WO2012110846A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2012110846A1
WO2012110846A1 PCT/IB2011/002802 IB2011002802W WO2012110846A1 WO 2012110846 A1 WO2012110846 A1 WO 2012110846A1 IB 2011002802 W IB2011002802 W IB 2011002802W WO 2012110846 A1 WO2012110846 A1 WO 2012110846A1
Authority
WO
WIPO (PCT)
Prior art keywords
cracking
gas
pipe
cylinder
exhaust
Prior art date
Application number
PCT/IB2011/002802
Other languages
French (fr)
Russian (ru)
Inventor
Нариман Аскарулы БАУБЕК
Аскар Апошулы БАУБЕК
Еркин Темиртасович ШЕГЕБАЕВ
Меирман Аскарулы БАУБЕК
Original Assignee
Baubek Nariman Askaruly
Baubek Askar Aposhuly
Shegebaev Erkin Temirtasovich
Baubek Meirman Askaruly
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baubek Nariman Askaruly, Baubek Askar Aposhuly, Shegebaev Erkin Temirtasovich, Baubek Meirman Askaruly filed Critical Baubek Nariman Askaruly
Publication of WO2012110846A1 publication Critical patent/WO2012110846A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/16Other means for enriching fuel-air mixture during starting; Priming cups; using different fuels for starting and normal operation
    • F02M1/165Vaporizing light fractions from the fuel and condensing them for use during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0064Layout or arrangement of systems for feeding fuel for engines being fed with multiple fuels or fuels having special properties, e.g. bio-fuels; varying the fuel composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • F02D19/0631Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position by estimation, i.e. without using direct measurements of a corresponding sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • a utility model relates to power systems for internal combustion engines.
  • the closest technical solution is a power system for an internal combustion engine (RF patent application Yu09101045).
  • the power supply system of an internal combustion engine consists of a liquid fuel supply system and a fuel injection system.
  • the fuel injection system comprises a reactor chamber having an inlet and an outlet connected to an engine intake manifold.
  • the reactor chamber is equipped with a fuel cracking injector and an air supply device at the inlet of the reactor chamber.
  • part of the fuel necessary for engine operation is supplied to an additional fuel cracking injector, in the form of a liquid at ambient temperature. Thermal energy is supplied to the reactor chamber to maintain continuous fuel cracking.
  • the cracked fuel enters the intake manifold in the form of a continuous air-fuel flow at a temperature not exceeding the ambient temperature.
  • the internal combustion engine is a diesel engine, and part of the liquid fuel is mainly alcohol and is injected with a cracking injector at a pressure of 3-4 bar.
  • the thermal energy emitting component is an engine cooling system or an engine exhaust system, depending on whether a portion of the fuel has a lower and higher evaporation temperature, respectively.
  • the temperature of the air-fuel mixture leaving the reactor chamber into the intake manifold is 30% of the output temperature for a conventional engine without a turbocharger and 80% of the output temperature of a conventional engine with a turbocharger.
  • the air supply device provides compressed air only when there is a need for high engine power.
  • the system is equipped with a computer control system.
  • this computer control system the minimum engine temperature necessary to ensure that the cracking chamber reaches a temperature sufficient to maintain continuous cracking, so that the injected portion of the fuel is mixed with air and subjected to continuous cracking in the chamber supported by thermal energy supplied from a given engine component, and the cracked fuel is fed to the intake a collector in the form of a continuous air-fuel flow at a temperature not exceeding the ambient temperature.
  • the disadvantage of the prototype is the difficulty of starting the internal combustion engine in the cold season.
  • the purpose of the proposed utility model is to increase the effective efficiency of the internal combustion engine and reduce emissions of toxic components into the environment when it is powered by low-octane gasoline. Disclosure of invention
  • the internal combustion engine contains at least one cylinder with an inlet pipe, an exhaust pipe, an intake valve, an exhaust valve and a piston, a gas tank equipped with a first inlet pipe, a cracking gas cylinder, a cracking device , gasoline pump, temperature sensor, control unit, engine exhaust system with a series-connected exhaust pipe and outlet pipe, a mixer, and the inlet valve is installed in the cylinder with the possibility of introducing the combustible mixture into the cylinder, the exhaust valve is installed in the cylinder with the possibility of exhausting the exhaust gas into the exhaust pipe, which is connected to the exhaust pipe, the mixer is connected to the inlet pipe and the air filter, equipped with a second inlet pipe and the first cracking gas pipe, temperature the sensor is connected to a control unit connected to the gas pump, the cracking device is installed to ensure thermal contact with the exhaust system of the engine, the gas pump is connected it has an inlet with a gas tank and an outlet with a cracking device, characterized in that a bypass valve,
  • FIG. 1 An embodiment of the invention The drawing shows: outlet pipe 1, exhaust gas pipe 2, bypass valve 3, cracking device 4, coil 5, temperature sensor 6, cracking gas cooling device indicated 7, exhaust valve 8, spark plug 9, inlet a valve 10, an inlet pipe 11, a gas-air mixture pipe 12, a second inlet pipe 13, a mixer 14, a first cracked gas pipe 15, a check valve 16, a pressure reducer 17, a second cracked gas pipe 18, a cylinder for cracked gas designated 19, piston 20, cylinder 21, exhaust pipe 22, control unit 23, gas pipe 24, gas pump 25, gas tank 26, first inlet pipe 27, air filter 28.
  • the main elements of the device are a cylinder for cracking gas 19, a gearbox 17, a mixer 14, a cylinder 21 with a piston 20, a gas tank 26, a gas pump 25, a cracking device 4, a cracking gas cooling device 7.
  • the cracked gas cylinder 19 is a hollow reservoir of any shape, for example cylindrical.
  • the cracking gas cylinder 19 is intended for storing gas (starting gas or cracked gas).
  • the cracking gas cylinder 19 is connected to the gearbox 17 by means of a first cracking gas pipe 15. For this, a corresponding opening is made in the cracking gas cylinder 19.
  • the reducer 17 is a device for lowering the gas pressure in the first pipeline of the cracking gas 15 to the working and for automatic maintenance
  • the second cracking gas pipeline 18 is divided into several sections located between the cracking gas cylinder 19 and the cracking gas cooling device 7 and between the cracking gas cooling device 7 and the cracking device 4.
  • the mixer 14 is a hollow tank.
  • the mixer 14 is designed to mix incoming gases.
  • the mixer 14 is designed to mix cracked gases with the air entering through the air filter 28.
  • the mixer 14 is connected to the first pipeline of the cracked gases 15. For this purpose, a corresponding hole is made in the mixer 14.
  • the mixer 14 is equipped with an air filter 28 and a second inlet pipe 13.
  • the mixer 14 is connected to the pipeline of the gas-air mixture 12.
  • the second inlet pipe 13 is a small pipe segment connected at one end to one of the walls of the mixer 14.
  • the second inlet pipe 13 communicates with the mixer 14 through a corresponding hole in the specified wall of the mixer 14 through the air filter 28.
  • the second inlet pipe 13 is intended for supply to the mixer 14 air.
  • the first cracked gas pipeline 15 is a small pipe segment connected at one end to one of the walls of the mixer 14 and the other to the outlet of the reducer 17.
  • the first cracked gas pipeline 15 communicates with the mixer 14 through a corresponding hole in the specified wall of the mixer 14.
  • the first cracked pipeline -gas 15 is intended to supply cracked gases or starting gas to the mixer 14.
  • the pipeline of the gas-air mixture 12 is a part of the pipe through which the gas-air mixture is transported.
  • the pipeline of the gas-air mixture 12 connects the mixer 14 to the cylinder 21.
  • the pipeline of the gas-air mixture 12 is equipped with an inlet pipe 11.
  • the inlet pipe 11 is the end of the gas-air mixture pipe, partially placed in the cylinder 21.
  • an inlet valve 10 is installed at the junction of the inlet pipe 11 with the cylinder 21, an inlet valve 10 is installed.
  • the inlet valve 10 is configured to allow the gas-air mixture to pass into the cylinder 21, and to prevent release exhaust gas from cylinder 21.
  • Cylinder 2 is one of the main parts of a reciprocating internal combustion engine.
