WO2012108669A2 - Uranyl ion specific dna aptamer - Google Patents

Uranyl ion specific dna aptamer Download PDF

Info

Publication number
WO2012108669A2
WO2012108669A2 PCT/KR2012/000889 KR2012000889W WO2012108669A2 WO 2012108669 A2 WO2012108669 A2 WO 2012108669A2 KR 2012000889 W KR2012000889 W KR 2012000889W WO 2012108669 A2 WO2012108669 A2 WO 2012108669A2
Authority
WO
WIPO (PCT)
Prior art keywords
uranil
ion
uranyl
specific dna
ions
Prior art date
Application number
PCT/KR2012/000889
Other languages
French (fr)
Korean (ko)
Other versions
WO2012108669A3 (en
Inventor
하상수
김지수
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2012108669A2 publication Critical patent/WO2012108669A2/en
Publication of WO2012108669A3 publication Critical patent/WO2012108669A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Definitions

  • the present invention relates to metal-specific aptamers. More specifically, the present invention relates to uranyl ion-specific DNA based aptamers.
  • metal-specific chelating resins are much more effective than simple ion exchange resins in metal chelation because they exhibit higher selectivity and greater complexation constants for target metals and can be used for drinking or wastewater treatment and seawater. It is because it is useful in practical use, such as extraction of a target metal ion from the.
  • uranium so that almost four billion tons in the world nuclear be used for about 6 mannyeon present in a concentration of about 3 ppb as tricarboxylic Bona sat complex of mainly uranyl ion from the sea water, uranyl ion (UO 2 2 the design of an effective host molecule for +) is, IAEA (International Atomic Energy Agency), the data released in May of 2008 (global uranium reserves 4,740,000 tons and estimated reserves as 10.55 million tons this year 6.4 million tonnes world Considering the annual usage, the amount that can be used for about 70 years) is linked to the economic importance of selective extraction of uranium from seawater.
  • IAEA International Atomic Energy Agency
  • Aptamers are non-naturally occurring structured oligonucleotides capable of binding DNA, RNA, small molecules, peptides, proteins, and the like.
  • aptamers are produced by an in vitro selection process called systemic evolution of ligands by exponential enrichment (SELEX), and are used in many applications such as specific detection and target-specific delivery of proteins, small molecules, and the like. It is used in bioanalytical applications.
  • the present inventors completed the present invention by developing an aptamer capable of binding with high specificity to uranil ions while studying to find uranil ion-specific materials that can be used to effectively extract uranium from seawater. It was.
  • the present invention provides a uranil ion (UO 2 2 + )-specific DNA-based aptamer (HS-DNA 1) having the following structure and HS-DNA 1 conjugated to a solid support to provide.
  • UO 2 2 + uranil ion-specific DNA-based aptamer
  • the uranil ion-specific DNA-based aptamers of the invention are 5'-CTGCA GAATT CTAAT ACGAC TCACT ATAGG AAGAG ATGGC GACAT CTCTG CAGTC GGGTA GTTAA ACCGA CCTTC AGACA TAGGC AGGCG TATAT CTTGT GACGG TAAGC TTGGC AC-3 '(SEQ ID NO: 1)
  • Uranyl ion-specific sensors reported in this document include DNA enzyme strands with 3 'quencher and central ribonucleotide adenosine (riboA) and DNA substrates with fluorophores and quencher at 3' and 5 'ends, respectively.
  • riboA central ribonucleotide adenosine
  • the 5'-thiol-containing DNA aptamer of the present invention was replaced with deoxyribonucleotide adenosine riboA in the reported uranyl ion-specific DNAzyme.
  • the uranil ion-specific catalytic sensor of this document is characterized in that when uranil ions bind, they are cleaved at the central ribonucleotide adenosine site, whereas the uranil ion-specific DNA based aptamer of the present invention is directed to uranil ions. Since the purpose is to specifically bind and separate the uranyl ions from the environment, the central ribonucleotide adenosine site is replaced with deoxyribonucleotide adenosine so as not to be cleaved by binding with the uranyl ion.
  • the uranil ion-specific DNA aptamer of the present invention, HS-DNA 1 was prepared using a primer having a thiol group at the 5 'end and a polymerase chain reaction (PCR).
  • the aptamer solution contained in the dialysis casing (cutoff molecular weight 10,000) was equilibrated against the solution containing metal ions (uranyl acetate (2.1 ⁇ M), NaHCO 3 (21 mM), and HEPES (0.1 M), pH 8.01). Wherein NaHCO 3 was added to promote solubilization of uranil ions at pH 8.01, such that uranil ions were predominantly present as UO 2 (CO 3 ) 3 4- in solution.
  • Thermo, Bellefonte, PA commercially available dialysis casings (Slide-A-Lyzer Dialysis Cassettes, Thermo, Bellefonte, PA) were used to minimize concentration changes due to osmotic pressure. After equilibration was taken, the concentration of metal ions outside the dialysis casing was measured by inductively coupled plasma mass spectrometry (ICP-MS) to calculate the amount of metal ions bound to the aptamer HS-DNA 1.
  • ICP-MS inductively coupled plasma mass spectrometry
  • the graph of FIG. 1 consists of two straight lines intersecting at [HS-DNA 1 ] 0 equivalent to [UO 2 2+ ] 0 , which shows that the aptamer forms a 1: 1 type complex with uranil ions.
  • the inventors conducted HPLC experiments with anion-exchange columns before and after uranyl ion binding, and, unlike the reported UO 2 2+ -specific sensors, the HS-DNA 1 of the present invention is uranyl ion-bonded. It was found that no magnetic cleavage was caused by. That is, the uranil ion-specific DNA-based aptamers of the present invention bind very strongly and selectively to uranil ions due to their high sensitivity and high selectivity to uranil ions, while not cleaved by the binding of uranil ions. Therefore, it can be usefully used for separation of uranyl ions.
  • the aptamer was conjugated with the solid support in order to facilitate separation of the uranil ion-aptamer complex after binding to the uranil ion.
  • Aptamer-SMCC-PS an aptamer conjugated to a solid support, is an aminopolystyrene (aminoPS) resin (polystyrene-co-vinylbenzylamine-co-divinylbenzene, mesh, used as a solid support, according to the schematic of FIG. : 100-200, 1.0 mmol N / g resin, Sigma) was prepared by the modification.
  • aminoPS aminopolystyrene
  • sulfo-SMCC sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate, Sigma
  • HS-DNA 1 conjugated with the resin was estimated to be approximately 2.65 nmol / g resin, ie 0.265 mol% of amino groups were covalently attached to HS-DNA 1 .
  • the amount of uranyl ions that can be bound to the aptamer-SMCC-PS was measured using a fixed amount of aptamer-SMCC-PS (FIG. 4).
  • Approximately 20 mg of modified resin is suspended in 1 mL (pH 8.01) of a solution of uranyl acetate, NaHCO 3 (21 mM), and HEPES (0.1 M), and the mixture is kept at 25 ° C. at 100 rpm for 2 days. Shaken.
  • the beads collected by filtration were washed three times with buffer solution (0.55 M NaCl, HEPES 0.01 M , pH 8.01; 1 mL) over 3 hours to allow UO 2 (CO 3) to be bound by the resin via simple adsorption.
  • K f Is the equilibrium constant for the exchange reaction represented by equation 3, which is a combination of K ex k One Of k -One )
  • K f end K ex And K f carb (10 21.54
  • [BS], [BS] 0 , And [UO 2 2+ BS] is BS and UO 2 2+
  • concentration of BS obtainable when the BS is assumed to dissolve, the concentration initially added in the BS, and the UO 2 2+ Each concentration of BS is shown.
  • the initially added concentration of uranil ions is [UO 2 2+ ] 0 It is expressed as [HCO 3 - ] >> [UO 2 2+ ] 0 [UO experimentally measured under the conditions of 2 2+ From [BS] and [CO used for measurement 3 2- ], [UO 2 2+ ] 0 , And [BS] 0 From the value of K ex
  • the value of [HCO 3 - ] HCO 3 - ] 0 It can be calculated from Equation 5 based on the assumption that can be approximated with. log for Aptamer-SMCC-PS in the presence of 21 mM bicarbonate ions at pH 8.10 and 25 ° C. K f The value of was 22.9 ⁇ 1.2. K d app Wow K f The difference between the estimates of [UO 2+ ] 0 It is thought to be due to experimental error caused by the relatively inferior sensitivity of ICP-MS in.
  • the present invention also provides a method for separating uranil ions from a sample that is believed to contain uranil ions using an uranil ion-specific DNA based aptamer.
  • the method of the present invention can utilize any DNA-based aptamer that specifically binds to uranil ions, and in particular, effectively utilizes uranil ions using HS-DNA 1, the uranil ion-specific DNA aptamer described above. Can be separated
  • the method of the present invention includes contacting a uranil ion-specific DNA aptamer with a sample believed to contain uranyl ions, and separating the uranil ion-DNA aptamer complex.
  • the uranyl ion-specific DNA aptamer is more preferably in a form conjugated to a solid support in order to facilitate separation of the complex after binding to the uranyl ion.
  • the uranil ion-specific DNA aptamer of the present invention binds with high specificity to uranil ions and is not cleaved by the binding of uranil ions, thereby not being affected by the interference of various other metal ions in an environment such as seawater.
  • Uranyl ions can be separated with high efficiency, thereby enabling more efficient uranium acquisition at a lower cost than conventional uranium acquisition methods.
  • FIG. 1 shows the structure of uranyl ion-specific DNA aptamer HS-DNA 1.
  • FIG. 2 shows the results of uranil ion binding experiments of HS-DNA 1 showing that HS-DNA 1 forms a 1: 1 type complex with uranil ions.
  • 3 shows a synthetic scheme of aptamer-SMCC-PS resin.
  • HS-DNA 1 (5'-HS- (CH 2 ) 6 -CTGCA GAATT CTAAT ACGAC TCACT ATAGG AAGAG ATGGC GACAT CTCTG CAGTC GGGTA GTTAA ACCGA CCTTC AGACA TAGGC AGGCG TATAT CTTGT GACGG TAAGC TTGGC AC-3 ') It was synthesized using 117 mer antisense oligonucleotides containing the T7 promoter sequence at the '-HS- (CH 2 ) 6 -CTGCA GAATT CTAAT-3') (SEQ ID NO: 2) and at the 5'-end, both of which were integrated DNA Technologies Purchased from
  • DNA aptamer was introduced into the solid support to generate aptamer-SMCC-PS as shown in the schematic of FIG. 3.
  • Aptamer-SMCC-PS is an aminopolystyrene (aminoPS) resin (polystyrene-co-vinylbenzylamine-co-divinylbenzene, mesh: 100-200, 1.0 mmol N / used as a solid support according to the schematic of FIG. Gram resin, Sigma).
  • the amount of sulfo-SMCC (sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate, Sigma) added to aminoPS during the synthesis step was determined by Zhang et al. , Org. Lett. 2001 . , 3 , 275-278; Derfus et al. , Bioconjug. Chem. 2007 , 18 , 1391-1396) 5 mol% of amino groups exposed to attack by excess sulfo-SMCC.
  • the amount of HS-DNA 1 conjugated with the resin was determined to be approximately 2.65 nmol / g resin, ie 0.265 mol% of amino groups were covalently attached to HS-DNA 1 .
  • the amount of uranyl ions that can be bound to aptamer-SMCC-PS was measured in a fixed amount of aptamer-SMCC-PS (FIG. 4).
  • Approximately 20 mg of modified resin was suspended in 1 ml of uranil acetate solution, NaHCO 3 (21 mM), and HEPES (0.1 M), pH 8.01. The mixture was shaken at 50 X g , 25 ° C for 2 days.
  • the beads collected by filtration were washed three times with buffer solution (0.55 M NaCl, HEPES 0.01 M , pH 8.01; 1 ml) over 3 hours, to allow UO 2 (CO 3 ) to be bound to the resin by simple adsorption. 3 4- was removed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a uranyl ion specific DNA aptamer. Also provided is a uranyl ion specific DNA aptamer which is bound to a solid support. Also provided is a method for isolating uranyl ions from a sample by using the uranyl ion specific DNA aptamer. The DNA aptamer of the present invention binds to uranyl ions with high specificity, such that uranium can be efficiently extracted from marine and other such environments.

Description

우라닐 이온-특이적 DNA 앱타머Uranyl ion-specific DNA Aptamers
본 발명은 금속-특이적 앱타머에 관한 것이다. 보다 구체적으로, 본 발명은 우라닐 이온-특이적 DNA 기반 앱타머에 관한 것이다.The present invention relates to metal-specific aptamers. More specifically, the present invention relates to uranyl ion-specific DNA based aptamers.
물로부터 금속의 킬레이트화는 환경 보호 및 자원 회수를 위해 중요하다. 특히, 금속-특이적 킬레이팅 수지는 금속 킬레이트화에 있어서 단순한 이온 교환 수지보다 훨씬 더 효과적인데, 그 이유는 그들이 표적 금속에 대해 더 높은 선택성과 더 큰 착물화 상수를 나타내며 음용수 또는 폐수 처리 및 해수로부터 표적 금속 이온의 추출과 같은 실용적 용도에서 유용하기 때문이다. 이러한 관점에서, 우라늄은 해수에서 주로 우라닐 이온의 트리카르보나토 착물로서 전세계 원전이 약 6 만년간 사용할 수 있는 40 억 톤 가량이 약 3 ppb의 농도로 존재하므로, 우라닐 이온(UO2 2+)을 위한 효과적인 호스트 분자의 디자인은, IAEA(국제원자력기구)가 2008년 5월 기준으로 발표한 자료(세계 우라늄 확인매장량 474만 톤, 그리고 추정 매장량은 1055만 톤으로서 이는 연간 6.4만 톤인 세계 연간 사용량을 감안할 때 약 70 년간 사용할 수 있을 정도의 양)를 고려할 때, 해수로부터 우라늄의 선택적 추출의 경제적 중요성과 연결된다. 그러나, 우라닐 이온 결합을 위해 지금까지 개발된 시스템은 다른 금속 이온의 간섭으로 인하여 우라닐 이온에 대해 요구되는 특이성이 결핍되는 것으로 밝혀졌다. 그 결과, 크라운 에테르(crown ethers) 및 칼릭사렌(calixarenes)을 포함하는 거대환식 호스트 분자를 이용한 우라닐 이온의 선택적인 분자 인식에 대한 연구가 이루어졌으나, 이러한 거대환식 호스트 분자는 합성하기 위해 많은 노동을 요하며 고체 지지체에 접합시키기 어려운 변형 때문에 바람직하지 못하다.Chelation of metals from water is important for environmental protection and resource recovery. In particular, metal-specific chelating resins are much more effective than simple ion exchange resins in metal chelation because they exhibit higher selectivity and greater complexation constants for target metals and can be used for drinking or wastewater treatment and seawater. It is because it is useful in practical use, such as extraction of a target metal ion from the. In view of this, uranium, so that almost four billion tons in the world nuclear be used for about 6 mannyeon present in a concentration of about 3 ppb as tricarboxylic Bona sat complex of mainly uranyl ion from the sea water, uranyl ion (UO 2 2 the design of an effective host molecule for +) is, IAEA (International Atomic Energy Agency), the data released in May of 2008 (global uranium reserves 4,740,000 tons and estimated reserves as 10.55 million tons this year 6.4 million tonnes world Considering the annual usage, the amount that can be used for about 70 years) is linked to the economic importance of selective extraction of uranium from seawater. However, systems developed so far for uranyl ion bonding have been found to lack the specificity required for uranyl ions due to interference of other metal ions. As a result, studies on the selective molecular recognition of uranil ions using macrocyclic host molecules including crown ethers and calixarenes have been carried out, but such macrocyclic host molecules require much labor to synthesize. And undesired because of the deformation that is difficult to bond to the solid support.
한편, 앱타머(aptamer)는 DNA, RNA, 소분자, 펩티드, 및 단백질 등에 결합할 수 있는 비-천연 발생의 구조화된 올리고뉴클레오티드이다. 일반적으로, 앱타머는 셀렉스(SELEX)(systematic evolution of ligands by exponential enrichment)로 불리는 인 비트로(in vitro) 선택 과정에 의해 생성되며, 단백질, 소분자 등의 특이적 검출 및 표적-특이적 전달과 같은 많은 생물분석 용도에서 사용되고 있다.Aptamers, on the other hand, are non-naturally occurring structured oligonucleotides capable of binding DNA, RNA, small molecules, peptides, proteins, and the like. In general, aptamers are produced by an in vitro selection process called systemic evolution of ligands by exponential enrichment (SELEX), and are used in many applications such as specific detection and target-specific delivery of proteins, small molecules, and the like. It is used in bioanalytical applications.
본 발명자들은 해수로부터 우라늄을 효과적으로 추출하기 위해 이용될 수 있는 우라닐 이온-특이적 물질을 찾기 위해 연구하던 중, 우라닐 이온에 높은 특이성을 가지고 결합할 수 있는 앱타머를 개발함으로써 본 발명을 완성하였다.The present inventors completed the present invention by developing an aptamer capable of binding with high specificity to uranil ions while studying to find uranil ion-specific materials that can be used to effectively extract uranium from seawater. It was.
본 발명은 우라닐 이온-특이적 DNA 기반 앱타머 및 고형 지지체에 접합된, 우라닐 이온-특이적 DNA 기반 앱타머를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide uranyl ion-specific DNA based aptamers conjugated to uranyl ion-specific DNA based aptamers and solid supports.
또한, 본 발명은 우라닐 이온-특이적 DNA 기반 앱타머를 이용하여 우라닐 이온을 함유하는 것으로 생각되는 시료로부터 우라닐 이온을 분리하는 방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a method for separating uranil ions from a sample that is believed to contain uranil ions using an uranil ion-specific DNA based aptamer.
상기와 같은 목적을 달성하기 위하여, 본 발명은 하기의 구조를 가진 우라닐 이온(UO2 2+)-특이적 DNA 기반 앱타머(HS-DNA 1) 및 고형 지지체에 접합된 HS-DNA 1을 제공한다.In order to achieve the above object, the present invention provides a uranil ion (UO 2 2 + )-specific DNA-based aptamer (HS-DNA 1) having the following structure and HS-DNA 1 conjugated to a solid support to provide.
Figure PCTKR2012000889-appb-I000001
Figure PCTKR2012000889-appb-I000001
본 발명의 우라닐 이온-특이적 DNA-기반 앱타머는 5'-CTGCA GAATT CTAAT ACGAC TCACT ATAGG AAGAG ATGGC GACAT CTCTG CAGTC GGGTA GTTAA ACCGA CCTTC AGACA TAGGC AGGCG TATAT CTTGT GACGG TAAGC TTGGC AC-3'(서열 번호 1)의 염기 서열을 가지며, 최근에 보고된(Liu et al., PNAS, 2007, 104, 2056-2061) 인비트로-선별 우라닐 이온-특이적 촉매 DNA(또는 간단히 DNA자임)에 기반한 우라닐 이온을 위한 촉매 센서의 변경에 의해 제조되었다.The uranil ion-specific DNA-based aptamers of the invention are 5'-CTGCA GAATT CTAAT ACGAC TCACT ATAGG AAGAG ATGGC GACAT CTCTG CAGTC GGGTA GTTAA ACCGA CCTTC AGACA TAGGC AGGCG TATAT CTTGT GACGG TAAGC TTGGC AC-3 '(SEQ ID NO: 1) For uranil ions having base sequences and based on recently reported (Liu et al. , PNAS , 2007 , 104 , 2056-2061) in vitro-selected uranil ion-specific catalytic DNA (or simply DNAzyme) Produced by alteration of catalytic sensor
상기 문헌에 보고된 우라닐 이온-특이적 센서는 3' 켄쳐(quencher)를 가진 DNA 효소 스트랜드 및 중앙의 리보뉴클레오티드 아데노신(riboA) 및 각각 3'과 5' 말단의 형광단 및 켄쳐를 가진 DNA 기질로 구성된 반면, 본 발명의 5'-티올-함유 DNA 앱타머는 보고된 우라닐 이온-특이적 DNA자임 내의 riboA가 데옥시리보뉴클레오티드 아데노신으로 대체되었다. 상기 문헌의 우라닐 이온-특이적 촉매 센서는 우라닐 이온이 결합할 경우 중앙의 리보뉴클레오티드 아데노신 부위에서 절단됨을 특징으로 하는 반면, 본 발명의 우라닐 이온-특이적 DNA 기반 앱타머는 우라닐 이온에 특이적으로 결합하여 우라닐 이온을 주위 환경으로부터 분리해내는 것이 목적이므로, 우라닐 이온과의 결합에 의해 절단되지 않도록 중앙의 리보뉴클레오티드 아데노신 부위를 데옥시리보뉴클레오티드 아데노신으로 대체하였다.Uranyl ion-specific sensors reported in this document include DNA enzyme strands with 3 'quencher and central ribonucleotide adenosine (riboA) and DNA substrates with fluorophores and quencher at 3' and 5 'ends, respectively. In contrast, the 5'-thiol-containing DNA aptamer of the present invention was replaced with deoxyribonucleotide adenosine riboA in the reported uranyl ion-specific DNAzyme. The uranil ion-specific catalytic sensor of this document is characterized in that when uranil ions bind, they are cleaved at the central ribonucleotide adenosine site, whereas the uranil ion-specific DNA based aptamer of the present invention is directed to uranil ions. Since the purpose is to specifically bind and separate the uranyl ions from the environment, the central ribonucleotide adenosine site is replaced with deoxyribonucleotide adenosine so as not to be cleaved by binding with the uranyl ion.
본 발명의 우라닐 이온-특이적 DNA 앱타머인 HS-DNA 1은 5' 말단에 티올기를 가진 프라이머와 중합효소 연쇄 반응(PCR)을 이용하여 제조하였다. 투석 케이싱(컷오프 분자량 10,000)에 함유된 앱타머 용액을 금속 이온을 함유한 용액(우라닐 아세테이트 (2.1 μM), NaHCO3(21 mM), 및 HEPES (0.1 M), pH 8.01)에 대해 평형화시켰으며, 여기서 NaHCO3는 pH 8.01에서 우라닐 이온의 가용화를 촉진하여, 용액에서 우라닐 이온이 UO2(CO3)3 4- 로서 주로 존재하도록 하기 위해 첨가되었다. 구매가능한 투석 케이싱(Slide-A-Lyzer Dialysis Cassettes, Thermo, Bellefonte, PA)을 이용하여 삼투압으로 인한 농도 변화를 최소화하였다. 평형화가 이루어진 후 투석 케이싱 밖의 금속 이온의 농도를 유도 결합 플라즈마 질량 분광분석법(ICP-MS)에 의해 측정하여, 앱타머 HS-DNA 1에 결합된 금속 이온의 양을 계산하였다. 도 1의 그래프는 [UO2 2+]0에 등가인 [HS-DNA 1]0에서 교차하는 두 직선으로 이루어지며, 이것은 앱타머가 우라닐 이온과 1:1 유형 착물을 형성함을 보여준다. 중요하게는, 본 발명자들은 우라닐 이온 결합 전과 후에 음이온-교환 컬럼을 이용한 HPLC 실험을 실시한 결과, 보고된 UO2 2+-특이적 센서와 달리, 본 발명의 HS-DNA 1은 우라닐 이온 결합에 의해 자기 절단이 야기되지 않음을 발견하였다. 즉, 본 발명의 우라닐 이온-특이적 DNA-기반 앱타머는 우라닐 이온에 대한 고도의 민감성과 높은 선택성으로 인해 우라닐 이온에 매우 강하고 선택적으로 결합하는 한편, 우라닐 이온의 결합에 의해 절단되지 않으므로 우라닐 이온의 분리에 유용하게 이용될 수 있다.The uranil ion-specific DNA aptamer of the present invention, HS-DNA 1 was prepared using a primer having a thiol group at the 5 'end and a polymerase chain reaction (PCR). The aptamer solution contained in the dialysis casing (cutoff molecular weight 10,000) was equilibrated against the solution containing metal ions (uranyl acetate (2.1 μM), NaHCO 3 (21 mM), and HEPES (0.1 M), pH 8.01). Wherein NaHCO 3 was added to promote solubilization of uranil ions at pH 8.01, such that uranil ions were predominantly present as UO 2 (CO 3 ) 3 4- in solution. Commercially available dialysis casings (Slide-A-Lyzer Dialysis Cassettes, Thermo, Bellefonte, PA) were used to minimize concentration changes due to osmotic pressure. After equilibration was taken, the concentration of metal ions outside the dialysis casing was measured by inductively coupled plasma mass spectrometry (ICP-MS) to calculate the amount of metal ions bound to the aptamer HS-DNA 1. The graph of FIG. 1 consists of two straight lines intersecting at [HS-DNA 1 ] 0 equivalent to [UO 2 2+ ] 0 , which shows that the aptamer forms a 1: 1 type complex with uranil ions. Importantly, the inventors conducted HPLC experiments with anion-exchange columns before and after uranyl ion binding, and, unlike the reported UO 2 2+ -specific sensors, the HS-DNA 1 of the present invention is uranyl ion-bonded. It was found that no magnetic cleavage was caused by. That is, the uranil ion-specific DNA-based aptamers of the present invention bind very strongly and selectively to uranil ions due to their high sensitivity and high selectivity to uranil ions, while not cleaved by the binding of uranil ions. Therefore, it can be usefully used for separation of uranyl ions.
한편, 우라닐 이온에 결합 후 우라닐 이온-앱타머 착물의 분리를 용이하게 하기 위하여 앱타머를 고형 지지체와 접합시켰다. 고형 지지체에 접합된 앱타머인 앱타머-SMCC-PS는 도 3의 도식에 따라, 고체 지지체로 사용된 아미노폴리스티렌(아미노PS) 수지 (폴리스티렌-코-비닐벤질아민-코-다이비닐벤젠, 메쉬: 100~200, 1.0 mmol N /g 수지, Sigma)의 변형에 의해 제조하였다. 합성 단계 동안 아미노PS에 첨가된 설포-SMCC (설포석신이미딜 4-(N-말레이미도메틸)사이클로헥산-1-카르복실레이트, Sigma)의 양은 과량의 설포-SMCC에 의해 공격받도록 노출된 아미노기의 5 mol%였다. 수지와 접합된 HS-DNA 1의 양은 대략 2.65nmol/g 수지로 추정되었으며, 즉, 0.265 mol%의 아미노기가 HS-DNA 1에 공유적으로 부착되었다.On the other hand, the aptamer was conjugated with the solid support in order to facilitate separation of the uranil ion-aptamer complex after binding to the uranil ion. Aptamer-SMCC-PS, an aptamer conjugated to a solid support, is an aminopolystyrene (aminoPS) resin (polystyrene-co-vinylbenzylamine-co-divinylbenzene, mesh, used as a solid support, according to the schematic of FIG. : 100-200, 1.0 mmol N / g resin, Sigma) was prepared by the modification. The amount of sulfo-SMCC (sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate, Sigma) added to aminoPS during the synthesis step was exposed to attack by excess sulfo-SMCC. It was 5 mol% of an amino group. The amount of HS-DNA 1 conjugated with the resin was estimated to be approximately 2.65 nmol / g resin, ie 0.265 mol% of amino groups were covalently attached to HS-DNA 1 .
앱타머-SMCC-PS에 결합될 수 있는 우라닐 이온의 양은 고정된 양의 앱타머-SMCC-PS를 이용하여 측정하였다 (도 4). 대략 20 mg의 변경된 수지를 우라닐 아세테이트, NaHCO3(21 mM), 및 HEPES (0.1 M)의 용액 1 mL(pH 8.01)에 현탁시키고, 혼합물을 25°C에서 100 rpm의 속도로 2일 동안 진탕시켰다. 여과에 의해 수집된 비드를 3시간에 걸쳐 버퍼 용액 (0.55 M NaCl, HEPES 0.01 M, pH 8.01; 1 mL)으로 3회 세척하여, 단순 흡착을 통해 수지에 의해 결합되었을 수 있는 UO2(CO3)3 4-를 제거하였다. ICP-MS로 확인할 때, NaCl로 3회 처리하는 것은 느슨하게 결합된 우라늄 종의 제거에 충분하였다. 비드를 증류수(2 mL)로 세 번 더 세척한 후, 그들을 1 N HCl 수용액 (2 mL)으로 세척하였다. HCl 처리에 의해 방출된 우라닐 이온의 양은 ICP-MS에 의해 측정하였다. 리간드 결합 실험의 분석은 질량 작용의 법칙으로 불리는 간단한 모델에 기초할 수 있다. 점유율(Fractional occupancy) 또는 결합 계수는 하기 식 1에 기재된 대로 우라닐 이온에 결합되는 모든 수용체의 분획으로 정의될 수 있으며, pH 8.01에서 21 mM 바이카르보네이트 이온의 존재하에서 약 84.6 fM의 겉보기 해리 상수 (K d app) 의 추정이 가능하다(도 4).The amount of uranyl ions that can be bound to the aptamer-SMCC-PS was measured using a fixed amount of aptamer-SMCC-PS (FIG. 4). Approximately 20 mg of modified resin is suspended in 1 mL (pH 8.01) of a solution of uranyl acetate, NaHCO 3 (21 mM), and HEPES (0.1 M), and the mixture is kept at 25 ° C. at 100 rpm for 2 days. Shaken. The beads collected by filtration were washed three times with buffer solution (0.55 M NaCl, HEPES 0.01 M , pH 8.01; 1 mL) over 3 hours to allow UO 2 (CO 3) to be bound by the resin via simple adsorption. ) 3 4- was removed. As confirmed by ICP-MS, three treatments with NaCl were sufficient to remove loosely bound uranium species. The beads were washed three more times with distilled water (2 mL) and then they were washed with 1 N HCl aqueous solution (2 mL). The amount of uranyl ions released by HCl treatment was measured by ICP-MS. Analysis of ligand binding experiments can be based on a simple model called the law of mass action. Fractional occupancy or binding coefficient can be defined as the fraction of all receptors bound to uranyl ions as described in Equation 1 below, with an apparent dissociation of about 84.6 fM in the presence of 21 mM bicarbonate ions at pH 8.01. Estimation of the constant K d app is possible (FIG. 4).
식 1 Equation 1
Figure PCTKR2012000889-appb-I000002
Figure PCTKR2012000889-appb-I000002
그러나, 우라닐 이온의 불용성 킬레이팅제의 경우, 우라닐 착물의 형성 상수(K f)는 고체 표면에의 기체 흡착을 위한 랑뮈르 등온선을 이용한 유추에 의해 정확하게 k ad/k de (식 2)로 표현될 수 있다. 우라닐 착물 (UO2 2+·BS)을 형성하기 위한 결합 부위(BS)에 의한 우라닐 이온의 착물형성은 후속 결합과 독립적임이, 랑뮈르 등온선을 이용한 유추에 의해 추가로 가정될 수 있다. K f 가 매우 클 때 착물형성되지 않은 우라닐 이온의 평형 농도로부터 직접 K f를 측정하는 것은 가능하지 않다. 대신, K f는 하기 식 2와 식 4의 평형 과정의 조합인 식 3에 의해 나타난 교환 반응을 위한 평형 상수(K ex = k 1/k -1)를 측정함으로써 간접적으로 추정될 수 있으며, 그 이유는 K fK ex K f carb (1021.54)로부터 계산될 수 있기 때문이다. 하기 식에서, [BS], [BS]0, 및 [UO2 2+·BS]는 BS 및 UO2 2+·BS가 용해되는 것으로 가정될 때 얻을 수 있는 BS의 농도, BS의 처음에 첨가된 농도, 및 UO2 2+·BS의 농도를 각각 나타낸다. 우라닐 이온의 처음 첨가된 농도는 [UO2 2+]0로 표현된다. [HCO3 -]>>[UO2 2+]0의 조건하에서 실험적으로 측정된 [UO2 2+·BS]로부터, 그리고 측정에 이용된 [CO3 2-], [UO2 2+]0, 및 [BS]0의 값으로부터, K ex의 값은, [HCO3 -]이 [HCO3 -]0와 근사할 수 있다는 가정을 기초로 하기 식 5에서 계산될 수 있다. pH 8.10 및 25°C에서 21 mM 바이카르보네이트 이온의 존재하에서 앱타머-SMCC-PS를 위한 logK f의 값은 22.9 ± 1.2였다. K d appK f의 추정치 사이의 차이는 저농도의 [UO2 2+]0에서 ICP-MS의 상대적으로 열등한 민감성에 의해 야기된 실험 오차로 인한 것으로 생각된다.However, in the case of insoluble chelating agents of uranyl ions, the formation constant of the uranyl complex (K                     f) Is precisely inferred by analogy with the Langmuir isotherm for gas adsorption on solid surfaces.k                     adOfk                     deIt can be represented by (Formula 2). Uranyl Complex (UO)2                     2+Complexation of uranyl ions by the binding site (BS) to form BS) can be further assumed by analogy using the Langmuir isotherm, independent of subsequent binding.K                     fDirect from the equilibrium concentration of uncomplexed uranil ions whenK                     fIt is not possible to measure. instead,K                     fIs the equilibrium constant for the exchange reaction represented by equation 3, which is a combination ofK                     ex=k                     OneOfk                     -One) Can be estimated indirectly by measuringK                     fendK                     exAndK                     f                     carb(1021.54Can be calculated from In the following formula, [BS], [BS]0, And [UO2                     2+BS] is BS and UO2                     2+The concentration of BS obtainable when the BS is assumed to dissolve, the concentration initially added in the BS, and the UO2                     2+Each concentration of BS is shown. The initially added concentration of uranil ions is [UO2                     2+]0It is expressed as [HCO3                     -] >> [UO2                     2+]0[UO experimentally measured under the conditions of2                     2+From [BS] and [CO used for measurement3                     2-], [UO2                     2+]0, And [BS]0From the value ofK                     exThe value of [HCO3                     -] HCO3                     -]0It can be calculated from Equation 5 based on the assumption that can be approximated with. log for Aptamer-SMCC-PS in the presence of 21 mM bicarbonate ions at pH 8.10 and 25 ° C.K                     fThe value of was 22.9 ± 1.2.K                     d                     appWowK                     fThe difference between the estimates of [UO2                     2+]0It is thought to be due to experimental error caused by the relatively inferior sensitivity of ICP-MS in.
식 2 Equation 2
Figure PCTKR2012000889-appb-I000003
Figure PCTKR2012000889-appb-I000003
식 3 Expression 3
Figure PCTKR2012000889-appb-I000004
Figure PCTKR2012000889-appb-I000004
식 4Equation 4
Figure PCTKR2012000889-appb-I000005
Figure PCTKR2012000889-appb-I000005
식 5 Equation 5
Figure PCTKR2012000889-appb-I000006
Figure PCTKR2012000889-appb-I000006
경제적 용이성을 만족하기 위해서는 하루에 수지 1 그램 당 500 mg 이상의 우라늄의 추출이 필요한 것으로 알려져 있다. 또한, 킬레이팅제는 여러번 재순환되어야 한다. 오늘날까지, 이러한 기준을 충족하는 어떤 우라닐 킬레이팅제도 고안되지 않았다. 본 발명의 결과는 수지의 표면 상의 HS-DNA 1의 mol%를 증가시키기 위하여, 앱타머-SMCC-PS 수지에서 DNA 앱타머의 함량을 상승시키는 것이 필요하지만, 높은 log K f 값 및 DNA의 안정성으로 인하여 본 발명의 DNA 앱타머가 해수 등으로부터 우라늄의 추출에 요구되는 경제적 기준을 충족시킬 수 있음을 잘 보여준다.In order to satisfy the economic ease, it is known that more than 500 mg of uranium per gram of resin is required per day. In addition, the chelating agent must be recycled several times. To date, no uranyl chelating agents have been devised that meet these criteria. The results of the present invention indicate that in order to increase the mol% of HS-DNA 1 on the surface of the resin, it is necessary to raise the content of the DNA aptamer in the aptamer-SMCC-PS resin, but the high log K f value and the stability of the DNA Due to this well shows that the DNA aptamer of the present invention can meet the economic criteria required for the extraction of uranium from seawater and the like.
또한, 본 발명은 우라닐 이온-특이적 DNA 기반 앱타머를 이용하여, 우라닐 이온을 함유하는 것으로 생각되는 시료로부터 우라닐 이온을 분리하는 방법을 제공한다.The present invention also provides a method for separating uranil ions from a sample that is believed to contain uranil ions using an uranil ion-specific DNA based aptamer.
본 발명의 방법은 우라닐 이온에 특이적으로 결합하는 임의의 DNA 기반 앱타머를 이용할 수 있으며, 특히 상기한 우라닐 이온-특이적 DNA 앱타머인 HS-DNA 1를 이용하여 우라닐 이온을 효과적으로 분리할 수 있다.The method of the present invention can utilize any DNA-based aptamer that specifically binds to uranil ions, and in particular, effectively utilizes uranil ions using HS-DNA 1, the uranil ion-specific DNA aptamer described above. Can be separated
본 발명의 방법은 우라닐 이온을 함유하는 것으로 생각되는 시료와 우라닐 이온-특이적 DNA 앱타머를 접촉시키는 단계, 및 우라닐 이온-DNA 앱타머 착물을 분리하는 단계를 포함한다.The method of the present invention includes contacting a uranil ion-specific DNA aptamer with a sample believed to contain uranyl ions, and separating the uranil ion-DNA aptamer complex.
본 발명의 방법에 있어서 우라닐 이온-특이적 DNA 앱타머는 우라닐 이온과 결합한 후 착물의 분리를 용이하게 하기 위하여, 고형 지지체에 접합된 형태인 것이 보다 바람직하다.In the method of the present invention, the uranyl ion-specific DNA aptamer is more preferably in a form conjugated to a solid support in order to facilitate separation of the complex after binding to the uranyl ion.
본 발명의 우라닐 이온-특이적 DNA 앱타머는 우라닐 이온에 대해 높은 특이성으로 결합하며 우라닐 이온의 결합에 의해 절단되지 않음으로써, 해수 등과 같은 환경에서 여러가지 다른 금속 이온의 간섭에 영향을 받지 않고 높은 효율로 우라닐 이온을 분리할 수 있도록 하여, 기존의 우라늄 획득 방법에 비하여 저렴한 비용으로 보다 효과적으로 우라늄 획득을 가능하게 한다.The uranil ion-specific DNA aptamer of the present invention binds with high specificity to uranil ions and is not cleaved by the binding of uranil ions, thereby not being affected by the interference of various other metal ions in an environment such as seawater. Uranyl ions can be separated with high efficiency, thereby enabling more efficient uranium acquisition at a lower cost than conventional uranium acquisition methods.
도 1은 우라닐 이온-특이적 DNA 앱타머 HS-DNA 1의 구조를 보여준다.1 shows the structure of uranyl ion-specific DNA aptamer HS-DNA 1.
도 2는 HS-DNA 1이 우라닐 이온과 1:1 타입 착물을 형성함을 보여주는 HS-DNA 1의 우라닐 이온 결합 실험 결과이다.FIG. 2 shows the results of uranil ion binding experiments of HS-DNA 1 showing that HS-DNA 1 forms a 1: 1 type complex with uranil ions.
도 3은 앱타머-SMCC-PS 수지의 합성 도식을 보여준다.3 shows a synthetic scheme of aptamer-SMCC-PS resin.
도 4는 우라닐 이온에 대한 앱타머-SMCC-PS 수지의 겉보기 해리 상수와 형성 상수가 21 mM 바이카르보네이트 이온의 존재하에서 각각 84.6 fM 및 10(22.9±1.2)임을 보여주는, 앱타머-SMCC-PS 수지의 우라닐 이온 결합 실험 결과이다.4 shows the apparent dissociation and formation constants of aptamer-SMCC-PS resins for uranyl ions are 84.6 fM and 10 (22.9 ± 1.2) , respectively, in the presence of 21 mM bicarbonate ions. Uranyl ion bond test results of -PS resin.
이하에서 실험예를 통해 본 발명을 보다 상세히 설명하고자 한다. 하기 실험예는 본 발명을 예시하기 위한 것이며, 어떤 방식으로도 본 발명을 제한하는 것으로 이해되어서는 안된다.Hereinafter, the present invention will be described in more detail through experimental examples. The following experimental examples are intended to illustrate the invention and should not be understood as limiting the invention in any way.
실험예 1. HS-DNA 1의 제조Experimental Example 1. Preparation of HS-DNA 1
시약은 판매사로부터 구입하였으며, 추가 정제없이 사용하였으며, 모든 실험을 위해 이중 증류수를 사용하였다. 아미노폴리스티렌은 인비트로겐 (Carlsbad, CA)으로부터 구입하였으며 머크사로부터 구입한 우라닐 아세테이트 디하이드레이트 (UO2(CH3COO)2·2H2O, 99.0%)를 추가 정제없이 우라닐 이온 공급원으로 사용하였다. 사용된 가교결합제는 설포석신이미딜 4-(N-말레이미도메틸)사이클로헥산-1-카르복실레이트 (설포-SMCC, Sigma)였다. DNA 및 우라늄 농도는 Agilent 8453 UV/Vis 분광광도계를 이용한 260 nm에서의 흡광도에 의해 그리고 PerkinElmer ELAN6100 모델을 이용한 ICP-MS에 의해 각각 측정하였다.Reagents were purchased from the vendor and used without further purification and double distilled water was used for all experiments. Aminopolystyrene was purchased from Invitrogen (Carlsbad, Calif.) And Uranyl Acetate Dihydrate (UO 2 (CH 3 COO) 2 · 2H 2 O, 99.0%) from Merck was used as a source of uranyl ion without further purification. It was. The crosslinker used was sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC, Sigma). DNA and uranium concentrations were measured by absorbance at 260 nm using an Agilent 8453 UV / Vis spectrophotometer and by ICP-MS using the PerkinElmer ELAN6100 model, respectively.
HS-DNA 1 (5'-HS-(CH2)6-CTGCA GAATT CTAAT ACGAC TCACT ATAGG AAGAG ATGGC GACAT CTCTG CAGTC GGGTA GTTAA ACCGA CCTTC AGACA TAGGC AGGCG TATAT CTTGT GACGG TAAGC TTGGC AC-3')는 15 mer 프라이머 (5'-HS-(CH2)6-CTGCA GAATT CTAAT-3')(서열 번호 2) 및 5'-말단에 T7 프로모터 서열을 함유한 117 mer 안티센스 올리고뉴클레오티드를 이용하여 합성하였으며, 둘 모두 Integrated DNA Technologies로부터 구입하였다.HS-DNA 1 (5'-HS- (CH 2 ) 6 -CTGCA GAATT CTAAT ACGAC TCACT ATAGG AAGAG ATGGC GACAT CTCTG CAGTC GGGTA GTTAA ACCGA CCTTC AGACA TAGGC AGGCG TATAT CTTGT GACGG TAAGC TTGGC AC-3 ') It was synthesized using 117 mer antisense oligonucleotides containing the T7 promoter sequence at the '-HS- (CH 2 ) 6 -CTGCA GAATT CTAAT-3') (SEQ ID NO: 2) and at the 5'-end, both of which were integrated DNA Technologies Purchased from
실험예 2. aminoPS 수지와 접합된 DNA-기반 앱타머의 제조Experimental Example 2 Preparation of DNA-Based Aptamer Conjugated with AminoPS Resin
HS-DNA 1을 이용하여 효과적인 고정 우라노필(uranophile)을 구축하기 위하여, DNA 앱타머를 고형 지지체에 도입하여, 도 3의 도식에 나타난 대로 앱타머-SMCC-PS를 생성하였다. 앱타머-SMCC-PS는 도 3의 도식에 따라, 고형 지지체로 사용된 아미노폴리스티렌 (aminoPS) 수지 (폴리스티렌-코-비닐벤질아민-코-다이비닐벤젠, 메쉬: 100~200, 1.0 mmol N /그램 수지, Sigma)의 변형에 의해 제조하였다. 합성 단계 동안 아미노PS에 첨가된 설포-SMCC (설포석신이미딜 4-(N-말레이미도메틸)사이클로헥산-1-카르복실레이트, Sigma)의 양은 (Zhang et al., Org. Lett. 2001, 3, 275-278; Derfus et al., Bioconjug. Chem. 2007, 18, 1391-1396)과량의 설포-SMCC에 의해 공격받도록 노출되는 아미노기의 5 mol %였다. 수지와 접합된 HS-DNA 1의 양은 대략 2.65 nmol/g 수지로 측정되었으며, 즉, 0.265 mol%의 아미노기가 HS-DNA 1에 공유적으로 부착되었다.In order to construct an effective immobilized uranophile using HS-DNA 1 , DNA aptamer was introduced into the solid support to generate aptamer-SMCC-PS as shown in the schematic of FIG. 3. Aptamer-SMCC-PS is an aminopolystyrene (aminoPS) resin (polystyrene-co-vinylbenzylamine-co-divinylbenzene, mesh: 100-200, 1.0 mmol N / used as a solid support according to the schematic of FIG. Gram resin, Sigma). The amount of sulfo-SMCC (sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate, Sigma) added to aminoPS during the synthesis step was determined by Zhang et al. , Org. Lett. 2001 . , 3 , 275-278; Derfus et al. , Bioconjug. Chem. 2007 , 18 , 1391-1396) 5 mol% of amino groups exposed to attack by excess sulfo-SMCC. The amount of HS-DNA 1 conjugated with the resin was determined to be approximately 2.65 nmol / g resin, ie 0.265 mol% of amino groups were covalently attached to HS-DNA 1 .
실험예 3. 우라닐 이온 결합 실험Experimental Example 3. Uranyl Ion Bonding Experiment
앱타머-SMCC-PS에 결합될 수 있는 우라닐 이온의 양은 고정량의 앱타머-SMCC-PS에서 측정하였다 (도 4). 대략 20 mg의 변형 수지를 1 ml의 우라닐 아세테이트 용액, NaHCO3(21 mM), 및 HEPES (0.1 M)(pH 8.01)에 현탁시켰다. 혼합물을 2일 동안 50 X g, 25°C에서 진탕시켰다. 여과에 의해 수집된 비드를 3시간에 걸쳐 버퍼 용액(0.55 M NaCl, HEPES 0.01 M, pH 8.01; 1 ml)으로 3회 세척하여, 단순 흡착에 의해 수지에 결합되었을 수 있는 UO2(CO3)3 4-를 제거하였다. ICP-MS에 의해 확인할 때, 느슨하게 결합된 우라늄 화학종의 제거를 위해서는 NaCl로 3회 처리하는 것으로 충분했다. 비드를 증류수(2 ml)로 3회 더 세척한 후, 비드를 1 N HCl 수용액 (2 ml)으로 세척하였다. HCl 처리에 의해 방출된 우라닐 이온의 양을 ICP-MS에 의해 측정하였다. The amount of uranyl ions that can be bound to aptamer-SMCC-PS was measured in a fixed amount of aptamer-SMCC-PS (FIG. 4). Approximately 20 mg of modified resin was suspended in 1 ml of uranil acetate solution, NaHCO 3 (21 mM), and HEPES (0.1 M), pH 8.01. The mixture was shaken at 50 X g , 25 ° C for 2 days. The beads collected by filtration were washed three times with buffer solution (0.55 M NaCl, HEPES 0.01 M , pH 8.01; 1 ml) over 3 hours, to allow UO 2 (CO 3 ) to be bound to the resin by simple adsorption. 3 4- was removed. As confirmed by ICP-MS, three treatments with NaCl were sufficient to remove loosely bound uranium species. The beads were washed three more times with distilled water (2 ml), then the beads were washed with 1 N HCl aqueous solution (2 ml). The amount of uranyl ions released by HCl treatment was measured by ICP-MS.
그 결과, 약 0.63 마이크로그램의 우라늄이 1 g의 수지에 착물화될 수 있음이 밝혀졌으며, 이것은 수지에 도입된 모든 DNA 앱타머가 우라닐 이온에 강하게 결합할 수 있음을 입증한다. 수지의 우라닐 착물을 위한 겉보기 해리 상수(Kd app) 및 형성 상수(Kf)는, pH 8.01에서 21 mM 바이카르보네이트 이온의 존재하에서, 약 84.6 fM의 Kd app와 약 22.9 ± 1.2의 logKf가 얻어졌다. 이러한 본 발명의 결과는 앱타머-함유 수지의 변경이 우라닐-결합 능력을 개선시켜, 해수로부터 우라늄의 경제적 회수를 가능하게 할 것임을 제안한다.As a result, it was found that about 0.63 micrograms of uranium can be complexed to 1 g of resin, demonstrating that all DNA aptamers introduced into the resin can bind strongly to uranyl ions. The apparent dissociation constant (K d app ) and formation constant (K f ) for the uranil complex of the resin are about 84.6 fM K d app and about 22.9 ± 1.2 in the presence of 21 mM bicarbonate ions at pH 8.01. LogK f of was obtained. The results of this invention suggest that alteration of the aptamer-containing resin will improve the uranil-binding capacity, thereby enabling economic recovery of uranium from seawater.

Claims (12)

  1. 우라닐 이온-특이적 DNA 앱타머.Uranyl ion-specific DNA aptamers.
  2. 제1항에 있어서, 도 1의 구조를 가진 것을 특징으로 하는 우라닐 이온-특이적 DNA 앱타머.The uranyl ion-specific DNA aptamer according to claim 1, having the structure of FIG. 1.
  3. 제1항에 있어서, 서열 번호 1의 염기 서열을 갖는 것을 특징으로 하는 우라닐 이온-특이적 DNA 앱타머.The uranyl ion-specific DNA aptamer according to claim 1, having a nucleotide sequence of SEQ ID NO: 1.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 고형 지지체에 접합된 것을 특징으로 하는 우라닐 이온-특이적 DNA 앱타머.The uranyl ion-specific DNA aptamer according to any one of claims 1 to 3, which is conjugated to a solid support.
  5. 제4항에 있어서, 고형 지지체는 아미노폴리스티렌 수지인 것을 특징으로 하는 우라닐 이온-특이적 DNA 앱타머.5. The uranil ion-specific DNA aptamer according to claim 4, wherein the solid support is an aminopolystyrene resin.
  6. 제5항에 있어서, 고형 지지체는 설포석신이미딜 4-(N-말레이미도메틸)사이클로헥산-1-카르복실레이트-아미노폴리스티렌 수지인 것을 특징으로 하는 우라닐 이온-특이적 DNA 앱타머.6. The uranil ion-specific DNA aptamer according to claim 5, wherein the solid support is sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate-aminopolystyrene resin.
  7. 우라닐 이온을 함유하는 것으로 생각되는 시료와 우라닐 이온-특이적 DNA 앱타머를 접촉시키는 단계, 및 우라닐 이온-DNA 앱타머 착물을 분리하는 단계를 포함하는, 시료로부터 우라닐 이온을 분리하는 방법.Separating the uranil ions from the sample, comprising contacting the uranil ion-specific DNA aptamer with a sample believed to contain uranyl ions, and separating the uranil ion-DNA aptamer complex. Way.
  8. 제7항에 있어서, 우라닐 이온-특이적 DNA 앱타머는 도 1의 구조를 갖는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the uranil ion-specific DNA aptamer has the structure of FIG.
  9. 제7항에 있어서, 우라닐 이온-특이적 DNA 앱타머는 서열 번호 1의 염기 서열을 갖는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the uranil ion-specific DNA aptamer has the nucleotide sequence of SEQ ID NO: 1.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 우라닐 이온-특이적 DNA 앱타머는 고형 지지체에 접합된 것을 특징으로 하는 방법.10. The method of any one of claims 7 to 9, wherein the uranil ion-specific DNA aptamer is conjugated to a solid support.
  11. 제10항에 있어서, 고형 지지체는 아미노폴리스티렌 수지인 것을 특징으로 하는 방법.The method of claim 10 wherein the solid support is an aminopolystyrene resin.
  12. 제11항에 있어서, 고형 지지체는 설포석신이미딜 4-(N-말레이미도메틸)사이클로헥산-1-카르복실레이트-아미노폴리스티렌 수지인 것을 특징으로 하는 방법.12. The method of claim 11, wherein the solid support is sulfosuccinimidyl 4- ( N -maleimidomethyl) cyclohexane-1-carboxylate-aminopolystyrene resin.
PCT/KR2012/000889 2011-02-08 2012-02-07 Uranyl ion specific dna aptamer WO2012108669A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110010928A KR101238297B1 (en) 2011-02-08 2011-02-08 DNA aptamer specific for uranyl ion
KR10-2011-0010928 2011-02-08

Publications (2)

Publication Number Publication Date
WO2012108669A2 true WO2012108669A2 (en) 2012-08-16
WO2012108669A3 WO2012108669A3 (en) 2012-12-20

Family

ID=46639044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000889 WO2012108669A2 (en) 2011-02-08 2012-02-07 Uranyl ion specific dna aptamer

Country Status (2)

Country Link
KR (1) KR101238297B1 (en)
WO (1) WO2012108669A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773444A (en) * 2021-09-08 2021-12-10 北京大学 Material and method for recycling trace uranium from seawater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248839B1 (en) * 2019-12-09 2021-05-06 충북대학교 산학협력단 Dna aptamer specifically binding to lithium and using the same
KR102328488B1 (en) 2021-06-24 2021-11-17 세종대학교산학협력단 Aptamer specifically binding to at least one of a nickel ion and a cobalt ion
KR102378495B1 (en) 2021-11-01 2022-03-23 세종대학교산학협력단 Aptamer specifically binding to a nickel ion
KR20240054446A (en) 2022-10-18 2024-04-26 세종대학교산학협력단 Aptamer specifically binding to a manganese ion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100009031A (en) * 2008-07-17 2010-01-27 김양훈 Dna aptamer specifically binding to arsenic and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273345B2 (en) 2006-12-28 2016-03-01 Conceptual Mindworks, Inc. Methods and compositions for processes of rapid selection and production of nucleic acid aptamers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100009031A (en) * 2008-07-17 2010-01-27 김양훈 Dna aptamer specifically binding to arsenic and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BREAKER, R. R. ET AL.: 'DNA aptamers and DNA enzymes' CURRENT OPINION IN CHEMICAL BIOLOGY. vol. 1, no. 1, June 1997, pages 26 - 31 *
KIM, J. ET AL.: 'Binding or uranyl ion by a DNA aptamer attached to a solid support' BIOORGANIC & MEDICINAL CHEMISTRY LETTERS. vol. 21, no. 13, 06 May 2011, pages 4020 - 4022 *
LIU, J. ET AL.: 'A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity' PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE vol. 104, no. 7, 06 February 2007, pages 2056 - 2061 *
STOLTENBURG, R. ET AL.: 'SELEX- a (r)evolutionary method to generate high-affinity nucleic acid ligands' BIOMOLECULAR ENGINEERING. vol. 24, no. 4, 16 June 2007, pages 381 - 403 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773444A (en) * 2021-09-08 2021-12-10 北京大学 Material and method for recycling trace uranium from seawater
CN113773444B (en) * 2021-09-08 2022-04-26 北京大学 Material and method for recycling trace uranium from seawater

Also Published As

Publication number Publication date
WO2012108669A3 (en) 2012-12-20
KR101238297B1 (en) 2013-03-04
KR20120090477A (en) 2012-08-17

Similar Documents

Publication Publication Date Title
WO2012108669A2 (en) Uranyl ion specific dna aptamer
Wang et al. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd (II)
US10392621B2 (en) Multiaptamer target detection
Tang et al. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection
EP2859121B1 (en) Aptamer-based multiplexed assays
KR101841046B1 (en) Novel reduced graphene oxide-based aptasensor for detecting kanamycin and use thereof
Kim et al. Binding of uranyl ion by a DNA aptamer attached to a solid support
ES2707727T3 (en) Compositions and methods for the detection of microorganisms
CN105018470A (en) Method for enriching short-chain nucleic acids
KR101338520B1 (en) DNA aptamer binding to Glyphosate with specificity
WO2017127762A1 (en) Methods for improved aptamer selection
Marmisollé et al. RNA-binding protein immunoprecipitation as a tool to investigate plant miRNA processing interference by regulatory proteins of diverse origin
CN108841934A (en) A kind of method and kit of the N7- methylguanosine modification of the full inside transcript profile range single base resolution ratio detection RNA
US20160251660A1 (en) Nucleic acid aptamer capable of specifically binding to tebuconazole, mefenacet and inabenfide, and use therof
Fourmy et al. Protein–RNA footprinting: an evolving tool
JP2008253176A (en) Linker for obtaining highly affinitive molecule
KR101307616B1 (en) Method of isolating a metal using PNA aptamer
US20120295811A1 (en) Aptamers directed against the matrix protein-1 of type a influenza viruses and uses thereof
KR20220075294A (en) Method for Obtaining Profiles for Population of Target Molecules of a Sample
Liu et al. Target-induced structure switching of a hairpin aptamer for the fluorescence detection of zeatin
CN104878015A (en) Bacterial endotoxin aptamer and application thereof
Gignac et al. Novel oligonucleotide-based sorbent for the selective extraction of cadmium from serum samples
KR102558890B1 (en) Nucleic acid compounds for binding growth differentiation factor 11
US20120003749A1 (en) Nucleic acid molecule capable of binding to 2,4,6-trinitrophenyl skeleton, method for detecting compound having 2,4,6-trinitrophenyl skeleton using the nucleic acid molecule, and use of the nucleic acid molecule
Zhu et al. Detection of microcystin-producing Microcystis in Guanqiao Lake using a sandwich hybridization assay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745063

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745063

Country of ref document: EP

Kind code of ref document: A2