ましい例としては、YR-500シリーズ(東都化成(株)製)等が挙げられる。架橋ゴム粒子は、エポキシ樹脂組成物の調製時に他の成分と共に混合してもよいが、架橋ゴム粒子が予めエポキシ樹脂[A]に分散されたマスターバッチ型の架橋ゴム粒子分散エポキシ樹脂を用いると、エポキシ樹脂組成物の調製時間を短縮することが出来るので好ましい。このようなマスターバッチ型の架橋ゴム粒子分散エポキシ樹脂としては、BPF307あるいはBPA328(日本触媒(株)製)、ブタジエンゴムを含有したMX-156あるいはシリコンゴムを含有したMX-960(カネカ(株)製)などが挙げられる。 Preferable examples of the crosslinked rubber particles include YR-500 series (manufactured by Toto Kasei Co., Ltd.). The crosslinked rubber particles may be mixed together with other components at the time of preparing the epoxy resin composition, but when a masterbatch type crosslinked rubber particle-dispersed epoxy resin in which the crosslinked rubber particles are dispersed in the epoxy resin [A] is used. Since the preparation time of an epoxy resin composition can be shortened, it is preferable. Examples of such a masterbatch type crosslinked rubber particle-dispersed epoxy resin include BPF307 or BPA328 (manufactured by Nippon Shokubai Co., Ltd.), MX-156 containing butadiene rubber or MX-960 containing Kaneka (Kaneka Corporation). Manufactured).
コアシェルゴム粒子の好ましい例としては、アクリル系ゴムを使用したW-5500あるいはJ-5800(三菱レイヨン(株)製)、シリコーン・アクリル複合ゴムを使用したSRK-200E(三菱レイヨン(株)製)、ブタジエン・メタクリル酸アルキル・スチレン共重合物からなるパラロイド(商標)EXL-2655(呉羽化学工業(株)製)、アクリル酸エステル・メタクリル酸エステル共重合体からなるスタフィロイド(商標)AC-3355、TR-2122(武田薬品工業(株)製)、アクリル酸ブチル・メタクリル酸メチル共重合物からなるPARALOID EXL-2611あるいはEXL-3387(Rohm&Haas社製)等を挙げることができる。 Preferred examples of the core-shell rubber particles include W-5500 or J-5800 (Mitsubishi Rayon Co., Ltd.) using acrylic rubber, and SRK-200E (Mitsubishi Rayon Co., Ltd.) using silicone / acrylic composite rubber. Paraloid (trademark) EXL-2655 (made by Kureha Chemical Co., Ltd.) made of butadiene / alkyl methacrylate / styrene copolymer, Staphyloid (trademark) AC-3355 made of acrylic acid ester / methacrylic acid ester copolymer TR-2122 (manufactured by Takeda Pharmaceutical Co., Ltd.), PARALOID EXL-2611 or EXL-3387 (manufactured by Rohm & Haas) made of butyl acrylate / methyl methacrylate copolymer, and the like.
無機粒子の好ましい例としては、カーボンブラック、シリカ、水酸化アルミニウム、スメクタイト、酸化マグネシウム、タルク、合成マイカ、炭酸カルシウム、スチール等を挙げることができる。 Preferred examples of the inorganic particles include carbon black, silica, aluminum hydroxide, smectite, magnesium oxide, talc, synthetic mica, calcium carbonate, steel and the like.
濡れ性向上のための界面活性剤の好ましい例としては、BYK-A530(ビックケミー・ジャパン(株)製)等を挙げることが出来る。 Preferred examples of the surfactant for improving the wettability include BYK-A530 (manufactured by Big Chemie Japan Co., Ltd.).
[エポキシ樹脂組成物の用途]
本発明のエポキシ樹脂組成物は、硬化剤の強化繊維表面への濾別を低減し、硬化不良によるFRPの物性の低下を抑制することが出来るため、プリプレグを用いた成形およびRTMに用いた際の生産性が高い。なお、エポキシ樹脂組成物の用途はこれに限らず、例えば電子材料用封止材、塗料、接着剤など広範囲の用途に使用できる。
[Use of epoxy resin composition]
When the epoxy resin composition of the present invention is used for molding and RTM using a prepreg because it can reduce the filtration of the curing agent to the surface of the reinforcing fiber and suppress the decrease in physical properties of the FRP due to poor curing. High productivity. In addition, the use of an epoxy resin composition is not restricted to this, For example, it can be used for a wide range of uses, such as a sealing material for electronic materials, a coating material, and an adhesive agent.
