JP2011057907A - Thermosetting resin composition and prepreg using the same - Google Patents

Thermosetting resin composition and prepreg using the same Download PDF

Info

Publication number
JP2011057907A
JP2011057907A JP2009211155A JP2009211155A JP2011057907A JP 2011057907 A JP2011057907 A JP 2011057907A JP 2009211155 A JP2009211155 A JP 2009211155A JP 2009211155 A JP2009211155 A JP 2009211155A JP 2011057907 A JP2011057907 A JP 2011057907A
Authority
JP
Japan
Prior art keywords
resin
component
fine particles
thermosetting resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009211155A
Other languages
Japanese (ja)
Inventor
Hideaki Maeda
英朗 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2009211155A priority Critical patent/JP2011057907A/en
Publication of JP2011057907A publication Critical patent/JP2011057907A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition suitable for molding a composite material excellent in mechanical properties such as heat resistance and toughness and a prepreg using the thermosetting resin composition. <P>SOLUTION: The thermosetting resin composition includes, as the indispensable components, 5-50 pts.wt. of (component [A]) thermoplastic composite fine particles which have an average particle size of 5-70 μm and are obtained by kneading 1-90 wt.% of silicone fine particles with an average particle size of 1-12 μm and 99-10 wt.% of a thermoplastic resin, 100 pts.wt. of (component [B]) a thermosetting resin, 20-50 pts.wt. of (component [C]) a hardener, and 5-80 pts.wt. of (component [D]) a thermoplastic resin other than component [A]. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高い耐熱性や靭性等の機械的特性に優れた複合材料を成形するのに適した熱硬化性樹脂組成物、及びこの樹脂組成物をマトリックス樹脂としたプリプレグに関する。 The present invention relates to a thermosetting resin composition suitable for molding a composite material excellent in mechanical properties such as high heat resistance and toughness, and a prepreg using the resin composition as a matrix resin.

繊維強化プラスチック(FRP)は、不飽和ポリエステル樹脂、エポキシ樹脂、熱硬化性ポリイミド樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)等の熱可塑性樹脂のマトリックス樹脂と、炭素繊維、ガラス繊維、アラミド繊維等の繊維強化材とからなる複合材料であり、軽量で且つ強度特性に優れるため、近年、航空宇宙産業から一般産業分野に至るまで、幅広い分野において利用されている。 Fiber reinforced plastic (FRP) is a thermosetting resin such as unsaturated polyester resin, epoxy resin, thermosetting polyimide resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), etc. In recent years, from the aerospace industry to the general industrial field because it is a composite material consisting of a matrix resin of thermoplastic resin and fiber reinforcements such as carbon fiber, glass fiber, and aramid fiber, and it is lightweight and has excellent strength characteristics It is used in a wide range of fields.

一般的に、マトリックス樹脂を溶剤に溶かし、硬化剤や添加剤を混合して、クロス、マット、ロービング等の繊維強化材に含浸させることによってFRP用の成形中間基材であるプリプレグが得られる。そして、例えば、航空機の構造材料用としては、軽量化の観点から、プリプレグを面板としたハニカムサンドウィッチパネルが、多岐にわたり使用されているが、最近では、航空機用途においてハニカムサンドウィッチパネル用途以外への適用も試みられている。しかしながら、特に高度の耐熱性や靭性(タフネス)が要求される航空機用材料においては、従来のFRPは、高温度条件において、その靭性や耐衝撃性等の機械物性が顕著に低下するという問題があった。そこで、耐熱性等の基本性能を維持しながら、靭性や耐衝撃性等の機械物性の改善をすることが望まれている。 Generally, a prepreg which is a molding intermediate base material for FRP is obtained by dissolving a matrix resin in a solvent, mixing a curing agent or an additive, and impregnating a fiber reinforcing material such as cloth, mat, or roving. And, for example, for aircraft structural materials, honeycomb sandwich panels with prepregs as face plates are widely used from the viewpoint of weight reduction. Recently, however, they are applied to aircraft applications other than honeycomb sandwich panels. There are also attempts. However, in aircraft materials that require particularly high heat resistance and toughness (toughness), the conventional FRP has a problem in that mechanical properties such as toughness and impact resistance are significantly lowered at high temperature conditions. there were. Therefore, it is desired to improve mechanical properties such as toughness and impact resistance while maintaining basic performance such as heat resistance.

例えば、エポキシ樹脂のような熱硬化性樹脂をマトリックス樹脂に用いたプリプレグの場合、耐熱性、機械的特性が良好であるが、反面、マトリックス樹脂の伸度が低く、脆いために複合材料の靭性、耐衝撃性に劣るという問題がある。そこで、複合材料の耐衝撃性を向上させるため、プリプレグのマトリクス樹脂中に熱可塑性樹脂を添加する方法が知られている(例えば、特許文献1〜3参照)。しかしながら、十分な耐衝撃性を得るために熱可塑性樹脂の量を増やすとプリプレグの接着性が低下するため、成形工程での取扱性が低下してしまうという問題がある。また、かかるプリプレグでは、経時的にもプリプレグの接着性が低下し、取扱性が低下する。必要な熱可塑樹脂を添加しつつ、プリプレグの接着性・安定性を改善することが望まれている。そして、前記のような問題を解決するために、マトリックス樹脂として熱硬化性樹脂と粒子状の熱可塑性樹脂を用いる方法(特許文献4と5)、エポキシ樹脂と熱可塑性樹脂とマイクロカプセル型エポキシ樹脂硬化剤を用いる方法(特許文献6と7)等が提案されている。しかしながら、積層性等の取扱い性と耐衝撃性等のコンポジット性能の改善効果は未だ十分ではない。 For example, in the case of a prepreg using a thermosetting resin such as an epoxy resin as a matrix resin, the heat resistance and mechanical properties are good, but on the other hand, the matrix resin has low elongation and is brittle, so the toughness of the composite material There is a problem that it is inferior in impact resistance. Therefore, in order to improve the impact resistance of the composite material, a method of adding a thermoplastic resin to the matrix resin of the prepreg is known (for example, see Patent Documents 1 to 3). However, when the amount of the thermoplastic resin is increased in order to obtain sufficient impact resistance, the adhesiveness of the prepreg is lowered, so that there is a problem that the handleability in the molding process is lowered. Moreover, in such a prepreg, the adhesiveness of the prepreg also decreases over time, and the handleability decreases. It is desired to improve the adhesion and stability of the prepreg while adding the necessary thermoplastic resin. And in order to solve the above problems, a method using a thermosetting resin and a particulate thermoplastic resin as a matrix resin (Patent Documents 4 and 5), an epoxy resin, a thermoplastic resin, and a microcapsule type epoxy resin Methods using a curing agent (Patent Documents 6 and 7) have been proposed. However, the improvement effect of the composite performance such as the handling property such as the laminate property and the impact resistance is not yet sufficient.

特開昭61−250021号公報Japanese Patent Laid-Open No. 61-250021 特開昭62−36421号公報JP-A-62-36421 特開昭62−57417号公報JP 62-57417 A 特開平6−240024号公報JP-A-6-240024 特開2006−169541号公報JP 2006-169541 A 特開平4−249544号公報JP-A-4-249544 特開平5−9262号公報JP-A-5-9262

本発明の課題は、耐熱性や靭性等の機械的特性に優れた複合材料を成形するのに適した熱硬化性樹脂組成物、及びこの熱硬化性樹脂組成物を用いたプリプレグを提供することにある。 An object of the present invention is to provide a thermosetting resin composition suitable for molding a composite material excellent in mechanical properties such as heat resistance and toughness, and a prepreg using the thermosetting resin composition. It is in.

上記課題は、特許請求の範囲の請求項1〜11に記載された本発明の各態様によって達成される。 The above-mentioned subject is achieved by each mode of the present invention described in the claims 1-11.

本発明の請求項1に記載された発明は、少なくとも下記の成分[A] 、成分[B]、成分 [C]及び成分 [D]を必須成分として、下記の割合で含むことを特徴とする熱硬化性樹脂組成物である。
成分[A]:平均粒子径が1〜12μmのシリコーン樹脂微粒子1〜90重量%と、熱可塑性樹脂99〜10重量%を混練して得られる平均粒子径が5〜70μmの熱可塑性複合微粒子5〜50重量部、
成分[B]:熱硬化性樹脂100重量部、
成分[C]:硬化剤20〜50重量部、
成分[D]:成分[A]以外の熱可塑性樹脂5〜80重量部。
The invention described in claim 1 of the present invention includes at least the following component [A], component [B], component [C], and component [D] as essential components in the following proportions: It is a thermosetting resin composition.
Component [A]: Thermoplastic composite fine particles 5 having an average particle size of 5 to 70 μm obtained by kneading 1 to 90 wt% of silicone resin fine particles having an average particle size of 1 to 12 μm and 99 to 10 wt% of a thermoplastic resin ~ 50 parts by weight,
Component [B]: 100 parts by weight of thermosetting resin,
Component [C]: 20 to 50 parts by weight of a curing agent,
Component [D]: 5 to 80 parts by weight of thermoplastic resin other than component [A].

請求項2に記載された発明は、成分[A]の熱可塑性複合微粒子表面に、直径が1〜12μmのクレーター状の穴が存在することを特徴とする請求項1記載の熱硬化性樹脂組成物である。 The invention described in claim 2 is characterized in that crater-like holes having a diameter of 1 to 12 μm are present on the surface of the thermoplastic composite fine particles of component [A]. It is a thing.

請求項3に記載された発明は、成分[B]の熱硬化性樹脂が、少なくともエポキシ樹脂を含有していることを特徴とする請求項1又は2記載の熱硬化性樹脂組成物である。 The invention described in claim 3 is the thermosetting resin composition according to claim 1 or 2, wherein the thermosetting resin of the component [B] contains at least an epoxy resin.

請求項4に記載された発明は、エポキシ樹脂が、少なくとも3官能以上のエポキシ樹脂を含有していることを特徴とする請求項3記載の熱硬化性樹脂組成物である。 The invention described in claim 4 is the thermosetting resin composition according to claim 3, wherein the epoxy resin contains at least a trifunctional or higher functional epoxy resin.

