WO2012111100A1 - Amplification device - Google Patents

Amplification device Download PDF

Info

Publication number
WO2012111100A1
WO2012111100A1 PCT/JP2011/053194 JP2011053194W WO2012111100A1 WO 2012111100 A1 WO2012111100 A1 WO 2012111100A1 JP 2011053194 W JP2011053194 W JP 2011053194W WO 2012111100 A1 WO2012111100 A1 WO 2012111100A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
voltage
power supply
envelope
Prior art date
Application number
PCT/JP2011/053194
Other languages
French (fr)
Japanese (ja)
Inventor
廣信 本郷
勝利 石堂
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/053194 priority Critical patent/WO2012111100A1/en
Publication of WO2012111100A1 publication Critical patent/WO2012111100A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit

Definitions

  • This case relates to the power supply of the amplification device that amplifies the signal.
  • an amplification device for amplifying a transmission signal is provided at the final stage of the transmission unit of the base station of the mobile phone system, and the power consumption of the amplification device is required to be reduced.
  • Envelope tracking is a method for improving the power efficiency of amplifiers.
  • Envelope tracking is a technique for reducing power loss by supplying a power supply voltage corresponding to the amplitude of a signal amplified by an amplifier of an amplification device to the amplifier.
  • envelope tracking when the envelope of a signal to be amplified is below a predetermined threshold, only a fixed voltage power from a high efficiency power supply is supplied to the amplifier (fixed voltage power mode).
  • envelope tracking is performed by supplying the power of the variable voltage corresponding to the envelope of the signal to be amplified to the amplifier from the low-efficiency power supply in addition to the power supply of the fixed voltage. Supply (variable voltage power mode).
  • the power efficiency is improved by switching the power source based on the envelope size of the signal to be amplified.
  • the present invention has been made in view of such a point, and an object thereof is to provide an amplifying apparatus that improves power efficiency.
  • an amplifying apparatus for amplifying a signal.
  • the amplifying device amplifies an input signal by power supplied to a power node, a generation unit that generates an envelope signal based on an envelope of the input signal, and a first voltage that supplies fixed voltage power to the power node.
  • a power supply unit for supplying power.
  • FIG. 1 is a diagram illustrating an example of an amplifying apparatus according to the first embodiment.
  • the amplifying apparatus includes an amplifying unit 1, a generating unit 2, power supply units 3 and 4, and a power supply unit 5.
  • the input signal to be amplified is input to the amplification unit 1.
  • the input signal is, for example, a modulated signal.
  • the amplifying unit 1 amplifies the input signal with the power supplied to the power node N1 and outputs it.
  • the generation unit 2 generates an envelope signal based on the envelope of the input signal amplified by the amplification unit 1. For example, the generation unit 2 generates an envelope of an input signal that is larger than a predetermined threshold (hereinafter referred to as th) as an envelope signal.
  • th a predetermined threshold
  • the power supply unit 3 supplies power of a fixed voltage (hereinafter referred to as Vd) to the power node N1.
  • the power supply unit 4 supplies variable power according to the envelope signal generated by the generation unit 2 to the power node N1.
  • the power supply unit 3 supplies a fixed voltage Vd to the power node N1.
  • the power supply unit 4 supplies power of a voltage corresponding to the envelope of the input signal to the amplifier unit 1. That is, when the envelope of the input signal is less than or equal to the threshold th, the amplifying device supplies only the power of the power supply unit 3 to the amplifier 1 (fixed voltage power mode), and when the envelope of the input signal exceeds the threshold th, The power of the voltage according to the envelope of the input signal is supplied from the power supply unit 4 to the amplification unit 1 (variable voltage power mode).
  • the power supply unit 5 supplies power of a different voltage to the power supply unit 4 based on the magnitude of the envelope signal generated by the generation unit 2. For example, the power supply unit 5 supplies power of the voltage V1 to the power supply unit 4 if the envelope signal is equal to or less than a predetermined threshold (hereinafter referred to as env), and if the envelope signal is greater than the threshold env, the power supply unit 4 is supplied with electric power having a voltage V2 higher than the voltage V1.
  • env a predetermined threshold
  • FIG. 2 is a diagram for explaining the operation of the amplifying apparatus of FIG.
  • FIG. 2A shows an envelope of an input signal amplified by the amplification unit 1.
  • FIG. 2B shows an envelope signal generated by the generation unit 2.
  • FIG. 2C shows the voltage waveform at the power node N11.
  • the envelope signal is, for example, a signal larger than the threshold value th of the envelope of the input signal shown in FIG. Therefore, the envelope signal generated by the generation unit 2 is a signal obtained by slicing the envelope of the input signal with the threshold th as shown in FIG.
  • the power supply unit 3 supplies power of a fixed voltage Vd to the power node N1, and the power supply unit 4 supplies power of variable voltage corresponding to the envelope signal shown in FIG. 2B to the power node N1. Therefore, the voltage waveform at the power node N1 is as shown in FIG.
  • the power source power supply unit 5 supplies power of the voltage V1 to the power source unit 4 if the envelope signal is equal to or less than the predetermined threshold value env. If the envelope signal is greater than the threshold value env, the power source unit 4 supplies the power source unit 4 with a voltage V2 greater than the voltage V1. Supply power.
  • the power consumed wastefully as heat in the power supply unit 4 is as indicated by the hatched portion in FIG.
  • the power supply unit 4 can suppress the power consumption of the portion indicated by the arrow A1 compared to the case where only the power of the voltage V2 is supplied.
  • the amplifying apparatus includes the power supply unit 3 that supplies power of a fixed voltage and the power supply unit 4 that supplies power of variable voltage, and the magnitude of the envelope signal based on the envelope of the input signal amplified by the amplification unit 1. Based on this, power of different voltages V1 and V2 is supplied to the power supply unit 4. Thereby, the electric power of the voltage according to the magnitude
  • FIG. 3 is a diagram illustrating an example of a circuit block of the amplifying apparatus according to the second embodiment.
  • the amplifying apparatus includes a digital signal processing unit 11, DACs (Digital to Analog Converters) 12 and 16, an oscillator 13, a multiplier 14, an amplifier 15, a bias power supply 17, an AS (Active Short) circuit 18, Transistors M11 to M13, capacitors C11 to C15, an inductor L11, and a diode D11 are included.
  • the amplification device shown in FIG. 3 is applied to a base station of a mobile phone system, for example.
  • FIG. 4 is a diagram in which signal waveforms are added to the example of the circuit block of FIG. 4, the same components as those in FIG. 3 are denoted by the same reference numerals.
  • a transmission signal as indicated by a waveform W11 is input to the digital signal processing unit 11.
  • the transmission signal is, for example, a signal to be transmitted wirelessly to a mobile phone.
  • the transmission signal is input to the digital signal processing unit 11 as a digital value, but is shown in an analog form in the waveform W11.
  • the digital signal processing unit 11 is formed by, for example, a DSP (Digital Signal Processor) or a CPU (Central Processing Unit).
  • the DAC 12 performs digital-analog conversion on the transmission signal output from the digital signal processing unit 11.
  • a waveform W12 represents a transmission signal that has been digital-analog converted by the DAC 12.
  • the oscillator 13 outputs an oscillation signal for modulating the transmission signal into a radio signal having a radio frequency.
  • the multiplier 14 multiplies the transmission signal output from the DAC 12 by the oscillation signal output from the oscillator 13 and outputs a radio signal.
  • a waveform W13 indicates a radio signal output from the multiplier 14.
  • the amplifier 15 is supplied with power via the power node N11.
  • the amplifier 15 amplifies the radio signal output from the multiplier 14 with the power supplied to the power node N11.
  • the amplified wireless signal is wirelessly transmitted to a mobile phone via an antenna, for example.
  • a waveform W14 shows the radio signal amplified by the amplifier 15.
  • the digital signal processing unit 11 outputs an envelope signal based on the envelope of the radio signal amplified by the amplifier 15 to the DAC 16.
  • the radio signal amplified by the amplifier 15 is obtained by modulating the transmission signal input to the digital signal processing unit 11. Therefore, the digital signal processing unit 11 outputs a signal larger than a predetermined threshold (Vth shown in the waveform W11) of the input transmission signal as an envelope signal.
  • a waveform W15 indicates an envelope signal exceeding the transmission signal threshold value Vth shown in the waveform W11.
  • the digital signal processing unit 11 outputs a voltage switching signal for turning on / off the transistor M12. As will be described later, the digital signal processor 11 outputs a voltage switching signal based on the magnitude of the envelope signal.
  • the DAC 16 digital-analog converts the envelope signal output from the digital signal processing unit 11.
  • a waveform W16 represents an envelope signal digital-analog converted by the DAC 16.
  • the power source of the voltage Vdc is connected to the power node N11 via the inductor L11.
  • the power source of the voltage Vdc is connected to the ground via the capacitor C11.
  • the power supply of the voltage Vdc is lower than the power supplies of the voltages Vds1 and Vds2, and the fixed voltage including the voltages Vds1 and Vds2 is a highly efficient power supply.
  • the power supply of the voltage Vdc supplies the power of the fixed voltage (Vdc) to the power node N11.
  • the transistor M11 is, for example, an NMOS transistor.
  • An envelope signal is input to the gate of the transistor M11 via the capacitor C12.
  • a bias voltage of the voltage Vg is supplied from the bias power supply 17 to the gate of the transistor M11.
  • the drain of the transistor M11 is connected to the cathode of the diode D11 and the drain of the transistor M12.
  • the source of the transistor M11 is connected to the power node N11.
  • the transistor M11 supplies the power node N11 with power of a voltage corresponding to the change in the envelope signal based on the voltage of the envelope signal input to the gate and the source voltage (power node N11).
  • the power source of the voltage Vds1 is connected to the drain of the transistor M11 via the diode D11.
  • the power source of the voltage Vds1 is connected to the ground through the capacitor C13.
  • the power source of the voltage Vds1 supplies power of a fixed voltage (Vds1) to the drain of the transistor M11.
  • the transistor M12 is, for example, a PMOS (Positive-channel Metal-Oxide Semiconductor) transistor.
  • the voltage switching signal output from the digital signal processing unit 11 is input to the gate of the transistor M12.
  • the source of the transistor M12 is connected to the ground via the capacitor C14.
  • the source of the transistor M12 is connected to the power supply of the voltage Vds2.
  • the power supply of the voltage Vds2 is larger in voltage than the power supply of the voltage Vds1, and the power supply of the voltage Vds1 is larger in voltage than the power supply of the voltage Vdc. That is, the voltages Vdc, Vds1, and Vds2 have a relationship of Vdc ⁇ Vds1 ⁇ Vds2.
  • the drain of the transistor M12 is connected to the drain of the transistor M11.
  • the transistor M12 supplies the power of the power source of the voltage Vds2 to the transistor M11 according to the voltage switching signal input to the gate.
  • the diode D11 prevents the current flowing from the transistor M12 to the transistor M11 from flowing to the power supply of the voltage Vds1.
  • the transistor M11 is a linear amplifier that supplies power of a variable voltage to the power node N11 based on the envelope signal and the voltage of the power node N11.
  • the power supply by the transistor M11 may be referred to as a variable voltage power supply.
  • the power supply of voltage Vdc supplies fixed voltage power to power node N11.
  • the power source of the voltage Vdc may be referred to as a fixed voltage power source.
  • the inductor L11 couples the output voltage of the fixed voltage power supply and the output voltage of the variable voltage power supply.
  • a waveform W17 represents a voltage waveform obtained by combining the output voltage of the fixed voltage power supply and the output voltage of the variable voltage power supply.
  • the variable voltage power supply is supplied with the power of the power supply of voltage Vds1 and the power of the power supply by the transistor M12.
  • the power of the power source by the transistor M12 is supplied to the variable voltage power source when the transistor M12 is turned on by the voltage switching signal output from the digital signal processing unit 11.
  • the power supply of the voltage Vds1 and the power supply by the transistor M12 supply power of different voltages to the variable voltage power supply.
  • the power supply of the voltage Vds1 and the power supply by the transistor M12 may be referred to as a power supply power supply power supply.
  • the digital signal processing unit 11 outputs a voltage switching signal based on the magnitude of the envelope signal. For example, the digital signal processing unit 11 outputs a voltage switching signal for turning on the transistor M12 when the envelope signal is larger than a predetermined threshold (hereinafter, this threshold is referred to as Venv). The digital signal processing unit 11 outputs a voltage switching signal for turning off the transistor M12 when the envelope signal is equal to or lower than a predetermined threshold value Venv.
  • a predetermined threshold hereinafter, this threshold is referred to as Venv.
  • the amplifying apparatus supplies the power of the fixed voltage power source to the amplifier when a non-signal envelope signal (for example, the horizontal portion of the waveform W16) is input to the gate of the variable voltage power source.
  • the amplification device superimposes the power of the variable voltage power supply on the power of the fixed voltage power supply when a signal envelope signal (for example, an upward peak indicated by the waveform W16) is input to the gate of the variable voltage power supply. This is supplied to the amplifier 15.
  • the amplifying apparatus supplies the power of the high-efficiency power source with a fixed voltage to the amplifier 15 when the envelope of the radio signal input to the amplifier 15 is small. Then, when the envelope of the radio signal is large, the amplifying device supplies electric power of a power source that can output a high voltage with low efficiency according to the envelope.
  • the amplifying device supplies the power of the power supply of the voltage Vds1 to the variable voltage power supply, and the envelope signal is set to the predetermined threshold value Venv. If it is larger, the power of the voltage Vds2 higher than the voltage Vds1 is supplied to the variable voltage power supply.
  • the amplifying apparatus controls the power supply to the amplifier 15 by the fixed voltage power source and the variable voltage power source, and also controls the power supply to the variable voltage power source when the variable voltage power source operates, thereby reducing the power efficiency. To improve efficiency.
  • the AS circuit 18 includes a transistor M13 and a capacitor C15.
  • Capacitor C15 has one end connected to power node N11 and the other end connected to the drain of transistor M13.
  • the transistor M13 is, for example, an NMOS transistor.
  • the gate of the transistor M13 is connected to the digital signal processing unit 11.
  • the source of the transistor M13 is connected to the ground.
  • the power node N11 is grounded via the capacitor C15 by turning on / off the transistor M13.
  • the digital signal processing unit 11 In the fixed voltage power mode in which only the fixed voltage power supply supplies power to the power node N11, the digital signal processing unit 11 outputs an AS signal so that the power node N11 is grounded via the capacitor C15.
  • the AS circuit 18 is a circuit that actively controls the bypass capacitor (capacitor C15), and reduces the impedance of the power node N11 in the fixed voltage power mode. That is, the AS circuit 18 suppresses the voltage change of the power node N11 at the fixed voltage power node.
  • grounding the power node N11 to the ground via the capacitor C15 may be referred to as AS.
  • the time when the fixed voltage power source and the variable voltage power source supply power to the power node N11 may be referred to as a variable voltage power mode.
  • the envelope signal input to the transistor M11 is in a no-signal state as indicated by the waveform W16.
  • the gate of the transistor M11 is supplied with, for example, a bias of the voltage Vg for class B operation from the bias power supply 17, and the transistor M11 is turned off when an envelope signal in a non-signal state is input. .
  • FIG. 5 is a diagram showing an example of a block of the digital signal processing unit.
  • the digital signal processing unit 11 has a function as shown in FIG. 5 by executing a program formed by, for example, a DSP or CPU and stored in the memory.
  • the digital signal processing unit 11 includes an envelope signal generation unit 21, an AS signal generation unit 22, and a voltage switching signal generation unit 23.
  • the envelope signal generation unit 21 receives a transmission signal.
  • the envelope signal generation unit 21 generates a transmission signal larger than a predetermined threshold as an envelope signal.
  • the envelope signal generating unit 21 generates an envelope signal by extracting a transmission signal that is larger than the threshold Vth described with reference to FIG. That is, the envelope signal generation unit 21 generates a signal obtained by slicing the transmission signal with the threshold value Vth as an envelope signal, as shown by the waveforms W11 and W15 in FIG.
  • the radio signal input to the amplifier 15 is a signal obtained by modulating the transmission signal. Therefore, the transmission signal input to the envelope signal generation unit 21 can be said to be an envelope of a radio signal amplified by the amplifier 15.
  • the transistor M11 when a non-signal envelope signal is output, the transistor M11 is turned off, and only the fixed voltage power supply supplies power to the amplifier 15. Therefore, when a no-envelope envelope signal is output, the amplifying device is in the fixed voltage power mode. Further, when a signal envelope signal is output, the transistor M11 supplies power to the amplifier 15 with a voltage corresponding to a change in the signal envelope signal. Therefore, when an envelope signal with a signal is output, the amplification device is in the variable voltage power mode.
  • the AS signal generation unit 22 outputs an AS signal for AS of the power node N11 when the amplification device is in the fixed voltage power mode. Further, the AS signal generation unit 22 outputs an AS signal for opening the AS of the power node N11 in the variable voltage power mode.
  • a transmission signal is input to the AS signal generation unit 22.
  • the AS signal generation unit 22 outputs an AS signal for AS for the power node N11 when the envelope of the transmission signal is equal to or lower than the threshold value Vth, that is, in the fixed voltage power mode.
  • the AS signal generation unit 22 outputs an AS signal in the H state for turning on the transistor M13 of the AS circuit 18.
  • the AS signal generation unit 22 outputs an AS signal for releasing the AS of the power node N11 when the envelope of the transmission signal is larger than the threshold value Vth, that is, in the variable voltage power mode.
  • the AS signal generation unit 22 outputs an AS signal in an L state for turning off the transistor M13 of the AS circuit 18.
  • the voltage switching signal generator 23 receives a transmission signal, an envelope signal, and an AS signal.
  • the voltage switching signal generator 23 is in the variable voltage power mode, and the maximum value of the envelope signal in the section in which the transistor M11 continuously operates (the section in which power is continuously supplied to the power node N11), the threshold Venv, Compare Then, the voltage switching signal generator 23 turns on the transistor M12 so that the power of the power source of the voltage Vds2 is supplied to the transistor M11 if the maximum value of the envelope signal is larger than the threshold value Venv in the continuously operating period. Outputs a voltage switching signal. For example, the voltage switching signal generator 23 outputs an L state voltage switching signal.
  • the voltage switching signal generation unit 23 is configured so that only the power of the power source of the voltage Vds1 is supplied to the transistor M11 if the maximum value of the envelope signal is equal to or lower than the threshold value Venv in the section in which the transistor M11 operates continuously.
  • a voltage switching signal for turning off the transistor M12 is output.
  • the voltage switching signal generator 23 outputs an H state voltage switching signal.
  • the voltage switching signal generation unit 23 can recognize a section in which the transistor M11 continuously operates based on the AS signal. For example, the voltage switching signal generator 23 can recognize that the transistor M11 is operating continuously when the AS signal is in the L state.
  • 5 includes an envelope signal output from the envelope signal generation unit 21, an AS signal output from the AS signal generation unit 22, a voltage switching signal output from the voltage switching signal generation unit 23, and the DAC 12. Processing is performed so that the timings of the output transmission signals match.
  • FIG. 6 is a diagram for explaining the operation of the block of FIG. 6A shows transmission signals input to the envelope signal generation unit 21, the AS signal generation unit 22, and the voltage switching signal generation unit 23.
  • FIG. 6B shows an envelope signal generated by the envelope signal generation unit 21.
  • FIG. 6C shows a voltage waveform at the power node N11.
  • FIG. 6D shows an AS signal generated by the AS signal generation unit 22.
  • FIG. 6E shows a voltage switching signal generated by the voltage switching signal generator 23.
  • the envelope signal generation unit 21 compares the transmission signal with the threshold value Vth, as shown in FIG. When the transmission signal is larger than the threshold value Vth, the envelope signal generation unit 21 extracts the transmission signal and generates an envelope signal as shown in FIG.
  • the generated envelope signal is output to the transistor M11.
  • the transistor M11 is turned off when a non-envelope envelope signal is input, and the power node N11 is supplied with the power supply voltage of the voltage Vdc. Further, the transistor M11 is turned on when a signal envelope signal is input, and the power node N11 is supplied with the voltage of the power supply power supply corresponding to the signal envelope. Thereby, the voltage waveform of the power node N11 becomes as shown in FIG.
  • the AS signal generation unit 22 outputs an AS signal in the L state when the transmission signal is larger than the threshold value Vth. Further, as shown in FIG. 6D, the AS signal generation unit 22 generates an H-state signal when the transmission signal is equal to or lower than the threshold value Vth.
  • the AS signal generation unit 22 when in the fixed voltage power mode, the AS signal generation unit 22 outputs an AS signal for turning on the transistor M13 so that the power node N11 is AS.