[繊維強化複合材料を得る製造方法]
本発明では硬化後の物性に優れるジアミノジフェニルスルホンを強化繊維に樹脂組成物を含浸させる際の硬化剤の濾別や増粘による含浸不良を起こすことなく成形できるため、強化繊維と樹脂組成物を組み合わせる任意の製造方法を用いることができる。特にRTM、VaRTM、レジンインフュージョンなどのインフュージョン成形や厚目付けのプリプレグを用いた成形において硬化剤の濾別や増粘による含浸不良が問題になりやすく、本発明を適用した際に効果が大きい。
本発明に係る繊維強化複合材料を得る製造方法は、例えば、上記態様(1)に従って、繊維集合体にエポキシ樹脂組成物を含浸させ、硬化させて繊維強化複合材料を得るが、この場合、上記の様に、エポキシ樹脂組成物を60℃以上80℃以下の温度で混合させて態様(1)に記載の条件を満たす構成要素[A]、構成要素[B]および構成要素[C]を含んでなるエポキシ樹脂組成物を繊維集合体に含浸させ、硬化させることが必要である。
60℃以上80℃以下の温度での混合は、エポキシ樹脂組成物を攪拌し、構成要素[A]中に構成要素[B]および構成要素[C]を分散させた後に実施してもよい。60℃以上80℃以下の温度での混合を、エポキシ樹脂組成物を攪拌しながら行うと、構成要素[B]および構成要素[C]の溶解時間を短くできるためより好ましい。構成要素[B]および構成要素[C]の分散と60℃以上80℃以下の温度での混合を同時に行うことも製造時間の短縮の観点から好ましい。攪拌装置としては任意の方法が用いられるが、特に3本ロール、ニーダー、プラネタリーミキサー、自転・公転式ミキサーなど樹脂組成物に剪断力を加えることができる装置を用いると構成要素[B]および構成要素[C]の分散や溶解の時間を短縮させることができるため好ましい。
この方法により、構成要素[A]に溶解された構成要素[B]および構成要素[C]が強化繊維集合体中の強化繊維の表面で濾し取られることがないので、局所的な硬化剤の配合比が変わってしまうことが無いので、硬化物(成形物)の物性低下や外観不良を引き起こすことがない。
[Production method for obtaining fiber-reinforced composite material]
In the present invention, diaminodiphenyl sulfone having excellent physical properties after curing can be molded without causing poor impregnation due to filtration or thickening of the curing agent when the reinforcing fiber is impregnated with the resin composition. Any manufacturing method in combination can be used. In particular, in infusion molding such as RTM, VaRTM, and resin infusion, and molding using thick prepreg, impregnation failure due to separation of the curing agent and thickening tends to be a problem, and the effect is great when the present invention is applied. .
In the production method for obtaining the fiber reinforced composite material according to the present invention, for example, according to the above aspect (1), the fiber aggregate is impregnated with the epoxy resin composition and cured to obtain the fiber reinforced composite material. As described above, the component [A], the component [B], and the component [C] satisfying the conditions described in the embodiment (1) are mixed by mixing the epoxy resin composition at a temperature of 60 ° C. or higher and 80 ° C. or lower. It is necessary to impregnate the fiber assembly with an epoxy resin composition comprising:
Mixing at a temperature of 60 ° C. or more and 80 ° C. or less may be performed after the epoxy resin composition is stirred and the component [B] and the component [C] are dispersed in the component [A]. When mixing at a temperature of 60 ° C. or higher and 80 ° C. or lower is performed while stirring the epoxy resin composition, the dissolution time of the component [B] and the component [C] can be shortened, which is more preferable. It is also preferable from the viewpoint of shortening the manufacturing time to simultaneously perform the dispersion of the constituent element [B] and the constituent element [C] and the mixing at a temperature of 60 ° C. or higher and 80 ° C. or lower. Any method can be used as a stirring device, and in particular, when a device capable of applying a shearing force to a resin composition, such as a three-roll, kneader, planetary mixer, rotation / revolution mixer, is used, the component [B] and The dispersion and dissolution time of the component [C] can be shortened, which is preferable.
By this method, the component [B] and the component [C] dissolved in the component [A] are not filtered off on the surface of the reinforcing fiber in the reinforcing fiber assembly. Since the blending ratio does not change, the physical properties of the cured product (molded product) are not deteriorated and the appearance is not deteriorated.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
[エポキシ樹脂組成物の調製]
本発明のエポキシ樹脂組成物は、態様(1)または(3)に記載の各成分([A]~[C])を容器に計量し、ハイブリッドミキサーHM-500(KEYENCE(株)製)を用いて撹拌を5分、脱泡を1分30秒行うことによって調製した。
[Preparation of epoxy resin composition]
In the epoxy resin composition of the present invention, each component ([A] to [C]) described in the embodiment (1) or (3) is weighed in a container, and a hybrid mixer HM-500 (manufactured by KEYENCE Inc.) is used. And prepared by stirring for 5 minutes and defoaming for 1 minute 30 seconds.
[ジアミノジフェニルスルホンの溶解度合いの評価]
ジアミノジフェニルスルホンの溶解度合いを判断するため、目視での評価を行った。上述の方法により調製したエポキシ樹脂組成物を容器に入れたまま、下記に示す条件1または条件2の環境下でそれぞれ暴露した。条件1~3の環境下でそれぞれ暴露した後にエポキシ樹脂組成物のジアミノジフェニルスルホンの溶解度合いを確認し、○、△、×の記号を付けて評価した。なお、それぞれの記号の意味は以下に示す通りである。
条件1:室湿度下で80℃に設定した高温恒温器HISPEC HT310S(楠本化成(株)製)内で1時間暴露した。
条件2:室湿度下で70℃に設定した高温恒温器HISPEC HT310S(楠本化成(株)製)内で2時間暴露した。
条件3:室湿度下で65℃に設定した高温恒温器HISPEC HT310S(楠本化成(株)製)内で1時間暴露した。
○:上記条件の暴露後にエポキシ樹脂組成物が透明になり、硬化剤が完全に溶解していることを示す。
△:上記条件の暴露後にエポキシ樹脂組成物が濁っており、硬化剤の溶解は見られるが、溶け残りがあることを示す。
×:上記条件の暴露前と暴露後でエポキシ樹脂組成物の外観に大きな変化が見られず、多くの硬化剤が溶け残っていることを示す。
[Evaluation of solubility of diaminodiphenylsulfone]
Visual evaluation was performed in order to judge the solubility of diaminodiphenylsulfone. The epoxy resin composition prepared by the above-described method was exposed in the environment of Condition 1 or Condition 2 shown below while being put in the container. After each exposure in an environment of conditions 1 to 3, the solubility of diaminodiphenylsulfone in the epoxy resin composition was confirmed, and evaluations were made with symbols O, Δ, and X. The meaning of each symbol is as follows.
