WO2012111752A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2012111752A1
WO2012111752A1 PCT/JP2012/053668 JP2012053668W WO2012111752A1 WO 2012111752 A1 WO2012111752 A1 WO 2012111752A1 JP 2012053668 W JP2012053668 W JP 2012053668W WO 2012111752 A1 WO2012111752 A1 WO 2012111752A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
partition plate
laminate
thickness
current collector
Prior art date
Application number
PCT/JP2012/053668
Other languages
English (en)
French (fr)
Inventor
田中 明
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to EP12746900.5A priority Critical patent/EP2677587A4/en
Priority to US13/981,177 priority patent/US20130323573A1/en
Priority to CN201280007783.5A priority patent/CN103718366A/zh
Priority to JP2012558010A priority patent/JP5617940B2/ja
Priority to KR1020137024357A priority patent/KR101530803B1/ko
Publication of WO2012111752A1 publication Critical patent/WO2012111752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a structure of a secondary battery.
  • Secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion batteries, and the like.
  • Nickel cadmium batteries are being converted to nickel metal hydride batteries and lithium ion batteries because cadmium is toxic.
  • the lithium ion secondary battery is particularly suitable for increasing the energy density, and its development is being actively promoted.
  • the main components of the nickel metal hydride battery and the lithium ion secondary battery are as follows: a metal current collector (negative electrode) having a negative electrode active material layer formed on the surface, a separator for holding an electrolyte, and a positive electrode active material layer formed on the surface. Another metal current collector (positive electrode).
  • the nickel metal hydride battery employs nickel oxide for the positive electrode and a hydrogen storage alloy for the negative electrode.
  • lithium ion secondary batteries employ a lithium metal oxide for the positive electrode and a carbon material such as graphite for the negative electrode.
  • the battery structure is roughly classified into a cylindrical structure in which a strip-shaped negative electrode, a separator, and a positive electrode are sequentially spirally wound, and a stacked structure in which strip-shaped negative electrodes, a separator, and a positive electrode are alternately arranged.
  • a laminated structure in which strip-shaped negative electrodes, separators, and positive electrodes are alternately arranged is more preferable than a cylindrical structure in which there are many volume portions that are not involved in power generation, such as a strip-shaped negative electrode, separator, and shaft core for winding the positive electrode.
  • it is suitable for high volume energy density. This is because the laminated type does not require an axis for winding, and it is easy to form a positive electrode and a negative electrode terminal for external output on the same surface, so the volume other than the portion that contributes to power generation can be reduced. Because.
  • the pressure increase in the battery can is generally caused by volume expansion due to lithium ions entering between the negative electrode layers during charging, due to generation of gas due to decomposition of excess Li 2 CO 3 , or by joule due to overcharging. Some of them are caused by the decomposition reaction of the electrolytic solution due to temperature rise caused by heat or the like.
  • Cylindrical type has a strip-shaped negative electrode, separator, and positive electrode, which are spirally wound in sequence, so there is little swelling in the circumferential direction and radial direction against the pressure increase in the battery can.
  • the gas stays in the gaps between the stacked electrode plates and tends to swell in the wide surface direction of the stacked electrode plates.
  • the swelling of the battery means an increase in the distance between the electrodes, which adversely affects the battery performance. That is, since the ion conduction path becomes long, it is difficult to obtain a high discharge capacity.
  • the power generation element consisting of the positive electrode, separator, and negative electrode can be regarded as an axisymmetric shape with the axis as the central axis, and the heat transferred in the radial direction is generally any axisymmetric cross section parallel to the axis. But it shows the same heat distribution.
  • the laminated type since the laminated type has a structure in which electrode plates are stacked, the thermal resistance is different between the laminating direction and the planar direction, and the heat conduction is anisotropic. Generally, the heat conduction in the stacking direction in which the electrode plates are stacked is lower than the heat conduction in the planar direction.
  • the number of electrode plates increases, so that in the case of a stacked type, the stacked thickness increases. For this reason, the distance from the battery can surface to the center of the battery can increases, the heat dissipation of the electrode plate in the center of the battery can decreases, and the temperature rise of the electrode plate increases. Thereby, there exists a possibility of causing the fall of a battery characteristic, the fall of reliability, or safety
  • Patent Document 1 discloses an invention in which a thickness of a pair of wide side surfaces of a battery can is formed thicker than a thickness of a pair of narrow side surfaces.
  • Patent Document 2 discloses an invention constituted by a monoblock having a partition wall having a thickness of 0.5 mm or less.
  • the structure in which the thickness of the wide side of the battery can is made thicker than the thickness of the narrow side increases the thickness of the can on the wide side of the exposed outer wall.
  • the correspondence between the wide surface of the laminated body stored in the battery can and the wide side surface of the battery can is not shown, and as the capacity increases, the number of laminated electrode plates increases, and the wide surface of the laminated body increases.
  • the opposing surfaces do not coincide with the wide side surface of the battery can, even if the plate thickness of the wide side surface of the battery can is increased, no effect can be expected on the expansion of the laminate in the stacking direction.