  • the AS signal generation unit 22 outputs an AS signal for turning off the transistor M13 so as to open the AS of the power node N11 in the variable voltage power mode.
  • the transistor M11 is turned on when the AS signal is in the L state, and continuously supplies the power of the power supply power supply to the power node N11. That is, when the AS signal is in the L state, the transistor M11 continuously operates.
  • the voltage switching signal generator 23 compares the envelope signal when the AS signal is in the L state with the threshold value Venv. That is, the voltage switching signal generation unit 23 compares the envelope signal and the threshold value Venv in the section in which the transistor M11 operates continuously. When the envelope signal in the section in which the transistor M11 continuously operates is larger than the threshold value Venv, the voltage switching signal generation unit 23 turns on the voltage switching signal in the L state so as to turn on the transistor M12 as shown in FIG. Is output.
  • variable voltage power mode when the AS signal is in the L state, when the envelope signal is larger than the threshold value Venv, the power of the power source of the voltage Vds2 is supplied to the drain of the transistor M11.
  • the variable voltage power mode when the envelope signal is equal to or lower than the threshold value Venv, the power of the power source of the voltage Vds1 is supplied to the drain of the transistor M11.
  • the power consumed wastefully by the transistor M11 is the shaded portion shown on the leftmost side in FIG.
  • the power consumed in the transistor M11 is the second to fourth shaded portion from the left in FIG. 6C.
  • FIG. 7 is a diagram showing a part of the amplifying apparatus when there is one power source for supplying power to the variable voltage power source. 7 that are the same as those in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted.
  • a power source having a voltage Vds2 is connected to the drain of the transistor M11. That is, in the amplifying apparatus of FIG. 7, the power source that supplies power to the variable voltage power source is one power source of the voltage Vds2.
  • FIG. 8 is a diagram for explaining the loss of the variable voltage power supply of FIG. FIG. 8 shows a voltage waveform at the power node N11 in FIG.
  • the power source that supplies power to the variable voltage power source is one power source of the voltage Vds2. Therefore, the power consumed wastefully by the transistor M11 is the hatched portion in FIG. That is, in the amplifying apparatus of FIG. 7, when the amplitude of the envelope signal is small in the variable voltage power mode, power is wasted as heat and power efficiency is low.
  • the amplifying apparatus supplies power of different voltages to the variable voltage power source based on the magnitude of the envelope signal. Thereby, the amplifying apparatus can increase the power efficiency.
  • FIG. 9 is a diagram illustrating an example of a block of the digital signal processing unit according to the third embodiment. 9, the same components as those in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted. Note that the circuit block of the amplification device according to the third embodiment is the same as the circuit block of the amplification device of FIG.
  • the digital signal processing unit 11 has a voltage switching signal generation unit 31.
  • the voltage switching signal generator 31 transitions the state of the voltage switching signal after a predetermined time has elapsed since the variable voltage power supply entered the power supply stop period.
  • Other functions of the voltage switching signal generator 31 are the same as those of the voltage switching signal generator 23 described with reference to FIG.
  • FIG. 10 is a diagram for explaining the operation of the voltage switching signal generator.
  • FIG. 10A shows an envelope signal generated by the envelope signal generation unit 21.
  • the sections S11 to S14 shown in FIG. 10A indicate the power supply stop period of the variable voltage power supply (transistor M11).
  • FIG. 10B shows a voltage switching signal generated by the voltage switching signal generator 31.
  • FIG. 10C shows an AS signal generated by the AS signal generation unit 22.
  • the voltage switching signal generation unit 31 switches the voltage in the L state to turn on the transistor M12 when the AS signal is in the L state and the envelope signal is larger than the threshold value Venv. Generate a signal.
  • the voltage switching signal generation unit 31 generates a voltage switching signal that transitions from the H state to the L state after a predetermined time since the variable voltage power supply enters the power supply stop period.
  • the voltage switching signal generation unit 31 changes the voltage switching signal from the H state to the L state after a predetermined time (T1) has elapsed after entering the sections S11 and S13.
  • the voltage switching signal generator 31 is in the H state so as to turn off the transistor M12 when the AS signal is in the L state and the envelope signal is equal to or lower than the threshold value Venv. A voltage switching signal is generated.
  • the voltage switching signal generation unit 31 generates a voltage switching signal that transitions from the L state to the H state after a predetermined time from the start of the power supply stop period.
  • the voltage switching signal generation unit 31 changes the voltage switching signal from the L state to the H state after a predetermined time (T2) has elapsed after entering the sections S12 and S14.
  • the voltage switching signal generator 31 can recognize the power supply stop period based on the AS signal. For example, the voltage switching signal generator 31 can recognize that the variable voltage power supply is in the power supply stop period when the AS signal is in the H state.
  • the amplifying apparatus changes the state of the voltage switching signal after a predetermined time has elapsed since the variable voltage power supply enters the power supply stop period. Thereby, the amplifying apparatus can prevent a sudden current from flowing through the power node N11 when the power mode is switched.
  • variable voltage power supply supplies power to the power node N11 or when the variable voltage power supply stops supplying power to the power node N11
  • the voltage of the power supplied from the power supply power supply power to the variable voltage power supply is When changed, a rapid current flows through power node N11.
  • the amplifying apparatus changes the state of the voltage switching signal after a lapse of a predetermined time after the variable voltage power supply enters the power supply stop period, it is possible to suppress the rapid generation of current.
  • the power supply power supply that supplies different voltage power to the variable voltage power supply in accordance with the voltage switching signal requires time to switch the voltage. Therefore, for example, when the time between the first interval in which the variable voltage power supply continuously operates and the second interval in which the variable voltage power supply continuously operates is shorter than the voltage switching time of the power supply power supply, There is a case where the voltage switching of the power supply power supply is not in time. Therefore, in the fourth embodiment, even when the time between the first section in which the variable voltage power supply continuously operates and the next second section is shorter than the voltage switching time of the power supply power supply, Make sure that the power supply is properly switched.
  • FIG. 11 is a diagram illustrating an example of a block of the digital signal processing unit according to the fourth embodiment. 11 that are the same as those in FIG. 5 are given the same reference numerals, and descriptions thereof are omitted. Note that the circuit block of the amplifier according to the fourth embodiment is the same as the circuit block of the amplifier of FIG.
  • the digital signal processing unit 11 has a voltage switching signal generation unit 41.
  • the voltage switching signal generator 41 sets these sections as one continuously operating section. .
  • the voltage switching signal generation unit 41 compares the maximum value of the envelope signal in one section that is continuously operated with the threshold value Venv.
  • Other functions of the voltage switching signal generator 41 are the same as those of the voltage switching signal generator 23 described with reference to FIG.
  • FIG. 12 is a diagram for explaining the operation of the voltage switching signal generator.
  • FIG. 12A shows an envelope signal generated by the envelope signal generator 21.
  • FIG. 12B shows an AS signal generated by the AS signal generation unit 22.
  • FIG. 12C even if the section in which the variable voltage power supply (transistor M11) operates continuously occurs in a time shorter than the voltage switching time of the power supply power supply (transistor M12 and the power supply of the voltage Vdc), A voltage switching signal that has not been corrected is shown.
  • FIG. 12D shows changes in the drain voltage of the transistor M12 in response to the voltage switching signal shown in FIG.
  • FIG. 12E shows a switching impossibility signal generated by the voltage switching signal generator 41.
  • FIG. 12F shows a voltage switching signal generated by the voltage switching signal generation unit 41.
  • FIG. 12G shows a change in drain voltage of the transistor M12 in response to the voltage switching signal shown in FIG.
  • the voltage switching signal is not corrected. As shown in FIGS. 12A and 12C, when the envelope signal is larger than the threshold value Venv, the voltage switching signal is in the L state so that the transistor M12 is turned on and the power of the voltage Vds2 is supplied to the transistor M11. Become.
  • the transistor M12 requires time for voltage switching. For example, as shown in FIGS. 12C and 12D, even if the voltage switching signal changes from the H state to the L state, the drain voltage change of the transistor M12 has a slope.
  • Some PMOS transistors require, for example, 100 nsec for voltage switching.
  • the voltage switching of the transistor M12 may not be in time for the voltage to be supplied to the transistor M11.
  • a section in which the transistor M11 continuously operates at time t1-t2 in FIG. 12A and a section in which the transistor M11 continuously operates at time t3-t4 in FIG. Assume that the time between them (that is, the time between time t2 and t3) is shorter than the voltage switching time of the transistor M12. In this case, as shown at times t3-t4 in FIGS. 12A and 12D, the transistor M11 is supplied with electric power whose voltage changes from the transistor M12. For this reason, the amplifier 15 may change the gain and cannot amplify the radio signal appropriately.
  • a section in which the transistor M11 continuously operates at time t5-t6 in FIG. 12A and a section in which the transistor M11 continuously operates at time t7-t8 in FIG. is shorter than the voltage switching time of the transistor M12.
  • the transistor M11 is supplied with electric power whose voltage changes from the transistor M12. For this reason, the amplifier 15 may change the gain and cannot amplify the radio signal appropriately.
  • the voltage switching signal generation unit 41 detects that the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply.
  • the L state of the AS signal indicates a section in which the transistor M11 operates continuously.
  • the voltage switching signal generation unit 41 compares the time of the AS signal in the H state with the voltage switching time of the transistor M12, so that the section in which the variable voltage power supply continuously operates is the voltage of the power supply power supply. It is possible to detect that it occurred in a time shorter than the switching time. For example, the voltage switching signal generation unit 41 detects that the time of the H state between the times t2 and t3 of the AS signal shown in FIG. 12B is shorter than the voltage switching time of the power supply source. .
  • the voltage switching signal generation unit 41 When the voltage switching signal generation unit 41 detects that the section in which the variable voltage power supply continuously operates is generated in a time shorter than the voltage switching time of the power supply power supply by the AS signal, the voltage switching signal generation unit 41 in FIG. As shown, a switch disable signal is generated. For example, the voltage switching signal generation unit 41 generates the AS signal as a non-switchable signal when it is detected that the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply. To do.
  • the section in which the transistor M11 before and after the switching impossibility signal continuously operates is defined as one continuously operating section.
  • the voltage switching signal generation unit 41 includes a continuous section at time t1-t2 before and after the H state switching disable signal, and a continuous section at time t3-t4. Is one continuous section.
  • the voltage switching signal generation unit 41 includes a continuous section at time t5-t6 before and after the H state switching disable signal, and a continuous section at time t7-t8. Is one continuous section.
  • the transistor M11 is supplied with power having a constant voltage from the transistor M12. Therefore, the amplifier 15 can appropriately amplify the radio signal without changing the gain. Further, as shown at time t7-t8 in FIG. 12G, the transistor M11 is supplied with power having a constant voltage from the transistor M12. Therefore, the amplifier 15 can appropriately amplify the radio signal without changing the gain.
  • the amplifier apparatus sets these sections as one continuously operating section. . Then, the amplifying device compares the maximum value of the envelope signal in this section with the threshold value Venv to generate a voltage switching signal. Thereby, the amplification device can appropriately amplify the radio signal.
  • the amplifier 15 when the amplification device is applied to a mobile phone system, the amplifier 15 is required to have gain linearity.
  • an AM (Amplitude Modulation) component is added as noise to the radio signal to be amplified, resulting in distortion.
  • the gain change of the amplifier 15 can be suppressed, and the distortion of the radio signal can be suppressed.
  • the amplifying apparatus sets the sections as one continuously operating section. Therefore, it is not necessary to use a high-speed NMOS transistor for the transistor M12. That is, a low-cost PMOS transistor such as 2SJ or 2SA can be used as the transistor M12.
  • the power supply for supplying power supplies two types of voltage power to the variable voltage power supply.
  • the fifth embodiment an example in which power of three types of voltages is supplied to a variable voltage power source will be described.
  • FIG. 13 is a diagram illustrating an example of a circuit block of the amplifying apparatus according to the fifth embodiment. 13 that are the same as those in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted.
  • the amplifying device includes a PMOS transistor M21, a capacitor C21, and a diode D21.
  • the power source of the voltage Vdc is connected to the inductor L ⁇ b> 11, and the power source of the voltage Vds ⁇ b> 1 is connected to the anode of the diode D ⁇ b> 11.
  • FIG. 13 as described with reference to FIG. 4, it is assumed that the power source of the voltage Vdc is connected to the inductor L ⁇ b> 11, and the power source of the voltage Vds ⁇ b> 1 is connected to the anode of the diode D ⁇ b> 11.
  • FIG. 13 is a diagram illustrating an example of a circuit block of the amplifying apparatus according to the fifth embodiment. 13 that are the same as those in
  • One end of a capacitor C21 is connected to the source of the transistor M21.
  • the other end of the capacitor C21 is connected to the ground.
  • the drain of the transistor M21 is connected to the anode of the diode D21, and the cathode of the diode D21 is connected to the drain of the transistor M11.
  • the diode D21 prevents the current output from the transistor M12 from flowing into the transistor M21.
  • the digital signal processing unit 11 has the same blocks as the blocks described in FIG. 5 generates a voltage switching signal by comparing one threshold Venv and an envelope signal, but the voltage switching signal generator 23 of the digital signal processing unit 11 of FIG.
  • the threshold value and the envelope signal are compared to generate a voltage switching signal.
  • the two threshold values are referred to as threshold values Venv1 and Venv2.
  • the thresholds Venv1 and Venv2 have a relationship of Venv1 ⁇ Venv2.
  • the voltage switching signal generator 23 outputs the generated voltage switching signal to the transistors M21 and M12.
  • FIG. 14 is a diagram for explaining the operation of the voltage switching signal generator.
  • FIG. 14A shows a transmission signal.
  • FIG. 14B shows an envelope signal.
  • FIG. 14C shows a voltage waveform at the power node N11.
  • FIG. 14D shows the state of the voltage switching signal generated by the voltage switching signal generator 23.
  • a voltage switching signal Vsw1 shown in FIG. 14 indicates a voltage switching signal output from the voltage switching signal generator 23 to the gate of the transistor M21, and is expressed by whether the transistor M21 is “ON” or “OFF”. .
  • the voltage switching signal Vsw2 indicates a voltage switching signal output from the voltage switching signal generation unit 23 to the gate of the transistor M12. Similar to the transistor M21, the voltage switching signal Vsw2 is expressed by whether the transistor M12 is “ON” or “OFF”. ing.
  • ENVmax shown in FIG. 14 indicates the maximum value of the envelope signal in the section in which the variable voltage power supply continuously operates.
  • Venv1 and Venv2 shown in FIG. 14 indicate threshold values that the voltage switching signal generator 23 compares with the maximum value ENVmax of the envelope signal.
  • the voltage switching signal generation unit 23 compares the maximum value ENVmax of the envelope signal and the threshold values Venv1 and Venv2 in the section in which the variable voltage power supply continuously operates. As shown in Table 1 in FIG. 14, the voltage switching signal generation unit 23 causes the transistor M21 to supply the power of the power source of the voltage Vds1 to the variable voltage power source if the maximum value ENVmax of the envelope signal is smaller than the threshold value Venv1. , M12 are generated to generate voltage switching signals Vsw1 and Vsw2.
  • the voltage switching signal generator 23 converts the power of the power source of the voltage Vds2 to the variable voltage power source if the maximum value ENVmax of the envelope signal is not less than the threshold value Venv1 and not more than the threshold value Venv2.
  • voltage switching signals Vsw1 and Vsw2 are generated which turn off the transistor M21 and turn on the transistor M12.
  • the voltage switching signal generator 23 is configured such that if the maximum value ENVmax of the envelope signal is larger than the threshold value Venv2, the power of the power source of the voltage Vds3 is supplied to the variable voltage power source. Voltage switching signals Vsw1 and Vsw2 are generated to turn off the transistor M21 and turn on the transistor M12.
  • the voltage switching signal generation unit 23 sets the power supply power supply power so as to supply the variable voltage power supply with a finer voltage power corresponding to the magnitude of the envelope signal in the section where the variable voltage power supply continuously operates. Control.
  • the amplifying apparatus compares the envelope signal with a plurality of threshold values so that the power supply power supply supplies a plurality of voltages of power to the variable voltage power supply. Accordingly, it is possible to finely suppress power consumed in the variable voltage power source, and to further increase power efficiency.
  • power supply power supply outputs power of three types of voltages.
  • power of four or more types of voltages can be output in the same manner. For example, by increasing the threshold value to be compared with the envelope signal and increasing the number of transistors of the power supply power supply, it is possible to output power of four or more types of voltages.
  • FIG. 15 is a diagram illustrating an example of a circuit block of the amplifying device according to the sixth embodiment. 15, the same components as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the amplification device has a DC / DC converter 51.
  • the digital signal processing unit 11 has the same blocks as the blocks described in FIG.
  • the voltage switching signal generated by the voltage switching signal generation unit 23 included in the digital signal processing unit 11 is output to the DC / DC converter 51.
  • the DC / DC converter 51 outputs voltages Vds1 and Vds2 according to the voltage switching signal output from the voltage switching signal generator 23.
  • the voltages Vds1 and Vds2 are output to the drain of the transistor M11.
  • the DC / DC converter 51 outputs the voltage Vds1 when the voltage switching signal generator 23 determines that the maximum value of the envelope signal is equal to or less than the threshold value Venv and outputs an H state voltage switching signal. Further, when the voltage switching signal generator 23 determines that the maximum value of the envelope signal is larger than the threshold value Venv and outputs the voltage switching signal in the L state, the DC / DC converter 51 outputs the voltage Vds2.
  • the amplifying apparatus can increase the power efficiency even when the power supply power supply is formed by the voltage conversion module of the DC / DC converter 51, for example. If the DC / DC converter 51 is a DC / DC converter that can output three or more types of voltages, as described in the fifth embodiment, a finer voltage power is supplied to the variable voltage power supply. Can do.
  • FIG. 16 is a diagram illustrating an example in which the amplification device is applied to a wireless device.
  • the amplification device shown in FIG. 3 is applied to, for example, a transmission unit of a base station of a mobile phone system.
  • the transmission unit 60 includes a baseband processing unit 61, a digital processing unit 62, a DVC (DVC: Dynamic Voltage Control) power supply unit 63, and an RF (Radio Frequency) unit 64.
  • the digital processing unit 62 includes a DVC signal processing unit 62a, DACs 62b and 62d, a distortion compensation processing unit 62c, a modulation unit 62e, a frequency conversion unit 62f, and an ADC (Analog to Digital Converter) 62g.
  • the DVC power supply unit 63 has a power supply 63a.
  • the RF unit 64 has an amplifier 64a.
  • a transmission signal is input to the baseband processing unit 61.
  • the baseband processing unit 61 performs baseband processing of the transmission signal.
  • the DVC signal processing unit 62a and the distortion compensation processing unit 62c of the digital processing unit 62 correspond to, for example, the digital signal processing unit 11 in FIG.
  • the DACs 62b and 62d correspond to, for example, the DACs 16 and 12 in FIG.
  • the modulation unit 62e corresponds to, for example, the oscillator 13 and the multiplier 14 in FIG.
  • the ADC 62g and the frequency converter 62f are not shown in FIG.
  • the frequency converter 62f down-converts the frequency of the radio signal amplified by the amplifier 64a, and the ADC 62a performs digital-analog change of the down-converted radio signal.
  • the distortion compensation processing unit 62c performs distortion compensation processing on the transmission signal output to the DAC 62d based on the transmission signal output from the baseband processing unit 61 and the feedback signal output from the ADC 62g.
  • the power source 63a corresponds to, for example, the transistors M11 to M13, the capacitors C11 to C15, the inductor L11, the diode D11, the bias power source 17, and the AS circuit 18 in FIG.
  • the amplifier 64a corresponds to, for example, the amplifier 15 in FIG.
  • signal processing is performed after the maximum value of the input envelope signal is detected in advance. This is realized by providing a delay in the main signal system. For example, it is possible to perform the DVC processing earlier by the delay time by providing the delay before the distortion compensation processing unit 62c of FIG.

