WO2012111456A1 - Esd protection device and method of manufacturing same - Google Patents
Esd protection device and method of manufacturing same Download PDFInfo
- Publication number
- WO2012111456A1 WO2012111456A1 PCT/JP2012/052504 JP2012052504W WO2012111456A1 WO 2012111456 A1 WO2012111456 A1 WO 2012111456A1 JP 2012052504 W JP2012052504 W JP 2012052504W WO 2012111456 A1 WO2012111456 A1 WO 2012111456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- discharge
- discharge electrode
- esd protection
- protection device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T4/00—Overvoltage arresters using spark gaps
- H01T4/10—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
- H01T4/12—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T4/00—Overvoltage arresters using spark gaps
- H01T4/08—Overvoltage arresters using spark gaps structurally associated with protected apparatus
Definitions
- the present invention relates to an ESD protection device for protecting against electrostatic discharge (Electro-Static Discharge). More specifically, the first and second discharge electrodes are opposed to each other with a gap in an insulating substrate.
- the present invention relates to an ESD protection device having a structure.
- ESD Electro-Static Discharge
- Patent Document 1 discloses an ESD protection device in which first and second discharge electrodes are arranged in an insulating substrate.
- a cavity is formed in the insulating substrate.
- the first and second discharge electrodes are formed so as to be exposed in the cavity and so that the tips are opposed to each other in the cavity.
- the first discharge electrode is drawn out to one end face of the insulating substrate.
- the second discharge electrode is drawn out to the other end face of the insulating substrate.
- External electrodes are respectively formed on the pair of end faces of the insulating substrate.
- a mixing portion is formed on the lower surface side of the first and second discharge electrodes so as to straddle the first and second discharge electrodes at the portion where the first and second discharge electrodes face each other. ing.
- the mixing portion includes metal particles and ceramic particles, and the metal particles and the ceramic particles are dispersed in the insulating material in the insulating substrate.
- the mixing part relaxes the shrinkage behavior during firing and the difference in thermal expansion coefficient after shrinkage between the ceramics constituting the insulating substrate and the first and second discharge electrodes. Can do. Therefore, it is said that the discharge start voltage can be set with high accuracy.
- An object of the present invention is to provide an ESD protection device in which deterioration of discharge protection characteristics hardly occurs even when discharge is repeated, and a manufacturing method thereof.
- the ESD protection device includes an insulating substrate having a cavity and first and second electrodes disposed in the insulating substrate so as to face each other with a gap in the cavity of the insulating substrate.
- a discharge electrode In the present invention, the first and second discharge electrodes are arranged so that the outer periphery of the first discharge electrode is surrounded by the second discharge electrode with the gap therebetween.
- the ESD protection apparatus is connected to the first discharge electrode, and is connected to the first external electrode formed on the outer surface of the insulating substrate and the second discharge electrode. And a second external electrode formed on the outer surface of the insulating substrate.
- a plurality of the first discharge electrodes are provided, and the second discharge electrode surrounds each of the plurality of first discharge electrodes. Has been placed. In this case, the ESD repeatability can be further enhanced.
- a notch is formed in a part of an electrode edge portion surrounding the first discharge electrode of the second discharge electrode. In this case, the ESD repeatability can be further enhanced.
- an opposing distance in the gap between the outer peripheral edge of the first discharge electrode and the second discharge electrode is an outer periphery of the first discharge electrode. It is made equal in each position of the peripheral edge. In this case, the ESD discharge responsiveness can be further increased, and the ESD repeatability can be further increased.
- the electrode edge portion of the second discharge electrode is formed on the first discharge electrode so as to have a frame shape with the gap closed. It arrange
- the first and second discharge electrodes may be configured such that an electrode edge of the second discharge electrode surrounds the first discharge electrode except for a part of an outer peripheral edge of the first discharge electrode. May be arranged. In this case, since the electrode edge of the second discharge electrode does not surround the outer periphery of the first discharge electrode at a part of the outer periphery of the first discharge electrode, The adhesion between the upper and lower insulating substrate layers can be improved.
- the planar shape of the first discharge electrode is circular. In this case, the ESD discharge response can be further improved.
- the first discharge electrode is connected to a discharge start side potential.
- the second discharge electrode on the electron receiving side is hardly peeled off, and the ESD repeatability can be increased.
- the first discharge electrode and the second discharge It is formed so as to straddle the electrode, and further includes a discharge assisting portion including metal particles and semiconductor particles.
- the discharge start voltage can be lowered.
- the ESD protection device is provided so as to face the cavity, and at least a part of the gap where the first discharge electrode and the second discharge electrode are opposed to each other.
- a sealing layer is further provided so as to surround. When the sealing layer is provided, the cavity can be configured with higher accuracy.
- the first connection electrode electrically connecting the first discharge electrode and the first external electrode, and the second discharge A via hole electrode having a second connection electrode connecting the electrode and the second external electrode, the first connection electrode being connected to an upper surface or a lower surface of the first discharge electrode; A connection electrode portion connected to the via-hole electrode and the first external electrode;
- the first discharge electrode surrounded by the second discharge electrode can be reliably electrically connected to the first external electrode by the first connection electrode having the via hole electrode and the connection electrode portion. it can.
- a first ceramic green sheet having a first discharge electrode and a second discharge electrode provided so as to surround the first discharge electrode on the upper surface is prepared.
- a plurality of the first discharges are prepared.
- a first ceramic green sheet is prepared in which an electrode is disposed so as to be surrounded by the second discharge electrode.
- an ESD protection device having a structure in which the second discharge electrode is disposed so as to surround each of the plurality of first discharge electrodes.
- the first and second discharge electrodes are formed so that the outer periphery of the first discharge electrode is surrounded by the second discharge electrode with a gap therebetween.
- the length of the electrode edge facing the counterpart discharge electrode is sufficiently long. Therefore, even if static electricity is repeatedly applied, the expansion of the minimum facing distance in the gap can be suppressed. Therefore, even if the discharge is repeated, the deterioration of the discharge characteristics can be suppressed. That is, it becomes possible to effectively increase the ESD resistance.
- an ESD protection device According to the method for manufacturing an ESD protection device according to the present invention, it is possible to provide the ESD protection device of the present invention having excellent ESD repeatability.
- FIG. 1A is a plan sectional view of an ESD protection apparatus according to a first embodiment of the present invention
- FIG. 1B is a front sectional view.
- FIG. 2 is a schematic exploded perspective view for explaining the manufacturing method of the ESD protection apparatus according to the first embodiment of the present invention.
- FIG. 3 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the second embodiment of the present invention.
- FIG. 4 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the third embodiment of the present invention.
- FIG. 5 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the fourth embodiment of the present invention.
- FIG. 1A is a plan sectional view of an ESD protection apparatus according to a first embodiment of the present invention
- FIG. 1B is a front sectional view.
- FIG. 2 is a schematic exploded perspective view for explaining the manufacturing method of the ESD
- FIG. 6 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the fifth embodiment of the present invention.
- FIG. 7 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the sixth embodiment of the present invention.
- FIG. 8 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the seventh embodiment of the present invention.
- FIG. 9 is a schematic plan view showing the shapes of the first and second discharge electrodes in the ESD protection apparatus according to the eighth embodiment of the present invention.
- 10 (a) and 10 (b) are a plan sectional view and a front sectional view of an ESD protection device according to a ninth embodiment of the present invention, and FIG.
- FIG. 10 (c) is a portion showing the main part thereof. It is a notch expansion front sectional view.
- FIG. 11 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the modification of the ninth embodiment of the present invention.
- FIG. 12 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the tenth embodiment of the present invention.
- FIG. 13 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the eleventh embodiment of the present invention.
- FIG. 14 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the twelfth embodiment of the present invention.
- FIG. 15 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the thirteenth embodiment of the present invention.
- FIG. 16 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the fourteenth embodiment of the present invention.
- FIG. 17 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the fifteenth embodiment of the present invention.
- FIG. 18 is a schematic plan view for explaining the first and second discharge electrodes of the ESD protection apparatus according to the sixteenth embodiment of the present invention.
- FIG. 19A and FIG. 19B are plan views showing the planar shapes of the first and second discharge electrodes for explaining a modification of the first embodiment.
- FIG. 20 is a plan sectional view of a conventional ESD protection device prepared for comparison.
- FIGS. 1A and 1B are a plan sectional view and a front sectional view of an ESD protection device according to the first embodiment of the present invention.
- the ESD protection device 1 has an insulating substrate 2.
- the insulating substrate 2 is made of a ceramic multilayer substrate in the present embodiment.
- the ceramic material constituting the ceramic multilayer substrate is not particularly limited, but in this embodiment, low-temperature fired ceramic (LTCC) containing Ba, Al, and Si as main components is used.
- LTCC low-temperature fired ceramic
- the insulating substrate 2 has a rectangular parallelepiped shape.
- the insulating substrate 2 has an upper surface 2a, a lower surface 2b, a pair of side surfaces 2c and 2d, a first end surface 2e, and a second end surface 2f opposite to the first end surface 2e.
- First and second discharge electrodes 3 and 4 are formed in a plane at a certain height position of the insulating substrate 2.
- the planar shape of the first discharge electrode 3 is circular.
- the second discharge electrode 4 is formed so as to surround the outer peripheral edge of the first discharge electrode 3.
- the electrode edge 4a surrounding the first discharge electrode 3 of the second discharge electrode 4 is substantially circular and is opposed to the outer peripheral edge of the first discharge electrode 3 with a gap.
- the gap has an annular shape as shown in FIG.
- the plurality of notches 4b are uniformly formed in the circumferential direction in the circular electrode edge 4a.
- the electrode edge 4a is circular, and the center thereof coincides with the center of the circular first discharge electrode 3. Therefore, the electrode edge 4 a is arranged with a gap having the same size as the outer peripheral edge of the first discharge electrode 3 except for the portion where the notch 4 b is provided. In other words, the opposing distances of the first and second discharge electrodes 3 and 4 are equal except for the portion where the notch 4b is provided.
- the first and second discharge electrodes 3 and 4 are made of an appropriate metal or alloy such as Cu, Al, or Ag.
- the gap facing the first and second discharge electrodes 3 and 4 is located in a ring-shaped gap A provided in the insulating substrate 2. That is, in the gap A, the first discharge electrode 3 and the second discharge electrode 4 face each other with the gap therebetween.
- the first external electrode 5 is formed so as to cover the first end face 2e of the insulating substrate 2.
- a second external electrode 6 is formed so as to cover the second end face 2f.
- the first discharge electrode 3 is electrically connected to the first external electrode 5 by the first connection electrode 7.
- the first connection electrode 7 has a via-hole electrode 7 a and a connection electrode portion 7 b whose upper ends are joined to the lower surface of the first discharge electrode 3.
- the lower end of the via-hole electrode 7a is connected to the connection electrode portion 7b.
- the connection electrode portion 7 b is drawn out to the first end surface 2 e and is electrically connected to the first external electrode 5.
- the second discharge electrode 4 is electrically connected to the second external electrode 6 by a second connection electrode 8 connected to the second discharge electrode 4.
- the first and second external electrodes 5 and 6 and the first and second connection electrodes 7 and 8 can be formed of an appropriate metal or alloy such as Cu, Ag, or Ni.
- a discharge auxiliary portion 8A is provided so as to straddle the first and second discharge electrodes 3 and 4.
- the discharge assisting portion 8A is made of a particle dispersion in which metal particles 8a whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles 8b are dispersed. More specifically, it is formed by firing a thick film paste containing metal particles whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles.
- the metal constituting the metal particle 8a is not particularly limited, and an appropriate metal or alloy such as Cu or Ni is used.
- the diameter of the metal particles is not particularly limited, but is about 2 to 3 ⁇ m.
- As the inorganic material coating the surface of the metal particles 8a not particularly limited, and the like Al 2 O 3. Such an inorganic material is attached to the surface of the metal particle, and the surface of the metal particle 8a is coated with the inorganic material.
- Al 2 O 3 particles having a diameter of 1 ⁇ m or less can be used.
- the semiconductor ceramic particle 8b is made of silicon carbide.
- the ESD responsiveness can be improved by dispersing the semiconductor ceramic particles 8b.
- Semiconductor ceramics for obtaining such semiconductor ceramic particles include carbides such as titanium carbide, zirconium carbide, molybdenum carbide or tungsten carbide, nitrides such as titanium nitride, zirconium nitride, chromium nitride, vanadium nitride or tantalum nitride, silicon Silicides such as titanium silicide, zirconium silicide, tungsten silicide, molybdenum silicide or chromium silicide, borides such as titanium boride, zirconium boride, chromium boride, lanthanum boride, molybdenum boride or tungsten boride Alternatively, an oxide such as zinc oxide or strontium titanate can be used.
- silicon carbide is particularly preferred because it is
- the semiconductor ceramics may be used, or two or more kinds thereof may be used in combination.
- the ceramic particles made of the semiconductor ceramic may be appropriately mixed with an insulating ceramic material such as alumina.
- the discharge auxiliary portion 8A in which the metal particles 8a and the semiconductor ceramic particles 8b are dispersed is formed, the gap between the outer peripheral edge of the first discharge electrode 3 and the electrode edge 4a of the second discharge electrode 4 is formed. It is possible to reduce the discharge start voltage at the time of discharge using creeping discharge. Therefore, protection from static electricity can be achieved more effectively.
- the metal particles 8a and the semiconductor ceramic particles 8b of the discharge auxiliary portion 8A are shown so as to enter the first and second discharge electrodes 3 and 4 as well.
- this is a conductive paste for printing the thick film paste containing the metal particles 8a and the semiconductor ceramic particles 8b and further forming the first and second discharge electrodes 3 and 4.
- the discharge auxiliary portion 8A is formed so as to straddle the first and second discharge electrodes 3 and 4.
- the discharge auxiliary portion 8A does not enter the first and second discharge electrodes 3 and 4, and may be provided only in the gap portion between the tips of the first and second discharge electrodes 3 and 4.
- the auxiliary portion 8A may not be provided.
- the lower seal layer 9 is formed on the lower surface of the discharge auxiliary portion 8A.
- an upper seal layer 10 is formed above the cavity A.
- the lower seal layer 9 and the upper seal layer 10 are made of ceramics having a higher sintering temperature than the ceramics constituting the insulating substrate 2.
- the lower seal layer 9 and the upper seal layer 10 are made of Al 2 O 3 .
- the ceramic material constituting the sealing layer is not particularly limited as long as the sintering temperature is higher than that of the ceramic material constituting the insulating substrate 2.
- the discharge auxiliary portion 8A, the lower seal layer 9, and the upper seal layer 10 also have a ring-shaped planar shape.
- the upper surface of the discharge auxiliary portion 8A faces the cavity A, and the upper surface of the cavity A is covered with the upper seal layer 10.
- the lower seal layer 9, the upper seal layer 10, and the discharge auxiliary portion 8 ⁇ / b> A are not necessarily provided.
- the feature of the ESD protection apparatus 1 of the present embodiment is that the second discharge electrode 4 is provided so as to surround the outer peripheral edge of the first discharge electrode 3.
- the first external electrode 5 is used as an electrode connected to the potential at the discharge start side
- discharge is generated from the first discharge electrode 3 toward the second discharge electrode 4 when static electricity is applied.
- a phenomenon such as electrode peeling or dissolution of a part of the electrode may occur in the electrode edge portion 4a of the second discharge electrode 4 on the receiving side.
- the gap has a ring shape. Therefore, the distance between the first and second discharge electrodes 3 and 4 in the gap is maintained as it is, except for the portion where the electrode peeling or the electrode material is dissolved. That is, the minimum facing distance is maintained and the discharge start voltage is unlikely to increase.
- the ESD repetition resistance is more effective than a conventional ESD protection device in which rectangular discharge electrodes face each other at the tip. Can be enhanced.
- the first discharge electrode 3 has a circular planar shape. Accordingly, since electric field concentration is difficult to occur, discharge is likely to occur in any part of the outer peripheral edge of the first discharge electrode 3. Therefore, the discharge start voltage can be lowered. That is, the ESD discharge response can be improved.
- the plurality of notches 4b are formed in the electrode edge 4a. Therefore, as will be apparent from experimental examples described later, the discharge response and ESD repetition resistance can be further enhanced. This is because a plurality of cutouts 4b are provided, so that electrode peeling that occurs at one electrode edge surrounded between adjacent cutouts 4b occurs on adjacent electrode edge parts surrounded by adjacent cutouts 4b. It is thought that it is difficult to propagate.
- the plurality of notches 4b are uniformly distributed in the circumferential direction of the electrode edge 4a. Therefore, the ESD repeat resistance can be further enhanced.
- the plurality of notches may be provided uniformly in the circumferential direction of the electrode edge 4a.
- the notch 4b is formed in a substantially rectangular shape, but may have any shape as long as the electrode edge 4a is partially cut away.
- the second discharge electrode 4 is formed so as to surround the first discharge electrode 3.
- the electrode edge 4 a of the second discharge electrode 4 surrounds the first discharge electrode 3 in the entire circumferential length of the outer peripheral edge of the first discharge electrode 3. Therefore, the gap in which the first and second discharge electrodes 3 and 4 are open has a closed annular shape, that is, a frame shape.
- a missing portion 4 c may be provided in the electrode edge portion 4 a of the second discharge electrode 4.
- the second discharge electrode 4 does not exist. Accordingly, in the circumferential direction of the outer peripheral edge of the first discharge electrode 3, the outer peripheral edge of the first discharge electrode 3 and the second discharge electrode 4 face each other at the portion where the missing portion 4 c is provided. Absent.
- the substantially ring-shaped gap does not necessarily have to be a frame shape.
- the second discharge electrode 4 does not exist in the missing portion 4c. Accordingly, when a portion where the second discharge electrode 4 does not exist is provided so as to extend from the missing portion 4 c to the outside, the adhesion strength between the upper and lower ceramic layers of the second discharge electrode 4 can be increased.
- the first connection electrode 7A in order to connect the first discharge electrode 3 and the external electrode 5, the first connection electrode 7A may be provided so as to pass through the missing portion 4c. In that case, the first connection electrode can be formed on the same plane as the first and second discharge electrodes 3 and 4. In FIG. 1B, the via hole electrode 7a and the connection electrode portion 7b formed in another layer are provided. On the other hand, when the first connection electrode 7A is formed on the same plane as the first and second discharge electrodes 3 and 4, there is no need to provide the via-hole electrode 7a and the connection electrode portion 7b. Therefore, the first connection electrode 7A can be formed at the same time when the first and second discharge electrodes 3 and 4 are formed.
- the first and second discharge electrodes 3 and 4 when the first and second discharge electrodes 3 and 4 are formed by screen printing, the first and second discharge electrodes 3 and 4 can be formed with higher accuracy.
- a paste is applied to a region where an electrode is not formed in advance when forming a discharge electrode, and then an electrode conductive paste is screen-printed. Accordingly, since the resist missing portion is provided, the resist is hardly displaced when the conductive paste is printed. Therefore, the first and second discharge electrodes can be formed with higher accuracy.
- the first embodiment is superior to the modification shown in FIG.
- the first ceramic green sheet 11 is prepared using insulating ceramics.
- a ceramic paste 10 ⁇ / b> A for forming the upper seal layer 10 is applied on the first ceramic green sheet 11.
- the cavity forming material 12A is applied so as to form a ring shape.
- the cavity forming material 12A an appropriate material that disappears upon firing of ceramics described later can be used.
- a resin paste is used as the cavity forming material.
- the application of the resin paste can be performed by an appropriate method such as screen printing.
- the first and second discharge electrodes 3 and 4 are formed by screen printing the conductive paste.
- the second connection electrode 8 is also formed in the same process so as to be connected to the second discharge electrode 4.
- a composite paste for forming the discharge auxiliary portion 8A is printed in a ring shape and dried.
- a ceramic paste 9A for forming the lower seal layer 9 is applied and dried.
- a via hole electrode 7a is formed by providing a through hole in the third ceramic green sheet 14 laminated immediately below the first ceramic green sheet 11 and filling the through hole with a conductive paste.
- the connection electrode portion 7 b is formed by screen printing a conductive paste on the upper surface of the third ceramic green sheet 15 laminated on the lower surface of the third ceramic green sheet 14.
- the laminate is obtained by pressing in the thickness direction.
- a conductive paste for forming an external electrode is applied to both end faces of the laminate.
- the laminate is fired, whereby the ESD protection device 1 can be obtained.
- the resin paste is decomposed and gasified when firing to obtain the insulating substrate 2.
- This gas is contained in each paste for forming the first and second discharge electrodes 3, 4, the ceramic green sheets 11, 12, 14 to 16, the lower seal layer 9 and the upper seal layer 10.
- a ring-shaped cavity A is formed by the gas resulting from the vaporization of the binder resin.
- the first discharge electrode 3 has a circular shape
- the electrode edge 4a of the second discharge electrode 4 has a substantially circular shape. 1
- the shape of the first and second discharge electrodes 3 and 4 can be variously modified.
- 3 to 9 are schematic plan views for explaining the planar shapes of the first and second discharge electrodes in the second to eighth embodiments.
- the second to eighth embodiments are the same as the first embodiment except for the planar shape of the first and second discharge electrodes.
- the second discharge electrode 21 having an elliptical electrode edge 21a is arranged with respect to the first discharge electrode 3 having a circular planar shape. That is, an elliptical electrode edge 21 a is provided so as to surround the outer peripheral edge of the circular discharge electrode 3. Also in the present embodiment, a plurality of notches 21b are uniformly formed in the circumferential direction in the electrode edge portion 21a. In the second embodiment, since the elliptical electrode edge portion 21 a is used, the opposing distance of the gap between the outer peripheral edge of the first discharge electrode 3 and the electrode edge portion 21 a is the first discharge electrode 3. It depends on the position of the outer periphery.
- the second discharge electrode 22 having a circular electrode edge 22 a is disposed so as to surround the circular first discharge electrode 3.
- the third embodiment is the same as the first embodiment except that the plurality of notches 4b in the first embodiment are not provided.
- the first discharge electrode 3 has a circular planar shape
- the second discharge electrode 23 has an elliptical electrode edge 23a.
- the fourth embodiment is the same as the second embodiment except that the notch 21b shown in FIG. 3 is not provided.
- the second discharge electrode 25 is disposed so as to surround the first discharge electrode 24 having a square shape.
- the planar shape of the first discharge electrode is not limited to a circle but may be a rectangle such as a square.
- the square first discharge electrode 24 having excellent symmetry with respect to the center is more preferable than the rectangular first discharge electrode.
- the outer peripheral edge of the first discharge electrode 24 has a square shape.
- the electrode edge portion 25 a of the second discharge electrode 25 is disposed with a gap equal to the four sides constituting the outer peripheral edge of the first discharge electrode 24.
- a plurality of notches 25b are provided in a part of the electrode edge 25a.
- the second discharge electrode 26 having the electrode edge 26 a is arranged with respect to the square first discharge electrode 24.
- the electrode edge 26 a is provided so as to surround the outer peripheral edge of the first discharge electrode 24, but in this embodiment, the facing distance of the gap differs depending on the side of the first discharge electrode 24. That is, the electrode edge portion 26a has a substantially rectangular shape, and the other pair of opposite sides 26a3, 26a4 and the first discharge are compared with the opposing distance of the pair of opposite sides 26a1, 26a2 from the first discharge electrode 24. The distance from the electrode 24 is shorter.
- the second discharge electrode 26 may be formed so that the opposing distance between the outer peripheral edge of the first discharge electrode 24 and the electrode edge 26a is partially different.
- the second discharge electrode 27 having the same square electrode edge portion 27a is arranged with respect to the first discharge electrode 24 having the square shape.
- the seventh embodiment is the same as the fifth embodiment except that the plurality of notches 25b are not provided.
- a square first discharge electrode 24 is combined with a second discharge electrode 28 having a rectangular electrode edge 28a.
- the plurality of notches 26b are not provided.
- the second discharge electrode is disposed so as to surround the first discharge electrode, it is possible to improve the ESD repeatability similarly to the first embodiment.
- Example 1 As Example 1, the ESD protection apparatus according to the first embodiment was obtained.
- a BAS material mainly composed of Ba, Al and Si was mixed so as to have a predetermined composition and calcined at a temperature of 800 ° C. to 1000 ° C.
- the obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder.
- an organic solvent composed of toluene and echinene was added and mixed.
- a binder and a plasticizer were added to obtain a slurry.
- the slurry thus obtained was molded by a doctor blade method to obtain a ceramic green sheet having a thickness of 30 ⁇ m.
- An electrode paste for constituting the first and second discharge electrodes 3 and 4 was prepared as follows. A solvent was added to 80% by weight of Cu particles having an average particle diameter of 2 ⁇ m and a binder resin made of ethyl cellulose, and the mixture was stirred and mixed with a three roll to obtain an electrode paste.
- Preparation of discharge assisting portion 8A forming paste by using an inorganic material having no electrical conductivity formed by adhering Al 2 O 3 powder having an average particle size of several nm to several tens of nm to the surface of Cu particles having an average particle size of 2 ⁇ m Metal particles coated on the surface were prepared. Silicon carbide powder having an average particle diameter of 1 ⁇ m was blended with the conductive particles at a predetermined ratio. To this blend, a binder resin and a solvent were added and mixed so that the total ratio of the binder resin and the solvent was 20% by weight to obtain a mixed paste.
- a resin paste for forming the cavity A a resin paste containing an organic solvent in an appropriate ratio as a solvent with respect to ethyl cellulose was prepared.
- a ceramic paste for forming the lower seal layer 9 and the upper seal layer 10 As a ceramic paste for forming the lower seal layer 9 and the upper seal layer 10, a ceramic paste for forming a seal layer prepared by mixing alumina powder and an organic solvent as a solvent so as to be 15% by weight of the whole was prepared. .
- the conductive paste so that the diameter of the first discharge electrode 3 is 150 ⁇ m. Screen printed. Further, the first and second discharge electrodes 3 and 4 were printed so that the dimension of the gap between the first and second discharge electrodes 3 and 4, that is, the facing distance was 30 ⁇ m. The width and depth of the notch 4b were 25 ⁇ m and 25 ⁇ m, respectively.
- an ESD protection device having a length of 1.0 mm ⁇ width of 0.5 mm ⁇ thickness of 0.3 mm was obtained.
- Example 2 to Example 8 ESD protection devices having first and second discharge electrodes shown in FIGS. 3 to 9, respectively, were produced in the same manner as Example 1.
- the shapes and dimensions of the first discharge electrode and the second discharge electrode in Examples 2 to 8 were as follows.
- Example 2 The first discharge electrode 3 is circular with a diameter of 150 ⁇ m.
- the electrode edge of the second discharge electrode was an ellipse having a major axis of 250 ⁇ m and a minor axis of 210 ⁇ m.
- the width and depth of the cutout were 25 ⁇ m and 25 ⁇ m, respectively.
- Example 3 Same as Example 1 except that notch is not provided.
- Example 4 Same as Example 2 except that no notch is provided.
- Example 5 The first discharge electrode 24 was a square having a side of 150 ⁇ m.
- the electrode edge portion 25a of the second discharge electrode 25 was a square having a side of 150 ⁇ m. Accordingly, the gap facing distance is 30 ⁇ m.
- the width and depth of the notch 25b were 25 ⁇ m and 25 ⁇ m.
- Example 6 The same as Example 5 except that the gap facing distance between the pair of sides 26a3 and 26a4 and the first discharge electrode 24 was changed to 40 ⁇ m.
- Example 7 Same as Example 5 except that the notch 26b was not provided.
- Example 8 Same as Example 6 except that the notch 26b was not provided.
- the conventional ESD protection device 101 shown in FIG. 20 was prepared.
- the dimensions of the insulating substrate 102 were the same as those in Example 1.
- the facing distance in the gap was 30 ⁇ m.
- the widths of the tips of the first and second discharge electrodes 103 and 104 were 150 ⁇ m, respectively. Therefore, the tip portions having a width of 150 ⁇ m are opposed to each other with a facing distance of 30 ⁇ m.
- ESD discharge responsiveness For the ESD protection devices of Examples 1 to 8 and the conventional example, (1) ESD discharge responsiveness and (2) ESD repetition resistance were evaluated as follows.
- Discharge responsiveness to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was investigated whether or not discharge occurred between the discharge electrodes of the sample by applying 8 kV by contact discharge. When the peak voltage detected on the protection circuit side exceeds 700V, the discharge response is poor (x mark), when the peak voltage is 600 to 700V ( ⁇ mark), and the peak voltage is 450 to 600V discharge response The discharge response was determined to be particularly good (marked with ⁇ ) when the characteristics were good (marked with ⁇ ) and the peak voltage was less than 450V.
- the initial discharge start voltage can be lowered by making the first discharge electrode circular rather than square, that is, the ESD discharge response is improved. Further, it can be seen that the ESD resistance can also be increased.
- Example 1 and Example 2 the comparison between Example 3 and Example 4, the comparison between Example 5 and Example 6, and the comparison between Example 7 and Example 8. It can be seen that by providing a notch at the electrode edge of the second discharge electrode, the discharge start voltage can be lowered, the ESD discharge response can be increased, and the ESD repeatability can be increased.
- 10 (a) and 10 (b) are a plan sectional view and a front sectional view of an ESD protection device according to the ninth embodiment of the present invention.
- a plurality of first discharge electrodes 3 are provided in the insulating substrate 2 at the same planar position.
- a second discharge electrode 4 is formed so as to surround the plurality of first discharge electrodes 3. That is, a plurality of first discharge electrodes 3 shown in FIG. 1 may be provided as in the ESD protection device 31 of the present embodiment.
- the plurality of notches 4b provided in the second discharge electrode 4 are not provided on the side where the first discharge electrodes 3 are adjacent to each other.
- the plurality of notches 4b are positioned in the center. It is not provided on the first discharge electrode 3 side.
- the plurality of notches 4b provided on the electrode edge 4a of the second discharge electrode 4 are provided only on the side surface 2c side and the side surface 2d. Yes.
- the reason why the notch 4b is not provided between the adjacent first discharge electrodes 3 and 3 is to reduce the space.
- a plurality of notches 4 b may be provided uniformly in the circumferential direction at each electrode edge 4 a of the second discharge electrode 4 surrounding each first discharge electrode 3. .
- via hole electrodes 7 a are connected to the lower surface of each first discharge electrode 3 in order to electrically connect the plurality of first discharge electrodes 3 to the first external electrode 5. ing. The lower ends of the plurality of via hole electrodes 7a are electrically connected to the connection electrode portion 7b.
- the ESD protection apparatus 31 of 9th Embodiment is the same as that of the ESD protection apparatus 1 of 1st Embodiment. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
- the ESD repetition resistance is increased as in the first embodiment. Can do. Also in the present embodiment, the gaps have the same distance in the circumferential direction of the outer peripheral edge of the first discharge electrode 3. Therefore, as in the first embodiment, the ESD repeatability can be further increased.
- the planar shape of the first discharge electrode 3 is circular, the ESD discharge response can be improved.
- the ESD repeatability and the ESD discharge response can be further enhanced.
- the discharge auxiliary portion 8A is formed so as to straddle the first discharge electrodes 3 and the second discharge electrodes 4, and the lower portion A seal layer 9 and an upper seal layer 10 are provided. Therefore, the discharge start voltage can be lowered and the ESD discharge responsiveness can be increased by forming the discharge auxiliary portion 8A. Further, since the lower seal layer 9 and the upper seal layer 10 are provided, the cavity A can be formed with high accuracy.
- the shapes of the first discharge electrode 3 and the second discharge electrode 4 can be variously modified.
- 12 to 18 are schematic plan views for explaining the planar shapes of the first and second discharge electrodes in the tenth to sixteenth embodiments as modifications of the ninth embodiment. is there.
- a plurality of first discharge electrodes 3 are surrounded by electrode edges 4a1 to 4a3 of the second discharge electrode 4, respectively.
- the difference from the ninth embodiment is that the electrode edges 4a1, 4a2, 4a3 have a circular planar shape, but the electrode edges 4a1, 4a2, 4a3 have different diameters. That is, the electrode edge 4a3 has the largest diameter, the electrode edge 4a2 has the next largest diameter, and the electrode edge 4a1 has the smallest diameter. Therefore, the gap between the first discharge electrode 3 and the second discharge electrode 4 is the largest at the electrode edge 4a3, the next largest at the electrode edge 4a2, and the smallest at the electrode edge 4a1.
- the opposing distance of the gap between the first discharge electrode and the second discharge electrode may be different for each first discharge electrode, Further, the facing distance of the gap in at least one first discharge electrode may be different from the facing distance of the gap in the remaining first discharge electrodes.
- FIG. 13 is a schematic plan view showing the first and second discharge electrodes of the ESD protection apparatus according to the eleventh embodiment.
- the second discharge electrode 32 having an elliptical electrode edge portion 32a is combined with the plurality of first discharge electrodes 3. That is, the second discharge electrode 32 having an elliptical electrode edge portion 32 a may be combined with the plurality of first discharge electrodes 3.
- the second discharge electrode 4 having a circular electrode edge 4 a is used for the first discharge electrode 3. That is, the twelfth embodiment is the same as the ninth embodiment except that the notch 4b is not provided.
- the thirteenth embodiment shown in FIG. 15 is the same as the tenth embodiment shown in FIG. 12 except that the cutout 4b is not provided.
- the fourteenth embodiment shown in FIG. 16 is the same as the eleventh embodiment shown in FIG. 13 except that the notch 4b is not provided.
- the second discharge electrode 33 has elliptical electrode edges 33a1 to 33a3.
- the sizes of the plurality of electrode edge portions 33a1 to 33a3 are different. Therefore, the gap between the first discharge electrode 3 and the second discharge electrode 4 is different at the electrode edge portions 33a1, 33a2, and 33a3.
- Other points are the same as those in the eleventh embodiment shown in FIG.
- the sixteenth embodiment shown in FIG. 18 is the same as the fifteenth embodiment shown in FIG. 17 except that a plurality of notches are not provided.
- the planar shape of the plurality of first discharge electrodes and the planar shape of the second discharge electrode are appropriately modified. can do. Accordingly, as shown in FIGS. 6 to 9, square or rectangular first and second discharge electrodes and second discharge electrodes having electrode edges having a square or rectangular planar shape may be used.
- the facing distance of the gap between the second discharge electrode in at least one discharge electrode is made different from the gap facing distance in the remaining first discharge electrodes. In such a case, ESD resistance can be improved.
- Example 9 The ESD protection apparatus of the ninth embodiment was produced as Example 9.
- Example 1 was the same as Example 1 of the first embodiment except that a plurality of first discharge electrodes 3 were provided.
- Example 10 to Example 16 As Examples 10 to 16, the ESD protection devices of the tenth to sixteenth embodiments were produced. The difference from Example 9 is the shape of the electrode edge of the second discharge electrode. That is, the shape and dimensions of the second discharge electrode were as follows.
- Example 10 Three types of circular electrode edges having diameters of 210, 220, and 230 ⁇ m were formed.
- Example 12 The second discharge electrode was a circle having a diameter of 210 ⁇ m and not having a notch.
- Example 13 A second discharge electrode was formed in the same manner as in Example 10 except that it did not have a notch.
- Example 14 The electrode edge portion of the second discharge electrode was formed in the same manner as in Example 11 except that it did not have a notch.
- Example 16 Same as Example 15 except that a plurality of notches were not provided.
- ESD repeatability can be greatly improved in any of Examples 9 to 16 as compared with the conventional example.
- ESD discharge response can be improved.
- Example 9 it is possible to increase the ESD repetition resistance compared to Examples 10 and 11. This is because both the edges of the first discharge electrode and the second discharge electrode are circular, and the opposing distance of the gap is substantially equal in the circumferential direction of the outer peripheral edge of the first discharge electrode, so that the discharge start voltage increases. It is thought that it is difficult to occur. Therefore, it is desirable that the gap facing distance is equal in the circumferential direction of the first discharge electrode.
- Cavity forming materials 14-16 ... First 3 ceramic green sheets 21 ... second discharge electrode 21a ... electrode edge 21b ... notch 22 ... second discharge electrode 22a ... electrode edge 23 ... second discharge electrode 23a ... electrode edge 24 ... first discharge electrode 5 ... second discharge electrode 25a ... electrode edge 25b ... notch 26 ... second discharge electrode 26a ... electrode edge 26b ... notch 27 ... second discharge electrode 27a ... electrode edge 28 ... second discharge electrode 28a ... Electrode edge 31 ... ESD protection device 32 ... Second discharge electrode 32a ... Electrode edge 33 ... Second discharge electrode 33a ... Electrode edge
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Provided is an ESD protection device with which it is possible to reliably protect against static electricity, and with which an increase in initial discharge voltage does not easily occur even when static electricity is repeatedly applied. In an ESD protection device (1), a cavity (A) is disposed within an insulating substrate (2), first and second discharge electrodes (3, 4) face one another in the cavity (A) across a gap, and the first and second discharge electrodes (3, 4) are positioned such that the second discharge electrode (4) surrounds the outer peripheral edge of the first discharge electrode (3) across the gap.
Description
本発明は、静電気放電(Electro-Static Discharge)に対する保護を図るためのESD保護装置に関し、より詳細には、絶縁性基板内において、第1及び第2の放電電極がギャップを隔てて対向されている構造を有するESD保護装置に関する。
The present invention relates to an ESD protection device for protecting against electrostatic discharge (Electro-Static Discharge). More specifically, the first and second discharge electrodes are opposed to each other with a gap in an insulating substrate. The present invention relates to an ESD protection device having a structure.
従来、ESD(Electro-Static Discharge)すなわち静電気放電から電子機器を保護するために、様々なESD保護装置が提案されている。
Conventionally, various ESD protection devices have been proposed to protect electronic devices from ESD (Electro-Static Discharge), that is, electrostatic discharge.
例えば、下記の特許文献1には、絶縁性基板内に第1及び第2の放電電極を配置してなるESD保護デバイスが開示されている。特許文献1に記載のESD保護デバイスでは、絶縁性基板内に空洞が形成されている。この空洞に露出するようにかつ空洞内で先端同士が対向するように第1,第2の放電電極が形成されている。第1の放電電極は絶縁性基板の一方の端面に引き出されている。また、第2の放電電極が、絶縁性基板の他方の端面に引き出されている。絶縁性基板の一対の端面には、それぞれ外部電極が形成されている。
For example, Patent Document 1 below discloses an ESD protection device in which first and second discharge electrodes are arranged in an insulating substrate. In the ESD protection device described in Patent Document 1, a cavity is formed in the insulating substrate. The first and second discharge electrodes are formed so as to be exposed in the cavity and so that the tips are opposed to each other in the cavity. The first discharge electrode is drawn out to one end face of the insulating substrate. Further, the second discharge electrode is drawn out to the other end face of the insulating substrate. External electrodes are respectively formed on the pair of end faces of the insulating substrate.
このESD保護デバイスでは、第1,第2の放電電極が対向している部分において第1,第2の放電電極にまたがるように第1,第2の放電電極の下面側に混合部が形成されている。混合部は、金属粒子とセラミック粒子とを含み、該金属粒子及びセラミック粒子が絶縁性基板内の絶縁体材料内に分散している。
In this ESD protection device, a mixing portion is formed on the lower surface side of the first and second discharge electrodes so as to straddle the first and second discharge electrodes at the portion where the first and second discharge electrodes face each other. ing. The mixing portion includes metal particles and ceramic particles, and the metal particles and the ceramic particles are dispersed in the insulating material in the insulating substrate.
特許文献1のESD保護デバイスでは、絶縁性基板を構成しているセラミックスと第1,第2の放電電極との焼成時の収縮挙動や収縮後の熱膨張率差を、混合部により緩和することができる。従って、放電開始電圧を高精度に設定することができるとされている。
In the ESD protection device of Patent Document 1, the mixing part relaxes the shrinkage behavior during firing and the difference in thermal expansion coefficient after shrinkage between the ceramics constituting the insulating substrate and the first and second discharge electrodes. Can do. Therefore, it is said that the discharge start voltage can be set with high accuracy.
特許文献1に記載のESD保護デバイスのように、ESD保護装置では、静電気が加わると、対向している第1,第2の放電電極間において放電が生じる。この放電が繰り返されると、第1,第2の放電電極の先端が剥離したり、溶解したりする。従って、第1,第2の放電電極間のギャップが大きくなっていく。その結果、放電保護特性が劣化するという問題がある。
As in the ESD protection device described in Patent Document 1, in an ESD protection device, when static electricity is applied, a discharge occurs between the first and second discharge electrodes facing each other. When this discharge is repeated, the tips of the first and second discharge electrodes are peeled off or dissolved. Accordingly, the gap between the first and second discharge electrodes is increased. As a result, there is a problem that the discharge protection characteristics deteriorate.
本発明の目的は、放電を繰り返したとしても、放電保護特性の劣化が生じ難いESD保護装置及びその製造方法を提供することにある。
An object of the present invention is to provide an ESD protection device in which deterioration of discharge protection characteristics hardly occurs even when discharge is repeated, and a manufacturing method thereof.
本発明に係るESD保護装置は、空洞を有する絶縁性基板と、前記絶縁性基板の空洞内においてギャップを隔てて対向するように、前記絶縁性基板内に配置されている第1,第2の放電電極とを備える。本発明では、前記第1の放電電極の外周縁を、前記ギャップを隔てて前記第2の放電電極が囲むように前記第1,第2の放電電極が配置されている。また、本発明に係るESD保護装置は、前記第1の放電電極に接続されており、前記絶縁性基板の外表面に形成されている第1の外部電極と、前記第2の放電電極に接続されており、前記絶縁性基板の外表面に形成されている第2の外部電極とをさらに備える。
The ESD protection device according to the present invention includes an insulating substrate having a cavity and first and second electrodes disposed in the insulating substrate so as to face each other with a gap in the cavity of the insulating substrate. A discharge electrode. In the present invention, the first and second discharge electrodes are arranged so that the outer periphery of the first discharge electrode is surrounded by the second discharge electrode with the gap therebetween. The ESD protection apparatus according to the present invention is connected to the first discharge electrode, and is connected to the first external electrode formed on the outer surface of the insulating substrate and the second discharge electrode. And a second external electrode formed on the outer surface of the insulating substrate.
本発明に係るESD保護装置のある特定の局面によれば、前記第1の放電電極が複数設けられており、前記第2の放電電極が前記複数の第1の放電電極のそれぞれを囲むように配置されている。この場合には、ESD繰り返し耐性をより一層高めることができる。
According to a specific aspect of the ESD protection apparatus according to the present invention, a plurality of the first discharge electrodes are provided, and the second discharge electrode surrounds each of the plurality of first discharge electrodes. Has been placed. In this case, the ESD repeatability can be further enhanced.
本発明に係るESD保護装置の他の特定の局面では、前記第2の放電電極の前記第1の放電電極を囲んでいる電極縁部の一部に切欠が形成されている。この場合には、ESD繰り返し耐性をより一層高めることができる。
In another specific aspect of the ESD protection apparatus according to the present invention, a notch is formed in a part of an electrode edge portion surrounding the first discharge electrode of the second discharge electrode. In this case, the ESD repeatability can be further enhanced.
本発明に係るESD保護装置のさらに別の特定の局面では、前記第1の放電電極の外周縁と、前記第2の放電電極との前記ギャップにおける対向距離が、前記第1の放電電極の外周縁の各位置において等しくされている。この場合には、上記ESD放電応答性をより一層高めることができ、かつESD繰り返し耐性をより一層高めることができる。
In still another specific aspect of the ESD protection apparatus according to the present invention, an opposing distance in the gap between the outer peripheral edge of the first discharge electrode and the second discharge electrode is an outer periphery of the first discharge electrode. It is made equal in each position of the peripheral edge. In this case, the ESD discharge responsiveness can be further increased, and the ESD repeatability can be further increased.
本発明に係るESD保護装置のさらに他の特定の局面では、前記ギャップが閉じられた枠状の形状を有するように、前記第2の放電電極の電極縁部が、前記第1の放電電極の外周縁を囲むように配置されている。このように、上記ギャップが閉じられた凸状の形状を有していてもよい。また、本発明では、前記第1の放電電極の外周縁の一部を除いて前記第2の放電電極の電極縁部が前記第1の放電電極を囲むように第1,第2の放電電極が配置されていてもよい。この場合には、第2の放電電極の電極縁部が第1の放電電極の外周縁の一部において第1の放電電極の外周縁を囲んでいないため、第1,第2の放電電極の上下の絶縁性基板層の密着性を高めることができる。
In still another specific aspect of the ESD protection apparatus according to the present invention, the electrode edge portion of the second discharge electrode is formed on the first discharge electrode so as to have a frame shape with the gap closed. It arrange | positions so that an outer periphery may be enclosed. Thus, you may have the convex shape with which the said gap was closed. In the present invention, the first and second discharge electrodes may be configured such that an electrode edge of the second discharge electrode surrounds the first discharge electrode except for a part of an outer peripheral edge of the first discharge electrode. May be arranged. In this case, since the electrode edge of the second discharge electrode does not surround the outer periphery of the first discharge electrode at a part of the outer periphery of the first discharge electrode, The adhesion between the upper and lower insulating substrate layers can be improved.
本発明に係るESD保護装置のさらに別の特定の局面では、前記第1の放電電極の平面形状が円形である。この場合には、上記ESD放電応答性をより一層高めることができる。
In yet another specific aspect of the ESD protection apparatus according to the present invention, the planar shape of the first discharge electrode is circular. In this case, the ESD discharge response can be further improved.
本発明に係るESD保護装置のさらに他の特定の局面では、前記第1の放電電極が放電開始側電位に接続される。第1の放電電極が放電開始側電位に接続される場合、電子を受ける側となる第2の放電電極がはがれにくくなりESD繰り返し耐性を高めることができる。
In yet another specific aspect of the ESD protection apparatus according to the present invention, the first discharge electrode is connected to a discharge start side potential. When the first discharge electrode is connected to the discharge start side potential, the second discharge electrode on the electron receiving side is hardly peeled off, and the ESD repeatability can be increased.
本発明に係るESD保護装置のさらに特定の局面では、前記第1の放電電極と、前記第2の放電電極とが対向している前記ギャップにおいて、前記第1の放電電極と前記第2の放電電極とにまたがるように形成されており、金属粒子と半導体粒子とを含む放電補助部がさらに備えられている。この場合には、放電開始電圧を低めることができる。
In a more specific aspect of the ESD protection device according to the present invention, in the gap where the first discharge electrode and the second discharge electrode face each other, the first discharge electrode and the second discharge It is formed so as to straddle the electrode, and further includes a discharge assisting portion including metal particles and semiconductor particles. In this case, the discharge start voltage can be lowered.
本発明に係るESD保護装置のさらに他の特定の局面では、前記空洞に臨むように設けられており、第1の放電電極と第2の放電電極とが対向している前記ギャップの少なくとも一部を囲むように設けられたシール層がさらに備えられている。シール層が設けられている場合には、空洞をより高精度に構成することができる。
In still another specific aspect of the ESD protection apparatus according to the present invention, the ESD protection device is provided so as to face the cavity, and at least a part of the gap where the first discharge electrode and the second discharge electrode are opposed to each other. A sealing layer is further provided so as to surround. When the sealing layer is provided, the cavity can be configured with higher accuracy.
本発明に係るESD保護装置のさらに別の特定の局面では、前記第1の放電電極と前記第1の外部電極とを電気的に接続している第1の接続電極と、前記第2の放電電極と前記第2の外部電極とを接続している第2の接続電極とを有し、前記第1の接続電極が、前記第1の放電電極の上面または下面に接続されたビアホール電極と、前記ビアホール電極と前記第1の外部電極とにと接続されている接続電極部とを有する。この場合には、ビアホール電極と接続電極部とを有する第1の接続電極により第2の放電電極に囲まれた第1の放電電極を確実に第1の外部電極に電気的に接続することができる。本発明に係るESD保護装置の製造方法は、上面に第1の放電電極と、第1の放電電極を囲むように設けられた第2の放電電極とを有する第1のセラミックグリーンシートを用意する工程と、前記第1,第2の放電電極が対向しているギャップを含むように空洞形成材を塗布する工程と、前記第1のセラミックグリーンシートの上面に少なくとも1枚の第2のセラミックグリーンシートを、下面に少なくとも1枚の第3のセラミックグリーンシートを積層し、積層体を得る工程と、前記積層体を焼成し、前記空洞形成材を消失させて、第1,第2の放電電極が対向している空洞を有する絶縁性基板を得る工程と、前記第1,第2の放電電極に電気的に接続されるように、前記積層体の外表面または前記絶縁性基板の外表面に第1,第2の外部電極を形成する工程とを備える。
In still another specific aspect of the ESD protection apparatus according to the present invention, the first connection electrode electrically connecting the first discharge electrode and the first external electrode, and the second discharge A via hole electrode having a second connection electrode connecting the electrode and the second external electrode, the first connection electrode being connected to an upper surface or a lower surface of the first discharge electrode; A connection electrode portion connected to the via-hole electrode and the first external electrode; In this case, the first discharge electrode surrounded by the second discharge electrode can be reliably electrically connected to the first external electrode by the first connection electrode having the via hole electrode and the connection electrode portion. it can. In the manufacturing method of the ESD protection apparatus according to the present invention, a first ceramic green sheet having a first discharge electrode and a second discharge electrode provided so as to surround the first discharge electrode on the upper surface is prepared. A step of applying a cavity forming material so as to include a gap where the first and second discharge electrodes are opposed to each other, and at least one second ceramic green on the upper surface of the first ceramic green sheet Laminating at least one third ceramic green sheet on the lower surface of the sheet to obtain a laminated body, firing the laminated body, eliminating the cavity forming material, and the first and second discharge electrodes On the outer surface of the laminated body or the outer surface of the insulating substrate so as to be electrically connected to the first and second discharge electrodes. 1st and 2nd external And forming a pole.
本発明に係るESD保護装置の製造方法のある特定の局面では、前記第1,第2の放電電極が上面に設けられた第1のセラミックグリーンシートを用意するに際し、複数の前記第1の放電電極が前記第2の放電電極で囲まれているように配置されている第1のセラミックグリーンシートを用意する。
In a specific aspect of the manufacturing method of the ESD protection apparatus according to the present invention, when preparing the first ceramic green sheet having the first and second discharge electrodes provided on the upper surface, a plurality of the first discharges are prepared. A first ceramic green sheet is prepared in which an electrode is disposed so as to be surrounded by the second discharge electrode.
この場合には、第2の放電電極が複数の第1の放電電極のそれぞれを囲むように配置されている構造を有するESD保護装置を提供することができる。
In this case, it is possible to provide an ESD protection device having a structure in which the second discharge electrode is disposed so as to surround each of the plurality of first discharge electrodes.
本発明に係るESD保護装置によれば、第1の放電電極の外周縁を、ギャップを隔てて第2の放電電極が囲むように第1,第2の放電電極が形成されているため、第1の放電電極及び第2の放電電極のそれぞれにおいて、相手方の放電電極と対向している電極縁部の長さが充分に長くなる。従って、静電気が繰り返し加えられたとしても、ギャップにおける最小対向距離の拡大を抑制することができる。そのため、放電を繰り返したとしても、放電特性の劣化を抑制することができる。すなわち、ESD繰り返し耐性を効果的に高めることが可能となる。
According to the ESD protection device of the present invention, the first and second discharge electrodes are formed so that the outer periphery of the first discharge electrode is surrounded by the second discharge electrode with a gap therebetween. In each of the first discharge electrode and the second discharge electrode, the length of the electrode edge facing the counterpart discharge electrode is sufficiently long. Therefore, even if static electricity is repeatedly applied, the expansion of the minimum facing distance in the gap can be suppressed. Therefore, even if the discharge is repeated, the deterioration of the discharge characteristics can be suppressed. That is, it becomes possible to effectively increase the ESD resistance.
本発明に係るESD保護装置の製造方法によれば、上記ESD繰り返し耐性に優れた本発明のESD保護装置を提供することが可能となる。
According to the method for manufacturing an ESD protection device according to the present invention, it is possible to provide the ESD protection device of the present invention having excellent ESD repeatability.
以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
図1(a)及び(b)は、本発明の第1の実施形態に係るESD保護装置の平面断面図及び正面断面図である。
FIGS. 1A and 1B are a plan sectional view and a front sectional view of an ESD protection device according to the first embodiment of the present invention.
ESD保護装置1は、絶縁性基板2を有する。絶縁性基板2は、本実施形態では、セラミック多層基板からなる。このセラミック多層基板を構成するセラミック材料については特に限定されるものではないが、本実施形態では、Ba、Al、Siを主成分として含む低温焼成セラミックス(LTCC)が用いられている。
The ESD protection device 1 has an insulating substrate 2. The insulating substrate 2 is made of a ceramic multilayer substrate in the present embodiment. The ceramic material constituting the ceramic multilayer substrate is not particularly limited, but in this embodiment, low-temperature fired ceramic (LTCC) containing Ba, Al, and Si as main components is used.
本実施形態では、絶縁性基板2は、直方体状の形状を有する。絶縁性基板2は、上面2aと下面2bと一対の側面2c,2dと、第1の端面2eと、第1の端面2eとは反対側の第2の端面2fとを有する。
In this embodiment, the insulating substrate 2 has a rectangular parallelepiped shape. The insulating substrate 2 has an upper surface 2a, a lower surface 2b, a pair of side surfaces 2c and 2d, a first end surface 2e, and a second end surface 2f opposite to the first end surface 2e.
絶縁性基板2のある高さ位置の平面内に、第1,第2の放電電極3,4が形成されている。第1の放電電極3の平面形状は円形である。第2の放電電極4は、第1の放電電極3の外周縁を囲むように形成されている。第2の放電電極4の第1の放電電極3を囲んでいる電極縁部4aは、略円形であり、かつ第1の放電電極3の外周縁とギャップを隔てて対向されている。本実施形態では、上記ギャップは、図1(a)に示すように、円環状の形状を有している。
First and second discharge electrodes 3 and 4 are formed in a plane at a certain height position of the insulating substrate 2. The planar shape of the first discharge electrode 3 is circular. The second discharge electrode 4 is formed so as to surround the outer peripheral edge of the first discharge electrode 3. The electrode edge 4a surrounding the first discharge electrode 3 of the second discharge electrode 4 is substantially circular and is opposed to the outer peripheral edge of the first discharge electrode 3 with a gap. In the present embodiment, the gap has an annular shape as shown in FIG.
もっとも、本実施形態では、円形の電極縁部4aにおいて、周方向において均一に4個の複数の切欠4bが形成されている。
However, in the present embodiment, the plurality of notches 4b are uniformly formed in the circumferential direction in the circular electrode edge 4a.
本実施形態では、電極縁部4aは円形であり、その中心が、円形の第1の放電電極3の中心と一致されている。従って、切欠4bが設けられている部分以外において、電極縁部4aは、第1の放電電極3の外周縁と等しい大きさのギャップを隔てて配置されている。言い換えれば、切欠4bが設けられている部分を除いては、第1,第2の放電電極3,4の対向距離は等しくされている。
In the present embodiment, the electrode edge 4a is circular, and the center thereof coincides with the center of the circular first discharge electrode 3. Therefore, the electrode edge 4 a is arranged with a gap having the same size as the outer peripheral edge of the first discharge electrode 3 except for the portion where the notch 4 b is provided. In other words, the opposing distances of the first and second discharge electrodes 3 and 4 are equal except for the portion where the notch 4b is provided.
上記第1,第2の放電電極3,4は、Cu、Al、Agなどの適宜の金属もしくは合金からなる。
The first and second discharge electrodes 3 and 4 are made of an appropriate metal or alloy such as Cu, Al, or Ag.
上記絶縁性基板2内においては、第1,第2の放電電極3,4が対向している上記ギャップは、絶縁性基板2内に設けられたリング状の空隙A内に位置している。すなわち、空隙A内において、第1の放電電極3と第2の放電電極4とが上記ギャップを隔てて対向している。
In the insulating substrate 2, the gap facing the first and second discharge electrodes 3 and 4 is located in a ring-shaped gap A provided in the insulating substrate 2. That is, in the gap A, the first discharge electrode 3 and the second discharge electrode 4 face each other with the gap therebetween.
絶縁性基板2の第1の端面2eを覆うように、第1の外部電極5が形成されている。第2の端面2fを覆うように、第2の外部電極6が形成されている。
The first external electrode 5 is formed so as to cover the first end face 2e of the insulating substrate 2. A second external electrode 6 is formed so as to cover the second end face 2f.
第1の放電電極3は、第1の接続電極7により、第1の外部電極5に電気的に接続されている。第1の接続電極7は、第1の放電電極3の下面に上端が接合されているビアホール電極7aと接続電極部7bとを有する。ビアホール電極7aの下端が、接続電極部7bに接続されている。接続電極部7bは、第1の端面2eに引き出されており、第1の外部電極5に電気的に接続されている。
The first discharge electrode 3 is electrically connected to the first external electrode 5 by the first connection electrode 7. The first connection electrode 7 has a via-hole electrode 7 a and a connection electrode portion 7 b whose upper ends are joined to the lower surface of the first discharge electrode 3. The lower end of the via-hole electrode 7a is connected to the connection electrode portion 7b. The connection electrode portion 7 b is drawn out to the first end surface 2 e and is electrically connected to the first external electrode 5.
第2の放電電極4は、第2の放電電極4に連ねられた第2の接続電極8により、第2の外部電極6に電気的に接続されている。
The second discharge electrode 4 is electrically connected to the second external electrode 6 by a second connection electrode 8 connected to the second discharge electrode 4.
上記第1,第2の外部電極5,6及び第1,第2の接続電極7,8は、Cu、Ag、Niなどの適宜の金属もしくは合金により形成することができる。
The first and second external electrodes 5 and 6 and the first and second connection electrodes 7 and 8 can be formed of an appropriate metal or alloy such as Cu, Ag, or Ni.
第1,第2の放電電極3,4にまたがるように、放電補助部8Aが設けられている。放電補助部8Aは、導電性を有しない無機材料により表面がコーティングされた金属粒子8aと、半導体セラミック粒子8bとが分散されている、粒子分散体からなる。より具体的には、導電性を有しない無機材料により表面がコーティングされた金属粒子と、半導体セラミック粒子とを含む厚膜ペーストを焼成することにより、形成されている。
A discharge auxiliary portion 8A is provided so as to straddle the first and second discharge electrodes 3 and 4. The discharge assisting portion 8A is made of a particle dispersion in which metal particles 8a whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles 8b are dispersed. More specifically, it is formed by firing a thick film paste containing metal particles whose surfaces are coated with an inorganic material having no conductivity and semiconductor ceramic particles.
上記金属粒子8aを構成する金属としては、特に限定されないが、CuやNiなどの適宜の金属もしくは合金が用いられる。金属粒子の直径は、特に限定されないが、2~3μm程度である。上記金属粒子8aの表面をコーティングしている無機材料としては、特に限定されず、Al2O3などを挙げることができる。このような無機材料は、上記金属粒子表面に付着されて、金属粒子8aの表面が無機材料によりコーティングされている。このような無機材料粉末としては、直径1μm以下のAl2O3粒子などを用いることができる。
The metal constituting the metal particle 8a is not particularly limited, and an appropriate metal or alloy such as Cu or Ni is used. The diameter of the metal particles is not particularly limited, but is about 2 to 3 μm. As the inorganic material coating the surface of the metal particles 8a, not particularly limited, and the like Al 2 O 3. Such an inorganic material is attached to the surface of the metal particle, and the surface of the metal particle 8a is coated with the inorganic material. As such an inorganic material powder, Al 2 O 3 particles having a diameter of 1 μm or less can be used.
上記半導体セラミック粒子8bは、本実施形態では、炭化ケイ素からなる。半導体セラミック粒子8bが分散されていることにより、ESD応答性を高めることができる。このような半導体セラミック粒子を得るための半導体セラミックスとしては、炭化チタン、炭化ジルコニウム、炭化モリブデンもしくは炭化タングステン等の炭化物、窒化チタン、窒化ジルコニウム、窒化クロム、窒化バナジウムもしくは窒化タンタル等の窒化物、ケイ化チタン、ケイ化ジルコニウム、ケイ化タングステン、ケイ化モリブデンもしくはケイ化クロム等のケイ化物、ホウ化チタン、ホウ化ジルコニウム、ホウ化クロム、ホウ化ランタン、ホウ化モリブデンもしくはホウ化タングステンなどのホウ化物または酸化亜鉛もしくはチタン酸ストロンチウム等の酸化物などを挙げることができる。特に、比較的安価でありかつ様々な粒径の粒子が市販されているため、炭化ケイ素が特に好ましい。
In the present embodiment, the semiconductor ceramic particle 8b is made of silicon carbide. The ESD responsiveness can be improved by dispersing the semiconductor ceramic particles 8b. Semiconductor ceramics for obtaining such semiconductor ceramic particles include carbides such as titanium carbide, zirconium carbide, molybdenum carbide or tungsten carbide, nitrides such as titanium nitride, zirconium nitride, chromium nitride, vanadium nitride or tantalum nitride, silicon Silicides such as titanium silicide, zirconium silicide, tungsten silicide, molybdenum silicide or chromium silicide, borides such as titanium boride, zirconium boride, chromium boride, lanthanum boride, molybdenum boride or tungsten boride Alternatively, an oxide such as zinc oxide or strontium titanate can be used. In particular, silicon carbide is particularly preferred because it is relatively inexpensive and commercially available in various particle sizes.
また、上記半導体セラミックスは、1種のみが用いられてもよく、2種以上併用されてもよい。さらに、上記半導体セラミックからなるセラミック粒子を、適宜、アルミナなどの絶縁性セラミック材料と混合して用いてもよい。
Further, only one kind of the semiconductor ceramics may be used, or two or more kinds thereof may be used in combination. Furthermore, the ceramic particles made of the semiconductor ceramic may be appropriately mixed with an insulating ceramic material such as alumina.
上記金属粒子8a及び半導体セラミック粒子8bが分散されている放電補助部8Aが形成されているため、第1の放電電極3の外周縁と第2の放電電極4の電極縁部4aとの間における沿面放電を利用した放電に際しての放電開始電圧を低めることができる。従って、静電気からの保護をより効果的に図ることができる。
Since the discharge auxiliary portion 8A in which the metal particles 8a and the semiconductor ceramic particles 8b are dispersed is formed, the gap between the outer peripheral edge of the first discharge electrode 3 and the electrode edge 4a of the second discharge electrode 4 is formed. It is possible to reduce the discharge start voltage at the time of discharge using creeping discharge. Therefore, protection from static electricity can be achieved more effectively.
なお、図1(b)では、放電補助部8Aの金属粒子8a及び半導体セラミック粒子8bが、第1,第2の放電電極3,4内にも入り込むように図示されている。これは、後述する製造方法から明らかなように、上記金属粒子8a及び半導体セラミック粒子8bを含む厚膜ペーストを印刷し、さらに第1,第2の放電電極3,4を形成するための導電ペーストを印刷し、セラミックス一体焼成技術により、複数枚のセラミックグリーンシートとともに積層した場合、金属粒子8a及び半導体セラミック粒子8bが第1,第2の放電電極3,4内に一部入り込むためである。そのため、放電補助部8Aは、第1,第2の放電電極3,4にまたがるように形成されている。なお、放電補助部8Aは第1,2の放電電極3,4内に入り込まず、第1、2の放電電極3,4の先端間のギャップ部分にのみ設けられてもよいし、また、放電補助部8Aは設けられなくてもよい。
In FIG. 1B, the metal particles 8a and the semiconductor ceramic particles 8b of the discharge auxiliary portion 8A are shown so as to enter the first and second discharge electrodes 3 and 4 as well. As will be apparent from the manufacturing method described later, this is a conductive paste for printing the thick film paste containing the metal particles 8a and the semiconductor ceramic particles 8b and further forming the first and second discharge electrodes 3 and 4. This is because the metal particles 8a and the semiconductor ceramic particles 8b partially enter the first and second discharge electrodes 3 and 4 when printed together and laminated together with a plurality of ceramic green sheets by the ceramic integrated firing technique. Therefore, the discharge auxiliary portion 8A is formed so as to straddle the first and second discharge electrodes 3 and 4. The discharge auxiliary portion 8A does not enter the first and second discharge electrodes 3 and 4, and may be provided only in the gap portion between the tips of the first and second discharge electrodes 3 and 4. The auxiliary portion 8A may not be provided.
また、本実施形態では、上記放電補助部8Aの下面に下部シール層9が形成されている。同様に、空洞Aの上方には上部シール層10が形成されている。
In the present embodiment, the lower seal layer 9 is formed on the lower surface of the discharge auxiliary portion 8A. Similarly, an upper seal layer 10 is formed above the cavity A.
下部シール層9及び上部シール層10は、絶縁性基板2を構成しているセラミックスよりも焼結温度が高いセラミックスからなる。本実施形態では、下部シール層9及び上部シール層10は、Al2O3からなる。シール層構成セラミック材料は、絶縁性基板2を構成しているセラミック材料よりも焼結温度が高い限り、特に限定されるものではない。
The lower seal layer 9 and the upper seal layer 10 are made of ceramics having a higher sintering temperature than the ceramics constituting the insulating substrate 2. In the present embodiment, the lower seal layer 9 and the upper seal layer 10 are made of Al 2 O 3 . The ceramic material constituting the sealing layer is not particularly limited as long as the sintering temperature is higher than that of the ceramic material constituting the insulating substrate 2.
本実施形態では、上記ギャップがリング状であるため、上記放電補助部8A及び下部シール層9及び上部シール層10もまたリング状の平面形状を有する。
In the present embodiment, since the gap is ring-shaped, the discharge auxiliary portion 8A, the lower seal layer 9, and the upper seal layer 10 also have a ring-shaped planar shape.
すなわち、上記放電補助部8Aの上面が空洞Aに臨んでおり、空洞Aの上面は上部シール層10により覆われている。
That is, the upper surface of the discharge auxiliary portion 8A faces the cavity A, and the upper surface of the cavity A is covered with the upper seal layer 10.
なお、本発明においては、上記下部シール層9及び上部シール層10並びに放電補助部8Aは必ずしも設けられずともよい。
In the present invention, the lower seal layer 9, the upper seal layer 10, and the discharge auxiliary portion 8 </ b> A are not necessarily provided.
本実施形態のESD保護装置1の特徴は、上記第1の放電電極3の外周縁を囲むように第2の放電電極4が設けられていることにある。例えば、第1の外部電極5を放電開始側の電位に接続される電極として用いた場合、静電気が加わると、第1の放電電極3から第2の放電電極4に向かって放電が生じる。放電が繰り返されると、放電を受ける側の第2の放電電極4の電極縁部4aにおいて電極剥離や電極の一部の溶解等の現象が生じるおそれがある。しかしながら、本実施形態では、電極縁部4aの一部において、電極剥がれや電極材料の溶解が生じたとしても、ギャップがリング状の形状を有している。従って、上記電極剥離や電極材料の溶解が生じた部分以外では、ギャップにおける第1,第2の放電電極3,4の対向距離は当初のまま維持される。すなわち、最小対向距離が維持され、放電開始電圧の上昇が生じ難い。
The feature of the ESD protection apparatus 1 of the present embodiment is that the second discharge electrode 4 is provided so as to surround the outer peripheral edge of the first discharge electrode 3. For example, when the first external electrode 5 is used as an electrode connected to the potential at the discharge start side, discharge is generated from the first discharge electrode 3 toward the second discharge electrode 4 when static electricity is applied. If the discharge is repeated, a phenomenon such as electrode peeling or dissolution of a part of the electrode may occur in the electrode edge portion 4a of the second discharge electrode 4 on the receiving side. However, in this embodiment, even if electrode peeling or electrode material dissolution occurs in part of the electrode edge 4a, the gap has a ring shape. Therefore, the distance between the first and second discharge electrodes 3 and 4 in the gap is maintained as it is, except for the portion where the electrode peeling or the electrode material is dissolved. That is, the minimum facing distance is maintained and the discharge start voltage is unlikely to increase.
特に、第1の放電電極3の外周縁の全長に渡り上記ギャップが形成されているため、矩形の放電電極同士が先端で対向している従来のESD保護装置に比べて、ESD繰り返し耐性を効果的に高めることができる。
In particular, since the gap is formed over the entire length of the outer peripheral edge of the first discharge electrode 3, the ESD repetition resistance is more effective than a conventional ESD protection device in which rectangular discharge electrodes face each other at the tip. Can be enhanced.
また、本実施形態では、第1の放電電極3が円形の平面形状を有する。従って、電界集中が生じ難いので、第1の放電電極3の外周縁のいずれの部分においても放電が生じやすい。よって、放電開始電圧を低めることができる。すなわち、ESD放電応答性を高めることもできる。
In the present embodiment, the first discharge electrode 3 has a circular planar shape. Accordingly, since electric field concentration is difficult to occur, discharge is likely to occur in any part of the outer peripheral edge of the first discharge electrode 3. Therefore, the discharge start voltage can be lowered. That is, the ESD discharge response can be improved.
加えて、本実施形態では、上記複数の切欠4bが電極縁部4aに形成されている。そのため、後述する実験例から明らかなように、上記放電応答性及びESD繰り返し耐性をより一層高めることができる。これは、複数の切欠4bが設けられているため、隣り合う切欠4b間で囲まれた1つの電極縁部で生じた電極剥離が、隣り合う切欠4b間に囲まれた隣接する電極縁部に伝搬し難いためと考えられる。
In addition, in the present embodiment, the plurality of notches 4b are formed in the electrode edge 4a. Therefore, as will be apparent from experimental examples described later, the discharge response and ESD repetition resistance can be further enhanced. This is because a plurality of cutouts 4b are provided, so that electrode peeling that occurs at one electrode edge surrounded between adjacent cutouts 4b occurs on adjacent electrode edge parts surrounded by adjacent cutouts 4b. It is thought that it is difficult to propagate.
さらに、本実施形態では、複数の切欠4bが電極縁部4aの周方向において均一に分散形成されている。従って、上記ESD繰り返し耐性をより一層高めることができる。もっとも、複数の切欠は、電極縁部4aの周方向において、均一に設けられていてもよい。なお、図1(a)においては、切欠4bは略矩形に形成されているが、電極縁部4aを部分的に切り欠くものであればどのような形状であってもよい。
Further, in the present embodiment, the plurality of notches 4b are uniformly distributed in the circumferential direction of the electrode edge 4a. Therefore, the ESD repeat resistance can be further enhanced. However, the plurality of notches may be provided uniformly in the circumferential direction of the electrode edge 4a. In FIG. 1A, the notch 4b is formed in a substantially rectangular shape, but may have any shape as long as the electrode edge 4a is partially cut away.
図1(a)では、第1の放電電極3を取り囲むように第2の放電電極4が形成されていた。この場合、第1の放電電極3の外周縁の周方向全長において、第2の放電電極4の電極縁部4aが第1の放電電極3を囲んでいた。そのため、第1,第2の放電電極3,4が開口しているギャップは閉じられた円環状すなわち枠状の形状とされている。
In FIG. 1A, the second discharge electrode 4 is formed so as to surround the first discharge electrode 3. In this case, the electrode edge 4 a of the second discharge electrode 4 surrounds the first discharge electrode 3 in the entire circumferential length of the outer peripheral edge of the first discharge electrode 3. Therefore, the gap in which the first and second discharge electrodes 3 and 4 are open has a closed annular shape, that is, a frame shape.
もっとも、本発明では、図19(a)に示すように、第2の放電電極4の電極縁部4aに欠落部4cが設けられていてもよい。欠落部4cでは、第2の放電電極4が存在しない。従って、第1の放電電極3の外周縁の周方向において、上記欠落部4cが設けられている部分では、第1の放電電極3の外周縁と、第2の放電電極4とは対向していない。
However, in the present invention, as shown in FIG. 19A, a missing portion 4 c may be provided in the electrode edge portion 4 a of the second discharge electrode 4. In the missing part 4c, the second discharge electrode 4 does not exist. Accordingly, in the circumferential direction of the outer peripheral edge of the first discharge electrode 3, the outer peripheral edge of the first discharge electrode 3 and the second discharge electrode 4 face each other at the portion where the missing portion 4 c is provided. Absent.
上記のように、略リング状のギャップは、必ずしも枠状の形状とされる必要はない。この場合、欠落部4cでは、第2の放電電極4が存在しない。従って、欠落部4cから外側に至るように、第2の放電電極4が存在しない部分を設けた場合、第2の放電電極4の上下のセラミック層の密着強度を高めることができる。
As described above, the substantially ring-shaped gap does not necessarily have to be a frame shape. In this case, the second discharge electrode 4 does not exist in the missing portion 4c. Accordingly, when a portion where the second discharge electrode 4 does not exist is provided so as to extend from the missing portion 4 c to the outside, the adhesion strength between the upper and lower ceramic layers of the second discharge electrode 4 can be increased.
なお、図19(b)に示すように、第1の放電電極3と、外部電極5とを接続するために、第1の接続電極7Aを、欠落部4cを通るように設けてもよい。その場合には、第1の接続電極を第1,2の放電電極3,4と同一平面上に形成することができる。図1(b)では、ビアホール電極7aと他の層に形成される接続電極部7bを設けていた。これに対して、第1の接続電極7Aが第1,第2の放電電極3,4と同一平面上に形成されている場合には、ビアホール電極7aや接続電極部7bを設ける必要がない。よって、第1,2の放電電極3,4を形成する際に同時に第1の接続電極7Aを形成することができる。
In addition, as shown in FIG. 19B, in order to connect the first discharge electrode 3 and the external electrode 5, the first connection electrode 7A may be provided so as to pass through the missing portion 4c. In that case, the first connection electrode can be formed on the same plane as the first and second discharge electrodes 3 and 4. In FIG. 1B, the via hole electrode 7a and the connection electrode portion 7b formed in another layer are provided. On the other hand, when the first connection electrode 7A is formed on the same plane as the first and second discharge electrodes 3 and 4, there is no need to provide the via-hole electrode 7a and the connection electrode portion 7b. Therefore, the first connection electrode 7A can be formed at the same time when the first and second discharge electrodes 3 and 4 are formed.
また、スクリーン印刷により、第1,第2の放電電極3,4を形成する場合、第1,第2の放電電極3,4をより高精度に形成することができる。これは、放電電極形成に際し予め電極が形成されない領域にペーストを塗布した後、電極用導電ペーストをスクリーン印刷する。従って、レジスト欠落部が設けられることになるため、導電ペーストの印刷に際し、レジストの位置ずれが生じ難い。よって、第1,第2の放電電極をより高精度に形成することができる。
Further, when the first and second discharge electrodes 3 and 4 are formed by screen printing, the first and second discharge electrodes 3 and 4 can be formed with higher accuracy. In this process, a paste is applied to a region where an electrode is not formed in advance when forming a discharge electrode, and then an electrode conductive paste is screen-printed. Accordingly, since the resist missing portion is provided, the resist is hardly displaced when the conductive paste is printed. Therefore, the first and second discharge electrodes can be formed with higher accuracy.
もっとも、欠落部4cが設けられていない場合には、ギャップが第1の放電電極3の外周縁の全長に渡り設けられていることになるため、前述したESD繰り返し耐性をより一層高めることができる。従って、ESDに対する保護を改善するには、図19に示した変形例よりも第1の実施形態の方が優れている。
However, when the missing portion 4c is not provided, the gap is provided over the entire length of the outer peripheral edge of the first discharge electrode 3, so that the ESD repeatability described above can be further enhanced. . Therefore, in order to improve the protection against ESD, the first embodiment is superior to the modification shown in FIG.
次に、ESD保護装置1の製造方法を図2を参照して説明する。ESD保護装置1の製造に際しては、先ず、絶縁性セラミックスを用いて、第1のセラミックグリーンシート11を用意する。第1のセラミックグリーンシート11上に上部シール層10を形成するためのセラミックペースト10Aを塗布する。
Next, a method for manufacturing the ESD protection apparatus 1 will be described with reference to FIG. In manufacturing the ESD protection device 1, first, the first ceramic green sheet 11 is prepared using insulating ceramics. A ceramic paste 10 </ b> A for forming the upper seal layer 10 is applied on the first ceramic green sheet 11.
次に、リング状となるように、空洞形成材12Aを塗布する。上記空洞形成材12Aとしては、後述するセラミックスの焼成に際し消失する適宜の材料を用いることができる。本実施形態では、空洞形成材として樹脂ペーストを用いる。樹脂ペーストの付与は、スクリーン印刷等の適宜の方法により行い得る。
Next, the cavity forming material 12A is applied so as to form a ring shape. As the cavity forming material 12A, an appropriate material that disappears upon firing of ceramics described later can be used. In this embodiment, a resin paste is used as the cavity forming material. The application of the resin paste can be performed by an appropriate method such as screen printing.
次に、導電ペーストをスクリーン印刷することにより、第1,第2の放電電極3,4を形成する。なお、第2の放電電極4に連ねられるように、第2の接続電極8も同じ工程で形成する。
Next, the first and second discharge electrodes 3 and 4 are formed by screen printing the conductive paste. Note that the second connection electrode 8 is also formed in the same process so as to be connected to the second discharge electrode 4.
さらに、放電補助部8Aを形成するための複合ペーストをリング状に印刷し、乾燥させる。次に、下部シール層9を形成するためのセラミックペースト9Aを塗布し、乾燥させる。
Further, a composite paste for forming the discharge auxiliary portion 8A is printed in a ring shape and dried. Next, a ceramic paste 9A for forming the lower seal layer 9 is applied and dried.
次に、上記第1のセラミックグリーンシート11を上下逆転させた後、上方から、少なくとも1枚の第2のセラミックグリーンシート12を積層する。また、第1のセラミックグリーンシート11の下面側に、少なくとも1枚の第3のセラミックグリーンシート14~16を積層する。本実施形態では、第1のセラミックグリーンシート11の直下に積層される第3のセラミックグリーンシート14に、貫通孔を設け、該貫通孔内に導電ペーストを充填することにより、ビアホール電極7aを形成する。また、第3のセラミックグリーンシート14の下面に積層される第3のセラミックグリーンシート15の上面に、導電ペーストをスクリーン印刷することにより接続電極部7bを形成する。
Next, after the first ceramic green sheet 11 is turned upside down, at least one second ceramic green sheet 12 is laminated from above. In addition, at least one third ceramic green sheet 14 to 16 is laminated on the lower surface side of the first ceramic green sheet 11. In the present embodiment, a via hole electrode 7a is formed by providing a through hole in the third ceramic green sheet 14 laminated immediately below the first ceramic green sheet 11 and filling the through hole with a conductive paste. To do. In addition, the connection electrode portion 7 b is formed by screen printing a conductive paste on the upper surface of the third ceramic green sheet 15 laminated on the lower surface of the third ceramic green sheet 14.
上記第2のセラミックグリーンシート12、第1のセラミックグリーンシート11及び第3のセラミックグリーンシート14~16を積層した後、厚み方向に加圧することにより、積層体を得る。この積層体の両端面に外部電極形成用導電ペーストを塗布する。次に、積層体を焼成し、それによって、ESD保護装置1を得ることができる。
After the second ceramic green sheet 12, the first ceramic green sheet 11, and the third ceramic green sheets 14 to 16 are laminated, a laminate is obtained by pressing in the thickness direction. A conductive paste for forming an external electrode is applied to both end faces of the laminate. Next, the laminate is fired, whereby the ESD protection device 1 can be obtained.
上記製造方法では、絶縁性基板2を得るための焼成に際し、上記樹脂ペーストが分解し、ガス化する。このガスと、第1,第2の放電電極3,4や、セラミックグリーンシート11,12,14~16、下部シール層9及び上部シール層10を形成するための各ペースト中に含まれているバインダー樹脂の気化によるガスとにより、リング状の空洞Aが形成されることとなる。
In the above manufacturing method, the resin paste is decomposed and gasified when firing to obtain the insulating substrate 2. This gas is contained in each paste for forming the first and second discharge electrodes 3, 4, the ceramic green sheets 11, 12, 14 to 16, the lower seal layer 9 and the upper seal layer 10. A ring-shaped cavity A is formed by the gas resulting from the vaporization of the binder resin.
上記第1の実施形態では、第1の放電電極3が円形の形状を有し、第2の放電電極4の電極縁部4aが略円形の形状とされていたが、本発明のESD保護装置1では、第1,第2の放電電極3,4の形状は種々変形することができる。
In the first embodiment, the first discharge electrode 3 has a circular shape, and the electrode edge 4a of the second discharge electrode 4 has a substantially circular shape. 1, the shape of the first and second discharge electrodes 3 and 4 can be variously modified.
図3~図9は、第2~第8の実施形態における第1,第2の放電電極の平面形状を説明するための模式的平面図である。なお、第2~第8の実施形態は、第1,第2の放電電極の平面形状を除いては、第1の実施形態と同様である。
3 to 9 are schematic plan views for explaining the planar shapes of the first and second discharge electrodes in the second to eighth embodiments. The second to eighth embodiments are the same as the first embodiment except for the planar shape of the first and second discharge electrodes.
図3に示すように、第2の実施形態では、平面形状が円形の第1の放電電極3に対し、電極縁部21aが楕円形である第2の放電電極21が配置されている。すなわち、楕円形の電極縁部21aが円形の放電電極3の外周縁を囲むように設けられている。なお、本実施形態においても、電極縁部21aにおいて、周方向において均一に複数の切欠21bが形成されている。第2の実施形態では、楕円形の電極縁部21aを用いているため、第1の放電電極3の外周縁と電極縁部21aとの間のギャップの対向距離は、第1の放電電極3の外周縁の位置によって異なっている。
As shown in FIG. 3, in the second embodiment, the second discharge electrode 21 having an elliptical electrode edge 21a is arranged with respect to the first discharge electrode 3 having a circular planar shape. That is, an elliptical electrode edge 21 a is provided so as to surround the outer peripheral edge of the circular discharge electrode 3. Also in the present embodiment, a plurality of notches 21b are uniformly formed in the circumferential direction in the electrode edge portion 21a. In the second embodiment, since the elliptical electrode edge portion 21 a is used, the opposing distance of the gap between the outer peripheral edge of the first discharge electrode 3 and the electrode edge portion 21 a is the first discharge electrode 3. It depends on the position of the outer periphery.
他方、図4に示す第3の実施形態では、円形の第1の放電電極3を囲むように、電極縁部22aが円形である第2の放電電極22が配置されている。第3の実施形態は、第1の実施形態における複数の切欠4bが設けられていないことを除いては、第1の実施形態と同様とされている。
On the other hand, in the third embodiment shown in FIG. 4, the second discharge electrode 22 having a circular electrode edge 22 a is disposed so as to surround the circular first discharge electrode 3. The third embodiment is the same as the first embodiment except that the plurality of notches 4b in the first embodiment are not provided.
図5に示す第4の実施形態では、第1の放電電極3は、平面形状が円形であり、第2の放電電極23が、楕円形の電極縁部23aを有する。第4の実施形態は、図3に示した切欠21bが設けられていないことを除いては、第2の実施形態と同様である。
In the fourth embodiment shown in FIG. 5, the first discharge electrode 3 has a circular planar shape, and the second discharge electrode 23 has an elliptical electrode edge 23a. The fourth embodiment is the same as the second embodiment except that the notch 21b shown in FIG. 3 is not provided.
図6に示すように、第5の実施形態では、正方形の第1の放電電極24を囲むように、第2の放電電極25が配置されている。このように、本発明においては、第1の放電電極の平面形状は円形に限らず、正方形などの矩形であってもよい。もっとも、中心に対しての対称性に優れている正方形の第1の放電電極24が長方形の第1の放電電極よりも好ましい。
As shown in FIG. 6, in the fifth embodiment, the second discharge electrode 25 is disposed so as to surround the first discharge electrode 24 having a square shape. Thus, in the present invention, the planar shape of the first discharge electrode is not limited to a circle but may be a rectangle such as a square. However, the square first discharge electrode 24 having excellent symmetry with respect to the center is more preferable than the rectangular first discharge electrode.
第1の放電電極24の外周縁は、正方形の形状を有する。第2の放電電極25の電極縁部25aは、上記第1の放電電極24の外周縁を構成している4辺と等しいギャップを隔てて配置されている。本実施形態においても、電極縁部25aの一部に複数の切欠25bが設けられている。
The outer peripheral edge of the first discharge electrode 24 has a square shape. The electrode edge portion 25 a of the second discharge electrode 25 is disposed with a gap equal to the four sides constituting the outer peripheral edge of the first discharge electrode 24. Also in this embodiment, a plurality of notches 25b are provided in a part of the electrode edge 25a.
図7に示す第6の実施形態では正方形の第1の放電電極24に対し、電極縁部26aを有する第2の放電電極26が配置されている。電極縁部26aは、第1の放電電極24の外周縁を取り囲むように設けられているが、本実施形態では、ギャップの対向距離が、第1の放電電極24の辺によって異なっている。すなわち、電極縁部26aは略長方形の形状を有し、向かい合う一対の辺26a1,26a2における第1の放電電極24との対向距離に比べ、他の向かい合う一対の辺26a3,26a4と第1の放電電極24との対向距離よりも短くされている。
In the sixth embodiment shown in FIG. 7, the second discharge electrode 26 having the electrode edge 26 a is arranged with respect to the square first discharge electrode 24. The electrode edge 26 a is provided so as to surround the outer peripheral edge of the first discharge electrode 24, but in this embodiment, the facing distance of the gap differs depending on the side of the first discharge electrode 24. That is, the electrode edge portion 26a has a substantially rectangular shape, and the other pair of opposite sides 26a3, 26a4 and the first discharge are compared with the opposing distance of the pair of opposite sides 26a1, 26a2 from the first discharge electrode 24. The distance from the electrode 24 is shorter.
本実施形態のように、第1の放電電極24の外周縁と、電極縁部26aとの対向距離が部分的に異なるように第2の放電電極26を形成してもよい。
As in this embodiment, the second discharge electrode 26 may be formed so that the opposing distance between the outer peripheral edge of the first discharge electrode 24 and the electrode edge 26a is partially different.
また、図8に示す第7の実施形態では、正方形の第1の放電電極24に対し、同じく正方形の電極縁部27aを有する第2の放電電極27が配置されている。第7の実施形態は、複数の切欠25bが設けられていないことを除いては、第5の実施形態と同様である。
Further, in the seventh embodiment shown in FIG. 8, the second discharge electrode 27 having the same square electrode edge portion 27a is arranged with respect to the first discharge electrode 24 having the square shape. The seventh embodiment is the same as the fifth embodiment except that the plurality of notches 25b are not provided.
図9に示すように、第8の実施形態に係るESD保護装置では、正方形の第1の放電電極24に対し、長方形の電極縁部28aを有する第2の放電電極28が組み合わされている。ここでは、複数の切欠26bが設けられていないことを除いては、第6の実施形態と同様とされている。
As shown in FIG. 9, in the ESD protection apparatus according to the eighth embodiment, a square first discharge electrode 24 is combined with a second discharge electrode 28 having a rectangular electrode edge 28a. Here, it is the same as in the sixth embodiment except that the plurality of notches 26b are not provided.
上記第2~第8の実施形態においても、第1の放電電極を取り囲むように第2の放電電極が配置されているため、第1の実施形態と同様にESD繰り返し耐性を高めることができる。
Also in the second to eighth embodiments, since the second discharge electrode is disposed so as to surround the first discharge electrode, it is possible to improve the ESD repeatability similarly to the first embodiment.
次に、第1の実施形態~第8の実施形態についての具体的な実験例につき説明する。
Next, specific experimental examples for the first to eighth embodiments will be described.
(実施例1)
実施例1として、第1の実施形態に係るESD保護装置を得た。 Example 1
As Example 1, the ESD protection apparatus according to the first embodiment was obtained.
実施例1として、第1の実施形態に係るESD保護装置を得た。 Example 1
As Example 1, the ESD protection apparatus according to the first embodiment was obtained.
Ba、Al及びSiを主体とするBAS材を所定の組成となるように混合し、800℃~1000℃の温度で仮焼した。得られた仮焼粉末をジルコニウボールミルで12時間粉砕し、セラミック粉末を得た。このセラミック粉末に、トルエン及びエキネンからなる有機溶媒を加え混合した。さらに、バインダー及び可塑剤を加えスラリーを得た。このようにして得られたスラリーをドクターブレード法により成形し、厚さ30μmのセラミックグリーンシートを得た。
A BAS material mainly composed of Ba, Al and Si was mixed so as to have a predetermined composition and calcined at a temperature of 800 ° C. to 1000 ° C. The obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder. To this ceramic powder, an organic solvent composed of toluene and echinene was added and mixed. Furthermore, a binder and a plasticizer were added to obtain a slurry. The slurry thus obtained was molded by a doctor blade method to obtain a ceramic green sheet having a thickness of 30 μm.
第1,第2の放電電極3,4を構成するための電極ペーストを以下のようにして用意した。平均粒径2μmのCu粒子80重量%と、エチルセルロースからなるバインダー樹脂とに溶剤を添加し、三本ロールで攪拌し、混合し、電極ペーストを得た。
An electrode paste for constituting the first and second discharge electrodes 3 and 4 was prepared as follows. A solvent was added to 80% by weight of Cu particles having an average particle diameter of 2 μm and a binder resin made of ethyl cellulose, and the mixture was stirred and mixed with a three roll to obtain an electrode paste.
放電補助部8A形成用ペーストの調製:平均粒径2μmのCu粒子の表面に平均粒径数nm~数十nmのAl2O3粉末を付着させてなる、導電性を有さない無機材料により表面がコーティングされた金属粒子を用意した。この導電性粒子に平均粒径1μmの炭化ケイ素粉末を所定の割合で配合した。この配合物に、バインダー樹脂及び溶剤を、バインダー樹脂及び溶剤の合計の割合が全体の20重量%となるように添加し、混合し、混合ペーストを得た。
Preparation of discharge assisting portion 8A forming paste: by using an inorganic material having no electrical conductivity formed by adhering Al 2 O 3 powder having an average particle size of several nm to several tens of nm to the surface of Cu particles having an average particle size of 2 μm Metal particles coated on the surface were prepared. Silicon carbide powder having an average particle diameter of 1 μm was blended with the conductive particles at a predetermined ratio. To this blend, a binder resin and a solvent were added and mixed so that the total ratio of the binder resin and the solvent was 20% by weight to obtain a mixed paste.
空洞Aを形成する樹脂ペーストとして、エチルセルロースに対し溶剤として有機溶剤を適宜の割合で含む樹脂ペーストを用意した。
As a resin paste for forming the cavity A, a resin paste containing an organic solvent in an appropriate ratio as a solvent with respect to ethyl cellulose was prepared.
下部シール層9及び上部シール層10を形成するためのセラミックペーストとして、アルミナ粉末と、溶剤としての有機溶剤が全体の15重量%となるように混合してなるシール層形成用セラミックペーストを用意した。
As a ceramic paste for forming the lower seal layer 9 and the upper seal layer 10, a ceramic paste for forming a seal layer prepared by mixing alumina powder and an organic solvent as a solvent so as to be 15% by weight of the whole was prepared. .
上記のようにした各材料を用い、前述した製造方法に従って、ただし、第1,第2の放電電極3,4の形成に際しては、第1の放電電極3の直径を150μmとなるように導電ペーストをスクリーン印刷した。また、第1,第2の放電電極3,4間のギャップの寸法すなわち対向距離は30μmとなるように第1,第2の放電電極3,4を印刷した。なお、切欠4bの幅及び奥行きは、それぞれ、25μm及び25μmの寸法とした。
Using each of the materials described above and in accordance with the manufacturing method described above, however, when forming the first and second discharge electrodes 3 and 4, the conductive paste so that the diameter of the first discharge electrode 3 is 150 μm. Screen printed. Further, the first and second discharge electrodes 3 and 4 were printed so that the dimension of the gap between the first and second discharge electrodes 3 and 4, that is, the facing distance was 30 μm. The width and depth of the notch 4b were 25 μm and 25 μm, respectively.
上記のようにして、長さ1.0mm×幅0.5mm×厚み0.3mmのESD保護装置を得た。
As described above, an ESD protection device having a length of 1.0 mm × width of 0.5 mm × thickness of 0.3 mm was obtained.
(実施例2~実施例8)
実施例2~8として、それぞれ、図3~図9に示した第1,第2の放電電極を有するESD保護装置を実施例1と同様にして作製した。実施例2~8における第1の放電電極及び第2の放電電極の形状及び寸法は以下の通りとした。 (Example 2 to Example 8)
As Examples 2 to 8, ESD protection devices having first and second discharge electrodes shown in FIGS. 3 to 9, respectively, were produced in the same manner as Example 1. The shapes and dimensions of the first discharge electrode and the second discharge electrode in Examples 2 to 8 were as follows.
実施例2~8として、それぞれ、図3~図9に示した第1,第2の放電電極を有するESD保護装置を実施例1と同様にして作製した。実施例2~8における第1の放電電極及び第2の放電電極の形状及び寸法は以下の通りとした。 (Example 2 to Example 8)
As Examples 2 to 8, ESD protection devices having first and second discharge electrodes shown in FIGS. 3 to 9, respectively, were produced in the same manner as Example 1. The shapes and dimensions of the first discharge electrode and the second discharge electrode in Examples 2 to 8 were as follows.
実施例2:第1の放電電極3は、直径150μmの円形。第2の放電電極の電極縁部は、長軸250μm 短軸210μmの寸法の楕円形とした。切欠の幅及び奥行きはそれぞれ、25μm及び25μmとした。
Example 2: The first discharge electrode 3 is circular with a diameter of 150 μm. The electrode edge of the second discharge electrode was an ellipse having a major axis of 250 μm and a minor axis of 210 μm. The width and depth of the cutout were 25 μm and 25 μm, respectively.
実施例3:切欠を設けないことを除いては、実施例1と同様とした。
Example 3: Same as Example 1 except that notch is not provided.
実施例4:切欠を設けないことを除いては、実施例2と同様とした。
Example 4: Same as Example 2 except that no notch is provided.
実施例5:第1の放電電極24は、1辺が150μmの正方形とした。第2の放電電極25の電極縁部25aは、1辺が150μmの正方形とした。従って、ギャップの対向距離は30μmである。また、切欠25bの幅及び奥行きは、25μm及び25μmとした。
Example 5: The first discharge electrode 24 was a square having a side of 150 μm. The electrode edge portion 25a of the second discharge electrode 25 was a square having a side of 150 μm. Accordingly, the gap facing distance is 30 μm. The width and depth of the notch 25b were 25 μm and 25 μm.
実施例6:一対の辺26a3,26a4と第1の放電電極24とのギャップ対向距離を40μmと変更したことを除いては、実施例5と同様とした。
Example 6: The same as Example 5 except that the gap facing distance between the pair of sides 26a3 and 26a4 and the first discharge electrode 24 was changed to 40 μm.
実施例7:切欠26bを設けなかったことを除いては、実施例5と同様とした。
Example 7: Same as Example 5 except that the notch 26b was not provided.
実施例8:切欠26bを設けなかったことを除いては、実施例6と同様とした。
Example 8: Same as Example 6 except that the notch 26b was not provided.
また、比較のために、図20に示した従来のESD保護装置101を用意した。なお、従来のESD保護装置においても、絶縁性基板102の寸法は実施例1と同様とした。また、ギャップにおける対向距離は30μmとした。さらに、第1,第2の放電電極103,104の先端の幅はそれぞれ150μmとした。従って、30μmの対向距離を隔てて、150μmの幅の先端部分同士が対向していることになる。
For comparison, the conventional ESD protection device 101 shown in FIG. 20 was prepared. In the conventional ESD protection apparatus, the dimensions of the insulating substrate 102 were the same as those in Example 1. The facing distance in the gap was 30 μm. Further, the widths of the tips of the first and second discharge electrodes 103 and 104 were 150 μm, respectively. Therefore, the tip portions having a width of 150 μm are opposed to each other with a facing distance of 30 μm.
上記実施例1~8及び従来例のESD保護装置について、(1)ESD放電応答性、及び(2)ESD繰り返し耐性を以下の要領で評価した。
For the ESD protection devices of Examples 1 to 8 and the conventional example, (1) ESD discharge responsiveness and (2) ESD repetition resistance were evaluated as follows.
(1)ESDに対する放電応答性
ESDに対する放電応答性は、IECの規格、IEC61000-4-2に定められている、静電気放電イミュニティ試験によって行った。接触放電にて8kV印加して試料の放電電極間で放電が生じるか否かを調べた。保護回路側で検出されたピーク電圧が700Vを超えるものを放電応答性が不良(×印)、ピーク電圧が600~700Vのものを(△印)、ピーク電圧が450~600Vのものを放電応答性が良好(○印)、ピーク電圧が450V未満のものを放電応答性が特に良好(◎印)と判定した。 (1) Discharge responsiveness to ESD Discharge responsiveness to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was investigated whether or not discharge occurred between the discharge electrodes of the sample by applying 8 kV by contact discharge. When the peak voltage detected on the protection circuit side exceeds 700V, the discharge response is poor (x mark), when the peak voltage is 600 to 700V (△ mark), and the peak voltage is 450 to 600V discharge response The discharge response was determined to be particularly good (marked with ◎) when the characteristics were good (marked with ◯) and the peak voltage was less than 450V.
ESDに対する放電応答性は、IECの規格、IEC61000-4-2に定められている、静電気放電イミュニティ試験によって行った。接触放電にて8kV印加して試料の放電電極間で放電が生じるか否かを調べた。保護回路側で検出されたピーク電圧が700Vを超えるものを放電応答性が不良(×印)、ピーク電圧が600~700Vのものを(△印)、ピーク電圧が450~600Vのものを放電応答性が良好(○印)、ピーク電圧が450V未満のものを放電応答性が特に良好(◎印)と判定した。 (1) Discharge responsiveness to ESD Discharge responsiveness to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was investigated whether or not discharge occurred between the discharge electrodes of the sample by applying 8 kV by contact discharge. When the peak voltage detected on the protection circuit side exceeds 700V, the discharge response is poor (x mark), when the peak voltage is 600 to 700V (△ mark), and the peak voltage is 450 to 600V discharge response The discharge response was determined to be particularly good (marked with ◎) when the characteristics were good (marked with ◯) and the peak voltage was less than 450V.
(2)ESD繰り返し耐性
接触放電にて2kV印加を30回、4kV印加を30回、6kV印加を20回、8kV印加を20回行い、続いて、前記のESDに対する放電応答性を評価した。保護回路側で検出されたピーク電圧が700Vを超えるものをESD繰り返し耐性が不良(×印)、ピーク電圧が600~700Vのものを(△印)、ピーク電圧が450~600VのものをESD繰り返し耐性が良好(○印)、ピーク電圧が450V未満のものをESD繰り返し耐性が特に良好(◎印)と判定した。 (2) Resistance to ESD Repeating Contact discharge was performed 30 times for 4 kV application, 30 times for 4 kV application, 20 times for 6 kV application, and 20 times for 8 kV application, and then evaluated the discharge response to the ESD. When the peak voltage detected on the protection circuit side exceeds 700V, the ESD repeatability is poor (x mark), when the peak voltage is 600-700V (△ mark), and when the peak voltage is 450-600V ESD repeat A sample having good resistance (◯ mark) and a peak voltage of less than 450 V was determined to have particularly good ESD repeat resistance (marked with ◎).
接触放電にて2kV印加を30回、4kV印加を30回、6kV印加を20回、8kV印加を20回行い、続いて、前記のESDに対する放電応答性を評価した。保護回路側で検出されたピーク電圧が700Vを超えるものをESD繰り返し耐性が不良(×印)、ピーク電圧が600~700Vのものを(△印)、ピーク電圧が450~600VのものをESD繰り返し耐性が良好(○印)、ピーク電圧が450V未満のものをESD繰り返し耐性が特に良好(◎印)と判定した。 (2) Resistance to ESD Repeating Contact discharge was performed 30 times for 4 kV application, 30 times for 4 kV application, 20 times for 6 kV application, and 20 times for 8 kV application, and then evaluated the discharge response to the ESD. When the peak voltage detected on the protection circuit side exceeds 700V, the ESD repeatability is poor (x mark), when the peak voltage is 600-700V (△ mark), and when the peak voltage is 450-600V ESD repeat A sample having good resistance (◯ mark) and a peak voltage of less than 450 V was determined to have particularly good ESD repeat resistance (marked with ◎).
結果を下記の表1に示す。
The results are shown in Table 1 below.
表1から明らかなように、従来例のESD保護装置では、静電気が繰り返し印加された場合、放電開始電圧が著しく上昇した。
As is apparent from Table 1, in the conventional ESD protection device, when static electricity was repeatedly applied, the discharge start voltage increased significantly.
これに対して、実施例1~8では、ESD繰り返し耐性を大幅に高め得ることがわかる。
On the other hand, in Examples 1 to 8, it can be seen that the ESD repeatability can be significantly increased.
また、実施例1~4と実施例5~8との対比により、第1の放電電極を正方形より円形とすることにより、初期の放電開始電圧を低めることができ、すなわちESD放電応答性を高め、さらにESD繰り返し耐性も高め得ることがわかる。
Further, by comparing the first to fourth embodiments with the fifth to eighth embodiments, the initial discharge start voltage can be lowered by making the first discharge electrode circular rather than square, that is, the ESD discharge response is improved. Further, it can be seen that the ESD resistance can also be increased.
