JP6686763B2 - Epoxy resin composition, prepreg and fiber reinforced composite material - Google Patents

Epoxy resin composition, prepreg and fiber reinforced composite material Download PDF

Info

Publication number
JP6686763B2
JP6686763B2 JP2016145179A JP2016145179A JP6686763B2 JP 6686763 B2 JP6686763 B2 JP 6686763B2 JP 2016145179 A JP2016145179 A JP 2016145179A JP 2016145179 A JP2016145179 A JP 2016145179A JP 6686763 B2 JP6686763 B2 JP 6686763B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing agent
curing
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145179A
Other languages
Japanese (ja)
Other versions
JP2018016666A (en
Inventor
大典 阿部
大典 阿部
英喜 高橋
英喜 高橋
啓之 平野
啓之 平野
達也 藤田
達也 藤田
秀二 宇田川
秀二 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016145179A priority Critical patent/JP6686763B2/en
Publication of JP2018016666A publication Critical patent/JP2018016666A/en
Application granted granted Critical
Publication of JP6686763B2 publication Critical patent/JP6686763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、航空宇宙用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。   The present invention relates to an epoxy resin composition which is preferably used as a matrix resin of a fiber reinforced composite material suitable for aerospace applications and general industrial applications, and a prepreg and a fiber reinforced composite material using the same as a matrix resin.

エポキシ樹脂は、高い機械特性、耐熱性、接着性を活かし、炭素繊維、ガラス繊維、アラミド繊維などの強化繊維と組合せてなる繊維強化複合材料のマトリックス樹脂として好適に用いられている。エポキシ樹脂の硬化剤としては、ジアミノジフェニルスルホン、ジシアンジアミド、脂肪族アミン、芳香族アミン、酸無水物などが知られており、要求特性や成形方法に応じて適宜選択されている。   Epoxy resin is suitably used as a matrix resin for a fiber-reinforced composite material, which has high mechanical properties, heat resistance, and adhesiveness, and is combined with reinforcing fibers such as carbon fiber, glass fiber and aramid fiber. Known curing agents for epoxy resins include diaminodiphenyl sulfone, dicyandiamide, aliphatic amines, aromatic amines, acid anhydrides, etc., which are appropriately selected depending on the required properties and molding method.

エポキシ樹脂をマトリックス樹脂とする繊維強化複合材料の製造方法としては、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトリュージョン法、RTM(Resin Transfer Molding)法などの工法が適宜選択される。このうち、プリプレグを用いた繊維強化複合材料は一般に優れた機械特性を示す。   As a method for producing a fiber-reinforced composite material using an epoxy resin as a matrix resin, a construction method such as a prepreg method, a hand lay-up method, a filament winding method, a pull trough method, and an RTM (resin transfer molding) method is appropriately selected. Of these, fiber-reinforced composite materials using prepreg generally show excellent mechanical properties.

プリプレグは航空宇宙用途、スポーツ用途で比較的単純な形状に適用されてきたが、近年の産業用途への複合材料の適用範囲拡大に伴い、より複雑な形状にもプリプレグを適用する取組みが進んでいる。しかしながら、目的とする形状に応じてプリプレグに要求されるタック性、ドレープ性が異なるため、樹脂の粘度や硬化度の調整によりこれらを自在に制御できる技術が求められている。また、車両や船舶などの大型の構造材料への適用も進んでおり、その際に発生する発熱の低減が課題となっている。これを受けて、エポキシ樹脂組成物を途中まで反応させ、粘度や硬化度を制御し、かつ、硬化反応を多段階にすることによる、瞬間的な発熱を抑制可能な、Bステージ化技術が注目されている。   Prepreg has been applied to relatively simple shapes for aerospace applications and sports applications, but with the expansion of the application range of composite materials for industrial applications in recent years, efforts to apply prepreg to more complicated shapes have progressed. There is. However, since the tackiness and the drapeability required for the prepreg differ depending on the target shape, there is a demand for a technique capable of freely controlling these by adjusting the viscosity and the curing degree of the resin. In addition, application to large-scale structural materials such as vehicles and ships is also progressing, and reduction of heat generated at that time has become an issue. In response to this, attention is focused on the B-stage technology that allows the epoxy resin composition to react halfway to control the viscosity and the degree of curing and to suppress the instantaneous heat generation by making the curing reaction multistage. Has been done.

また、プリプレグに使用するエポキシ樹脂では、保管安定性の確保のために、ジアミノジフェニルスルホンやジシアンジアミドなど、潜在性硬化剤が用いられる。特に耐熱要求の高い成形品では、ジアミノジフェニルスルホンが汎用されている。   Further, in the epoxy resin used for the prepreg, a latent curing agent such as diaminodiphenyl sulfone or dicyandiamide is used in order to ensure storage stability. Diaminodiphenyl sulfone is generally used for molded articles with particularly high heat resistance requirements.

特許文献1では、3,3’−ジアミノジフェニルスルホンを硬化剤とし、熱可塑性樹脂としてポリスルホンを添加することで、反応発熱量を低減可能なエポキシ樹脂組成物が開示されている。   Patent Document 1 discloses an epoxy resin composition capable of reducing the reaction heat generation amount by adding 3,3'-diaminodiphenyl sulfone as a curing agent and polysulfone as a thermoplastic resin.

特許文献2では、発熱開始温度の異なる硬化剤、または、エポキシ樹脂を併用し、加熱によってBステージ化が可能となるエポキシ樹脂組成物が開示されている。   Patent Document 2 discloses an epoxy resin composition in which a curing agent having a different onset temperature of heat generation or an epoxy resin is used in combination, and B-stage formation is possible by heating.

特許文献3では、3,3’−ジアミノジフェニルスルホンとヒドラジン誘導体を硬化剤として併用したエポキシ樹脂組成物からなるプリプレグを加熱処理することで、プリプレグの硬化度を高める技術が開示されている。   Patent Document 3 discloses a technique of increasing the degree of curing of a prepreg by heat-treating a prepreg made of an epoxy resin composition in which 3,3'-diaminodiphenyl sulfone and a hydrazine derivative are used together as a curing agent.

特開2007−224065号公報JP, 2007-224065, A 特表2014−521824公報Special table 2014-521824 gazette 米国2010−0222461公報US 2010-0222461

特許文献1に記載のエポキシ樹脂組成物は、エポキシ樹脂に多量のポリスルホンを配合し、全体の反応性基を減らすことで、発熱を低減できることが示されている。しかしながら、エポキシ樹脂に対するポリスルホンの溶解度には限界があるため、プリプレグの粘度を幅広く制御することはできない。   It has been shown that the epoxy resin composition described in Patent Document 1 can reduce heat generation by blending a large amount of polysulfone into the epoxy resin and reducing the total reactive groups. However, since the solubility of polysulfone in the epoxy resin is limited, the viscosity of the prepreg cannot be widely controlled.

特許文献2に記載のエポキシ樹脂組成物は、脂肪族ポリアミンと芳香族アミンの反応開始温度の違いを利用し、これを併用してBステージ化を達成している。しかしながら、脂肪族ポリアミンはエポキシ樹脂との反応性が高く、成型加工中に、Bステージ化したプリプレグの硬化が進んでしまうため、タックやドレープ性を制御することができない。   The epoxy resin composition described in Patent Document 2 utilizes the difference in the reaction initiation temperature of the aliphatic polyamine and the aromatic amine, and achieves the B stage by using them in combination. However, the aliphatic polyamine has a high reactivity with the epoxy resin, and the curing of the B-staged prepreg proceeds during the molding process, so that the tack and drape properties cannot be controlled.

特許文献3に記載のエポキシ樹脂組成物を用いたプリプレグは、Bステージ化した状態でタックが持続することが示されているが、プリプレグの粘度や硬化度を任意に制御する技術には至っていない。よって、硬化時の発熱量を制御することも困難である。   The prepreg using the epoxy resin composition described in Patent Document 3 has been shown to maintain tack in the B-staged state, but a technique for arbitrarily controlling the viscosity and the curing degree of the prepreg has not been reached. . Therefore, it is difficult to control the amount of heat generated during curing.

そこで、本発明では、Bステージ状態の粘度や硬化度を任意に制御可能で、かつ硬化時の発熱量が小さい、エポキシ樹脂組成物を提供することを目的とする。   Therefore, it is an object of the present invention to provide an epoxy resin composition in which the viscosity and the degree of curing in the B stage state can be arbitrarily controlled and the amount of heat generated during curing is small.

本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。
1) 硬化剤A、硬化剤B、硬化剤C、及び硬化剤Dからなる群より選ばれる2種類の硬化剤(以下、選択された2種類の硬化剤を、第1の硬化剤及び第2の硬化剤という)を含み、かつ、以下の条件1を満たす、エポキシ樹脂組成物。
As a result of intensive studies to solve the above problems, the present inventors have found an epoxy resin composition having the following constitution and completed the present invention. That is, the epoxy resin composition of the present invention has the following constitution.
1) Two types of curing agents selected from the group consisting of a curing agent A, a curing agent B, a curing agent C, and a curing agent D (hereinafter, the two curing agents selected are a first curing agent and a second curing agent). (Hereinafter, referred to as a curing agent) and satisfying the following condition 1.