Abstract

The present invention increases power efficiency. An amplifier (1) amplifies an input signal using power fed to a power node (N1). A generator (2) generates an envelope signal based on the envelope of the input signal amplified by the amplifier (1). A power source unit (3) feeds power at a fixed voltage to the power node (N1). A power source unit (4) feeds, to the power node (N1), power at a variable voltage in accordance with the envelope signal generated by the generator (2). A power source power feed unit (5) feeds power at a different voltages to the power source unit (4), on the basis of the size of the envelope signal generated by the generator (2).

Description

増幅装置Amplifier
 本件は、信号を増幅する増幅装置の電力供給に関する。 This case relates to the power supply of the amplification device that amplifies the signal.
 近年、電子機器は、国際的な環境対策と相まって低消費電力化が求められている。例えば、携帯電話システムの基地局の送信部の最終段には、送信信号を増幅するための増幅装置が設けられ、その増幅装置の低消費電力化が求められている。 In recent years, electronic devices are required to have low power consumption coupled with international environmental measures. For example, an amplification device for amplifying a transmission signal is provided at the final stage of the transmission unit of the base station of the mobile phone system, and the power consumption of the amplification device is required to be reduced.
 増幅装置の電力効率改善の手法として、エンベロープトラッキングがある。エンベロープトラッキングは、増幅装置の増幅器で増幅する信号の振幅に応じた電源電圧を増幅器に供給し、電力ロスを低減する技術である。 Envelope tracking is a method for improving the power efficiency of amplifiers. Envelope tracking is a technique for reducing power loss by supplying a power supply voltage corresponding to the amplitude of a signal amplified by an amplifier of an amplification device to the amplifier.
 例えば、エンベロープトラッキングは、増幅する信号のエンベロープが所定の閾値以下の場合、高効率電源による固定電圧の電力のみを増幅器に供給する(固定電圧電力モード)。そして、エンベロープトラッキングは、増幅する信号のエンベロープが所定の閾値を超える場合に、前記の固定電圧の電力供給に加え、増幅する信号のエンベロープに応じた可変電圧の電力を、低効率電源より増幅器に供給する(可変電圧電力モード)。このように、エンベロープトラッキングは、増幅する信号のエンベロープの大きさに基づいて電源を切換えることにより、電力効率の改善を図っている。 For example, in envelope tracking, when the envelope of a signal to be amplified is below a predetermined threshold, only a fixed voltage power from a high efficiency power supply is supplied to the amplifier (fixed voltage power mode). In addition, when the envelope of the signal to be amplified exceeds a predetermined threshold value, envelope tracking is performed by supplying the power of the variable voltage corresponding to the envelope of the signal to be amplified to the amplifier from the low-efficiency power supply in addition to the power supply of the fixed voltage. Supply (variable voltage power mode). As described above, in the envelope tracking, the power efficiency is improved by switching the power source based on the envelope size of the signal to be amplified.
 なお、従来、送信電力増幅装置の出力電力を設定値に一致するように制御しながら、従来よりも一段と低消費電力化を図った電力制御装置が提案されている(例えば、特許文献1参照)。 Conventionally, there has been proposed a power control apparatus that achieves lower power consumption than the conventional one while controlling the output power of the transmission power amplifying apparatus to match the set value (see, for example, Patent Document 1). .
 また、低出力電力時にも効率および歪特性を良好にし、同一基板への集積化を容易にした、ドレインバイアス調整回路を用いた送信電力制御可能な増幅器が提案されている(例えば、特許文献2参照)。 In addition, an amplifier capable of controlling transmission power using a drain bias adjustment circuit has been proposed that improves efficiency and distortion characteristics even at low output power and facilitates integration on the same substrate (for example, Patent Document 2). reference).
 さらに、出力電圧に対する高速応答と電源を切換える半導体スイッチにおける低パワー・ロスを実現する増幅器電源電圧切換え回路が提案されている(例えば、特許文献3参照)。 Furthermore, an amplifier power supply voltage switching circuit that realizes a high-speed response to an output voltage and a low power loss in a semiconductor switch that switches the power supply has been proposed (for example, see Patent Document 3).
特開平6-85580号公報JP-A-6-85580 特開2000-196387号公報JP 2000-196387 A 実開平5-53318号公報Japanese Utility Model Publication No. 5-53318
 しかし、従来の増幅装置では、可変電圧電力モードにおいて増幅する信号の振幅が小さい場合、熱として無駄に電力を消費しており効率が低いという問題点があった。
 本件はこのような点に鑑みてなされたものであり、電力効率を高効率化する増幅装置を提供することを目的とする。
However, in the conventional amplifying apparatus, when the amplitude of the signal to be amplified in the variable voltage power mode is small, there is a problem that power is wasted as heat and efficiency is low.
The present invention has been made in view of such a point, and an object thereof is to provide an amplifying apparatus that improves power efficiency.
 上記課題を解決するために、信号を増幅する増幅装置が提供される。この増幅装置は、電力ノードに供給される電力によって入力信号を増幅する増幅部と、前記入力信号のエンベロープに基づくエンベロープ信号を生成する生成部と、前記電力ノードに固定電圧の電力を供給する第1の電源部と、前記電力ノードに前記エンベロープ信号に応じた可変電圧の電力を供給する第2の電源部と、前記エンベロープ信号の大きさに基づいて、前記第2の電源部に異なる電圧の電力を供給する電源電力供給部と、を有する。 In order to solve the above problems, an amplifying apparatus for amplifying a signal is provided. The amplifying device amplifies an input signal by power supplied to a power node, a generation unit that generates an envelope signal based on an envelope of the input signal, and a first voltage that supplies fixed voltage power to the power node. A first power supply unit, a second power supply unit that supplies power of a variable voltage according to the envelope signal to the power node, and a voltage of a different voltage applied to the second power supply unit based on the magnitude of the envelope signal. And a power supply unit for supplying power.
 開示の増幅装置によれば、電力効率を高効率化することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
According to the disclosed amplification device, the power efficiency can be increased.
These and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments by way of example of the present invention.
第1の実施の形態に係る増幅装置の一例を示した図である。It is the figure which showed an example of the amplifier which concerns on 1st Embodiment. 図1の増幅装置の動作を説明する図である。It is a figure explaining operation | movement of the amplifier of FIG. 第2の実施の形態に係る増幅装置の回路ブロックの一例を示した図である。It is the figure which showed an example of the circuit block of the amplifier which concerns on 2nd Embodiment. 図3の回路ブロックの一例に信号波形を加えた図である。It is the figure which added the signal waveform to an example of the circuit block of FIG. デジタル信号処理部のブロックの一例を示した図である。It is the figure which showed an example of the block of a digital signal processing part. 図5のブロックの動作を説明する図である。It is a figure explaining operation | movement of the block of FIG. 可変電圧電源に電力を供給する電源が1個の場合の増幅装置の一部を示した図である。It is the figure which showed a part of amplification apparatus in case the power supply which supplies electric power to a variable voltage power supply is one. 図7の可変電圧電源の損失を説明する図である。It is a figure explaining the loss of the variable voltage power supply of FIG. 第3の実施の形態に係るデジタル信号処理部のブロックの一例を示した図である。It is the figure which showed an example of the block of the digital signal processing part which concerns on 3rd Embodiment. 電圧切換え信号生成部の動作を説明する図である。It is a figure explaining operation | movement of a voltage switching signal production | generation part. 第4の実施の形態に係るデジタル信号処理部のブロックの一例を示した図である。It is the figure which showed an example of the block of the digital signal processing part which concerns on 4th Embodiment. 電圧切換え信号生成部の動作を説明する図である。It is a figure explaining operation | movement of a voltage switching signal production | generation part. 第5の実施の形態に係る増幅装置の回路ブロックの一例を示した図である。It is the figure which showed an example of the circuit block of the amplifier which concerns on 5th Embodiment. 電圧切換え信号生成部の動作を説明する図である。It is a figure explaining operation | movement of a voltage switching signal production | generation part. 第6の実施の形態に係る増幅装置の回路ブロックの一例を示した図である。It is the figure which showed an example of the circuit block of the amplifier which concerns on 6th Embodiment. 増幅装置を無線装置に適用した場合の一例を示した図である。It is the figure which showed an example at the time of applying an amplifier to a radio | wireless apparatus.
 以下、実施の形態を、図面を参照して詳細に説明する。
 [第1の実施の形態]
 図1は、第1の実施の形態に係る増幅装置の一例を示した図である。図1に示すように、増幅装置は、増幅部1、生成部2、電源部3,4、および電源電力供給部5を有している。
Hereinafter, embodiments will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram illustrating an example of an amplifying apparatus according to the first embodiment. As illustrated in FIG. 1, the amplifying apparatus includes an amplifying unit 1, a generating unit 2, power supply units 3 and 4, and a power supply unit 5.
 増幅部1には、増幅しようとする入力信号が入力される。入力信号は、例えば、変調された信号である。増幅部1は、電力ノードN1に供給される電力によって入力信号を増幅し、出力する。 The input signal to be amplified is input to the amplification unit 1. The input signal is, for example, a modulated signal. The amplifying unit 1 amplifies the input signal with the power supplied to the power node N1 and outputs it.
 生成部2は、増幅部1で増幅される入力信号のエンベロープに基づくエンベロープ信号を生成する。例えば、生成部2は、所定の閾値(以下、thとする)より大きい入力信号のエンベロープをエンベロープ信号として生成する。 The generation unit 2 generates an envelope signal based on the envelope of the input signal amplified by the amplification unit 1. For example, the generation unit 2 generates an envelope of an input signal that is larger than a predetermined threshold (hereinafter referred to as th) as an envelope signal.
 電源部3は、電力ノードN1に固定の電圧(以下、Vdとする)の電力を供給する。
 電源部4は、生成部2の生成するエンベロープ信号に応じた可変電圧の電力を、電力ノードN1に供給する。
The power supply unit 3 supplies power of a fixed voltage (hereinafter referred to as Vd) to the power node N1.
The power supply unit 4 supplies variable power according to the envelope signal generated by the generation unit 2 to the power node N1.
 ここで、電源部3は、固定の電圧Vdを電力ノードN1に供給している。電源部4は、入力信号のエンベロープが閾値thを超えると、入力信号のエンベロープに応じた電圧の電力を増幅部1に供給する。すなわち、増幅装置は、入力信号のエンベロープが閾値th以下のとき、電源部3のみの電力を増幅部1に供給し(固定電圧電力モード)、入力信号のエンベロープが閾値thを超えると、さらに、入力信号のエンベロープに応じた電圧の電力を電源部4から増幅部1に供給する(可変電圧電力モード)。 Here, the power supply unit 3 supplies a fixed voltage Vd to the power node N1. When the envelope of the input signal exceeds the threshold th, the power supply unit 4 supplies power of a voltage corresponding to the envelope of the input signal to the amplifier unit 1. That is, when the envelope of the input signal is less than or equal to the threshold th, the amplifying device supplies only the power of the power supply unit 3 to the amplifier 1 (fixed voltage power mode), and when the envelope of the input signal exceeds the threshold th, The power of the voltage according to the envelope of the input signal is supplied from the power supply unit 4 to the amplification unit 1 (variable voltage power mode).
 電源電力供給部5は、生成部2の生成するエンベロープ信号の大きさに基づいて、電源部4に異なる電圧の電力を供給する。例えば、電源電力供給部5は、エンベロープ信号が所定の閾値(以下、envとする)以下であれば、電源部4に電圧V1の電力を供給し、エンベロープ信号が閾値envより大きければ、電源部4に電圧V1より大きい電圧V2の電力を供給する。 The power supply unit 5 supplies power of a different voltage to the power supply unit 4 based on the magnitude of the envelope signal generated by the generation unit 2. For example, the power supply unit 5 supplies power of the voltage V1 to the power supply unit 4 if the envelope signal is equal to or less than a predetermined threshold (hereinafter referred to as env), and if the envelope signal is greater than the threshold env, the power supply unit 4 is supplied with electric power having a voltage V2 higher than the voltage V1.
 図2は、図1の増幅装置の動作を説明する図である。図2の(A)には、増幅部1で増幅される入力信号のエンベロープが示してある。図2の(B)には、生成部2の生成するエンベロープ信号が示してある。図2の(C)には、電力ノードN11の電圧波形が示してある。 FIG. 2 is a diagram for explaining the operation of the amplifying apparatus of FIG. FIG. 2A shows an envelope of an input signal amplified by the amplification unit 1. FIG. 2B shows an envelope signal generated by the generation unit 2. FIG. 2C shows the voltage waveform at the power node N11.
 エンベロープ信号は、例えば、図2の(A)に示す入力信号のエンベロープの、閾値thより大きい信号である。従って、生成部2の生成するエンベロープ信号は、図2の(B)に示すように、入力信号のエンベロープを閾値thでスライスした信号となる。 The envelope signal is, for example, a signal larger than the threshold value th of the envelope of the input signal shown in FIG. Therefore, the envelope signal generated by the generation unit 2 is a signal obtained by slicing the envelope of the input signal with the threshold th as shown in FIG.
 電源部3は、固定の電圧Vdの電力を電力ノードN1に供給し、電源部4は、図2の(B)に示すエンベロープ信号に応じた可変電圧の電力を、電力ノードN1に供給する。従って、電力ノードN1の電圧波形は、図2の(C)に示すようになる。 The power supply unit 3 supplies power of a fixed voltage Vd to the power node N1, and the power supply unit 4 supplies power of variable voltage corresponding to the envelope signal shown in FIG. 2B to the power node N1. Therefore, the voltage waveform at the power node N1 is as shown in FIG.
 電源電力供給部5は、エンベロープ信号が所定の閾値env以下であれば、電源部4に電圧V1の電力を供給し、エンベロープ信号が閾値envより大きければ、電源部4に電圧V1より大きい電圧V2の電力を供給する。 The power source power supply unit 5 supplies power of the voltage V1 to the power source unit 4 if the envelope signal is equal to or less than the predetermined threshold value env. If the envelope signal is greater than the threshold value env, the power source unit 4 supplies the power source unit 4 with a voltage V2 greater than the voltage V1. Supply power.
 従って、電源部4で熱として無駄に消費される電力は、図2の(C)の斜線部に示すようになる。これにより、例えば、電源部4は、電圧V2の電力のみが供給される場合に対し、矢印A1に示す部分の電力の消費を抑制できる。 Therefore, the power consumed wastefully as heat in the power supply unit 4 is as indicated by the hatched portion in FIG. Thereby, for example, the power supply unit 4 can suppress the power consumption of the portion indicated by the arrow A1 compared to the case where only the power of the voltage V2 is supplied.
 このように、増幅装置は、固定電圧の電力を供給する電源部3と、可変電圧の電力を供給する電源部4とを備え、増幅部1が増幅する入力信号のエンベロープに基づくエンベロープ信号の大きさに基づいて、電源部4に異なる電圧V1,V2の電力を供給する。これにより、入力信号のエンベロープの大きさに応じた電圧の電力が電源部4に供給され、電力効率を高効率化することができる。 As described above, the amplifying apparatus includes the power supply unit 3 that supplies power of a fixed voltage and the power supply unit 4 that supplies power of variable voltage, and the magnitude of the envelope signal based on the envelope of the input signal amplified by the amplification unit 1. Based on this, power of different voltages V1 and V2 is supplied to the power supply unit 4. Thereby, the electric power of the voltage according to the magnitude | size of the envelope of an input signal is supplied to the power supply part 4, and power efficiency can be made highly efficient.
 [第2の実施の形態]
 次に、第2の実施の形態を、図面を参照して詳細に説明する。
 図3は、第2の実施の形態に係る増幅装置の回路ブロックの一例を示した図である。図3に示すように、増幅装置は、デジタル信号処理部11、DAC(Digital to Analog Converter)12,16、発振器13、乗算器14、増幅器15、バイアス電源17、AS(Active Short)回路18、トランジスタM11~M13、コンデンサC11~C15、インダクタL11、およびダイオードD11を有している。図3に示す増幅装置は、例えば、携帯電話システムの基地局に適用される。
[Second Embodiment]
Next, a second embodiment will be described in detail with reference to the drawings.
FIG. 3 is a diagram illustrating an example of a circuit block of the amplifying apparatus according to the second embodiment. As shown in FIG. 3, the amplifying apparatus includes a digital signal processing unit 11, DACs (Digital to Analog Converters) 12 and 16, an oscillator 13, a multiplier 14, an amplifier 15, a bias power supply 17, an AS (Active Short) circuit 18, Transistors M11 to M13, capacitors C11 to C15, an inductor L11, and a diode D11 are included. The amplification device shown in FIG. 3 is applied to a base station of a mobile phone system, for example.
 図4は、図3の回路ブロックの一例に信号波形を加えた図である。図4において図3と同じものには同じ符号が付してある。
 デジタル信号処理部11には、例えば、波形W11に示すような送信信号が入力される。送信信号は、例えば、携帯電話に無線送信しようとする信号である。送信信号は、デジタル値でデジタル信号処理部11に入力されるが、波形W11ではアナログの形で示している。デジタル信号処理部11は、例えば、DSP(Digital Signal Processor)やCPU(Central Processing Unit)によって形成される。
FIG. 4 is a diagram in which signal waveforms are added to the example of the circuit block of FIG. 4, the same components as those in FIG. 3 are denoted by the same reference numerals.
For example, a transmission signal as indicated by a waveform W11 is input to the digital signal processing unit 11. The transmission signal is, for example, a signal to be transmitted wirelessly to a mobile phone. The transmission signal is input to the digital signal processing unit 11 as a digital value, but is shown in an analog form in the waveform W11. The digital signal processing unit 11 is formed by, for example, a DSP (Digital Signal Processor) or a CPU (Central Processing Unit).
 DAC12は、デジタル信号処理部11から出力される送信信号をデジタル-アナログ変換する。波形W12は、DAC12でデジタル-アナログ変換された送信信号を示している。 The DAC 12 performs digital-analog conversion on the transmission signal output from the digital signal processing unit 11. A waveform W12 represents a transmission signal that has been digital-analog converted by the DAC 12.
 発振器13は、送信信号を無線周波数の無線信号に変調するための発振信号を出力する。乗算器14は、DAC12から出力される送信信号に、発振器13から出力される発振信号を乗算して無線信号を出力する。波形W13は、乗算器14から出力される無線信号を示している。 The oscillator 13 outputs an oscillation signal for modulating the transmission signal into a radio signal having a radio frequency. The multiplier 14 multiplies the transmission signal output from the DAC 12 by the oscillation signal output from the oscillator 13 and outputs a radio signal. A waveform W13 indicates a radio signal output from the multiplier 14.
 増幅器15は、電力ノードN11を介して電力が供給される。増幅器15は、電力ノードN11に供給される電力によって、乗算器14から出力される無線信号を増幅する。増幅された無線信号は、例えば、アンテナを介して携帯電話に無線送信される。波形W14は、増幅器15で増幅された無線信号を示している。 The amplifier 15 is supplied with power via the power node N11. The amplifier 15 amplifies the radio signal output from the multiplier 14 with the power supplied to the power node N11. The amplified wireless signal is wirelessly transmitted to a mobile phone via an antenna, for example. A waveform W14 shows the radio signal amplified by the amplifier 15.
 デジタル信号処理部11は、増幅器15で増幅される無線信号のエンベロープに基づくエンベロープ信号をDAC16に出力する。ここで、増幅器15で増幅される無線信号は、デジタル信号処理部11に入力される送信信号を変調したものである。そこで、デジタル信号処理部11は、入力される送信信号の所定の閾値(波形W11に示すVth)より大きい信号をエンベロープ信号として出力する。波形W15は、波形W11に示す送信信号の閾値Vthを超えたエンベロープ信号を示している。 The digital signal processing unit 11 outputs an envelope signal based on the envelope of the radio signal amplified by the amplifier 15 to the DAC 16. Here, the radio signal amplified by the amplifier 15 is obtained by modulating the transmission signal input to the digital signal processing unit 11. Therefore, the digital signal processing unit 11 outputs a signal larger than a predetermined threshold (Vth shown in the waveform W11) of the input transmission signal as an envelope signal. A waveform W15 indicates an envelope signal exceeding the transmission signal threshold value Vth shown in the waveform W11.
 また、デジタル信号処理部11は、トランジスタM12をオン・オフするための電圧切換え信号を出力する。デジタル信号処理部11は、後述するがエンベロープ信号の大きさに基づいて、電圧切換え信号を出力する。 Also, the digital signal processing unit 11 outputs a voltage switching signal for turning on / off the transistor M12. As will be described later, the digital signal processor 11 outputs a voltage switching signal based on the magnitude of the envelope signal.
 DAC16は、デジタル信号処理部11から出力されるエンベロープ信号をデジタル-アナログ変換する。波形W16は、DAC16でデジタル-アナログ変換されたエンベロープ信号を示している。 The DAC 16 digital-analog converts the envelope signal output from the digital signal processing unit 11. A waveform W16 represents an envelope signal digital-analog converted by the DAC 16.
 電圧Vdcの電源は、インダクタL11を介して、電力ノードN11と接続されている。また、電圧Vdcの電源は、コンデンサC11を介して、グランドと接続されている。電圧Vdcの電源は、電圧Vds1,Vds2の電源より電圧が低く、電圧Vds1,Vds2も含め固定電圧は高効率の電源である。電圧Vdcの電源は、固定電圧(Vdc)の電力を電力ノードN11に供給する。 The power source of the voltage Vdc is connected to the power node N11 via the inductor L11. The power source of the voltage Vdc is connected to the ground via the capacitor C11. The power supply of the voltage Vdc is lower than the power supplies of the voltages Vds1 and Vds2, and the fixed voltage including the voltages Vds1 and Vds2 is a highly efficient power supply. The power supply of the voltage Vdc supplies the power of the fixed voltage (Vdc) to the power node N11.
 トランジスタM11は、例えば、NMOSのトランジスタである。トランジスタM11のゲートには、コンデンサC12を介して、エンベロープ信号が入力される。また、トランジスタM11のゲートには、バイアス電源17から、電圧Vgのバイアス電圧が供給される。 The transistor M11 is, for example, an NMOS transistor. An envelope signal is input to the gate of the transistor M11 via the capacitor C12. A bias voltage of the voltage Vg is supplied from the bias power supply 17 to the gate of the transistor M11.