  • Patent Document 2 proposes a monoblock structure having a partition with a battery can thickness of 0.5 mm or less, but it is difficult to suppress expansion of a large capacity battery if the thickness is 0.5 mm or less.
  • multiple power generation elements are placed in a monoblock can with a partition wall. In both cases, the expansion in the direction corresponding to the wide surface of the laminated body is the same, and measures for expansion associated with the increase in the capacity of the battery are not considered.
  • Patent Document 4 even if an inorganic substance is contained in the solid electrolyte, thermal conductivity is lower than that of a metal, and if the content of an inorganic substance that does not contribute to power generation is increased, battery performance may be deteriorated. Therefore, improvement in heat dissipation cannot be expected so much. Moreover, the prevention of the swelling of the laminate is not taken into consideration, and it cannot be expected to suppress the expansion.
  • One of the objects of the present invention is to effectively suppress the swelling of the battery can against an increase in the internal pressure of the battery, and to effectively transmit the heat generated in the electrode plate inside the battery can to the outside, so that the volume energy density is high.
  • the object is to provide a large capacity battery.
  • a metal current collector having a negative electrode active material layer formed on the surface, a separator for holding an electrolyte, and another metal current collector having a positive electrode active material layer formed on the surface are alternately formed in a strip shape.
  • a battery in which the laminated body arranged in a sealed battery can is sealed, and at least one of the laminated bodies accommodated in the battery can is opposed to the wide surface of the laminated body, and the inside of the battery can has a structure in which a partition plate for dividing the space is formed.
  • the total thickness of the outer wall of the battery can facing the wide surface of the laminate and the partition plate is larger than the total thickness in the planar direction of the laminate.
  • the battery can partition plate be thicker than the outer wall of the battery can.
  • the partition plate has an opening that penetrates the front and back of the partition plate.
  • the present invention even when the laminate electrode group expands due to charge and discharge, the deformation of the battery can side surface when the battery can expands outward is suppressed, and heat generation from the laminate is effective. It is possible to provide a secondary battery that can dissipate heat, has high cycle characteristics and high reliability, and has a large capacity and high energy density.
  • FIG. 1 is a schematic plan sectional view of a battery for explaining one embodiment of the present invention. It is a schematic side sectional view of a battery for explaining one embodiment of the present invention. 1 is a schematic plan sectional view of a battery for explaining one embodiment of the present invention. 1 is a schematic plan sectional view of a battery for explaining one embodiment of the present invention. It is a schematic diagram of the partition plate explaining one Example of this invention.
  • FIG. 1 is a partially cutaway perspective view of a secondary battery showing an embodiment of the present invention
  • FIG. 2 is a schematic plan sectional view of the secondary battery of FIG. 1
  • FIG. 3 is a secondary battery of FIG.
  • FIG. 2 and 3 show the arrangement of the laminate 2 and the battery can 1 according to the present invention, and the tabs, lids, current-carrying parts and the like of the laminate are omitted.
  • Shown is a stacked lithium ion secondary battery having a battery capacity of 210 Ah.
  • the laminated body 2 is accommodated in the battery can 1, and the laminated body 2 is electrically connected to the external terminal 4 through the tab 3.
  • the external terminal 4 is fixed to the lid plate 8 with a fastening component 5 such as a nut.
  • the lid plate 8 is provided with an injection hole plug 6 that seals an injection hole for injecting an electrolytic solution, and a safety valve 7 for releasing the internal pressure of the battery can 1 in an unsteady state such as overcharge.
  • the laminate 2 includes a first metal current collector (copper) having a negative electrode active material layer formed on the surface, a separator for holding an electrolyte, and a second metal electrode having a positive electrode active material layer formed on the surface.
  • Metal current collector aluminum
  • the first metal current collector, the separator, and the second metal current collector are formed in a strip shape, and these are alternately laminated. The dimensions such as the thickness of the stacked body 2 and the number of stacked layers are determined by the required battery capacity.
  • the battery can 1 has a rectangular shape because it encloses the rectangular laminate 2.
  • the square battery has an advantage that the volume energy density can be increased because there is no shaft core for winding, as compared with the case where a strip-shaped metal current collector or separator is wound into a cylindrical shape and put into a cylindrical battery can.
  • the battery can 1 is formed of an aluminum alloy by impact press molding. When the material of the battery can 1 is an aluminum metal, it may be produced by die casting.
  • the material of the battery can 1 is preferably a metal material such as aluminum or stainless steel from the viewpoint of mechanical strength, but is not limited to the metal material, and is not limited to a resin that is not eroded by the electrolyte, such as fluorine, polyethylene, polypropylene, Resins such as epoxy, POM, and PEEK may be used. Resin-based battery cans have the advantage of being lighter than metal-based battery cans because of the lower material density. On the other hand, resin systems are weak in strength and have disadvantages such as poor heat dissipation due to low thermal conductivity.
  • An electrical connection tab 3 is formed at an end portion in the longitudinal direction of a metal current collector that is a constituent material of the laminate 2.
  • the tab 3 is connected to the external terminal 4 via a current-carrying component (not shown).
  • the number of tabs 3 formed in the laminate 2 is determined by the capacity, and a battery having a capacity of several tens Ah to several hundreds Ah ranges from several tens to several hundreds of tabs.