Condition 1: Exposure was performed for 1 hour in a high-temperature thermostatic chamber HISPEC HT310S (manufactured by Enomoto Kasei Co., Ltd.) set at 80 ° C. under room humidity.
Condition 2: Exposure was performed for 2 hours in a high-temperature thermostatic chamber HISPEC HT310S (manufactured by Enomoto Kasei Co., Ltd.) set at 70 ° C. under room humidity.
Condition 3: It was exposed for 1 hour in a high-temperature thermostatic chamber HISPEC HT310S (manufactured by Enomoto Kasei Co., Ltd.) set at 65 ° C. under room humidity.
A: The epoxy resin composition becomes transparent after exposure under the above conditions, and indicates that the curing agent is completely dissolved.
(Triangle | delta): The epoxy resin composition is cloudy after exposure of the said conditions, and melt | dissolution of a hardening | curing agent is seen, but it shows that there exists undissolved.
X: It shows that a big change was not seen in the external appearance of the epoxy resin composition before and after exposure of the said conditions, and many hardening | curing agents remained undissolved.
実施例1~35
上記のようにして、表1、2に示す原料組成(部は質量部を示す)からなるエポキシ樹脂組成物を調製し、次いで目視によって硬化剤の溶解の度合いを評価した。エポキシ樹脂組成物の含有成分(部は質量部を示す)の評価結果を表1、2に示した。
Examples 1 to 35
The epoxy resin composition which consists of a raw material composition (part shows a mass part) shown in Table 1, 2 as mentioned above was prepared, and then the degree of melt | dissolution of a hardening | curing agent was evaluated by visual observation. The evaluation results of the components contained in the epoxy resin composition (parts indicate parts by mass) are shown in Tables 1 and 2.
比較例1~21
表3に示す原料組成(部は質量部を示す)からなるエポキシ樹脂組成物を調製した点を除いて、実施例1と同様に目視により硬化剤の溶解の度合いを評価した結果を表3に示す。
Comparative Examples 1 to 21
Table 3 shows the results of evaluating the degree of dissolution of the curing agent by visual observation in the same manner as in Example 1 except that an epoxy resin composition comprising the raw material composition shown in Table 3 (parts represent parts by mass) was prepared. Show.
樹脂調製に用いた原料の詳細を下記に示す。なお、硬化剤のD90はAEROTRAC SPR(商標) MODEL7340(日機装(株)製)により測定した。D90の測定は焦点距離100mm、乾式測定により行った。
・セロキサイド(商標)3000:脂環式エポキシ樹脂、ダイセル化学工業(株)製、換算分子量187
・jER630:パラアミノフェノール型エポキシ樹脂、三菱化学(株)製、換算分子量288
・jER604:テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、三菱化学(株)製、換算分子量480
・EX-201:レゾルシノールジグリシジルエーテル、ナガセケムテックス社製、製品名:デナコールEX-201、換算分子量:234
・1500NP:ネオペンチルグリコールジグリシジルエーテル、共栄社化学社製、製品名:エポライト1500NP、換算分子量:270
・GAN:ジグリシジルアニリン、日本化薬(株)製、換算分子量250
・jER828:ビスフェノールA型エポキシ樹脂、三菱化学(株)製、換算分子量378
・jER807:ビスフェノールF型エポキシ樹脂、三菱化学(株)製、換算分子量336
・EXA-4850-1000:2官能エポキシ樹脂、DIC(株)製、換算分子量700
・jER1001:ビスフェノールA型エポキシ樹脂、三菱化学(株)製、換算分子量950
・3,3'-DDS:3,3'-ジアミノジフェニルスルホン、活性水素当量62、日本合成化工(株)製のものを粉砕して使用した。D90:4.3μm(D90は粉砕後の測定値)
・4,4'-DDS:4,4'-ジアミノジフェニルスルホン、活性水素当量62、和歌山精化工業(株)製のものを粉砕して使用した。D90:5.8μm(D90は粉砕後の測定値)
The detail of the raw material used for resin preparation is shown below. In addition, D90 of the hardening | curing agent was measured by AEROTRAC SPR (trademark) MODEL7340 (made by Nikkiso Co., Ltd.). D90 was measured by a focal length of 100 mm and dry measurement.
Celoxide (trademark) 3000: alicyclic epoxy resin, manufactured by Daicel Chemical Industries, Ltd., converted molecular weight 187
JER630: Paraaminophenol type epoxy resin, manufactured by Mitsubishi Chemical Corporation, converted molecular weight 288
JER604: Tetraglycidyldiaminodiphenylmethane type epoxy resin, manufactured by Mitsubishi Chemical Corporation, converted molecular weight 480
EX-201: resorcinol diglycidyl ether, manufactured by Nagase ChemteX Corporation, product name: Denacol EX-201, converted molecular weight: 234
1500NP: Neopentyl glycol diglycidyl ether, manufactured by Kyoeisha Chemical Co., Ltd., product name: Epolite 1500NP, converted molecular weight: 270
GAN: diglycidyl aniline, Nippon Kayaku Co., Ltd., converted molecular weight 250
JER828: bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, converted molecular weight 378
JER807: Bisphenol F type epoxy resin, manufactured by Mitsubishi Chemical Corporation, reduced molecular weight 336
EXA-4850-1000: bifunctional epoxy resin, manufactured by DIC Corporation, converted molecular weight 700
JER1001: Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, converted molecular weight 950
-3,3'-DDS: 3,3'-diaminodiphenyl sulfone, active hydrogen equivalent 62, manufactured by Nippon Synthetic Chemical Industry Co., Ltd. was used after pulverization. D90: 4.3 μm (D90 is a measured value after pulverization)
-4,4'-DDS: 4,4'-diaminodiphenyl sulfone, active hydrogen equivalent 62, manufactured by Wakayama Seika Kogyo Co., Ltd. was used. D90: 5.8 μm (D90 is a measured value after pulverization)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表1、2に記載の実施例は、態様(1)または態様(2)に記載の要件を満たしているため、エポキシ樹脂組成物中の硬化剤がエポキシ樹脂に溶解している。 Since the Example of Table 1, 2 satisfy | fills the requirements as described in aspect (1) or aspect (2), the hardening | curing agent in an epoxy resin composition is melt | dissolving in the epoxy resin.