 トランジスタM11のドレインには、ダイオードD11のカソードと、トランジスタM12のドレインとが接続されている。トランジスタM11のソースは、電力ノードN11と接続されている。トランジスタM11は、ゲートに入力されるエンベロープ信号の電圧と、ソース電圧(電力ノードN11)とに基づいて、エンベロープ信号の変化に応じた電圧の電力を電力ノードN11に供給する。 The drain of the transistor M11 is connected to the cathode of the diode D11 and the drain of the transistor M12. The source of the transistor M11 is connected to the power node N11. The transistor M11 supplies the power node N11 with power of a voltage corresponding to the change in the envelope signal based on the voltage of the envelope signal input to the gate and the source voltage (power node N11).
 電圧Vds1の電源は、ダイオードD11を介して、トランジスタM11のドレインと接続されている。また、電圧Vds1の電源は、コンデンサC13を介して、グランドと接続されている。電圧Vds1の電源は、固定電圧(Vds1)の電力をトランジスタM11のドレインに供給する。 The power source of the voltage Vds1 is connected to the drain of the transistor M11 via the diode D11. The power source of the voltage Vds1 is connected to the ground through the capacitor C13. The power source of the voltage Vds1 supplies power of a fixed voltage (Vds1) to the drain of the transistor M11.
 トランジスタM12は、例えば、PMOS(Positive-channel Metal-Oxide Semiconductor)のトランジスタである。トランジスタM12のゲートには、デジタル信号処理部11から出力される電圧切換え信号が入力される。 The transistor M12 is, for example, a PMOS (Positive-channel Metal-Oxide Semiconductor) transistor. The voltage switching signal output from the digital signal processing unit 11 is input to the gate of the transistor M12.
 トランジスタM12のソースは、コンデンサC14を介して、グランドに接続されている。また、トランジスタM12のソースは、電圧Vds2の電源と接続されている。電圧Vds2の電源は、電圧Vds1の電源より電圧が大きく、電圧Vds1の電源は、電圧Vdcの電源より電圧が大きい。すなわち、電圧Vdc,Vds1,Vds2には、Vdc<Vds1<Vds2の関係がある。 The source of the transistor M12 is connected to the ground via the capacitor C14. The source of the transistor M12 is connected to the power supply of the voltage Vds2. The power supply of the voltage Vds2 is larger in voltage than the power supply of the voltage Vds1, and the power supply of the voltage Vds1 is larger in voltage than the power supply of the voltage Vdc. That is, the voltages Vdc, Vds1, and Vds2 have a relationship of Vdc <Vds1 <Vds2.
 トランジスタM12のドレインは、トランジスタM11のドレインと接続されている。トランジスタM12は、ゲートに入力される電圧切換え信号に応じて、電圧Vds2の電源の電力をトランジスタM11に供給する。ダイオードD11は、トランジスタM12からトランジスタM11に流れる電流が、電圧Vds1の電源に流れないようにしている。 The drain of the transistor M12 is connected to the drain of the transistor M11. The transistor M12 supplies the power of the power source of the voltage Vds2 to the transistor M11 according to the voltage switching signal input to the gate. The diode D11 prevents the current flowing from the transistor M12 to the transistor M11 from flowing to the power supply of the voltage Vds1.
 ここで、トランジスタM11は、エンベロープ信号と電力ノードN11の電圧とに基づいて、電力ノードN11に可変電圧の電力を供給するリニアアンプといえる。以下では、トランジスタM11による電源を可変電圧電源と呼ぶことがある。また、電圧Vdcの電源は、電力ノードN11に固定電圧の電力を供給する。以下では、電圧Vdcの電源を固定電圧電源と呼ぶことがある。 Here, it can be said that the transistor M11 is a linear amplifier that supplies power of a variable voltage to the power node N11 based on the envelope signal and the voltage of the power node N11. Hereinafter, the power supply by the transistor M11 may be referred to as a variable voltage power supply. The power supply of voltage Vdc supplies fixed voltage power to power node N11. Hereinafter, the power source of the voltage Vdc may be referred to as a fixed voltage power source.
 インダクタL11は、固定電圧電源の出力電圧と可変電圧電源の出力電圧とを結合する。波形W17は、固定電圧電源の出力電圧と可変電圧電源の出力電圧とを結合した電圧波形を示している。 The inductor L11 couples the output voltage of the fixed voltage power supply and the output voltage of the variable voltage power supply. A waveform W17 represents a voltage waveform obtained by combining the output voltage of the fixed voltage power supply and the output voltage of the variable voltage power supply.
 可変電圧電源には、電圧Vds1の電源の電力とトランジスタM12による電源の電力とが供給される。トランジスタM12による電源の電力は、デジタル信号処理部11から出力される電圧切換え信号によって、トランジスタM12がオンしたとき可変電圧電源に供給される。 The variable voltage power supply is supplied with the power of the power supply of voltage Vds1 and the power of the power supply by the transistor M12. The power of the power source by the transistor M12 is supplied to the variable voltage power source when the transistor M12 is turned on by the voltage switching signal output from the digital signal processing unit 11.
 電圧Vds1の電源とトランジスタM12による電源は、異なる電圧の電力を可変電圧電源に供給しているといえる。以下では、電圧Vds1の電源とトランジスタM12による電源とを、電源電力供給電源と呼ぶことがある。 It can be said that the power supply of the voltage Vds1 and the power supply by the transistor M12 supply power of different voltages to the variable voltage power supply. Hereinafter, the power supply of the voltage Vds1 and the power supply by the transistor M12 may be referred to as a power supply power supply power supply.
 デジタル信号処理部11は、エンベロープ信号の大きさに基づいて、電圧切換え信号を出力する。例えば、デジタル信号処理部11は、エンベロープ信号が所定の閾値(以下、この閾値をVenvと呼ぶ)より大きい場合、トランジスタM12をオンするための電圧切換え信号を出力する。デジタル信号処理部11は、エンベロープ信号が所定の閾値Venv以下の場合、トランジスタM12をオフするための電圧切換え信号を出力する。 The digital signal processing unit 11 outputs a voltage switching signal based on the magnitude of the envelope signal. For example, the digital signal processing unit 11 outputs a voltage switching signal for turning on the transistor M12 when the envelope signal is larger than a predetermined threshold (hereinafter, this threshold is referred to as Venv). The digital signal processing unit 11 outputs a voltage switching signal for turning off the transistor M12 when the envelope signal is equal to or lower than a predetermined threshold value Venv.
 すなわち、増幅装置は、可変電圧電源のゲートに、無信号のエンベロープ信号(例えば、波形W16の水平部分)が入力された場合、固定電圧電源の電力を増幅器に供給する。また、増幅装置は、可変電圧電源のゲートに、有信号のエンベロープ信号(例えば、波形W16に示す上向きの山)が入力された場合、固定電圧電源の電力に可変電圧電源の電力を重畳して増幅器15に供給する。 That is, the amplifying apparatus supplies the power of the fixed voltage power source to the amplifier when a non-signal envelope signal (for example, the horizontal portion of the waveform W16) is input to the gate of the variable voltage power source. In addition, the amplification device superimposes the power of the variable voltage power supply on the power of the fixed voltage power supply when a signal envelope signal (for example, an upward peak indicated by the waveform W16) is input to the gate of the variable voltage power supply. This is supplied to the amplifier 15.
 つまり、増幅装置は、増幅器15に入力される無線信号のエンベロープが小さい場合、固定電圧の高効率電源の電力を増幅器15に供給する。そして、増幅装置は、無線信号のエンベロープが大きい場合、低効率ではあるが高電圧を出力できる電源の電力を、そのエンベロープに応じて供給する。 That is, the amplifying apparatus supplies the power of the high-efficiency power source with a fixed voltage to the amplifier 15 when the envelope of the radio signal input to the amplifier 15 is small. Then, when the envelope of the radio signal is large, the amplifying device supplies electric power of a power source that can output a high voltage with low efficiency according to the envelope.
 そして、増幅装置は、可変電圧電源が動作しているときに、エンベロープ信号が所定の閾値Venv以下であれば、電圧Vds1の電源の電力を可変電圧電源に供給し、エンベロープ信号が所定の閾値Venvより大きければ、電圧Vds1より大きい電圧Vds2の電力を可変電圧電源に供給する。 When the variable voltage power supply is operating and the envelope signal is equal to or lower than the predetermined threshold value Venv, the amplifying device supplies the power of the power supply of the voltage Vds1 to the variable voltage power supply, and the envelope signal is set to the predetermined threshold value Venv. If it is larger, the power of the voltage Vds2 higher than the voltage Vds1 is supplied to the variable voltage power supply.
 このように、増幅装置は、固定電圧電源と可変電圧電源による増幅器15への電力供給を制御するとともに、可変電圧電源が動作するとき、可変電圧電源への電力供給を制御することにより、電力効率の高効率化を図る。 As described above, the amplifying apparatus controls the power supply to the amplifier 15 by the fixed voltage power source and the variable voltage power source, and also controls the power supply to the variable voltage power source when the variable voltage power source operates, thereby reducing the power efficiency. To improve efficiency.
 AS回路18は、トランジスタM13およびコンデンサC15を有している。コンデンサC15は、その一端が電力ノードN11に接続され、他端がトランジスタM13のドレインに接続されている。 The AS circuit 18 includes a transistor M13 and a capacitor C15. Capacitor C15 has one end connected to power node N11 and the other end connected to the drain of transistor M13.
 トランジスタM13は、例えば、NMOSのトランジスタである。トランジスタM13のゲートは、デジタル信号処理部11と接続されている。トランジスタM13のソースは、グランドに接続されている。 The transistor M13 is, for example, an NMOS transistor. The gate of the transistor M13 is connected to the digital signal processing unit 11. The source of the transistor M13 is connected to the ground.
 電力ノードN11は、トランジスタM13のオン・オフによって、コンデンサC15を介し、グランドに接地される。デジタル信号処理部11は、固定電圧電源のみが電力ノードN11に電力を供給する固定電圧電力モードにおいて、電力ノードN11を、コンデンサC15を介してグランドに接地するようAS信号を出力する。 The power node N11 is grounded via the capacitor C15 by turning on / off the transistor M13. In the fixed voltage power mode in which only the fixed voltage power supply supplies power to the power node N11, the digital signal processing unit 11 outputs an AS signal so that the power node N11 is grounded via the capacitor C15.
 すなわち、AS回路18は、アクティブにバイパスコンデンサ(コンデンサC15)を制御する回路で、固定電圧電力モードにおいて、電力ノードN11のインピーダンスを低減する。つまり、AS回路18は、固定電圧電力ノードにおける電力ノードN11の電圧変化を抑制する。以下では、電力ノードN11を、コンデンサC15を介してグランドに接地することをASと呼ぶことがある。また、固定電圧電源と可変電圧電源とが電力ノードN11に電力供給するときを、可変電圧電力モードと呼ぶことがある。 That is, the AS circuit 18 is a circuit that actively controls the bypass capacitor (capacitor C15), and reduces the impedance of the power node N11 in the fixed voltage power mode. That is, the AS circuit 18 suppresses the voltage change of the power node N11 at the fixed voltage power node. Hereinafter, grounding the power node N11 to the ground via the capacitor C15 may be referred to as AS. The time when the fixed voltage power source and the variable voltage power source supply power to the power node N11 may be referred to as a variable voltage power mode.
 なお、固定電圧電力モードでは、トランジスタM11に入力されるエンベロープ信号は、波形W16に示すように無信号状態である。トランジスタM11のゲートには、例えば、B級動作するための電圧Vgのバイアスがバイアス電源17から供給されており、トランジスタM11は、無信号状態のエンベロープ信号が入力されているとき、オフしている。 In the fixed voltage power mode, the envelope signal input to the transistor M11 is in a no-signal state as indicated by the waveform W16. The gate of the transistor M11 is supplied with, for example, a bias of the voltage Vg for class B operation from the bias power supply 17, and the transistor M11 is turned off when an envelope signal in a non-signal state is input. .
 図5は、デジタル信号処理部のブロックの一例を示した図である。デジタル信号処理部11は、上記したように、例えば、DSPやCPUによって形成され、メモリに記憶されているプログラムを実行することにより、図5に示すような機能を有する。図5に示すように、デジタル信号処理部11は、エンベロープ信号生成部21、AS信号生成部22、および電圧切換え信号生成部23を有している。 FIG. 5 is a diagram showing an example of a block of the digital signal processing unit. As described above, the digital signal processing unit 11 has a function as shown in FIG. 5 by executing a program formed by, for example, a DSP or CPU and stored in the memory. As shown in FIG. 5, the digital signal processing unit 11 includes an envelope signal generation unit 21, an AS signal generation unit 22, and a voltage switching signal generation unit 23.
 エンベロープ信号生成部21には、送信信号が入力される。エンベロープ信号生成部21は、所定の閾値より大きい送信信号をエンベロープ信号として生成する。
 例えば、エンベロープ信号生成部21は、図4で説明した閾値Vthより大きい送信信号を抽出してエンベロープ信号を生成する。すなわち、エンベロープ信号生成部21は、図4の波形W11,W15に示すように、送信信号を閾値Vthでスライスした信号をエンベロープ信号として生成する。
The envelope signal generation unit 21 receives a transmission signal. The envelope signal generation unit 21 generates a transmission signal larger than a predetermined threshold as an envelope signal.
For example, the envelope signal generating unit 21 generates an envelope signal by extracting a transmission signal that is larger than the threshold Vth described with reference to FIG. That is, the envelope signal generation unit 21 generates a signal obtained by slicing the transmission signal with the threshold value Vth as an envelope signal, as shown by the waveforms W11 and W15 in FIG.
 なお、増幅器15に入力される無線信号は、送信信号を変調した信号である。従って、エンベロープ信号生成部21に入力される送信信号は、増幅器15で増幅される無線信号のエンベロープといえる。 Note that the radio signal input to the amplifier 15 is a signal obtained by modulating the transmission signal. Therefore, the transmission signal input to the envelope signal generation unit 21 can be said to be an envelope of a radio signal amplified by the amplifier 15.
 また、無信号のエンベロープ信号が出力されているとき、トランジスタM11はオフし、固定電圧電源のみが増幅器15に電力を供給する。従って、無信号のエンベロープ信号が出力されているとき、増幅装置は固定電圧電力モードにある。また、有信号のエンベロープ信号が出力されているとき、トランジスタM11は有信号のエンベロープ信号の変化に応じた電圧の電力を増幅器15に供給する。従って、有信号のエンベロープ信号が出力されているとき、増幅装置は可変電圧電力モードにある。 In addition, when a non-signal envelope signal is output, the transistor M11 is turned off, and only the fixed voltage power supply supplies power to the amplifier 15. Therefore, when a no-envelope envelope signal is output, the amplifying device is in the fixed voltage power mode. Further, when a signal envelope signal is output, the transistor M11 supplies power to the amplifier 15 with a voltage corresponding to a change in the signal envelope signal. Therefore, when an envelope signal with a signal is output, the amplification device is in the variable voltage power mode.
 AS信号生成部22は、増幅装置が固定電圧電力モードにあるとき、電力ノードN11をASするためのAS信号を出力する。また、AS信号生成部22は、可変電圧電力モードのとき、電力ノードN11のASを開放するためのAS信号を出力する。 The AS signal generation unit 22 outputs an AS signal for AS of the power node N11 when the amplification device is in the fixed voltage power mode. Further, the AS signal generation unit 22 outputs an AS signal for opening the AS of the power node N11 in the variable voltage power mode.
 例えば、AS信号生成部22には、送信信号が入力される。AS信号生成部22は、送信信号のエンベロープが閾値Vth以下のとき、すなわち、固定電圧電力モードのとき、電力ノードN11をASするためのAS信号を出力する。例えば、AS信号生成部22は、AS回路18のトランジスタM13をオンするためのH状態のAS信号を出力する。 For example, a transmission signal is input to the AS signal generation unit 22. The AS signal generation unit 22 outputs an AS signal for AS for the power node N11 when the envelope of the transmission signal is equal to or lower than the threshold value Vth, that is, in the fixed voltage power mode. For example, the AS signal generation unit 22 outputs an AS signal in the H state for turning on the transistor M13 of the AS circuit 18.
 また、AS信号生成部22は、送信信号のエンベロープが閾値Vthより大きいとき、すなわち、可変電圧電力モードにあるとき、電力ノードN11のASを開放するためのAS信号を出力する。例えば、AS信号生成部22は、AS回路18のトランジスタM13をオフするためのL状態のAS信号を出力する。 Also, the AS signal generation unit 22 outputs an AS signal for releasing the AS of the power node N11 when the envelope of the transmission signal is larger than the threshold value Vth, that is, in the variable voltage power mode. For example, the AS signal generation unit 22 outputs an AS signal in an L state for turning off the transistor M13 of the AS circuit 18.
 電圧切換え信号生成部23には、送信信号、エンベロープ信号、およびAS信号が入力される。電圧切換え信号生成部23は、可変電圧電力モードのときで、トランジスタM11が連続的に動作する区間(電力を電力ノードN11に連続的に供給する区間)におけるエンベロープ信号の最大値と、閾値Venvとを比較する。そして、電圧切換え信号生成部23は、連続的に動作する区間において、エンベロープ信号の最大値が閾値Venvより大きければ、電圧Vds2の電源の電力がトランジスタM11に供給されるよう、トランジスタM12をオンする電圧切換え信号を出力する。例えば、電圧切換え信号生成部23は、L状態の電圧切換え信号を出力する。 The voltage switching signal generator 23 receives a transmission signal, an envelope signal, and an AS signal. The voltage switching signal generator 23 is in the variable voltage power mode, and the maximum value of the envelope signal in the section in which the transistor M11 continuously operates (the section in which power is continuously supplied to the power node N11), the threshold Venv, Compare Then, the voltage switching signal generator 23 turns on the transistor M12 so that the power of the power source of the voltage Vds2 is supplied to the transistor M11 if the maximum value of the envelope signal is larger than the threshold value Venv in the continuously operating period. Outputs a voltage switching signal. For example, the voltage switching signal generator 23 outputs an L state voltage switching signal.
 また、電圧切換え信号生成部23は、トランジスタM11が連続的に動作する区間において、エンベロープ信号の最大値が閾値Venv以下であれば、電圧Vds1の電源の電力のみがトランジスタM11に供給されるよう、トランジスタM12をオフする電圧切換え信号を出力する。例えば、電圧切換え信号生成部23は、H状態の電圧切換え信号を出力する。 Further, the voltage switching signal generation unit 23 is configured so that only the power of the power source of the voltage Vds1 is supplied to the transistor M11 if the maximum value of the envelope signal is equal to or lower than the threshold value Venv in the section in which the transistor M11 operates continuously. A voltage switching signal for turning off the transistor M12 is output. For example, the voltage switching signal generator 23 outputs an H state voltage switching signal.
 なお、電圧切換え信号生成部23は、AS信号によって、トランジスタM11が連続的に動作する区間を認識できる。例えば、電圧切換え信号生成部23は、AS信号がL状態のとき、トランジスタM11が連続的に動作していると認識できる。 Note that the voltage switching signal generation unit 23 can recognize a section in which the transistor M11 continuously operates based on the AS signal. For example, the voltage switching signal generator 23 can recognize that the transistor M11 is operating continuously when the AS signal is in the L state.
 また、図5に示す各部は、エンベロープ信号生成部21から出力されるエンベロープ信号、AS信号生成部22から出力されるAS信号、電圧切換え信号生成部23から出力される電圧切換え信号、およびDAC12に出力される送信信号のタイミングが一致するように処理を行う。 5 includes an envelope signal output from the envelope signal generation unit 21, an AS signal output from the AS signal generation unit 22, a voltage switching signal output from the voltage switching signal generation unit 23, and the DAC 12. Processing is performed so that the timings of the output transmission signals match.
 図6は、図5のブロックの動作を説明する図である。図6の(A)には、エンベロープ信号生成部21、AS信号生成部22、および電圧切換え信号生成部23に入力される送信信号が示してある。図6の(B)には、エンベロープ信号生成部21が生成するエンベロープ信号が示してある。図6の(C)には、電力ノードN11の電圧波形が示してある。図6の(D)には、AS信号生成部22が生成するAS信号が示してある。図6の(E)には、電圧切換え信号生成部23が生成する電圧切換え信号が示してある。 FIG. 6 is a diagram for explaining the operation of the block of FIG. 6A shows transmission signals input to the envelope signal generation unit 21, the AS signal generation unit 22, and the voltage switching signal generation unit 23. FIG. FIG. 6B shows an envelope signal generated by the envelope signal generation unit 21. FIG. 6C shows a voltage waveform at the power node N11. FIG. 6D shows an AS signal generated by the AS signal generation unit 22. FIG. 6E shows a voltage switching signal generated by the voltage switching signal generator 23.
 エンベロープ信号生成部21は、図6の(A)に示すように、送信信号と閾値Vthとを比較する。エンベロープ信号生成部21は、送信信号が閾値Vthより大きい場合、図6の(B)に示すように送信信号を抽出し、エンベロープ信号を生成する。 The envelope signal generation unit 21 compares the transmission signal with the threshold value Vth, as shown in FIG. When the transmission signal is larger than the threshold value Vth, the envelope signal generation unit 21 extracts the transmission signal and generates an envelope signal as shown in FIG.
 生成されたエンベロープ信号は、トランジスタM11に出力される。トランジスタM11は、無信号のエンベロープ信号が入力されているときオフし、電力ノードN11には、電圧Vdcの電源の電圧が供給される。また、トランジスタM11は、有信号のエンベロープ信号が入力されているときオンし、電力ノードN11には、有信号のエンベロープに応じた電源電力供給電源の電圧が供給される。これにより、電力ノードN11の電圧波形は、図6の(C)に示すようになる。 The generated envelope signal is output to the transistor M11. The transistor M11 is turned off when a non-envelope envelope signal is input, and the power node N11 is supplied with the power supply voltage of the voltage Vdc. Further, the transistor M11 is turned on when a signal envelope signal is input, and the power node N11 is supplied with the voltage of the power supply power supply corresponding to the signal envelope. Thereby, the voltage waveform of the power node N11 becomes as shown in FIG.
 AS信号生成部22は、図6の(D)に示すように、送信信号が閾値Vthより大きいとき、L状態のAS信号を出力する。また、AS信号生成部22は、図6の(D)に示すように、送信信号が閾値Vth以下のとき、H状態の信号を生成する。 As shown in FIG. 6D, the AS signal generation unit 22 outputs an AS signal in the L state when the transmission signal is larger than the threshold value Vth. Further, as shown in FIG. 6D, the AS signal generation unit 22 generates an H-state signal when the transmission signal is equal to or lower than the threshold value Vth.
 すなわち、AS信号生成部22は、固定電圧電力モードにあるとき、電力ノードN11をASするよう、トランジスタM13をオンするためのAS信号を出力する。また、AS信号生成部22は、可変電圧電力モードのとき、電力ノードN11のASを開放するよう、トランジスタM13をオフするためのAS信号を出力する。 That is, when in the fixed voltage power mode, the AS signal generation unit 22 outputs an AS signal for turning on the transistor M13 so that the power node N11 is AS. The AS signal generation unit 22 outputs an AS signal for turning off the transistor M13 so as to open the AS of the power node N11 in the variable voltage power mode.