硬化剤A:化学式Aで示される化合物   Curing agent A: compound represented by chemical formula A

Figure 0006686763
Figure 0006686763

(化学式Aにおいて、R、R、R、Rは、それぞれ独立して水素、メチル、エチル、n−プロピルを表す。)
硬化剤B:4,4’−ジメチル−3,3’−ジアミノジフェニルスルホン
硬化剤C:3,3’−ジアミノジフェニルスルホン
硬化剤D:4,4’−ジアミノジフェニルスルホン
条件1:硬化剤として第1の硬化剤のみを含むエポキシ樹脂組成物及び硬化剤として第2の硬化剤のみを含むエポキシ樹脂組成物を、それぞれ示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱開始温度を、それぞれ、T1(℃)、T2(℃)としたとき、T1及びT2が下式を満たす。
(In the chemical formula A, R 1 , R 2 , R 3 , and R 4 each independently represent hydrogen, methyl, ethyl, or n-propyl.)
Hardening agent B: 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone Hardening agent C: 3,3'-diaminodiphenyl sulfone Hardening agent D: 4,4'-diaminodiphenyl sulfone Condition 1: First as a hardening agent An epoxy resin composition containing only one curing agent and an epoxy resin composition containing only a second curing agent as a curing agent were each subjected to a constant velocity condition of 5 ° C./min from 30 ° C. to 300 ° C. by a differential scanning calorimeter. When the heat generation start temperatures when the temperature is raised at T1 (° C.) and T2 (° C.), respectively, T1 and T2 satisfy the following formula.

Figure 0006686763
Figure 0006686763

2) 前記2種類の硬化剤として、硬化剤Aと硬化剤Bの組み合わせ、または、硬化剤Aと硬化剤Cの組み合わせを含むことを特徴とする、1)に記載のエポキシ樹脂組成物。
3) 化学式Aにおいて、R、R、R、Rが、いずれも水素である、1)または2)に記載のエポキシ樹脂組成物。
4) 140℃で2時間、予備硬化させた予備硬化体を、示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱量が、100〜250J/gの範囲にある、1)から3)のいずれかに記載のエポキシ樹脂組成物。
5) 220℃で2時間、硬化させたときの樹脂硬化物の曲げ弾性率が3.60GPa以上である、1)から4)のいずれかに記載のエポキシ樹脂組成物。
6) 1)から5)のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。
7) 6)に記載のプリプレグのエポキシ樹脂組成物を硬化した繊維強化複合材料。
2) The epoxy resin composition according to 1), wherein the two types of curing agents include a combination of a curing agent A and a curing agent B or a combination of a curing agent A and a curing agent C.
3) The epoxy resin composition according to 1) or 2), wherein in the chemical formula A, R 1 , R 2 , R 3 , and R 4 are all hydrogen.
4) The calorific value when the pre-cured product preliminarily cured at 140 ° C. for 2 hours was heated from 30 ° C. to 300 ° C. at a constant rate of 5 ° C./min by a differential scanning calorimeter, was 100 to The epoxy resin composition according to any one of 1) to 3), which is in the range of 250 J / g.
5) The epoxy resin composition according to any one of 1) to 4), wherein the cured resin has a flexural modulus of 3.60 GPa or more when cured at 220 ° C. for 2 hours.
6) A prepreg comprising the epoxy resin composition according to any one of 1) to 5) and a reinforcing fiber.
7) A fiber-reinforced composite material obtained by curing the epoxy resin composition of the prepreg according to 6).

本発明に記載のエポキシ樹脂組成物を用いることで、併用する2種の硬化剤の比率に応じて、任意の粘度および硬化度とすることができ、かつ、硬化時の発熱量が小さいプリプレグを提供できる。   By using the epoxy resin composition according to the present invention, a prepreg which can have an arbitrary viscosity and a degree of curing depending on the ratio of two kinds of curing agents used in combination and has a small calorific value at the time of curing. Can be provided.

本発明のエポキシ樹脂組成物は、エポキシ樹脂の硬化剤として、硬化剤A(後述する2,2’−ジアミノジフェニルスルホン類縁体)、硬化剤B(4,4’−ジメチル−3,3’−ジアミノジフェニルスルホン)、硬化剤C(3,3’−ジアミノジフェニルスルホン)、および硬化剤D(4,4’−ジアミノジフェニルスルホン)からなる群より選ばれる2種類の硬化剤(以下、選択された2種類の硬化剤を、第1の硬化剤及び第2の硬化剤という)を含み、かつ、以下の条件1を満たす。   The epoxy resin composition of the present invention includes a curing agent A (2,2′-diaminodiphenylsulfone analog described later) and a curing agent B (4,4′-dimethyl-3,3′-) as a curing agent for the epoxy resin. Diaminodiphenylsulfone), a curing agent C (3,3′-diaminodiphenylsulfone), and a curing agent D (4,4′-diaminodiphenylsulfone), and two types of curing agents (hereinafter, selected) Two kinds of curing agents are referred to as a first curing agent and a second curing agent), and the following Condition 1 is satisfied.

条件1:硬化剤として第1の硬化剤のみを含むエポキシ樹脂組成物及び硬化剤として第2の硬化剤のみを含むエポキシ樹脂組成物を、それぞれ示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱開始温度を、それぞれ、T1(℃)、T2(℃)としたとき、T1及びT2が下式を満たす。   Condition 1: An epoxy resin composition containing only a first curing agent as a curing agent and an epoxy resin composition containing only a second curing agent as a curing agent were used to measure 5 to 30 ° C. from 30 ° C. by differential scanning calorimetry. When the heat generation start temperatures when the temperature is raised at a constant speed condition of C / min are T1 (C) and T2 (C), respectively, T1 and T2 satisfy the following formula.

Figure 0006686763
Figure 0006686763

ここで、硬化剤として第1の硬化剤のみを含むエポキシ樹脂組成物とは、本発明のエポキシ樹脂組成物において、硬化剤を第1の硬化剤のみとした点を除いては、対象となる本発明のエポキシ樹脂組成物と同様の組成を有する組成物を意味し、硬化剤として第2の硬化剤のみを含むエポキシ樹脂組成物とは、本発明のエポキシ樹脂組成物において、硬化剤を第2の硬化剤のみとした点を除いては、対象となる本発明のエポキシ樹脂組成物と同様の組成を有する組成物を意味する。   Here, the epoxy resin composition containing only the first curing agent as the curing agent is an object except that the curing agent is the first curing agent only in the epoxy resin composition of the present invention. An epoxy resin composition containing only a second curing agent as a curing agent means a composition having a composition similar to that of the epoxy resin composition of the present invention. It means a composition having the same composition as the target epoxy resin composition of the present invention except that only the curing agent of No. 2 is used.

前述の硬化剤Aは、化学式Aで示される2,2’−ジアミノジフェニルスルホン類縁体である。   The above-mentioned curing agent A is a 2,2'-diaminodiphenyl sulfone analog represented by the chemical formula A.

Figure 0006686763
Figure 0006686763

(化学式Aにおいて、R、R、R、Rは、それぞれ独立して水素、メチル、エチル、又はn−プロピルを表す。)
硬化剤Aは、エポキシ樹脂組成物の発熱開始温度を高め、かつ、エポキシ樹脂組成物の保存安定性を向上させるために配合される。
(In Chemical Formula A, R 1 , R 2 , R 3 , and R 4 each independently represent hydrogen, methyl, ethyl, or n-propyl.)
The curing agent A is added in order to raise the heat generation start temperature of the epoxy resin composition and improve the storage stability of the epoxy resin composition.

硬化剤Bおよび硬化剤Cは、発熱開始温度を低温とするため、すなわち、|T2−T1|を適切な範囲で大きな値とし、予備硬化後のエポキシ樹脂組成物、つまり予備硬化体の硬化度を高めるために用いられる。   The curing agent B and the curing agent C have a low exothermic starting temperature, that is, | T2-T1 | is set to a large value in an appropriate range, and the curing degree of the pre-cured epoxy resin composition, that is, the pre-cured body is high. It is used to increase

硬化剤Dは、エポキシ樹脂組成物の保存安定性を高めるために配合される。   The curing agent D is added to enhance the storage stability of the epoxy resin composition.


本発明のエポキシ樹脂組成物が条件1を満たす場合、140℃で2時間予備硬化させて予備硬化体とする際に、(第1の硬化剤と第2の硬化剤において、相対的に先に選択的に消費される硬化剤を第1の硬化剤とすると、)第1の硬化剤が選択的に消費され、第2の硬化剤が予備硬化体に残存することにより、硬化剤の配合量に応じて、硬化度および樹脂粘度が調節された予備硬化体を得ることができる。

When the epoxy resin composition of the present invention satisfies Condition 1, when it is pre-cured at 140 ° C. for 2 hours to obtain a pre-cured body (in the first curing agent and the second curing agent, the relative curing is performed first). When the selectively consumed hardener is the first hardener, the first hardener is selectively consumed, and the second hardener remains in the pre-cured body, so that the blending amount of the hardener According to the above, a pre-cured product having a controlled curing degree and resin viscosity can be obtained.