  • the plurality of stacked bodies 2 housed in the battery can 1 are divided into three groups so that the capacity of one group is 70 Ah.
  • the laminated body 2 is arrange
  • the wide surface of the laminate 2 is arranged in parallel with the partition plate 9.
  • the number of partition plates in the battery can is two, and the three laminated bodies 2 are arranged.
  • the laminated body may be divided into two or more groups according to the battery capacity and the number of electrode plates. Accordingly, a plurality of partition plates 9 may be arranged. The presence of the partition plate 9 suppresses the displacement of the stacked body 2 in the stacking direction.
  • the presence of the partition plate 9 can also suppress the swelling of the side surface of the battery can 1 in the direction perpendicular to the stacking direction of the stacked body 2.
  • the partition plate 9 and the battery can 1 are continuous members and are integrally formed.
  • the partition plate 9 may be separately manufactured and fixed to the battery can 1 by welding or adhesion.
  • the partition plate 9 is preferably made of the same material as the battery can 1, but may be made of a different material.
  • the thickness t3 of the partition plate 9 is thick because the heat conduction area is large.
  • the thickness t3 of the partition plate 9 should be suppressed to less than twice the thickness t1 of the outer wall of the battery can 1. Good.
  • the number of electrode plates constituting the laminate 2 can be reduced, whereby the amount of displacement due to swelling is reduced according to the number of electrode plates, and the amount of heat generated per laminate is also reduced.
  • the thickness of the partition plate 9 per sheet can be reduced.
  • the thicknesses t1 and t2 of the battery can 1 are set to 1 mm, and the thickness t3 of the partition plate 9 is set to 1.5 mm.
  • the sum of the thicknesses of the members constituting the battery can 1 in the stacking direction, that is, the total thickness t1 of the outer wall of the battery can 1 and the thickness t3 of the partition plate 9 is 5 mm. Is thicker than 2 mm in total of the thickness t2 in the direction perpendicular to the stacking direction.
  • the width W of the surface of the battery can 1 corresponding to the wide surface of the laminate 2 is 130 mm
  • the depth D of the battery can 1 in the stacking direction is 155 mm
  • the height H of the battery can 1 was 220 mm.
  • Comparative Example 1 there is no partition plate, the thickness of the battery can in the stacking direction is 2.5 mm so that the total thickness in the stacking direction is the same 5 mm, and the thickness in the direction perpendicular to the stacking direction is set to 2.5 mm.
  • a battery with a thickness of 1 mm was produced.
  • the external dimensions of Comparative Example 1 and Example 1 are the same.
  • the amount of swelling and the temperature after repeating charging and discharging 5 times were measured.
  • the amount of swelling was measured by measuring the change in the maximum thickness of the battery can 1 in the stacking direction corresponding to the wide surface of the battery stack 2 before and after charging and discharging.
  • the temperature measured the change of the temperature inside the battery before and after charging and discharging.
  • Example 1 with the partition plate 9 was able to keep both the amount of swelling and the temperature low compared to Comparative Example 1 without the partition plate.
  • FIG. 4 is a schematic plan sectional view of a secondary battery showing one embodiment of the present invention.
  • FIG. 5 is a schematic side sectional view of FIG.
  • the laminated body 2 is a 280 Ah laminated lithium ion secondary battery including four groups.
  • the capacity of one group of the stacked body 2 is 70 Ah.
  • the outer dimensions of the battery can 1 are a width W of 130 mm, a depth D of 205 mm, and a height H of 220 mm.
  • the battery can 1 includes an outer peripheral body 11 made of stainless steel and a plurality of partition plates 9.
  • the partition plate 9 is fixed to the outer peripheral body 11 by welding. As shown in FIG.
  • the height of the partition plate 9 is made lower than the outer peripheral body 11 of the battery can 1, and the bottom surface 11 a of the outer peripheral body 11 of the battery can 1 and the partition plate 9 are not in contact with each other. However, it has the structure which can go back and forth between each group of the laminated bodies 2 freely.
  • a flat plate with no holes is used for the partition plate 9, but a partition plate 9 provided with a plurality of through holes may be used as shown in FIG. Further, a net-like partition plate 9 such as an expanded metal may be used. However, if the aperture ratio is large, the heat conduction is reduced, so that the aperture ratio is preferably 50% or less.
  • the partition plate 9 has a flat plate shape. However, the partition plate 9 may have a corrugated shape or a shape in which irregularities are formed on the surface.
  • the plate thickness t1 of the outer peripheral body 11 of the battery can 1 and the plate thickness t3 of the partition plate 9 are each 1 mm.
  • the total plate thickness in the stacking direction corresponding to the wide surface of the laminate 2 is 5 mm, because the three partition plates 9 are arranged, and the thickness of the partition plate 9 and the outer peripheral body 11 are combined. .
  • the total thickness in the direction perpendicular to the stacking direction is 2 mm.
  • Comparative Example 2 there is no partition plate, the total thickness in the stacking direction is 5 mm, which is the same as in Example 2, and the thickness in the stacking direction is 2.5 mm.
  • a battery having the same external dimensions as 2 was produced. Similar to the measurement shown in Example 1, the swelling of the battery can corresponding to the wide surface of the battery laminate 2 before and after charging / discharging and the temperature inside the battery were measured. As a result, in this example with the partition plate 9, both the amount of swelling and the temperature could be kept low as compared with the comparative example 2 without the partition plate.
  • SYMBOLS 1 Battery can, 2 ... Laminated body, 3 ... Tab, 4 ... Terminal, 5 ... Fastening component, 6 ... Injection hole stopper, 7 ... Safety valve, 8 ... Cover, 9 ... Partition plate, 10 ... Hole, 11 ... Battery Can outer periphery.