 なお、トランジスタM11は、AS信号がL状態にあるときオンし、電源電力供給電源の電力を電力ノードN11に連続的に供給する。すなわち、AS信号がL状態にあるときが、トランジスタM11が連続的に動作する区間である。 The transistor M11 is turned on when the AS signal is in the L state, and continuously supplies the power of the power supply power supply to the power node N11. That is, when the AS signal is in the L state, the transistor M11 continuously operates.
 電圧切換え信号生成部23は、図6の(D),(B)に示すように、AS信号がL状態のときのエンベロープ信号と閾値Venvとを比較する。すなわち、電圧切換え信号生成部23は、トランジスタM11が連続的に動作する区間におけるエンベロープ信号と閾値Venvとを比較する。電圧切換え信号生成部23は、トランジスタM11が連続的に動作する区間におけるエンベロープ信号が閾値Venvより大きい場合、図6の(E)に示すように、トランジスタM12をオンするようL状態の電圧切換え信号を出力する。 As shown in FIGS. 6D and 6B, the voltage switching signal generator 23 compares the envelope signal when the AS signal is in the L state with the threshold value Venv. That is, the voltage switching signal generation unit 23 compares the envelope signal and the threshold value Venv in the section in which the transistor M11 operates continuously. When the envelope signal in the section in which the transistor M11 continuously operates is larger than the threshold value Venv, the voltage switching signal generation unit 23 turns on the voltage switching signal in the L state so as to turn on the transistor M12 as shown in FIG. Is output.
 これにより、可変電圧電力モードにおいて(AS信号がL状態において)、エンベロープ信号が閾値Venvより大きい場合、トランジスタM11のドレインには、電圧Vds2の電源の電力が供給される。また、可変電圧電力モードにおいて、エンベロープ信号が閾値Venv以下の場合、トランジスタM11のドレインには、電圧Vds1の電源の電力が供給される。 Thereby, in the variable voltage power mode (when the AS signal is in the L state), when the envelope signal is larger than the threshold value Venv, the power of the power source of the voltage Vds2 is supplied to the drain of the transistor M11. In the variable voltage power mode, when the envelope signal is equal to or lower than the threshold value Venv, the power of the power source of the voltage Vds1 is supplied to the drain of the transistor M11.
 従って、エンベロープ信号が閾値Venvより大きい場合、トランジスタM11で無駄に消費される電力(熱として消費される電力)は、図6の(C)の最も左に示す斜線部分となる。また、エンベロープ信号が閾値Venv以下の場合、トランジスタM11で無駄に消費される電力は、図6の(C)の左から2~4番目に示す斜線部分となる。 Therefore, when the envelope signal is larger than the threshold value Venv, the power consumed wastefully by the transistor M11 (power consumed as heat) is the shaded portion shown on the leftmost side in FIG. When the envelope signal is equal to or lower than the threshold value Venv, the power consumed in the transistor M11 is the second to fourth shaded portion from the left in FIG. 6C.
 図7は、可変電圧電源に電力を供給する電源が1個の場合の増幅装置の一部を示した図である。図7において図3と同じものには同じ符号を付し、その説明を省略する。
 図7の増幅装置では、トランジスタM11のドレインに電圧Vds2の電源が接続されている。すなわち、図7の増幅装置では、可変電圧電源に電力を供給する電源が電圧Vds2の電源1個である。
FIG. 7 is a diagram showing a part of the amplifying apparatus when there is one power source for supplying power to the variable voltage power source. 7 that are the same as those in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted.
In the amplifying device of FIG. 7, a power source having a voltage Vds2 is connected to the drain of the transistor M11. That is, in the amplifying apparatus of FIG. 7, the power source that supplies power to the variable voltage power source is one power source of the voltage Vds2.
 図8は、図7の可変電圧電源の損失を説明する図である。図8には、図7の電力ノードN11の電圧波形が示してある。
 上記したように、図7の増幅装置では、可変電圧電源に電力を供給する電源が電圧Vds2の電源1個である。従って、トランジスタM11で無駄に消費される電力は、図8の斜線部分となる。つまり、図7の増幅装置では、可変電圧電力モードにおいてエンベロープ信号の振幅が小さい場合、熱として無駄に電力を消費しており電力効率が低い。
FIG. 8 is a diagram for explaining the loss of the variable voltage power supply of FIG. FIG. 8 shows a voltage waveform at the power node N11 in FIG.
As described above, in the amplifying apparatus of FIG. 7, the power source that supplies power to the variable voltage power source is one power source of the voltage Vds2. Therefore, the power consumed wastefully by the transistor M11 is the hatched portion in FIG. That is, in the amplifying apparatus of FIG. 7, when the amplitude of the envelope signal is small in the variable voltage power mode, power is wasted as heat and power efficiency is low.
 一方、図3の増幅装置では、エンベロープ信号の大きさに基づいて、可変電圧電源に異なる電圧Vds1,Vds2の電力を供給する。従って、図3の増幅装置では、図6の(C)の矢印A11に示すように、熱として無駄に消費される電力を抑制することができる。 On the other hand, in the amplifying apparatus of FIG. 3, power of different voltages Vds1 and Vds2 is supplied to the variable voltage power supply based on the magnitude of the envelope signal. Therefore, in the amplifying apparatus in FIG. 3, as shown by an arrow A11 in FIG. 6C, it is possible to suppress power that is wasted as heat.
 このように、増幅装置は、エンベロープ信号の大きさに基づいて、可変電圧電源に異なる電圧の電力を供給するようにした。これによって、増幅装置は、電力効率を高効率化することができる。 As described above, the amplifying apparatus supplies power of different voltages to the variable voltage power source based on the magnitude of the envelope signal. Thereby, the amplifying apparatus can increase the power efficiency.
 [第3の実施の形態]
 次に、第3の実施の形態を、図面を参照して詳細に説明する。第3の実施の形態では、電圧切換え信号の切換えタイミングについて説明する。
[Third Embodiment]
Next, a third embodiment will be described in detail with reference to the drawings. In the third embodiment, the switching timing of the voltage switching signal will be described.
 図9は、第3の実施の形態に係るデジタル信号処理部のブロックの一例を示した図である。図9において図5と同じものには同じ符号を付し、その説明を省略する。なお、第3の実施の形態に係る増幅装置の回路ブロックは、図3の増幅装置の回路ブロックと同様である。 FIG. 9 is a diagram illustrating an example of a block of the digital signal processing unit according to the third embodiment. 9, the same components as those in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted. Note that the circuit block of the amplification device according to the third embodiment is the same as the circuit block of the amplification device of FIG.
 図9に示すように、デジタル信号処理部11は、電圧切換え信号生成部31を有している。電圧切換え信号生成部31は、可変電圧電源が電力供給停止期間に入ってから所定時間経過後に、電圧切換え信号の状態を遷移する。電圧切換え信号生成部31のその他の機能は、図5で説明した電圧切換え信号生成部23と同様である。 As shown in FIG. 9, the digital signal processing unit 11 has a voltage switching signal generation unit 31. The voltage switching signal generator 31 transitions the state of the voltage switching signal after a predetermined time has elapsed since the variable voltage power supply entered the power supply stop period. Other functions of the voltage switching signal generator 31 are the same as those of the voltage switching signal generator 23 described with reference to FIG.
 図10は、電圧切換え信号生成部の動作を説明する図である。図10の(A)には、エンベロープ信号生成部21が生成するエンベロープ信号が示してある。図10の(A)に示す区間S11~S14は、可変電圧電源(トランジスタM11)の電力供給停止期間を示している。図10の(B)には、電圧切換え信号生成部31が生成する電圧切換え信号が示してある。図10の(C)には、AS信号生成部22が生成するAS信号が示してある。 FIG. 10 is a diagram for explaining the operation of the voltage switching signal generator. FIG. 10A shows an envelope signal generated by the envelope signal generation unit 21. The sections S11 to S14 shown in FIG. 10A indicate the power supply stop period of the variable voltage power supply (transistor M11). FIG. 10B shows a voltage switching signal generated by the voltage switching signal generator 31. FIG. 10C shows an AS signal generated by the AS signal generation unit 22.
 電圧切換え信号生成部31は、図10の(A)~(C)に示すように、AS信号がL状態において、エンベロープ信号が閾値Venvより大きい場合、トランジスタM12をオンするようL状態の電圧切換え信号を生成する。このとき、電圧切換え信号生成部31は、可変電圧電源が電力供給停止期間に入ってから所定時間後にH状態からL状態に遷移する電圧切換え信号を生成する。例えば、電圧切換え信号生成部31は、図10の(B)に示すように、区間S11,S13に入ってから所定時間(T1)経過後に電圧切換え信号をH状態からL状態に遷移させる。 As shown in FIGS. 10A to 10C, the voltage switching signal generation unit 31 switches the voltage in the L state to turn on the transistor M12 when the AS signal is in the L state and the envelope signal is larger than the threshold value Venv. Generate a signal. At this time, the voltage switching signal generation unit 31 generates a voltage switching signal that transitions from the H state to the L state after a predetermined time since the variable voltage power supply enters the power supply stop period. For example, as shown in FIG. 10B, the voltage switching signal generation unit 31 changes the voltage switching signal from the H state to the L state after a predetermined time (T1) has elapsed after entering the sections S11 and S13.
 また、電圧切換え信号生成部31は、図10の(A)~(C)に示すように、AS信号がL状態において、エンベロープ信号が閾値Venv以下の場合、トランジスタM12をオフするようH状態の電圧切換え信号を生成する。このとき、電圧切換え信号生成部31は、電力供給停止期間に入ってから所定時間後にL状態からH状態に遷移する電圧切換え信号を生成する。例えば、電圧切換え信号生成部31は、図10の(B)に示すように、区間S12,S14に入ってから所定時間(T2)経過後に電圧切換え信号をL状態からH状態に遷移させる。 Further, as shown in FIGS. 10A to 10C, the voltage switching signal generator 31 is in the H state so as to turn off the transistor M12 when the AS signal is in the L state and the envelope signal is equal to or lower than the threshold value Venv. A voltage switching signal is generated. At this time, the voltage switching signal generation unit 31 generates a voltage switching signal that transitions from the L state to the H state after a predetermined time from the start of the power supply stop period. For example, as shown in FIG. 10B, the voltage switching signal generation unit 31 changes the voltage switching signal from the L state to the H state after a predetermined time (T2) has elapsed after entering the sections S12 and S14.
 なお、電圧切換え信号生成部31は、AS信号によって、電力供給停止期間を認識できる。例えば、電圧切換え信号生成部31は、AS信号がH状態のとき、可変電圧電源は電力供給停止期間にあると認識できる。 The voltage switching signal generator 31 can recognize the power supply stop period based on the AS signal. For example, the voltage switching signal generator 31 can recognize that the variable voltage power supply is in the power supply stop period when the AS signal is in the H state.
 このように、増幅装置は、可変電圧電源が電力供給停止期間に入ってから所定時間経過後に電圧切換え信号の状態を遷移させる。これにより、増幅装置は、電力モードが切換わるとき、電力ノードN11に急激な電流が流れないようにすることができる。 As described above, the amplifying apparatus changes the state of the voltage switching signal after a predetermined time has elapsed since the variable voltage power supply enters the power supply stop period. Thereby, the amplifying apparatus can prevent a sudden current from flowing through the power node N11 when the power mode is switched.
 例えば、可変電圧電源が電力ノードN11に電力供給をするとき、または、可変電圧電源が電力ノードN11への電力供給を停止するとき、電源電力供給電源から可変電圧電源に供給される電力の電圧が変化すると、電力ノードN11に急激な電流が流れる。しかし、増幅装置は、可変電圧電源が電力供給停止期間に入ってから所定時間経過後に電圧切換え信号の状態を遷移させるので、急激な電流の発生を抑制することができる。 For example, when the variable voltage power supply supplies power to the power node N11 or when the variable voltage power supply stops supplying power to the power node N11, the voltage of the power supplied from the power supply power supply power to the variable voltage power supply is When changed, a rapid current flows through power node N11. However, since the amplifying apparatus changes the state of the voltage switching signal after a lapse of a predetermined time after the variable voltage power supply enters the power supply stop period, it is possible to suppress the rapid generation of current.
 [第4の実施の形態]
 次に、第4の実施の形態を、図面を参照して詳細に説明する。電圧切換え信号に応じて、可変電圧電源に異なる電圧の電力を供給する電源電力供給電源は、電圧の切換えに時間を要する。従って、例えば、可変電圧電源が連続的に動作する第1の区間と、次の連続的に動作する第2の区間との間の時間が、電源電力供給電源の電圧切換え時間より短い場合、電源電力供給電源の電圧切換えが間に合わない場合が生じる。そこで、第4の実施の形態では、可変電圧電源が連続的に動作する第1の区間と次の第2の区間との間の時間が、電源電力供給電源の電圧切換え時間より短い場合でも、電源電力供給電源が適切に電圧切換えするようにする。
[Fourth Embodiment]
Next, a fourth embodiment will be described in detail with reference to the drawings. The power supply power supply that supplies different voltage power to the variable voltage power supply in accordance with the voltage switching signal requires time to switch the voltage. Therefore, for example, when the time between the first interval in which the variable voltage power supply continuously operates and the second interval in which the variable voltage power supply continuously operates is shorter than the voltage switching time of the power supply power supply, There is a case where the voltage switching of the power supply power supply is not in time. Therefore, in the fourth embodiment, even when the time between the first section in which the variable voltage power supply continuously operates and the next second section is shorter than the voltage switching time of the power supply power supply, Make sure that the power supply is properly switched.
 図11は、第4の実施の形態に係るデジタル信号処理部のブロックの一例を示した図である。図11において図5と同じものには同じ符号を付し、その説明を省略する。なお、第4の実施の形態に係る増幅装置の回路ブロックは、図3の増幅装置の回路ブロックと同様である。 FIG. 11 is a diagram illustrating an example of a block of the digital signal processing unit according to the fourth embodiment. 11 that are the same as those in FIG. 5 are given the same reference numerals, and descriptions thereof are omitted. Note that the circuit block of the amplifier according to the fourth embodiment is the same as the circuit block of the amplifier of FIG.
 図11に示すように、デジタル信号処理部11は、電圧切換え信号生成部41を有している。電圧切換え信号生成部41は、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じた場合、それらの区間を1つの連続的に動作する区間とする。電圧切換え信号生成部41は、1つの連続的に動作する区間とした区間におけるエンベロープ信号の最大値と、閾値Venvとを比較する。電圧切換え信号生成部41のその他の機能は、図5で説明した電圧切換え信号生成部23と同様である。 As shown in FIG. 11, the digital signal processing unit 11 has a voltage switching signal generation unit 41. When the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply, the voltage switching signal generator 41 sets these sections as one continuously operating section. . The voltage switching signal generation unit 41 compares the maximum value of the envelope signal in one section that is continuously operated with the threshold value Venv. Other functions of the voltage switching signal generator 41 are the same as those of the voltage switching signal generator 23 described with reference to FIG.
 図12は、電圧切換え信号生成部の動作を説明する図である。図12の(A)には、エンベロープ信号生成部21が生成するエンベロープ信号が示してある。図12の(B)には、AS信号生成部22が生成するAS信号が示してある。図12の(C)には、可変電圧電源(トランジスタM11)の連続的に動作する区間が、電源電力供給電源(トランジスタM12と電圧Vdcの電源)の電圧切換え時間より短い時間で生じる場合でも、補正処理していない電圧切換え信号が示してある。図12の(D)には、図12の(C)に示す電圧切換え信号に応じたトランジスタM12のドレイン電圧変化が示してある。図12の(E)には、電圧切換え信号生成部41の生成する切換え不可信号が示してある。図12の(F)には、電圧切換え信号生成部41の生成する電圧切換え信号が示してある。図12の(G)には、図12の(F)に示す電圧切換え信号に応じたトランジスタM12のドレイン電圧変化が示してある。 FIG. 12 is a diagram for explaining the operation of the voltage switching signal generator. FIG. 12A shows an envelope signal generated by the envelope signal generator 21. FIG. 12B shows an AS signal generated by the AS signal generation unit 22. In FIG. 12C, even if the section in which the variable voltage power supply (transistor M11) operates continuously occurs in a time shorter than the voltage switching time of the power supply power supply (transistor M12 and the power supply of the voltage Vdc), A voltage switching signal that has not been corrected is shown. FIG. 12D shows changes in the drain voltage of the transistor M12 in response to the voltage switching signal shown in FIG. FIG. 12E shows a switching impossibility signal generated by the voltage switching signal generator 41. FIG. 12F shows a voltage switching signal generated by the voltage switching signal generation unit 41. FIG. 12G shows a change in drain voltage of the transistor M12 in response to the voltage switching signal shown in FIG.
 まず、電圧切換え信号を補正処理していない場合について説明する。図12の(A),(C)に示すように、エンベロープ信号が閾値Venvより大きい場合、電圧切換え信号は、トランジスタM12がオンして、電圧Vds2の電力をトランジスタM11に供給するようL状態となる。 First, the case where the voltage switching signal is not corrected will be described. As shown in FIGS. 12A and 12C, when the envelope signal is larger than the threshold value Venv, the voltage switching signal is in the L state so that the transistor M12 is turned on and the power of the voltage Vds2 is supplied to the transistor M11. Become.
 ここで、トランジスタM12は、電圧の切換えに時間を要する。例えば、図12の(C),(D)に示すように、電圧切換え信号がH状態からL状態に変化しても、トランジスタM12のドレイン電圧変化は傾斜を有する。PMOSトランジスタでは、例えば、電圧の切換えに100nsec要するものがある。 Here, the transistor M12 requires time for voltage switching. For example, as shown in FIGS. 12C and 12D, even if the voltage switching signal changes from the H state to the L state, the drain voltage change of the transistor M12 has a slope. Some PMOS transistors require, for example, 100 nsec for voltage switching.
 そのため、トランジスタM11の連続的に動作する区間が、トランジスタM12の電圧切換え時間より短い時間で生じた場合、トランジスタM12の電圧切換えがトランジスタM11に供給すべき電圧に間に合わない場合が生じる。 Therefore, when the section in which the transistor M11 continuously operates occurs in a time shorter than the voltage switching time of the transistor M12, the voltage switching of the transistor M12 may not be in time for the voltage to be supplied to the transistor M11.
 例えば、図12の(A)の時刻t1-t2に示すトランジスタM11の連続的に動作する区間と、図12の(A)の時刻t3-t4に示すトランジスタM11の連続的に動作する区間との間の時間(すなわち、時刻t2-t3の間の時間)が、トランジスタM12の電圧切換え時間より短いとする。この場合、図12の(A),(D)の時刻t3-t4に示すように、トランジスタM11には、トランジスタM12から電圧が変化する電力が供給される。このため、増幅器15は、ゲインが変化し、無線信号を適切に増幅できない場合が生じる。 For example, a section in which the transistor M11 continuously operates at time t1-t2 in FIG. 12A and a section in which the transistor M11 continuously operates at time t3-t4 in FIG. Assume that the time between them (that is, the time between time t2 and t3) is shorter than the voltage switching time of the transistor M12. In this case, as shown at times t3-t4 in FIGS. 12A and 12D, the transistor M11 is supplied with electric power whose voltage changes from the transistor M12. For this reason, the amplifier 15 may change the gain and cannot amplify the radio signal appropriately.
 また、例えば、図12の(A)の時刻t5-t6に示すトランジスタM11の連続的に動作する区間と、図12の(A)の時刻t7-t8に示すトランジスタM11の連続的に動作する区間との間の時間(すなわち、時刻t6-t7の間の時間)が、トランジスタM12の電圧切換え時間より短いとする。この場合、図12の(A),(D)の時刻t7-t8に示すように、トランジスタM11には、トランジスタM12から電圧が変化する電力が供給される。このため、増幅器15は、ゲインが変化し、無線信号を適切に増幅できない場合が生じる。 Further, for example, a section in which the transistor M11 continuously operates at time t5-t6 in FIG. 12A and a section in which the transistor M11 continuously operates at time t7-t8 in FIG. (Ie, the time between times t6 and t7) is shorter than the voltage switching time of the transistor M12. In this case, as shown at times t7 to t8 in FIGS. 12A and 12D, the transistor M11 is supplied with electric power whose voltage changes from the transistor M12. For this reason, the amplifier 15 may change the gain and cannot amplify the radio signal appropriately.
 次に、電圧切換え信号を補正処理する場合、すなわち、電圧切換え信号生成部41の動作について説明する。電圧切換え信号生成部41は、AS信号によって、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じたことを検出する。 Next, when the voltage switching signal is corrected, that is, the operation of the voltage switching signal generator 41 will be described. Based on the AS signal, the voltage switching signal generation unit 41 detects that the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply.
 例えば、図12の(B)に示すように、AS信号のL状態は、トランジスタM11が連続的に動作する区間を示している。従って、電圧切換え信号生成部41は、AS信号のH状態の時間と、トランジスタM12の電圧切換え時間とを比較することによって、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じたことを検出できる。例えば、電圧切換え信号生成部41は、図12の(B)に示すAS信号の、時刻t2-t3の間のH状態の時間は電源電力供給電源の電圧切換え時間より短い時間で生じたと検出する。 For example, as shown in FIG. 12B, the L state of the AS signal indicates a section in which the transistor M11 operates continuously. Accordingly, the voltage switching signal generation unit 41 compares the time of the AS signal in the H state with the voltage switching time of the transistor M12, so that the section in which the variable voltage power supply continuously operates is the voltage of the power supply power supply. It is possible to detect that it occurred in a time shorter than the switching time. For example, the voltage switching signal generation unit 41 detects that the time of the H state between the times t2 and t3 of the AS signal shown in FIG. 12B is shorter than the voltage switching time of the power supply source. .
 電圧切換え信号生成部41は、AS信号によって、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じたことを検出すると、図12の(E)に示すように、切換え不可信号を生成する。例えば、電圧切換え信号生成部41は、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じたことを検出したときのAS信号を切換え不可信号として生成する。 When the voltage switching signal generation unit 41 detects that the section in which the variable voltage power supply continuously operates is generated in a time shorter than the voltage switching time of the power supply power supply by the AS signal, the voltage switching signal generation unit 41 in FIG. As shown, a switch disable signal is generated. For example, the voltage switching signal generation unit 41 generates the AS signal as a non-switchable signal when it is detected that the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply. To do.
