WO2012111641A1 - Led substrate - Google Patents

Led substrate Download PDF

Info

Publication number
WO2012111641A1
WO2012111641A1 PCT/JP2012/053325 JP2012053325W WO2012111641A1 WO 2012111641 A1 WO2012111641 A1 WO 2012111641A1 JP 2012053325 W JP2012053325 W JP 2012053325W WO 2012111641 A1 WO2012111641 A1 WO 2012111641A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
repeating unit
liquid crystal
crystal polyester
led substrate
Prior art date
Application number
PCT/JP2012/053325
Other languages
French (fr)
Japanese (ja)
Inventor
細田 朋也
光男 前田
岡本 敏
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012111641A1 publication Critical patent/WO2012111641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to an LED substrate having an insulating layer made of liquid crystal polyester.
  • the present invention also relates to an LED package using the LED substrate.
  • the insulating layer of the LED (light-emitting diode) substrate is required to have high heat resistance so that it can withstand the high temperatures when the LED element is mounted by soldering or during LED emission, and the dimensions change even at high temperatures.
  • the coefficient of linear expansion is required to be low, and further, the heat conductivity is required to be high so that heat can be easily radiated.
  • Patent Document 1 discloses a predetermined aromatic hydroxy as the material for the insulating layer of the LED substrate.
  • the insulating layer As disclosed in Patent Document 1, if liquid crystal polyester is used as the material of the insulating layer of the LED substrate, the insulating layer has high heat resistance, low linear expansion coefficient, and high thermal conductivity. From the viewpoint of improving reliability, in addition to these performances, water vapor barrier properties are required. Then, the objective of this invention is providing the board
  • the present invention comprises a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3).
  • the content of the repeating unit containing 2,6-naphthylene group is 40 mol% or more with respect to the total amount of all repeating units on at least one surface of the insulating layer composed of the liquid crystal polyester, An LED substrate provided with a conductor layer is provided.
  • Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group or a 4,4′-biphenylylene group.
  • Ar 2 and Ar 3 are each independently a 2,6-naphthylene group, 1,4 Represents a -phenylene group, a 1,3-phenylene group or a 4,4′-biphenylylene group, wherein the hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 are each independently a halogen atom or an alkyl group; Alternatively, it may be substituted with an aryl group.
  • the present invention is composed of liquid crystal polyester, on at least one surface of an insulating layer having a water vapor permeability measured at a temperature of 40 ° C. and a relative humidity of 90% of 0.005 g / m 2 ⁇ 24 h or less, An LED substrate provided with a conductor layer is provided.
  • the present invention relates to an insulation composed of a liquid crystal polyester having a water vapor permeability of 0.005 g / m 2 ⁇ 24 h or less measured at a temperature of 40 ° C. and a relative humidity of 90% when a film having a thickness of 50 ⁇ m is formed.
  • an LED substrate in which a conductor layer is provided on at least one surface of the layer.
  • the present invention provides an LED package in which an LED element is disposed on the conductor layer of any one of the LED substrates.
  • the LED substrate of the present invention has an insulating layer excellent in water vapor barrier properties, and by using this, a highly reliable LED package can be obtained.
  • the liquid crystalline polyester constituting the insulating layer of the LED substrate of the present invention is a polyester that exhibits optical anisotropy when melted, and is preferably a repeating unit represented by the following formula (1) (hereinafter referred to as repeating unit (1 ), A repeating unit represented by the following formula (2) (hereinafter sometimes referred to as repeating unit (2)), and a repeating unit represented by the following formula (3) (hereinafter referred to as repeating unit). (3)).
  • Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group or a 4,4′-biphenylylene group.
  • Ar 2 and Ar 3 are each independently a 2,6-naphthylene group, 1,4 -Represents a phenylene group, a 1,3-phenylene group or a 4,4′-biphenylylene group, wherein the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently a halogen atom or a carbon number (It may be substituted with an alkyl group of 1 to 10 or an aryl group of 6 to 20 carbon atoms.)
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, Examples thereof include an n-octyl group and an n-decyl group, and the carbon number thereof is usually 1 to 10.
  • aryl group examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group, and the number of carbon atoms is usually 6-20.
  • the hydrogen atom is substituted with these groups, the number is usually 2 or less for each group represented by Ar 1 , Ar 2 or Ar 3 , and preferably 1 It is as follows.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • the repeating unit (1) those in which Ar 1 is a 2,6-naphthylene group, that is, a repeating unit derived from 6-hydroxy-2-naphthoic acid is preferable.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • Ar 2 is a 2,6-naphthylene group, that is, a repeating unit derived from 2,6-naphthalenedicarboxylic acid, and Ar 2 is a 1,4-phenylene group, Repeating units derived from terephthalic acid are preferred.
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol.
  • Ar 3 is a 1,4-phenylene group, that is, a repeating unit derived from hydroquinone, and Ar 3 is a 4,4′-biphenylylene group, that is, 4,4′-. Repeating units derived from dihydroxybiphenyl are preferred.
  • repeating unit containing 2,6-naphthylene group in liquid crystal polyester that is, repeating unit (1) in which Ar 1 is 2,6-naphthylene group, repeating unit in which Ar 2 is 2,6-naphthylene group (2) and the total content of the repeating unit (3) in which Ar 3 is a 2,6-naphthylene group is the total amount of all repeating units (the mass of each repeating unit constituting the liquid crystal polyester is expressed by the formula of each repeating unit) By dividing by the amount, the substance amount equivalent amount (mole) of each repeating unit is obtained, and the sum thereof is 40 mol% or more.
  • a liquid crystal polyester film having excellent water vapor barrier properties By forming a liquid crystal polyester having such a predetermined repeating unit composition into a film, a liquid crystal polyester film having excellent water vapor barrier properties can be obtained.
  • the content of 2,6-naphthylene groups is preferably 50 mol% or more, more preferably 60 mol% or more, and further preferably 70 mol% or more.
  • the content of the repeating unit (1) is preferably 30 to 80 mol%, more preferably 40 to 70 mol%, still more preferably 45 to 65 mol, based on the total amount of all repeating units.
  • the content of the repeating unit (2) is preferably 10 to 35 mol%, more preferably 15 to 30 mol%, still more preferably 17.5 to 27.27%, based on the total amount of all repeating units.
  • the content of the repeating unit (3) is preferably from 10 to 35 mol%, more preferably from 15 to 30 mol%, still more preferably from 17.5 to mol based on the total amount of all repeating units. 27.5 mol%.
  • the liquid crystal polyester having such a predetermined repeating unit composition has an excellent balance between heat resistance and moldability.
  • the liquid crystalline polyester may have a repeating unit other than the repeating units (1) to (3) as necessary, but the content thereof is usually 10 moles relative to the total amount of all the repeating units. % Or less, preferably 5 mol% or less.
  • a typical example of a liquid crystalline polyester having high heat resistance and high melt tension is a repeating unit (1) in which Ar 1 is a 2,6-naphthylene group, that is, 6-hydroxy-2- with respect to the total amount of all repeating units.
  • the repeating unit derived from naphthoic acid is preferably 40 to 74.8 mol%, more preferably 40 to 64.5 mol%, still more preferably 50 to 58 mol%, and Ar 2 is a 2,6-naphthylene group.
  • the repeating unit (2) that is, the repeating unit derived from 2,6-naphthalenedicarboxylic acid is preferably 12.5 to 30 mol%, more preferably 17.5 to 30 mol%, and still more preferably 20 to 25 mol%.
  • repeating units Ar 2 is 1,4-phenylene group (2), i.e., repeating units derived from terephthalic acid, preferably 0.2 to 15 mol%, more preferably 0. To 12 mol%, more preferably having 2 to 10 mol%, the repeating units Ar 3 is 1,4-phenylene group (3), i.e., a repeating unit derived from hydroquinone, preferably 12.5 to 30 mol %, more preferably 17.5 to 30 mol%, more preferably having 20-25 mol%, and the content of the repeating unit (2) Ar 2 is 2,6-naphthylene group, Ar 2 is The total content of the repeating unit (2) which is a 2,6-naphthylene group and the repeating unit (2) wherein Ar 2 is a 1,4-phenylene group is preferably 0.5 mol times or more, more preferably It is 0.6 mol times or more.
  • the liquid crystalline polyester is a monomer that gives a repeating unit (1), that is, a predetermined aromatic hydroxycarboxylic acid, a monomer that gives a repeating unit (2), that is, a monomer that gives a predetermined aromatic dicarboxylic acid, and a repeating unit (3), That is, a predetermined aromatic diol is added to a total amount of monomers having 2,6-naphthylene groups, that is, a total amount of 6-hydroxy-2-naphthoic acid, 2,6-naphthalenedicarboxylic acid and 2,6-naphthalenediol.
  • the polymer can be produced by polymerization (polycondensation) so as to be 40 mol% or more based on the total amount of all monomers.
  • the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, and the aromatic diol may be independently replaced by a part or all of the polymerizable derivatives thereof.
  • polymerizable derivatives of a compound having a carboxyl group such as an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group, and a carboxyl group as a haloformyl.
  • a group formed by converting a carboxyl group into an acyloxycarbonyl group a group formed by converting a carboxyl group into an acyloxycarbonyl group.
  • polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids and aromatic diols include those obtained by acylating a hydroxyl group and converting it to an acyloxyl group.
  • the liquid crystalline polyester is preferably produced by melt polymerizing monomers and solid-phase polymerizing the obtained polymer (prepolymer). Thereby, liquid crystalline polyester with high heat resistance and high melt tension can be manufactured with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst.
  • this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide, Nitrogen-containing heterocyclic compounds such as N, N-dimethylaminopyridine and N-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • the liquid crystal polyester having the predetermined repeating unit composition thus obtained is excellent in water vapor barrier properties.
  • the liquid crystal polyester has a flow start temperature of preferably 280 ° C. or higher, more preferably 290 ° C. or higher, further preferably 295 ° C. or higher, and is usually 380 ° C. or lower, preferably 350 ° C. or lower.
  • a flow start temperature preferably 280 ° C. or higher, more preferably 290 ° C. or higher, further preferably 295 ° C. or higher, and is usually 380 ° C. or lower, preferably 350 ° C. or lower.
  • the flow start temperature is higher, the heat resistance and melt tension are more likely to be improved. However, if the flow start temperature is too high, a high temperature is required for melting, and thermal deterioration tends to occur during molding.
  • the flow start temperature is also called flow temperature or flow temperature, and is 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer having a nozzle with an inner diameter of 1 mm and a length of 10 mm.
  • This is a temperature at which the melt viscosity shows 4800 Pa ⁇ s (48,000 poise) when the heated melt of the liquid crystal polyester is extruded from the nozzle at a temperature rising rate of 5 ° C., which is a measure of the molecular weight of the liquid crystal polyester (See Naoyuki, “Liquid Crystal Polymers—Synthesis / Molding / Applications”, CMC Corporation, June 5, 1987, p. 95).
  • the liquid crystal polyester having the predetermined repeating unit composition thus obtained is excellent in water vapor barrier properties and used as a material for the tab carrier tape of the present invention.
  • the liquid crystal polyester in the present invention preferably has a water vapor transmission rate measured at a temperature of 40 ° C. and a relative humidity of 90% when formed into a film having a thickness of 50 ⁇ m, preferably 0.05 g / m 2 ⁇ 24 h or less, More preferably, it is 0.01 g / m ⁇ 2 > * 24h or less, More preferably, it is 0.005 g / m ⁇ 2 > * 24h or less.
  • the liquid crystal polyester may be blended with other components as necessary to form a composition.
  • other components include fillers, thermoplastic resins other than liquid crystal polyesters, and additives.
  • the ratio of the liquid crystal polyester in the entire composition is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • fillers include glass fibers such as milled glass fibers and chopped glass fibers, potassium titanate whiskers, alumina whiskers, aluminum borate whiskers, silicon carbide whiskers, silicon nitride whiskers, and other metal or non-metallic whiskers.
  • glass fiber, mica, talc and carbon fiber are preferably used.
  • the filler may be surface-treated as necessary, and examples of the surface treatment agent include reactivity such as a silane coupling agent, a titanate coupling agent, and a borane coupling agent.
  • examples of the surface treatment agent include reactivity such as a silane coupling agent, a titanate coupling agent, and a borane coupling agent.