請求項5に記載された発明は、成分[B]の熱硬化性樹脂が、成分[A]の熱可塑性樹脂を溶解しない熱硬化性樹脂であることを特徴とする請求項1〜4のいずれか1項記載の硬化性樹脂組成物である。本発明において、成分[B]の熱硬化性樹脂が熱可塑性樹脂を溶解しないとは、ペレット、粉砕物若しくはパウダー状で熱可塑性樹脂を成分[B]中に投入し、硬化温度以下で撹拌しても、粒子の大きさが殆ど変化しないことを意味する。 The invention described in claim 5 is characterized in that the thermosetting resin of component [B] is a thermosetting resin that does not dissolve the thermoplastic resin of component [A]. The curable resin composition according to claim 1. In the present invention, the fact that the thermosetting resin of the component [B] does not dissolve the thermoplastic resin means that the thermoplastic resin is put into the component [B] in the form of pellets, pulverized material or powder and stirred at the curing temperature or lower. However, it means that the particle size hardly changes.

請求項6に記載された発明は、成分[C]の硬化剤が、少なくとも芳香族アミン系硬化剤を含有していることを特徴とする請求項1〜5のいずれか1項記載の熱硬化性樹脂組成物である。 The invention described in claim 6 is characterized in that the curing agent of the component [C] contains at least an aromatic amine-based curing agent. It is an adhesive resin composition.

請求項7に記載された発明は、平均粒子径が1〜12μmのシリコーン樹脂微粒子1〜90重量%と、熱可塑性樹脂99〜10重量%を混練して得られる平均粒子径が5〜70μmの熱可塑性複合微粒子である。 The invention described in claim 7 has an average particle size of 5 to 70 μm obtained by kneading 1 to 90% by weight of silicone resin fine particles having an average particle size of 1 to 12 μm and 99 to 10% by weight of a thermoplastic resin. Thermoplastic composite fine particles.

請求項8に記載された発明は、熱可塑性複合微粒子表面に、直径が1〜12μmのクレーター状の穴が存在することを特徴とする請求項7記載の熱可塑性複合微粒子である。 The invention described in claim 8 is the thermoplastic composite fine particle according to claim 7, wherein a crater-like hole having a diameter of 1 to 12 μm is present on the surface of the thermoplastic composite fine particle.

請求項9に記載された発明は、請求項1〜6のいずれか1項記載の熱硬化性樹脂組成物を、繊維強化材に含浸させてなるプリプレグである。 The invention described in claim 9 is a prepreg obtained by impregnating a fiber reinforcing material with the thermosetting resin composition according to any one of claims 1 to 6.

請求項10に記載された発明は、繊維強化材が炭素繊維である請求項9記載のプリプレグである。 The invention described in claim 10 is the prepreg according to claim 9, wherein the fiber reinforcing material is carbon fiber.

そして、請求項11に記載された発明は、請求項9又は10記載のプリプレグを硬化させてなる複合材料である。 The invention described in claim 11 is a composite material obtained by curing the prepreg according to claim 9 or 10.

本発明の熱硬化性樹脂組成物をマトリックス樹脂としたプリプレグを積層し、硬化成形して得られる複合材料は、高い耐熱性を持ち、機械特性、特に靭性が向上したものが得られる。 A composite material obtained by laminating a prepreg using the thermosetting resin composition of the present invention as a matrix resin and curing and molding it has high heat resistance and has improved mechanical properties, particularly toughness.

本発明の熱硬化性樹脂組成物は、少なくとも成分[A] 、即ち、平均粒子径が1〜12μmのシリコーン樹脂微粒子1〜90重量%と、熱可塑性樹脂99〜10重量%を混練して得られる平均粒子径が5〜70μmの熱可塑性複合微粒子、成分[B]、即ち、熱硬化性樹脂、成分 [C]、即ち、硬化剤、及び成分 [D]、即ち、成分[A]以外の熱可塑性樹脂を必須成分として含むものである。 The thermosetting resin composition of the present invention is obtained by kneading at least component [A], that is, 1 to 90% by weight of silicone resin fine particles having an average particle diameter of 1 to 12 μm and 99 to 10% by weight of a thermoplastic resin. Other than thermoplastic composite fine particles having an average particle size of 5 to 70 μm, component [B], ie, thermosetting resin, component [C], ie, curing agent, and component [D], ie, component [A] A thermoplastic resin is included as an essential component.

そして、本発明の熱硬化性樹脂組成物は、それを構成する成分の一つとして、熱可塑性樹脂内に耐熱性の高いシリコーン樹脂微粒子を含む熱可塑性複合微粒子(成分[A])を用いることを特徴としている。 The thermosetting resin composition of the present invention uses thermoplastic composite fine particles (component [A]) containing silicone resin fine particles having high heat resistance in the thermoplastic resin as one of the components constituting the composition. It is characterized by.

熱可塑性複合微粒子を構成するシリコーン樹脂微粒子の配合割合は、樹脂の種類に依存して、シリコーン樹脂微粒子1〜90重量%と熱可塑性樹脂99〜10重量%の割合が適当である。好ましいのは、シリコーン樹脂微粒子が5〜70重量%の範囲にある場合である。該シリコーン樹脂粒子の平均粒子径は1〜12μmが適当で、好ましくは2〜10μmである。作製方法としては、平均粒子径が1〜12μmのシリコーン樹脂微粒子1〜90重量%と、熱可塑性樹脂99〜10重量%を混練し、複合化させ、次いで、粉砕し粒子状とし、必要に応じて篩い分けして、平均粒子径が5〜70μmの熱可塑性複合微粒子を得る。かくして得られた複合微粒子表面には、通常、クレーター状の穴が存在するが、本発明においては、直径が1〜12μmのクレーター状の穴が存在するものが好ましい。なお、粉砕した粒子状物を風力分級処理に付すことによって、粒子の表面近傍に少量存在するシリコーン樹脂微粒子は取り除くのが好ましい。 The proportion of the silicone resin fine particles composing the thermoplastic composite fine particles is appropriately 1 to 90% by weight of the silicone resin fine particles and 99 to 10% by weight of the thermoplastic resin depending on the kind of the resin. The case where the silicone resin fine particles are in the range of 5 to 70% by weight is preferable. 1-12 micrometers is suitable for the average particle diameter of this silicone resin particle, Preferably it is 2-10 micrometers. As a production method, 1 to 90% by weight of silicone resin fine particles having an average particle diameter of 1 to 12 μm and 99 to 10% by weight of a thermoplastic resin are kneaded, compounded, and then pulverized to form particles. And sieved to obtain thermoplastic composite fine particles having an average particle diameter of 5 to 70 μm. The surface of the composite fine particles thus obtained usually has crater-like holes, but in the present invention, those having crater-like holes having a diameter of 1 to 12 μm are preferred. In addition, it is preferable to remove the silicone resin fine particles present in a small amount near the surface of the particles by subjecting the pulverized particulate matter to an air classification process.

前記熱可塑性複合微粒子は、本発明の熱硬化性樹脂組成物中に均質かつ成形性を維持して添加されるために、粒子状である必要がある。該熱可塑性樹脂微粒子の平均粒子径は、5〜70μmの範囲であることが必要である。5μmより小さいと、嵩密度が高くなり、熱硬化性樹脂組成物の粘度が著しく増粘したり、十分な量を添加することが困難となったりする場合がある。一方、70μmより大きいと、得られる熱硬化性樹脂組成物をシート状にする際、均質な厚みのシート状のものが得られにくくなる場合がある。より好ましくは、平均粒径5〜50μmである。 The thermoplastic composite fine particles need to be in the form of particles in order to be added to the thermosetting resin composition of the present invention while maintaining homogeneity and moldability. The average particle diameter of the thermoplastic resin fine particles needs to be in the range of 5 to 70 μm. If it is smaller than 5 μm, the bulk density increases, and the viscosity of the thermosetting resin composition may increase significantly, or it may be difficult to add a sufficient amount. On the other hand, if the thickness is larger than 70 μm, it may be difficult to obtain a sheet having a uniform thickness when the obtained thermosetting resin composition is formed into a sheet. More preferably, the average particle size is 5 to 50 μm.

本発明の熱硬化性樹脂組成物中の前記熱可塑性複合微粒子(成分[A])の混合割合は、熱硬化性樹脂組成物中の熱硬化性樹脂(後記成分[B])の量を100重量部としたとき、5〜50重量部、好ましくは10〜40重量部である。混合の仕方は特に限定されるものではないが、できるだけ均一に混合するのが好ましい。上記のごとく熱可塑性複合微粒子を配合することにより、本発明の熱硬化性樹脂組成物を硬化して得られる硬化物の耐熱性を殆ど低下させず、層間破壊靭性等の機械的特性を向上させることができる。 The mixing ratio of the thermoplastic composite fine particles (component [A]) in the thermosetting resin composition of the present invention is the amount of the thermosetting resin (component [B] described later) in the thermosetting resin composition is 100. The amount is 5 to 50 parts by weight, preferably 10 to 40 parts by weight. The method of mixing is not particularly limited, but it is preferable to mix as uniformly as possible. By blending the thermoplastic composite fine particles as described above, the heat resistance of the cured product obtained by curing the thermosetting resin composition of the present invention is hardly lowered, and mechanical properties such as interlaminar fracture toughness are improved. be able to.

本発明の成分[B]として用いられる熱硬化性樹脂としては、特に限定はないが、例えば、主としてエポキシ樹脂、ビスマレイミド樹脂、オキセタン樹脂、ベンゾオキサジン樹脂、ポリエステル樹脂、ビニル樹脂、シアネートエステル樹脂などから構成される熱硬化性樹脂が挙げられる。前記熱硬化性樹脂は、適時選択して1種あるいは2種以上を混合して用いることができる。 The thermosetting resin used as the component [B] of the present invention is not particularly limited, but for example, mainly epoxy resin, bismaleimide resin, oxetane resin, benzoxazine resin, polyester resin, vinyl resin, cyanate ester resin, and the like. The thermosetting resin comprised from these is mentioned. The said thermosetting resin can be selected suitably and can be used 1 type or in mixture of 2 or more types.