一方、表3に記載の比較例では、態様(1)または態様(2)に記載の要件を満たしていないため、エポキシ樹脂組成物中の硬化剤はエポキシ樹脂に溶解していない。
(実施例36~39)
 実施例1~35と同様に、表3に示した成分をそれぞれ計量し、ハイブリッドミキサーHM-500(KEYENCE(株)製)を用いて撹拌を5分、脱泡を1分30秒行うことによって調製した。
ついで、得られたエポキシ樹脂組成物をセパラブルフラスコに投入し、攪拌棒をスリーワンモーターにて回転させることにより、樹脂組成物を攪拌しながら、同樹脂組成物の温度を70℃に設定してオイルバス中で30分攪拌し、硬化剤の溶解を行った。
ジアミノジフェニルスルホンの溶解度合いを判断するため、目視での評価を行った。判定の基準は実施例1~35と同様に樹脂組成物を目視で確認し、以下の基準に基づいて判定した。溶解度合いの判定結果は表3に示す。
○:上記条件の暴露後にエポキシ樹脂組成物が透明になり、硬化剤が完全に溶解していることを示す。
△:上記条件の暴露後にエポキシ樹脂組成物が濁っており、硬化剤の溶解は見られるが、溶け残りがあることを示す。
×:上記条件の暴露前と暴露後でエポキシ樹脂組成物の外観に大きな変化が見られず、多くの硬化剤が溶け残っていることを示す。
Figure JPOXMLDOC01-appb-T000003
On the other hand, in the comparative example described in Table 3, since the requirements described in the aspect (1) or the aspect (2) are not satisfied, the curing agent in the epoxy resin composition is not dissolved in the epoxy resin.
(Examples 36 to 39)
In the same manner as in Examples 1 to 35, the components shown in Table 3 were weighed and stirred for 5 minutes and degassed for 1 minute 30 seconds using a hybrid mixer HM-500 (manufactured by KEYENCE). Prepared.
Next, the obtained epoxy resin composition was put into a separable flask, and the temperature of the resin composition was set to 70 ° C. while stirring the resin composition by rotating the stirring rod with a three-one motor. The mixture was stirred for 30 minutes in an oil bath to dissolve the curing agent.
Visual evaluation was performed in order to judge the solubility of diaminodiphenylsulfone. The criteria for determination were the same as in Examples 1 to 35, in which the resin composition was visually confirmed and determined based on the following criteria. The determination results of the degree of dissolution are shown in Table 3.
A: The epoxy resin composition becomes transparent after exposure under the above conditions, and indicates that the curing agent is completely dissolved.
(Triangle | delta): The epoxy resin composition is cloudy after exposure of the said conditions, and melt | dissolution of a hardening | curing agent is seen, but it shows that there exists undissolved.
X: It shows that a big change is not seen in the external appearance of the epoxy resin composition before and after exposure of the said conditions, and many hardening | curing agents remain undissolved.
Figure JPOXMLDOC01-appb-T000003
次いで、得られた樹脂組成物を用い擬似的なレジンインフュージョン成形により、CFRPの含浸・成形評価を行った。
プリフォームとして炭素繊維織物(TR3110:三菱レイヨン株式会社製)を10枚積層して用い、レジンコンテントが35質量%になるよう樹脂を計量して用いた。成形バックは図1に従って作製し、5mmHg以下の真空度で真空引きを行いながら図2の硬化プロファイルに従って、90℃まで昇温後、1時間保持し、その後180℃まで昇温して3時間保持させ、圧力は0.6MPaにて、オートクレーブ成形での成形を実施した。成形したCFRPは良好な外観を示した。成形したCFRPを手で曲げても塑性変形は見られなかった。このCFRPの表面を、アセトンをしみこませたウェスを用いて、ふき取りを行ったところ、特に問題は見られなかった。
Next, the impregnation / molding evaluation of CFRP was performed by pseudo resin infusion molding using the obtained resin composition.