Abstract

 本発明は、表面に負極活物質層が形成された金属集電体と、電解質を保持するセパレータと、表面に正極活物質層が形成された他の金属集電体とを短冊形状に交互に配置した積層体を有底の電池缶に密閉した二次電池である。この二次電池において、電池缶に複数収納された積層体間のうち、積層体の幅広面に対向して電池缶の内部空間を分割する仕切り板が少なくとも一つ形成されている。

Description

二次電池
 本発明は、二次電池の構造に関する。
 近年、環境問題を背景にして、ハイブリッド電気自動車(HEV)、電気自動車(EV)、フォークリフト、ショベルカー等の移動体のみならず、UPS(無停電電源装置)、太陽光発電の電力貯蔵などの産業用用途にも、リチウムイオン電池を代表とする二次電池の適用が図られている。このような二次電池の用途拡大に伴って、大容量化、高エネルギー密度化が求められている。
 また、これら高性能化に加えて、高安全性化も重要な課題となっている。二次電池としては、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池等がある。ニッケルカドミウム電池はカドミウムが有毒であることなどから、ニッケル水素電池やリチウムイオン電池への転換が進んでいる。現存する二次電池の中でも、特にリチウムイオン二次電池は高エネルギー密度化に適しており、現在でもその開発が盛んに進められている。
 このニッケル水素電池やリチウムイオン二次電池の主要な構成は、表面に負極活物質層を形成した金属集電体(負極)と、電解質を保持するセパレータと、表面に正極活物質層を形成した他の金属集電体(正極)である。ニッケル水素電池は、正極にニッケル酸化物、負極に水素吸蔵合金を採用している。また、リチウムイオン二次電池は、正極にリチウム金属酸化物、負極に黒鉛などのカーボン材料を採用している。電池構造としては、帯状の負極、セパレータ、正極を順次渦巻き状に巻いた円筒型構造と、短冊状の負極、セパレータ、正極を交互に配置した積層型構造とに大別される。帯状の負極、セパレータ、正極を巻き取るための軸芯等の発電に関与しない体積部分が多くある円筒型構造よりも、短冊状の負極、セパレータ、正極を交互に配置した積層型構造の方が、一般的に高体積エネルギー密度化に適している。これは、積層型は、巻取りのための軸芯が不要であることや、外部出力用の正極及び負極端子を同一面に形成し易いことから、発電に寄与する部分以外の体積を少なくできるからである。
 また、電池缶内の圧力上昇に対して、円筒型と積層型とでは電池缶の膨らみ方に違いが見られる。電池缶内の圧力上昇には、一般に、充電時にリチウムイオンが負極層間に入り込むことによる容積膨張に起因するもの、余剰のLiCO3の分解によるガスの発生に起因するもの、過充電によるジュール熱等を要因とした温度上昇による電解液の分解反応に起因するもの等がある。円筒型は帯状の負極、セパレータ、正極を順次渦巻き状に巻いてあるので、電池缶内の圧力上昇に対して、円周方向や半径方向に対する膨らみは少ないが、積層型は、電池缶内での圧力上昇に伴い、積層してある極板などの隙間にガスが滞留し、積層した極板の幅広面方向に膨らみ易い傾向にある。電池の膨らみは、電極間の距離の増大を意味するため、電池性能に悪影響をもたらす。即ち、イオン伝導経路が長くなるため、高い放電容量が得にくくなる。
 また、円筒型と積層型とでは、放熱性に違いが見られる。円筒型は、軸芯を中心軸として、正極、セパレータ、負極からなる発電要素は軸対称形状と見なすことができ、半径方向に伝わる熱は、一般的に、軸に並行な、どの軸対称断面でも同じ熱分布を示す。一方、積層型は、極板を積み重ねた構造のため、積層方向と平面方向とでは熱抵抗が異なり、熱伝導に異方性を示す。一般に、極板を積み重ねた積層方向の熱伝導が、平面方向の熱伝導よりも低くなる。電池の大容量化に伴い、極板の枚数が増大するため、積層型の場合、積層厚みが増大する。このため、電池缶表面からの電池缶中央までの距離が増大し、電池缶中央にある極板の放熱性が低下し、極板の温度上昇が増大する。これにより、電池特性の低下や信頼性や安全性の低下を招く恐れがある。
 このように、高エネルギー密度化が可能な積層型電池においては、電池の膨らみを抑制し、放熱性を高める必要がある。電池の膨らみの抑制に対しては、従来、以下の提案がなされている。例えば、電池缶の相対する一組の広側面の厚さが、相対する一組の狭側面の厚さより厚く形成するような発明が特許文献1に開示されている。また、電池缶の厚さが0.5mm以下の隔壁を有するモノブロックで構成される発明が特許文献2に開示されている。
 電池の放熱性に関しては、以下の提案がなされている。例えば、特許文献3では、積層電極体に高熱伝導シートを巻くことで放熱性を高めようとしている。また、特許文献4では、固体電解質内に熱伝導性の優れた電気絶縁性無機物を含有して放熱性を高めようとしている。
特許3114768号公報 特開2000-182572号公報 特開平10-40959号公報 特開平8-255615号公報
 積層型電池において、電池容量が大きくなると、極板の積層枚数が増加するため、充電時にリチウムイオンが負極層間に入り込むことによる容積膨張が増大する。この負極の容積膨張は、積層方向の膨張に影響を与える。そして、電池容量の増大に伴い、電解液量も増加するため、電解液の分解等によるガス圧も増大する。このガス圧は、電池缶側面に等方的にかかるため、電池缶の内部の全方向の膨張に影響を与える。また、大容量の電池は、極板枚数の増加に伴い、発熱量が増大するため、放熱性は大容量電池の重要な課題の一つであり、電池内部の熱抵抗の増大を極力抑えて、放熱性を高めることが重要である。