条件1について、|T2−T1|の値は大きいほど、つまり、第1の硬化剤と第2の硬化剤の発熱開始温度の差が大きいほど、予備硬化体の硬化度を幅広く制御できるが、|T2−T1|の値が90以上であると、エポキシ樹脂組成物の保存安定性が低下する。一方で、|T2−T1|の値が30以下である場合、予備硬化体の硬化度を、硬化剤の配合比率に応じて制御することができなくなる。また、条件1を満たすエポキシ樹脂組成物、および該エポキシ樹脂組成物の予備硬化体は、保存安定性に優れる。   Regarding condition 1, the larger the value of | T2-T1 |, that is, the larger the difference between the heat generation start temperatures of the first curing agent and the second curing agent, the wider the degree of curing of the preliminary cured body can be controlled. When the value of | T2-T1 | is 90 or more, the storage stability of the epoxy resin composition is reduced. On the other hand, when the value of | T2-T1 | is 30 or less, the degree of cure of the pre-cured product cannot be controlled according to the compounding ratio of the curing agent. Further, the epoxy resin composition satisfying the condition 1 and the pre-cured product of the epoxy resin composition have excellent storage stability.

本発明のエポキシ樹脂組成物は、前記2種類の硬化剤として、硬化剤Aと硬化剤Bの組み合わせ、または、硬化剤Aと硬化剤Cの組み合わせを含むことがより好ましい。硬化剤として、硬化剤Aと硬化剤Bの組み合わせ、または、硬化剤Aと硬化剤Cの組み合わせを含むことで、|T2−T1|の値を上記の条件1の範囲内で、大きくすることができるため、エポキシ樹脂組成物から得た予備硬化体の硬化度を、さらに幅広く制御することが可能となる。   The epoxy resin composition of the present invention more preferably contains a combination of a curing agent A and a curing agent B or a combination of a curing agent A and a curing agent C as the two types of curing agents. Increasing the value of | T2-T1 | within the range of the above condition 1 by including a combination of a curing agent A and a curing agent B or a combination of a curing agent A and a curing agent C as the curing agent. Therefore, the degree of curing of the pre-cured product obtained from the epoxy resin composition can be controlled in a wider range.

なお、本発明の効果を失わない範囲において、本発明のエポキシ樹脂組成物は、前述の硬化剤の組み合わせに加えて、A〜D以外のその他の硬化剤を配合しても良い。   In addition, in the range which does not lose the effect of this invention, in addition to the combination of the above-mentioned hardening agent, you may mix | blend other hardening agents other than AD.


硬化剤Aは、R、R、R、Rのすべてが水素原子である、2,2’−ジアミノジフェニルスルホンを用いることが、エポキシ樹脂組成物の保存安定性の観点から好ましい。

As the curing agent A, it is preferable to use 2,2′-diaminodiphenylsulfone in which all of R 1 , R 2 , R 3 , and R 4 are hydrogen atoms from the viewpoint of storage stability of the epoxy resin composition.

本発明において、T1およびT2の測定には、示差走査熱量分析計(DSC)を用いた熱分析が用いられる。DSC測定で観測できる発熱は、エポキシ樹脂組成物の反応によって生じるものである。従って、等速昇温測定において、横軸に時間、縦軸に熱流量を取った発熱チャートは、反応の温度依存性を表している。そのため、チャートにおけるピークの立ち上がりは、発熱開始温度を表しており、反応性の指標として用いることができる。   In the present invention, thermal analysis using a differential scanning calorimeter (DSC) is used for measuring T1 and T2. The heat generation that can be observed by DSC measurement is caused by the reaction of the epoxy resin composition. Therefore, in the constant temperature rise measurement, the exothermic chart in which the horizontal axis represents time and the vertical axis represents the heat flow rate represents the temperature dependence of the reaction. Therefore, the rising of the peak in the chart represents the exothermic onset temperature and can be used as an index of reactivity.

本発明のエポキシ樹脂組成物は、加熱により、予備硬化が可能である。アルミカップや、モールド中にエポキシ樹脂組成物を流し入れたものを、所定の温度にて、加熱することにより、予備硬化体を得ることできる。   The epoxy resin composition of the present invention can be pre-cured by heating. A pre-cured product can be obtained by heating an aluminum cup or a mold in which the epoxy resin composition is poured at a predetermined temperature.

本発明のエポキシ樹脂組成物は、140℃で2時間、予備硬化させた予備硬化体を、示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温(追硬化)したときの発熱量が、100〜250J/gの範囲にあることが好ましい。本発明のエポキシ樹脂組成物を用いたプリプレグの積層体は、140℃、2時間硬化させて予備硬化体とした後、より高温で追硬化することで、成型品を得ることができる。本発明のエポキシ樹脂組成物の予備硬化体を追硬化した際の発熱量が上記範囲にあることで、硬化時の発熱量を適切な範囲に抑えられるため、優れた機械特性を有する繊維強化複合材料を得ることができる。   The epoxy resin composition of the present invention is preheated at 140 ° C. for 2 hours to heat a pre-cured product from 30 ° C. to 300 ° C. at a constant rate of 5 ° C./min by a differential scanning calorimeter (additional temperature). The calorific value when cured) is preferably in the range of 100 to 250 J / g. A laminate of a prepreg using the epoxy resin composition of the present invention is cured at 140 ° C. for 2 hours to give a pre-cured body, and then additionally cured at a higher temperature to obtain a molded product. Since the calorific value at the time of additional curing of the pre-cured product of the epoxy resin composition of the present invention is within the above range, the calorific value at the time of curing can be suppressed to an appropriate range, and thus the fiber-reinforced composite having excellent mechanical properties. The material can be obtained.

上記予備硬化体の発熱量は、DSC測定から得られた発熱チャートから得られる、ピークの総面積から算出することができる。   The calorific value of the preliminary cured product can be calculated from the total area of the peaks obtained from the heat generation chart obtained from the DSC measurement.

本発明のエポキシ樹脂組成物は、220度で2時間、硬化させて樹脂硬化物としたときに、その樹脂硬化物の曲げ弾性率が3.60GPa以上であることが、優れた機械特性を有する繊維強化複合材料を得る観点から好ましい。なお、曲げ弾性率の上限は特に限定されないが、曲げ弾性率は3.60GPa〜5.00GPaであることが特に好ましい。曲げ弾性率が、5.00GPaを超えると靱性が低下する場合がある。   The epoxy resin composition of the present invention has excellent mechanical properties when the cured resin has a flexural modulus of 3.60 GPa or more when cured at 220 degrees for 2 hours to obtain a cured resin. It is preferable from the viewpoint of obtaining a fiber-reinforced composite material. The upper limit of the flexural modulus is not particularly limited, but the flexural modulus is particularly preferably 3.60 GPa to 5.00 GPa. If the flexural modulus exceeds 5.00 GPa, the toughness may decrease.

本発明の樹脂硬化物の曲げ弾性率は、樹脂硬化板の3点曲げ試験により測定できる。樹脂硬化板は、例えば、スペーサーにより所定の厚みになるように設定したモールド中に樹脂を入れて加熱硬化することで得られる。得られた樹脂硬化板を所定の大きさに切り出し、試験片とする。   The flexural modulus of the resin cured product of the present invention can be measured by a three-point bending test of a resin cured plate. The resin cured plate can be obtained, for example, by placing a resin in a mold set to have a predetermined thickness with a spacer and curing the resin by heating. The obtained resin cured plate is cut into a predetermined size and used as a test piece.

本発明のエポキシ樹脂組成物に用いられるエポキシ樹脂には、特に制限がなく、2官能型エポキシ樹脂、3官能以上の多官能型エポキシ樹脂などを使用することができる。   The epoxy resin used in the epoxy resin composition of the present invention is not particularly limited, and bifunctional epoxy resin, trifunctional or higher functional polyfunctional epoxy resin and the like can be used.

かかるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アミノフェノール型エポキシ樹脂、アニリン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などが挙げられる。これらを単独で用いても、複数種を組み合わせてもよい。   Examples of such epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, diaminodiphenylmethane type epoxy resin, phenol novolac type epoxy resin, aminophenol type epoxy resin, aniline type epoxy resin, dicyclopentadiene type epoxy resin and the like. Is mentioned. These may be used alone or in combination of two or more.

前記ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”828、1001、1007(以上、三菱化学(株)製)などが挙げられる。   Examples of commercial products of the bisphenol A type epoxy resin include "jER (registered trademark)" 828, 1001, 1007 (above, manufactured by Mitsubishi Chemical Corporation).