Ten carbon fiber fabrics (TR3110: manufactured by Mitsubishi Rayon Co., Ltd.) were laminated as a preform, and the resin was weighed and used so that the resin content was 35% by mass. The molding bag is produced according to FIG. 1, and is heated to 90 ° C., held for 1 hour, and then heated to 180 ° C. and held for 3 hours according to the curing profile of FIG. 2 while evacuating at a vacuum of 5 mmHg or less. The pressure was 0.6 MPa, and molding by autoclave molding was performed. The molded CFRP showed a good appearance. No plastic deformation was observed even when the molded CFRP was bent by hand. When the surface of this CFRP was wiped with a cloth soaked with acetone, no particular problem was found.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(比較例22、23)
実施例36~39と同様に樹脂組成物の調製、硬化剤の溶解、含浸・成形評価を行った。ただし、樹脂組成は表4に従った。また、硬化剤の溶解度合いの判定では硬化剤は溶解していなかった。このようにして得られた硬化剤を溶解したエポキシ樹脂組成物を用いて、CFRPの成形を行った。
 比較例22では、成形したCFRPは良好な外観を示した。成形したCFRPを手で曲げても塑性変形は見られなかった。このCFRPの表面を、アセトンをしみこませたウェスで擦り、ふき取りテストを行ったところ、表面の樹脂が溶け、べたつく現象が見られた。表面樹脂のアセトンによる溶解から硬化不良が起こっていると考えられる。
 比較例23では、成形したCFRPは剛性が不足しており、手で曲げると塑性変形し、元の形状には戻らなかった。このCFRPの表面を、アセトンをしみこませたウェスで擦り、ふき取りテストを行ったところ、CFRPの塑性変形、表面の樹脂が溶け、べたつく現象が見られた。表面樹脂のアセトンによる溶解から硬化不良が起こっていると考えられる。
(Comparative Examples 22 and 23)
In the same manner as in Examples 36 to 39, the resin composition was prepared, the curing agent was dissolved, and the impregnation / molding evaluation was performed. However, the resin composition followed Table 4. Further, in the determination of the degree of dissolution of the curing agent, the curing agent was not dissolved. CFRP molding was performed using the epoxy resin composition in which the curing agent thus obtained was dissolved.
In Comparative Example 22, the molded CFRP showed a good appearance. No plastic deformation was observed even when the molded CFRP was bent by hand. When the surface of this CFRP was rubbed with a cloth soaked with acetone and a wiping test was conducted, the resin on the surface melted and a sticky phenomenon was observed. It is thought that poor curing has occurred due to dissolution of the surface resin with acetone.
In Comparative Example 23, the molded CFRP was insufficient in rigidity, and plastically deformed when bent by hand, and did not return to its original shape. When the surface of this CFRP was rubbed with a cloth soaked with acetone and subjected to a wiping test, plastic deformation of the CFRP, the resin on the surface melted, and a sticky phenomenon was observed. It is thought that poor curing has occurred due to dissolution of the surface resin with acetone.
以上に詳細に説明したように、本発明のエポキシ樹脂組成物は3,3'-ジアミノジフェニルスルホン[B]と4,4'-ジアミノジフェニルスルホン[C]の両方を硬化剤として用いることにより、単一構造のジアミノジフェニルスルホンを用いるよりもより低い温度でエポキシ樹脂に溶解させることが出来るため、そのエポキシ樹脂組成物から得られたFRPは硬化剤の濾別を低減することが出来、硬化不良による物性の低下を抑制できる。よって、本発明は産業上有用である。 As described in detail above, the epoxy resin composition of the present invention uses both 3,3′-diaminodiphenylsulfone [B] and 4,4′-diaminodiphenylsulfone [C] as curing agents. Since it can be dissolved in an epoxy resin at a lower temperature than using diaminodiphenyl sulfone having a single structure, FRP obtained from the epoxy resin composition can reduce the filtration of the curing agent, resulting in poor curing. Decrease in physical properties due to can be suppressed. Therefore, the present invention is industrially useful.
 1  ステンレス型
 2  樹脂組成物
 3  ゴムダム
 4  プリフォーム
 5  SUSプレート
 6  シールテープ
 7  耐熱テープ
 8  押しピンによる2cm間隔の穴
 9  不織布
 10  バギングフィルム
 11  真空ポンプへ接続された引き口
DESCRIPTION OF SYMBOLS 1 Stainless steel type 2 Resin composition 3 Rubber dam 4 Preform 5 SUS plate 6 Seal tape 7 Heat-resistant tape 8 Hole of 2cm space | interval by a push pin 9 Nonwoven fabric 10 Bagging film 11 Drawer connected to vacuum pump

Claims (8)

  1.  繊維集合体にエポキシ樹脂組成物を含浸させ、硬化させて繊維強化複合材料を得る製造方法であって、
    前記エポキシ樹脂組成物は、
    エポキシ樹脂組成物に含まれる構成要素[A]100質量部に対して、構成要素[B]の配合量をb質量部、構成要素[C]の配合量をc質量部としたとき、
    式(1)の範囲においては式(2)を満たし、
    式(3)の範囲においては式(4)を満たし、
    式(5)の範囲においては式(6)を満たす前記エポキシ樹脂組成物を60℃以上80℃以下の温度で混合させて以下の条件を満たす構成要素[A]、構成要素[B]および構成要素[C]を含んでなるエポキシ樹脂組成物とすることを含む製造方法、
    構成要素[A]:換算分子量aのエポキシ樹脂
    構成要素[B]:3,3'-ジアミノジフェニルスルホン
    構成要素[C]:4,4'-ジアミノジフェニルスルホン
    150<a≦200…(1)
    0<b/(b+c)<1…(2)
    200<a≦350…(3)
    0.002a-0.35≦b/(b+c)≦-0.002a+1.35…(4)
    350<a…(5)
    0.35≦b/(b+c)≦0.65…(6)
    ここで、換算分子量aの定義は下記の通りである。エポキシ樹脂[A]として1種のエポキシ樹脂のみを用いる場合には、用いるエポキシ樹脂のエポキシ当量とエポキシ樹脂1分子中に含まれるエポキシ基数の積を換算分子量aとする。また、エポキシ樹脂[A]として複数種のエポキシ樹脂成分を用いる場合にはエポキシ樹脂成分毎にエポキシ当量とエポキシ樹脂成分1分子中に含まれるエポキシ基数の積をそれぞれ算出し、算出した各々の、エポキシ樹脂成分のエポキシ当量とエポキシ基数の積をエポキシ樹脂[A]を構成する各成分の配合比で加重平均した値を換算分子量aとする。
    A manufacturing method for obtaining a fiber-reinforced composite material by impregnating an epoxy resin composition into a fiber assembly and curing it.