  • Examples include coupling agents and lubricants such as higher fatty acids, higher fatty acid esters, higher fatty acid metal salts, and fluorocarbon surfactants.
  • thermoplastic resins other than liquid crystal polyester include polycarbonate, polyamide, polysulfone, polyphenylene sulfide, polyphenylene ether, polyether ketone, and polyetherimide resin.
  • additives include mold release improvers such as fluororesins and metal soaps, nucleating agents, antioxidants, stabilizers, plasticizers, lubricants, anti-coloring agents, coloring agents, ultraviolet absorbers, antistatic agents, Examples include lubricants and flame retardants.
  • a liquid crystal polyester film constituting the insulating layer of the LED substrate of the present invention can be obtained by forming a film of the liquid crystal polyester thus obtained or a composition thereof.
  • the film forming method include an extrusion molding method, a press molding method, a solution casting method, and an injection molding method, and the extrusion molding method is preferable.
  • the extrusion molding method include a T-die method and an inflation method. In the T-die method, uniaxial stretching or biaxial stretching may be performed.
  • the draw ratio (draft ratio) of the uniaxially stretched film is usually 1.1 to 40, preferably 10 to 40, more preferably 15 to 35.
  • the stretch ratio in the MD direction (extrusion direction) of the biaxial film is usually 1.2 to 40 times, and the stretch ratio in the TD direction (direction perpendicular to the extrusion direction) of the biaxial film is usually 1.2 to 20 times. Is double.
  • the thickness of the liquid crystal polyester film is preferably 5 to 100 ⁇ m, more preferably 10 to 75 ⁇ m, and further preferably 15 to 75 ⁇ m. If it is too thin, the strength will be insufficient, and if it is too thick, the flexibility will be insufficient.
  • the liquid crystal polyester film thus obtained has an excellent water vapor barrier property and is used as an insulating layer of the LED substrate of the present invention.
  • the liquid crystal polyester film water vapor transmission rate being measured at a temperature 40 ° C. and a relative humidity of 90%, preferably from 0.05g / m 2 ⁇ 24h or less, more preferably 0.01g / m 2 ⁇ 24h or less, further Preferably, it is 0.005 g / m 2 ⁇ 24 h or less.
  • a laminated film obtained by laminating a plurality of liquid crystal polyester films or laminating another film such as a thermoplastic resin film on the liquid crystal polyester film is also used as the insulating layer of the LED substrate of the present invention.
  • a laminated film obtained by providing a water vapor barrier layer or other functional layer is also an insulating layer of the LED substrate of the present invention.
  • the water vapor barrier layer is provided on at least one surface of the liquid crystal polyester film.
  • surface of a liquid crystal polyester film providing on the back surface (surface opposite to the surface where an LED element is arrange
  • Substances constituting the water vapor barrier layer include at least one element selected from the group consisting of aluminum, silicon, titanium, chromium, iron, cobalt, nickel, copper, zinc, silver and gold, an oxide, and a nitride And oxynitrides are preferable, and two or more of them may be used as necessary.
  • a method for forming the water vapor barrier layer for example, a vapor deposition method, a sputtering method, a PVD method such as an ion plating method, a CVD method such as a plasma CVD method, a thermal CVD method, a laser CVD method, a sol-gel method, a plating method, etc. And wet methods such as a coating method. Further, a foil prepared or obtained separately may be bonded to the liquid crystal polyester film.
  • the liquid crystal polyester film may be subjected to a surface treatment as necessary.
  • the surface treatment method include corona discharge treatment, flame treatment, sputtering treatment, solvent treatment, UV treatment, and plasma treatment.
  • an LED substrate is obtained by providing, on at least one surface thereof, a conductor layer that becomes a wiring electrically connected to the LED element after mounting the LED element.
  • a conductor layer 5 is provided on one surface of the insulating layer 4, and heat generated from the LED element 7 during the operation of the LED package 1 is efficiently externally provided on the other surface.
  • An LED substrate 2 is obtained by providing the heat dissipation layer 3 that dissipates heat.
  • the conductor layer 5 is excellent in conductivity, so that the electrode formed on the laminated film may be a transparent electrode, but it need not be transparent.
  • a conductive paste containing a conductive material such as a metal such as Al or Cu or carbon or a metal such as Al or Cu may be used.
  • the formation method of the conductor layer is not particularly limited, and a known formation method such as vapor deposition, sputtering, ion plating method, plating, coating, or printing may be used.
  • As the heat dissipation layer 3 since it is excellent in heat dissipation, a material containing copper or aluminum, that is, a metal material is preferable, and a material made of copper or a copper alloy is preferable.
  • a method of laminating the conductor layer 5 and the heat dissipation layer 3 with the insulating layer (liquid crystal polyester film) 4 for example, a method of laminating a metal foil such as a copper foil on the liquid crystal polyester film 4, The method of coating on the polyester film 4 is mentioned.
  • Examples of the method of laminating the metal foil include a method of bonding the metal foil and the liquid crystal polyester film 4 using an adhesive, and a method of heat-sealing by hot pressing.
  • an adhesive for example, an epoxy resin adhesive or an acrylic resin adhesive can be used.
  • the processing conditions for hot pressing can be optimized as appropriate depending on the scale and shape of the liquid crystal polyester film 4 to be used, the thickness and type of the metal foil to be used, etc., but it is particularly preferable to hot press under vacuum.
  • This treatment temperature is preferably determined based on the temperature condition of the solid layer polymerization performed when producing the liquid crystal polyester to be hot pressed. Specifically, the maximum temperature of the solid layer polymerization is T max [° C.]. At this time, it is preferable to perform hot pressing at a temperature exceeding T max, and it is more preferable to perform hot pressing at a temperature of T max +5 [° C.] or higher.
  • the upper limit of the temperature of the hot press is selected so as to be lower than the decomposition temperature of the liquid crystal polyester contained in the liquid crystal polyester film 4 to be used, but it is preferable that the upper limit of the temperature is 30 ° C. or lower.
  • the decomposition temperature referred to here is determined by a known means such as thermogravimetry analysis.
  • the time for hot pressing is usually 1 to 30 hours, and the pressure is usually 1 to 30 MPa.
  • Examples of the coating method of metal fine particles such as copper fine particles include a plating method, a screen printing method, and a sputtering method. Of these, the plating method is preferable, and specifically, electroless plating or electrolytic plating is preferably used.
  • the conductor layer 5 is preferably heat-treated, and the conditions for the heat treatment are also equivalent to the conditions described as the conditions for the hot press. Is adopted.
  • the operation is to laminate the conductor layer 5 and the heat dissipation layer 3 on the liquid crystal polyester film 4 using a copper foil.
  • a copper foil is advantageous in terms of economy.
  • Etching is usually used to form wiring by patterning the conductor layer 5.
  • masking is performed so that the wiring pattern becomes a predetermined pattern.
  • the latter conductor layer 5 portion is wet-processed (chemical treatment). ) Is removed by etching.
  • chemical treatment used for this etching process, ferric chloride aqueous solution is mentioned, for example.
  • a commercially available etching resist or dry film may be used.
  • the etching resist and dry film are removed from the masked conductor layer 5 with acetone or a sodium hydroxide aqueous solution. In this way, a predetermined wiring can be formed.
  • the LED element 7 is mounted on the conductor layer 5 by first applying solder on the conductor layer 5, placing the LED element 7 thereon, and then passing the reflow furnace or the like to melt the solder.
  • the LED element 7 is preferably surface-mounted, but the LED element 7 and the conductor layer 5 may be electrically connected by wire bonding.
  • transfer molding refers to a technique of press-fitting a resin into a clamped mold.
  • the LED package 1 thus obtained may be provided with a via hole that connects the conductor layer 5 and the heat dissipation layer 3. Thereby, the heat generated in the LED element 7 and the conductor layer 5 can be efficiently flowed to the heat radiating layer 3 side, so that efficient heat radiation can be performed.
  • the LED package 1 may be a chip type or a film type.
  • Production Example 2 In the same reactor as in Production Example 1, 911 g (6.6 mol) of p-hydroxybenzoic acid, 274 g (1.65 mol) of terephthalic acid, 91 g (0.55 mol) of isophthalic acid, 4,4′-dihydroxybiphenyl 409 g (2.2 mol), 1235 g of acetic anhydride (12.1 mol), and 0.17 g of 1-methylimidazole as a catalyst were added, and the gas in the reactor was replaced with nitrogen gas, followed by stirring under a nitrogen gas stream While raising the temperature from room temperature to 150 ° C. over 15 minutes, the mixture was refluxed at 150 ° C. for 1 hour.
  • the mixture was cooled to obtain a powdery liquid crystal polyester.
  • this liquid crystal polyester 60 mol% of the repeating unit (1) in which Ar 1 is a 1,4-phenylene group, 15 mol% of the repeating unit (2) in which Ar 2 is a 1,4-phenylene group, and Ar 2 is 5% by mole of the repeating unit (2) which is a 1,3-phenylene group and 20% of the repeating unit (3) whose Ar 3 is a 4,4′-biphenylylene group, and its flow initiation temperature is 327 ° C. there were.
  • Example 1 The liquid crystalline polyester obtained in Production Example 1 was granulated with a twin-screw extruder ("PCM-30" by Ikekai Co., Ltd.), pelletized, and then supplied to a single-screw extruder (screw diameter 50 mm). It was melted, extruded from a T die (lip length: 300 mm, lip clearance: 1 mm, die temperature: 350 ° C.) and cooled to obtain a liquid crystal polyester film having a thickness of 25 ⁇ m.
  • This liquid crystal polyester film has a water vapor permeability of 0.011 g / m 2 ⁇ 24 h, and is excellent in water vapor barrier properties as a liquid crystal polyester film serving as an insulating layer of an LED substrate.
  • Example 2 The liquid crystalline polyester obtained in Production Example 1 was granulated with a twin-screw extruder ("PCM-30" by Ikekai Co., Ltd.), pelletized, and then supplied to a single-screw extruder (screw diameter 50 mm). It was melted, extruded from a T-die (lip length 300 mm, lip clearance 1 mm, die temperature 350 ° C.) into a film and cooled to obtain a liquid crystal polyester having a thickness of 50 ⁇ m.
  • the liquid crystal polyester film has a water vapor permeability of 0.0030 g / m 2 ⁇ 24 h, and is excellent in water vapor barrier properties as a liquid crystal polyester film serving as an insulating layer of the LED substrate.
  • Example 3 A 200 nm thick transparent electrode (ITO film) was formed at a substrate temperature of 180 ° C. using ITO (Indium Tin Oxide) on the opposite surface of the laminated film obtained in Example 2 on which the gas barrier layer was formed by ion plating. The sheet resistance of the transparent electrode formed on this laminated film was measured and found to be 9.1 ⁇ / ⁇ .
  • ITO Indium Tin Oxide
  • Comparative Example 1 The liquid crystalline polyester obtained in Production Example 2 was granulated with a twin-screw extruder ("PCM-30" from Ikekai Co., Ltd.), pelletized, and then supplied to a single-screw extruder (screw diameter 50 mm). It was melted and extruded from a T die (lip length 300 mm, lip clearance 1 mm, die temperature 350 ° C.) into a film and cooled to obtain a liquid crystal polyester film having a thickness of 50 ⁇ m.
  • the water vapor permeability of this liquid crystal polyester film is 0.343 g / m 2 ⁇ 24 h, and the water vapor barrier property is insufficient as a liquid crystal polyester film serving as an insulating layer of the LED substrate.
  • Comparative Example 2 The powdered liquid crystalline polyester obtained in Production Example 2 was granulated with a twin screw extruder ("PCM-30" manufactured by Ikegai Co., Ltd.) and pelletized, and then a single screw extruder (screw diameter 50 mm). And melted, extruded from a T-die (lip length 300 mm, lip clearance 1 mm, die temperature 350 ° C.) and cooled to obtain a liquid crystal polyester film having a thickness of 50 ⁇ m.
  • the water vapor permeability of this liquid crystal polyester film is 0.080 g / m 2 ⁇ 24 h, and the water vapor barrier property is insufficient as a liquid crystal polyester film serving as an insulating layer of the LED substrate.
  • Comparative Example 3 About the laminated film obtained in Comparative Example 2, a transparent electrode having a thickness of 200 nm was formed on the opposite surface of the gas barrier layer formed by ion plating method using ITO (Indium Tin Oxide) at a substrate temperature of 180 ° C. When the sheet resistance of the transparent electrode formed on this laminated film was measured, it was 12.3 ⁇ / ⁇ .
  • ITO Indium Tin Oxide
  • SYMBOLS 1 ... LED package, 2 ... LED board, 3 ... Heat dissipation layer, 4 ... Insulating layer (liquid crystal polyester layer), 5 ... Conductive layer, 6 ... Sealing layer, 7 ... LED elements.