熱硬化性樹脂として好ましいのは、エポキシ樹脂である。エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができ、特に限定されるものではない。具体的には、例えば、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン(例として、ジャパンエポキシレジン社製jER604、住友化学社製スミエポキシELM−434、同ELM−120、旭チバ社製アラルダイトMY9634、同MY−720、東都化成製エポトートYH434)、N,N,O−トリグリシジル−p−アミノフェノール(例として、住友化学社製スミエポキシELM−100)等のグリシジルアミノ基を有する多官能エポキシ樹脂、ビスフェノール型エポキシ樹脂、アルコール型エポキシ樹脂、ヒドロフタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、脂環型エポキシ樹脂等の2官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂等の多官能エポキシ樹脂が挙げられる。更に、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂等の各種変性エポキシ樹脂も用いることができる。好ましいものとしては、前記のグリシジルアミノ基を有する多官能エポキシ樹脂の他に、ビスフェノール型エポキシ樹脂、脂環型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ウレタン変性ビスフェノールAエポキシ樹脂が挙げられる。 An epoxy resin is preferable as the thermosetting resin. A conventionally well-known epoxy resin can be used as an epoxy resin, It does not specifically limit. Specifically, for example, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (for example, jER604 manufactured by Japan Epoxy Resin, Sumiepoxy ELM-434 manufactured by Sumitomo Chemical Co., Ltd., ELM-120 manufactured by Asahi Ciba Co., Ltd.) Multifunctionals having a glycidylamino group such as Araldite MY9634, MY-720, Etoto YH434 manufactured by Tohto Kasei), N, N, O-triglycidyl-p-aminophenol (for example, Sumitomo Chemical Co., Ltd. Sumiepoxy ELM-100) Epoxy resin, bisphenol type epoxy resin, alcohol type epoxy resin, hydrophthalic acid type epoxy resin, dimer acid type epoxy resin, alicyclic epoxy resin, etc. bifunctional epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, etc. Novolac type Polyfunctional epoxy resins such as epoxy resins. Furthermore, various modified epoxy resins such as urethane-modified epoxy resin and rubber-modified epoxy resin can also be used. Preferable examples include bisphenol type epoxy resins, alicyclic epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, and urethane-modified bisphenol A epoxy resins in addition to the above-mentioned polyfunctional epoxy resins having a glycidylamino group. Can be mentioned.

ビスフェノール型エポキシ樹脂としては、ビスフェノールA型樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、ビスフェノールS型樹脂等が挙げられる。更に具体的には、市販の樹脂として、ジャパンエポキシレジン社製jER815、同jER828、同jER834、同jER1001、同jER807、三井石油化学製エポミックR−710、大日本インキ化学工業製EXA1514等を例示できる。 Examples of the bisphenol type epoxy resin include bisphenol A type resin, bisphenol F type resin, bisphenol AD type resin, bisphenol S type resin and the like. More specifically, examples of commercially available resins include Japan Epoxy Resin's jER815, jER828, jER834, jER1001, jER807, Mitsui Petrochemical's Epomic R-710, Dainippon Ink and Chemicals' EXA1514, and the like. .

脂環型エポキシ樹脂としては、市販の樹脂として、旭チバ社製アラルダイトCY−179、同CY−178、同CY−182、同CY−183等が例示される。フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン社製jER152、同jER154、ダウケミカル社製DEN431、同DEN485、同DEN438、大日本インキ化学工業製エピクロンN740等が例示される。また、クレゾールノボラック型エポキシ樹脂としては、旭チバ社製アラルダイトECN1235、同ECN1273、同ECN1280、日本化薬製EOCN102、同EOCN103、同EOCN104等を例示できる。
更に、ウレタン変性ビスフェノールAエポキシ樹脂としては、旭電化製アデカレジンEPΜ−6、同EPΜ−4等が例示できる。
Examples of the alicyclic epoxy resin include Araldite CY-179, CY-178, CY-182 and CY-183 manufactured by Asahi Ciba Co., Ltd. as commercially available resins. Examples of the phenol novolac type epoxy resin include jER152 and jER154 manufactured by Japan Epoxy Resin, DEN431 and DEN485 and DEN438 manufactured by Dow Chemical Co., and Epicron N740 manufactured by Dainippon Ink and Chemicals, Inc. Examples of the cresol novolac epoxy resin include Araldite ECN1235, ECN1273, ECN1280, Nippon Kayaku EOCN102, EOCN103, and EOCN104 manufactured by Asahi Ciba.
Furthermore, examples of the urethane-modified bisphenol A epoxy resin include Adeka Resin EP IV-6 and EP IV-4 manufactured by Asahi Denka.

本発明においては、エポキシ樹脂が、少なくとも3官能以上のエポキシ樹脂を含むものであるのが好ましい。3つの官能基を有するエポキシ樹脂としては、住友化学社製のELM−100、ELM−120、YX−4、ハンツマン社製のMY0510、大日本インキ社製
EXD506等が挙げられる。
In the present invention, it is preferable that the epoxy resin contains at least a trifunctional or higher functional epoxy resin. Examples of the epoxy resin having three functional groups include Sumitomo Chemical's ELM-100, ELM-120, YX-4, Hunt05's MY0510, Dainippon Ink's EXD506, and the like.

本発明において、成分[B]の熱硬化性樹脂は、成分[A]の熱可塑性複合微粒子に用いた熱可塑性樹脂を溶解しないことが好ましい。本発明において、熱硬化性樹脂が熱可塑性樹脂を溶解しないとは、熱可塑性樹脂をペレット、粉砕物若しくはパウダー状で熱硬化樹脂中に投入し、硬化温度以下で撹拌した際に、粒子の大きさが変化しない場合をいう。 In the present invention, the thermosetting resin of component [B] preferably does not dissolve the thermoplastic resin used for the thermoplastic composite fine particles of component [A]. In the present invention, the fact that the thermosetting resin does not dissolve the thermoplastic resin means that the thermoplastic resin is put into the thermosetting resin in the form of pellets, pulverized material or powder and stirred when the temperature is lower than the curing temperature. This is the case where the value does not change.

成分[B]の熱硬化性樹脂が溶解しない成分[A]の熱可塑性樹脂としては、例えば、熱硬化性樹脂としてグリシジルアミノ基を有する多官能エポキシ樹脂を用いた場合、ポリエーテルエーテルケトン(PEEK)や、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアミドイミド(PAI)、ナイロン6、ナイロン12、非晶性ナイロン(TR−55)、非晶性ポリイミド(PIXA−M)などのポリアミド等が挙げられる。 As the thermoplastic resin of component [A] in which the thermosetting resin of component [B] does not dissolve, for example, when a polyfunctional epoxy resin having a glycidylamino group is used as the thermosetting resin, polyether ether ketone (PEEK) ), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyamideimide (PAI), nylon 6, nylon 12, amorphous nylon (TR-55), polyamide such as amorphous polyimide (PIXA-M) Etc.

成分
[C]の硬化剤としては、特に限定されるものではない。例えば、エポキシ樹脂は、通常、公知の硬化剤と共に用いられるが、本発明においても同様である。本発明で用いられる硬化剤は、通常、エポキシ樹脂の硬化剤として用いられるものなら何でもよいが、芳香族アミン系硬化剤が好ましい。具体的には、例えば、ジアミノジフェニルスルホン(DDS)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルエーテル(DPE)、フェニレンジアミンが例示される。これらは単独で使用してもよく、あるいは2種以上の混合物として使用しても良いが、耐熱性を付与する点でDDSが好ましい。また、芳香族アミン系硬化剤は、例えば、メラニン樹脂などによりマイクロカプセル化されたものを用いることもできる。芳香族アミン系硬化剤を本発明のエポキシ樹脂組成物に含ませることにより、エポキシ樹脂組成物の硬化物に高い耐熱性を発現させることができる。
component
The curing agent for [C] is not particularly limited. For example, an epoxy resin is usually used with a known curing agent, but the same applies to the present invention. The curing agent used in the present invention may be anything as long as it is usually used as a curing agent for epoxy resins, but an aromatic amine curing agent is preferred. Specific examples include diaminodiphenylsulfone (DDS), diaminodiphenylmethane (DDM), diaminodiphenyl ether (DPE), and phenylenediamine. These may be used singly or as a mixture of two or more, but DDS is preferable in terms of imparting heat resistance. Moreover, what was microencapsulated with the melanin resin etc. can also be used for an aromatic amine type hardening | curing agent, for example. By including an aromatic amine curing agent in the epoxy resin composition of the present invention, high heat resistance can be expressed in the cured product of the epoxy resin composition.

また、熱硬化性樹脂として、エポキシ樹脂以外の樹脂、たとえば芳香族ビスマレイミドやアルケニルフェノールなどを用いた場合も同様である。硬化剤の配合量は、硬化促進剤の有無と添加量、熱硬化樹脂との化学反応量論及び組成物の硬化速度などを考慮して、適宜、所望の配合量で用いることができるが、本発明においては、熱硬化性樹脂組成物中の前記硬化剤(成分[C])の混合割合が、熱硬化性樹脂組成物中の熱硬化性樹脂(前記成分[B])の量を100重量部としたとき、20〜50重量部であるのが適当であり、特に10〜40重量部であるのが好ましい。 The same applies to the case where a resin other than an epoxy resin such as an aromatic bismaleimide or alkenylphenol is used as the thermosetting resin. The blending amount of the curing agent can be appropriately used in a desired blending amount in consideration of the presence or absence and addition amount of the curing accelerator, the chemical reaction stoichiometry with the thermosetting resin, and the curing rate of the composition. In the present invention, the mixing ratio of the curing agent (component [C]) in the thermosetting resin composition is the amount of the thermosetting resin (component [B]) in the thermosetting resin composition is 100. When it is given as parts by weight, it is suitably 20 to 50 parts by weight, particularly preferably 10 to 40 parts by weight.

成分
[D]、即ち、成分[A]以外の熱可塑性樹脂としては、熱硬化性樹脂組成物中の熱硬化性樹脂(前記成分[B])の量を100重量部としたとき、5〜80重量部、好ましくは5〜50重量部の範囲で用いられる。かかる熱可塑性樹脂[D]は、例えば、熱硬化性樹脂組成物の硬化過程で熱硬化性樹脂に溶解し、樹脂組成物の粘度を増加させ、熱硬化性樹脂組成物の粘度の低下を防ぐ効果がある。また、これらの熱可塑性樹脂は、熱硬化性樹脂に一部又は全量を分散させて用いることもできる。
component
[D], that is, the thermoplastic resin other than the component [A] is 5 to 80 when the amount of the thermosetting resin (the component [B]) in the thermosetting resin composition is 100 parts by weight. Part by weight, preferably 5 to 50 parts by weight is used. Such a thermoplastic resin [D] dissolves in the thermosetting resin during the curing process of the thermosetting resin composition, for example, increases the viscosity of the resin composition, and prevents a decrease in the viscosity of the thermosetting resin composition. effective. Moreover, these thermoplastic resins can also be used by disperse | distributing one part or all quantity to a thermosetting resin.