 電圧切換え信号生成部41は、切換え不可信号を生成すると、その切換え不可信号の前後のトランジスタM11が連続的に動作する区間を1つの連続的に動作する区間とする。
 例えば、電圧切換え信号生成部41は、図12の(E)の区間S21に示すように、H状態の切換え不可信号の前後の時刻t1-t2の連続区間と、時刻t3-t4の連続区間とを1つの連続区間とする。また、電圧切換え信号生成部41は、図12の(E)の区間S22に示すように、H状態の切換え不可信号の前後の時刻t5-t6の連続区間と、時刻t7-t8の連続区間とを1つの連続区間とする。
When the voltage switching signal generation unit 41 generates the switching impossibility signal, the section in which the transistor M11 before and after the switching impossibility signal continuously operates is defined as one continuously operating section.
For example, as shown in section S21 of FIG. 12E, the voltage switching signal generation unit 41 includes a continuous section at time t1-t2 before and after the H state switching disable signal, and a continuous section at time t3-t4. Is one continuous section. Further, as shown in the section S22 in FIG. 12E, the voltage switching signal generation unit 41 includes a continuous section at time t5-t6 before and after the H state switching disable signal, and a continuous section at time t7-t8. Is one continuous section.
 これによって、図12の(G)の時刻t3-t4に示すように、トランジスタM11には、トランジスタM12から一定の電圧の電力が供給される。このため、増幅器15は、ゲインが変化することがなく、無線信号を適切に増幅できる。また、図12の(G)の時刻t7-t8に示すように、トランジスタM11には、トランジスタM12から一定の電圧の電力が供給される。このため、増幅器15は、ゲインが変化することがなく、無線信号を適正に増幅できる。 As a result, as shown at time t3-t4 in FIG. 12G, the transistor M11 is supplied with power having a constant voltage from the transistor M12. Therefore, the amplifier 15 can appropriately amplify the radio signal without changing the gain. Further, as shown at time t7-t8 in FIG. 12G, the transistor M11 is supplied with power having a constant voltage from the transistor M12. Therefore, the amplifier 15 can appropriately amplify the radio signal without changing the gain.
 このように、増幅装置は、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じた場合、それらの区間を1つの連続的に動作する区間とする。そして、増幅装置は、この区間におけるエンベロープ信号の最大値と閾値Venvとを比較して、電圧切換え信号を生成する。これにより、増幅装置は、無線信号を適切に増幅することができる。 As described above, when the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply, the amplifier apparatus sets these sections as one continuously operating section. . Then, the amplifying device compares the maximum value of the envelope signal in this section with the threshold value Venv to generate a voltage switching signal. Thereby, the amplification device can appropriately amplify the radio signal.
 例えば、増幅装置が携帯電話システムに適用される場合、増幅器15は、ゲインの直線性が求められる。増幅器15は、供給される電力の変化によってゲインが変化すると、増幅する無線信号にAM(Amplitude Modulation)成分が雑音として加算され、歪が生じる。しかし、上記の増幅装置では、増幅器15のゲイン変化を抑制でき、無線信号の歪を抑制できる。 For example, when the amplification device is applied to a mobile phone system, the amplifier 15 is required to have gain linearity. When the gain of the amplifier 15 changes due to a change in supplied power, an AM (Amplitude Modulation) component is added as noise to the radio signal to be amplified, resulting in distortion. However, in the amplifying apparatus described above, the gain change of the amplifier 15 can be suppressed, and the distortion of the radio signal can be suppressed.
 また、増幅装置は、可変電圧電源の連続的に動作する区間が、電源電力供給電源の電圧切換え時間より短い時間で生じた場合、それらの区間を1つの連続的に動作する区間とすることにより、トランジスタM12に高速のNMOSトランジスタを使用しなくて済む。すなわち、トランジスタM12に2SJや2SAなどの低コストのPMOSトランジスタを用いることができる。 In addition, when the section in which the variable voltage power supply continuously operates occurs in a time shorter than the voltage switching time of the power supply power supply, the amplifying apparatus sets the sections as one continuously operating section. Therefore, it is not necessary to use a high-speed NMOS transistor for the transistor M12. That is, a low-cost PMOS transistor such as 2SJ or 2SA can be used as the transistor M12.
 なお、第4の実施の形態に第2の実施の形態および第3の実施の形態を組み合わせることもできる。
 [第5の実施の形態]
 次に、第5の実施の形態を、図面を参照して詳細に説明する。第2の実施の形態では、電源電力供給電源は2種類の電圧の電力を可変電圧電源に供給した。第5の実施の形態では、3種類の電圧の電力を可変電圧電源に供給する例について説明する。
Note that the second embodiment and the third embodiment can be combined with the fourth embodiment.
[Fifth Embodiment]
Next, a fifth embodiment will be described in detail with reference to the drawings. In the second embodiment, the power supply for supplying power supplies two types of voltage power to the variable voltage power supply. In the fifth embodiment, an example in which power of three types of voltages is supplied to a variable voltage power source will be described.
 図13は、第5の実施の形態に係る増幅装置の回路ブロックの一例を示した図である。図13において図3と同じものには同じ符号を付し、その説明を省略する。
 図13では、増幅装置は、PMOSのトランジスタM21、コンデンサC21、およびダイオードD21を有している。図13では、図4で説明したように、インダクタL11には、電圧Vdcの電源が接続され、ダイオードD11のアノードには、電圧Vds1の電源が接続されているとする。また、図13では、トランジスタM21のソースには、電圧Vds2の電源が接続され、トランジスタM12のソースには、電圧Vds3の電源が接続されているとする。電圧Vdc,Vds1~Vds3の間には、Vdc<Vds1<Vds2<Vds3の関係がある。
FIG. 13 is a diagram illustrating an example of a circuit block of the amplifying apparatus according to the fifth embodiment. 13 that are the same as those in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted.
In FIG. 13, the amplifying device includes a PMOS transistor M21, a capacitor C21, and a diode D21. In FIG. 13, as described with reference to FIG. 4, it is assumed that the power source of the voltage Vdc is connected to the inductor L <b> 11, and the power source of the voltage Vds <b> 1 is connected to the anode of the diode D <b> 11. In FIG. 13, it is assumed that the power source of the voltage Vds2 is connected to the source of the transistor M21, and the power source of the voltage Vds3 is connected to the source of the transistor M12. There is a relationship of Vdc <Vds1 <Vds2 <Vds3 among the voltages Vdc and Vds1 to Vds3.
 トランジスタM21のソースには、コンデンサC21の一端が接続される。コンデンサC21の他端はグランドに接続されている。トランジスタM21のドレインは、ダイオードD21のアノードに接続され、ダイオードD21のカソードはトランジスタM11のドレインに接続されている。ダイオードD21は、トランジスタM12から出力される電流がトランジスタM21に流れないようにしている。 One end of a capacitor C21 is connected to the source of the transistor M21. The other end of the capacitor C21 is connected to the ground. The drain of the transistor M21 is connected to the anode of the diode D21, and the cathode of the diode D21 is connected to the drain of the transistor M11. The diode D21 prevents the current output from the transistor M12 from flowing into the transistor M21.
 デジタル信号処理部11は、図5で説明したブロックと同様のブロックを有している。図5の電圧切換え信号生成部23は、1つの閾値Venvとエンベロープ信号とを比較して電圧切換え信号を生成したが、図13のデジタル信号処理部11の有する電圧切換え信号生成部23は、2つの閾値とエンベロープ信号とを比較して電圧切換え信号を生成する。以下では、2つの閾値を閾値Venv1,Venv2とする。閾値Venv1,Venv2には、Venv1<Venv2の関係があるとする。電圧切換え信号生成部23は、生成した電圧切換え信号をトランジスタM21,M12に出力する。 The digital signal processing unit 11 has the same blocks as the blocks described in FIG. 5 generates a voltage switching signal by comparing one threshold Venv and an envelope signal, but the voltage switching signal generator 23 of the digital signal processing unit 11 of FIG. The threshold value and the envelope signal are compared to generate a voltage switching signal. Hereinafter, the two threshold values are referred to as threshold values Venv1 and Venv2. The thresholds Venv1 and Venv2 have a relationship of Venv1 <Venv2. The voltage switching signal generator 23 outputs the generated voltage switching signal to the transistors M21 and M12.
 図14は、電圧切換え信号生成部の動作を説明する図である。図14の(A)には、送信信号が示してある。図14の(B)には、エンベロープ信号が示してある。図14の(C)には、電力ノードN11の電圧波形が示してある。図14の(D)には、電圧切換え信号生成部23の生成する電圧切換え信号の状態が示してある。 FIG. 14 is a diagram for explaining the operation of the voltage switching signal generator. FIG. 14A shows a transmission signal. FIG. 14B shows an envelope signal. FIG. 14C shows a voltage waveform at the power node N11. FIG. 14D shows the state of the voltage switching signal generated by the voltage switching signal generator 23.
 図14に示す電圧切換え信号Vsw1は、電圧切換え信号生成部23がトランジスタM21のゲートに出力する電圧切換え信号を示しており、トランジスタM21を“ON”するか“OFF”するかで表記している。電圧切換え信号Vsw2は、電圧切換え信号生成部23がトランジスタM12のゲートに出力する電圧切換え信号を示しており、トランジスタM21と同様に、トランジスタM12を“ON”するか“OFF”するかで表記している。また、図14に示すENVmaxは、可変電圧電源が連続的に動作する区間におけるエンベロープ信号の最大値を示している。また、図14に示すVenv1,Venv2は、電圧切換え信号生成部23がエンベロープ信号の最大値ENVmaxと比較する閾値を示している。 A voltage switching signal Vsw1 shown in FIG. 14 indicates a voltage switching signal output from the voltage switching signal generator 23 to the gate of the transistor M21, and is expressed by whether the transistor M21 is “ON” or “OFF”. . The voltage switching signal Vsw2 indicates a voltage switching signal output from the voltage switching signal generation unit 23 to the gate of the transistor M12. Similar to the transistor M21, the voltage switching signal Vsw2 is expressed by whether the transistor M12 is “ON” or “OFF”. ing. Further, ENVmax shown in FIG. 14 indicates the maximum value of the envelope signal in the section in which the variable voltage power supply continuously operates. Further, Venv1 and Venv2 shown in FIG. 14 indicate threshold values that the voltage switching signal generator 23 compares with the maximum value ENVmax of the envelope signal.
 電圧切換え信号生成部23は、可変電圧電源が連続的に動作する区間におけるエンベロープ信号の最大値ENVmaxと、閾値Venv1,Venv2とを比較する。電圧切換え信号生成部23は、図14の表1項に示すように、エンベロープ信号の最大値ENVmaxが閾値Venv1より小さければ、電圧Vds1の電源の電力が可変電圧電源に供給されるよう、トランジスタM21,M12をOFF状態とする電圧切換え信号Vsw1,Vsw2を生成する。 The voltage switching signal generation unit 23 compares the maximum value ENVmax of the envelope signal and the threshold values Venv1 and Venv2 in the section in which the variable voltage power supply continuously operates. As shown in Table 1 in FIG. 14, the voltage switching signal generation unit 23 causes the transistor M21 to supply the power of the power source of the voltage Vds1 to the variable voltage power source if the maximum value ENVmax of the envelope signal is smaller than the threshold value Venv1. , M12 are generated to generate voltage switching signals Vsw1 and Vsw2.
 また、電圧切換え信号生成部23は、図14の表2項に示すように、エンベロープ信号の最大値ENVmaxが閾値Venv1以上で閾値Venv2以下であれば、電圧Vds2の電源の電力が可変電圧電源に供給されるよう、トランジスタM21をOFF状態、トランジスタM12をON状態とする電圧切換え信号Vsw1,Vsw2を生成する。 Further, as shown in Table 2 of FIG. 14, the voltage switching signal generator 23 converts the power of the power source of the voltage Vds2 to the variable voltage power source if the maximum value ENVmax of the envelope signal is not less than the threshold value Venv1 and not more than the threshold value Venv2. In order to be supplied, voltage switching signals Vsw1 and Vsw2 are generated which turn off the transistor M21 and turn on the transistor M12.
 さらに、電圧切換え信号生成部23は、図14の表3項に示すように、エンベロープ信号の最大値ENVmaxが閾値Venv2より大きければ、電圧Vds3の電源の電力が可変電圧電源に供給されるよう、トランジスタM21をOFF状態、トランジスタM12をON状態とする電圧切換え信号Vsw1,Vsw2を生成する。 Further, as shown in Table 3 in FIG. 14, the voltage switching signal generator 23 is configured such that if the maximum value ENVmax of the envelope signal is larger than the threshold value Venv2, the power of the power source of the voltage Vds3 is supplied to the variable voltage power source. Voltage switching signals Vsw1 and Vsw2 are generated to turn off the transistor M21 and turn on the transistor M12.
 すなわち、電圧切換え信号生成部23は、可変電圧電源が連続的に動作する区間において、エンベロープ信号の大きさに応じた、より細かな電圧の電力を可変電圧電源に供給するよう電源電力供給電源を制御する。 That is, the voltage switching signal generation unit 23 sets the power supply power supply power so as to supply the variable voltage power supply with a finer voltage power corresponding to the magnitude of the envelope signal in the section where the variable voltage power supply continuously operates. Control.
 このように、増幅装置は、エンベロープ信号を複数の閾値と比較して、電源電力供給電源が複数の電圧の電力を可変電圧電源に供給するようにする。これにより、可変電圧電源で無駄に消費される電力を細かく抑制でき、電力効率をより高効率化することができる。 Thus, the amplifying apparatus compares the envelope signal with a plurality of threshold values so that the power supply power supply supplies a plurality of voltages of power to the variable voltage power supply. Accordingly, it is possible to finely suppress power consumed in the variable voltage power source, and to further increase power efficiency.
 なお、上記では、電源電力供給電源が3種類の電圧の電力を出力する場合について説明したが、同様にして4種類以上の電圧の電力を出力することができる。例えば、エンベロープ信号と比較する閾値を増やし、電源電力供給電源のトランジスタを増やすことによって、4種類以上の電圧の電力を出力することができる。 In the above description, the case where the power supply power supply outputs power of three types of voltages has been described. However, power of four or more types of voltages can be output in the same manner. For example, by increasing the threshold value to be compared with the envelope signal and increasing the number of transistors of the power supply power supply, it is possible to output power of four or more types of voltages.
 また、第5の実施の形態に第4の実施の形態および第3の実施の形態を組み合わせることもできる。
 [第6の実施の形態]
 次に、第6の実施の形態を、図面を参照して詳細に説明する。第6の実施の形態では、電源電力供給電源が電圧変換モジュールである場合について説明する。
Further, the fourth embodiment and the third embodiment can be combined with the fifth embodiment.
[Sixth Embodiment]
Next, a sixth embodiment will be described in detail with reference to the drawings. In the sixth embodiment, a case where the power supply power supply is a voltage conversion module will be described.
 図15は、第6の実施の形態に係る増幅装置の回路ブロックの一例を示した図である。図15において図3と同じものには同じ符号を付し、その説明を省略する。図15では、増幅装置は、DC/DCコンバータ51を有している。 FIG. 15 is a diagram illustrating an example of a circuit block of the amplifying device according to the sixth embodiment. 15, the same components as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 15, the amplification device has a DC / DC converter 51.
 デジタル信号処理部11は、図5で説明したブロックと同様のブロックを有している。デジタル信号処理部11の有する電圧切換え信号生成部23の生成した電圧切換え信号は、DC/DCコンバータ51に出力される。 The digital signal processing unit 11 has the same blocks as the blocks described in FIG. The voltage switching signal generated by the voltage switching signal generation unit 23 included in the digital signal processing unit 11 is output to the DC / DC converter 51.
 DC/DCコンバータ51は、電圧切換え信号生成部23から出力される電圧切換え信号に応じて、電圧Vds1,Vds2を出力する。電圧Vds1,Vds2は、トランジスタM11のドレインに出力される。 The DC / DC converter 51 outputs voltages Vds1 and Vds2 according to the voltage switching signal output from the voltage switching signal generator 23. The voltages Vds1 and Vds2 are output to the drain of the transistor M11.
 例えば、DC/DCコンバータ51は、電圧切換え信号生成部23がエンベロープ信号の最大値が閾値Venv以下と判断し、H状態の電圧切換え信号を出力した場合、電圧Vds1を出力する。また、DC/DCコンバータ51は、電圧切換え信号生成部23がエンベロープ信号の最大値が閾値Venvより大きいと判断し、L状態の電圧切換え信号を出力した場合、電圧Vds2を出力する。 For example, the DC / DC converter 51 outputs the voltage Vds1 when the voltage switching signal generator 23 determines that the maximum value of the envelope signal is equal to or less than the threshold value Venv and outputs an H state voltage switching signal. Further, when the voltage switching signal generator 23 determines that the maximum value of the envelope signal is larger than the threshold value Venv and outputs the voltage switching signal in the L state, the DC / DC converter 51 outputs the voltage Vds2.
 このように、増幅装置は、電源電力供給電源を、例えば、DC/DCコンバータ51の電圧変換モジュールによって形成しても、電力効率を高効率化することができる。
 なお、DC/DCコンバータ51が3種類以上の電圧を出力できるDC/DCコンバータであれば、第5の実施の形態で説明したように、より細かな電圧の電力を可変電圧電源に供給することができる。
As described above, the amplifying apparatus can increase the power efficiency even when the power supply power supply is formed by the voltage conversion module of the DC / DC converter 51, for example.
If the DC / DC converter 51 is a DC / DC converter that can output three or more types of voltages, as described in the fifth embodiment, a finer voltage power is supplied to the variable voltage power supply. Can do.
 以下、増幅装置を無線装置に適用した場合の例について説明する。
 図16は、増幅装置を無線装置に適用した場合の一例を示した図である。図3に示す増幅装置は、例えば、携帯電話システムの基地局の送信部に適用される。
Hereinafter, an example in which the amplification device is applied to a wireless device will be described.
FIG. 16 is a diagram illustrating an example in which the amplification device is applied to a wireless device. The amplification device shown in FIG. 3 is applied to, for example, a transmission unit of a base station of a mobile phone system.
 図16に示すように、送信部60は、ベースバンド処理部61、デジタル処理部62、DVC(DVC:Dynamic Voltage Control)電源部63、およびRF(Radio Frequency)部64を有している。デジタル処理部62は、DVC信号処理部62a、DAC62b,62d、歪補償処理部62c、変調部62e、周波数変換部62f、およびADC(Analog to Digital Converter)62gを有している。DVC電源部63は、電源63aを有している。RF部64は、増幅器64aを有している。 As shown in FIG. 16, the transmission unit 60 includes a baseband processing unit 61, a digital processing unit 62, a DVC (DVC: Dynamic Voltage Control) power supply unit 63, and an RF (Radio Frequency) unit 64. The digital processing unit 62 includes a DVC signal processing unit 62a, DACs 62b and 62d, a distortion compensation processing unit 62c, a modulation unit 62e, a frequency conversion unit 62f, and an ADC (Analog to Digital Converter) 62g. The DVC power supply unit 63 has a power supply 63a. The RF unit 64 has an amplifier 64a.
 ベースバンド処理部61には、送信信号が入力される。ベースバンド処理部61は、送信信号のベースバンド処理を行う。
 デジタル処理部62のDVC信号処理部62aおよび歪補償処理部62cは、例えば、図3のデジタル信号処理部11に対応する。DAC62b,62dは、例えば、図3のDAC16,12に対応する。変調部62eは、例えば、図3の発振器13および乗算器14に対応する。
A transmission signal is input to the baseband processing unit 61. The baseband processing unit 61 performs baseband processing of the transmission signal.
The DVC signal processing unit 62a and the distortion compensation processing unit 62c of the digital processing unit 62 correspond to, for example, the digital signal processing unit 11 in FIG. The DACs 62b and 62d correspond to, for example, the DACs 16 and 12 in FIG. The modulation unit 62e corresponds to, for example, the oscillator 13 and the multiplier 14 in FIG.
 ADC62g、および周波数変換部62fは、図3には図示されていない。周波数変換部62fは、増幅器64aで増幅された無線信号の周波数をダウンコンバートし、ADC62aは、ダウンコンバートされた無線信号のデジタル-アナログ変化を行う。歪補償処理部62cは、ベースバンド処理部61から出力される送信信号と、ADC62gから出力されるフィードバック信号とに基づいて、DAC62dに出力する送信信号の歪補償処理を行う。 The ADC 62g and the frequency converter 62f are not shown in FIG. The frequency converter 62f down-converts the frequency of the radio signal amplified by the amplifier 64a, and the ADC 62a performs digital-analog change of the down-converted radio signal. The distortion compensation processing unit 62c performs distortion compensation processing on the transmission signal output to the DAC 62d based on the transmission signal output from the baseband processing unit 61 and the feedback signal output from the ADC 62g.
 電源63aは、例えば、図3のトランジスタM11~M13、コンデンサC11~C15、インダクタL11、ダイオードD11、バイアス電源17、およびAS回路18に対応する。増幅器64aは、例えば、図3の増幅器15に対応する。 The power source 63a corresponds to, for example, the transistors M11 to M13, the capacitors C11 to C15, the inductor L11, the diode D11, the bias power source 17, and the AS circuit 18 in FIG. The amplifier 64a corresponds to, for example, the amplifier 15 in FIG.
 本発明では、入力されるエンベロープ信号の最大値等を事前に検出した後、信号処理を行っているが、これは主信号系にDelayを設けることで実現している。例えば、図16の歪補償処理部62cの前段にDelayを設けることによりDelay時間だけ先にDVC系の処理を行うことが可能となる。 In the present invention, signal processing is performed after the maximum value of the input envelope signal is detected in advance. This is realized by providing a delay in the main signal system. For example, it is possible to perform the DVC processing earlier by the delay time by providing the delay before the distortion compensation processing unit 62c of FIG.
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。 The above merely shows the principle of the present invention. In addition, many modifications and changes can be made by those skilled in the art, and the present invention is not limited to the precise configuration and application shown and described above, and all corresponding modifications and equivalents may be And the equivalents thereof are considered to be within the scope of the invention.
 1 増幅部
 2 生成部
 3,4 電源部
 5 電源電力供給部
 N1 電力ノード
DESCRIPTION OF SYMBOLS 1 Amplification part 2 Generation | occurrence | production part 3, 4 Power supply part 5 Power supply power supply part N1 Power node