Abstract

The present invention addresses the problem of providing an LED substrate having an insulating layer that has excellent performance as a water-vapor barrier. The present invention relates to an LED substrate comprising a conductor layer provided on at least one surface of an insulating layer comprising a liquid-crystal polyester that has a repeating unit represented by formula (1), a repeating unit represented by formula (2), and a repeating unit represented by formula (3), with repeating units containing 2,6-naphthylene groups constituting at least 40 mol% of all of the repeating units in said liquid-crystal polyester. (1) -O-Ar1-CO- (2) -CO-Ar2-CO- (3) -O-Ar3-O- (Ar1 represents a 2,6-naphthylene group, a 1,4-phenylene group, or a 4,4'-biphenylene group. Ar2 and Ar3 each independently represent a 2,6-naphthylene group, a 1,4-phenylene group, a 1,3-phenylene group, or a 4,4'-biphenylene group.)

Description

LED用基板LED substrate
 本発明は、液晶ポリエステルから構成される絶縁層を有するLED用基板に関する。また、本発明は、このLED用基板を用いてなるLEDパッケージに関する。 The present invention relates to an LED substrate having an insulating layer made of liquid crystal polyester. The present invention also relates to an LED package using the LED substrate.
 LED(発光ダイオード)用基板の絶縁層には、LED素子をハンダ付けにより実装する際やLED発光時の高温に耐えうるように、耐熱性が高いことが求められ、また、高温でも寸法変化し難いように、線膨張率が低いことが求められ、さらに、放熱し易いように、熱伝導率が高いことが求められる。このような観点から、LED用基板の絶縁層の材料として、液晶ポリエステルを用いることが検討されており、例えば、特許文献1には、LED用基板の絶縁層の材料として、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位を30~45モル%、所定の芳香族ジカルボン酸に由来する繰返し単位を27.5モル%、及び所定の芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する繰返し単位を27.5モル%有する液晶ポリエステルを用いることが開示されており、具体的には、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位を35モル%、イソフタル酸に由来する繰返し単位を32.5モル%、及びp-アミノフェノールに由来する繰返し単位を32.5モル%有する液晶ポリエステルを用いることが示されている。 The insulating layer of the LED (light-emitting diode) substrate is required to have high heat resistance so that it can withstand the high temperatures when the LED element is mounted by soldering or during LED emission, and the dimensions change even at high temperatures. As it is difficult, the coefficient of linear expansion is required to be low, and further, the heat conductivity is required to be high so that heat can be easily radiated. From such a point of view, the use of liquid crystalline polyester as the material for the insulating layer of the LED substrate has been studied. For example, Patent Document 1 discloses a predetermined aromatic hydroxy as the material for the insulating layer of the LED substrate. 30 to 45 mol% of repeating units derived from carboxylic acid, 27.5 mol% of repeating units derived from a predetermined aromatic dicarboxylic acid, and derived from a predetermined aromatic diol, aromatic hydroxyamine or aromatic diamine It is disclosed that a liquid crystal polyester having 27.5 mol% of repeating units is used. Specifically, 35 mol% of repeating units derived from 6-hydroxy-2-naphthoic acid and repeating units derived from isophthalic acid are disclosed. A liquid crystal polyester having 32.5 mol% and 32.5 mol% of repeating units derived from p-aminophenol It is shown.
特開2010-114427号公報JP 2010-114427 A
 特許文献1に開示の如く、LED用基板の絶縁層の材料として液晶ポリエステルを用いれば、その絶縁層は、耐熱性が高く、線膨張率が低く、熱伝導率が高いものとなるが、長期信頼性向上の観点からは、これらの性能に加えて、水蒸気バリア性が求められる。そこで、本発明の目的は、液晶ポリエステルから構成され、水蒸気バリア性に優れる絶縁層を有するLED用基板を提供することにある。 As disclosed in Patent Document 1, if liquid crystal polyester is used as the material of the insulating layer of the LED substrate, the insulating layer has high heat resistance, low linear expansion coefficient, and high thermal conductivity. From the viewpoint of improving reliability, in addition to these performances, water vapor barrier properties are required. Then, the objective of this invention is providing the board | substrate for LED which has the insulating layer comprised from liquid crystalline polyester and excellent in water vapor | steam barrier property.
 前記目的を達成するため、本発明は、下記式(1)で表される繰返し単位と、下記式(2)で表される繰返し単位と、下記式(3)で表される繰返し単位とを有し、2,6-ナフチレン基を含む繰返し単位の含有量が、全繰返し単位の合計量に対して、40モル%以上である液晶ポリエステルから構成される絶縁層の少なくとも一方の面上に、導体層が設けられてなるLED用基板を提供する。
-O-Ar1-CO-    (1)
-CO-Ar2-CO-   (2)
-O-Ar3-O-     (3)
In order to achieve the object, the present invention comprises a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3). And the content of the repeating unit containing 2,6-naphthylene group is 40 mol% or more with respect to the total amount of all repeating units on at least one surface of the insulating layer composed of the liquid crystal polyester, An LED substrate provided with a conductor layer is provided.
—O—Ar 1 —CO— (1)
—CO—Ar 2 —CO— (2)
—O—Ar 3 —O— (3)
(Ar1は、2,6-ナフチレン基、1,4-フェニレン基又は4,4’-ビフェニリレン基を表す。Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基又は4,4’-ビフェニリレン基を表す。Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。) (Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group or a 4,4′-biphenylylene group. Ar 2 and Ar 3 are each independently a 2,6-naphthylene group, 1,4 Represents a -phenylene group, a 1,3-phenylene group or a 4,4′-biphenylylene group, wherein the hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 are each independently a halogen atom or an alkyl group; Alternatively, it may be substituted with an aryl group.)
 また、本発明は、液晶ポリエステルから構成され、温度40℃及び相対湿度90%にて測定される水蒸気透過度が0.005g/m2・24h以下である絶縁層の少なくとも一方の面上に、導体層が設けられてなるLED用基板を提供する。 Further, the present invention is composed of liquid crystal polyester, on at least one surface of an insulating layer having a water vapor permeability measured at a temperature of 40 ° C. and a relative humidity of 90% of 0.005 g / m 2 · 24 h or less, An LED substrate provided with a conductor layer is provided.
 さらに、本発明は、厚さ50μmのフィルムにしたときの温度40℃及び相対湿度90%にて測定される水蒸気透過度が0.005g/m2・24h以下である液晶ポリエステルから構成される絶縁層の少なくとも一方の面上に、導体層が設けられてなるLED用基板を提供する。 Furthermore, the present invention relates to an insulation composed of a liquid crystal polyester having a water vapor permeability of 0.005 g / m 2 · 24 h or less measured at a temperature of 40 ° C. and a relative humidity of 90% when a film having a thickness of 50 μm is formed. Provided is an LED substrate in which a conductor layer is provided on at least one surface of the layer.
 加えて、本発明は、前記いずれかのLED用基板の前記導体層の上に、LED素子が配置されてなるLEDパッケージを提供する。 In addition, the present invention provides an LED package in which an LED element is disposed on the conductor layer of any one of the LED substrates.
 本発明のLED用基板は、水蒸気バリア性に優れる絶縁層を有しており、これを用いることにより、信頼性の高いLEDパッケージを得ることができる。 The LED substrate of the present invention has an insulating layer excellent in water vapor barrier properties, and by using this, a highly reliable LED package can be obtained.
本発明のLEDパッケージの例を模式的に示す断面図である。It is sectional drawing which shows the example of the LED package of this invention typically.
 本発明のLED用基板の絶縁層を構成する液晶ポリエステルは、溶融時に光学異方性を示すポリエステルであり、好適には、下記式(1)で表される繰返し単位(以下、繰返し単位(1)ということがある)と、下記式(2)で表される繰返し単位(以下、繰返し単位(2)ということがある)と、下記式(3)で表される繰返し単位(以下、繰返し単位(3)ということがある)とを有するものである。 The liquid crystalline polyester constituting the insulating layer of the LED substrate of the present invention is a polyester that exhibits optical anisotropy when melted, and is preferably a repeating unit represented by the following formula (1) (hereinafter referred to as repeating unit (1 ), A repeating unit represented by the following formula (2) (hereinafter sometimes referred to as repeating unit (2)), and a repeating unit represented by the following formula (3) (hereinafter referred to as repeating unit). (3)).
-O-Ar1-CO-    (1)
-CO-Ar2-CO-   (2)
-O-Ar3-O-     (3)
(Ar1は、2,6-ナフチレン基、1,4-フェニレン基又は4,4’-ビフェニリレン基を表す。Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基又は4,4’-ビフェニリレン基を表す。Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。)
—O—Ar 1 —CO— (1)
—CO—Ar 2 —CO— (2)
—O—Ar 3 —O— (3)
(Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group or a 4,4′-biphenylylene group. Ar 2 and Ar 3 are each independently a 2,6-naphthylene group, 1,4 -Represents a phenylene group, a 1,3-phenylene group or a 4,4′-biphenylylene group, wherein the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently a halogen atom or a carbon number (It may be substituted with an alkyl group of 1 to 10 or an aryl group of 6 to 20 carbon atoms.)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。前記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられ、その炭素数は、通常1~10である。前記アリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられ、その炭素数は、通常6~20である。前記水素原子がこれらの基で置換されている場合、その数は、Ar1、Ar2又はAr3で表される前記基毎に、それぞれ独立に、通常2個以下であり、好ましくは1個以下である。 As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, Examples thereof include an n-octyl group and an n-decyl group, and the carbon number thereof is usually 1 to 10. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group, and the number of carbon atoms is usually 6-20. . When the hydrogen atom is substituted with these groups, the number is usually 2 or less for each group represented by Ar 1 , Ar 2 or Ar 3 , and preferably 1 It is as follows.
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Ar1が2,6-ナフチレン基であるもの、すなわち6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位が好ましい。 The repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid. As the repeating unit (1), those in which Ar 1 is a 2,6-naphthylene group, that is, a repeating unit derived from 6-hydroxy-2-naphthoic acid is preferable.
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Ar2が2,6-ナフチレン基であるもの、すなわち2,6-ナフタレンジカルボン酸に由来する繰返し単位、及びAr2が1,4-フェニレン基であるもの、すなわちテレフタル酸に由来する繰返し単位が好ましい。 The repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. As the repeating unit (2), Ar 2 is a 2,6-naphthylene group, that is, a repeating unit derived from 2,6-naphthalenedicarboxylic acid, and Ar 2 is a 1,4-phenylene group, Repeating units derived from terephthalic acid are preferred.
 繰返し単位(3)は、所定の芳香族ジオールに由来する繰返し単位である。繰返し単位(3)としては、Ar3が1,4-フェニレン基であるもの、すなわちヒドロキノンに由来する繰返し単位、及びAr3が4,4’-ビフェニリレン基であるもの、すなわち4,4’-ジヒドロキシビフェニルに由来する繰返し単位が好ましい。 The repeating unit (3) is a repeating unit derived from a predetermined aromatic diol. As the repeating unit (3), Ar 3 is a 1,4-phenylene group, that is, a repeating unit derived from hydroquinone, and Ar 3 is a 4,4′-biphenylylene group, that is, 4,4′-. Repeating units derived from dihydroxybiphenyl are preferred.
 液晶ポリエステル中、2,6-ナフチレン基を含む繰返し単位の含有量、すなわち、Ar1が2,6-ナフチレン基である繰返し単位(1)、Ar2が2,6-ナフチレン基である繰返し単位(2)、及びAr3が2,6-ナフチレン基である繰返し単位(3)の合計含有量は、全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量を各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、40モル%以上である。かかる所定の繰返し単位組成を有する液晶ポリエステルをフィルム化することにより、水蒸気バリア性に優れる液晶ポリエステルフィルムを得ることができる。この2,6-ナフチレン基の含有量は、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上である。 Content of repeating unit containing 2,6-naphthylene group in liquid crystal polyester, that is, repeating unit (1) in which Ar 1 is 2,6-naphthylene group, repeating unit in which Ar 2 is 2,6-naphthylene group (2) and the total content of the repeating unit (3) in which Ar 3 is a 2,6-naphthylene group is the total amount of all repeating units (the mass of each repeating unit constituting the liquid crystal polyester is expressed by the formula of each repeating unit) By dividing by the amount, the substance amount equivalent amount (mole) of each repeating unit is obtained, and the sum thereof is 40 mol% or more. By forming a liquid crystal polyester having such a predetermined repeating unit composition into a film, a liquid crystal polyester film having excellent water vapor barrier properties can be obtained. The content of 2,6-naphthylene groups is preferably 50 mol% or more, more preferably 60 mol% or more, and further preferably 70 mol% or more.