  • the cylinder 21 is a combustion chamber in which the chemical energy of the fuel is converted into mechanical energy (for example, the cylinder definition can be found at http://www.wikipedia.org/wiki/%D0%A6% D0% B8% D0% BB% D0% B8% D0% BD% D0 % B4% D1% 80 (% D0% B4% D0% B2% D0% B8% D0% B3% D0% B0% D1% 82% D0% B5% D0% BB% DI% 8C).
  • cylinder 21 it returns - translational movement of the piston 20 from the top dead center to the bottom dead center.
  • the maximum compression of the gas-air mixture occurs in the combustion chamber, where it ignites by means of the spark plug 9.
  • Chemical energy of the fuel is converted into mechanical energy, which The one from the reciprocating motion of the piston 20 is converted into rotational motion using a crank mechanism.
  • the cylinder 21 has an opening for connection with the gas-air mixture pipe 12 (inlet pipe 11) and the exhaust gas pipe 2 (exhaust pipe 22). the use of a diesel engine spark plug 9 inside the cylinder 21 is not installed. The ignition of the mixture occurs under the action of high temperature air, which has been compressed in the cylinder 21.
  • the spark plug 9 is a device by which ignites a compressed gas-air mixture inside the cylinder 21.
  • the exhaust system of the engine is designed to transport exhaust gases from the cylinder 21 and remove these gases from the device.
  • the exhaust system of the engine in a particular case consists of an exhaust pipe 22, an exhaust gas pipe 2 and an output pipe 1.
  • the exhaust gas pipe 2 is a part of the pipe through which the exhaust gas is transported.
  • the outlet pipe 1 is a part of the exhaust gas pipe 2 through which these gases are discharged from the device.
  • the exhaust pipe 22 is the end of the exhaust gas pipe, partially placed in the cylinder 21.
  • an exhaust valve 8 is installed at the junction of the exhaust pipe 22 with the cylinder 21, at the junction of the exhaust pipe 22 with the cylinder 21, an exhaust valve 8 is installed.
  • the exhaust valve 8 is configured to exhaust the gases from the cylinder 21 after combustion of the gas-air mixture, and preventing the release of the gas-air mixture from the cylinder 21 prior to its combustion.
  • a temperature sensor 6 is installed on the exhaust pipe 22 on the exhaust pipe 22, a temperature sensor 6 is installed.
  • the temperature sensor 6 is designed to determine the temperature of the exhaust gases at the outlet of the cylinder 21.
  • the temperature sensor 6 is made with providing the possibility of transmitting information about the achievement of the desired temperature to the control unit 23.
  • the control unit 23 is made with the possibility of turning on the gas pump 25, when the desired exhaust gas temperature is reached.
  • the gas pump 25 is designed to supply liquid fuel from the gas tank 26 to the cracking device 4 under pressure.
  • the gas pump 25 is installed on the gas pipe 24 between the gas tank 26 and the cracking device 4.
  • the gas pump 25 is connected to the control unit 23.
  • the gas tank 26 is a hollow tank of any shape, for example a cylindrical one.
  • Gas tank 26 is designed for liquid fuel, in particular gasoline.
  • the gas tank 26 is equipped with a first inlet pipe 27.
  • the first inlet pipe 27 represents a small pipe segment connected at one end to one of the walls of the gas tank 26.
  • the first inlet pipe 27 communicates with the gas tank 26 through a corresponding hole in the indicated wall of the gas tank 26.
  • the first inlet pipe 27 is intended for pouring liquid fuel into the gas tank 26.
  • the gas tank 26 is connected to the cracking device 4 through a gas pipe 24.
  • the gas pipe 24 is a part of the pipe through which liquid fuel is transported.
  • the gas pipe 24 is connected to the gas tank 26 and to the cracking device 4.
  • a gas pump 25 is installed on the gas pipe 24.
  • a corresponding hole is made in the gas tank 26 to connect the gas pipe 24.
  • the cracking device 4 is made to ensure contact with the exhaust system of the engine (in particular, the exhaust pipe 2) and heat exchange between the exhaust system of the engine (exhaust pipe 2) and the cracking device 4, in order to maintain the temperature required for the cracking process.
  • the cracking device 4 is intended for cracking, i.e. high-temperature processing of liquid fuel (gasoline) into gaseous products, usually with a lower molecular weight (cracking gas) (for cracking, see, for example, http://ru.wikipedia.org/wiki% D0% 9A% D1% 80% D0% B5% D0% BA% D0% B8% D0% BD% D0% B3).
  • the cracking device 4 in a particular case is made as part of the pipeline between the gas pipe 24 and the second cracking gas pipe 18, helically wound around a part of the exhaust gas pipe 2.
  • the cracking device 4 is connected to the cooling device for the cracking gas 7 by means of the corresponding part of the second cracking gas 18.
  • Cracked gas consists of unsaturated hydrocarbons of various compositions having an octane rating of more than 100 units. This will increase the compression ratio i.e. the pressure at the end of compression of the gas-air mixture and, as a result, the pressure of the combustion products and the work performed will increase, which will increase the effective efficiency of the engine, as well as increase the savings due to the difference in prices of low-octane and high-octane gasoline during operation of the internal combustion engine for cracking highly compressed cracked gas.
  • This will increase the compression ratio i.e. the pressure at the end of compression of the gas-air mixture and, as a result, the pressure of the combustion products and the work performed will increase, which will increase the effective efficiency of the engine, as well as increase the savings due to the difference in prices of low-octane and high-octane gasoline during operation of the internal combustion engine for cracking highly compressed cracked gas.
  • the bypass valve 3 is designed to maintain the pressure of the medium (for example, cracked gas or gasoline) in the cracking device 4 at the level required to maintain the cracking process by bypassing this medium (for example, into the second cracking gas pipe 18 or the gas pipe 24).
  • the bypass valve 3 can be installed on the gas line 24 in front of the cracking device 4 or on the section of the second cracking gas pipeline 18 between the cracking device 4 and the cracking gas cooling device 7.
  • the cracking gas cooling device 7 is designed to cool the cracking gases received from the cracking device 4.
  • the cracking gas cooling device 7 is a vessel with coolant inside which the coil 5 is located.
  • the coil 5 is a part of the second cracking pipeline gas 18, curved in the form of a spiral or zigzag, installed in the liquid cooling system of the cracked gas 7 of the internal combustion engine.
  • the non-return valve 16 is installed on the section of the second cracking gas pipeline 18 between the cracking gas cooling device 7 and the crack gas cylinder 19.
  • the non-return valve 16 is designed to prevent a change in the direction of the medium flow in the technological system.
  • the non-return valve 16 passes the medium (cracking gas) in the direction from the cooling device for the cracking gas 7 to the cylinder for the cracking gas 19 and prevents its movement in the opposite direction, acting automatically.
  • the utility model is implemented as follows.
  • the user assembles the device as described above.
  • the user fills the cracking gas cylinder 19 with starting gas, and the gas tank 26 with gasoline.
  • the start of the internal combustion engine is carried out by supplying the starting gas through the first cracking gas pipe 15 from the cylinder for cracking gas 19 through a reducer 17 to the mixer 14 at a positive temperature.
  • the mixer 14 through the second inlet pipe 13 and through the air filter 28 air enters.
  • the starting gas and air are mixed in the mixer 14 and fed through the pipeline of the gas-air mixture 12 and the inlet pipe 11 to the cylinder 21, when the piston 20 moves from the top dead center to the bottom dead center when the inlet valve 10 is opened (intake stroke).
  • intake stroke both valves (intake valve 10 and exhaust valve 8 are closed), the gas-air mixture is compressed.
  • the gas-air mixture When the piston 20 reaches the top dead point (the highest pressure in the combustion chamber), the gas-air mixture is forcedly ignited by the spark plug 9. During combustion, the generated gases are pressed on the piston 20 of the cylinder 21, forcing it to move down and rotate the crankshaft. The burnt gas-air mixture forms the exhaust gases that exit through the exhaust valve 8 and then the exhaust gases through the exhaust gas pipe 2 are removed from the device.
  • the control unit 23 turns on the gas pump 25 installed on the gas pipe 24.
  • the required temperature is selected to ensure passage the cracking process in the cracking device 4 after heat exchange between the exhaust gas pipe 2 and the cracking device 4.
  • the gas pump 25 delivers liquid fuel (gasoline) under pressure - of fuel tank 26 in the cracking unit 4. Gas passing through the cracker unit 4 is heated by heat exchange between the cracking device 4 and the exhaust gas conduit 2. As a result of heating is the process of thermal cracking of gasoline, resulting in the formation of the cracking gases.
  • the bypass valve 3 passes, for example, in the case of installing a bypass valve 3 on the second cracking gas pipe 18, the cracking gases through the second cracking gas pipe 18 to the cracking gas cooling device 7, or in the case of installing the bypass valve 3 on the gas pipe 24, into the gas pipe 24
  • the cracking gases are cooled by passing along the coil 5 to the required temperature due to the heat exchange between the cracking gases and the coolant through the walls of the coil 5.
  • the cooled cracking gases through the second crack pipe g-gases 18 enter the cracking gas cylinder 19 through the check valve 16.
  • the check valve 16 passes the cracking gases into the cracking gas cylinder 19, but prevents the cracking gases from escaping from the cracking gas cylinder 19 in the opposite direction .
  • the cracked gases replace the starting gases.
  • the process occurs as described above.
  • the cracking gases are constantly in the cylinder for cracking gas 19 in a gaseous state, even at low ambient temperatures. Therefore, the start-up of an internal combustion engine in cold weather will be carried out reliably by cracking gases from a cracking gas cylinder 19.
  • the implementation of the device from a cylinder for cracking gas, a reducer, a mixer, a cylinder, a gas tank, a gas pump, a cracking device and a cracking gas cooling device ensures the operation of the internal combustion engine with a high degree of compression, due to the fact that the cracking gases are constantly are in a cylinder for cracking gas in the form of unsaturated hydrocarbons and hydrogen in a gaseous state with high octane numbers, and also provides ease of starting the internal combustion engine in the cold season, due to the cracked gases reside in the cylinder for the cracking gas in the gaseous state even at low ambient temperatures. Due to the perfect mixing of cracked gas with air in the inlet pipe, the completeness of combustion of the gas-air mixture in the combustion chamber will increase and the emission of toxic components of the internal combustion engine into the environment will significantly decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The invention relates to systems for supplying power to reciprocating internal combustion engines. The engine comprises at least one cylinder with an inlet pipe and an outlet pipe, a gasoline tank, a pressure cylinder for a cracking gas, a cracking device, a gasoline pump, a temperature sensor, a control unit, an engine exhaust system, a mixer, an air filter, and a cracking-gas cooling device. The engine exhaust system comprises an exhaust gas pipeline which is connected in series with an exhaust pipe. The temperature sensor is mounted on the exhaust pipe and is connected to the control unit. The control unit is connected to the gasoline pump. The cracking device is mounted in such a way as to ensure thermal contact with the engine exhaust system. The inlet of the gasoline pump is connected to the gasoline tank and the outlet of the gasoline pump is connected to the cracking device. The cracking device is connected to a relief valve, which is connected to the cracking-gas cooling device. The cracking-gas cooling device is connected to a nonreturn valve, which is connected to the pressure cylinder for a cracking gas. A pressure regulator, which is connected to the mixer, is mounted at the outlet of the pressure cylinder for a cracking gas. The mixer is connected to the air filter and the inlet pipe. The technical result consists in increasing the octane number when using low-octane gasolines and the possibility of starting an engine at low temperatures.

Description

Двигатель внутреннего сгорания  Internal combustion engine
Область техники Полезная модель относится к системам питания двигателей внутреннего сгорания. FIELD OF THE INVENTION A utility model relates to power systems for internal combustion engines.
Предшествующий уровень техники Наиболее близким техническим решением (прототип) является система питания двигателя внутреннего сгорания (заявка на патент РФ Ю09101045). Система питания двигателя внутреннего сгорания состоит из системы подачи жидкого топлива и системы впрыска топлива. Система впрыска топлива содержит камеру реактора, имеющую вход и выход, соединенный с впускным коллектором двигателя. Камера реактора снабжена инжектором крекинга топлива и устройством подачи воздуха на входе камеры реактора. Во время работы двигателя, часть топлива, необходимого для работы двигателя, подают в дополнительный инжектор крекинга топлива, в виде жидкости при температуре окружающей среды. В камеру реактора для поддержания непрерывного крекинга топлива подводят тепловую энергию. При этом подвергнутое крекингу топливо выходит во впускной коллектор в виде непрерывного топливовоздушного потока при температуре, не превышающей температуру окружающей среды. При этом двигатель внутреннего сгорания представляет собой дизельный двигатель, а часть жидкого топлива в основном представляет собой спирт и впрыскивается инжектором крекинга при давлении 3-4 бар. Компонент, испускающий тепловую энергию, представляет собой систему охлаждения двигателя или выпускную систему двигателя, в зависимости от того, имеет ли часть топлива более низкую и более высокую температуру испарения соответственно. При этом температура топливовоздушной смеси, выходящей из камеры реактора во впускной коллектор, составляет 30% от выходной температуры для обычного двигателя без турбокомпрессора и 80% от выходной температуры обычного двигателя с турбокомпрессором. Устройство подачи воздуха обеспечивает подачу сжатого воздуха только при потребности в большой мощности двигателя. Система снабжена компьютерной системой контроля. При этом компьютерная система контроля минимальной температуре двигателя, необходимой для обеспечения достижения камерой крекинга температуры, достаточной для поддержания непрерывного крекинга, так что впрыскиваемая часть топлива смешивается с воздухом и подвергается в камере непрерывному крекингу, поддерживаемому тепловой энергией, подводимой от заданного компонента двигателя, и подвергаемое крекингу топливо подается во впускной коллектор в виде непрерывного топливовоздушного потока при температуре, не превышающей температуру окружающей среды. BACKGROUND OF THE INVENTION The closest technical solution (prototype) is a power system for an internal combustion engine (RF patent application Yu09101045). The power supply system of an internal combustion engine consists of a liquid fuel supply system and a fuel injection system. The fuel injection system comprises a reactor chamber having an inlet and an outlet connected to an engine intake manifold. The reactor chamber is equipped with a fuel cracking injector and an air supply device at the inlet of the reactor chamber. During engine operation, part of the fuel necessary for engine operation is supplied to an additional fuel cracking injector, in the form of a liquid at ambient temperature. Thermal energy is supplied to the reactor chamber to maintain continuous fuel cracking. In this case, the cracked fuel enters the intake manifold in the form of a continuous air-fuel flow at a temperature not exceeding the ambient temperature. In this case, the internal combustion engine is a diesel engine, and part of the liquid fuel is mainly alcohol and is injected with a cracking injector at a pressure of 3-4 bar. The thermal energy emitting component is an engine cooling system or an engine exhaust system, depending on whether a portion of the fuel has a lower and higher evaporation temperature, respectively. The temperature of the air-fuel mixture leaving the reactor chamber into the intake manifold is 30% of the output temperature for a conventional engine without a turbocharger and 80% of the output temperature of a conventional engine with a turbocharger. The air supply device provides compressed air only when there is a need for high engine power. The system is equipped with a computer control system. In this computer control system the minimum engine temperature necessary to ensure that the cracking chamber reaches a temperature sufficient to maintain continuous cracking, so that the injected portion of the fuel is mixed with air and subjected to continuous cracking in the chamber supported by thermal energy supplied from a given engine component, and the cracked fuel is fed to the intake a collector in the form of a continuous air-fuel flow at a temperature not exceeding the ambient temperature.
Недостатком прототипа является затруднённость пуска двигателя внутреннего сгорания в холодное время года.  The disadvantage of the prototype is the difficulty of starting the internal combustion engine in the cold season.
Целью предлагаемой полезной модели является повышение эффективного коэффициента полезного действия двигателя внутреннего сгорания и снижение выбросов токсичных компонентов в окружающую среду при работе его на низкооктановом бензине. Раскрытие изобретения  The purpose of the proposed utility model is to increase the effective efficiency of the internal combustion engine and reduce emissions of toxic components into the environment when it is powered by low-octane gasoline. Disclosure of invention
Поставленная цель достигается за счет того, что двигатель внутреннего сгорания содержит, по крайней мере, один цилиндр с впускным патрубком, выпускным патрубком, впускным клапаном, выпускным клапаном и поршнем, бензобак, снабжённый первым входным патрубком, баллон для крекинг-газа, крекинг-устройство, бензонасос, температурный датчик, блок управления, выпускную систему двигателя с последовательно соединёнными трубопроводом отработавших газов и выходным патрубком, смеситель, причём впускной клапан установлен в цилиндре с обеспечением возможности впуска горючей смеси в цилиндр, выпускной клапан установлен в цилиндре с обеспечением возможности выпуска отработавших газов в выпускной патрубок, который соединён с трубопроводом отработавших газов, смеситель соединён с впускным патрубком и воздушным фильтром, снабжён вторым входным патрубком и первым трубопроводом крекинг-газа, температурный датчик соединён с блоком управления, соединённым с бензонасосом, крекинг-устройство установлено с обеспечением теплового контакта с выпускной системой двигателя, бензонасос соединён входом с бензобаком и выходом с крекинг-устройством, отличающийся тем, что в него введены перепускной клапан, обратный клапан, устройство охлаждения крекинг-газа и редуктор, причём температурный датчик установлен на выпускном патрубке, выход введены перепускной клапан, обратный клапан, устройство охлаждения крекинг-газа и редуктор, причём температурный датчик установлен на выпускном патрубке, выход крекинг-устройства соединён с перепускным клапаном, который соединён с устройством охлаждения крекинг-газа, которое соединено с обратным клапаном, который соединён с баллоном для крекинг-газа, на выходе баллона для крекинг-газа установлен редуктор, который соединён с первым трубопроводом крекинг-газа. This goal is achieved due to the fact that the internal combustion engine contains at least one cylinder with an inlet pipe, an exhaust pipe, an intake valve, an exhaust valve and a piston, a gas tank equipped with a first inlet pipe, a cracking gas cylinder, a cracking device , gasoline pump, temperature sensor, control unit, engine exhaust system with a series-connected exhaust pipe and outlet pipe, a mixer, and the inlet valve is installed in the cylinder with the possibility of introducing the combustible mixture into the cylinder, the exhaust valve is installed in the cylinder with the possibility of exhausting the exhaust gas into the exhaust pipe, which is connected to the exhaust pipe, the mixer is connected to the inlet pipe and the air filter, equipped with a second inlet pipe and the first cracking gas pipe, temperature the sensor is connected to a control unit connected to the gas pump, the cracking device is installed to ensure thermal contact with the exhaust system of the engine, the gas pump is connected it has an inlet with a gas tank and an outlet with a cracking device, characterized in that a bypass valve, a non-return valve, a cracking gas cooling device and a reducer are introduced into it, and the temperature sensor is installed on the outlet a bypass valve, a non-return valve, a cracking gas cooling device and a reducer are introduced, the temperature sensor being installed on the outlet pipe, the output of the cracking device is connected to a bypass valve that is connected to the cracking gas cooling device, which is connected to a non-return valve, which is connected to a cylinder for cracking gas; at the outlet of the cylinder for cracking gas, a reducer is installed, which is connected to the first pipeline of the cracking gas.
Краткое описание чертежей Полезная модель поясняется чертежом, на котором представлена принципиальная схема системы питания для двигателя внутреннего сгорания. Brief Description of the Drawings A utility model is illustrated in the drawing, which shows a schematic diagram of a power system for an internal combustion engine.
Вариант осуществления изобретения На чертеже обозначены: выходной патрубок 1, трубопровод отработавших газов 2, перепускной клапан 3, крекинг-устройство 4, змеевик 5, температурный датчик 6, устройство охлаждения крекинг-газа, обозначенное 7, выпускной клапан 8, свеча зажигания 9, впускной клапан 10, впускной патрубок 11, трубопровод газо- воз душной смеси 12, второй входной патрубок 13, смеситель 14, первый трубопровод крекинг-газа, обозначенный 15, обратный клапан 16, редуктор 17, второй трубопровод крекинг-газа, обозначенный 18, баллон для крекинг-газа, обозначенный 19, поршень 20, цилиндр 21, выпускной патрубок 22, блок управления 23, бензопровод 24, бензонасос 25, бензобак 26, первый входной патрубок 27, воздушный фильтр 28. An embodiment of the invention The drawing shows: outlet pipe 1, exhaust gas pipe 2, bypass valve 3, cracking device 4, coil 5, temperature sensor 6, cracking gas cooling device indicated 7, exhaust valve 8, spark plug 9, inlet a valve 10, an inlet pipe 11, a gas-air mixture pipe 12, a second inlet pipe 13, a mixer 14, a first cracked gas pipe 15, a check valve 16, a pressure reducer 17, a second cracked gas pipe 18, a cylinder for cracked gas designated 19, piston 20, cylinder 21, exhaust pipe 22, control unit 23, gas pipe 24, gas pump 25, gas tank 26, first inlet pipe 27, air filter 28.
Основными элементами устройства являются баллон для крекинг-газа 19, редуктор 17, смеситель 14, цилиндр 21 с поршнем 20, бензобак 26, бензонасос 25, крекинг-устройство 4, устройство охлаждения крекинг-газа 7.  The main elements of the device are a cylinder for cracking gas 19, a gearbox 17, a mixer 14, a cylinder 21 with a piston 20, a gas tank 26, a gas pump 25, a cracking device 4, a cracking gas cooling device 7.
Баллон для крекинг-газа 19 представляет собой полый резервуар любой формы, например цилиндрической. Баллон для крекинг-газа 19 предназначен для хранения газа (пускового газа или крекинг-газа). Баллон для крекинг-газа 19 соединен с редуктором 17 посредством первого трубопровода крекинг-газа 15. Для этого в баллоне для крекинг-газа 19 выполнено соответствующее отверстие.  The cracked gas cylinder 19 is a hollow reservoir of any shape, for example cylindrical. The cracking gas cylinder 19 is intended for storing gas (starting gas or cracked gas). The cracking gas cylinder 19 is connected to the gearbox 17 by means of a first cracking gas pipe 15. For this, a corresponding opening is made in the cracking gas cylinder 19.
Редуктор 17 представляет собой устройство для понижения давления газа в первом трубопроводе крекинг-газа 15 до рабочего и для автоматического поддержания  The reducer 17 is a device for lowering the gas pressure in the first pipeline of the cracking gas 15 to the working and for automatic maintenance
з которой транспортируется крекинг-газ. В данном устройстве второй трубопровод крекинг-газа 18 разделен на несколько участков, расположенных между баллоном для крекинг-газа 19 и устройством охлаждения крекинг-газа 7 и между устройством охлаждения крекинг-газа 7 и крекинг-устройством 4. s which transported cracking gas. In this device, the second cracking gas pipeline 18 is divided into several sections located between the cracking gas cylinder 19 and the cracking gas cooling device 7 and between the cracking gas cooling device 7 and the cracking device 4.
Смеситель 14 представляет собой полый резервуар. Смеситель 14 предназначен для смешения поступивших в него газов. В частном случае смеситель 14 предназначен для смешения крекинг-газов с воздухом, поступившим через воздушный фильтр 28. Смеситель 14 соединен с первым трубопроводом крекинг-газов 15. Для этого в смесителе 14 выполнено соответствующее отверстие. Смеситель 14 снабжен воздушным фильтром 28 и вторым входным патрубком 13. Смеситель 14 соединен с трубопроводом газо-воздушной смеси 12.  The mixer 14 is a hollow tank. The mixer 14 is designed to mix incoming gases. In a particular case, the mixer 14 is designed to mix cracked gases with the air entering through the air filter 28. The mixer 14 is connected to the first pipeline of the cracked gases 15. For this purpose, a corresponding hole is made in the mixer 14. The mixer 14 is equipped with an air filter 28 and a second inlet pipe 13. The mixer 14 is connected to the pipeline of the gas-air mixture 12.
Второй входной патрубок 13 представляет собой небольшой отрезок трубы, присоединённый одним торцом к одной из стенок смесителя 14. Второй входной патрубок 13 сообщается со смесителем 14 через соответствующее отверстие в указанной стенке смесителя 14 через воздушный фильтр 28. Второй входной патрубок 13 предназначен для подачи в смеситель 14 воздуха.  The second inlet pipe 13 is a small pipe segment connected at one end to one of the walls of the mixer 14. The second inlet pipe 13 communicates with the mixer 14 through a corresponding hole in the specified wall of the mixer 14 through the air filter 28. The second inlet pipe 13 is intended for supply to the mixer 14 air.
Первый трубопровод крекинг-газа 15 представляет собой небольшой отрезок трубы, присоединённый одним торцом к одной из стенок смесителя 14, другим к выходу редуктора 17. Первый трубопровод крекинг-газа 15 сообщается со смесителем 14 через соответствующее отверстие в указанной стенке смесителя 14. Первый трубопровод крекинг-газа 15 предназначен для подачи в смеситель 14 крекинг-газов или пускового газа.  The first cracked gas pipeline 15 is a small pipe segment connected at one end to one of the walls of the mixer 14 and the other to the outlet of the reducer 17. The first cracked gas pipeline 15 communicates with the mixer 14 through a corresponding hole in the specified wall of the mixer 14. The first cracked pipeline -gas 15 is intended to supply cracked gases or starting gas to the mixer 14.
Трубопровод газо-воздушной смеси 12 представляет собой часть трубы, по которой транспортируется газо-воздушная смесь. Трубопровод газо-воздушной смеси 12 соединяет смеситель 14 с цилиндром 21. Трубопровод газо-воздушной смеси 12 снабжен впускным патрубком 11.  The pipeline of the gas-air mixture 12 is a part of the pipe through which the gas-air mixture is transported. The pipeline of the gas-air mixture 12 connects the mixer 14 to the cylinder 21. The pipeline of the gas-air mixture 12 is equipped with an inlet pipe 11.
Впускной патрубок 11 представляет собой конец трубопровода газо-воздушной смеси, частично помещенный в цилиндр 21. В месте соединения впускного патрубка 11 с цилиндром 21 установлен впускной клапан 10. Впускной клапан 10 выполнен с обеспечением пропускания газо-воздушной смеси в цилиндр 21, и предотвращения выпуска отработавших газов из цилиндра 21.  The inlet pipe 11 is the end of the gas-air mixture pipe, partially placed in the cylinder 21. At the junction of the inlet pipe 11 with the cylinder 21, an inlet valve 10 is installed. The inlet valve 10 is configured to allow the gas-air mixture to pass into the cylinder 21, and to prevent release exhaust gas from cylinder 21.
Цилиндр 2 представляет собой одну из главных частей поршневого двигателя внутреннего сгорания. Цилиндр 21 представляет собой камеру сгорания, в которой химическая энергия топлива превращается в механическую энергию (определение цилиндра приведено, например, на сайте http://ru.wikipedia.org/wiki/%D0%A6% D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80 (%D0%B4%D0%B2%D0%B8% D0%B3%D0%B0%D1%82%D0%B5%D0%BB%DI%8C). В цилиндре 21 происходит возвратно-поступательное движение поршня 20 от верхней мертвой точки до нижней мертвой точки. В верхней мертвой точки поршня 20 происходит максимальное сжатие газо-воздушной смеси в камере сгорания, где посредством свечи зажигания 9 происходит ее воспламенение. Химическая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня 20 превращается во вращательное движение с помощью кривошипно-шатунного механизма. Цилиндр 21 имеет отверстие для соединения с трубопроводом газо- воздушной смеси 12 (впускным патрубком 11) и трубопроводом отработавших газов 2 (выпускным патрубком 22). В случае использования дизельного двигателя свеча зажигания 9 внутри цилиндра 21 не устанавливается. Воспламенение смеси происходит под действием высокой температуры воздуха, подвергшегося сжатию в цилиндре 21. Cylinder 2 is one of the main parts of a reciprocating internal combustion engine. The cylinder 21 is a combustion chamber in which the chemical energy of the fuel is converted into mechanical energy (for example, the cylinder definition can be found at http://www.wikipedia.org/wiki/%D0%A6% D0% B8% D0% BB% D0% B8% D0% BD% D0 % B4% D1% 80 (% D0% B4% D0% B2% D0% B8% D0% B3% D0% B0% D1% 82% D0% B5% D0% BB% DI% 8C). In cylinder 21, it returns - translational movement of the piston 20 from the top dead center to the bottom dead center. In the top dead center of the piston 20, the maximum compression of the gas-air mixture occurs in the combustion chamber, where it ignites by means of the spark plug 9. Chemical energy of the fuel is converted into mechanical energy, which The one from the reciprocating motion of the piston 20 is converted into rotational motion using a crank mechanism.The cylinder 21 has an opening for connection with the gas-air mixture pipe 12 (inlet pipe 11) and the exhaust gas pipe 2 (exhaust pipe 22). the use of a diesel engine spark plug 9 inside the cylinder 21 is not installed. The ignition of the mixture occurs under the action of high temperature air, which has been compressed in the cylinder 21.
Свеча зажигания 9 представляет собой устройство, при помощи которого происходит поджег сжатой газо-воздушной смеси, находящегося внутри цилиндра 21.  The spark plug 9 is a device by which ignites a compressed gas-air mixture inside the cylinder 21.
Выпускная система двигателя предназначена для транспортирования отработавших газов из цилиндра 21 и выведения этих газов из устройства. Выпускная система двигателя в частном случае состоит из выпускного патрубка 22, трубопровода отработавших газов 2 и выходного патрубка 1.  The exhaust system of the engine is designed to transport exhaust gases from the cylinder 21 and remove these gases from the device. The exhaust system of the engine in a particular case consists of an exhaust pipe 22, an exhaust gas pipe 2 and an output pipe 1.
Трубопровод отработавших газов 2 представляет собой часть трубы, по которой транспортируется отработавшие газы. Выходной патрубок 1 представляет собой часть трубопровода отработавших газов 2, по которому эти газы выводятся из устройства.  The exhaust gas pipe 2 is a part of the pipe through which the exhaust gas is transported. The outlet pipe 1 is a part of the exhaust gas pipe 2 through which these gases are discharged from the device.
Выпускной патрубок 22 представляет собой конец трубопровода отработавших газов, частично помещенный в цилиндр 21. В месте соединения выпускного патрубка 22 с цилиндром 21 установлен выпускной клапан 8. Выпускной клапан 8 выполнен с обеспечением выпускания отработавших газов из цилиндра 21 после сгорания газо- воздушной смеси, и предотвращения выпуска газо-воздушной смеси из цилиндра 21 до её сгорания. На выпускном патрубке 22 установлен температурный датчик 6.  The exhaust pipe 22 is the end of the exhaust gas pipe, partially placed in the cylinder 21. At the junction of the exhaust pipe 22 with the cylinder 21, an exhaust valve 8 is installed. The exhaust valve 8 is configured to exhaust the gases from the cylinder 21 after combustion of the gas-air mixture, and preventing the release of the gas-air mixture from the cylinder 21 prior to its combustion. On the exhaust pipe 22, a temperature sensor 6 is installed.
Температурный датчик 6 предназначен для определения температуры отработавших газов на выходе из цилиндра 21. Температурный датчик 6 выполнен с обеспечением возможности передачи информации о достижении нужной температуры блоку управления 23. The temperature sensor 6 is designed to determine the temperature of the exhaust gases at the outlet of the cylinder 21. The temperature sensor 6 is made with providing the possibility of transmitting information about the achievement of the desired temperature to the control unit 23.
Блок управления 23 выполнен с обеспечением возможности включения бензонасоса 25, при достижении нужной температуры отработавших газов.  The control unit 23 is made with the possibility of turning on the gas pump 25, when the desired exhaust gas temperature is reached.
Бензонасос 25 предназначен для подачи жидкого топлива из бензобака 26 к крекинг-устройству 4 под давлением. Бензонасос 25 установлен на бензопроводе 24 между бензобаком 26 и крекинг-устройством 4. Бензонасос 25 соединён с блоком управления 23.  The gas pump 25 is designed to supply liquid fuel from the gas tank 26 to the cracking device 4 under pressure. The gas pump 25 is installed on the gas pipe 24 between the gas tank 26 and the cracking device 4. The gas pump 25 is connected to the control unit 23.
Бензобак 26 представляет собой полый резервуар любой формы, например цилиндрической. Бензобак 26 предназначен для жидкого топлива, в частности бензина. Бензобак 26 снабжён первым входным патрубком 27. Первый входной патрубок 27 представляет небольшой отрезок трубы, присоединённый одним торцом к одной из стенок бензобака 26. Первый входной патрубок 27 сообщается с бензобаком 26 через соответствующее отверстие в указанной стенке бензобака 26. Первый входной патрубок 27 предназначен для заливания жидкого топлива в бензобак 26. Бензобак 26 соединен с крекинг-устройством 4 посредством бензопровода 24.  The gas tank 26 is a hollow tank of any shape, for example a cylindrical one. Gas tank 26 is designed for liquid fuel, in particular gasoline. The gas tank 26 is equipped with a first inlet pipe 27. The first inlet pipe 27 represents a small pipe segment connected at one end to one of the walls of the gas tank 26. The first inlet pipe 27 communicates with the gas tank 26 through a corresponding hole in the indicated wall of the gas tank 26. The first inlet pipe 27 is intended for pouring liquid fuel into the gas tank 26. The gas tank 26 is connected to the cracking device 4 through a gas pipe 24.
Бензопровод 24 представляет собой часть трубы, по которой транспортируется жидкое топливо. Бензопровод 24 присоединен к бензобаку 26 и к крекинг-устройству 4. На бензопроводе 24 установлен бензонасос 25. Для присоединения бензопровода 24 в бензобаке 26 выполнено соответствующее отверстие.  The gas pipe 24 is a part of the pipe through which liquid fuel is transported. The gas pipe 24 is connected to the gas tank 26 and to the cracking device 4. A gas pump 25 is installed on the gas pipe 24. A corresponding hole is made in the gas tank 26 to connect the gas pipe 24.
Крекинг-устройство 4 выполнено с обеспечением контакта с выпускной системой двигателя (в частном случае, трубопроводом отработавших газов 2) и теплообмена между выпускной системой двигателя (трубопроводом отработавших газов 2) и крекинг-устройством 4, с целью поддержания температуры, необходимой для процесса крекинга. Крекинг-устройство 4 предназначено для крекинга, т.е. высокотемпературной переработки жидкого топлива (бензина) в газообразные продукты, как правило, с меньшей молекулярной массой (крекинг-газ) (определение крекинга приведено, например, на сайте http://ru.wikipedia.org/wiki %D0%9A% D1%80%D0%B5%D0%BA%D0%B8%D0%BD%D0%B3). Крекинг-устройство 4 в частном случае выполнено как часть трубопровода между бензопроводом 24 и вторым трубопроводом крекинг-газа 18, спирально навитая вокруг части трубопровода отработавших газов 2. Крекинг-устройство 4 соединено с устройством охлаждения крекинг-газа 7 посредством соответствующей части второго трубопровода крекинг- газа 18. The cracking device 4 is made to ensure contact with the exhaust system of the engine (in particular, the exhaust pipe 2) and heat exchange between the exhaust system of the engine (exhaust pipe 2) and the cracking device 4, in order to maintain the temperature required for the cracking process. The cracking device 4 is intended for cracking, i.e. high-temperature processing of liquid fuel (gasoline) into gaseous products, usually with a lower molecular weight (cracking gas) (for cracking, see, for example, http://ru.wikipedia.org/wiki% D0% 9A% D1% 80% D0% B5% D0% BA% D0% B8% D0% BD% D0% B3). The cracking device 4 in a particular case is made as part of the pipeline between the gas pipe 24 and the second cracking gas pipe 18, helically wound around a part of the exhaust gas pipe 2. The cracking device 4 is connected to the cooling device for the cracking gas 7 by means of the corresponding part of the second cracking gas 18.
Крекинг-газ состоит из непредельных углеводородов различного состава, имеющих октановое число более 100 единиц. Это позволит увеличить степень сжатия т.е. давление в конце сжатия газо-воздушной смеси и, как следствие, увеличится давление продуктов сгорания и производимая работа, а значит повысится эффективный коэффициент полезного действия двигателя, а также увеличится экономия за счет разницы цен низкооктанового и высокооктанового бензина при работе двигателя внутреннего сгорания на крекинг-газе с высокой степенью сжатия на крекинг-газе.  Cracked gas consists of unsaturated hydrocarbons of various compositions having an octane rating of more than 100 units. This will increase the compression ratio i.e. the pressure at the end of compression of the gas-air mixture and, as a result, the pressure of the combustion products and the work performed will increase, which will increase the effective efficiency of the engine, as well as increase the savings due to the difference in prices of low-octane and high-octane gasoline during operation of the internal combustion engine for cracking highly compressed cracked gas.
Перепускной клапан 3 предназначен для поддержания давления среды (например, крекинг-газа или бензина) в крекинг-устройстве 4 на уровне, требуемом для поддержания процесса крекинга путём перепуска этой среды (например во второй трубопровод крекинг-газа 18 или бензопровод 24). Перепускной клапан 3 может быть установлен на бензопроводе 24 перед крекинг-устройством 4 или на участке второго трубопровода крекинг-газа 18 между крекинг-устройством 4 и устройством охлаждения крекинг-газа 7.  The bypass valve 3 is designed to maintain the pressure of the medium (for example, cracked gas or gasoline) in the cracking device 4 at the level required to maintain the cracking process by bypassing this medium (for example, into the second cracking gas pipe 18 or the gas pipe 24). The bypass valve 3 can be installed on the gas line 24 in front of the cracking device 4 or on the section of the second cracking gas pipeline 18 between the cracking device 4 and the cracking gas cooling device 7.
Устройство охлаждения крекинг-газа 7 предназначено для охлаждения крекинг-газов, поступивших из крекинг-устройства 4. В частном случае устройство охлаждения крекинг-газа 7 представляет собой сосуд с охлаждающей жидкостью, внутри которого расположен змеевик 5. Змеевик 5 представляет собой часть второго трубопровода крекинг-газа 18, изогнутую в виде спирали или зигзагообразно, установленную в системе жидкостного охлаждения крекинг-газа 7 двигателя внутреннего сгорания.  The cracking gas cooling device 7 is designed to cool the cracking gases received from the cracking device 4. In the particular case, the cracking gas cooling device 7 is a vessel with coolant inside which the coil 5 is located. The coil 5 is a part of the second cracking pipeline gas 18, curved in the form of a spiral or zigzag, installed in the liquid cooling system of the cracked gas 7 of the internal combustion engine.
Обратный клапан 16 установлен на участке второго трубопровода крекинг- газа 18 между устройством охлаждения крекинг-газа 7 и баллоном для крекинг-газа 19. Обратный клапан 16 предназначен для недопущения изменения направления потока среды в технологической системе. В частном случае обратный клапан 16 пропускает среду (крекинг-газ) в направлении от устройства охлаждения крекинг-газа 7 к баллону для крекинг-газа 19 и предотвращает её движение в противоположном направлении, действуя при этом автоматически.  The non-return valve 16 is installed on the section of the second cracking gas pipeline 18 between the cracking gas cooling device 7 and the crack gas cylinder 19. The non-return valve 16 is designed to prevent a change in the direction of the medium flow in the technological system. In the particular case, the non-return valve 16 passes the medium (cracking gas) in the direction from the cooling device for the cracking gas 7 to the cylinder for the cracking gas 19 and prevents its movement in the opposite direction, acting automatically.
Промышленная применимость Industrial applicability
Полезная модель реализуется следующим образом. Пользователь собирает устройство описанным выше образом. При этом пользователь наполняет баллон для крекинг-газа 19 пусковым газом, а бензобак 26 - бензином. The utility model is implemented as follows. The user assembles the device as described above. At the same time, the user fills the cracking gas cylinder 19 with starting gas, and the gas tank 26 with gasoline.
Первоначально пуск двигателя внутреннего сгорания осуществляют путем подачи пускового газа по первому трубопроводу крекинг-газа 15 из баллона для крекинг-газа 19 через редуктор 17 в смеситель 14 при положительной температуре. В смеситель 14 через второй входной патрубок 13 и через воздушный фильтр 28 поступает воздух. Пусковой газ и воздух смешиваются в смесителе 14 и подаются по трубопроводу газо-воздушной смеси 12 и впускному патрубку 11 в цилиндр 21, при движении поршня 20 от верхней мертвой точки в нижнюю мертвую точку при открытии впускного клапана 10 (такт впуска). В такте сжатия оба клапана (впускной клапан 10 и выпускной клапан 8 закрыты) происходит сжатие газо-воздушной смеси. При достижении поршнем 20 верхней мертвой точки (наивысшее давление в камере сгорания) происходит принудительное зажигание газо-воздушной смеси свечой зажигания 9. В процессе сгорания образующиеся газы давят на поршень 20 цилиндра 21 , заставляя его двигаться вниз и совершать вращательное движение коленчатого вала. Сгоревшая газо-воздушная смесь образует отработавшие газы, которые выходят через выпускной клапан 8 и далее отработавшие газы по трубопроводу отработавших газов 2 выводятся из устройства.  Initially, the start of the internal combustion engine is carried out by supplying the starting gas through the first cracking gas pipe 15 from the cylinder for cracking gas 19 through a reducer 17 to the mixer 14 at a positive temperature. In the mixer 14 through the second inlet pipe 13 and through the air filter 28 air enters. The starting gas and air are mixed in the mixer 14 and fed through the pipeline of the gas-air mixture 12 and the inlet pipe 11 to the cylinder 21, when the piston 20 moves from the top dead center to the bottom dead center when the inlet valve 10 is opened (intake stroke). In the compression stroke, both valves (intake valve 10 and exhaust valve 8 are closed), the gas-air mixture is compressed. When the piston 20 reaches the top dead point (the highest pressure in the combustion chamber), the gas-air mixture is forcedly ignited by the spark plug 9. During combustion, the generated gases are pressed on the piston 20 of the cylinder 21, forcing it to move down and rotate the crankshaft. The burnt gas-air mixture forms the exhaust gases that exit through the exhaust valve 8 and then the exhaust gases through the exhaust gas pipe 2 are removed from the device.
Температурный датчик 6, установленный на выходе из цилиндра 21 , измеряет температуру в трубопроводе отработавших газов 2 и передает информацию об этой температуре блоку управления 23. При достижении необходимой температуры блок управления 23 включает бензонасос 25, установленный на бензопроводе 24. Необходимая температура выбирается с обеспечением прохождения процесса крекинга в крекинг-устройстве 4 после теплообмена между трубопроводом отработавших газов 2 с крекинг-устройством 4. Бензонасос 25 под давлением подает жидкое топливо (бензин)- из бензобака 26 в крекинг-устройство 4. Бензин, проходя через крекинг- устройство 4, нагревается в результате теплообмена между крекинг-устройством 4 и трубопроводом отработавших газов 2. В результате нагрева происходит процесс термического крекинга бензина, в результате которого образуются крекинг-газы. При этом в крекинг-устройстве 4 при помощи перепускного клапана 3, установленного на выходе из крекинг-устройства 4, поддерживается давление, необходимое для процесса крекинга. При повышении давления выше необходимого значения перепускной клапан 3 пропускает, например в случае установки перепускного клапана 3 на втором трубопроводе крекинг-газа 18, крекинг-газы по второму трубопроводу крекинг-газов 18 в устройство охлаждения крекинг-газа 7, или в случае установки перепускного клапана 3 на бензопроводе 24, в бензопровод 24. В устройстве охлаждения крекинг-газа 7 крекинг-газы охлаждаются проходя по змеевику 5 до необходимой температуры, благодаря теплообмену между крекинг-газами и охлаждающей жидкостью через стенки змеевика 5. Далее охлажденные крекинг-газы по второму трубопроводу крекинг-газов 18 поступают в баллон для крекинг-газа 19 через обратный клапан 16. При этом обратный клапан 16 пропускает крекинг-газы в баллон для крекинг-газа 19, но препятствует выходу крекинг-газов из баллона для крекинг-газа 19 в обратном направлении. В баллоне для крекинг-газа 19 крекинг-газы замещают пусковые газы. Далее процесс происходит описанным выше образом. При этом крекинг-газы постоянно находятся в баллоне для крекинг-газа 19 в газообразном состоянии, даже при низких температурах окружающей среды. Поэтому пуск двигателя внутреннего сгорания в холодное время будет осуществляться надежно крекинг-газами из баллона для крекинг-газа 19. The temperature sensor 6, installed at the outlet of the cylinder 21, measures the temperature in the exhaust gas pipe 2 and transmits information about this temperature to the control unit 23. When the required temperature is reached, the control unit 23 turns on the gas pump 25 installed on the gas pipe 24. The required temperature is selected to ensure passage the cracking process in the cracking device 4 after heat exchange between the exhaust gas pipe 2 and the cracking device 4. The gas pump 25 delivers liquid fuel (gasoline) under pressure - of fuel tank 26 in the cracking unit 4. Gas passing through the cracker unit 4 is heated by heat exchange between the cracking device 4 and the exhaust gas conduit 2. As a result of heating is the process of thermal cracking of gasoline, resulting in the formation of the cracking gases. At the same time, in the cracking device 4, using the bypass valve 3 installed at the outlet of the cracking device 4, the pressure required for the cracking process is maintained. If the pressure rises above the required value, the bypass valve 3 passes, for example, in the case of installing a bypass valve 3 on the second cracking gas pipe 18, the cracking gases through the second cracking gas pipe 18 to the cracking gas cooling device 7, or in the case of installing the bypass valve 3 on the gas pipe 24, into the gas pipe 24 In the cracking gas cooling device 7, the cracking gases are cooled by passing along the coil 5 to the required temperature due to the heat exchange between the cracking gases and the coolant through the walls of the coil 5. Further, the cooled cracking gases through the second crack pipe g-gases 18 enter the cracking gas cylinder 19 through the check valve 16. In this case, the check valve 16 passes the cracking gases into the cracking gas cylinder 19, but prevents the cracking gases from escaping from the cracking gas cylinder 19 in the opposite direction . In the cracked gas cylinder 19, the cracked gases replace the starting gases. Further, the process occurs as described above. In this case, the cracking gases are constantly in the cylinder for cracking gas 19 in a gaseous state, even at low ambient temperatures. Therefore, the start-up of an internal combustion engine in cold weather will be carried out reliably by cracking gases from a cracking gas cylinder 19.
Таким образом, выполнение устройства из баллона для крекинг-газа, редуктора, смесителя, цилиндра, бензобака, бензонасоса, крекинг-устройства и устройства охлаждения крекинг-газа обеспечивает работу двигателя внутреннего сгорания с высокой степенью сжатия, за счёт того, что крекинг-газы постоянно находятся в баллоне для крекинг-газа в виде непредельных углеводородов и водорода в газообразном состоянии с высокими октановыми числами, а также обеспечивает облегчение пуска двигателя внутреннего сгорания в холодное время года, за счет того, что крекинг-газы постоянно находятся в баллоне для крекинг-газа в газообразном состоянии, даже при низких температурах окружающей среды. За счет идеального смешения крекинг-газа с воздухом во впускном трубопроводе увеличится полнота сгорания газо-воздушной смеси в камере сгорания и существенно снизятся выброс токсичных компонентов двигателя внутреннего сгорания в окружающую среду.  Thus, the implementation of the device from a cylinder for cracking gas, a reducer, a mixer, a cylinder, a gas tank, a gas pump, a cracking device and a cracking gas cooling device ensures the operation of the internal combustion engine with a high degree of compression, due to the fact that the cracking gases are constantly are in a cylinder for cracking gas in the form of unsaturated hydrocarbons and hydrogen in a gaseous state with high octane numbers, and also provides ease of starting the internal combustion engine in the cold season, due to the cracked gases reside in the cylinder for the cracking gas in the gaseous state even at low ambient temperatures. Due to the perfect mixing of cracked gas with air in the inlet pipe, the completeness of combustion of the gas-air mixture in the combustion chamber will increase and the emission of toxic components of the internal combustion engine into the environment will significantly decrease.

Claims

Формула полезной модели  Utility Model Formula
Двигатель внутреннего сгорания, содержащий, по крайней мере, один цилиндр с впускным патрубком, выпускным патрубком, впускным клапаном, выпускным клапаном и поршнем, бензобак, снабжённый первым входным патрубком, баллон для крекинг- газа, крекинг-устройство, бензонасос, температурный датчик, блок управления, выпускную систему двигателя с последовательно соединёнными трубопроводом отработавших газов и выходным патрубком, смеситель, воздушный фильтр, причём впускной клапан установлен в цилиндре с обеспечением возможности впуска горючей смеси в цилиндр, выпускной клапан установлен в цилиндре с обеспечением возможности выпуска отработавших газов в выпускной патрубок, который соединён с трубопроводом отработавших газов, смеситель своим выходом соединён с впускным патрубком, снабжён вторым входным патрубком и первым трубопроводом крекинг-газа, воздушный фильтр соединён со смесителем и вторым входным патрубком, температурный датчик соединён с блоком управления, соединённым с бензонасосом, крекинг-устройство установлено с обеспечением теплового контакта с выпускной системой двигателя, бензонасос соединён входом с бензобаком и выходом с крекинг-устройством, отличающийся тем, что в него введены перепускной клапан, обратный клапан, устройство охлаждения крекинг-газа и редуктор, причём температурный датчик установлен на выпускном патрубке, выход крекинг-устройства соединён с перепускным клапаном, который соединён с устройством охлаждения крекинг-газа, которое соединено с обратным клапаном, который соединён с баллоном для крекинг-газа, указанные соединения выхода крекинг-устройства с перепускным клапаном, перепускного клапана с устройством охлаждения крекинг-газа, устройства охлаждения крекинг-газа с обратным клапаном, обратного клапана с баллоном для крекинг-газа выполнены посредством соответствующих участков второго трубопровода крекинг-газа, на выходе баллона для крекинг-газа установлен редуктор, который соединён с первым трубопроводом крекинг-газа. An internal combustion engine containing at least one cylinder with an inlet pipe, an exhaust pipe, an inlet valve, an exhaust valve and a piston, a gas tank equipped with a first inlet pipe, a cracking gas cylinder, a cracking device, a gas pump, a temperature sensor, a block control, the exhaust system of the engine with a series-connected exhaust pipe and exhaust pipe, mixer, air filter, and the intake valve is installed in the cylinder with the possibility of fuel inlet mixture into the cylinder, the exhaust valve is installed in the cylinder with the possibility of exhaust gas discharge into the exhaust pipe, which is connected to the exhaust gas pipe, the mixer is connected to the inlet pipe by its output, is equipped with a second inlet pipe and the first cracked gas pipe, the air filter is connected to the mixer and a second inlet pipe, the temperature sensor is connected to a control unit connected to the gas pump, the cracking device is installed to ensure thermal contact with the exhaust system with the engine theme, the gas pump is connected to the gas tank inlet and outlet with a cracking device, characterized in that a bypass valve, a non-return valve, a cracking gas cooling device and a reducer are introduced into it, the temperature sensor being installed on the exhaust pipe, the output of the cracking device is connected to a bypass valve that is connected to a cracking gas cooling device that is connected to a check valve that is connected to a cracking gas cylinder, said cracking device outlet connections to a bypass valve m, a bypass valve with a cracking gas cooling device, a cracking gas cooling device with a check valve, a check valve with a cracking gas cylinder are made by means of the corresponding sections of the second cracking gas pipeline, a reducer is installed at the outlet of the cracking gas cylinder, which is connected with the first cracked gas pipeline.
PCT/IB2011/002802 2011-02-15 2011-08-25 Internal combustion engine WO2012110846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011105602 2011-02-15
RU2011105602 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012110846A1 true WO2012110846A1 (en) 2012-08-23

Family

ID=46671978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/002802 WO2012110846A1 (en) 2011-02-15 2011-08-25 Internal combustion engine

Country Status (1)

Country Link
WO (1) WO2012110846A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123270A1 (en) * 2017-12-19 2019-06-27 Carlos Enrique Baquero Medina Fuel-saving device by pre-heating, alternative fuel intake and immersion in a magnetic field
CN116220962A (en) * 2023-05-06 2023-06-06 四川华气动力有限责任公司 High-power gas engine for refining blast furnace tail gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2939708A1 (en) * 1979-09-29 1981-04-16 Robert Bosch Gmbh, 7000 Stuttgart Catalytic reactor for IC engine exhaust - has heated connecting section to engine inlet manifold preventing fuel condensing when cold
SU1222878A1 (en) * 1984-10-29 1986-04-07 Коми филиал Всесоюзного научно-исследовательского института природных газов Device for feeding gas into internal combustion engine
SU1638347A1 (en) * 1988-08-23 1991-03-30 Уральский Автомоторный Завод Internal combustion engine with forced ignition and evaporator
RU2048652C1 (en) * 1992-12-03 1995-11-20 Владимир Александрович Щербинин Supply system for gas internal combustion engine
WO2006138452A2 (en) * 2005-06-15 2006-12-28 C.M.C Israel Haber Lerner Ltd. Improving performance of internal combustion engines
RU2317486C2 (en) * 2006-03-03 2008-02-20 Валентин Михайлович Николаев Fuel supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2939708A1 (en) * 1979-09-29 1981-04-16 Robert Bosch Gmbh, 7000 Stuttgart Catalytic reactor for IC engine exhaust - has heated connecting section to engine inlet manifold preventing fuel condensing when cold
SU1222878A1 (en) * 1984-10-29 1986-04-07 Коми филиал Всесоюзного научно-исследовательского института природных газов Device for feeding gas into internal combustion engine
SU1638347A1 (en) * 1988-08-23 1991-03-30 Уральский Автомоторный Завод Internal combustion engine with forced ignition and evaporator
RU2048652C1 (en) * 1992-12-03 1995-11-20 Владимир Александрович Щербинин Supply system for gas internal combustion engine
WO2006138452A2 (en) * 2005-06-15 2006-12-28 C.M.C Israel Haber Lerner Ltd. Improving performance of internal combustion engines
RU2317486C2 (en) * 2006-03-03 2008-02-20 Валентин Михайлович Николаев Fuel supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123270A1 (en) * 2017-12-19 2019-06-27 Carlos Enrique Baquero Medina Fuel-saving device by pre-heating, alternative fuel intake and immersion in a magnetic field
CN116220962A (en) * 2023-05-06 2023-06-06 四川华气动力有限责任公司 High-power gas engine for refining blast furnace tail gas
CN116220962B (en) * 2023-05-06 2023-07-07 四川华气动力有限责任公司 High-power gas engine for refining blast furnace tail gas

Similar Documents

Publication Publication Date Title
US7013845B1 (en) Emissions reduction system for an internal combustion engine
CN109083770B (en) Method for operating an internal combustion engine
GB2431203B (en) Operating internal combustion engines with plant oil
CN102251897A (en) Multi-fuel premixing combustion system for internal combustion engine
WO2010036093A1 (en) Internal combustion engine
EA032894B1 (en) Method and system for optimal fueling of an engine
JP2012514175A5 (en)
CN101571069A (en) Dual-fuel combustion system for internal combustion engines
US10550798B2 (en) LPG fuel system
NO305289B1 (en) Method of combustion of an aqueous fuel in an internal combustion engine
JP6125777B2 (en) Reciprocating piston internal combustion engine and method for operating a reciprocating piston internal combustion engine
KR101246901B1 (en) Engine system using brown gas, ship comprising the same and engine operating method using brown gas
KR20180122712A (en) Control device of internal combustion engine and control method of internal combustion engine
US8414288B2 (en) Combustion system and method
CN103266950A (en) Oil water fuel composite exhaust gas powered two-stroke engine
KR101186290B1 (en) Engine system and engine operating method using brown gas
WO2012110846A1 (en) Internal combustion engine
RU192116U1 (en) INDUCTION DIESEL INLET AIR HEATER TYPE B-2
JP2023103406A (en) Exhaust gas recirculation system and ship provided with the same
RU104243U1 (en) INTERNAL COMBUSTION ENGINE
EP4155526A1 (en) Fuel admission nozzle
KR101186289B1 (en) Engine system and engine operating method using brown gas
JP2023010579A (en) Two-stroke uniflow scavenging-air crosshead type internal combustion engine, and method for operating it
CN101903635B (en) Supply device for internal combustion engine
KR101739440B1 (en) Powering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858831

Country of ref document: EP

Kind code of ref document: A1