 特許文献1のように、電池缶の広側面の厚みを狭側面の厚みより厚くした構造は、露出している外壁の広側面の缶厚を厚くしたことによって、熱伝導距離が長くなり、熱抵抗の増加を招く恐れがある。また、電池缶に収納される積層体の幅広面と電池缶の広側面の対応関係が示されておらず、大容量化に伴い、極板の積層枚数が増大し、積層体の幅広面に相対する面が電池缶の広側面と一致しない場合、電池缶の広側面の板厚を厚くしても、積層体の積層方向に対する膨張には効果が期待できない。
 また特許文献2では、電池缶の厚さが0.5mm以下の隔壁を有するモノブロック構造が提案されているが、厚さが0.5mm以下では、大容量電池の膨張を抑制することは困難であると共に、膨張が大きい積層体の幅広面に対応する方向に対する膨張抑制の対策がなされておらず、発電要素が一つの場合でも、また、複数の発電要素を隔壁があるモノブロック缶に入れた場合でも、どちらも積層体の幅広面に対応する方向の膨張は同じくなり、電池の大容量化に伴う膨張対策は考慮されていない。
 そして特許文献3のように、積層電極体に高熱伝導シートを巻いても、積層電極体中心部分の熱を高熱伝導シートがある周辺部まで伝える熱伝導経路が改善されていないため、大容量電池のように極板数が増大した場合、放熱性の向上の効果があまり期待できない。また、積層体の膨らみ防止を考慮しておらず膨張を抑制するような期待はできない。
 さらに特許文献4のように、固体電解質に無機物を含有させても、金属に比べ熱伝導率が低く、また、発電に寄与していない無機物の含有量を増大させると電池性能の低下を招く恐れがあり、放熱性の向上はそれほど期待できない。また、積層体の膨らみ防止を考慮しておらず膨張を抑制するような期待はできない。
 このように、大容量積層型電池では、負極の容積膨張や電池缶内部のガスの発生による内圧の上昇に起因する電池缶の膨らみを抑制し、且つ、放熱性を向上させることが重要な課題となっている。
 本発明の目的の一つは、電池内圧上昇に対して電池缶の膨らみを効果的に抑制すると共に、電池缶内部の極板で発生する熱を効果的に外部に伝え、体積エネルギー密度が高い大容量の電池を提供することにある。
 一つの手段として、表面に負極活物質層が形成された金属集電体と、電解質を保持するセパレータと、表面に正極活物質層が形成された他の金属集電体とを短冊形状に交互に配置した積層体を有底の電池缶に密閉した電池であって、電池缶に複数収納された積層体間のうちの少なくとも一つに、積層体の幅広面に対向して電池缶の内部空間を分割する仕切り板が形成されている構成とした二次電池とする。
 その際、積層体の幅広面に対向した電池缶の外壁と仕切り板との合計の厚みが、積層体の平面方向の合計の厚みよりも大きくなるように構成することが好ましい。
 また、電池缶の仕切り板の板厚が電池缶の外壁の板厚よりも大きくなるように構成することも好ましい。
 さらに、仕切り板には、仕切り板の表裏を貫通する開口部が形成されていると、より好ましい。
 本発明によれば、充放電によって積層体電極群が膨張した場合であっても、電池缶が外方向へ膨らむ際の電池缶側面の変形を抑制し、且つ、積層体からの発熱を効果的に放熱できる、サイクル特性や信頼性が高く、大容量でエネルギー密度が高い二次電池を提供できる。
本発明の一実施例を説明する電池の一部切り欠き斜視図である。 本発明の一実施例を説明する電池の概略平面断面図である。 本発明の一実施例を説明する電池の概略側面断面図である。 本発明の一実施例を説明する電池の概略平面断面図である。 本発明の一実施例を説明する電池の概略平面断面図である。 本発明の一実施例を説明する仕切り板の模式図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 <実施例1>
 図1は本発明の一実施形態を示す二次電池の一部切り欠き斜視図であり、図2は図1の二次電池の概略平面断面図であり、図3は図1の二次電池の概略側面断面図である。図2および図3では本発明に係る積層体2と電池缶1との配置を示し、積層体のタブや蓋や通電部品等は省略している。図示しているのは、電池容量210Ahの積層型リチウムイオン二次電池である。積層体2が電池缶1に収納され、積層体2はタブ3を介して外部端子4と電気的に接続されている。外部端子4はナットなどの締結部品5で蓋板8に固定されている。また、蓋板8には電解液を注入する注入孔を封止した注入孔栓6や、過充電などの非定常時に、電池缶1の内圧を開放するための安全弁7が配置されている。
 図1において、積層体2は、表面に負極活物質層が形成された第1の金属集電体(銅)と、電解質を保持するセパレータと、表面に正極活物質層が形成された第2の金属集電体(アルミニウム)とを備える。積層体2を電池缶1内に作成する場合、第1の金属集電体とセパレータと第2の金属集電体とを短冊形状に形成し、これらを交互に積層する。積層体2の厚み等の寸法や積層枚数は、必要な電池容量によって決まる。
 電池缶1は矩形の積層体2を内包するため、角形をしている。角形電池は、帯状の金属集電体やセパレータを円柱状に巻いて円筒形の電池缶に入れる場合にくらべて、巻き取るための軸芯等がないため、体積エネルギー密度を高くできる利点がある。電池缶1はアルミニウム合金をインパクトプレス成形で形成している。電池缶1の材質はアルミ系金属の場合、ダイキャスト成形で作製してもよい。電池缶1の材質は、例えば、アルミニウム系やステンレス鋼などの金属材料が機械的強度の面から好ましいが、金属材料に限らず、電解液に侵食されない樹脂、例えば、ふっ素系、ポリエチレン、ポリプロピレン、エポキシ系、POM、PEEKなどの樹脂を用いてもよい。樹脂系の電池缶は、金属系の電池缶に比べ、材質の密度が小さいため軽くなる利点がある。一方、樹脂系は強度的に弱く、また、熱伝導性が小さいため放熱性に劣るなどの欠点がある。