前記ビスフェノールF型エポキシ樹脂の市販品としては、“jER(登録商標)”4004P、4005P、4007P、4010P(以上、三菱化学(株)製)、“エポトート(登録商標)”YDF−2001(東都化成(株)製)、“エピクロン(登録商標)”Epc830(大日本インキ化学工業(株)製)などが挙げられる。   Examples of commercially available bisphenol F type epoxy resins include "jER (registered trademark)" 4004P, 4005P, 4007P, 4010P (all manufactured by Mitsubishi Chemical Corporation), "Epototo (registered trademark)" YDF-2001 (Toto Kasei). Manufactured by Dainippon Ink and Chemicals, Inc., and the like, and "Epiclon (registered trademark)" Epc830 (manufactured by Dainippon Ink and Chemicals, Inc.).

前記ジアミノジフェニルメタン型エポキシ樹脂の市販品としては、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(新日鉄住金化学(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイト(登録商標)”MY720、MY721(以上、ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。   Examples of commercially available products of the diaminodiphenylmethane type epoxy resin include "Sumiepoxy (registered trademark)" ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), "jER (registered trademark)" 604 ( Mitsubishi Chemical Co., Ltd.), "Araldite (registered trademark)" MY720, MY721 (above, Huntsman Advanced Materials Co., Ltd.) etc. are mentioned.

前記フェノールノボラック型エポキシ樹脂の市販品としては、jER(登録商標)”152、154、180S(以上、三菱化学(株)製)などが挙げられる。   Examples of commercial products of the phenol novolac type epoxy resin include jER (registered trademark) "152, 154, 180S (above, manufactured by Mitsubishi Chemical Corporation).

前記アミノフェノール型エポキシ樹脂の市販品としては、“スミエポキシ(登録商標)”ELM100、ELM120(住友化学工業(株)製)、“アラルダイト(登録商標)”MY0500、MY0510、MY0600(ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。   Commercial products of the aminophenol type epoxy resin include "Sumiepoxy (registered trademark)" ELM100, ELM120 (manufactured by Sumitomo Chemical Co., Ltd.), "Araldite (registered trademark)" MY0500, MY0510, MY0600 (Huntsman Advanced Materials). Manufactured by SUZU CORPORATION).

前記アニリン型エポキシ樹脂の市販品としては、GAN(N,N−ジグリシジルアニリン)、GOT(N,N−ジグリシジル−o−トルイジン)(以上、日本化薬(株)製)などが挙げられる。   Examples of commercial products of the aniline-type epoxy resin include GAN (N, N-diglycidylaniline) and GOT (N, N-diglycidyl-o-toluidine) (all manufactured by Nippon Kayaku Co., Ltd.).

前記ジシクロペンタジエン型エポキシ樹脂の市販品としては、HP7200L,HP7200,HP7200H,HP7200HH,HP7200HHH(以上、DIC(株)製)などが挙げられる。   Examples of commercially available products of the dicyclopentadiene type epoxy resin include HP7200L, HP7200, HP7200H, HP7200HH, HP7200HHH (all manufactured by DIC Corporation).

また、本発明のエポキシ樹脂組成物は、発明の効果を損なわない範囲で、単官能型エポキシ樹脂などの反応性希釈剤、熱可塑性樹脂などを配合してもよい。   Further, the epoxy resin composition of the present invention may contain a reactive diluent such as a monofunctional epoxy resin, a thermoplastic resin, etc. within a range that does not impair the effects of the invention.

反応性希釈剤としては、例えば、o−フェニルフェノールグリシジルエーテル、p−フェニルフェノールグリシジルエーテル、p−tert−ブチルフェニルグリシジルエーテル、p−sec−ブチルフェニルグリシジルエーテル、p−イソプロピルフェニルグリシジルエーテルなどが挙げられる。   Examples of the reactive diluent include o-phenylphenol glycidyl ether, p-phenylphenol glycidyl ether, p-tert-butylphenyl glycidyl ether, p-sec-butylphenyl glycidyl ether, p-isopropylphenyl glycidyl ether and the like. To be

熱可塑性樹脂としては、例えば、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、フェノキシ樹脂、ポリエーテルスルホンなどのポリスルホン樹脂などが挙げられる。   Examples of the thermoplastic resin include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, phenoxy resins, and polysulfone resins such as polyether sulfone.

エポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。   The epoxy resin composition may be prepared by kneading using a machine such as a kneader, a planetary mixer, a triple roll and a twin-screw extruder. If uniform kneading is possible, a beaker and a spatula are used. You can use them and mix them by hand.

次に、繊維強化複合材料について説明する。本発明のエポキシ樹脂組成物を、強化繊維と複合一体化した後、硬化させることにより、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。   Next, the fiber-reinforced composite material will be described. The epoxy resin composition of the present invention is combined with reinforcing fibers to form a composite, and then cured to obtain a fiber-reinforced composite material containing the cured product of the epoxy resin composition of the present invention as a matrix resin.

本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。   The reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more kinds of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers that can provide a lightweight and highly rigid fiber-reinforced composite material.

本発明で得られるエポキシ樹脂組成物は、繊維強化複合材料を得るにあたり、あらかじめエポキシ樹脂組成物と(炭素繊維などの)強化繊維からなるプリプレグとしておくことは、保存が容易となる上、取り扱い性に優れるため好ましいものである。プリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などを挙げることができる。   When the epoxy resin composition obtained by the present invention is used as a prepreg composed of the epoxy resin composition and the reinforcing fiber (such as carbon fiber) in advance in obtaining the fiber-reinforced composite material, it is easy to store and is easy to handle. It is preferable because it is excellent. The prepreg can be obtained by impregnating a reinforcing fiber substrate with the epoxy resin composition of the present invention. Examples of the method of impregnation include a hot melt method (dry method).

ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。   The hot melt method is a method of directly impregnating reinforcing fibers with an epoxy resin composition whose viscosity has been reduced by heating, or a film in which the epoxy resin composition is coated on release paper or the like, and then both sides of the reinforcing fibers are prepared. Alternatively, it is a method of impregnating the reinforcing fibers with a resin by stacking the films from one side and heating and pressing.

プリプレグ積層成形法において、熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。   In the prepreg lamination molding method, as a method of applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method and the like can be appropriately used.

本発明のエポキシ樹脂組成物を用いた繊維強化複合材料は、スポーツ用途、航空宇宙用途および一般産業用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。また、航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、および内装材等の二次構造材用途に好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両などの構造材に好ましく用いられる。なかでも、本発明のエポキシ樹脂組成物と炭素繊維からなる本発明のプリプレグは、タック性およびドレープ性を幅広く制御可能で、保存安定性にも優れるため、該プリプレグ中のエポキシ樹脂組成物が硬化した繊維強化複合材料は、自動車用途などの複雑な形状が要求される部材に、好適に用いられる。より具体的には、硬化時の発熱量が小さく、高い機械特性を有する繊維強化複合材料が得られるという特徴を生かし、成形品の厚みが必要となる場合が多い、大型の構造体に特に好適に用いられる。   The fiber-reinforced composite material using the epoxy resin composition of the present invention is preferably used for sports applications, aerospace applications and general industrial applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, tennis and badminton rackets, hockey sticks, and ski poles. In aerospace applications, it is preferably used for aircraft primary structural materials such as main wings, tail wings and floor beams, and secondary structural materials such as interior materials. Furthermore, in general industrial applications, it is preferably used for structural materials such as automobiles, bicycles, ships and railway vehicles. Among them, the prepreg of the present invention comprising the epoxy resin composition of the present invention and carbon fiber has a wide controllability of tackiness and drape, and also has excellent storage stability, so that the epoxy resin composition in the prepreg is cured. The fiber-reinforced composite material described above is suitably used for members that require a complicated shape such as automobile applications. More specifically, it is particularly suitable for large-sized structures, which often require the thickness of the molded product, taking advantage of the fact that the amount of heat generated during curing is small and a fiber-reinforced composite material having high mechanical properties can be obtained. Used for.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the description of these Examples.

本実施例で用いる構成要素は以下の通りである。   The components used in this embodiment are as follows.

<使用した材料>
(エポキシ樹脂)
・ “jER”(登録商標)828(液状ビスフェノールA型エポキシ樹脂、三菱化学(株)製)
・“エピクロン(登録商標)”Epc830(大日本インキ化学工業(株)製)
・“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)
・ “jER”(登録商標)145(フェノールノボラック型エポキシ樹脂、三菱化学(株)製)
・“アラルダイト(登録商標)”MY0600(ハンツマン・アドバンスト・マテリアルズ社製)
(硬化剤)
・セイカキュア―S(4,4’−ジアミノジフェニルスルホン、セイカ(株)製)
・3,3’DAS(3、3’−ジアミノジフェニルスルホン、三井化学ファイン(株)製)

・2,2’−ジアミノジフェニルスルホンは、以下に記載する方法で調製した。
<Materials used>
(Epoxy resin)
-"JER" (registered trademark) 828 (liquid bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
・ "Epiclon (registered trademark)" Epc830 (manufactured by Dainippon Ink and Chemicals, Inc.)
・ "Sumiepoxy (registered trademark)" ELM434 (Sumitomo Chemical Co., Ltd.)
-"JER" (registered trademark) 145 (phenol novolac type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
-"Araldite (registered trademark)" MY0600 (manufactured by Huntsman Advanced Materials)
(Curing agent)
・ Seika Cure-S (4,4′-diaminodiphenyl sulfone, manufactured by Seika Corporation)
* 3,3 'DAS (3,3'-diaminodiphenyl sulfone, manufactured by Mitsui Fine Chemicals, Inc.)