さらに、実施例1と実施例2との対比、実施例3と実施例4との対比、実施例5と実施例6との対比、実施例7と実施例8との対比から明らかなように、第2の放電電極の電極縁部に切欠を設けることにより、放電開始電圧を低め、ESD放電応答性を高め、さらにESD繰り返し耐性をも高め得ることがわかる。
Further, as is clear from the comparison between Example 1 and Example 2, the comparison between Example 3 and Example 4, the comparison between Example 5 and Example 6, and the comparison between Example 7 and Example 8. It can be seen that by providing a notch at the electrode edge of the second discharge electrode, the discharge start voltage can be lowered, the ESD discharge response can be increased, and the ESD repeatability can be increased.
図10(a)及び(b)は、本発明の第9の実施形態に係るESD保護装置の平面断面図及び正面断面図である。
10 (a) and 10 (b) are a plan sectional view and a front sectional view of an ESD protection device according to the ninth embodiment of the present invention.
ESD保護装置31では、絶縁性基板2内に、複数の第1の放電電極3が同じ高さの平面位置において設けられている。そして、複数の第1の放電電極3を取り囲むように、第2の放電電極4が形成されている。すなわち、本実施形態のESD保護装置31のように、図1に示した第1の放電電極3を複数設けてもよい。
In the ESD protection device 31, a plurality of first discharge electrodes 3 are provided in the insulating substrate 2 at the same planar position. A second discharge electrode 4 is formed so as to surround the plurality of first discharge electrodes 3. That is, a plurality of first discharge electrodes 3 shown in FIG. 1 may be provided as in the ESD protection device 31 of the present embodiment.
なお、本実施形態では、第2の放電電極4に設けられた複数の切欠4bは、第1の放電電極3同士が隣り合う側には設けられてない。例えば、図10(a)において、端面2f側に位置している第1の放電電極3を取り囲む第2の放電電極4の電極縁部4aでは、複数の切欠4bは、中央に位置している第1の放電電極3側には設けられていない。また、中央に位置している第1の放電電極3では、第2の放電電極4の電極縁部4aに設けられている複数の切欠4bは、側面2c側と、側面2dにのみ設けられている。このように、隣り合う第1の放電電極3,3間に切欠4bを設けないのは、スペースを低減するためである。もっとも、図11に示す変形例のように、各第1の放電電極3を取り囲んでいる第2の放電電極4の各電極縁部4aにおいて周方向に均一に複数の切欠4bを設けてもよい。
In the present embodiment, the plurality of notches 4b provided in the second discharge electrode 4 are not provided on the side where the first discharge electrodes 3 are adjacent to each other. For example, in FIG. 10A, in the electrode edge portion 4a of the second discharge electrode 4 surrounding the first discharge electrode 3 positioned on the end face 2f side, the plurality of notches 4b are positioned in the center. It is not provided on the first discharge electrode 3 side. In the first discharge electrode 3 located in the center, the plurality of notches 4b provided on the electrode edge 4a of the second discharge electrode 4 are provided only on the side surface 2c side and the side surface 2d. Yes. The reason why the notch 4b is not provided between the adjacent first discharge electrodes 3 and 3 is to reduce the space. However, as in the modification shown in FIG. 11, a plurality of notches 4 b may be provided uniformly in the circumferential direction at each electrode edge 4 a of the second discharge electrode 4 surrounding each first discharge electrode 3. .
図10(b)に示すように、複数の第1の放電電極3を第1の外部電極5に電気的に接続するために、各第1の放電電極3の下面にビアホール電極7aが接続されている。そして、複数のビアホール電極7aの下端が、接続電極部7bに電気的に接続されている。その他の構造については、第9の実施形態のESD保護装置31は、第1の実施形態のESD保護装置1と同様である。従って、同一部分については、同一の参照番号を附することによりその説明を省略する。
As shown in FIG. 10B, via hole electrodes 7 a are connected to the lower surface of each first discharge electrode 3 in order to electrically connect the plurality of first discharge electrodes 3 to the first external electrode 5. ing. The lower ends of the plurality of via hole electrodes 7a are electrically connected to the connection electrode portion 7b. About the other structure, the ESD protection apparatus 31 of 9th Embodiment is the same as that of the ESD protection apparatus 1 of 1st Embodiment. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
本実施形態においても、第1の放電電極3の外周縁が、第2の放電電極4の電極縁部4aにより囲まれているため、第1の実施形態と同様に、ESD繰り返し耐性を高めることができる。また、本実施形態においても、ギャップが第1の放電電極3の外周縁の周方向において、ギャップの対向距離が等しくされている。従って、第1の実施形態と同様に、ESD繰り返し耐性をより一層高めることができる。
Also in the present embodiment, since the outer peripheral edge of the first discharge electrode 3 is surrounded by the electrode edge 4a of the second discharge electrode 4, the ESD repetition resistance is increased as in the first embodiment. Can do. Also in the present embodiment, the gaps have the same distance in the circumferential direction of the outer peripheral edge of the first discharge electrode 3. Therefore, as in the first embodiment, the ESD repeatability can be further increased.
さらに、本実施形態においても、第1の放電電極3の平面形状が円形であるため、ESD放電応答性をも高めることができる。
Furthermore, also in this embodiment, since the planar shape of the first discharge electrode 3 is circular, the ESD discharge response can be improved.
加えて、複数の切欠4bが形成されていることによって、ESD繰り返し耐性及びESD放電応答性をより一層高めることができる。
In addition, since the plurality of notches 4b are formed, the ESD repeatability and the ESD discharge response can be further enhanced.
また、本実施形態においても、図10(c)に示すように、各第1の放電電極3と、第2の放電電極4とにまたがるように放電補助部8Aが形成されており、かつ下部シール層9及び上部シール層10が設けられている。従って、放電補助部8Aの形成により、放電開始電圧を低めることができ、ESD放電応答性を高めることができる。また、下部シール層9及び上部シール層10が設けられているため、空洞Aを高精度に形成することができる。
Also in this embodiment, as shown in FIG. 10C, the discharge auxiliary portion 8A is formed so as to straddle the first discharge electrodes 3 and the second discharge electrodes 4, and the lower portion A seal layer 9 and an upper seal layer 10 are provided. Therefore, the discharge start voltage can be lowered and the ESD discharge responsiveness can be increased by forming the discharge auxiliary portion 8A. Further, since the lower seal layer 9 and the upper seal layer 10 are provided, the cavity A can be formed with high accuracy.
第1の放電電極3が複数形成されている第9の実施形態のESD保護装置31についても、第1の放電電極3及び第2の放電電極4の形状は、種々変形することができる。図12~図18は、第9の実施形態の変形例としての第10の実施形態~第16の実施形態における第1,第2の放電電極の平面形状を説明するための模式的平面図である。
Also in the ESD protection device 31 of the ninth embodiment in which a plurality of first discharge electrodes 3 are formed, the shapes of the first discharge electrode 3 and the second discharge electrode 4 can be variously modified. 12 to 18 are schematic plan views for explaining the planar shapes of the first and second discharge electrodes in the tenth to sixteenth embodiments as modifications of the ninth embodiment. is there.
図12に示す第10の実施形態では、複数の第1の放電電極3が、第2の放電電極4の電極縁部4a1~4a3によりそれぞれ囲まれている。第9の実施形態と異なるところは、電極縁部4a1,4a2,4a3の平面形状は円形であるものの、電極縁部4a1,4a2,4a3の径が異なることにある。すなわち、電極縁部4a3の径が最も大きく、電極縁部4a2の直径が次に大きく、電極縁部4a1の直径が最も小さい。従って、第1の放電電極3と第2の放電電極4との間のギャップが、電極縁部4a3において最も大きく、電極縁部4a2において次に大きく、電極縁部4a1において最も小さくされている。このように、複数の第1の放電電極を設ける際に、第1の放電電極と第2の放電電極との間のギャップの対向距離を、第1の放電電極毎に異ならせてもよく、また、少なくとも1つの第1の放電電極におけるギャップの対向距離を残りの第1の放電電極におけるギャップの対向距離と異ならせてもよい。
In the tenth embodiment shown in FIG. 12, a plurality of first discharge electrodes 3 are surrounded by electrode edges 4a1 to 4a3 of the second discharge electrode 4, respectively. The difference from the ninth embodiment is that the electrode edges 4a1, 4a2, 4a3 have a circular planar shape, but the electrode edges 4a1, 4a2, 4a3 have different diameters. That is, the electrode edge 4a3 has the largest diameter, the electrode edge 4a2 has the next largest diameter, and the electrode edge 4a1 has the smallest diameter. Therefore, the gap between the first discharge electrode 3 and the second discharge electrode 4 is the largest at the electrode edge 4a3, the next largest at the electrode edge 4a2, and the smallest at the electrode edge 4a1. Thus, when providing a plurality of first discharge electrodes, the opposing distance of the gap between the first discharge electrode and the second discharge electrode may be different for each first discharge electrode, Further, the facing distance of the gap in at least one first discharge electrode may be different from the facing distance of the gap in the remaining first discharge electrodes.
図13は、第11の実施形態に係るESD保護装置の第1,第2の放電電極を示す模式的平面図である。ここでは、複数の第1の放電電極3に対し、楕円形の電極縁部32aを有する第2の放電電極32が組み合わされている。すなわち、複数の第1の放電電極3に対し、楕円形の電極縁部32aを有する第2の放電電極32を組み合わせてもよい。
FIG. 13 is a schematic plan view showing the first and second discharge electrodes of the ESD protection apparatus according to the eleventh embodiment. Here, the second discharge electrode 32 having an elliptical electrode edge portion 32a is combined with the plurality of first discharge electrodes 3. That is, the second discharge electrode 32 having an elliptical electrode edge portion 32 a may be combined with the plurality of first discharge electrodes 3.
図14に示す第12の実施形態では、第1の放電電極3に対し、円形の電極縁部4aを有する第2の放電電極4が用いられている。すなわち、切欠4bを有しないことを除いて、第12の実施形態は、第9の実施形態と同様とされている。
In the twelfth embodiment shown in FIG. 14, the second discharge electrode 4 having a circular electrode edge 4 a is used for the first discharge electrode 3. That is, the twelfth embodiment is the same as the ninth embodiment except that the notch 4b is not provided.
図15に示す第13の実施形態は、切欠4bを有しないことを除いて、図12に示した第10の実施形態と同様である。
The thirteenth embodiment shown in FIG. 15 is the same as the tenth embodiment shown in FIG. 12 except that the cutout 4b is not provided.
図16に示す第14の実施形態は、切欠4bを有しないことを除いては、図13に示した第11の実施形態と同様である。
The fourteenth embodiment shown in FIG. 16 is the same as the eleventh embodiment shown in FIG. 13 except that the notch 4b is not provided.
図17に示すように、第15の実施形態では、第11の実施形態と同様に、第2の放電電極33が、楕円形の電極縁部33a1~33a3を有する。もっとも、複数の電極縁部33a1~33a3の大きさが異なっている。従って、第1の放電電極3と、第2の放電電極4とのギャップが、電極縁部33a1,33a2,33a3で異なっている。その他の点については、図13に示した第11の実施形態と同様である。
As shown in FIG. 17, in the fifteenth embodiment, as in the eleventh embodiment, the second discharge electrode 33 has elliptical electrode edges 33a1 to 33a3. However, the sizes of the plurality of electrode edge portions 33a1 to 33a3 are different. Therefore, the gap between the first discharge electrode 3 and the second discharge electrode 4 is different at the electrode edge portions 33a1, 33a2, and 33a3. Other points are the same as those in the eleventh embodiment shown in FIG.
図18に示す第16の実施形態では、複数の切欠が設けられていないことを除いては、図17に示す第15の実施形態と同様とされている。
The sixteenth embodiment shown in FIG. 18 is the same as the fifteenth embodiment shown in FIG. 17 except that a plurality of notches are not provided.
上記図12~図18から明らかなように、複数の第1の放電電極を形成したESD保護装置においても、複数の第1の放電電極の平面形状及び第2の放電電極の平面形状は適宜変形することができる。従って、図6~図9に示したように、正方形や矩形の第1,第2の放電電極及び正方形や矩形の平面形状を有する電極縁部を有する第2の放電電極を用いてもよい。
As is apparent from FIGS. 12 to 18, even in the ESD protection device in which the plurality of first discharge electrodes are formed, the planar shape of the plurality of first discharge electrodes and the planar shape of the second discharge electrode are appropriately modified. can do. Accordingly, as shown in FIGS. 6 to 9, square or rectangular first and second discharge electrodes and second discharge electrodes having electrode edges having a square or rectangular planar shape may be used.
なお、複数の第1の放電電極を形成した構造において、少なくとも1つの放電電極における第2の放電電極との間のギャップの対向距離を、残りの第1の放電電極におけるギャップ対向距離と異ならせた場合には、ESD繰り返し耐性を向上させることができる。
In the structure in which a plurality of first discharge electrodes are formed, the facing distance of the gap between the second discharge electrode in at least one discharge electrode is made different from the gap facing distance in the remaining first discharge electrodes. In such a case, ESD resistance can be improved.
次に、第9~第16の実施形態の実験例につき説明する。
Next, experimental examples of the ninth to sixteenth embodiments will be described.
(実施例9)
第9の実施形態のESD保護装置を実施例9として作製した。第1の実施形態についての実施例1と、複数の第1の放電電極3を設けたことを除いては同様とした。 Example 9
The ESD protection apparatus of the ninth embodiment was produced as Example 9. Example 1 was the same as Example 1 of the first embodiment except that a plurality offirst discharge electrodes 3 were provided.
第9の実施形態のESD保護装置を実施例9として作製した。第1の実施形態についての実施例1と、複数の第1の放電電極3を設けたことを除いては同様とした。 Example 9
The ESD protection apparatus of the ninth embodiment was produced as Example 9. Example 1 was the same as Example 1 of the first embodiment except that a plurality of
(実施例10~実施例16)
実施例10~実施例16として、第10~第16の実施形態のESD保護装置を作製した。実施例9と異なるところは、第2の放電電極の電極縁部の形状にある。すなわち、第2の放電電極の形状及び寸法は以下の通りとした。 (Example 10 to Example 16)
As Examples 10 to 16, the ESD protection devices of the tenth to sixteenth embodiments were produced. The difference from Example 9 is the shape of the electrode edge of the second discharge electrode. That is, the shape and dimensions of the second discharge electrode were as follows.
実施例10~実施例16として、第10~第16の実施形態のESD保護装置を作製した。実施例9と異なるところは、第2の放電電極の電極縁部の形状にある。すなわち、第2の放電電極の形状及び寸法は以下の通りとした。 (Example 10 to Example 16)
As Examples 10 to 16, the ESD protection devices of the tenth to sixteenth embodiments were produced. The difference from Example 9 is the shape of the electrode edge of the second discharge electrode. That is, the shape and dimensions of the second discharge electrode were as follows.
実施例10:直径が210、220及び230μmの3種類の円形の電極縁部を形成した。
Example 10: Three types of circular electrode edges having diameters of 210, 220, and 230 μm were formed.
実施例11:第2の放電電極の電極縁部は、長軸=250μm及び短軸=210μmの楕円形とした。
Example 11: The electrode edge of the second discharge electrode had an elliptical shape with a major axis = 250 μm and a minor axis = 210 μm.
実施例12:第2の放電電極は、切欠を有しない直径210μmの円形とした。
Example 12: The second discharge electrode was a circle having a diameter of 210 μm and not having a notch.
実施例13:切欠を有しないことを除いては、実施例10と同様にして第2の放電電極を形成した。
Example 13: A second discharge electrode was formed in the same manner as in Example 10 except that it did not have a notch.
実施例14:切欠を有しないことを除いては、実施例11と同様にして第2の放電電極の電極縁部を形成した。
Example 14: The electrode edge portion of the second discharge electrode was formed in the same manner as in Example 11 except that it did not have a notch.
実施例15:3個の第2の放電電極の電極縁部を、長軸=250及び短軸=210、長軸=260及び短軸=220、並びに長軸=270及び短軸=230の各楕円形の形状とした。複数の切欠の幅及び奥行きは第9の実施形態と同様とした。
Example 15: The electrode edges of the three second discharge electrodes are divided into major axis = 250 and minor axis = 210, major axis = 260 and minor axis = 220, and major axis = 270 and minor axis = 230, respectively. An oval shape was adopted. The width and depth of the plurality of notches are the same as those in the ninth embodiment.
実施例16:複数の切欠を設けなかったことを除いては、実施例15と同様とした。
Example 16: Same as Example 15 except that a plurality of notches were not provided.
上記実施例10~実施例16で得たESD保護装置と、図20に示した従来のESD保護装置について、前述した実施例1と同様に、ESD放電応答性及びESD繰り返し耐性を評価した。結果を下記の表2に示す。
For the ESD protection device obtained in Examples 10 to 16 and the conventional ESD protection device shown in FIG. 20, the ESD discharge response and the ESD repeatability were evaluated in the same manner as in Example 1 described above. The results are shown in Table 2 below.
表2から明らかなように、従来例に比べ実施例9~16のいずれにおいても、ESD繰り返し耐性を大幅に改善することができる。加えて、ESD放電応答性についても、改善することが可能となる。
As is apparent from Table 2, ESD repeatability can be greatly improved in any of Examples 9 to 16 as compared with the conventional example. In addition, the ESD discharge response can be improved.
さらに、実施例9~11と実施例12~14との対比及び実施例15と実施例16との対比から明らかなように、複数の切欠が形成されている場合には、ESD繰り返し耐性を効果的に高めることができる。これは、複数の切欠の形成により、切欠に挟まれた電極縁部において、電極剥がれが生じたとしても、他の電極縁部への電極剥がれの伝搬が生じ難いためと考えられる。
Further, as is clear from the comparison between Examples 9 to 11 and Examples 12 to 14 and the comparison between Example 15 and Example 16, when a plurality of notches are formed, the ESD repetition resistance is effective. Can be enhanced. This is considered to be because even if electrode peeling occurs in the electrode edge portion sandwiched between the notches due to the formation of a plurality of notches, it is difficult for electrode peeling to propagate to other electrode edge portions.
また、実施例9によれば、実施例10及び11よりも、ESD繰り返し耐性を高めることができる。これは、第1の放電電極及び第2の放電電極の縁部の双方が円形であり、ギャップの対向距離が第1の放電電極の外周縁の周方向においてほぼ等しいため放電開始電圧の上昇が生じ難いためと考えられる。従って、ギャップの対向距離は第1の放電電極の周方向において等しいことが望ましい。
In addition, according to Example 9, it is possible to increase the ESD repetition resistance compared to Examples 10 and 11. This is because both the edges of the first discharge electrode and the second discharge electrode are circular, and the opposing distance of the gap is substantially equal in the circumferential direction of the outer peripheral edge of the first discharge electrode, so that the discharge start voltage increases. It is thought that it is difficult to occur. Therefore, it is desirable that the gap facing distance is equal in the circumferential direction of the first discharge electrode.
1…ESD保護装置
2…絶縁性基板
2a…上面
2b…下面
2c,2d…側面
2e…第1の端面
2f…第2の端面
3…第1の放電電極
4…第2の放電電極
4a…電極縁部
4b…切欠
4c…欠落部
5…第1の外部電極
6…第2の外部電極
7…第1の接続電極
7a…ビアホール電極
7b…接続電極部
8…第2の接続電極
8A…放電補助部
8a…金属粒子
8b…半導体セラミック粒子
9…下部シール層
9A…セラミックペースト
10…上部シール層
11…第1のセラミックグリーンシート
12…第2のセラミックグリーンシート
12A…空洞形成材
14~16…第3のセラミックグリーンシート
21…第2の放電電極
21a…電極縁部
21b…切欠
22…第2の放電電極
22a…電極縁部
23…第2の放電電極
23a…電極縁部
24…第1の放電電極
25…第2の放電電極
25a…電極縁部
25b…切欠
26…第2の放電電極
26a…電極縁部
26b…切欠
27…第2の放電電極
27a…電極縁部
28…第2の放電電極
28a…電極縁部
31…ESD保護装置
32…第2の放電電極
32a…電極縁部
33…第2の放電電極
33a…電極縁部 DESCRIPTION OFSYMBOLS 1 ... ESD protection apparatus 2 ... Insulating substrate 2a ... Upper surface 2b ... Lower surface 2c, 2d ... Side surface 2e ... 1st end surface 2f ... 2nd end surface 3 ... 1st discharge electrode 4 ... 2nd discharge electrode 4a ... Electrode Edge 4b ... notch 4c ... missing part 5 ... first external electrode 6 ... second external electrode 7 ... first connection electrode 7a ... via hole electrode 7b ... connection electrode part 8 ... second connection electrode 8A ... discharge assist Part 8a ... Metal particles 8b ... Semiconductor ceramic particles 9 ... Lower seal layer 9A ... Ceramic paste 10 ... Upper seal layer 11 ... First ceramic green sheet 12 ... Second ceramic green sheet 12A ... Cavity forming materials 14-16 ... First 3 ceramic green sheets 21 ... second discharge electrode 21a ... electrode edge 21b ... notch 22 ... second discharge electrode 22a ... electrode edge 23 ... second discharge electrode 23a ... electrode edge 24 ... first discharge electrode 5 ... second discharge electrode 25a ... electrode edge 25b ... notch 26 ... second discharge electrode 26a ... electrode edge 26b ... notch 27 ... second discharge electrode 27a ... electrode edge 28 ... second discharge electrode 28a ... Electrode edge 31 ... ESD protection device 32 ... Second discharge electrode 32a ... Electrode edge 33 ... Second discharge electrode 33a ... Electrode edge
2…絶縁性基板
2a…上面
2b…下面
2c,2d…側面
2e…第1の端面
2f…第2の端面
3…第1の放電電極
4…第2の放電電極
4a…電極縁部
4b…切欠
4c…欠落部
5…第1の外部電極
6…第2の外部電極
7…第1の接続電極
7a…ビアホール電極
7b…接続電極部
8…第2の接続電極
8A…放電補助部
8a…金属粒子
8b…半導体セラミック粒子
9…下部シール層
9A…セラミックペースト
10…上部シール層
11…第1のセラミックグリーンシート
12…第2のセラミックグリーンシート
12A…空洞形成材
14~16…第3のセラミックグリーンシート
21…第2の放電電極
21a…電極縁部
21b…切欠
22…第2の放電電極
22a…電極縁部
23…第2の放電電極
23a…電極縁部
24…第1の放電電極
25…第2の放電電極
25a…電極縁部
25b…切欠
26…第2の放電電極
26a…電極縁部
26b…切欠
27…第2の放電電極
27a…電極縁部
28…第2の放電電極
28a…電極縁部
31…ESD保護装置
32…第2の放電電極
32a…電極縁部
33…第2の放電電極
33a…電極縁部 DESCRIPTION OF
Claims (13)
- 空洞を有する絶縁性基板と、
前記絶縁性基板の空洞内においてギャップを隔てて対向するように、前記絶縁性基板内に配置されている第1,第2の放電電極とを備え、
前記第1の放電電極の外周縁を、前記ギャップを隔てて前記第2の放電電極が囲むように前記第1,第2の放電電極が配置されており、
前記第1の放電電極に接続されており、前記絶縁性基板の外表面に形成されている第1の外部電極と、
前記第2の放電電極に接続されており、前記絶縁性基板の外表面に形成されている第2の外部電極とをさらに備える、ESD保護装置。 An insulating substrate having a cavity;
A first discharge electrode and a second discharge electrode disposed in the insulating substrate so as to face each other with a gap in the cavity of the insulating substrate;
The first and second discharge electrodes are arranged so that the second discharge electrode surrounds the outer periphery of the first discharge electrode with the gap therebetween,
A first external electrode connected to the first discharge electrode and formed on an outer surface of the insulating substrate;
An ESD protection device, further comprising: a second external electrode connected to the second discharge electrode and formed on an outer surface of the insulating substrate. - 前記第1の放電電極が複数設けられており、前記第2の放電電極が前記複数の第1の放電電極のそれぞれを囲むように配置されている、請求項1に記載のESD保護装置。 The ESD protection device according to claim 1, wherein a plurality of the first discharge electrodes are provided, and the second discharge electrodes are disposed so as to surround each of the plurality of first discharge electrodes.
- 前記第2の放電電極の前記第1の放電電極を囲んでいる電極縁部の一部に切欠が形成されている、請求項1または2に記載のESD保護装置。 The ESD protection device according to claim 1 or 2, wherein a cutout is formed in a part of an electrode edge portion surrounding the first discharge electrode of the second discharge electrode.
- 前記第1の放電電極の外周縁と、前記第2の放電電極との前記ギャップにおける対向距離が、前記第1の放電電極の外周縁の各位置において等しくされている、請求項1~3のいずれか1項に記載のESD保護装置。 The opposed distance in the gap between the outer peripheral edge of the first discharge electrode and the second discharge electrode is made equal at each position of the outer peripheral edge of the first discharge electrode. The ESD protection device according to any one of the above.
- 前記ギャップが閉じられた枠状の形状を有するように、前記第2の放電電極の電極縁部が、前記第1の放電電極の外周縁を囲むように配置されている、請求項1~4のいずれか1項に記載のESD保護装置。 The electrode edge of the second discharge electrode is disposed so as to surround the outer peripheral edge of the first discharge electrode so that the gap has a closed frame shape. The ESD protection device according to any one of the above.
- 前記第1の放電電極の外周縁の一部を除いて前記第2の放電電極の電極縁部が前記第1の放電電極を囲むように第1,第2の放電電極が配置されている、請求項1~4のいずれか1項に記載のESD保護装置。 The first and second discharge electrodes are arranged such that the electrode edge of the second discharge electrode surrounds the first discharge electrode except for a part of the outer peripheral edge of the first discharge electrode. The ESD protection device according to any one of claims 1 to 4.
- 前記第1の放電電極の平面形状が円形である、請求項1~6のいずれか1項に記載のESD保護装置。 The ESD protection device according to any one of claims 1 to 6, wherein a planar shape of the first discharge electrode is a circle.
- 前記第1の放電電極が放電開始側電位に接続される、請求項1~7のいずれか1項に記載のESD保護装置。 The ESD protection device according to any one of claims 1 to 7, wherein the first discharge electrode is connected to a discharge start side potential.
- 前記第1の放電電極と、前記第2の放電電極とが対向している前記ギャップにおいて、前記第1の放電電極と前記第2の放電電極とにまたがるように形成されており、金属粒子と半導体粒子とを含む放電補助部をさらに備える、請求項1~8のいずれか1項に記載のESD保護装置。 In the gap where the first discharge electrode and the second discharge electrode are opposed to each other, the gap is formed so as to straddle the first discharge electrode and the second discharge electrode. The ESD protection device according to any one of claims 1 to 8, further comprising a discharge assisting unit including semiconductor particles.
- 前記空洞に臨むように設けられており、第1の放電電極と第2の放電電極とが対向している前記ギャップの少なくとも一部を囲むように設けられたシール層をさらに備える、請求項1~9のいずれか1項に記載のESD保護装置。 The seal layer is further provided so as to face the cavity, and is provided so as to surround at least a part of the gap where the first discharge electrode and the second discharge electrode are opposed to each other. 10. The ESD protection device according to any one of 1 to 9.
- 前記第1の放電電極と前記第1の外部電極とを電気的に接続している第1の接続電極と、前記第2の放電電極と前記第2の外部電極とを接続している第2の接続電極とを有し、前記第1の接続電極が、前記第1の放電電極の上面または下面に接続されたビアホール電極と、前記ビアホール電極と前記第1の外部電極とにと接続されている接続電極部とを有する、請求項1~10のいずれか1項に記載のESD保護装置。 A first connection electrode that electrically connects the first discharge electrode and the first external electrode, and a second that connects the second discharge electrode and the second external electrode. The first connection electrode is connected to the via hole electrode connected to the upper surface or the lower surface of the first discharge electrode, and the via hole electrode and the first external electrode. The ESD protection device according to any one of claims 1 to 10, further comprising a connection electrode portion.
- 上面に第1の放電電極と、第1の放電電極を囲むように設けられた第2の放電電極とを有する第1のセラミックグリーンシートを用意する工程と、
前記第1,第2の放電電極が対向しているギャップを含むように空洞形成材を塗布する工程と、
前記第1のセラミックグリーンシートの上面に少なくとも1枚の第2のセラミックグリーンシートを、下面に少なくとも1枚の第3のセラミックグリーンシートを積層し、積層体を得る工程と、
前記積層体を焼成し、前記空洞形成材を消失させて、第1,第2の放電電極が対向している空洞を有する絶縁性基板を得る工程と、
前記第1,第2の放電電極に電気的に接続されるように、前記積層体の外表面または前記絶縁性基板の外表面に第1,第2の外部電極を形成する工程とを備える、ESD保護装置の製造方法。 Providing a first ceramic green sheet having a first discharge electrode on the upper surface and a second discharge electrode provided so as to surround the first discharge electrode;
Applying a cavity forming material so as to include a gap facing the first and second discharge electrodes;
Laminating at least one second ceramic green sheet on the upper surface of the first ceramic green sheet and at least one third ceramic green sheet on the lower surface to obtain a laminate;
Firing the laminate, eliminating the cavity forming material, and obtaining an insulating substrate having a cavity facing the first and second discharge electrodes;
Forming first and second external electrodes on the outer surface of the laminate or the outer surface of the insulating substrate so as to be electrically connected to the first and second discharge electrodes, Manufacturing method of ESD protection device. - 前記第1,第2の放電電極が上面に設けられた第1のセラミックグリーンシートを用意するに際し、複数の前記第1の放電電極が前記第2の放電電極で囲まれているように配置されている第1のセラミックグリーンシートを用意する、請求項12に記載のESD保護装置の製造方法。 When preparing the first ceramic green sheet having the first and second discharge electrodes provided on the upper surface, a plurality of the first discharge electrodes are arranged so as to be surrounded by the second discharge electrodes. The manufacturing method of the ESD protection apparatus according to claim 12, wherein a first ceramic green sheet is prepared.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012557885A JP5757294B2 (en) | 2011-02-14 | 2012-02-03 | ESD protection device and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011028906 | 2011-02-14 | ||
JP2011-028906 | 2011-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111456A1 true WO2012111456A1 (en) | 2012-08-23 |
Family
ID=46672386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052504 WO2012111456A1 (en) | 2011-02-14 | 2012-02-03 | Esd protection device and method of manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5757294B2 (en) |
WO (1) | WO2012111456A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015125914A (en) * | 2013-12-26 | 2015-07-06 | Tdk株式会社 | Electrostatic protection component |
JP2018148121A (en) * | 2017-03-08 | 2018-09-20 | アルプス電気株式会社 | High frequency module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04277479A (en) * | 1991-03-05 | 1992-10-02 | Mitsubishi Electric Corp | Lightning arrester |
JP2001076840A (en) * | 1999-09-07 | 2001-03-23 | Tokin Corp | Laminated chip-type surge absorbing element |
JP2001291573A (en) * | 2001-03-19 | 2001-10-19 | Mitsubishi Materials Corp | Chip type surge absorber |
WO2010061550A1 (en) * | 2008-11-26 | 2010-06-03 | 株式会社 村田製作所 | Esd protection device and manufacturing method thereof |
WO2010067503A1 (en) * | 2008-12-10 | 2010-06-17 | 株式会社 村田製作所 | Esd protection device |
-
2012
- 2012-02-03 JP JP2012557885A patent/JP5757294B2/en active Active
- 2012-02-03 WO PCT/JP2012/052504 patent/WO2012111456A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04277479A (en) * | 1991-03-05 | 1992-10-02 | Mitsubishi Electric Corp | Lightning arrester |
JP2001076840A (en) * | 1999-09-07 | 2001-03-23 | Tokin Corp | Laminated chip-type surge absorbing element |
JP2001291573A (en) * | 2001-03-19 | 2001-10-19 | Mitsubishi Materials Corp | Chip type surge absorber |
WO2010061550A1 (en) * | 2008-11-26 | 2010-06-03 | 株式会社 村田製作所 | Esd protection device and manufacturing method thereof |
WO2010067503A1 (en) * | 2008-12-10 | 2010-06-17 | 株式会社 村田製作所 | Esd protection device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015125914A (en) * | 2013-12-26 | 2015-07-06 | Tdk株式会社 | Electrostatic protection component |
JP2018148121A (en) * | 2017-03-08 | 2018-09-20 | アルプス電気株式会社 | High frequency module |
Also Published As
Publication number | Publication date |
---|---|
JP5757294B2 (en) | 2015-07-29 |
JPWO2012111456A1 (en) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5590122B2 (en) | ESD protection device | |
KR101254212B1 (en) | Esd protection device | |
US8238069B2 (en) | ESD protection device | |
KR101392455B1 (en) | Esd protection device and method for manufacturing same | |
JP5459295B2 (en) | ESD protection device and manufacturing method thereof | |
JP5692240B2 (en) | ESD protection device and manufacturing method thereof | |
JP5757294B2 (en) | ESD protection device and manufacturing method thereof | |
CN203562642U (en) | Esd protective device | |
WO2013115054A1 (en) | Electrostatic discharge protection device | |
JP5648696B2 (en) | ESD protection device and manufacturing method thereof | |
JP6399226B2 (en) | ESD protection device | |
JP5757372B2 (en) | ESD protection device | |
JP6036989B2 (en) | ESD protection device | |
US10057970B2 (en) | ESD protection device | |
CN207368416U (en) | ESD protection device | |
WO2017013979A1 (en) | Esd protection device | |
JP2014082003A (en) | Esd protection device and manufacturing method therefor | |
JP6048055B2 (en) | ESD protection device and manufacturing method thereof | |
WO2013146324A1 (en) | Esd protection device and production method therefor | |
JP5644829B2 (en) | ESD protection device and manufacturing method thereof | |
WO2014168140A1 (en) | Esd protection device and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12746778 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012557885 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12746778 Country of ref document: EP Kind code of ref document: A1 |