 積層体2の構成材料である金属集電体の長手方向の端部に、電気接続用タブ3が形成されている。タブ3は、通電部品(図示せず)を介して外部端子4に接続されている。積層体2に形成されているタブ3の枚数は、容量によって決まり、数十Ahから数百Ahの容量の電池は数十枚から数百枚のタブ枚数に及ぶ。本実施例の図では、複数に束ねたタブを簡便に表すため、例えば、図1のタブ3のように、1つの図形として表している。
 図2および図3に示すように、電池缶1の内部に収納された複数の積層体2は、1つの群の容量が70Ahになるように、3つの群に分けられている。電池缶内部にある仕切り板9を境界として、それぞれ仕切り板9で分割された空間に積層体2が配置されている。積層体2の幅広面は仕切り板9と並行に配置されている。本実施例では、電池缶内の仕切り板を2つとし、積層体2を3群配置したが、電池容量や極板の枚数に応じて、積層体を2群以上に分けてあれば良く、それに応じて、仕切り板9も複数配置すれば良い。仕切り板9があることによって、積層体2の積層方向の変位が抑制される。また、仕切り板9があることによって、積層体2の積層方向と直角方向にある電池缶1の側面の膨らみも抑制できる。本実施例においては、仕切り板9と電池缶1とは連続している部材であり一体成形となっている。仕切り板9を一体成形できない材質や製造方法の場合、仕切り板9を別途作製し、電池缶1に溶接や接着等により固着してもよい。仕切り板9は電池缶1と同じ材質が好ましいが、異なる材質の部材でも良い。
 仕切り板9があることによって、積層体2からの熱が仕切り板9を通って外壁に伝わって放熱される。放熱性の観点から、仕切り板9の厚さt3が厚い方が、熱伝導面積が大きいため効果的である。しかしながら、仕切り板9の厚さの増大は体積エネルギー密度の低下を招く恐れがあるため、仕切り板9の厚さt3は、電池缶1の外壁の厚さt1の2倍以下に押えた方がよい。仕切り板9が複数ある場合、積層体2を構成する極板枚数を少なくでき、それによって極板の枚数に応じて膨らみによる変位量も少なくなり、積層体当たりの発熱量も少なくなるので、1枚当たりの仕切り板9の厚さを薄くできる。本実施例では、電池缶1の厚さt1およびt2を1mmに、仕切り板9の厚さt3を各1.5mmとした。積層方向の電池缶1を構成する部材の厚さを足し合わせた合計、すなわち、電池缶1の外壁の厚さt1と仕切り板9の厚さt3の総計は5mmであり、その厚さの総計は、積層方向と直角方向の厚さt2の総計の2mmよりも厚くなっている。また、本実施例では、図2に示すように、積層体2の幅広面に対応する電池缶1の面の幅Wは130mmであり、積層方向の電池缶1の奥行Dは155mmであり、電池缶1の高さHは220mmとした。
 また、比較例1として、仕切り板が無く、積層方向の板厚の総計が同じ5mmになるように、積層方向の電池缶の板厚を2.5mmとし、積層方向と直角方向の板厚を1mmとした電池を作製した。比較例1と本実施例1の外形寸法とは同じである。本実施例1により作製した電池と比較例1として作製した電池を用いて、充放電を5回繰り返した後の膨らみ量と温度を測定した。膨らみ量は、充放電前後の電池の積層体2の幅広面に対応した積層方向の電池缶1の最大厚さの変化を測定した。温度は、充放電前後の電池内部中央の温度の変化を測定した。その結果、仕切り板9がある本実施例1は、仕切り板が無い比較例1と比べて、膨らみ量と温度とを共に低く抑えることができた。
 <実施例2>
 図4は本発明の一実施形態を示す二次電池の概略平面断面図である。図5は図4の概略側面断面図である。積層体2が4群からなる280Ah積層型リチウムイオン二次電池である。積層体2の1つの群の容量は70Ahである。電池缶1の外形寸法は、幅Wは130mm、奥行Dは205mm、高さHは220mmである。電池缶1はステンレス鋼からなる外周体11と複数の仕切り板9から構成されている。仕切り板9は、外周体11に溶接で固着されている。図5に示すように、電池缶1の外周体11よりも仕切り板9の高さを低くすると共に、電池缶1の外周体11の底面11aと仕切り板9とは接しておらず、電解液が積層体2の各群の間を自由に行き来できる構造となっている。
 本実施例では、仕切り板9に、穴が開いていない平板を用いたが、図6に示すように、複数の貫通孔を設けた仕切り板9を用いても良い。また、エキスパンドメタル等の網目状の仕切り板9を用いても良いが、開口率が大きいと熱伝導の低下を招くので、開口率50%以下であることが望ましい。また、本実施例では、仕切り板9は平板形状を用いたが、波型形状や表面に凹凸が形成された形状でも良い。電池缶1の外周体11の板厚t1と、仕切り板9の板厚t3は、それぞれ、1mmである。積層体2の幅広面に対応する積層方向の板厚の総計は、仕切り板9は3枚配置されているので、仕切り板9の板厚と外周体11の板厚とを合わせて5mmである。一方、積層方向に直角方向の板厚の合計は2mmである。
 比較例2として、仕切り板が無く、積層方向の板厚の総計が実施例2と同じ5mmになるように、積層方向の板厚を2.5mmとして、実施例2と同じ材質で、実施例2と同じ外形寸法の電池を作製した。実施例1で示した測定と同様に、充放電前後の電池の積層体2の幅広面に対応した電池缶の膨らみと電池内部中央の温度を測定した。その結果、仕切り板9がある本実施例では、仕切り板が無い比較例2と比べて、膨らみ量と温度とを共に低く抑えることができた。
 1…電池缶、2…積層体、3…タブ、4…端子、5…締結部品、6…注液孔栓、7…安全弁、8…蓋、9…仕切り板、10…孔、11…電池缶外周体。