-2,2'-diaminodiphenyl sulfone was prepared by the method described below.

(合成)室温下、2,2−ジアミノジフェニルスルフィド(1.1kg、5.1mol、Chengzhou Harvestchem社製)をDMF(10.1L)に溶かし、ペルオキシ一硫酸カリウム(4.7kg、7.6mol)を添加し、室温で20時間撹拌した。続いて、反応液に水(22L)、トルエン(22L)を添加し30分間撹拌した後、セライトでろ過し、ろ物をトルエン(10L)で洗浄した。ろ液を分液し、水層をトルエン(10L)で抽出した。得られた有機層を、水(10L)、飽和チオ硫酸ナトリウム水溶液(10L)、飽和食塩水(10L)の順に洗浄し、減圧濃縮し粗体を得た。   (Synthesis) At room temperature, 2,2-diaminodiphenyl sulfide (1.1 kg, 5.1 mol, manufactured by Chengzhou Harvestchem) was dissolved in DMF (10.1 L), and potassium peroxymonosulfate (4.7 kg, 7.6 mol). Was added and stirred at room temperature for 20 hours. Subsequently, water (22 L) and toluene (22 L) were added to the reaction solution, the mixture was stirred for 30 minutes, then filtered through Celite, and the filter cake was washed with toluene (10 L). The filtrate was separated, and the aqueous layer was extracted with toluene (10 L). The obtained organic layer was washed with water (10 L), saturated aqueous sodium thiosulfate solution (10 L) and saturated saline (10 L) in this order, and concentrated under reduced pressure to obtain a crude product.

(精製)得られた粗体をエタノール(2.5L)に溶かした後、水(0.8L)を加え、析出した固体をろ取した。続いて、ろ取した固体を酢酸エチルに溶解し、シリカゲル(150g)を加えて30分間撹拌後、150gのシリカゲル上で減圧ろ過し、ろ液を濃縮することにより粗体を得た。さらに、得られた粗体にメタノール(0.8L)を加えて30分間撹拌した後、固体をろ取し、減圧下40℃で乾燥することにより、2,2’−ジアミノジフェニルスルホン(0.43kg)を得た。   (Purification) The obtained crude product was dissolved in ethanol (2.5 L), water (0.8 L) was added, and the precipitated solid was collected by filtration. Subsequently, the solid collected by filtration was dissolved in ethyl acetate, silica gel (150 g) was added and the mixture was stirred for 30 minutes, filtered under reduced pressure on 150 g of silica gel, and the filtrate was concentrated to obtain a crude product. Further, methanol (0.8 L) was added to the obtained crude product and the mixture was stirred for 30 minutes, and then the solid was collected by filtration and dried under reduced pressure at 40 ° C. to give 2,2′-diaminodiphenyl sulfone (0. 43 kg) was obtained.


・4,4’−ジメチル−3,3’−ジアミノジフェニルスルホンは、以下に記載する方法で調製した。

-4,4'-dimethyl-3,3'-diaminodiphenyl sulfone was prepared by the method described below.

〔1工程目〕4,4’−ジメチル−3,3’−ジニトロジフェニルスルホンの製造工程
4,4’−ジメチルジフェニルスルホン(1.4kg、5.7mol、Aldrich社製)を濃硫酸(2.3L、4.2mol)に溶かした後、4℃まで冷却した。反応溶液の温度を11℃に保ち、4時間かけて濃硝酸(0.76L、17.1mol)を滴下した後、室温で一晩撹拌した。続いて、反応溶液を6℃まで冷却し、15℃以下を保ちつつ、氷水(1.4L)を2時間かけて添加した。沈殿した固体をろ取し、ろ物を水で洗浄した。得られた固体50℃で、減圧乾燥させることにより白色固体を1.8kg得た。得られた白色固体をクロロホルム(25L)に溶解させ、撹拌した後、ヘプタン(25L)を添加して、30分撹拌後、沈降した固体をろ取した。ろ取した固体を減圧乾燥させ、4,4’−ジメチル−3,3’−ジニトロジフェニルスルホンを1.6kg得た。
[First step] Step of producing 4,4'-dimethyl-3,3'-dinitrodiphenyl sulfone 4,4'-Dimethyldiphenyl sulfone (1.4 kg, 5.7 mol, manufactured by Aldrich) was added to concentrated sulfuric acid (2. After dissolving in 3 L (4.2 mol), the mixture was cooled to 4 ° C. The temperature of the reaction solution was kept at 11 ° C., concentrated nitric acid (0.76 L, 17.1 mol) was added dropwise over 4 hours, and then the mixture was stirred overnight at room temperature. Subsequently, the reaction solution was cooled to 6 ° C., and ice water (1.4 L) was added over 2 hours while maintaining the temperature at 15 ° C. or lower. The precipitated solid was collected by filtration and the filter cake was washed with water. The obtained solid was dried at 50 ° C. under reduced pressure to obtain 1.8 kg of a white solid. The obtained white solid was dissolved in chloroform (25 L) and stirred, heptane (25 L) was added, the mixture was stirred for 30 minutes, and the precipitated solid was collected by filtration. The solid collected by filtration was dried under reduced pressure to obtain 1.6 kg of 4,4′-dimethyl-3,3′-dinitrodiphenyl sulfone.

〔2工程目〕4,4’−ジメチル−3,3’−ジアミノジフェニルスルホンの製造工程
4,4’−ジメチル−3,3’−ジニトロジフェニルスルホン(0.55kg、1.64mol)をメタノール(5.0L)に溶解させ、系内をアルゴンガスに置換した。別の容器に、アルゴンガスで脱気したメタノール(1.0L)に、5%パラジウム炭素(0.13kg、50%wet)を添加し、パラジウム炭素の懸濁液を調製し、4,4’−ジメチル−3,3’−ジニトロジフェニルスルホンのメタノール溶液に添加し、さらにメタノール(0.6L)を加えた。続いて、反応系内を水素ガスに置換し、水素を補充しつつ2日間撹拌した。その後、反応溶液をセライトでろ過し、ろ物をメタノール(13.0L)で洗浄した。同様の操作を3回行い、メタノールを減圧留去し、固体(1.1kg)を得た。
[Second step] Production step of 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone 4,4'-Dimethyl-3,3'-dinitrodiphenyl sulfone (0.55 kg, 1.64 mol) was added to methanol ( It was dissolved in 5.0 L) and the system was replaced with argon gas. To another container, 5% palladium carbon (0.13 kg, 50% wet) was added to methanol (1.0 L) degassed with argon gas to prepare a suspension of palladium carbon, 4,4 ′. -Dimethyl-3,3'-dinitrodiphenyl sulfone was added to a methanol solution, and further methanol (0.6 L) was added. Subsequently, the inside of the reaction system was replaced with hydrogen gas, and the mixture was stirred for 2 days while supplementing with hydrogen. Then, the reaction solution was filtered through Celite, and the filter cake was washed with methanol (13.0 L). The same operation was performed 3 times and methanol was distilled off under reduced pressure to obtain a solid (1.1 kg).

得られた固体を酢酸エチル(6.4L)に懸濁させ、5分間撹拌した後、ヘプタン(25.0L)を添加して20分間撹拌した。沈降した固体をろ取した後、減圧乾燥することで、4,4’−ジメチル−3,3’−ジアミノジフェニルスルホン(1.08kg)を得た。   The obtained solid was suspended in ethyl acetate (6.4 L), stirred for 5 minutes, heptane (25.0 L) was added, and the mixture was stirred for 20 minutes. The precipitated solid was collected by filtration and dried under reduced pressure to obtain 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone (1.08 kg).


<エポキシ樹脂組成物の調製方法>
ステンレスビーカー中に、硬化剤以外の成分を所定量入れ、スパチュラにて適宜混練しながら150℃まで昇温し、透明な粘調液を得た。粘調液を60℃まで降温させた後、硬化剤を配合し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。

<Method for preparing epoxy resin composition>
A predetermined amount of components other than the curing agent was placed in a stainless beaker, and the temperature was raised to 150 ° C. while appropriately kneading with a spatula to obtain a transparent viscous liquid. After the temperature of the viscous liquid was lowered to 60 ° C., a curing agent was added, and the mixture was kneaded at 60 ° C. for 30 minutes to obtain an epoxy resin composition.

各実施例および比較例の成分の配合比を表に示した。   The compounding ratios of the components of each Example and Comparative Example are shown in the table.