    The epoxy resin composition is
    When 100 parts by mass of the component [A] contained in the epoxy resin composition is b parts by mass of the component [B] and c parts by mass of the component [C],
    In the range of the formula (1), the formula (2) is satisfied,
    In the range of the formula (3), the formula (4) is satisfied,
    In the range of the formula (5), the epoxy resin composition satisfying the formula (6) is mixed at a temperature of 60 ° C. or higher and 80 ° C. or lower to satisfy the following components [A], [B] and the configuration A production method comprising making an epoxy resin composition comprising the element [C],
    Component [A]: Epoxy resin component [B]: 3,3′-diaminodiphenylsulfone component [C]: 4,4′-diaminodiphenylsulfone 150 <a ≦ 200 (1)
    0 <b / (b + c) <1 (2)
    200 <a ≦ 350 (3)
    0.002a−0.35 ≦ b / (b + c) ≦ −0.002a + 1.35 (4)
    350 <a (5)
    0.35 ≦ b / (b + c) ≦ 0.65 (6)
    Here, the definition of the converted molecular weight a is as follows. When only one type of epoxy resin is used as the epoxy resin [A], the product of the epoxy equivalent of the epoxy resin to be used and the number of epoxy groups contained in one molecule of the epoxy resin is defined as a converted molecular weight a. Moreover, when using multiple types of epoxy resin components as the epoxy resin [A], the product of the epoxy equivalent and the number of epoxy groups contained in one molecule of the epoxy resin component is calculated for each epoxy resin component, A value obtained by weighted averaging the product of the epoxy equivalent of the epoxy resin component and the number of epoxy groups by the blending ratio of each component constituting the epoxy resin [A] is defined as a converted molecular weight a.
  2.  前記エポキシ樹脂組成物がさらに、式(7)を満たす請求項1に記載の繊維強化複合材料を得る製造方法、
    15≦(b+c)≦70・・・(7)。
    The method for producing a fiber-reinforced composite material according to claim 1, wherein the epoxy resin composition further satisfies the formula (7).
    15 ≦ (b + c) ≦ 70 (7).
  3.  以下の構成要素[A]、構成要素[B]、および構成要素[C]を含んでなるエポキシ樹脂組成物であって、該エポキシ樹脂組成物に含まれる構成要素[A]100質量部に対して、構成要素[B]の配合量をb質量部、構成要素[C]の配合量をc質量部としたとき、
    式(8)の範囲においては式(9)を満たし、
    式(10)の範囲においては式(11)を満たし、
    式(12)の範囲においては式(13)を満たすことを特徴とするエポキシ樹脂組成物、
    構成要素[A]:換算分子量aのエポキシ樹脂
    構成要素[B]:3,3'-ジアミノジフェニルスルホン
    構成要素[C]:4,4'-ジアミノジフェニルスルホン
    150<a≦200…(8)
    0<b/(b+c)<1…(9)
    200<a≦350…(10)
    0.002a-0.35≦b/(b+c)≦-0.002a+1.35…(11)
    350<a…(12)
    0.35≦b/(b+c)≦0.65…(13)
    ここで、換算分子量aの定義は下記の通りである。エポキシ樹脂[A]として1種のエポキシ樹脂のみを用いる場合には、用いるエポキシ樹脂のエポキシ当量とエポキシ樹脂1分子中に含まれるエポキシ基数の積を換算分子量aとする。また、エポキシ樹脂[A]として複数種のエポキシ樹脂成分を用いる場合にはエポキシ樹脂成分毎にエポキシ当量とエポキシ樹脂成分1分子中に含まれるエポキシ基数の積をそれぞれ算出し、算出した各々の、エポキシ樹脂成分のエポキシ当量とエポキシ基数の積をエポキシ樹脂[A]を構成する各成分の配合比で加重平均した値を換算分子量aとする。
    An epoxy resin composition comprising the following component [A], component [B], and component [C], wherein 100 parts by mass of component [A] contained in the epoxy resin composition When the amount of the component [B] is b parts by mass and the amount of the component [C] is c parts by mass,
    In the range of the formula (8), the formula (9) is satisfied,
    In the range of the formula (10), the formula (11) is satisfied,
    In the range of the formula (12), an epoxy resin composition characterized by satisfying the formula (13),
    Component [A]: Epoxy resin component [B]: 3,3′-diaminodiphenylsulfone component [C]: 4,4′-diaminodiphenylsulfone 150 <a ≦ 200 (8)
    0 <b / (b + c) <1 (9)
    200 <a ≦ 350 (10)
    0.002a−0.35 ≦ b / (b + c) ≦ −0.002a + 1.35 (11)
    350 <a (12)
    0.35 ≦ b / (b + c) ≦ 0.65 (13)
    Here, the definition of the converted molecular weight a is as follows. When only one type of epoxy resin is used as the epoxy resin [A], the product of the epoxy equivalent of the epoxy resin to be used and the number of epoxy groups contained in one molecule of the epoxy resin is defined as a converted molecular weight a. Moreover, when using multiple types of epoxy resin components as the epoxy resin [A], the product of the epoxy equivalent and the number of epoxy groups contained in one molecule of the epoxy resin component is calculated for each epoxy resin component, A value obtained by weighted averaging the product of the epoxy equivalent of the epoxy resin component and the number of epoxy groups by the blending ratio of each component constituting the epoxy resin [A] is defined as a converted molecular weight a.