熱可塑性樹脂[D]としては、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)に代表される熱可塑性樹脂のほか、熱可塑性ポリイミド、ポリスルフォン、ポリカーボネート、ポリエーテルエーテルケトンや、アリレート、ポリエステルカーボネート等が挙げられる。この中でも、熱可塑性ポリイミド、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリスルフォンは耐熱性の観点からより好ましい例として挙げることができる。 As the thermoplastic resin [D], in addition to thermoplastic resins represented by polyethersulfone (PES) and polyetherimide (PEI), thermoplastic polyimide, polysulfone, polycarbonate, polyetheretherketone, arylate, polyester And carbonate. Among these, thermoplastic polyimide, polyetherimide (PEI), polyethersulfone (PES), and polysulfone can be mentioned as more preferable examples from the viewpoint of heat resistance.

本発明において、前記の成分[A]以外の熱可塑性樹脂[D]の配合量が、熱硬化性樹脂100重量部に対して5重量部より少ないと、得られるプリプレグ及び複合材料の耐衝撃性が不十分になる。80重量部を超えると、樹脂組成の粘度が高くなり成形性・取扱性の劣るものとなる場合がある。前述のように、好ましくは、10〜80重量部であり、更に好ましくは20〜50重量部である。 In the present invention, when the amount of the thermoplastic resin [D] other than the component [A] is less than 5 parts by weight with respect to 100 parts by weight of the thermosetting resin, the impact resistance of the resulting prepreg and composite material Becomes insufficient. If it exceeds 80 parts by weight, the viscosity of the resin composition becomes high and the moldability and handleability may be inferior. As mentioned above, Preferably it is 10-80 weight part, More preferably, it is 20-50 weight part.

本発明の熱硬化性樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、適宜、上述の成分以外の硬化促進剤、反応性希釈剤、充填剤、老化防止剤、難燃剤、顔料等の各種添加剤を含有していてもよい。硬化促進剤としては、酸無水物、ルイス酸、ジシアンジアミドやイミダゾール類の如く塩基性硬化剤、尿素化合物、有機金属塩等が挙げられる。より具体的には、酸無水物としては、無水フタル酸、トリメリット酸無水物、無水ピロメリット酸等が例示される。ルイス酸としては、三フッ化ホウ素塩類が例示され、更に詳細には、BF3モノエチルアミン、BF3 ベンジルアミン等が例示される。イミダゾール類としては、2−エチル−4−メチルイミダゾール、2−エチルイミダゾール、2,4−ジメチルイミダゾール、2−フェニルイミダゾールが例示される。また、尿素化合物である3−[3,4−ジクロロフェニル]−1,1−ジメチル尿素等や、有機金属塩であるCo[III]アセチルアセトネート等を例示することができる。反応性希釈剤としては、例えば、ポリプロピレンジグリコール・ジグリシジルエーテル、フェニルグリシジルエーテル等の反応性希釈剤が例示される。 The thermosetting resin composition of the present invention is within a range that does not impair the effects of the present invention, and as necessary, a curing accelerator other than the above-mentioned components, a reactive diluent, a filler, an anti-aging agent, a difficulty Various additives such as a flame retardant and a pigment may be contained. Examples of the curing accelerator include basic curing agents such as acid anhydrides, Lewis acids, dicyandiamides and imidazoles, urea compounds, and organic metal salts. More specifically, examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Examples of the Lewis acid include boron trifluoride salts, and more specifically, BF 3 monoethylamine, BF 3 benzylamine, and the like. Examples of imidazoles include 2-ethyl-4-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, and 2-phenylimidazole. Moreover, 3- [3,4-dichlorophenyl] -1,1-dimethylurea, which is a urea compound, Co [III] acetylacetonate, which is an organometallic salt, and the like can be exemplified. Examples of the reactive diluent include reactive diluents such as polypropylene diglycol / diglycidyl ether and phenyl glycidyl ether.

本発明の熱硬化性樹脂組成物の製造方法は、特に限定されるものではなく、従来公知のいずれの方法を用いてもよい。例えば、樹脂組成物製造時に適用される混練温度としては、10〜160℃の範囲が例示できる。160℃を超えると樹脂成分の熱劣化や、部分的な硬化反応が開始し、得られる熱硬化性樹脂組成物並びにそれを用いたプリプレグの保存安定性が低下する場合がある。10℃より低いと樹脂組成物の粘度が高く、実質的に混練が困難となる場合がある。好ましくは20〜130℃であり、更に好ましくは30〜110℃の範囲である。 The method for producing the thermosetting resin composition of the present invention is not particularly limited, and any conventionally known method may be used. For example, the kneading temperature applied during the production of the resin composition can be in the range of 10 to 160 ° C. If it exceeds 160 ° C., the resin component may be thermally deteriorated or a partial curing reaction may be started, and the storage stability of the resulting thermosetting resin composition and the prepreg using the composition may be lowered. If it is lower than 10 ° C., the viscosity of the resin composition is high, and it may be difficult to knead substantially. Preferably it is 20-130 degreeC, More preferably, it is the range of 30-110 degreeC.

混練機械装置としては、従来公知のものを用いることができる。具体的な例としては、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を供えた混合容器、横型混合槽などが挙げられる。各成分の混練は、大気中又は不活性ガス雰囲気下にて行うことができる。また、特に大気中で混練が行われる場合は、温度、湿度管理された雰囲気が好ましい。特に限定されるものではないが、例えば、30℃以下にて一定温度に管理された温度や、相対湿度50%RH以下といった低湿度雰囲気にて混練されるのが好ましい。 A conventionally well-known thing can be used as a kneading machine apparatus. Specific examples include a roll mill, a planetary mixer, a kneader, an extruder, a Banbury mixer, a mixing container provided with a stirring blade, a horizontal mixing tank, and the like. The kneading of each component can be performed in the air or in an inert gas atmosphere. In particular, when kneading is performed in the air, an atmosphere in which temperature and humidity are controlled is preferable. Although not particularly limited, for example, it is preferable to knead in a low humidity atmosphere such as a temperature controlled at a constant temperature of 30 ° C. or lower or a relative humidity of 50% RH or lower.

各成分の混練は一段で行われても、逐次添加することにより多段的に行われても良い。また、逐次添加する場合は、任意の順序で添加することができる。また、成分[A]以外の熱可塑性樹脂[D]については、その一部又は全量を予め、成分[B]に溶解せしめた後に、供することもできる。また、特に限定するものではないが、混練・添加順序として硬化剤を最後に添加することが、得られる熱硬化性樹脂組成物及びにそれからなるプリプレグの保存安定性の観点から、好ましい。 The kneading of each component may be performed in a single stage, or may be performed in multiple stages by sequential addition. Moreover, when adding sequentially, it can add in arbitrary orders. Moreover, about thermoplastic resin [D] other than component [A], the part or whole quantity can also be provided after making it melt | dissolve in component [B] previously. Moreover, although it does not specifically limit, it is preferable from a viewpoint of the storage stability of the thermosetting resin composition obtained and a prepreg consisting thereof to add a hardening | curing agent last as a kneading | mixing and addition order.

次に、本発明の他の態様であるプリプレグについて説明する。本発明のプリプレグとは、上記の如くして得られる耐湿熱特性に優れた本発明の熱硬化性樹脂組成物を、シート状の繊維強化材に含浸させてなるプリプレグである。本発明のプリプレグに用いられる繊維強化材としては、炭素繊維、ガラス繊維、芳香族ポリアミド繊維、ポリイミド繊維、ポリベンゾオキサゾール繊維、全芳香族ポリエステル繊維などが挙げられる。これらは、単独又は、二種以上を併用することができる。特に限定されるものではないが、複合材料の機械的性質を向上させるためには、引っ張り強度に優れる炭素繊維を用いることが好ましい。また、繊維強化材の形態は、織物、多軸織物、一方向引き揃え物等のシート状のものが好ましい。 Next, a prepreg which is another embodiment of the present invention will be described. The prepreg of the present invention is a prepreg obtained by impregnating a sheet-like fiber reinforcing material with the thermosetting resin composition of the present invention having excellent wet heat resistance obtained as described above. Examples of the fiber reinforcing material used in the prepreg of the present invention include carbon fiber, glass fiber, aromatic polyamide fiber, polyimide fiber, polybenzoxazole fiber, wholly aromatic polyester fiber, and the like. These can be used alone or in combination of two or more. Although not particularly limited, in order to improve the mechanical properties of the composite material, it is preferable to use carbon fibers having excellent tensile strength. The form of the fiber reinforcing material is preferably a sheet-like material such as a woven fabric, a multiaxial woven fabric, and a unidirectionally aligned product.

本発明のプリプレグは、構成する熱硬化性樹脂組成物含有率(RC)が15〜70重量%であることが好ましい。15重量%より少ないと、得られる複合材料に空隙などが発生し、機械特性を低下させる場合がある。70重量%を超えると強化繊維による補強効果が不十分となり、実質的に重量対比機械特性が低いものとなる場合がある。好ましくは20〜60量%の範囲であり、より好ましくは30〜50重量%の範囲である。ここでいう熱硬化性樹脂組成物含有率(RC)とは、プリプレグの樹脂を硫酸分解にて分解させた場合における重量変化から算出される割合である。より具体的には、プリプレグを100mm×100mmに切り出して試験片を作成し、その重量を測定し、硫酸中で樹脂分が溶出するまで、浸漬または煮沸を行い、ろ過して残った繊維を水で洗浄し、乾燥してからその質量を測定し、算出することによって得られる値である。 The prepreg of the present invention preferably has a constituent thermosetting resin composition content (RC) of 15 to 70% by weight. If it is less than 15% by weight, voids or the like are generated in the obtained composite material, and the mechanical properties may be deteriorated. If it exceeds 70% by weight, the reinforcing effect by the reinforcing fibers becomes insufficient, and the mechanical properties in comparison with weight may be substantially low. Preferably it is the range of 20-60 mass%, More preferably, it is the range of 30-50 weight%. The thermosetting resin composition content (RC) here is a ratio calculated from a change in weight when the resin of the prepreg is decomposed by sulfuric acid decomposition. More specifically, a prepreg is cut out to 100 mm × 100 mm to prepare a test piece, its weight is measured, and the resin remaining in the sulfuric acid is immersed or boiled until the resin component is eluted, and the fiber remaining after filtration is washed with water. It is a value obtained by measuring and calculating the mass after washing with, and drying.