 また、液晶ポリエステル中、繰返し単位(1)の含有量は、全繰返し単位の合計量に対して、好ましくは30~80モル%、より好ましくは40~70モル%、さらに好ましくは45~65モル%であり、繰返し単位(2)の含有量は、全繰返し単位の合計量に対して、好ましくは10~35モル%、より好ましくは15~30モル%、さらに好ましくは17.5~27.5モル%であり、繰返し単位(3)の含有量は、全繰返し単位の合計量に対して、好ましくは10~35モル%、より好ましくは15~30モル%、さらに好ましくは17.5~27.5モル%である。このような所定の繰返し単位組成を有する液晶ポリエステルは、耐熱性と成形性とのバランスに優れている。なお、繰返し単位(2)の含有量と繰返し単位(3)の含有量とは、実質的に等しいことが好ましい。また、液晶ポリエステルは、必要に応じて繰返し単位(1)~(3)以外の繰返し単位を有していてもよいが、その含有量は、全繰返し単位の合計量に対して、通常10モル%以下、好ましくは5モル%以下である。 In the liquid crystal polyester, the content of the repeating unit (1) is preferably 30 to 80 mol%, more preferably 40 to 70 mol%, still more preferably 45 to 65 mol, based on the total amount of all repeating units. The content of the repeating unit (2) is preferably 10 to 35 mol%, more preferably 15 to 30 mol%, still more preferably 17.5 to 27.27%, based on the total amount of all repeating units. The content of the repeating unit (3) is preferably from 10 to 35 mol%, more preferably from 15 to 30 mol%, still more preferably from 17.5 to mol based on the total amount of all repeating units. 27.5 mol%. The liquid crystal polyester having such a predetermined repeating unit composition has an excellent balance between heat resistance and moldability. In addition, it is preferable that content of a repeating unit (2) and content of a repeating unit (3) are substantially equal. The liquid crystalline polyester may have a repeating unit other than the repeating units (1) to (3) as necessary, but the content thereof is usually 10 moles relative to the total amount of all the repeating units. % Or less, preferably 5 mol% or less.
 耐熱性や溶融張力が高い液晶ポリエステルの典型的な例は、全繰返し単位の合計量に対して、Ar1が2,6-ナフチレン基である繰返し単位(1)、すなわち6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位を、好ましくは40~74.8モル%、より好ましくは40~64.5モル%、さらに好ましくは50~58モル%有し、Ar2が2,6-ナフチレン基である繰返し単位(2)、すなわち2,6-ナフタレンジカルボン酸に由来する繰返し単位を、好ましくは12.5~30モル%、より好ましくは17.5~30モル%、さらに好ましくは20~25モル%有し、Ar2が1,4-フェニレン基である繰返し単位(2)、すなわちテレフタル酸に由来する繰返し単位を、好ましくは0.2~15モル%、より好ましくは0.5~12モル%、さらに好ましくは2~10モル%有し、Ar3が1,4-フェニレン基である繰返し単位(3)、すなわちヒドロキノンに由来する繰返し単位を、好ましくは12.5~30モル%、より好ましくは17.5~30モル%、さらに好ましくは20~25モル%有し、かつ、Ar2が2,6-ナフチレン基である繰返し単位(2)の含有量が、Ar2が2,6-ナフチレン基である繰返し単位(2)及びAr2が1,4-フェニレン基である繰返し単位(2)の合計含有量に対して、好ましくは0.5モル倍以上、より好ましくは0.6モル倍以上のものである。 A typical example of a liquid crystalline polyester having high heat resistance and high melt tension is a repeating unit (1) in which Ar 1 is a 2,6-naphthylene group, that is, 6-hydroxy-2- with respect to the total amount of all repeating units. The repeating unit derived from naphthoic acid is preferably 40 to 74.8 mol%, more preferably 40 to 64.5 mol%, still more preferably 50 to 58 mol%, and Ar 2 is a 2,6-naphthylene group. The repeating unit (2), that is, the repeating unit derived from 2,6-naphthalenedicarboxylic acid is preferably 12.5 to 30 mol%, more preferably 17.5 to 30 mol%, and still more preferably 20 to 25 mol%. a mole%, repeating units Ar 2 is 1,4-phenylene group (2), i.e., repeating units derived from terephthalic acid, preferably 0.2 to 15 mol%, more preferably 0. To 12 mol%, more preferably having 2 to 10 mol%, the repeating units Ar 3 is 1,4-phenylene group (3), i.e., a repeating unit derived from hydroquinone, preferably 12.5 to 30 mol %, more preferably 17.5 to 30 mol%, more preferably having 20-25 mol%, and the content of the repeating unit (2) Ar 2 is 2,6-naphthylene group, Ar 2 is The total content of the repeating unit (2) which is a 2,6-naphthylene group and the repeating unit (2) wherein Ar 2 is a 1,4-phenylene group is preferably 0.5 mol times or more, more preferably It is 0.6 mol times or more.
 液晶ポリエステルは、繰返し単位(1)を与えるモノマー、すなわち所定の芳香族ヒドロキシカルボン酸と、繰返し単位(2)を与えるモノマー、すなわち所定の芳香族ジカルボン酸と、繰返し単位(3)を与えるモノマー、すなわち所定の芳香族ジオールとを、2,6-ナフチレン基を有するモノマーの合計量、すなわち6-ヒドロキシ-2-ナフトエ酸、2,6-ナフタレンジカルボン酸及び2,6-ナフタレンジオールの合計量が、全モノマーの合計量に対して、40モル%以上になるようにして、重合(重縮合)させることにより、製造することができる。その際、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸及び芳香族ジオールは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの、カルボキシル基をハロホルミル基に変換してなるもの、カルボキシル基をアシルオキシカルボニル基に変換してなるものが挙げられる。芳香族ヒドロキシカルボン酸及び芳香族ジオールのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなるものが挙げられる。 The liquid crystalline polyester is a monomer that gives a repeating unit (1), that is, a predetermined aromatic hydroxycarboxylic acid, a monomer that gives a repeating unit (2), that is, a monomer that gives a predetermined aromatic dicarboxylic acid, and a repeating unit (3), That is, a predetermined aromatic diol is added to a total amount of monomers having 2,6-naphthylene groups, that is, a total amount of 6-hydroxy-2-naphthoic acid, 2,6-naphthalenedicarboxylic acid and 2,6-naphthalenediol. The polymer can be produced by polymerization (polycondensation) so as to be 40 mol% or more based on the total amount of all monomers. In that case, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, and the aromatic diol may be independently replaced by a part or all of the polymerizable derivatives thereof. Examples of polymerizable derivatives of a compound having a carboxyl group such as an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group, and a carboxyl group as a haloformyl. And a group formed by converting a carboxyl group into an acyloxycarbonyl group. Examples of polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids and aromatic diols include those obtained by acylating a hydroxyl group and converting it to an acyloxyl group.
 また、液晶ポリエステルは、モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や溶融張力が高い液晶ポリエステルを操作性良く製造することができる。溶融重合は、触媒の存在下に行ってもよく、この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、N,N-ジメチルアミノピリジン、N-メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。こうして得られる前記所定の繰り返し単位組成を有する液晶ポリエステルは、水蒸気バリア性に優れる。 The liquid crystalline polyester is preferably produced by melt polymerizing monomers and solid-phase polymerizing the obtained polymer (prepolymer). Thereby, liquid crystalline polyester with high heat resistance and high melt tension can be manufactured with good operability. Melt polymerization may be carried out in the presence of a catalyst. Examples of this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide, Nitrogen-containing heterocyclic compounds such as N, N-dimethylaminopyridine and N-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used. The liquid crystal polyester having the predetermined repeating unit composition thus obtained is excellent in water vapor barrier properties.
 液晶ポリエステルは、その流動開始温度が、好ましくは280℃以上、より好ましくは290℃以上、さらに好ましくは295℃以上であり、また、通常380℃以下、好ましくは350℃以下である。流動開始温度が高いほど、耐熱性や溶融張力が向上し易いが、あまり高いと、溶融させるために高温を要し、成形時に熱劣化し易くなる。 The liquid crystal polyester has a flow start temperature of preferably 280 ° C. or higher, more preferably 290 ° C. or higher, further preferably 295 ° C. or higher, and is usually 380 ° C. or lower, preferably 350 ° C. or lower. As the flow start temperature is higher, the heat resistance and melt tension are more likely to be improved. However, if the flow start temperature is too high, a high temperature is required for melting, and thermal deterioration tends to occur during molding.
 なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、内径1mm、長さ10mmのノズルを持つ毛細管レオメーターを用い、9.8MPa(100kg/cm2)の荷重下において、4℃/分の昇温速度で液晶ポリエステルの加熱溶融体をノズルから押し出すときに、溶融粘度が4800Pa・s(48,000ポイズ)を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。 The flow start temperature is also called flow temperature or flow temperature, and is 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer having a nozzle with an inner diameter of 1 mm and a length of 10 mm. This is a temperature at which the melt viscosity shows 4800 Pa · s (48,000 poise) when the heated melt of the liquid crystal polyester is extruded from the nozzle at a temperature rising rate of 5 ° C., which is a measure of the molecular weight of the liquid crystal polyester ( (See Naoyuki, “Liquid Crystal Polymers—Synthesis / Molding / Applications”, CMC Corporation, June 5, 1987, p. 95).
 こうして得られる前記所定の繰り返し単位組成を有する液晶ポリエステルは、水蒸気バリア性に優れており、本発明のタブ用キャリアテープの材料として用いられる。本発明における液晶ポリエステルは、好適には、厚さ50μmのフィルムにしたときの温度40℃及び相対湿度90%にて測定される水蒸気透過度が、好ましくは0.05g/m2・24h以下、より好ましくは0.01g/m2・24h以下、さらに好ましくは0.005g/m2・24h以下である。 The liquid crystal polyester having the predetermined repeating unit composition thus obtained is excellent in water vapor barrier properties and used as a material for the tab carrier tape of the present invention. The liquid crystal polyester in the present invention preferably has a water vapor transmission rate measured at a temperature of 40 ° C. and a relative humidity of 90% when formed into a film having a thickness of 50 μm, preferably 0.05 g / m 2 · 24 h or less, More preferably, it is 0.01 g / m < 2 > * 24h or less, More preferably, it is 0.005 g / m < 2 > * 24h or less.
 液晶ポリエステルには、必要に応じて他の成分を配合して、組成物としてもよい。他の成分の例としては、充填材、液晶ポリエステル以外の熱可塑性樹脂及び添加剤が挙げられる。組成物全体に占める液晶ポリエステルの割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上である。 The liquid crystal polyester may be blended with other components as necessary to form a composition. Examples of other components include fillers, thermoplastic resins other than liquid crystal polyesters, and additives. The ratio of the liquid crystal polyester in the entire composition is preferably 80% by mass or more, and more preferably 90% by mass or more.
 充填材の例としては、ミルドガラスファイバー、チョップドガラスファイバー等のガラス繊維、チタン酸カリウムウイスカー、アルミナウイスカ、ホウ酸アルミニウムウイスカ、炭化けい素ウイスカ、窒化けい素ウイスカ等の金属又は非金属系ウイスカ類、ガラスビーズ、中空ガラス球、ガラス粉末、マイカ、タルク、クレー、シリカ、アルミナ、チタン酸カリウム、ウォラスナイト、炭酸カルシウム(重質、軽質、膠質等)、炭酸マグネシウム、塩基性炭酸マグネシウム、硫酸ソーダ、硫酸カルシウム、硫酸バリウム、亜硫酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、けい酸カルシウム、けい砂、けい石、石英、酸化チタン、酸化亜鉛、酸化鉄グラファイト、モリブデン、アスベスト、シリカアルミナ繊維、アルミナ繊維、石膏繊維、炭素繊維、カーボンブラック、ホワイトカーボン、けいそう土、ベントナイト、セリサイト、シラス及び黒鉛が挙げられ、必要に応じてそれらの2種以上を用いることもできる。中でも、ガラス繊維、マイカ、タルク及び炭素繊維が好ましく用いられる。 Examples of fillers include glass fibers such as milled glass fibers and chopped glass fibers, potassium titanate whiskers, alumina whiskers, aluminum borate whiskers, silicon carbide whiskers, silicon nitride whiskers, and other metal or non-metallic whiskers. , Glass beads, hollow glass spheres, glass powder, mica, talc, clay, silica, alumina, potassium titanate, wollastonite, calcium carbonate (heavy, light, colloidal, etc.), magnesium carbonate, basic magnesium carbonate, sodium sulfate , Calcium sulfate, barium sulfate, calcium sulfite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium silicate, silica sand, silica, quartz, titanium oxide, zinc oxide, iron oxide graphite, molybdenum, asbestos, silica alumina Wei, alumina fibers, gypsum fibers, carbon fibers, carbon black, white carbon, diatomaceous earth, bentonite, sericite, Shirasu and graphite are mentioned, it is also possible to use two or more of them, if necessary. Among these, glass fiber, mica, talc and carbon fiber are preferably used.
 充填材は、必要に応じて、表面処理されたものであってもよく、この表面処理剤の例としては、シラン系カップリング剤、チタネート系カップリング剤、ボラン系カップリング剤等の反応性カップリング剤、及び高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、フルオロカーボン系界面活性剤等の潤滑剤が挙げられる。 The filler may be surface-treated as necessary, and examples of the surface treatment agent include reactivity such as a silane coupling agent, a titanate coupling agent, and a borane coupling agent. Examples include coupling agents and lubricants such as higher fatty acids, higher fatty acid esters, higher fatty acid metal salts, and fluorocarbon surfactants.
 液晶ポリエステル以外の熱可塑性樹脂の例としては、ポリカーボネート、ポリアミド、ポリサルフォン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルケトン及びポリエーテルイミド樹脂が挙げられる。 Examples of thermoplastic resins other than liquid crystal polyester include polycarbonate, polyamide, polysulfone, polyphenylene sulfide, polyphenylene ether, polyether ketone, and polyetherimide resin.
 添加剤の例としては、フッ素樹脂、金属石鹸類等の離型改良剤、核剤、酸化防止剤、安定剤、可塑剤、滑剤、着色防止剤、着色剤、紫外線吸収剤、帯電防止剤、潤滑剤及び難燃剤が挙げられる。 Examples of additives include mold release improvers such as fluororesins and metal soaps, nucleating agents, antioxidants, stabilizers, plasticizers, lubricants, anti-coloring agents, coloring agents, ultraviolet absorbers, antistatic agents, Examples include lubricants and flame retardants.
 こうして得られる液晶ポリエステル又はその組成物をフィルム化することにより、本発明のLED用基板の絶縁層を構成する液晶ポリエステルフィルムを得ることができる。フィルム化の方法としては、例えば、押出成形法、プレス成形法、溶液流延法及び射出成形法が挙げられ、押出成形法が好ましい。押出成形法としては、例えば、Tダイ法やインフレーション法が挙げられ、Tダイ法において、一軸延伸してもよいし、二軸延伸してもよい。 A liquid crystal polyester film constituting the insulating layer of the LED substrate of the present invention can be obtained by forming a film of the liquid crystal polyester thus obtained or a composition thereof. Examples of the film forming method include an extrusion molding method, a press molding method, a solution casting method, and an injection molding method, and the extrusion molding method is preferable. Examples of the extrusion molding method include a T-die method and an inflation method. In the T-die method, uniaxial stretching or biaxial stretching may be performed.