  4.  さらに、式(14)の範囲においては式(15)を満たし、
    式(16)の範囲においては式(17)を満たし、
    式(18)の範囲においては式(19)を満たすことを特徴とする請求項3に記載のエポキシ樹脂組成物、
    150<a≦190…(14)
    0.1≦b/(b+c)≦0.9…(15)
    190<a≦365…(16)
    0.002a-0.28≦b/(b+c)≦-0.0017a+1.23…(17)
    365<a…(18)
    0.45≦b/(b+c)≦0.60…(19)。
    Furthermore, in the range of Formula (14), Formula (15) is satisfy | filled,
    In the range of the equation (16), the equation (17) is satisfied,
    In the range of Formula (18), Formula (19) is satisfy | filled, The epoxy resin composition of Claim 3 characterized by the above-mentioned.
    150 <a ≦ 190 (14)
    0.1 ≦ b / (b + c) ≦ 0.9 (15)
    190 <a ≦ 365 (16)
    0.002a−0.28 ≦ b / (b + c) ≦ −0.0017a + 1.23 (17)
    365 <a (18)
    0.45 ≦ b / (b + c) ≦ 0.60 (19).
  5.  さらに、式(20)を満たすことを特徴とする請求項3または4のいずれか一項に記載のエポキシ樹脂組成物、
    150<a<800・・・(20)。
    Furthermore, Formula (20) is satisfy | filled, The epoxy resin composition as described in any one of Claim 3 or 4 characterized by the above-mentioned.
    150 <a <800 (20).
  6.  さらに、式(21)、(22)を満たすことを特徴とする請求項3~5のいずれか一項に記載のエポキシ樹脂組成物、
    150≦a≦357・・・(21)
    0.00169a-0.103≦b/(b+c)≦-0.0019a+1.19・・・(22)。
    The epoxy resin composition according to any one of claims 3 to 5, further satisfying the formulas (21) and (22):
    150 ≦ a ≦ 357 (21)
    0.00169a−0.103 ≦ b / (b + c) ≦ −0.0019a + 1.19 (22).
  7.  さらに、式(23)、(24)を満たすことを特徴とする請求項3~6のいずれか一項に記載のエポキシ樹脂組成物。
    150≦a≦300・・・(23)
    0.00169a-0.103≦b/(b+c)≦-0.0010a+0.90・・・(24)
    The epoxy resin composition according to any one of claims 3 to 6, further satisfying the formulas (23) and (24).
    150 ≦ a ≦ 300 (23)
    0.00169a−0.103 ≦ b / (b + c) ≦ −0.0010a + 0.90 (24)
  8.  さらに、式(25)を満たすことを特徴とする請求項3~7のいずれか一項に記載のエポキシ樹脂組成物、
    15≦(b+c)≦70・・・(25)。
    The epoxy resin composition according to any one of claims 3 to 7, further satisfying the formula (25):
    15 ≦ (b + c) ≦ 70 (25).
PCT/JP2012/053691 2011-02-16 2012-02-16 Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein WO2012111764A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2827464A CA2827464C (en) 2011-02-16 2012-02-16 Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein
CN201280009336.3A CN103380161B (en) 2011-02-16 2012-02-16 The manufacture method obtaining fiber reinforced composite and the composition epoxy resin used thereof
US13/985,743 US9212295B2 (en) 2011-02-16 2012-02-16 Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein
EP12746965.8A EP2676984B1 (en) 2011-02-16 2012-02-16 Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein
JP2012513380A JP5949545B2 (en) 2011-02-16 2012-02-16 Manufacturing method for obtaining fiber-reinforced composite material, and epoxy resin composition used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011030646 2011-02-16
JP2011-030646 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111764A1 true WO2012111764A1 (en) 2012-08-23

Family

ID=46672676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053691 WO2012111764A1 (en) 2011-02-16 2012-02-16 Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein

Country Status (6)

Country Link
US (1) US9212295B2 (en)
EP (1) EP2676984B1 (en)
JP (2) JP5949545B2 (en)
CN (1) CN103380161B (en)
CA (1) CA2827464C (en)
WO (1) WO2012111764A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431287A (en) * 2013-07-26 2016-03-23 赫克塞尔合成有限公司 Improvements in or relating to fibre reinforced composites
WO2016148175A1 (en) * 2015-03-17 2016-09-22 東レ株式会社 Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2018146001A (en) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 High-pressure tank

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014182825A2 (en) 2013-05-07 2014-11-13 Neuvokas Corporation Method of manufacturing a composite material
WO2015005411A1 (en) * 2013-07-11 2015-01-15 東レ株式会社 Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
GB2522904B (en) 2014-02-10 2016-12-28 Ge Aviat Systems Ltd Method of making an airdam
EP2918404A1 (en) 2014-03-10 2015-09-16 Siemens Aktiengesellschaft A method and a mold for manufacturing a component for a wind turbine
CN107921719B (en) 2015-07-02 2020-04-07 内乌沃卡斯公司 Method for producing composite material
JP6686763B2 (en) * 2016-07-25 2020-04-22 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
JP7297414B2 (en) 2018-06-20 2023-06-26 住友化学株式会社 Epoxy resin composition, prepreg and molding
CA3112165A1 (en) * 2018-09-06 2020-03-12 Ecole Polytechnique Federale De Lausanne (Epfl) Composite material
JPWO2021020109A1 (en) * 2019-07-29 2021-02-04
CN112519269A (en) * 2019-09-19 2021-03-19 山东非金属材料研究所 Method for forming fiber reinforced resin matrix composite material
US11919254B2 (en) 2019-11-12 2024-03-05 Neuvokas Corporation Method of manufacturing a composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363253A (en) 2001-06-12 2002-12-18 Toray Ind Inc Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2003040206A1 (en) * 2001-11-07 2003-05-15 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2005105267A (en) 2003-09-26 2005-04-21 Hexcel Corp Heat-settable resin
WO2007063580A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Works, Ltd. Halogen-free epoxy resin composition, cover lay film, bonding sheet, prepreg, laminated sheet for printed wiring board