また、特に限定されるものではないが、具体的なプリプレグの好ましい形態としては、例えば、強化繊維及び前記強化繊維間に含浸された樹脂組成物からなる強化繊維層と、前記強化繊維層表面に被覆された樹脂被覆層とからなり、樹脂被覆層の厚みが2〜50μmであるものが例示される。2μm未満の場合、タック性が不十分となり、プリプレグの成形加工性が著しく低下する場合がある。50μmを超えると、プリプレグを均質な厚みでロール状に巻き取ることが困難となり、成形精度が著しく低下する場合がある。より好ましくは、5〜45μmであり、更に好ましくは10〜40μmである。 Further, although not particularly limited, as a specific preferred form of the prepreg, for example, a reinforcing fiber layer composed of a reinforcing fiber and a resin composition impregnated between the reinforcing fibers, and a surface of the reinforcing fiber layer It is composed of a coated resin coating layer, and the thickness of the resin coating layer is 2 to 50 μm. When the thickness is less than 2 μm, tackiness becomes insufficient, and the molding processability of the prepreg may be significantly lowered. If it exceeds 50 μm, it will be difficult to wind the prepreg into a roll with a uniform thickness, and the molding accuracy may be significantly reduced. More preferably, it is 5-45 micrometers, More preferably, it is 10-40 micrometers.

航空機用複合材料が具備すべき特性の一つに、層間破壊靭性が挙げられる。層間破壊靭性とは、所定の方法でクラックを作製した供試体に荷重を付与し、クラックの生成に必要なエネルギー量を計測することで、供試体の破壊靱性を評価する手法である。層間破壊靭性は、その変形様式に応じてモードI(開口型)、モードII(面内せん断型)、モードIII(面外せん断型)に分類される。そのうち、航空機用複合材料として特に重要な特性は、モードIIの層間破壊靭性(GIIc)である。上記の如き構成の本発明の熱硬化性樹脂組成物を用いることによって、GIIcの高い、即ち、靭性に優れる硬化物が得られる。本発明においては、成形・硬化して得られる複合材料のGIIcが、2500J/m以上となるようなプリプレグが特に好ましい。ここでいうGIIcは、EN6034に準拠し測定した値である。 One of the characteristics that an aircraft composite material should have is interlaminar fracture toughness. Interlaminar fracture toughness is a technique for evaluating the fracture toughness of a specimen by applying a load to the specimen that has been cracked by a predetermined method and measuring the amount of energy required to generate the crack. Interlaminar fracture toughness is classified into mode I (opening type), mode II (in-plane shear type), and mode III (out-of-plane shear type) depending on the deformation mode. Among them, a particularly important characteristic as an aircraft composite material is mode II interlaminar fracture toughness (GIIc). By using the thermosetting resin composition of the present invention having the above-described configuration, a cured product having a high GIIc, that is, excellent toughness can be obtained. In the present invention, a prepreg in which the composite material obtained by molding and curing has a GIIc of 2500 J / m 2 or more is particularly preferable. GIIc here is a value measured according to EN6034.

本発明のプリプレグの製法は、特に限定されるものではなく、従来公知のいかなる方法を用いて製造することができる。例えば、上記本発明の熱硬化性樹脂組成物を、離型紙の上に薄いフィルム状に塗布し、剥離して得られた樹脂フィルムを、シート状の繊維強化材に積層成形して熱硬化性樹脂組成物を含浸させる、いわゆるホットメルト法や、熱硬化性樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを繊維強化材シートに含浸させる溶剤法が挙げられる。この中でも、特に本発明のプリプレグは、従来公知の製造方法であるホットメルト法により、好適に製造することができる。 The manufacturing method of the prepreg of this invention is not specifically limited, It can manufacture using any conventionally well-known method. For example, the above-mentioned thermosetting resin composition of the present invention is applied to a release paper in a thin film shape, and the resin film obtained by peeling is laminated and formed on a sheet-like fiber reinforcing material to be thermosetting. Examples thereof include a so-called hot melt method in which the resin composition is impregnated and a solvent method in which the thermosetting resin composition is made into a varnish using an appropriate solvent and the fiber reinforced material sheet is impregnated with the varnish. Among these, the prepreg of the present invention can be particularly preferably produced by a hot melt method which is a conventionally known production method.

本発明の熱硬化性樹脂組成物を、樹脂フィルム又はシートにする方法としては、特に限定されるものではなく、従来公知のいずれの方法を用いることもできる。より具体的には、ダイ押し出し、アプリケーター、リバースロールコーター、コンマコーターなどにより、離型紙、フィルムなどの支持体上に流延、キャストをすることにより得ることが出来る。フィルム又はシート化の際の樹脂温度としては、その樹脂組成・粘度に応じて適宜設定可能であるが、前述の熱硬化性樹脂組成物の製造方法における混練温度と同じ条件が好適に用いることができる。 The method for forming the thermosetting resin composition of the present invention into a resin film or sheet is not particularly limited, and any conventionally known method can be used. More specifically, it can be obtained by casting and casting on a support such as release paper or film by die extrusion, applicator, reverse roll coater, comma coater or the like. The resin temperature at the time of forming a film or a sheet can be appropriately set according to the resin composition / viscosity, but the same conditions as the kneading temperature in the method for producing the thermosetting resin composition described above are preferably used. it can.

樹脂シートをシート状の繊維強化材へ含浸させる際の含浸加圧は、その樹脂組成物の粘度・樹脂フローなどを勘案し、任意の圧力を用いることが出来る。樹脂シートの繊維強化材シートへの含浸温度は、50〜150℃の範囲である。50℃未満の場合、樹脂シートの粘度が高く、繊維強化材シートの中へ十分含浸しない場合がある。150℃以上の場合、樹脂組成物の硬化反応が開始され、プリプレグの保存安定性が低下したり、ドレープ性が低下したりする場合がある。好ましくは、60〜145℃であり、より好ましくは70〜140℃である。また、含浸は1回ではなく、複数回に分けて任意の圧力と温度にて、多段的に行うこともできる。 The impregnation pressurization when the resin sheet is impregnated into the sheet-like fiber reinforcing material may be any pressure in consideration of the viscosity, resin flow, etc. of the resin composition. The impregnation temperature of the resin sheet into the fiber reinforcement sheet is in the range of 50 to 150 ° C. When the temperature is lower than 50 ° C., the viscosity of the resin sheet is high, and the fiber reinforcing material sheet may not be sufficiently impregnated. When the temperature is 150 ° C. or higher, the curing reaction of the resin composition is started, and the storage stability of the prepreg may be reduced, or the drapeability may be reduced. Preferably, it is 60-145 degreeC, More preferably, it is 70-140 degreeC. Further, the impregnation can be performed in multiple stages at an arbitrary pressure and temperature in a plurality of times instead of once.

かかる手段により得られるプリプレグを用いて、積層等の成形並びに硬化せしめて製造される複合材料は、高い耐湿熱特性を有し、更に優れた耐衝撃性を有しており、航空機用構造材料用途へと好適なものである。 A composite material produced by molding and curing such as lamination using a prepreg obtained by such means has high moisture and heat resistance properties, and further has excellent impact resistance. This is suitable.

以下、実施例により本発明を更に詳細に説明する。本実施例、比較例において樹脂組成物の各種試験方法は下記の方法に従って行った。 Hereinafter, the present invention will be described in more detail with reference to examples. In the examples and comparative examples, various test methods for resin compositions were performed according to the following methods.

[複合微粒子表面のクレーター直径測定]
複合微粒子の表面に存在するクレーター状の穴の直径は走査型電子顕微鏡(SEM)を用いて観察し求めた。
[Measurement of crater diameter on the surface of composite particles]
The diameter of the crater-like hole existing on the surface of the composite fine particle was determined by observation using a scanning electron microscope (SEM).

[複合微粒子の平均粒子径測定]
複合微粒子の粒子径及び粒度分布測定は、日機装株式会社製の粒子径・粒度分布測定装置を用いて行った。測定条件は分散媒を水とし、測定に十分な散乱光が得られる量サンプルを加え、吸収モードで30秒測定を行い体積平均粒子径を粒子径とした。
[Measurement of average particle size of composite fine particles]
The particle size and particle size distribution of the composite fine particles were measured using a particle size / particle size distribution measuring apparatus manufactured by Nikkiso Co., Ltd. The measurement conditions were such that the dispersion medium was water, an amount sample capable of obtaining scattered light sufficient for measurement was added, measurement was performed in absorption mode for 30 seconds, and the volume average particle size was defined as the particle size.

[層間破壊靭性(GIIc)の測定]
靭性の指標として、GIIcの評価をEN6034に準拠し測定した。所定の方法により得られたプリプレグをカットし、0°方向に8層積層した積層体を2つ作製した。初期クラックを発生されるための離型フィルムを、2つの積層体の間にはさみ、両者を組み合わせ、積層構成[0]16の厚さ約3mmのプリプレグ積層体を得た。真空オートクレーブ成形法を用い、0.49MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅25.0mm
× 長さ110mm以上の寸法に切断し、GIIcの試験片を得た。この試験片を用いて、GIIc試験を行った。
[Measurement of Interlaminar Fracture Toughness (GIIc)]
As an index of toughness, evaluation of GIIc was measured according to EN6034. Two prepregs obtained by cutting a prepreg obtained by a predetermined method and laminating eight layers in the 0 ° direction were produced. A release film for generating an initial crack was sandwiched between the two laminates, and both were combined to obtain a prepreg laminate having a laminate configuration [0] 16 of about 3 mm in thickness. Using a vacuum autoclave molding method, molding was performed at 180 ° C. for 2 hours under a pressure of 0.49 MPa. The obtained molded product has a width of 25.0 mm.
X Cut to a length of 110 mm or more to obtain a GIIc test piece. A GIIc test was performed using this test piece.

離型フィルムにより作製したクラックが、支点から35±1mmとなる位置に試験片を配置し、1mm/minの速度で曲げの負荷をかけGIIc試験を実施した。 A test piece was placed at a position where the crack produced by the release film was 35 ± 1 mm from the fulcrum, and a bending load was applied at a speed of 1 mm / min, and the GIIc test was performed.