<エポキシ樹脂組成物の発熱開始温度の測定方法>
調製したエポキシ樹脂組成物3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、30℃から300℃まで5℃/分の等速昇温条件で測定した。JIS K0129(1994)に従い、DSC曲線のベースラインを設定し、発熱によるDSC曲線の立ち上がりの接線と、上記方法で得たベースラインが交差する点を、発熱開始温度とした。

<Method of measuring exothermic onset temperature of epoxy resin composition>
3 mg of the prepared epoxy resin composition was weighed in a sample pan, and a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) was used to increase the temperature at a constant rate of 5 ° C / min from 30 ° C to 300 ° C. It was measured at. According to JIS K0129 (1994), the baseline of the DSC curve was set, and the point at which the tangent to the rising edge of the DSC curve due to heat generation and the baseline obtained by the above method intersect was taken as the heat generation start temperature.


<予備硬化体の調製方法>
前記の方法にて調製したエポキシ樹脂組成物を、アルミカップに3g程度秤量し、あらかじめ140℃に加温しておいた熱風オーブンに入れ、2時間静置した後、オーブンから取り出した後、室温まで冷却し予備硬化体を得た。

<Preparation Method of Precured Body>
About 3 g of the epoxy resin composition prepared by the above method was weighed in an aluminum cup, placed in a hot air oven preheated to 140 ° C., allowed to stand for 2 hours, then taken out of the oven, and then at room temperature. To obtain a pre-cured product.


<予備硬化体の樹脂特性の測定方法>
(1)保存安定性の評価法
予備硬化体の保存安定性は、前記の方法で得た予備硬化体をアルミカップに3g秤量し、40℃、75%RHの環境下で6日間恒温恒湿槽内に静置した後のガラス転移温度をT、初期(恒温恒湿槽に静置する前の予備硬化体)のガラス転移温度Tとした時に、ガラス転移温度の変化量をΔTg=T―Tと定義し、ΔTgの値で保存安定性を判定した。ガラス転移温度の測定は、恒温恒湿槽内に静置する前の予備硬化体、および6日間静置後の予備硬化体について、それぞれ、3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、―20℃から150℃まで5℃/分で昇温して測定した。得られた発熱カーブの変曲点の中点をガラス転移温度Tgとして求めた。

<Method for measuring resin properties of pre-cured body>
(1) Evaluation method of storage stability The storage stability of the pre-cured product was measured by weighing 3 g of the pre-cured product obtained in the above method in an aluminum cup and subjecting to constant temperature and humidity for 6 days in an environment of 40 ° C. and 75% RH. When the glass transition temperature after standing in the bath is T 1 and the glass transition temperature T 0 in the initial stage (preliminary cured product before standing in a constant temperature and humidity bath) is T 0 , the amount of change in the glass transition temperature is ΔTg = It was defined as T 1 -T 0, and the storage stability was judged by the value of ΔTg. The glass transition temperature was measured by measuring 3 mg of each of the pre-cured body before standing in a constant temperature and humidity chamber and the pre-cured body after standing for 6 days in a sample pan, and using a differential scanning calorimeter ( Q-2000: manufactured by TA Instruments) was used and the temperature was raised from -20 ° C to 150 ° C at 5 ° C / min for measurement. The midpoint of the inflection point of the obtained exothermic curve was determined as the glass transition temperature Tg.


(2)硬化度および発熱量の測定法
調製したエポキシ樹脂組成物3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、30℃から300℃まで5℃/分の等速昇温条件で測定した。発熱量は、得られたDSC曲線から、JIS K0129(1994)に従い算出した。上記と同様の方法で、予備硬化体の発熱量も測定した。予備硬化体の硬化度は、(予備硬化体の発熱量)/(エポキシ樹脂組成物の発熱量)×100から算出した。

(2) Measuring Method of Curing Degree and Calorific Value 3 mg of the prepared epoxy resin composition is weighed into a sample pan, and using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments), 30 ° C to 300 ° C. Up to 5 ° C./min. The calorific value was calculated from the obtained DSC curve according to JIS K0129 (1994). The calorific value of the pre-cured product was also measured by the same method as above. The degree of cure of the pre-cured product was calculated from (the calorific value of the pre-cured product) / (the calorific value of the epoxy resin composition) × 100.


<樹脂硬化物の曲げ弾性率評価方法>
エポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン”(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、220℃の温度で2時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを100mm/分として3点曲げを実施し、曲げ弾性率を測定した。サンプル数n=5で測定した値の平均値を曲げ弾性率の値とした。

<Method for evaluating flexural modulus of cured resin>
After defoaming the epoxy resin composition in a vacuum, the epoxy resin composition is cured at 220 ° C. for 2 hours in a mold set to have a thickness of 2 mm by a 2 mm-thick “Teflon” (registered trademark) spacer, A 2 mm plate-shaped resin cured product was obtained. A test piece having a width of 10 mm and a length of 60 mm was cut out from this resin cured product, and subjected to three-point bending using an Instron universal testing machine (manufactured by Instron Co.) with a span of 32 mm and a crosshead speed of 100 mm / min. The flexural modulus was measured. The average value of the values measured with the number of samples n = 5 was taken as the value of flexural modulus.


(実施例1)
・|T2−T1|の測定
エポキシ樹脂の合計を100質量部としたとき、“jER(登録商標)”828を80質量部、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)を20質量部、硬化剤として4,4’−ジメチル−3,3‘−ジアミノジフェニルスルホンを4.1質量部加え、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。

(Example 1)
-Measurement of | T2-T1 | 80 parts by mass of "jER (registered trademark)" 828 and "Sumiepoxy (registered trademark)" ELM434 (manufactured by Sumitomo Chemical Co., Ltd.) when the total amount of epoxy resin is 100 parts by mass. 20 parts by mass and 4.1 parts by mass of 4,4′-dimethyl-3,3′-diaminodiphenyl sulfone as a curing agent were added to prepare an epoxy resin composition according to the above <Method for preparing epoxy resin composition>.

得られたエポキシ樹脂組成物に関し、前記<エポキシ樹脂組成物の発熱開始温度の測定方法>に従って、T1を測定した。   With respect to the obtained epoxy resin composition, T1 was measured according to the <Method of measuring exothermic start temperature of epoxy resin composition>.

エポキシ樹脂の合計を100質量部としたとき、“jER(登録商標)”828を80質量部、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)を20質量部、硬化剤として2,2’―ジアミノジフェニルを33質量部加え、前記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。   Assuming that the total amount of epoxy resin is 100 parts by mass, 80 parts by mass of "jER (registered trademark)" 828, 20 parts by mass of "Sumiepoxy (registered trademark)" ELM434 (manufactured by Sumitomo Chemical Co., Ltd.) are used as a curing agent. 33 parts by mass of 2,2′-diaminodiphenyl was added, and an epoxy resin composition was prepared according to the <Preparation method of epoxy resin composition>.

得られたエポキシ樹脂組成物に関し、前記<エポキシ樹脂組成物の発熱開始温度の測定方法>に従って、T2を測定した。   With respect to the obtained epoxy resin composition, T2 was measured according to the <Method for measuring exothermic onset temperature of epoxy resin composition>.

得られた|T2−T1|は、88℃であった。
・実施例1(2種の硬化剤を併用した樹脂組成物)の特性評価
エポキシ樹脂の合計を100質量部としたとき、“jER(登録商標)”828を80質量部、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)を20質量部、硬化剤として2,2’―ジアミノジフェニルを33質量部と4,4’−ジメチル−3,3‘−ジアミノジフェニルスルホンを4.1質量部加え、前記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。
The obtained | T2-T1 | was 88 ° C.
-Characteristic evaluation of Example 1 (resin composition in which two kinds of curing agents are used in combination) 80 parts by mass of "jER (registered trademark)" 828 and "Sumiepoxy (registered trademark)" when the total amount of epoxy resins is 100 parts by mass. ) "ELM434 (manufactured by Sumitomo Chemical Co., Ltd.) 20 parts by mass, 33 parts by mass of 2,2'-diaminodiphenyl as a curing agent, and 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone. 1 part by mass was added, and an epoxy resin composition was prepared according to the above <Method for preparing epoxy resin composition>.

得られたエポキシ樹脂組成物から、前記の<予備硬化体の調製方法>に従って、予備硬化体を調製した。   A pre-cured body was prepared from the obtained epoxy resin composition according to the <Preparation method of pre-cured body> described above.

得られた予備硬化体に関し、保存安定性の評価を行ったところ、40℃、75%RHにおいて6日間保存後のTgは0.7℃の上昇に留まり、予備硬化体は十分な保存安定性を有していた。また、予備硬化体の硬化度は24%であった。   When the storage stability of the obtained pre-cured product was evaluated, the Tg after storage for 6 days at 40 ° C. and 75% RH remained at 0.7 ° C., indicating that the pre-cured product had sufficient storage stability. Had. The degree of cure of the pre-cured product was 24%.

予備硬化体に関し、発熱量の評価を行ったところ、199J/gであった。   When the calorific value of the preliminary cured product was evaluated, it was 199 J / g.

また、上記方法で硬化して樹脂硬化物を作製し、3点曲げ試験を行った結果、曲げ弾性率は3.90GPaと、機械特性も良好であった。   In addition, a cured resin product was prepared by the above method, and a three-point bending test was performed. As a result, the bending elastic modulus was 3.90 GPa, and the mechanical properties were good.


(実施例2〜5)
硬化剤の添加量をそれぞれ表に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。|T2−T1|の評価について、実施例1と同様の評価を行った結果、85〜89℃であり、ほぼ一定の値を示した。予備硬化体の保存安定性について、実施例1と同様の評価を行った結果、いずれも良好であった。

(Examples 2 to 5)
An epoxy resin composition, a pre-cured product, and a cured resin product were produced in the same manner as in Example 1, except that the addition amount of the curing agent was changed as shown in the table. The evaluation of | T2-T1 | was carried out in the same manner as in Example 1, and the result was 85 to 89 ° C., which was a substantially constant value. The storage stability of the pre-cured product was evaluated in the same manner as in Example 1, and as a result, all were good.

実施例2〜5における予備硬化体の発熱量は、それぞれ、170、156、130、110J/gであった。   The calorific values of the pre-cured products in Examples 2 to 5 were 170, 156, 130 and 110 J / g, respectively.

予備硬化体の硬化度は、4,4’−ジメチル−3,3’−ジアミノジフェニルスルホンの配合比率を増やすにつれ、上昇した。具体的には、実施例2〜5における硬化度は、それぞれ、37、44、58、65%となり、4,4’−ジメチル−3,3’−ジアミノジフェニルスルホンと2,2’−ジアミノジフェニルスルホンの配合比率と硬化度の関係が、直線性を示した。   The degree of cure of the pre-cured product increased as the compounding ratio of 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone increased. Specifically, the degree of cure in Examples 2 to 5 was 37, 44, 58 and 65%, respectively, and 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone and 2,2'-diaminodiphenyl were obtained. The relationship between the blending ratio of sulfone and the curing degree showed linearity.

また、樹脂硬化物の曲げ弾性率の値は、いずれも良好であった。   The values of flexural modulus of the resin cured product were good.


(実施例6〜10)
使用した硬化剤を、2,2’−ジアミノジフェニルスルホンと3,3’−ジアミノジフェニルスルホンとしたこと以外は、実施例1〜5と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。また、実施例1〜5と同様の方法で|T2−T1|の評価を行った結果、57〜60℃であった。予備硬化体の保存安定性について、実施例1と同様の評価を行った結果、いずれも良好であった。

(Examples 6 to 10)
An epoxy resin composition, a pre-cured product, and a resin-cured product were prepared in the same manner as in Examples 1 to 5, except that the curing agents used were 2,2'-diaminodiphenyl sulfone and 3,3'-diaminodiphenyl sulfone. The thing was made. Moreover, as a result of evaluating | T2-T1 | by the method similar to Examples 1-5, it was 57-60 degreeC. The storage stability of the pre-cured product was evaluated in the same manner as in Example 1, and as a result, all were good.

実施例6〜10における予備硬化体の発熱量は、それぞれ、198、177、163、142、120J/gであった。   The calorific values of the pre-cured products in Examples 6 to 10 were 198, 177, 163, 142 and 120 J / g, respectively.

硬化度に関しては、硬化剤の配合比率によって、39〜75%の間で変化した。   The degree of curing varied between 39 and 75% depending on the compounding ratio of the curing agent.

また、樹脂硬化物の曲げ弾性率の値は、いずれも良好であった。   The values of flexural modulus of the resin cured product were good.


(実施例11〜15)
使用した硬化剤を、4,4’−ジアミノジフェニルスルホンと4,4’−ジメチル−3,3’−ジアミノジフェニルスルホンとしたこと以外は、実施例1〜5と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。また、実施例1〜5と同様の方法で|T2−T1|の評価を行った結果、45〜47℃であった。予備硬化体の保存安定性について、実施例1と同様の評価を行った結果、いずれも良好であった。

(Examples 11 to 15)
An epoxy resin composition in the same manner as in Examples 1 to 5, except that the curing agents used were 4,4'-diaminodiphenyl sulfone and 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone. A pre-cured body and a resin cured product were produced. Moreover, as a result of evaluating | T2-T1 | in the same manner as in Examples 1 to 5, it was 45 to 47 ° C. The storage stability of the pre-cured product was evaluated in the same manner as in Example 1, and as a result, all were good.

実施例11〜15における予備硬化体の発熱量は、それぞれ、180、155、133、121、103J/gであった。   The calorific values of the pre-cured products in Examples 11 to 15 were 180, 155, 133, 121 and 103 J / g, respectively.

硬化度に関しては、50〜74%の間の変化であり、実施例1〜5、6〜10と比べて、変化が小さいが、硬化剤の配合比率によって、硬化度を制御可能なレベルであった。   Regarding the degree of curing, the change is between 50 and 74%, which is small compared to Examples 1 to 5 and 6 to 10, but at a level at which the degree of curing can be controlled by the mixing ratio of the curing agent. It was

また、樹脂硬化物の曲げ弾性率の値は3.40〜3.58GPaであった。   The flexural modulus of the cured resin was 3.40 to 3.58 GPa.


(実施例16〜19)
樹脂組成を表に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。また、実施例1〜5と同様の方法で|T2−T1|の評価を行った結果、実施例16〜19は、それぞれ、85、88、59、44℃であった。予備硬化体の保存安定性について、実施例1と同様の評価を行った結果、いずれも良好であった。予備硬化体の硬化度は表に記載の通りであった。

(Examples 16 to 19)
An epoxy resin composition, a pre-cured product, and a cured resin product were produced in the same manner as in Example 1 except that the resin composition was changed as shown in the table. Moreover, as a result of evaluating | T2-T1 | in the same manner as in Examples 1 to 5, Examples 16 to 19 were 85, 88, 59 and 44 ° C., respectively. The storage stability of the pre-cured product was evaluated in the same manner as in Example 1, and as a result, all were good. The curing degree of the pre-cured product was as shown in the table.

実施例16〜19における予備硬化体の発熱量は、それぞれ、164、167、155、115J/gであった。   The calorific values of the pre-cured products in Examples 16 to 19 were 164, 167, 155 and 115 J / g, respectively.

また、樹脂硬化物の曲げ弾性率の値は、いずれも良好であった。   The values of flexural modulus of the resin cured product were good.


(比較例1〜5)
使用した硬化剤を、4,4’−ジアミノジフェニルスルホンと3,3’−ジアミノジフェニルスルホンとしたこと以外は、実施例1〜5と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。|T2−T1|の評価、予備硬化体の保存安定性、硬化度、および発熱量についても、実施例1〜5と同様の評価を行った。

(Comparative Examples 1-5)
An epoxy resin composition, a pre-cured product, and a resin curable were prepared in the same manner as in Examples 1 to 5, except that the curing agents used were 4,4'-diaminodiphenyl sulfone and 3,3'-diaminodiphenyl sulfone. The thing was made. The same evaluations as in Examples 1 to 5 were performed with respect to the evaluation of | T2-T1 |, the storage stability of the preliminary cured product, the degree of curing, and the heat generation amount.

|T2−T1|の値は、11〜15℃と小さいものであった。   The value of | T2-T1 | was as small as 11 to 15 ° C.

併用した硬化剤の比率を変化させた際、硬化度の変化が51〜59%と変化量が小さいため、プリプレグに使用した場合、タック性とドレープ性の制御ができない。また、比較例4および5は、Tgの増加が大きく、保存安定性が不十分なものとなった。   When the ratio of the curing agent used in combination is changed, the change in the degree of curing is small at 51 to 59%, which is small, so that when used in a prepreg, the tackiness and drapeability cannot be controlled. Further, in Comparative Examples 4 and 5, the increase in Tg was large and the storage stability was insufficient.


(比較例6〜10)
使用した硬化剤を、4,4’−ジアミノジフェニルスルホンとトリエチレンテトラミンとしたこと以外は、実施例1〜5と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。|T2−T1|の評価、予備硬化体の保存安定性と硬化度、および発熱量についても、実施例1〜5と同様の評価を行った。

(Comparative Examples 6 to 10)
An epoxy resin composition, a pre-cured product, and a cured resin product were produced in the same manner as in Examples 1 to 5, except that the curing agents used were 4,4′-diaminodiphenyl sulfone and triethylene tetramine. The same evaluations as in Examples 1 to 5 were made with respect to the evaluation of | T2-T1 |, the storage stability and the curing degree of the preliminary cured product, and the calorific value.

|T2−T1|は、115〜120℃と著しく大きい値となった。   | T2-T1 | was a significantly large value of 115 to 120 ° C.

エポキシ樹脂との反応性が高いトリエチレンテトラミンを使用したため、Tg変化が大きくなり、保存安定性が著しく低下した。また、機械特性も不十分なものとなった。   Since triethylenetetramine, which has high reactivity with the epoxy resin, was used, the change in Tg was large and the storage stability was significantly reduced. In addition, the mechanical properties became insufficient.


(比較例11〜15)
使用した硬化剤を、ジエチルトルエンジアミンとトリエチレンテトラミンとしたこと以外は、実施例1〜5と同じ方法でエポキシ樹脂組成物、予備硬化体、および樹脂硬化物を作製した。|T2−T1|の評価、予備硬化体の保存安定性と硬化度、および発熱量についても、実施例1〜5と同様の評価を行った。

(Comparative Examples 11 to 15)
An epoxy resin composition, a pre-cured product, and a cured resin product were produced in the same manner as in Examples 1 to 5, except that the curing agents used were diethyltoluenediamine and triethylenetetramine. The same evaluations as in Examples 1 to 5 were made with respect to the evaluation of | T2-T1 |, the storage stability and the curing degree of the preliminary cured product, and the calorific value.

|T2−T1|は、96〜98℃と大きい値であった。   | T2-T1 | was a large value of 96 to 98 ° C.

Tgの増加が著しく大きく、保存安定性が不十分であった。また、機械特性も低いものであった。   The increase in Tg was extremely large and the storage stability was insufficient. Also, the mechanical properties were low.

Figure 0006686763
Figure 0006686763

Figure 0006686763
Figure 0006686763

Figure 0006686763
Figure 0006686763

Figure 0006686763
Figure 0006686763

Figure 0006686763
Figure 0006686763

Figure 0006686763
Figure 0006686763

Figure 0006686763
Figure 0006686763

なお、表中の各成分の単位は質量部である。   The unit of each component in the table is parts by mass.

本発明のエポキシ樹脂組成物は、併用する2種の硬化剤の比率により、予備硬化体の硬化度を制御でき、また、予備硬化体硬化時の発熱量が小さい。これにより、該エポキシ樹脂組成物を用いたプリプレグは、タック性とドレープ性を自在に調節でき、成形時の加工性が向上し、構造設計や工法の自由度が高くなる。また、成型加工時の発熱量が小さく、得られた繊維強化複合材料は、優れた機械特性を示すため、様々な用途への適用が可能である。   The epoxy resin composition of the present invention can control the degree of curing of the pre-cured body by the ratio of the two kinds of curing agents used together, and also has a small heat generation amount when the pre-cured body is cured. As a result, the prepreg using the epoxy resin composition can be adjusted in tackiness and drapeability, the workability at the time of molding is improved, and the degree of freedom in structural design and construction method is increased. Further, since the heat generation amount during molding is small and the obtained fiber reinforced composite material exhibits excellent mechanical properties, it can be applied to various uses.

Claims (7)

硬化剤A、硬化剤B、硬化剤C、及び硬化剤Dからなる群より選ばれる2種類の硬化剤(以下、選択された2種類の硬化剤を、第1の硬化剤及び第2の硬化剤という)を含み、かつ、以下の条件1を満たす、エポキシ樹脂組成物。
硬化剤A:化学式Aで示される化合物
Figure 0006686763
(化学式Aにおいて、R、R、R、Rは、それぞれ独立して水素、メチル、エチル、n−プロピルを表す。)
硬化剤B:4,4’−ジメチル−3,3’−ジアミノジフェニルスルホン
硬化剤C:3,3’−ジアミノジフェニルスルホン
硬化剤D:4,4’−ジアミノジフェニルスルホン
条件1:硬化剤として第1の硬化剤のみを含むエポキシ樹脂組成物及び硬化剤として第2の硬化剤のみを含むエポキシ樹脂組成物を、それぞれ示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱開始温度を、それぞれ、T1(℃)、T2(℃)としたとき、T1及びT2が下式を満たす。
Figure 0006686763
Two types of curing agents selected from the group consisting of a curing agent A, a curing agent B, a curing agent C, and a curing agent D (hereinafter, the selected two types of curing agents are referred to as a first curing agent and a second curing agent). (Referred to as an agent) and satisfying the following condition 1: an epoxy resin composition.
Curing agent A: compound represented by chemical formula A
Figure 0006686763
(In the chemical formula A, R 1 , R 2 , R 3 , and R 4 each independently represent hydrogen, methyl, ethyl, or n-propyl.)
Hardening agent B: 4,4'-dimethyl-3,3'-diaminodiphenyl sulfone Hardening agent C: 3,3'-diaminodiphenyl sulfone Hardening agent D: 4,4'-diaminodiphenyl sulfone Condition 1: First as a hardening agent An epoxy resin composition containing only one curing agent and an epoxy resin composition containing only a second curing agent as a curing agent were each subjected to a constant velocity condition of 5 ° C./min from 30 ° C. to 300 ° C. by a differential scanning calorimeter. When the heat generation start temperatures when the temperature is raised at T1 (° C.) and T2 (° C.), respectively, T1 and T2 satisfy the following formula.
Figure 0006686763
前記2種類の硬化剤として、硬化剤Aと硬化剤Bの組み合わせ、または、硬化剤Aと硬化剤Cの組み合わせを含むことを特徴とする、請求項1に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein a combination of a curing agent A and a curing agent B or a combination of a curing agent A and a curing agent C is included as the two types of curing agents. 化学式Aにおいて、R、R、R、Rが、いずれも水素である、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein in the chemical formula A, R 1 , R 2 , R 3 , and R 4 are all hydrogen. 140℃で2時間、予備硬化させた予備硬化体を、示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱量が、100〜250J/gの範囲にある、請求項1から3のいずれかに記載のエポキシ樹脂組成物。   The calorific value when the pre-cured product pre-cured at 140 ° C. for 2 hours was heated from 30 ° C. to 300 ° C. at a constant rate of 5 ° C./min by a differential scanning calorimeter, was 100 to 250 J /. The epoxy resin composition according to any one of claims 1 to 3, which is in the range of g. 220℃で2時間、硬化させたときの樹脂硬化物の曲げ弾性率が3.60GPa以上である、請求項1から4のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the cured resin has a flexural modulus of 3.60 GPa or more when cured at 220 ° C. for 2 hours. 請求項1から5のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。   A prepreg comprising the epoxy resin composition according to claim 1 and a reinforcing fiber. 請求項6に記載のプリプレグのエポキシ樹脂組成物を硬化した繊維強化複合材料。   A fiber-reinforced composite material obtained by curing the epoxy resin composition of the prepreg according to claim 6.
JP2016145179A 2016-07-25 2016-07-25 Epoxy resin composition, prepreg and fiber reinforced composite material Active JP6686763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145179A JP6686763B2 (en) 2016-07-25 2016-07-25 Epoxy resin composition, prepreg and fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145179A JP6686763B2 (en) 2016-07-25 2016-07-25 Epoxy resin composition, prepreg and fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2018016666A JP2018016666A (en) 2018-02-01
JP6686763B2 true JP6686763B2 (en) 2020-04-22

Family

ID=61081360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145179A Active JP6686763B2 (en) 2016-07-25 2016-07-25 Epoxy resin composition, prepreg and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP6686763B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269115A (en) * 1988-04-29 1990-11-02 Tonen Corp Epoxy resin composition
JP3602228B2 (en) * 1995-11-09 2004-12-15 横浜ゴム株式会社 Epoxy resin composition
AU2002344461B2 (en) * 2001-11-07 2007-07-12 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
US8034453B2 (en) * 2008-10-07 2011-10-11 Hexcel Corporation Composite materials with improved burn properties
EP2621994A1 (en) * 2010-09-30 2013-08-07 Dow Global Technologies LLC Epoxy resin compositions
JP2012153746A (en) * 2011-01-21 2012-08-16 Yamamoto Chem Inc Epoxy resin composition for fiber-reinforced composite material
CA2827464C (en) * 2011-02-16 2016-07-19 Mitsubishi Rayon Co., Ltd. Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein
WO2013025303A2 (en) * 2011-08-18 2013-02-21 Dow Global Technologies Llc Curable resin compositions
EP3489273B1 (en) * 2016-07-25 2021-01-13 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
JP6776693B2 (en) * 2016-07-25 2020-10-28 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites

Also Published As

Publication number Publication date
JP2018016666A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR101878128B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR102294515B1 (en) Epoxy Resin Compositions, Prepregs and Fiber Reinforced Composites
JP6885339B2 (en) Prepreg and fiber reinforced composites
WO2016136052A1 (en) Epoxy resin composition, cured epoxy resin product, prepreg, and fiber-reinforced composite material
CN110461919B (en) Method for producing fiber-reinforced composite material
JP6776693B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
CN110914330B (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6686763B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2019023284A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019023281A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7215001B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2022026476A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7215002B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite
JP2013075998A (en) Composition including adamantane derivative and fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
JP2022026477A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6066026B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2023176935A1 (en) Epoxy resin composition for resin transfer molding, cured resin product, fiber-reinforced composite material, and method for manufacturing same
JP2020204026A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2020189922A (en) Epoxy resin composition, base material and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R151 Written notification of patent or utility model registration

Ref document number: 6686763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151