JP2008169291A (en) 2007-01-11 2008-07-24 Mitsubishi Rayon Co Ltd Epoxy resin composition and fiber-reinforced composite material using the same and method for producing the material
JP2010174073A (en) * 2009-01-27 2010-08-12 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838176B2 (en) * 2000-04-21 2005-01-04 Mitsubishi Rayon Co., Ltd. Epoxy resin composition and prepreg made with the epoxy resin composition
JP3894035B2 (en) * 2001-07-04 2007-03-14 東レ株式会社 Carbon fiber reinforced substrate, preform and composite material comprising the same
JP2003165824A (en) * 2001-11-29 2003-06-10 Toray Ind Inc Epoxy resin composition
DE60320134T3 (en) * 2002-11-28 2015-12-24 Mitsubishi Rayon Co., Ltd. METHOD OF MANUFACTURING FIBER-REINFORCED COMPOSITE MATERIAL
JP2004285148A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
US7883766B2 (en) * 2005-07-13 2011-02-08 Mitsubishi Rayon Co., Ltd. Prepreg
TWI435887B (en) * 2008-02-26 2014-05-01 Toray Industries Epoxy resin composition, prepreg and fiber-reinforced composite material
ES2709473T3 (en) * 2008-03-25 2019-04-16 Toray Industries Composition of epoxy resin, fiber reinforced composite material and production method thereof
US8039109B2 (en) * 2008-10-07 2011-10-18 Hexcel Corporation Epoxy resins with improved burn properties
US8034453B2 (en) * 2008-10-07 2011-10-11 Hexcel Corporation Composite materials with improved burn properties
US20100240811A1 (en) * 2009-03-18 2010-09-23 He Yufang Thermosetting Resin Composition and Application Thereof
JP2011046797A (en) 2009-08-26 2011-03-10 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material and method for producing fiber-reinforced composite material
JP5392017B2 (en) 2009-11-12 2014-01-22 信越化学工業株式会社 Adhesive composition, adhesive sheet, dicing die attach film, and semiconductor device
KR101767699B1 (en) * 2009-12-17 2017-08-11 사이텍 테크놀러지 코포레이션 Multifunctional additives in engineering thermoplastics
US8470923B2 (en) * 2010-04-21 2013-06-25 Hexcel Corporation Composite material for structural applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363253A (en) 2001-06-12 2002-12-18 Toray Ind Inc Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2003040206A1 (en) * 2001-11-07 2003-05-15 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2005105267A (en) 2003-09-26 2005-04-21 Hexcel Corp Heat-settable resin
WO2007063580A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Works, Ltd. Halogen-free epoxy resin composition, cover lay film, bonding sheet, prepreg, laminated sheet for printed wiring board
JP2008169291A (en) 2007-01-11 2008-07-24 Mitsubishi Rayon Co Ltd Epoxy resin composition and fiber-reinforced composite material using the same and method for producing the material
JP2010174073A (en) * 2009-01-27 2010-08-12 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431287A (en) * 2013-07-26 2016-03-23 赫克塞尔合成有限公司 Improvements in or relating to fibre reinforced composites
CN105431287B (en) * 2013-07-26 2018-09-14 赫克塞尔合成有限公司 The improvement of fibre-reinforced composite material or relative improvement
WO2016148175A1 (en) * 2015-03-17 2016-09-22 東レ株式会社 Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JPWO2016148175A1 (en) * 2015-03-17 2017-12-28 東レ株式会社 Epoxy resin composition, prepreg and carbon fiber reinforced composite material
US10280251B2 (en) 2015-03-17 2019-05-07 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2018146001A (en) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 High-pressure tank

Also Published As

Publication number Publication date
CA2827464A1 (en) 2012-08-23
CN103380161A (en) 2013-10-30
US20130330478A1 (en) 2013-12-12
CN103380161B (en) 2016-04-20
EP2676984A1 (en) 2013-12-25
CA2827464C (en) 2016-07-19
EP2676984A4 (en) 2017-03-29
EP2676984B1 (en) 2021-04-28
JP5949545B2 (en) 2016-07-06
JP2016074922A (en) 2016-05-12
US9212295B2 (en) 2015-12-15
JPWO2012111764A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5949545B2 (en) Manufacturing method for obtaining fiber-reinforced composite material, and epoxy resin composition used therefor
JP5682838B2 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP5319673B2 (en) Epoxy resin composition and prepreg using the same
JP6459475B2 (en) Prepreg and method for producing molded product
WO2010055811A1 (en) Thermosetting resin composition and prepreg utilizing same
KR20150036085A (en) Binder resin composition for preform, binder particle, preform, and fiber-reinforced composite material
WO2018043490A1 (en) Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same
EP3819331B1 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and production method therefor
JP2016138205A (en) Prepreg and fiber-reinforced composite material
JP2011057907A (en) Thermosetting resin composition and prepreg using the same
WO2020071360A1 (en) Sheet molding compound, fiber-reinforced composite material and method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280009336.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012513380

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2827464

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13985743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012746965

Country of ref document: EP