[ガラス転移温度(ホット/ウエット条件)測定]
耐湿熱性の指標として、ガラス転移温度を、EN6032に準拠しDMA測定より求めた。所定の方法により得られたプリプレグをカットし0°方向に16層積層した約3mmの積層体を得た。真空オートクレーブ成形法を用い、0.49MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅5mm
× 長さ50mmの寸法に切断し試験片を得た。この試験片を71℃の水に2週間サンプルを浸漬させ吸湿させた。取り出し後、DMA測定装置((株)ユービーエム社製Rheogel−E4000)を用いて、3点曲げにて3℃/分の昇温速度、周波数1Hzの歪をかけて樹脂組成物を測定して得られる、損失粘弾性(E”)のピーク温度である。
[Glass transition temperature (hot / wet condition) measurement]
As an index of heat and humidity resistance, the glass transition temperature was determined by DMA measurement according to EN6032. A prepreg obtained by a predetermined method was cut to obtain a laminate of about 3 mm in which 16 layers were laminated in the 0 ° direction. Using a vacuum autoclave molding method, molding was performed at 180 ° C. for 2 hours under a pressure of 0.49 MPa. The resulting molded product is 5 mm wide.
X A test piece was obtained by cutting to a length of 50 mm. The specimen was immersed in water at 71 ° C. for 2 weeks to absorb moisture. After taking out, the resin composition was measured using a DMA measuring apparatus (Rheogel-E4000 manufactured by UBM Co., Ltd.) by applying a temperature rise rate of 3 ° C./min and a strain of a frequency of 1 Hz by three-point bending. It is the peak temperature of loss viscoelasticity (E ″) obtained.

[実施例1]
成分[A]用の熱可塑性樹脂として、ポリアミドイミド・トーロン4000T(ソルベイアドバンストポリマーズ社製)を27重量部、シリコーン樹脂微粒子としてトスパール130(平均粒子径3μm)(モメンティブ・パフォーマンス・マテリアルズ社製)を3重量部用いた。これを栗本鐵工所製卓上二軸混練機KRS−S1を用いて230℃で混練し、ポリアミドイミド・シリコーン樹脂からなる複合樹脂を得た。この複合樹脂を、ジェットミルを用いて粉砕した。同時に風力分級を行うことにより、表面のシリコーン樹脂微粒子を取り除き、平均粒子径が30μmの複合微粒子を得た。微粒子表面の状態を電子顕微鏡で観察したところ、表面に平均直径が約2μmのクレーターが存在していた。
[Example 1]
27 parts by weight of polyamideimide Torlon 4000T (manufactured by Solvay Advanced Polymers) as the thermoplastic resin for component [A], and Tospearl 130 (average particle diameter of 3 μm) as silicone resin fine particles (manufactured by Momentive Performance Materials) 3 parts by weight was used. This was kneaded at 230 ° C. using a desktop biaxial kneader KRS-S1 manufactured by Kurimoto Shokosho to obtain a composite resin composed of polyamideimide / silicone resin. This composite resin was pulverized using a jet mill. Simultaneously with wind classification, the surface silicone resin fine particles were removed, and composite fine particles having an average particle size of 30 μm were obtained. When the surface state of the fine particles was observed with an electron microscope, a crater having an average diameter of about 2 μm was present on the surface.

成分[B]の熱硬化性樹脂として、グリシジルアミノ基を有する多官能エポキシ樹脂(ジャパンエポキシレジン社製jER604)を65重量部、ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン社製jER828)を15重量部、ウレタン変性ビスフェノールA型エポキシ樹脂(旭電化製アデカレジンEPU−6)を20重量部の配合比で用いた。 成分[C]の硬化剤として、芳香族アミン系硬化剤である、4,4’−ジアミノジフェニルスルホン(4,4’−DDS)(和歌山精化社製)を40重量部、成分[D]の熱可塑性樹脂として、ポリエーテルスルホン(平均粒子径10μm)(住友化学製スミカエクセルPES5003P)を35重量部用いた。 As a thermosetting resin of the component [B], 65 parts by weight of a polyfunctional epoxy resin having a glycidylamino group (Japan Epoxy Resin Co., Ltd. jER604), bisphenol type epoxy resin (Japan Epoxy Resin Co., Ltd. jER828) 15 parts by weight, Urethane-modified bisphenol A type epoxy resin (Adeka Resin EPU-6 manufactured by Asahi Denka) was used at a blending ratio of 20 parts by weight. As a curing agent for component [C], 40 parts by weight of 4,4′-diaminodiphenylsulfone (4,4′-DDS) (manufactured by Wakayama Seika Co., Ltd.), which is an aromatic amine curing agent, and component [D] As a thermoplastic resin, 35 parts by weight of polyethersulfone (average particle size: 10 μm) (Sumitomo Chemical Sumika Excel PES5003P) was used.

上記の各種原材料を、表1に示す組成で、以下の手順で配合した。先ず、jER604、jER828及びEPU−6を、ニーダー中にて加熱・混合させた。続いて、得られた樹脂混合物をロールミルに移し、硬化剤成分[C]と熱可塑性樹脂成分[D]、及び複合微粒子成分[A]とを良く混練し、実施例1のエポキシ樹脂組成物を得た。 The various raw materials described above were blended in the following procedure with the compositions shown in Table 1. First, jER604, jER828 and EPU-6 were heated and mixed in a kneader. Subsequently, the obtained resin mixture was transferred to a roll mill, and the curing agent component [C], the thermoplastic resin component [D], and the composite fine particle component [A] were well kneaded to obtain the epoxy resin composition of Example 1. Obtained.

上記で得られたエポキシ樹脂組成物を用いて、以下の手順でプリプレグを作成した。実施例1で得られた樹脂組成物を、フィルムコーターにて60℃にて流延し、樹脂フィルムを作成した。この樹脂フィルムを、東邦テナックス社製の炭素繊維のテナックス(東邦テナックス社商標)IMS60・E13・24Kの、一方向繊維強化材(繊維目付190±10g/m)に含浸せしめることにより、樹脂量(RC)35%のプリプレグを得た。 Using the epoxy resin composition obtained above, a prepreg was prepared by the following procedure. The resin composition obtained in Example 1 was cast at 60 ° C. with a film coater to prepare a resin film. By impregnating this resin film with carbon fiber Tenax (trademark of Toho Tenax Co., Ltd.) IMS60, E13, 24K manufactured by Toho Tenax Co., Ltd., the unidirectional fiber reinforcing material (fiber basis weight 190 ± 10 g / m 2 ) (RC) A 35% prepreg was obtained.

得られたプリプレグを16枚積層し、オートクレーブ(硬化条件180℃、2時間、5kgf/mm)にて複合材料(成形板)に成形し、層間破壊靭性(GIIc)及びガラス転移温度(Tg)測定用試験片を得た。この試験片を用いて、GIIc試験とTg測定を行いその結果を表1に示した。 Sixteen prepregs obtained were laminated and molded into a composite material (molded plate) with an autoclave (curing conditions 180 ° C., 2 hours, 5 kgf / mm 2 ). Interlaminar fracture toughness (GIIc) and glass transition temperature (Tg) A test specimen for measurement was obtained. Using this test piece, the GIIc test and Tg measurement were performed, and the results are shown in Table 1.

[実施例2]
実施例1と同様にして得られた複合樹脂を、実施例1と同様にジェットミルを用いて粉砕した。その後は、微粒子表面からシリコーン樹脂微粒子を風力分級により除去することなく、平均粒子径が30μmの複合微粒子を得た。微粒子表面の状態を電子顕微鏡で観察したところ、表面に平均直径が約2μmのクレーターが存在していた。この複合微粒子[A]を用いて、その他は実施例1と同様にして複合材料の試験片を調製し、GIIc試験とTg測定を行いその結果を表1に示した。シリコーン樹脂微粒子が単体で存在していることにより、GIIc値が実施例1に比べて低下しているのが分かる。
[Example 2]
The composite resin obtained in the same manner as in Example 1 was pulverized using a jet mill in the same manner as in Example 1. Thereafter, composite fine particles having an average particle diameter of 30 μm were obtained without removing the silicone resin fine particles from the fine particle surface by air classification. When the surface state of the fine particles was observed with an electron microscope, a crater having an average diameter of about 2 μm was present on the surface. Using this composite fine particle [A], a composite material test piece was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. It can be seen that the GIIc value is lower than that of Example 1 due to the presence of the silicone resin fine particles alone.

[実施例3]
成分[A]の熱可塑性樹脂とシリコーン樹脂微粒子は実施例1のものと同じものを用い、但し、配合割合を22.5重量部と2.5重量部に変更して、実施例1と同様な方法で平均粒子径が30μmの複合微粒子[A]を作製した。かかる複合微粒子[A]を25重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。表1より、複合微粒子[A]の減量によりGIIcが低下しているのが分かる。
[Example 3]
The thermoplastic resin and silicone resin fine particles of component [A] are the same as in Example 1, except that the blending ratio is changed to 22.5 parts by weight and 2.5 parts by weight. In this manner, composite fine particles [A] having an average particle diameter of 30 μm were prepared. Using 25 parts by weight of the composite fine particles [A], and using the same amount of the other components as in Example 1, a composite material test piece was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. From Table 1, it can be seen that GIIc is reduced by the reduction of the composite fine particles [A].

[実施例4]
成分[A]の熱可塑性樹脂とシリコーン樹脂微粒子は実施例1のものと同じものを用い、但し、配合割合を31.5重量部と3.5重量部に変更して、実施例1と同様な方法で平均粒子径が30μmの複合微粒子[A]を作製した。かかる複合微粒子[A]を35重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。表1より、複合微粒子[A]の増量の場合には、GIIcの値にあまり影響を与えていないことが分かる(実施例1と4の比較)。
[Example 4]
The thermoplastic resin and silicone resin fine particles of component [A] were the same as those in Example 1, except that the blending ratio was changed to 31.5 parts by weight and 3.5 parts by weight. In this manner, composite fine particles [A] having an average particle diameter of 30 μm were prepared. Using 35 parts by weight of the composite fine particles [A], and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. From Table 1, it can be seen that the increase in the amount of the composite fine particles [A] has little influence on the value of GIIc (comparison between Examples 1 and 4).

[実施例5]
成分[A]の熱可塑性樹脂とシリコーン樹脂微粒子は実施例1のものと同じものを用い、但し、配合割合を29.4重量部と0.6重量部に変更して、実施例1と同様な方法で平均粒子径が30μmの複合微粒子[A]を作製した。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。表1より、複合微粒子[A]に含まれるシリコーン粒子の減量に伴い、複合微粒子として靭性に与える影響が小さくなっていることが分かる(実施例1に比較して靭性が低下)。
[Example 5]
The thermoplastic resin and silicone resin fine particles of component [A] are the same as those in Example 1, except that the blending ratio is changed to 29.4 parts by weight and 0.6 parts by weight. In this manner, composite fine particles [A] having an average particle diameter of 30 μm were prepared. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. From Table 1, it can be seen that the influence on the toughness of the composite fine particles is reduced as the amount of the silicone particles contained in the composite fine particles [A] is reduced (the toughness is reduced as compared with Example 1).