Claims (4)

  1.  表面に負極活物質層が形成された第1の金属集電体と、電解質を保持するセパレータと、表面に正極活物質層が形成された第2の金属集電体とを短冊形状に形成し、前記第1の金属集電体と前記セパレータと前記第2の金属集電体とを交互に配置した積層体を有底の電池缶に密閉した二次電池であって、
     前記電池缶に複数収納された前記積層体間のうちの少なくとも一つに、前記積層体の幅広面に対向して前記電池缶の内部空間を分割する仕切り板が形成されていることを特徴とする二次電池。
  2.  前記積層体の幅広面に対向した前記電池缶の外壁と仕切り板との合計の厚みが、前記積層体の平面方向の合計の厚みよりも大きいことを特徴とする請求項1に記載の二次電池。
  3.  前記電池缶の仕切り板の板厚が前記電池缶の外壁の板厚よりも大きいことを特徴とする請求項1に記載の二次電池。
  4.  前記仕切り板には、仕切り板の表裏を貫通する開口部が形成されていることを特徴とする請求項1に記載の二次電池。
PCT/JP2012/053668 2011-02-18 2012-02-16 二次電池 WO2012111752A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12746900.5A EP2677587A4 (en) 2011-02-18 2012-02-16 SECONDARY BATTERY
US13/981,177 US20130323573A1 (en) 2011-02-18 2012-02-16 Secondary Battery
CN201280007783.5A CN103718366A (zh) 2011-02-18 2012-02-16 二次电池
JP2012558010A JP5617940B2 (ja) 2011-02-18 2012-02-16 角型リチウムイオン二次電池
KR1020137024357A KR101530803B1 (ko) 2011-02-18 2012-02-16 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-033309 2011-02-18
JP2011033309 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111752A1 true WO2012111752A1 (ja) 2012-08-23

Family

ID=46672664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053668 WO2012111752A1 (ja) 2011-02-18 2012-02-16 二次電池

Country Status (6)