 一軸延伸フィルムの延伸倍率(ドラフト比)は、通常1.1~40、好ましくは10~40、より好ましくは15~35である。二軸フィルムのMD方向(押出方向)の延伸倍率は、通常1.2~40倍であり、二軸フィルムのTD方向(押出方向に垂直な方向)の延伸倍率は、通常1.2~20倍である。インフレーションフィルムのMD方向の延伸倍率(ドローダウン比=バブル引取速度/樹脂吐出速度)は、通常1.5~50、好ましくは5~30であり、インフレーションフィルムのTDの延伸倍率(ブロー比=バブル径/環状スリット径)は、通常1.5~10、好ましくは2~5である。 The draw ratio (draft ratio) of the uniaxially stretched film is usually 1.1 to 40, preferably 10 to 40, more preferably 15 to 35. The stretch ratio in the MD direction (extrusion direction) of the biaxial film is usually 1.2 to 40 times, and the stretch ratio in the TD direction (direction perpendicular to the extrusion direction) of the biaxial film is usually 1.2 to 20 times. Is double. The stretch ratio in the MD direction of the inflation film (drawdown ratio = bubble take-off speed / resin discharge speed) is usually 1.5 to 50, preferably 5 to 30, and the stretch ratio of TD of the inflation film (blow ratio = bubble) Diameter / annular slit diameter) is usually 1.5 to 10, preferably 2 to 5.
 液晶ポリエステルフィルムの厚さは、好ましくは5~100μmであり、より好ましくは10~75μmであり、さらに好ましくは15~75μmである。あまり薄いと、強度が不十分になり、あまり厚いと、フレキシブル性が不十分になる。 The thickness of the liquid crystal polyester film is preferably 5 to 100 μm, more preferably 10 to 75 μm, and further preferably 15 to 75 μm. If it is too thin, the strength will be insufficient, and if it is too thick, the flexibility will be insufficient.
 こうして得られる液晶ポリエステルフィルムは、水蒸気バリア性に優れており、本発明のLED用基板の絶縁層として用いられる。この液晶ポリエステルフィルムは、温度40℃及び相対湿度90%にて測定される水蒸気透過度が、好ましくは0.05g/m2・24h以下、より好ましくは0.01g/m2・24h以下、さらに好ましくは0.005g/m2・24h以下である。 The liquid crystal polyester film thus obtained has an excellent water vapor barrier property and is used as an insulating layer of the LED substrate of the present invention. The liquid crystal polyester film, water vapor transmission rate being measured at a temperature 40 ° C. and a relative humidity of 90%, preferably from 0.05g / m 2 · 24h or less, more preferably 0.01g / m 2 · 24h or less, further Preferably, it is 0.005 g / m 2 · 24 h or less.
 なお、液晶ポリエステルフィルムを複数枚積層したり、液晶ポリエステルフィルムに熱可塑性樹脂フィルム等の他のフィルムを積層したりして得られる積層フィルムも、本発明のLED用基板の絶縁層として用いられる。また、液晶ポリエステルフィルム又は前記積層フィルムに、さらに水蒸気バリア性を高めるべく、水蒸気バリア層を設けたり、他の機能層を設けたりして得られる積層フィルムも、本発明のLED用基板の絶縁層として用いられる。 A laminated film obtained by laminating a plurality of liquid crystal polyester films or laminating another film such as a thermoplastic resin film on the liquid crystal polyester film is also used as the insulating layer of the LED substrate of the present invention. Moreover, in order to further improve the water vapor barrier property on the liquid crystal polyester film or the laminated film, a laminated film obtained by providing a water vapor barrier layer or other functional layer is also an insulating layer of the LED substrate of the present invention. Used as
 水蒸気バリア層は、液晶ポリエステルフィルムの少なくとも一方の面上に設けられる。液晶ポリエステルフィルムの片面上に設ける場合、液晶ポリエステルフィルムの裏面(LED素子が配置される面とは反対の面)上に設けることが好ましい。 The water vapor barrier layer is provided on at least one surface of the liquid crystal polyester film. When providing on the single side | surface of a liquid crystal polyester film, providing on the back surface (surface opposite to the surface where an LED element is arrange | positioned) of a liquid crystal polyester film is preferable.
 水蒸気バリア層を構成する物質としては、アルミニウム、ケイ素、チタン、クロム、鉄、コバルト、ニッケル、銅、亜鉛、銀及び金からなる群から選ばれる少なくとも1種の元素の単体、酸化物、窒化物及び酸窒化物が好ましく、必要に応じてそれらの2種以上を用いてもよい。 Substances constituting the water vapor barrier layer include at least one element selected from the group consisting of aluminum, silicon, titanium, chromium, iron, cobalt, nickel, copper, zinc, silver and gold, an oxide, and a nitride And oxynitrides are preferable, and two or more of them may be used as necessary.
 水蒸気バリア層の形成方法としては、例えば、蒸着法、スパッタリング法、イオンプレーティング法等のPVD法、プラズマCVD法、熱CVD法、レーザーCVD法等のCVD法、及びゾル-ゲル法、めっき法、塗布法等のウェット法が挙げられる。また、別途調製乃至入手した箔を、液晶ポリエステルフィルムに貼合してもよい。 As a method for forming the water vapor barrier layer, for example, a vapor deposition method, a sputtering method, a PVD method such as an ion plating method, a CVD method such as a plasma CVD method, a thermal CVD method, a laser CVD method, a sol-gel method, a plating method, etc. And wet methods such as a coating method. Further, a foil prepared or obtained separately may be bonded to the liquid crystal polyester film.
 液晶ポリエステルフィルムには、必要に応じて表面処理を施してもよい。表面処理の方法としては、例えば、コロナ放電処理、火炎処理、スパッタリング処理、溶剤処理、UV処理、プラズマ処理等が挙げられる。 The liquid crystal polyester film may be subjected to a surface treatment as necessary. Examples of the surface treatment method include corona discharge treatment, flame treatment, sputtering treatment, solvent treatment, UV treatment, and plasma treatment.
 こうして得られる液晶ポリエステルを絶縁層として、その少なくとも一方の面上に、LED素子を実装した後にLED素子と電気的に接続する配線となる導体層を設けることにより、LED用基板を得る。好ましくは、図1に示す如く、絶縁層4の一方の面上に、導体層5を設け、もう一方の面上には、LEDパッケージ1の稼動時にLED素子7から生じる熱を効率的に外部へと放熱する放熱層3を設けることにより、LED用基板2を得る。 Using the liquid crystalline polyester thus obtained as an insulating layer, an LED substrate is obtained by providing, on at least one surface thereof, a conductor layer that becomes a wiring electrically connected to the LED element after mounting the LED element. Preferably, as shown in FIG. 1, a conductor layer 5 is provided on one surface of the insulating layer 4, and heat generated from the LED element 7 during the operation of the LED package 1 is efficiently externally provided on the other surface. An LED substrate 2 is obtained by providing the heat dissipation layer 3 that dissipates heat.
 導体層5としては、導電性に優れることから、積層フィルム上に形成する電極は透明電極にしてもよいが、透明である必要はない。一般的には、AlやCu等の金属やカーボン等の導電物質を含んだ導電ペースト又はAlやCu等の金属等により形成すればよい。導体層の形成方法は特に制限されず、蒸着、スパッタリング、イオンプレーティング法、めっき、塗布、印刷等の公知の形成方法を用いればよい。放熱層3としては、放熱性に優れることから、銅やアルミニウムを含むもの、すなわち金属製のものが好ましく、銅又は銅合金からなるものが好ましい。 The conductor layer 5 is excellent in conductivity, so that the electrode formed on the laminated film may be a transparent electrode, but it need not be transparent. In general, a conductive paste containing a conductive material such as a metal such as Al or Cu or carbon or a metal such as Al or Cu may be used. The formation method of the conductor layer is not particularly limited, and a known formation method such as vapor deposition, sputtering, ion plating method, plating, coating, or printing may be used. As the heat dissipation layer 3, since it is excellent in heat dissipation, a material containing copper or aluminum, that is, a metal material is preferable, and a material made of copper or a copper alloy is preferable.
 導体層5や放熱層3を絶縁層(液晶ポリエステルフィルム)4と積層する方法としては、例えば、液晶ポリエステルフィルム4に銅箔等の金属箔を積層する方法や、銅微粒子等の金属微粒子を液晶ポリエステルフィルム4の上にコートする方法が挙げられる。 As a method of laminating the conductor layer 5 and the heat dissipation layer 3 with the insulating layer (liquid crystal polyester film) 4, for example, a method of laminating a metal foil such as a copper foil on the liquid crystal polyester film 4, The method of coating on the polyester film 4 is mentioned.
 金属箔の積層方法としては、例えば、接着剤を用いて金属箔と液晶ポリエステルフィルム4とを接着する方法や、熱プレスにより熱融着させる方法が挙げられる。接着剤を使用する場合、例えばエポキシ樹脂系接着剤やアクリル樹脂系接着剤が使用可能である。また、熱プレスする場合の処理条件としては、使用する液晶ポリエステルフィルム4のスケールや形状、使用する金属箔の厚みや種類等により適宜最適化できるが、真空下で熱プレスすることが特に好ましい。なお、熱プレスの条件は、得られるLED用基板2が良好な表面平滑性を発現するように、処理温度や処理圧力を適宜最適化することが好ましい。この処理温度は、熱プレスする液晶ポリエステルを製造する際に行った固層重合の温度条件に基づいて定めることが好ましく、具体的には、固層重合の最高温度をTmax[℃]としたとき、このTmaxを越える温度で熱プレスすることが好ましく、Tmax+5[℃]以上の温度で熱プレスすることがより好ましい。熱プレスの温度の上限は、用いる液晶ポリエステルフィルム4に含有される液晶ポリエステルの分解温度を下回るように選択されるが、好ましくは分解温度を30℃以上下回るようにすることが好ましい。なお、ここでいう分解温度は熱重量減少分析等の公知の手段で求められるものである。また、熱プレスの時間は通常1~30時間、圧力は通常1~30MPaである。 Examples of the method of laminating the metal foil include a method of bonding the metal foil and the liquid crystal polyester film 4 using an adhesive, and a method of heat-sealing by hot pressing. When an adhesive is used, for example, an epoxy resin adhesive or an acrylic resin adhesive can be used. The processing conditions for hot pressing can be optimized as appropriate depending on the scale and shape of the liquid crystal polyester film 4 to be used, the thickness and type of the metal foil to be used, etc., but it is particularly preferable to hot press under vacuum. In addition, it is preferable to optimize process temperature and a process pressure suitably so that the board | substrate 2 for LED obtained may express favorable surface smoothness as conditions of a hot press. This treatment temperature is preferably determined based on the temperature condition of the solid layer polymerization performed when producing the liquid crystal polyester to be hot pressed. Specifically, the maximum temperature of the solid layer polymerization is T max [° C.]. At this time, it is preferable to perform hot pressing at a temperature exceeding T max, and it is more preferable to perform hot pressing at a temperature of T max +5 [° C.] or higher. The upper limit of the temperature of the hot press is selected so as to be lower than the decomposition temperature of the liquid crystal polyester contained in the liquid crystal polyester film 4 to be used, but it is preferable that the upper limit of the temperature is 30 ° C. or lower. The decomposition temperature referred to here is determined by a known means such as thermogravimetry analysis. The time for hot pressing is usually 1 to 30 hours, and the pressure is usually 1 to 30 MPa.
 銅微粒子等の金属微粒子のコート方法としては、例えば、めっき法、スクリーン印刷法及びスパッタリング法が挙げられる。中でもめっき法が好ましく、具体的には無電解めっきや電解めっきを用いることが好ましい。また、めっきにより形成される導体層5の特性をさらに向上させるためにも、導体層5を加熱処理することが好ましく、かかる加熱処理の条件に関しても、前記熱プレスの条件として記した条件と同等のものが採用される。 Examples of the coating method of metal fine particles such as copper fine particles include a plating method, a screen printing method, and a sputtering method. Of these, the plating method is preferable, and specifically, electroless plating or electrolytic plating is preferably used. In order to further improve the properties of the conductor layer 5 formed by plating, the conductor layer 5 is preferably heat-treated, and the conditions for the heat treatment are also equivalent to the conditions described as the conditions for the hot press. Is adopted.
 前記の中でも、好適な材質、すなわち銅を含有する導体層5や放熱層3を形成するには、銅箔を用いて、導体層5や放熱層3を液晶ポリエステルフィルム4に積層することが作業性の面で好ましい。また、銅箔を用いることは経済性の点でも有利である。 Among these, in order to form a suitable material, that is, the conductor layer 5 and the heat dissipation layer 3 containing copper, the operation is to laminate the conductor layer 5 and the heat dissipation layer 3 on the liquid crystal polyester film 4 using a copper foil. From the viewpoint of sex. In addition, the use of copper foil is advantageous in terms of economy.
 導体層5のパターン化による配線の形成には、通常、エッチング(加工)が用いられる。まず、配線のパターンが所定のパターンになるようにマスキングを行い、マスキングされた導体層5の部分とマスキングされていない導体層5の部分において、後者の導体層5の部分をウェット法(薬剤処理)というエッチング加工によって除去する。このエッチング加工に用いる薬剤としては、例えば塩化第二鉄水溶液が挙げられる。また、マスキングには、市販のエッチングレジストやドライフィルムを用いればよい。 Etching (processing) is usually used to form wiring by patterning the conductor layer 5. First, masking is performed so that the wiring pattern becomes a predetermined pattern. In the masked conductor layer 5 portion and the unmasked conductor layer 5 portion, the latter conductor layer 5 portion is wet-processed (chemical treatment). ) Is removed by etching. As a chemical | medical agent used for this etching process, ferric chloride aqueous solution is mentioned, for example. For masking, a commercially available etching resist or dry film may be used.
 次いで、マスキングされた導体層5部分からエッチングレジストやドライフィルムをアセトンや水酸化ナトリウム水溶液で除去する。このようにして所定の配線を形成することができる。 Next, the etching resist and dry film are removed from the masked conductor layer 5 with acetone or a sodium hydroxide aqueous solution. In this way, a predetermined wiring can be formed.
 導体層5へのLED素子7の実装は、まず、導体層5上にハンダを塗布し、その上にLED素子7を載置し、その後リフロー炉等を通過させてハンダを溶融することで、LED素子7を表面実装することが好ましいが、LED素子7と導体層5とをワイヤボンディングで電気的に接続してもよい。さらに、トランスファー成形等を用いて、LED素子7を封止層6で封止することが好ましい。ここでトランスファー成形とは、型締めした金型内に樹脂を圧入する手法をいう。 The LED element 7 is mounted on the conductor layer 5 by first applying solder on the conductor layer 5, placing the LED element 7 thereon, and then passing the reflow furnace or the like to melt the solder. The LED element 7 is preferably surface-mounted, but the LED element 7 and the conductor layer 5 may be electrically connected by wire bonding. Furthermore, it is preferable to seal the LED element 7 with the sealing layer 6 using transfer molding or the like. Here, transfer molding refers to a technique of press-fitting a resin into a clamped mold.
 こうして得られるLEDパッケージ1には、導体層5と放熱層3とを接続するビアホールが設けられていてもよい。これにより、LED素子7や導体層5で発生する熱を効率的に放熱層3側へと流し、効率的な放熱が行えるようになる。なお、LEDパッケージ1は、チップ型であってもよいし、フィルム型であってもよい。 The LED package 1 thus obtained may be provided with a via hole that connects the conductor layer 5 and the heat dissipation layer 3. Thereby, the heat generated in the LED element 7 and the conductor layer 5 can be efficiently flowed to the heat radiating layer 3 side, so that efficient heat radiation can be performed. The LED package 1 may be a chip type or a film type.
〔流動開始温度の測定〕
 フローテスター((株)島津製作所の「CFT-500型」)を用いて、試料約2gを、内径1mm、長さ10mmのダイスを取り付けた毛細管型レオメーターに充填し、9.8MPa(100kgf/cm2)の荷重下において、昇温速度4℃/分で試料を溶融させながら押し出し、溶融粘度が4800Pa・s(48000ポイズ)を示す温度を測定した。
[Measurement of flow start temperature]
Using a flow tester (“CFT-500 type” manufactured by Shimadzu Corp.), about 2 g of the sample was filled into a capillary rheometer equipped with a die having an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kgf / The sample was extruded while melting at a temperature rising rate of 4 ° C./min under a load of cm 2 ), and a temperature at which the melt viscosity was 4800 Pa · s (48000 poise) was measured.
〔水蒸気バリア性の評価〕
 JIS K7129 C法に準拠して、ガス透過率・透湿度測定装置(GTRテック(株)の「GTR-30X」)により、温度40℃、相対湿度90%の条件で、水蒸気透過度を測定した。
[Evaluation of water vapor barrier properties]
In accordance with JIS K7129 C method, the water vapor transmission rate was measured at a temperature of 40 ° C. and a relative humidity of 90% with a gas permeability / moisture permeability measuring device (“GTR-30X” from GTR Tech Co., Ltd.). .
〔ITO膜の表面抵抗率の測定〕
ITO膜の表面抵抗率(シート抵抗)は、4探針法抵抗測定装置(三菱化学製ロレスタAP)により測定した。
[Measurement of surface resistivity of ITO film]
The surface resistivity (sheet resistance) of the ITO film was measured with a four-probe resistance measuring device (Loresta AP manufactured by Mitsubishi Chemical).
製造例1
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ヒドロキノン272.52g(2.475モル:2,6-ナフタレンジカルボン酸及びテレフタル酸の合計量に対して0.225モル過剰)、無水酢酸1226.87g(12モル)、及び触媒として1-メチルイミダゾール0.17gを入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で3時間保持した後、内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から310℃まで10時間かけて昇温し、310℃で5時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルは、全繰り返し単位の合計量に対して、Ar1が2,6-ナフチレン基である繰返し単位(1)を55モル%、Ar2が2,6-ナフチレン基である繰返し単位(2)を17.5モル%、Ar2が1,4-フェニレン基である繰返し単位(2)を5モル%、及びAr3が1,4-フェニレン基である繰返し単位(3)を22.5%有し、その流動開始温度は333℃であった。
Production Example 1
In a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 103.499 g (5.5 mol) of 6-hydroxy-2-naphthoic acid and 2,6-naphthalenedicarboxylic acid 378 were added. 0.33 g (1.75 mol), 83.07 g (0.5 mol) of terephthalic acid, 272.52 g of hydroquinone (2.475 mol: 0.225 based on the total amount of 2,6-naphthalenedicarboxylic acid and terephthalic acid) Molar excess), 1226.87 g (12 moles) of acetic anhydride, and 0.17 g of 1-methylimidazole as a catalyst, and after replacing the gas in the reactor with nitrogen gas, stirring at room temperature under a nitrogen gas stream To 145 ° C. over 15 minutes and refluxed at 145 ° C. for 1 hour. Next, while distilling off by-product acetic acid and unreacted acetic anhydride, the temperature was raised from 145 ° C. to 310 ° C. over 3 hours and 30 minutes, held at 310 ° C. for 3 hours, then the contents were taken out and cooled to room temperature did. The obtained solid is pulverized to a particle size of about 0.1 to 1 mm with a pulverizer, then heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and then increased from 250 ° C. to 310 ° C. over 10 hours. Solid state polymerization was performed by warming and holding at 310 ° C. for 5 hours. After solid state polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester. In this liquid crystalline polyester, 55 mol% of the repeating unit (1) in which Ar 1 is a 2,6-naphthylene group and Ar 2 is a 2,6-naphthylene group in terms of the total amount of all repeating units ( 2) 17.5 mol%, Ar 2 is 1,4-phenylene group repeating unit (2) 5 mol%, and Ar 3 is 1,4-phenylene group repeating unit (3) 22. 5%, and the flow start temperature was 333 ° C.
製造例2
 製造例1と同様の反応器に、p-ヒドロキシ安息香酸911g(6.6モル)、テレフタル酸274g(1.65モル)、イソフタル酸91g(0.55モル)、4,4’-ジヒドロキシビフェニル409g(2.2モル)、無水酢酸1235g(12.1モル)、及び触媒として1-メチルイミダゾール0.17gを入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から150℃まで15分かけて昇温し、150℃で1時間還流させた。次いで、1-メチルイミダゾール1.7gを添加した後、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温し、285℃で3時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルは、Ar1が1,4-フェニレン基である繰返し単位(1)を60モル%、Ar2が1,4-フェニレン基である繰返し単位(2)を15モル%、Ar2が1,3-フェニレン基である繰返し単位(2)を5モル%、及びAr3が4,4’-ビフェニリレン基である繰返し単位(3)を20%有し、その流動開始温度は327℃であった。
Production Example 2
In the same reactor as in Production Example 1, 911 g (6.6 mol) of p-hydroxybenzoic acid, 274 g (1.65 mol) of terephthalic acid, 91 g (0.55 mol) of isophthalic acid, 4,4′-dihydroxybiphenyl 409 g (2.2 mol), 1235 g of acetic anhydride (12.1 mol), and 0.17 g of 1-methylimidazole as a catalyst were added, and the gas in the reactor was replaced with nitrogen gas, followed by stirring under a nitrogen gas stream While raising the temperature from room temperature to 150 ° C. over 15 minutes, the mixture was refluxed at 150 ° C. for 1 hour. Next, after adding 1.7 g of 1-methylimidazole, the temperature was raised from 150 ° C. to 320 ° C. over 2 hours and 50 minutes while distilling off by-product acetic acid and unreacted acetic anhydride, and an increase in torque was observed. At that time, the contents were removed and cooled to room temperature. The obtained solid is pulverized to a particle size of about 0.1 to 1 mm with a pulverizer, then heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and then increased from 250 ° C. to 285 ° C. over 5 hours. Solid state polymerization was performed by warming and holding at 285 ° C. for 3 hours. After solid state polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester. In this liquid crystal polyester, 60 mol% of the repeating unit (1) in which Ar 1 is a 1,4-phenylene group, 15 mol% of the repeating unit (2) in which Ar 2 is a 1,4-phenylene group, and Ar 2 is 5% by mole of the repeating unit (2) which is a 1,3-phenylene group and 20% of the repeating unit (3) whose Ar 3 is a 4,4′-biphenylylene group, and its flow initiation temperature is 327 ° C. there were.
実施例1
 製造例1で得られた液晶ポリエステルを、二軸押出機((株)池貝の「PCM-30」)で造粒し、ペレット状にした後、一軸押出機(スクリュー径50mm)に供給して溶融させ、Tダイ(リップ長さ300mm、リップクリアランス1mm、ダイ温度350℃)からフィルム状に押し出して冷却し、厚さ25μmの液晶ポリエステルフィルムを得た。この液晶ポリエステルフィルムの水蒸気透過度は、0.011g/m2・24hであり、LED用基板の絶縁層となる液晶ポリエステルフィルムとして、水蒸気バリア性に優れている。
Example 1
The liquid crystalline polyester obtained in Production Example 1 was granulated with a twin-screw extruder ("PCM-30" by Ikekai Co., Ltd.), pelletized, and then supplied to a single-screw extruder (screw diameter 50 mm). It was melted, extruded from a T die (lip length: 300 mm, lip clearance: 1 mm, die temperature: 350 ° C.) and cooled to obtain a liquid crystal polyester film having a thickness of 25 μm. This liquid crystal polyester film has a water vapor permeability of 0.011 g / m 2 · 24 h, and is excellent in water vapor barrier properties as a liquid crystal polyester film serving as an insulating layer of an LED substrate.
実施例2
 製造例1で得られた液晶ポリエステルを、二軸押出機((株)池貝の「PCM-30」)で造粒し、ペレット状にした後、一軸押出機(スクリュー径50mm)に供給して溶融させ、Tダイ(リップ長さ300mm、リップクリアランス1mm、ダイ温度350℃)からフィルム状に押し出して冷却し、厚さ50μmの液晶ポリエステルを得た。この液晶ポリエステルフィルムの水蒸気透過度は、0.0030g/m2・24hであり、LED用基板の絶縁層となる液晶ポリエステルフィルムとして、水蒸気バリア性に優れている。
Example 2
The liquid crystalline polyester obtained in Production Example 1 was granulated with a twin-screw extruder ("PCM-30" by Ikekai Co., Ltd.), pelletized, and then supplied to a single-screw extruder (screw diameter 50 mm). It was melted, extruded from a T-die (lip length 300 mm, lip clearance 1 mm, die temperature 350 ° C.) into a film and cooled to obtain a liquid crystal polyester having a thickness of 50 μm. The liquid crystal polyester film has a water vapor permeability of 0.0030 g / m 2 · 24 h, and is excellent in water vapor barrier properties as a liquid crystal polyester film serving as an insulating layer of the LED substrate.
実施例3
 実施例2で得られた積層フィルムについてイオンプレーティング法によりガスバリア層を形成した反対面にITO(酸化インジュウムスズ)を用いて基板温度180℃にて厚さ200nm透明電極(ITO膜)を形成した。この積層フィルム上に形成した透明電極のシート抵抗を測定したところ9.1Ω/□であった。
Example 3
A 200 nm thick transparent electrode (ITO film) was formed at a substrate temperature of 180 ° C. using ITO (Indium Tin Oxide) on the opposite surface of the laminated film obtained in Example 2 on which the gas barrier layer was formed by ion plating. The sheet resistance of the transparent electrode formed on this laminated film was measured and found to be 9.1Ω / □.
比較例1
 製造例2で得られた液晶ポリエステルを、二軸押出機((株)池貝の「PCM-30」)で造粒し、ペレット状にした後、一軸押出機(スクリュー径50mm)に供給して溶融させ、Tダイ(リップ長さ300mm、リップクリアランス1mm、ダイ温度350℃)からフィルム状に押し出して冷却し、厚さ50μmの液晶ポリエステルフィルムを得た。この液晶ポリエステルフィルムの水蒸気透過度は、0.343g/m2・24hであり、LED用基板の絶縁層となる液晶ポリエステルフィルムとして、水蒸気バリア性が不十分である。
Comparative Example 1
The liquid crystalline polyester obtained in Production Example 2 was granulated with a twin-screw extruder ("PCM-30" from Ikekai Co., Ltd.), pelletized, and then supplied to a single-screw extruder (screw diameter 50 mm). It was melted and extruded from a T die (lip length 300 mm, lip clearance 1 mm, die temperature 350 ° C.) into a film and cooled to obtain a liquid crystal polyester film having a thickness of 50 μm. The water vapor permeability of this liquid crystal polyester film is 0.343 g / m 2 · 24 h, and the water vapor barrier property is insufficient as a liquid crystal polyester film serving as an insulating layer of the LED substrate.
比較例2
 製造例2で得られた粉末状の液晶ポリエステルを、二軸押出機((株)池貝製の「PCM-30」)で造粒し、ペレット状にした後、一軸押出機(スクリュー径50mm)に供給して溶融させ、Tダイ(リップ長さ300mm、リップクリアランス1mm、ダイ温度350℃)からフィルム状に押し出して冷却し、厚さ50μmの液晶ポリエステルフィルムを得た。この液晶ポリエステルフィルムの水蒸気透過度は、0.080g/m2・24hであり、LED用基板の絶縁層となる液晶ポリエステルフィルムとして、水蒸気バリア性が不十分である。
Comparative Example 2
The powdered liquid crystalline polyester obtained in Production Example 2 was granulated with a twin screw extruder ("PCM-30" manufactured by Ikegai Co., Ltd.) and pelletized, and then a single screw extruder (screw diameter 50 mm). And melted, extruded from a T-die (lip length 300 mm, lip clearance 1 mm, die temperature 350 ° C.) and cooled to obtain a liquid crystal polyester film having a thickness of 50 μm. The water vapor permeability of this liquid crystal polyester film is 0.080 g / m 2 · 24 h, and the water vapor barrier property is insufficient as a liquid crystal polyester film serving as an insulating layer of the LED substrate.
比較例3
 比較例2で得られた積層フィルムについてイオンプレーティング法によりガスバリア層を形成した反対面にITO(酸化インジュウムスズ)を用いて基板温度180℃にて厚さ200nm透明電極を形成した。この積層フィルム上に形成した透明電極のシート抵抗を測定したところ12.3Ω/□であった。
Comparative Example 3
About the laminated film obtained in Comparative Example 2, a transparent electrode having a thickness of 200 nm was formed on the opposite surface of the gas barrier layer formed by ion plating method using ITO (Indium Tin Oxide) at a substrate temperature of 180 ° C. When the sheet resistance of the transparent electrode formed on this laminated film was measured, it was 12.3Ω / □.
 1・・・LEDパッケージ、2・・・LED用基板、3・・・放熱層、4・・・絶縁層(液晶ポリエステル層)、5・・・導体層、6・・・封止層、7・・・LED素子。 DESCRIPTION OF SYMBOLS 1 ... LED package, 2 ... LED board, 3 ... Heat dissipation layer, 4 ... Insulating layer (liquid crystal polyester layer), 5 ... Conductive layer, 6 ... Sealing layer, 7 ... LED elements.

Claims (6)

  1.  下記式(1)で表される繰返し単位と、下記式(2)で表される繰返し単位と、下記式(3)で表される繰返し単位とを有し、2,6-ナフチレン基を含む繰返し単位の含有量が、全繰返し単位の合計量に対して、40モル%以上である液晶ポリエステルから構成される絶縁層の少なくとも一方の面上に、導体層が設けられてなるLED用基板。
    -O-Ar1-CO-    (1)
    -CO-Ar2-CO-   (2)
    -O-Ar3-O-     (3)
    (Ar1は、2,6-ナフチレン基、1,4-フェニレン基又は4,4’-ビフェニリレン基を表す。Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基又は4,4’-ビフェニリレン基を表す。Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。) 
    It has a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3), and includes a 2,6-naphthylene group. An LED substrate in which a conductor layer is provided on at least one surface of an insulating layer composed of a liquid crystal polyester having a repeating unit content of 40 mol% or more based on the total amount of all repeating units.
    —O—Ar 1 —CO— (1)
    —CO—Ar 2 —CO— (2)
    —O—Ar 3 —O— (3)
    (Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group or a 4,4′-biphenylylene group. Ar 2 and Ar 3 are each independently a 2,6-naphthylene group, 1,4 Represents a -phenylene group, a 1,3-phenylene group or a 4,4′-biphenylylene group, wherein the hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 are each independently a halogen atom or an alkyl group; Alternatively, it may be substituted with an aryl group.)
  2.  前記液晶ポリエステルの、温度40℃及び相対湿度90%にて測定される水蒸気透過度が0.005g/m2・24h以下である請求項1に記載のLED用基板。 2. The LED substrate according to claim 1, wherein the liquid crystal polyester has a water vapor permeability measured at a temperature of 40 ° C. and a relative humidity of 90% of 0.005 g / m 2 · 24 h or less.
  3.  温度40℃及び相対湿度90%にて測定される水蒸気透過度が0.005g/m2・24h以下である液晶ポリエステルから構成される絶縁層の少なくとも一方の面上に、導体層が設けられてなるLED用基板。 A conductor layer is provided on at least one surface of an insulating layer composed of a liquid crystal polyester having a water vapor permeability of 0.005 g / m 2 · 24 h or less measured at a temperature of 40 ° C. and a relative humidity of 90%. LED substrate.
  4.  厚さ50μmのフィルムにしたときの温度40℃及び相対湿度90%にて測定される水蒸気透過度が0.005g/m2・24h以下である液晶ポリエステルから構成される絶縁層の少なくとも一方の面上に、導体層が設けられてなるLED用基板。 At least one surface of an insulating layer composed of a liquid crystal polyester having a water vapor permeability of 0.005 g / m 2 · 24 h or less measured at a temperature of 40 ° C. and a relative humidity of 90% when the film is 50 μm thick. An LED substrate on which a conductor layer is provided.
  5.  前記絶縁層の少なくとも一方の面上に、水蒸気バリア層が設けられている請求項1~4のいずれかに記載のLED用基板。 The LED substrate according to any one of claims 1 to 4, wherein a water vapor barrier layer is provided on at least one surface of the insulating layer.
  6.  請求項1~4のいずれかに記載のLED用基板の前記導体層の上に、LED素子が配置されてなるLEDパッケージ。 An LED package in which an LED element is disposed on the conductor layer of the LED substrate according to any one of claims 1 to 4.
PCT/JP2012/053325 2011-02-16 2012-02-14 Led substrate WO2012111641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-030913 2011-02-16
JP2011030913 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111641A1 true WO2012111641A1 (en) 2012-08-23

Family

ID=46672560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053325 WO2012111641A1 (en) 2011-02-16 2012-02-14 Led substrate

Country Status (3)

Country Link
JP (1) JP2012186454A (en)
TW (1) TW201244187A (en)
WO (1) WO2012111641A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451579B2 (en) 2015-09-30 2019-01-16 日亜化学工業株式会社 Light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262444A (en) * 2008-04-25 2009-11-12 Dainippon Printing Co Ltd Gas-barrier sheet and its manufacturing method
JP2010114427A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Substrate for use in chip type led package
JP2010135782A (en) * 2008-11-10 2010-06-17 Sumitomo Chemical Co Ltd Solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262444A (en) * 2008-04-25 2009-11-12 Dainippon Printing Co Ltd Gas-barrier sheet and its manufacturing method
JP2010114427A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Substrate for use in chip type led package
JP2010135782A (en) * 2008-11-10 2010-06-17 Sumitomo Chemical Co Ltd Solar cell

Also Published As

Publication number Publication date
JP2012186454A (en) 2012-09-27
TW201244187A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
KR101891939B1 (en) Liquid composition and metal-based circuit board
TWI687299B (en) Electronic device housing
JP5821454B2 (en) Laminated film, laminated film with electrode, and organic EL element
KR20120046067A (en) Liquid crystal polyester composition
JP4639756B2 (en) Aromatic liquid crystal polyester and film thereof and use thereof
JP2011040654A (en) Back sheet for solar cell, and solar cell module
JP2011096471A (en) Cable for mobile phone with shield layer
JP2012116906A (en) Resin-impregnated sheet and resin-impregnated sheet with conductive layer
WO2012053441A1 (en) Photovoltaic cell backsheet and photovoltaic cell module
JP5468975B2 (en) High heat conductivity thermoplastic resin heat sink
WO2012111641A1 (en) Led substrate
CN114945468A (en) Liquid crystal polyester resin, liquid crystal polyester resin composition, molded article, laminate, liquid crystal polyester resin film, and method for producing same
WO2011071002A1 (en) Label
WO2012111661A1 (en) Tab carrier tape and tab tape
JP6324701B2 (en) Liquid crystalline polyester composition
JP2011157533A (en) Liquid crystalline polyester composition and film of the same
WO2012111660A1 (en) Solar cell substrate, and solar cell element
JP2012031396A (en) Adhesive tape and electric/electronic instrument device
JP2012081611A (en) Mold-release film
JP2012158009A (en) Laminated sheet and application thereof
WO2012111642A1 (en) Hollow resin case for housing semiconductor chip
KR20140009360A (en) Organic electroluminescent substrate, and organic electroluminescent element
JP2012025848A (en) Liquid composition and method for production of copper-clad laminate
JP2012082254A (en) Exterior package film for battery and battery
JP2011074167A (en) Liquid crystal polyester, liquid crystal polyester film, and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746509

Country of ref document: EP

Kind code of ref document: A1