Claims (7)

  1.  信号を増幅する増幅装置において、
     電力ノードに供給される電力によって入力信号を増幅する増幅部と、
     前記入力信号のエンベロープに基づくエンベロープ信号を生成する生成部と、
     前記電力ノードに固定電圧の電力を供給する第1の電源部と、
     前記電力ノードに前記エンベロープ信号に応じた可変電圧の電力を供給する第2の電源部と、
     前記エンベロープ信号の大きさに基づいて、前記第2の電源部に異なる電圧の電力を供給する電源電力供給部と、
     を有することを特徴とする増幅装置。
    In an amplification device for amplifying a signal,
    An amplifying unit for amplifying an input signal by power supplied to the power node;
    A generator for generating an envelope signal based on an envelope of the input signal;
    A first power supply for supplying a fixed voltage power to the power node;
    A second power supply unit for supplying power of a variable voltage according to the envelope signal to the power node;
    A power supply unit that supplies power of a different voltage to the second power supply unit based on the magnitude of the envelope signal;
    An amplifying device comprising:
  2.  前記電源電力供給部は、
     前記エンベロープ信号の大きさに基づいて、電圧切換え信号を生成する切換え信号生成部と、
     前記電圧切換え信号に応じて、前記第2の電源部に異なる電圧の電力を供給する可変電力供給部と、
     を有することを特徴とする請求の範囲第1項記載の増幅装置。
    The power supply unit is
    A switching signal generator for generating a voltage switching signal based on the magnitude of the envelope signal;
    A variable power supply unit that supplies power of a different voltage to the second power supply unit in response to the voltage switching signal;
    The amplifying apparatus according to claim 1, further comprising:
  3.  前記切換え信号生成部は、前記第2の電源部が連続的に動作する区間における前記エンベロープ信号の最大値と所定の閾値との比較結果に基づいて、前記電圧切換え信号を生成することを特徴とする請求の範囲第2項記載の増幅装置。 The switching signal generation unit generates the voltage switching signal based on a comparison result between a maximum value of the envelope signal and a predetermined threshold value in a section in which the second power supply unit continuously operates. The amplification device according to claim 2.
  4.  前記切換え信号生成部は、前記第2の電源部が電力供給停止期間に入ってから所定時間経過後に前記電圧切換え信号の状態を遷移することを特徴とする請求の範囲第2項または第3項に記載の増幅装置。 4. The range according to claim 2 or 3, wherein the switching signal generation unit transitions the state of the voltage switching signal after a predetermined time has elapsed since the second power supply unit entered the power supply stop period. An amplifying device according to 1.
  5.  前記切換え信号生成部は、前記第2の電源部の連続的に動作する区間が、前記可変電力供給部の電圧切換え時間より短い時間で生じた場合、それらの区間を1つの連続的に動作する区間とすることを特徴とする請求の範囲第3項記載の増幅装置。 The switching signal generation unit operates continuously when one of the sections in which the second power supply unit operates continuously is shorter than the voltage switching time of the variable power supply unit. 4. The amplifying device according to claim 3, wherein the amplifying device is a section.
  6.  前記可変電力供給部は、電圧変換モジュールであることを特徴とする請求の範囲第2項記載の増幅装置。 The amplification device according to claim 2, wherein the variable power supply unit is a voltage conversion module.
  7.  前記生成部は、所定の閾値より大きい前記入力信号のエンベロープを前記エンベロープ信号として生成することを特徴とする請求の範囲第1項記載の増幅装置。 The amplification device according to claim 1, wherein the generation unit generates an envelope of the input signal that is larger than a predetermined threshold as the envelope signal.
PCT/JP2011/053194 2011-02-16 2011-02-16 Amplification device WO2012111100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053194 WO2012111100A1 (en) 2011-02-16 2011-02-16 Amplification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053194 WO2012111100A1 (en) 2011-02-16 2011-02-16 Amplification device