Country Link
US (1) US20130323573A1 (ja)
EP (1) EP2677587A4 (ja)
JP (1) JP5617940B2 (ja)
KR (1) KR101530803B1 (ja)
CN (1) CN103718366A (ja)
WO (1) WO2012111752A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280185A1 (en) * 2012-10-11 2015-10-01 Clotearn, LLC Lithium Ion Battery
JP2019067584A (ja) * 2017-09-29 2019-04-25 株式会社Gsユアサ 蓄電素子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421419B1 (ko) * 2015-06-29 2022-07-15 삼성에스디아이 주식회사 이차 전지
US11296370B2 (en) * 2015-12-03 2022-04-05 Eaglepicher Technologies, Llc Battery having high thermal conductivity case
KR102553087B1 (ko) * 2015-12-21 2023-07-06 에스케이온 주식회사 리튬 이차 전지
US10686166B2 (en) * 2016-02-05 2020-06-16 Ford Global Technologies, Llc Multiple cell integrated casings
KR102643505B1 (ko) 2017-12-12 2024-03-04 삼성전자주식회사 전지 케이스, 전지, 및 전지의 제조 방법
KR102591366B1 (ko) * 2018-03-09 2023-10-18 삼성전자주식회사 전지 케이스, 전지, 및 전지의 제조 방법
DE112020001241T5 (de) * 2019-03-15 2022-01-05 TDK Corporation Festkörperakkumulator
CN114421063A (zh) * 2021-12-31 2022-04-29 陕西奥林波斯电力能源有限责任公司 一种叠片电池用耐压壳以及使用该耐压壳的大容量锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282841A (ja) * 1994-04-05 1995-10-27 Mitsubishi Chem Corp リチウムイオン二次電池
JP2007538373A (ja) * 2004-05-18 2007-12-27 オヴォニック バッテリー カンパニー インコーポレイテッド 多重単電池型の電池集合体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751310B1 (ko) * 2001-09-24 2007-08-22 삼성에스디아이 주식회사 캡 조립체 및, 그것을 구비한 각형 2 차 전지
JP4362321B2 (ja) * 2003-06-13 2009-11-11 パナソニック株式会社 組電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282841A (ja) * 1994-04-05 1995-10-27 Mitsubishi Chem Corp リチウムイオン二次電池
JP2007538373A (ja) * 2004-05-18 2007-12-27 オヴォニック バッテリー カンパニー インコーポレイテッド 多重単電池型の電池集合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677587A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280185A1 (en) * 2012-10-11 2015-10-01 Clotearn, LLC Lithium Ion Battery
US9685644B2 (en) * 2012-10-11 2017-06-20 Cadenza Innovation, Inc. Lithium ion battery
EP2907177B1 (en) * 2012-10-11 2019-07-31 Cadenza Innovation, Inc. Lithium ion battery
EP3573136A3 (en) * 2012-10-11 2020-02-19 Cadenza Innovation, Inc. Method for manufacturing lithium ion batteries
JP2019067584A (ja) * 2017-09-29 2019-04-25 株式会社Gsユアサ 蓄電素子
JP7020034B2 (ja) 2017-09-29 2022-02-16 株式会社Gsユアサ 蓄電素子

Also Published As

Publication number Publication date
JPWO2012111752A1 (ja) 2014-07-07
EP2677587A4 (en) 2014-11-26
KR20130123445A (ko) 2013-11-12
KR101530803B1 (ko) 2015-06-22
US20130323573A1 (en) 2013-12-05
JP5617940B2 (ja) 2014-11-05
EP2677587A1 (en) 2013-12-25
CN103718366A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5617940B2 (ja) 角型リチウムイオン二次電池
JP5621111B2 (ja) 熱的安定性を改良したバッテリーセル及びそれを使用する中型または大型バッテリーモジュール
JP4301286B2 (ja) 蓄電装置
US10135047B2 (en) Battery pack
US10916795B2 (en) Battery module assembly and manufacturing method therefor
KR20140064418A (ko) 이차전지 모듈
JP5445872B2 (ja) 二次電池
US20100330422A1 (en) Unit Cell for Secondary Battery Having Conductive Sheet Layer and Lithium Ion Secondary Battery Having the Same
CN108735937B (zh) 电池组
US20130130099A1 (en) Secondary battery of differential lead structure
JP2019096431A (ja) 組電池と、組電池に用いられる単電池の製造方法
KR20160140457A (ko) 조전지의 제조 방법
JP2011243527A (ja) 二次電池
JP5344237B2 (ja) 組電池
US20110177378A1 (en) Electrode assemblage and rechargeable battery using the same
JP2007048668A (ja) 電池及び組電池
KR20190082180A (ko) 이차전지 모듈
JP2015008071A (ja) 蓄電装置モジュール
US9105882B2 (en) Energy storage cell
CN111293344B (zh) 密闭型电池以及组电池
US10586953B2 (en) High-capacity stacked-electrode metal-ion accumulator capable of delivering high power
WO2017119106A1 (ja) 蓄電モジュール
JP2015015162A (ja) 二次電池
KR20220109781A (ko) 이차전지
KR101211217B1 (ko) 전극리드 간 단락을 방지할 수 있는 파우치형 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746900

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012558010

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012746900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981177

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301004572

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024357

Country of ref document: KR

Kind code of ref document: A