[実施例6]
成分[A]の熱可塑性樹脂とシリコーン樹脂微粒子は実施例1のものと同じものを用い、但し、配合割合を9重量部と21重量部に変更して、実施例1と同様な方法で平均粒子径が30μmの複合微粒子[A]を作製した。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。シリコーン粒子の増量に伴い、複合微粒子として靭性に与える影響が小さくなったことが分かる(実施例1と6の比較)。
[Example 6]
The thermoplastic resin and silicone resin fine particles of component [A] were the same as those in Example 1, except that the blending ratio was changed to 9 parts by weight and 21 parts by weight, and the average was obtained in the same manner as in Example 1. Composite fine particles [A] having a particle size of 30 μm were prepared. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. It can be seen that as the amount of the silicone particles increased, the influence on the toughness of the composite fine particles was reduced (comparison of Examples 1 and 6).

[実施例7]
成分[A]用の熱可塑性樹脂は実施例1のものと同じものを27重量部、シリコーン樹脂微粒子としてはトスパール130(平均粒子径12μm)を3重量部用いた。これを実施例1と同様にして混練し、ポリアミドイミド・シリコーン樹脂からなる複合樹脂を得た。この複合樹脂を、ジェットミルを用いて粉砕した。同時に風力分級を行うことにより、表面のシリコーン樹脂微粒子を取り除き、平均粒子径が30μmの複合微粒子を得た。微粒子表面の状態を電子顕微鏡で観察したところ、表面に平均直径が約1μmのクレーターが存在していた。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。シリコーン粒子の小径化に伴い、複合微粒子として靭性に与える影響には差が無いと言える。
[Example 7]
The thermoplastic resin for component [A] used was 27 parts by weight of the same resin as in Example 1, and 3 parts by weight of Tospearl 130 (average particle size 12 μm) was used as the silicone resin fine particles. This was kneaded in the same manner as in Example 1 to obtain a composite resin composed of polyamideimide / silicone resin. This composite resin was pulverized using a jet mill. Simultaneously with wind classification, the surface silicone resin fine particles were removed, and composite fine particles having an average particle size of 30 μm were obtained. When the surface state of the fine particles was observed with an electron microscope, a crater having an average diameter of about 1 μm was present on the surface. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. It can be said that there is no difference in the influence on the toughness as the composite fine particles with the reduction of the diameter of the silicone particles.

[実施例8]
成分[A]用の熱可塑性樹脂は実施例1のものと同じものを27重量部、シリコーン樹脂微粒子としてはトスパール130(平均粒子径12μm)を3重量部用いた。これを実施例1と同様にして混練し、ポリアミドイミド・シリコーン樹脂からなる複合樹脂を得た。この複合樹脂を、ジェットミルを用いて粉砕した。同時に風力分級を行うことにより、表面のシリコーン樹脂微粒子を取り除き、平均粒子径が30μmの複合微粒子を得た。微粒子表面の状態を電子顕微鏡で観察したところ、表面に平均直径が約10μmのクレーターが存在していた。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。シリコーン粒子の大径化に伴い、複合微粒子として靭性に与える影響が小さくなる(靭性が小さくなる)ものの、複合化していない粒子より、その効果があると言える(後記比較例参照)。
[Example 8]
The thermoplastic resin for component [A] used was 27 parts by weight of the same resin as in Example 1, and 3 parts by weight of Tospearl 130 (average particle size 12 μm) was used as the silicone resin fine particles. This was kneaded in the same manner as in Example 1 to obtain a composite resin composed of polyamideimide / silicone resin. This composite resin was pulverized using a jet mill. Simultaneously with wind classification, the surface silicone resin fine particles were removed, and composite fine particles having an average particle size of 30 μm were obtained. When the surface state of the fine particles was observed with an electron microscope, a crater having an average diameter of about 10 μm was present on the surface. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. Although the influence on the toughness of the composite fine particles decreases as the size of the silicone particles increases (toughness decreases), it can be said that the effect is more effective than the non-composited particles (see Comparative Examples below).

[実施例9]
成分[A]用の熱可塑性樹脂は実施例1のものと同じものを27重量部、シリコーン樹脂微粒子としてはトスパール130(平均粒子径2μm)を3重量部用いた。これを実施例1と同様にして混練し、ポリアミドイミド・シリコーン樹脂からなる複合樹脂を得た。この複合樹脂を、ジェットミルを用いて粉砕した。同時に風力分級を行うことにより、表面のシリコーン樹脂微粒子を取り除き、平均粒子径が5μmの複合微粒子を得た。微粒子表面の状態を電子顕微鏡で観察したところ、表面に平均直径が約1μmのクレーターが存在していた。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。複合微粒子の小径化に伴い、複合微粒子として靭性に与える影響が小さくなるものの、複合化していない粒子より、その効果があると言える(後記比較例参照)。
[Example 9]
27 parts by weight of the same thermoplastic resin as that of Example 1 was used as the component [A], and 3 parts by weight of Tospearl 130 (average particle diameter 2 μm) was used as the silicone resin fine particles. This was kneaded in the same manner as in Example 1 to obtain a composite resin composed of polyamideimide / silicone resin. This composite resin was pulverized using a jet mill. Simultaneously with wind classification, the surface silicone resin fine particles were removed, and composite fine particles having an average particle size of 5 μm were obtained. When the surface state of the fine particles was observed with an electron microscope, a crater having an average diameter of about 1 μm was present on the surface. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. Although the influence on the toughness of the composite fine particles becomes smaller as the composite fine particles become smaller in diameter, it can be said that the effect is more effective than the non-composited particles (see Comparative Examples below).

[実施例10]
成分[A]用の熱可塑性樹脂は実施例1のものと同じものを27重量部、シリコーン樹脂微粒子としてはトスパール130(平均粒子径12μm)を3重量部用いた。これを実施例1と同様にして混練し、ポリアミドイミド・シリコーン樹脂からなる複合樹脂を得た。この複合樹脂を、ジェットミルを用いて粉砕した。同時に風力分級を行うことにより、表面のシリコーン樹脂微粒子を取り除き、平均粒子径が70μmの複合微粒子を得た。微粒子表面の状態を電子顕微鏡で観察したところ、表面に平均直径が約10μmのクレーターが存在していた。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表1に示した。複合微粒子の大径化に伴い、複合微粒子として靭性に与える影響が小さくなるものの、複合化していない粒子より、その効果があると言える。
[Example 10]
The thermoplastic resin for component [A] used was 27 parts by weight of the same resin as in Example 1, and 3 parts by weight of Tospearl 130 (average particle size 12 μm) was used as the silicone resin fine particles. This was kneaded in the same manner as in Example 1 to obtain a composite resin composed of polyamideimide / silicone resin. This composite resin was pulverized using a jet mill. Simultaneously with wind classification, the surface silicone resin fine particles were removed to obtain composite fine particles having an average particle diameter of 70 μm. When the surface state of the fine particles was observed with an electron microscope, a crater having an average diameter of about 10 μm was present on the surface. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 1. Although the influence on the toughness of the composite fine particles decreases as the diameter of the composite fine particles increases, it can be said that the effect is more effective than the non-composited particles.

[比較例1]
実施例1において複合微粒子[A]を除いた熱硬化性樹脂組成物を作製し、実施例1と同様に試験片を調製しGIIc試験を行い、その結果を表2に示した。複合微粒子[A]を含まない場合、得られた複合材料のGIIcは大幅に低下した。
[Comparative Example 1]
A thermosetting resin composition excluding the composite fine particles [A] in Example 1 was prepared, a test piece was prepared in the same manner as in Example 1, and a GIIc test was performed. The results are shown in Table 2. When the composite fine particles [A] were not included, the GIIc of the obtained composite material was significantly reduced.

[比較例2]
ポリアミドイミド・トーロン4000Tのみの微粒子を、実施例1に準じて調製した。この微粒子(平均粒子径が30μm)を電子顕微鏡で観察したところ、表面は平滑でありクレーターは存在しなかった。この微粒子を複合粒子[A]の代わりに30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表2に示した。シリコーン樹脂微粒子と複合化されていないこと、また、表面にクレーター状の孔が存在しないため表面積が小さく、エポキシ樹脂との接着面積が小さいこと、孔内にエポキシ樹脂が入り込むことによるアンカー効果がないことにより、GIIc値が低下したと考えられる(実施例1との比較)。
[Comparative Example 2]
Fine particles of only polyamide-imide Torlon 4000T were prepared according to Example 1. When the fine particles (average particle size was 30 μm) were observed with an electron microscope, the surface was smooth and no crater was present. Using 30 parts by weight of the fine particles instead of the composite particles [A], and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and GIIc Tests and Tg measurements were performed and the results are shown in Table 2. It is not complexed with silicone resin fine particles, and since there are no crater-like holes on the surface, the surface area is small, the adhesion area with the epoxy resin is small, and there is no anchor effect due to the epoxy resin entering into the holes This is considered to have reduced the GIIc value (comparison with Example 1).

[比較例3]
複合微粒子[A]の代わりに、実施例1と同じシリコーン樹脂微粒子・トスパール130(平均粒子径3μm)のみを30重量部を用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表2に示した。シリコーン微粒子のみでは破壊靭性が大幅に低下する。これは表面エネルギーの小さなシリコーン樹脂では、エポキシ樹脂との接着性が弱く、これが欠陥と認識されたことによると考えられる。
[Comparative Example 3]
Instead of the composite fine particles [A], only 30 parts by weight of the same silicone resin fine particles / Tospearl 130 (average particle diameter 3 μm) as in Example 1 were used, and the same amount of other components as in Example 1 was used. A composite test piece was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 2. Fracture toughness is significantly reduced with silicone fine particles alone. This is considered to be due to the fact that a silicone resin with a small surface energy has weak adhesion to an epoxy resin, and this is recognized as a defect.

[比較例4]
複合微粒子[A]の代わりに、比較例2で調製したトーロン4000T微粒子27重量部と、比較例3で用いたトスパール130微粒子3重量部を個別に単独で用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表2に示した。両者を複合化させずに単体で添加した場合では、GIIcが非常に低い値を示している。これは単独で存在するシリコーン樹脂微粒子の影響によるものと考えられる。
[Comparative Example 4]
Instead of the composite fine particles [A], 27 parts by weight of Torlon 4000T fine particles prepared in Comparative Example 2 and 3 parts by weight of Tospearl 130 fine particles used in Comparative Example 3 were used individually, and the other components were as in Example 1. A test piece of composite material was prepared in the same manner as in Example 1 using the same amount as the test sample, and the GIIc test and Tg measurement were performed. The results are shown in Table 2. When both are added alone without being combined, GIIc shows a very low value. This is considered to be due to the influence of the silicone resin fine particles present alone.

[比較例5]
成分[A]の熱可塑性樹脂とシリコーン樹脂微粒子(平均粒子径3μm)は実施例1のものと同じものを用いた。配合割合は熱可塑性樹脂6重量部とシリコーン樹脂24重量部とし、実施例1と同様な方法で平均粒子径が120μmの複合微粒子[A]を作製した。かかる複合微粒子[A]を30重量部用い、その他の成分は実施例1のものと同じものを同じ量だけ用い、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表2に示した。過剰割合のシリコーン粒子を含み、粒子径の大きな複合粒子を用いた場合、GIIcは著しく低い値を示した。
[Comparative Example 5]
The same thermoplastic resin and silicone resin fine particles (average particle diameter 3 μm) as those of Example 1 were used as the component [A]. The blending ratio was 6 parts by weight of thermoplastic resin and 24 parts by weight of silicone resin, and composite fine particles [A] having an average particle size of 120 μm were prepared in the same manner as in Example 1. Using 30 parts by weight of the composite fine particles [A] and using the same amount of the other components as in Example 1, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 2. When composite particles containing an excessive proportion of silicone particles and having a large particle size were used, GIIc was remarkably low.

[比較例6]
実施例1に準じて、但し、成分[D]の熱可塑性樹脂であるPES5003Pを除いた系で、実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表2に示した。PES5003Pの添加が無い場合、GIIcの値は大きく低下した。
[Comparative Example 6]
In accordance with Example 1, except that PES5003P which is the thermoplastic resin of component [D] was removed, a composite specimen was prepared in the same manner as in Example 1, and the GIIc test and Tg measurement were performed. The results are shown in Table 2. When PES5003P was not added, the value of GIIc was greatly reduced.

[比較例7]
成分[B]の熱硬化性樹脂として、2官能エポキシ樹脂であるjER828のみを使用し、その他は実施例1と同様に複合材料の試験片を作成し、GIIc試験とTg測定を行い、その結果を表2に示した。GIIcの値は向上するものの、ホットウエット下でのガラス転移温度が著しく低下した。
[Comparative Example 7]
As a thermosetting resin of component [B], only jER828 which is a bifunctional epoxy resin is used, and other than that, a specimen of a composite material is prepared in the same manner as in Example 1, and a GIIc test and Tg measurement are performed. Are shown in Table 2. Although the value of GIIc was improved, the glass transition temperature under hot wet was remarkably lowered.

表1と表2の結果から、本発明の実施例のものは、比較例のものに比べて優れた層間破壊靭性(GIIc)と、吸湿後の高いガラス転移温度を有することが分かる。 From the results of Tables 1 and 2, it can be seen that the examples of the present invention have superior interlaminar fracture toughness (GIIc) and a high glass transition temperature after moisture absorption compared to the comparative examples.

Figure 2011057907
Figure 2011057907

Figure 2011057907
Figure 2011057907

Claims (11)

少なくとも下記の成分[A]
、成分[B]、成分 [C]及び成分 [D]を必須成分として、下記の割合で含むことを特徴とする熱硬化性樹脂組成物。
成分[A]:平均粒子径が1〜12μmのシリコーン樹脂微粒子1〜90重量%と、熱可塑性樹脂99〜10重量%を混練して得られる平均粒子径が5〜70μmの熱可塑性複合微粒子5〜50重量部
成分[B]:熱硬化性樹脂100重量部
成分[C]:硬化剤20〜50重量部
成分[D]:成分[A]以外の熱可塑性樹脂5〜80重量部
At least the following component [A]
And a component [B], a component [C], and a component [D] as essential components.
Component [A]: Thermoplastic composite fine particles 5 having an average particle size of 5 to 70 μm obtained by kneading 1 to 90 wt% of silicone resin fine particles having an average particle size of 1 to 12 μm and 99 to 10 wt% of a thermoplastic resin -50 parts by weight Component [B]: Thermosetting resin 100 parts by weight Component [C]: Curing agent 20-50 parts by weight Component [D]: 5-80 parts by weight of thermoplastic resin other than component [A]
成分[A]の熱可塑性複合微粒子表面に、直径が1〜12μmのクレーター状の穴が存在することを特徴とする請求項1記載の熱硬化性樹脂組成物。 2. The thermosetting resin composition according to claim 1, wherein crater-like holes having a diameter of 1 to 12 μm are present on the surface of the thermoplastic composite fine particles of component [A]. 成分[B]の熱硬化性樹脂が、少なくともエポキシ樹脂を含有していることを特徴とする請求項1又は2記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the thermosetting resin of the component [B] contains at least an epoxy resin. エポキシ樹脂が、少なくとも3官能以上のエポキシ樹脂を含有していることを特徴とする請求項3記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 3, wherein the epoxy resin contains at least a trifunctional or higher functional epoxy resin. 成分[B]の熱硬化性樹脂が、成分[A]の熱可塑性樹脂を溶解しない熱硬化性樹脂であることを特徴とする請求項1〜4のいずれか1項記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the thermosetting resin of the component [B] is a thermosetting resin that does not dissolve the thermoplastic resin of the component [A]. . 成分[C]の硬化剤が、少なくとも芳香族アミン系硬化剤を含有していることを特徴とする請求項1〜5のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 5, wherein the curing agent of component [C] contains at least an aromatic amine curing agent. 平均粒子径が1〜12μmのシリコーン樹脂微粒子1〜90重量%と、熱可塑性樹脂99〜10重量%を混練して得られる平均粒子径が5〜70μmの熱可塑性複合微粒子。 Thermoplastic composite fine particles having an average particle size of 5 to 70 μm obtained by kneading 1 to 90% by weight of silicone resin fine particles having an average particle size of 1 to 12 μm and 99 to 10% by weight of a thermoplastic resin. 熱可塑性複合微粒子表面に、直径が1〜12μmのクレーター状の穴が存在することを特徴とする請求項7記載の熱可塑性複合微粒子。 8. The thermoplastic composite fine particles according to claim 7, wherein crater-like holes having a diameter of 1 to 12 [mu] m are present on the surface of the thermoplastic composite fine particles. 請求項1〜6のいずれか1項記載の熱硬化性樹脂組成物を、繊維強化材に含浸させてなるプリプレグ。 A prepreg obtained by impregnating a fiber reinforcing material with the thermosetting resin composition according to any one of claims 1 to 6. 繊維強化材が炭素繊維である請求項9記載のプリプレグ。 The prepreg according to claim 9, wherein the fiber reinforcing material is carbon fiber. 請求項9又は10記載のプリプレグを硬化させてなる複合材料。
A composite material obtained by curing the prepreg according to claim 9 or 10.
JP2009211155A 2009-09-12 2009-09-12 Thermosetting resin composition and prepreg using the same Pending JP2011057907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211155A JP2011057907A (en) 2009-09-12 2009-09-12 Thermosetting resin composition and prepreg using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211155A JP2011057907A (en) 2009-09-12 2009-09-12 Thermosetting resin composition and prepreg using the same

Publications (1)

Publication Number Publication Date
JP2011057907A true JP2011057907A (en) 2011-03-24

Family

ID=43945901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211155A Pending JP2011057907A (en) 2009-09-12 2009-09-12 Thermosetting resin composition and prepreg using the same

Country Status (1)

Country Link
JP (1) JP2011057907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170110674A (en) 2015-02-26 2017-10-11 미쓰이 가가쿠 가부시키가이샤 Prepreg and fiber reinforced composite materials
WO2018105682A1 (en) 2016-12-09 2018-06-14 三井化学株式会社 Graft copolymer-containing solid product and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170110674A (en) 2015-02-26 2017-10-11 미쓰이 가가쿠 가부시키가이샤 Prepreg and fiber reinforced composite materials
WO2018105682A1 (en) 2016-12-09 2018-06-14 三井化学株式会社 Graft copolymer-containing solid product and use thereof
KR20190078617A (en) 2016-12-09 2019-07-04 미쓰이 가가쿠 가부시키가이샤 Graft copolymer-containing solids and uses thereof

Similar Documents

Publication Publication Date Title
JP5469086B2 (en) Thermosetting resin composition and prepreg using the same
JP5319673B2 (en) Epoxy resin composition and prepreg using the same
EP3279263B1 (en) Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
JP5761366B2 (en) Epoxy resin composition, and film, prepreg, and fiber reinforced plastic using the same
EP3214103B1 (en) Epoxy resin composition, cured resin, prepreg and fiber-reinforced composite material
US20120164455A1 (en) Epoxy Resin System Containing Insoluble and Partially Soluble or Swellable Toughening Particles for Use in Prepreg and Structural Component Applications
CA3020078C (en) Prepreg and production method therefor
KR20110120314A (en) Benzoxazine resin composition
KR20100133963A (en) Epoxy resin composition, prepreg, abd fiber-reinforced composite material
WO2013046434A1 (en) Benzoxazine resin composition, and fiber-reinforced composite material
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
WO2015076069A1 (en) Prepreg, fibre-reinforced composite material, and particle-containing resin composition
JP2009242459A (en) Resin composition, prepreg, and method for manufacturing those
US20210261744A1 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and production method thereof
EP3766925A1 (en) Prepreg and carbon fiber-reinforced composite material
JP6782553B2 (en) How to make prepreg
JP6514764B2 (en) Prepreg and fiber reinforced composite materials
WO2014002993A1 (en) Fiber-reinforced composite material
JP2011057907A (en) Thermosetting resin composition and prepreg using the same
JP5468819B2 (en) Epoxy resin composition and prepreg using the same as matrix resin
US20160289403A1 (en) Prepreg, fibre-reinforced composite material, and particle-containing resin composition
JP6321391B2 (en) FIBER-REINFORCED COMPOSITE MATERIAL, PREPREG AND METHOD FOR PRODUCING THEM
JP2023048264A (en) laminate
JPWO2018131580A1 (en) Epoxy resin composition, cured epoxy resin, prepreg, fiber reinforced composite material, block copolymer and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704