Publications (1)

Publication Number Publication Date
WO2012111100A1 true WO2012111100A1 (en) 2012-08-23

Family

ID=46672064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053194 WO2012111100A1 (en) 2011-02-16 2011-02-16 Amplification device

Country Status (1)

Country Link
WO (1) WO2012111100A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149750A (en) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Power amplification system with variable supply voltage
TWI826071B (en) * 2022-10-25 2023-12-11 瑞昱半導體股份有限公司 Audio amplifying device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105072A1 (en) * 2007-02-27 2008-09-04 Panasonic Corporation Transmitter
WO2010073941A1 (en) * 2008-12-25 2010-07-01 日本電気株式会社 Power amplication device
JP2010206545A (en) * 2009-03-03 2010-09-16 Toshiba Corp High-efficiency amplifier and amplification method
JP2010219944A (en) * 2009-03-17 2010-09-30 Toshiba Corp High frequency power amplifier, and power amplification method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105072A1 (en) * 2007-02-27 2008-09-04 Panasonic Corporation Transmitter
WO2010073941A1 (en) * 2008-12-25 2010-07-01 日本電気株式会社 Power amplication device
JP2010206545A (en) * 2009-03-03 2010-09-16 Toshiba Corp High-efficiency amplifier and amplification method
JP2010219944A (en) * 2009-03-17 2010-09-30 Toshiba Corp High frequency power amplifier, and power amplification method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149750A (en) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Power amplification system with variable supply voltage
US10615835B2 (en) 2015-02-15 2020-04-07 Skyworks Solutions, Inc. Power amplification system with variable supply voltage
TWI826071B (en) * 2022-10-25 2023-12-11 瑞昱半導體股份有限公司 Audio amplifying device and method

Similar Documents

Publication Publication Date Title
JP5614273B2 (en) Amplifier
JP4255929B2 (en) Transmitter
US8643435B2 (en) Apparatus and method for expanding operation region of power amplifier
US7893770B2 (en) Power amplification device
JP5472115B2 (en) Power amplifier
US9270241B2 (en) Power supply device, transmission device using same, and method for operating power supply device
JP5867501B2 (en) Power supply device and control method
US11929721B2 (en) Power amplifier module
EP3340461B1 (en) Rf power amplifier bias modulation with programmable stages
JP2007081800A (en) Doherty amplifier
WO2018023215A1 (en) Envelope modulator, envelope tracking power amplifier and communication device
US20130127556A1 (en) Power supply modulator and method for controlling same
JP2010206545A (en) High-efficiency amplifier and amplification method
Banerjee et al. High efficiency multi-mode outphasing RF power amplifier in 45nm CMOS
WO2012111100A1 (en) Amplification device
JP2010258896A (en) Rf amplification apparatus
JP5440498B2 (en) Power amplifier, amplification method thereof, and radio wave transmitter using the same
JP2008294812A (en) Radio signal amplifier
WO2015029462A1 (en) Power amplification device and control method for power amplification device
JP2010219944A (en) High frequency power amplifier, and power amplification method
JP5389567B2 (en) High frequency amplifier and high efficiency method
CN101615891A (en) Radio-frequency (RF) power amplifier circuit, power control chip and radio-frequency power amplifying method
JP7281933B2 (en) amplifier
WO2013094265A1 (en) Power amplifier and power amplification method
KR20130037488A (en) Apparatus and method for controlling output current of bias modulator in envelope tracking power transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP