WO2012108606A1 - 졸-겔 전이 키토산-폴리머 복합체 및 그의 용도 - Google Patents

졸-겔 전이 키토산-폴리머 복합체 및 그의 용도 Download PDF

Info

Publication number
WO2012108606A1
WO2012108606A1 PCT/KR2011/007516 KR2011007516W WO2012108606A1 WO 2012108606 A1 WO2012108606 A1 WO 2012108606A1 KR 2011007516 W KR2011007516 W KR 2011007516W WO 2012108606 A1 WO2012108606 A1 WO 2012108606A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
peg
polymer
polymer complex
temperature
Prior art date
Application number
PCT/KR2011/007516
Other languages
English (en)
French (fr)
Inventor
정병문
장지혜
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2012108606A1 publication Critical patent/WO2012108606A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/128Copolymers graft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Definitions

  • the present application relates to sol-gel transition chitosan-polymer complexes and to the use thereof.
  • Chitosan-based biomaterials include: 1) abundance of natural chitosan in crustacean shells, 2) potential biocompatibility, 3) enzymatic degradation, 4) pH sensitivity, 5) ease of modifying pendant amine groups, and 6) Bioactivity such as antitumor, antifungal, antibacterial, cholesterol lowering and antidiabetic activity has been widely studied for application in drug transport, wound healing and tissue engineering.
  • Chitosan is classified as a GRAS (generally regarded as safe) substance in the United States and is used as a food additive in Italy and Japan.However, chitosan is used in the body due to the congestion of chitosan, macrophage activation and cytokine stimulation. It is not yet approved. Reproducible control of molecular weight and the degree of deacetylation are important parameters in the production of chitosan. Recently, water-soluble chitosans with well-defined molecular weights are commercially available.
  • thermogelled polymers having temperature as well as temperature sensitivity.
  • Polymer solutions with low viscosity at low temperatures undergo sol-gel conversion with increasing temperature.
  • Hydrogel depots containing pharmaceutical agents can be formed as soon as they are injected into warm-blooded animals via temperature sensitive sol-gel transitions and the depots act as a sustained release drug or cell growth matrix.
  • thermogelated chitosan / glycerol phosphate aqueous solution has been studied for about 10 years.
  • the chitosan was dissolved at an acidic pH of 3.0 and then the pH was adjusted to 7.0 to give a clear aqueous solution.
  • PEG graft chitosan (CS-g-PEG) is converted as a thermogelling material.
  • CS-g-PEG PEG graft chitosan
  • these chitosan-based gels exhibit low modulus when applied to certain applications.
  • the temperature of the needle reaches a thermal equilibrium with the body temperature due to the body temperature during the injection into the body, and gels before being completely injected into the body. This may cause problems such as clogging of the injection needle.
  • the present inventors use a polypeptide that improves injectability by introducing pH sensitivity using biocompatible chitosan in addition to the properties of sol-gel transition polymers up to now, and uses a polypeptide having little change in pH upon degradation. In order to increase biocompatibility for biopharmaceuticals and cells, the present study was completed.
  • the present application provides a chitosan-polymer complex, and a chitosan-polymer complex, which may have temperature and pH sensitive sol-gel transition properties in an aqueous medium through a process of introducing a hydrophobic polypeptide between poly (ethylene glycol) and chitosan.
  • a drug carrier and a support for tissue engineering may have temperature and pH sensitive sol-gel transition properties in an aqueous medium through a process of introducing a hydrophobic polypeptide between poly (ethylene glycol) and chitosan.
  • a chitosan-polymer complex comprising a hydrophobic polypeptide block bound between a poly (ethylene glycol) block and chitosan.
  • the chitosan-polymer complex may have pH and temperature sensitive sol-gel transition properties in an aqueous medium.
  • the chitosan-polymer complex may further be used as a drug carrier, including the drug incorporated therein.
  • the chitosan-polymer complex can be used as a support for tissue engineering.
  • a chitosan-polymer complex prepared through the process of introducing a hydrophobic polypeptide between poly (ethylene glycol) and chitosan, wherein the chitosan-polymer complex is a temperature and pH sensitive sol-gel transition in an aqueous medium.
  • the chitosan-containing sol-gel solution comprising the chitosan-polymer complex and the aqueous medium is gelled at pH and temperature conditions in the body to improve the injectability, maintain the gel state for a long time in vivo, and decompose without toxicity. Has useful properties.
  • chitosan-containing sol-gel solutions having the above temperature and pH sensitive sol-gel transition properties can be used as biologically active molecule carriers and supports for tissue engineering.
  • the chitosan-containing sol-gel solution according to one embodiment of the present invention exists as an aqueous solution at 5 ° C. to body temperature (37 ° C.) in the form of an aqueous solution of a predetermined concentration or more, but above the sol-gel transition temperature, particularly near the body temperature ( 10 ° C to 42 ° C), it is expected to be applied as a drug delivery material or a biomaterial for tissue engineering because the transition occurs to a hydrogel.
  • Figure 3 is a graph showing the results of differential scanning analysis (a) and thermal gravity analysis (b) of the CS-g- (PA-PEG) aqueous solution according to an embodiment of the present application.
  • FIG. 4 shows the viscosity change (a) of chitosan (CS), PEG-PA, and CS-g- (PA-PEG) (one embodiment herein) aqueous solution (6.0 wt%) with pH at pH 6.5, and pH
  • CS-g- (PA-PEG) one embodiment herein
  • aqueous solution 6.0 wt% with pH at pH 6.5
  • pH This is a graph showing the change in coefficient (b) of CS-g- (PA-PEG) aqueous solution (6.0 wt%) with temperature at 3.0, 6.5 and 9.0 (data is heating rate of 0.5 ° C / min and 1.0 rad./s Obtained under the frequency of).
  • Figure 5 is a graph showing the pH change with temperature of chitosan and CS-g- (PA-PEG) aqueous solution (1.2% by weight) according to an embodiment of the present application.
  • Figure 6 shows the FTIR spectrum (a) and 13 C-NMR spectrum (b) of CS-g- (PA-PEG) aqueous solution (6.0 wt%) according to an embodiment of the present application.
  • 7a to 7d is a pH dependence (a), FTIR (b), CD (circular dichroism) (a) of the degree of ionization of CS of the CS-g- (PA-PEG) aqueous solution according to an embodiment of the present application at 30 °C ) And 13 C-NMR spectrum (b) (polymer concentration is 6.0 wt% except for CD spectrum (0.05 wt%)).
  • FIG. 8 shows transmission electron microscopy images of CS-g- (PA-PEG) according to one embodiment of the present application formed in aqueous solutions of pH 3.0 and 9.0 (polymer aqueous solution (0.05 wt%) was air dried at 20 ° C. ).
  • FIG 9 is a graph showing the outline size of the CS-g- (PA-PEG) assembly of one embodiment of the present application versus temperature at pH 3.0 (a) and pH 9.0 (b).
  • FIG 10 shows the structure of CS-g- (PP-PEG) hydrogel according to an embodiment of the present disclosure at pH 3.0 and 9.0.
  • FIG. 11 shows hydrogels 1, 10 and 14 days after injection of 0.5 mL of CS-g- (PP-PEG) aqueous solution (6.0 wt.%) Into the subcutaneous layer of rats according to one embodiment of the present application. The formation and decomposition behavior of is shown.
  • the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • One aspect of the present disclosure provides a chitosan-polymer complex, comprising a hydrophobic polypeptide block bound between a poly (ethylene glycol) block and chitosan.
  • the chitosan-polymer complex reacts chitosan (CS) with a copolymer comprising a poly (ethylene glycol) (PEG) and a hydrophobic polypeptide (PP) block so that the chitosan reacts with the hydrophobic polypeptide (PP). )
  • CS chitosan
  • PP poly(ethylene glycol)
  • PP hydrophobic polypeptide
  • the number of PP-PEG grafted to one chitosan may range from about 1 to about 100 (ie, about 1 to about 100 PP-PEG per molecule of chitosan) Grafted), but not limited thereto.
  • CS-g- (PP-PEG) such chitosan-polymer complex according to one embodiment of the present application may be referred to as "CS-g- (PP-PEG)".
  • the CS-g- (PP-PEG) catalyzes N-hydroxy succinic imide and EDC (1-ethyl-3- (3-dimethylaminopropyl) carboimide hydrochloride) It can be used as a condensation reaction between the amine group of chitosan and the carboxylic acid group of the terminal of PEG-PP.
  • the molecular weight of the poly (ethylene glycol) is about 300 to about 5,000 Daltons and the molecular weight of the polypeptide is about 300 to about 10,000 Daltons, the molecular weight of the chitosan is about 1,000 to about 1,000,000 Daltons, The molecular weight of the chitosan-polymer complex may be about 8,000 to about 2,000,000 daltons, but is not limited thereto.
  • the molecular weight range of the polypeptide-poly (ethylene glycol) block copolymer is about 1,000 to about 50,000, the balance of hydrophobicity and hydrophilicity and solubility in water can be easily controlled, and the molecular weight is about 10,000 or more.
  • Ethylene glycol may be limited to extracorporeal discharge after injection. Accordingly, the molecular weight of the poly (ethylene glycol), the polypeptide, the chitosan, and the molecular weight of the chitosan-polymer complex is preferably adjusted within the above range.
  • the hydrophobic polypeptide block is glycine, alanine, arginine, asparagine, aspalic acid, cystine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan , Tyrosine, and valine may be formed including one or more selected from the group consisting of, but is not limited thereto.
  • the hydrophobic polypeptide may include one or more selected from DL-type amino acids, D-type amino acids, and L-type amino acids, but is not limited thereto.
  • the hydrophobic polypeptide may be an ⁇ -helix or ⁇ -sheet structure, but is not limited thereto.
  • the hydrophobic polypeptide has a polypeptide secondary structure such as ⁇ -helix structure or ⁇ -sheet structure, excellent modulus or mechanical strength can be achieved.
  • the chitosan-polymer complex may be one having pH and temperature sensitive sol-gel transition properties in an aqueous medium, but is not limited thereto.
  • the content of the polypeptide is about 10% to about 60% by weight
  • the content of the poly (ethylene glycol) is about 10% to about 60% by weight
  • the content of the chitosan is about 20% by weight To about 80% by weight, but is not limited thereto.
  • CS-g- P-PEG
  • a sol-gel transition in an aqueous medium is possible with a balance of hydrophobicity and hydrophilicity. If the content of the poly (ethylene glycol) is too large, it is well soluble in water, but no sol-gel transition is observed, and if the composition of the polypeptide is too large, it is insoluble in water. In addition, if the composition of the chitosan is too large, no sol-gel transition occurs, and if the composition of the chitosan is too small, it cannot have pH sensitivity and loses its original chitosan properties.
  • the hydrophobic polypeptide plays an important role in maintaining gel strength, and by inserting the hydrophobic polypeptide between chitosan and poly (ethylene glycol), the hydrophobic polypeptide can control the water content, decomposition rate, gel strength, and the like of the hydrogel.
  • the rate of drug release during drug delivery can be controlled, and the gel persistence and interaction with cells can be controlled when used as a tissue engineering material.
  • the strength of hydrogel directly affects cell growth and differentiation in tissue engineering, so maintaining proper gel strength is important. For example, as gel strength increases, stem cells differentiate into neurons, muscle cells, bones, and the like.
  • a polypeptide having a sequence that is specifically degraded to an enzyme and a polypeptide that is not to be degraded differ in the rate of degradation.
  • a polypeptide that is too hydrophobic for accessibility with an enzyme decreases the water content so that the polypeptide It is preferable to adjust hydrophobicity of suitably.
  • aqueous solution containing CS-g- (PP-PEG) exists as an aqueous solution at a temperature above a certain concentration and below a body temperature (37 ° C.), but at a temperature above about 37 ° C. It is characterized by what happens. Therefore, CS-g- (PP-PEG) according to one embodiment of the present application can be used as a solubilizing agent of drug carriers, hydrophobic drugs, cell culture, tissue engineering It is possible to be applied medically for various uses. Due to the nature of chitosan, anionic medicines are promising for pharmaceuticals with an isoelectric point of about 6 or less, since they can prevent initial excess release by ionic bonding, but are not limited to these applications.
  • CS-g- may be used for treatment with chondrocytes, embryonic stem cells, mesenchymal stem cells, hepatocytes, heart stem cells, cardiomyocytes, endothelial cells or fibroblasts.
  • the aqueous solution comprising the chitosan-polymer complex and the aqueous medium may have pH and temperature sensitive sol-gel transition properties.
  • the aqueous solution comprising the chitosan-polymer complex and the aqueous medium has a property that the transition to the hydrogel at a temperature above the body temperature, and using this property, the chitosan-polymer complex can be used as a drug carrier and a support for tissue engineering.
  • the chitosan-polymer complex may be used as a drug carrier, including, but not limited to, a drug incorporated therein.
  • the drug may include, but is not limited to, one selected from the group consisting of anticancer agents, hormones, antibiotics, analgesics, anti-infective agents, protein or peptide drugs, nucleic acids, and combinations thereof.
  • the anticancer agent may include taxol, adriamycin, bleomycin, cisplatin, carboplatin, doxorubicin, 5-fluorouracil, methoxtrexate or antinomycin D, but is not limited thereto. no.
  • the protein or peptide drug is oxytocin, vasopressin, luteinizing hormone releasing hormone, growth hormone, insulin, glucagon, interleukin, interferon, gastrin, calcitonin, erythropoietin, calcitonin, endorphin And, angiotensin, cancer killing factor (TNF), nerve growth factor (NGF), bone morphogenic polypeptide (BMP), angiogenic growth factor (VEGF), granulosite colony stimulating factor (GCSF), renin or antibody It may be, but is not limited thereto.
  • the nucleic acid may be, but is not limited to, DNA, plasmid DNA, RNA, RNAi, or siRNA.
  • the chitosan-polymer complex may be used as a support for tissue engineering, but is not limited thereto.
  • the aqueous solution comprising the chitosan-polymer complex and the aqueous medium according to an embodiment of the present application has a property of transitioning to a hydrogel at a temperature higher than body temperature and stable in the body.
  • the polymer complex may be usefully used as a support for tissue engineering.
  • chondrocytes when used as a support for tissue engineering, chondrocytes, embryonic stem cells, mesenchymal stem cells, hepatocytes, incorporated into the chitosan-polymer complex, It may further include, but is not limited to, one or more living cells selected from the group consisting of cardiac stem cells, cardiomyocytes, endothelial cells, and fibroblasts.
  • chitosan is known to be involved in the regeneration of cartilage tissue, which is applied as an injectable tissue engineering material and injected into the cartilage wound site using microdrilling and sol-gel transfer of CS-g- (PP-PEG) aqueous solution.
  • CS-g- CS-g- (PP-PEG) aqueous solution.
  • ⁇ -methoxy-amino poly ethylene glycol
  • PEG poly(ethylene glycol)
  • M n 2,000 Daltons
  • ID Bio Co., Ltd. N-carboxy anhydride of L-alanine
  • chitosan Purified with a dialysis membrane having a cut-off molecular weight of MW ⁇ 7,500 Daltons, 5,000 and 10,000 Daltons was obtained from Kitto Life (Korea).
  • Succinic anhydride, succinic acid, N-hydroxy succinimide (NHS), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloric acid (EDC), N, N-dimethyl formamide anhydride and dimethyl anhydride are Sigma Obtained from Aldrich. Toluene and chloroform were dried before use.
  • Example 1 CS-g- (PA-PEG) chitosan-polymer complex
  • CS-g- (PA-PEG) was prepared by ring-opening polymerization of N-carboxy anhydride of alanine in the presence of PEG according to the scheme shown in FIG. That is, PEG (10.0 g, 5.0 mmol) was dissolved in dried toluene (200 mL) in a flask. Toluene (190 mL) was distilled off to remove the residue. The reaction mixture was then cooled to 40 ° C.
  • N-carboxy anhydride (5.0 g, 49.5 mmol) of L-alanine was dried over anhydrous chloroform / anhydrous N, N-dimethylformimide (3/1 v / v ) Dissolved in a co-solvent (40 mL) and added to the flask, the polymerization was carried out at 40 °C 19 hours.
  • the reaction product was precipitated in diethyl ether to separate the polymer and the remaining solvent was removed with a vacuum pump.
  • the amine group of PEG-PA was then reacted with succinic anhydride to change the terminus to carboxylic acid.
  • PEG-PA 5.7 g; 2.1 mmol
  • succinic anhydride 0.43 g; 4.3 mmol
  • N-hydroxy succinimide (0.081 g, 0.7 mmol) was added to aqueous solution of PEG-PA (1.0 g, 0.4 mmol) having a carboxylic acid end (50 mL) and reacted with stirring at 0 ° C. for 15 minutes, followed by 1- The reaction was carried out with ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloric acid (EDC) (0.14 g, 0.7 mmol) with stirring at 0 ° C. for 4 hours.
  • EDC ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloric acid
  • Chitosan (0.56 g) was then dissolved in 10 mL of distilled water and added dropwise to the poly (ethylene glycol) -polyalanine (PEG-PA) block copolymer prepared as in Example 1 at 0 ° C. for one hour.
  • the molecular weight and molecular weight distribution of the prepared chitosan-polymer composites were investigated by gel permeation chromatography system (Waters 515, Waters) equipped with a refractive index detector. Water / acetonitrile (80/20 v / v) was used as the elution solvent and Ultrahydrogel TM 120 (Waters) was used as column. PEG with a molecular weight of 400 to 150,000 Daltons was used as the molecular weight standard.
  • TA instrument DSC Q10 Differential scanning analysis (TA instrument DSC Q10) for CS-g- (PA-PEG) was performed under nitrogen atmosphere. 4.5 mg of polymer was heated from 0 ° C. to 200 ° C. at a heating and cooling rate of 10 ° C./min and then cooled to 0 ° C. In thermal gravitation analysis (TA instrument TGA Q50), 10.0 mg of polymer was heated under a nitrogen atmosphere at a heating rate of 10 ° C./min and mass change was measured.
  • Sol-gel transition properties of the aqueous solution containing the prepared chitosan-polymer complex were analyzed by kinetic analysis.
  • the coefficient of CS-g- (PA-PEG) aqueous solution (6.0 wt.%) was investigated by dynamic rheometry (Rheometer RS 1; Thermo Haake) according to pH and temperature.
  • the pH of the aqueous solution was adjusted with 1.0 M hydrochloric acid or 1.0 M sodium hydroxide aqueous solution.
  • the aqueous polymer solution was placed between parallel plates 25 mm in diameter and 0.5 mm apart. During kinetic analysis, samples were placed inside a chamber with cotton containing water to minimize water evaporation. Data were collected under controlled stress conditions (4.0 dyne / cm 2 ) and a frequency of 1.0 rad./s. The heating rate was 0.5 ° C / min.
  • the pH change of chitosan and CS-g- (PA-PEG) aqueous solution (1.2 wt%) was investigated with temperature.
  • the degree of ionization of chitosan and CS-g- (PA-PEG) was also investigated for aqueous chitosan solution (1.2 wt.%) As a function of pH.
  • CS-g- (PA-PEG) aqueous solution (0.05 wt.%, 10 ⁇ L) at pH 3.0 and 9.0 was placed on the carbon grid and the excess solution was blotted with filter paper. The grid was air dried at room temperature for 24 hours. Microscope images were calculated with JEM-2100F (JEOL) at 200 kV acceleration voltage.
  • the apparent size of CS-g- (PA-PEG) aggregates in water (1.2 wt.%) was measured by dynamic light scattering instrument (ALV 5000-60x0) as a function of temperature at pH 3.0 and pH 9.0. .
  • a YAG DPSS-200 laser (Langen, Germany) operating at 532 nm was used as the light source.
  • the measurement of the scattered light was made at an angle of 90 ° with respect to the incident beam.
  • the results of the dynamic light scattering method were analyzed by normalized CONTIN method.
  • the decay rate distribution was converted to an apparent diffusion coefficient. From the diffusion coefficient, the apparent hydrodynamic size of the polymer aggregates can be obtained using the Stokes-Einstein equation.
  • PEG-PA-NH 2 The amino end group of PEG-PA (PEG-PA-NH 2 ) reacted with succinic anhydride to form PEG-PA having carboxylic acid ends, which combined with the amine groups of chitosan to form CS-g- (PA-PEG).
  • EDC and NHS were used as catalysts in the coupling reaction (see scheme of FIG. 1).
  • Gel permeation chromatography results of PEG-PA and CS-g- (PA-PEG) dissolved in water / acetonitrile cosolvent show a unimodal distribution of molecular weight.
  • the retention time of CS-g- (PA-PEG) was reduced from 24 minutes to 22.5 minutes after binding between PEG-PA and chitosan.
  • the unmutated chitosan aqueous solution did not show significant viscosity change in the same temperature range.
  • Previously temperature sensitive CS-g-PEG was reported to exhibit a viscosity of 6 Pas in gel state. Control of gel viscosity or modulus is important for drug transport and tissue engineering applications.
  • bovine serum albumin (BSA) After chemical crosslinking of CS-g-PEG with genipin, bovine serum albumin (BSA) showed sustained release with a small initial burst release ( ⁇ 20%) for 40 days.
  • Unmodified CS-PEG showed significant initial burst BSA release of about 50% to 70% on the first day.
  • the rigidity of the hydrogel also affects the proliferation and differentiation of chondrocytes in 3D ex vivo medium. In addition to the permeability of oxygen and nutrients through hydrogels, differences in mechanical stimulation and stress on growth cells contribute to this action.
  • the sol-gel transition temperature can be determined by the intersection of the storage modulus (G ') above the loss modulus (G "). G' and G" are the complex modulus (G). It is the value which measured the viscous component and elastic component of *). G 'greater than G "indicates elastic gel formation.
  • the sol-gel transition temperature decreased from 27 ° C to 17 ° C as the pH decreased from 6.5 to 3.0, and the sol-gel transition as the pH increased to 9.0
  • the temperature increased to 32 ° C. (b in Fig. 4.)
  • the molecular weight between crosslinks, crosslink molecular weight (M c ) can be calculated by the formula:
  • hydrogels such as 2- (diisopropylamino) ethyl methacrylate copolymer, swell as the charged species of the polymer increases with changes in pH.
  • the mesh size increases in filled form due to the electrostatic repulsion between the charge and modulus of hydrogel reduction.
  • the polymer herein is contradictory in that the modulus of the gel increases at low pH with a filled form.
  • Sensitivity ( ⁇ pK a / ⁇ T) is in a range similar to chitosan (-0.00232 pK a unit / ° C.) and glucosamine (-0.0027 pK a unit / ° C.) with a molecular weight of 553 KD and a degree of deacetylation of 0.72.
  • a similar aspect between chitosan, glucosamine and CS-g- (PA-PEG) indicates that the pH sensitivity of CS-g- (PA-PEG) to temperature is due to deprotonation of the ammonium / amine group of chitosan.
  • CS-g- (PP-PEG) To be used as an injectable biomaterial, it must be present in the gel near body temperature (32 ° C. to 42 ° C.) (FIG.
  • CS-g- (PP-PEG) according to the present application may be applied to medical delivery systems and tissue engineering.
  • FTIR spectra and 13 C-NMR spectra of CS-g- (PA-PEG) (6.0 wt.% In D 2 O) were investigated with temperature under a fixed pH of pH 9.
  • 6A and 6B show FTIR spectra (a) and 13 C-NMR spectra (b) of CS-g- (PA-PEG) aqueous solution (6.0 wt%) according to the present embodiment.
  • the secondary structure ratio can be evaluated by the peak height. As the temperature increased from 10 ° C.
  • the degree of ionization of the amine groups of chitosan and CS-g- (PA-PEG) was investigated as a function of pH (FIG. 7A). As expected, the degree of ionization decreased with increasing pH. The pH at which 50% degree of ionization appeared is the pK a of the polymer. The pK a of chitosan and CS-g- (PA-PEG) were observed to be 6.5 and 6.0, respectively.
  • the FTIR spectrum suggests that the relative ⁇ -helix structure decreases with increasing pH.
  • the CD spectrum of CS-g- (PA-PEG) aqueous solution (0.05 wt.%) Is the most prevalent at the acidic pH of the polypeptide and the ⁇ -helix band of the polypeptide, and also decreases with increasing pH.
  • FIG. 7C 13 C-NMR spectra of aqueous CS-g- (PA-PEG) solution (6.0 wt.% In D 2 O) were obtained as a function of pH under a fixed temperature of 30 ° C. (FIG. 7D). At 30 ° C., gel state is shown at pH 3.0 and 6.5.
  • the upfield shift of the PEG peak at pH 3.0 is PEG
  • the hydrogen bond between chitosan and acid is associated with acidic pH: Simple deprotonation of PEG oxygen at acidic pH can make the PEG single molecule more hydrodynamic, but the PEG peak is significantly higher at pH 3.0 than at pH 9.0. The low fact indicates that the molecular transport of PEG is limited through the interchain hydrogen bonding between the PEG and the ammonium group of chitosan.
  • the nanostructure of the polymer is important because the gel structure is derived from their nanoassembly pattern.
  • the nanostructure of CS-g- (PA-PEG) can be affected by pH because chitosan is quite hydrophobic in proton form at pH 3.0, while less hydrophobic in neutral form at pH 9.0.
  • the self-assembly of CS-g- (PA-PEG) in aqueous solution was compared at pH 3.0 and pH 9.0 (FIG. 8). At pH 3.0, the polymer did not form a specific nanoassembled structure, while at pH 9.0 the polymer showed an aggregated micelle structure.
  • the outline size of the polymer assembly in water (1.2 wt.%) was investigated by dynamic light scattering as a function of temperature (FIG. 9).
  • pH 3.0 a significant increase in the apparent size of the polymer assembly was observed from 80 nm to 300 nm and 1500 nm as the temperature was increased from 15 ° C. to 20 ° C. and 25 ° C., consistent with the sol-gel transition temperature. The result is.
  • the observations suggest extensive intermolecular interactions between the polymers at pH 3.0.
  • the outer size of the polymer assembly with a peak average size of 37 nm began to increase above 30 ° C.
  • the increase in size of the polymer assembly at pH 9 was not as large as at pH 3.0, suggesting that the micelle structure was shown to be preserved below 50 ° C. at pH 9.0.
  • the hydrogel structure is shown in FIG. 10.
  • the amine groups of chitosan are present as predominantly quantized amine groups, making the chitosan of CS-g- (PA-PEG) hydrophilic.
  • Hydrophobic polyalanine groups are separated among the hydrophilic blocks of PEGs and chitosan, such that the polymer cannot be assembled into specific nanostructures. Instead, the polymer can be randomly aggregated into large-scale hydrogen bonds between the oxygen and ammonium ions of PEG. Intermolecular hydrogen bonds between chitosan and PEG and massive random aggregation result in sol-gel transitions at low temperatures. In addition, gels with large modulus are formed with increasing temperature.
  • chitosan is present in neutral amine form, making chitosan less hydrophobic. Therefore, hydrophobic PA and chitosan of CS-g- (PA-PEG) act as hydrophobic cores of micelles and PEG act as hydrophilic cells of micelles.
  • PA-PEG hydrophobic PA and chitosan of CS-g-
  • PEG act as hydrophilic cells of micelles.
  • the aqueous polymer solution exhibits low viscosity and the sol-gel transition temperature is high at high pH of 9.0 compared to low pH of 3.0 or 6.5. Sol-gel transitions are induced by micelle aggregation and binding.
  • the charged form at pH 3.0 has an apparently smaller mesh size than the neutral form at pH 9.0, which is rich in polyalanine at nanoassembly, in-chain cross-linking ⁇ -helix between PEG and chitosan. This is due to the difference in secondary structure.
  • CS-g- (PA-PEG) in one embodiment herein is a novel pH / temperature sensitive chitosan-polymer complex.
  • the sol-gel transition temperature, degree of quantization / or ionization of chitosan, secondary structure of polyaniline, and molecular shift of PEG were investigated as described above according to pH and function of temperature, and as the temperature increased, chitosan deprotonated, The ⁇ -helix secondary structure of polyaniline was strengthened, and molecular migration of PEG decreased, resulting in thermogelation.
  • Example 2 Sol-gel Transfer Characteristics in Animals of CS-g- (PP-PEG) Aqueous Solution
  • CS-g- (PP-PEG) aqueous solution 6.0 wt% was injected into the subcutaneous layer of rats to observe the formation and degradation behavior of the hydrogel.
  • Surgery 1, 10, 14 days after the injection can be seen to exist in the gel state in the body for a period of more than 10 days after the injection (see FIG. Therefore, it has been verified that implants can be made by simple injection when using CS-g- (PP-PEG) according to the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

본원은 분자량 500 내지 5000 달톤의 폴리(에틸렌 글리콜)과 분자량 300 내지 10,000 달톤의 소수성 폴리(펩타이드)로 이루어진 분자량 1,000 내지 50,000의 폴리(에틸렌 글리콜)/폴리(펩타이트) 블록 공중합체를 키토산에 반응하여 분자량 5,000 내지 2,000,000 달톤의 키토산-그래프트-(폴리펩타이드-폴리(에틸렌글리콜)) (CS-g-(PP-PEG))에 관한 것이다. 이 고분자 수용액은 일정 농도 이상에서, pH 및 온도에 따라 졸-겔 전이 온도가 조절이 가능함을 특징으로 하며, 의약품 전달 시스템, 3 차원 세포배양 및 조직공학으로 응용을 목적으로 한다.

Description

졸-겔 전이 키토산-폴리머 복합체 및 그의 용도
본원은 졸-겔 전이 키토산-폴리머 복합체 및 상기의 용도에 관한 것이다.
키토산-기재 생체물질은, 1) 갑각류 껍질에서 천연 키토산의 풍부함, 2) 잠재적인 생체적합성, 3) 효소 분해성, 4) pH 민감성, 5) 아민 팬던트 기(pendant amine groups) 변형의 용이함 및 6) 항종양, 항진균, 항균, 콜레스테롤 저하 및 항당뇨 활성과 같은 생활성으로 인해 약물 수송, 상처 치유 및 조직 공학에 적용하기 위해 널리 연구되고 있다. 키토산은 미국에서 식품용 GRAS(generally regarded as safe) 물질로 분류되며 이탈리아, 일본 등에서는 식품첨가제로 사용되나, 키토산의 울혈 작용, 대식세포 활성화 및 사이토카인 자극에 기인한 체내사용(parenteral) 에 대해 아직까지 허가되지 않은 실정이다. 분자량의 재현가능한 조절 및 탈아세틸화의 정도는 키토산의 생산에서 중요한 파라미터이다. 최근에는, 잘 정의된 분자량을 갖는 수용성 키토산이 상업적으로 시판되고 있다.
PEG/PLGA 시스템에서 기초한 선구적인 연구 이후로, 폴리에스테르, 다당류, 폴리포스파젠, 폴리(N-(2-히드록시프로필)메타크릴아미드-락테이트), 폴리카보네이트, 폴리시아노아크릴레이트 및 폴리펩티드와 같은 열겔화 생분해성 폴리머(thermal gelling biodegradable polymers)가 최소한의 침투성 주사 시스템으로서 널리 연구되고 있다. pH의 기능으로서 이온화가능한 기의 도입이 pH 뿐만 아니라 온도 민감성을 갖는 열겔화 폴리머를 제공한다. 저온에서 낮은 점성을 갖는 폴리머 수용액은 온도가 증가함에 따라 졸-겔 변환이 일어난다. 약학제제를 함유하는 수화겔 데포(depot)는 온도 민감성 졸-겔 전이를 통해 온혈동물에 주입되자마자 형성될 수 있으며 상기 데포는 서방성 약물 또는 세포 성장 매트릭스로서 작용한다. 특히, 열겔화 키토산/글리세롤 인산염 수용액은 약 10여년 동안 연구되고 있다. 이 경우에서, 키토산을 3.0의 산성 pH에서 용해시킨 후에 pH를 7.0으로 조절하여 맑은 수용액을 만든다. 그 후에, PEG 그래프트 키토산 (CS-g-PEG)을 열겔화 물질로서 전환시킨다. 그러나, 이들 키토산-기재 겔들은 특정 용도에 적용 시 낮은 모듈러스(modulus)를 나타낸다.
한편, 소수성인 생분해성 고분자와 친수성 고분자와의 블록 공중합체(block copolymer)를 이용하여 온도에 따라 졸-겔 전이 현상을 보이도록 하는 연구가 보고되었으나(대한민국 공개특허 제 10-2008-0017850호), 이러한 블록 공중합체를 졸 상태인 수용액 형태로 체내에 주입하는 경우 체온에 의하여 겔 상태로 전이됨으로써, 체내에서 안정하게 약물을 담지하여 서서히 약물을 방출하는 서방형 약물 전달체로서 이용되었다. 그러나 온도에만 민감한 졸-겔 전이 특성을 나타내는 블록 공중합체를 사용하는 경우, 체내로 주사하는 과정에서 체내 온도로 인하여 주사 바늘의 온도가 체내 온도와 열적 평형에 도달하여, 체내에 완전히 주입되기 전에 겔화가 일어남으로써 주사 바늘이 막히는 현상 등의 문제점이 발생할 수 있다.
이에, 본 발명자들은 지금까지의 졸-겔 전이 고분자가 갖는 특성 이외에 생체적합성 키토산을 이용하여 pH 민감성을 도입하여 주사성 (Injectability)을 개선하고 분해 시에 pH의 변화가 거의 없는 폴리펩타이드를 이용하여 바이오 의약품 및 세포에 대한 생체적합성을 증가시키기 위하여 연구한 결과 본원을 완성하였다.
이에, 본원은, 폴리(에틸렌 글리콜)과 키토산 사이에 소수성 폴리펩타이드를 도입하는 공정을 통해 수성 매질에서 온도 및 pH 민감성 졸-겔 전이특성을 가질 수 있는 키토산-폴리머 복합체, 및 상기 키토산-폴리머 복합체의 약물전달체 및 조직공학용 지지체로서의 용도를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 기술한 과제로 제한되지 않으며, 기술되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 일 측면은, 폴리(에틸렌 글리콜) 블록과 키토산 사이에 결합된 소수성 폴리펩타이드 블록을 포함하는, 키토산-폴리머 복합체를 제공한다. 상기 키토산-폴리머 복합체는 수성 매질 내에서 pH 및 온도 민감성 졸-겔 전이특성을 가질 수 있다.
일 구현예에 있어서, 상기 키토산-폴리머 복합체는 그에 혼입된 약물을 추가 포함하여 약물전달체로서 사용될 수 있다.
일 구현예에 있어서, 상기 키토산-폴리머 복합체는 조직공학용 지지체로서 사용될 수 있다.
본원에 의하여, 폴리(에틸렌 글리콜)과 키토산 사이에 소수성 폴리펩타이드를 도입하는 공정을 통해 제조되는 키토산-폴리머 복합체가 제공되며, 상기 키토산-폴리머 복합체는 수성 매질 내에서 온도 및 pH 민감성 졸-겔 전이특성을 가지며, 상기 키토산-폴리머 복합체 및 수성 매질을 포함하는 키토산-함유 졸-겔 용액은 체내 pH 및 온도 조건에서 겔화되어 주사성을 개선하고 생체 내에서 장기간 안정하게 겔 상태를 유지하며 독성 없이 분해되는 유용한 특성을 가진다. 이에 따라, 상기 온도 및 pH 민감성 졸-겔 전이특성을 갖는 키토산-함유 졸-겔 용액은, 생물학적 활성 분자 전달체 및 조직공학용 지지체로서 사용될 수 있다. 구체적으로, 본원의 일 구현예에 따른 상기 키토산-함유 졸-겔 용액은 일정 농도 이상의 수용액 형태에서 5℃ 내지 체온 (37℃)에서는 수용액으로 존재하나, 졸-겔 전이 온도 이상, 특히 체온 근처 (10℃ 내지 42℃) 에서는 수화겔로 전이가 일어나므로, 의약 전달 물질 또는 조직 공학용 생체 재료 등으로 응용될 수 있을 것으로 기대된다.
도 1은 본원의 일 구현예에 있어서 CS-g-(PA-PEG)의 합성 과정을 나타낸 개략도이다 (x + y = m이고, p = 11이며, q = 45임).
도 2는 키토산 (용매 = D2O), PEG-PA (용매 = CF3COOD) 및 본원의 일 실시예에 따른 CS-g-(PA-PEG) (용매 = CF3COOD)의 1H-NMR 스펙트럼을 나타낸 것이다.
도 3은 본원의 일 실시예에 따른 CS-g-(PA-PEG) 수용액의 시차 주사 분석(a) 및 열 중력 분석(b) 결과를 나타낸 그래프이다.
도 4는 pH 6.5에서 온도에 따른 키토산(CS), PEG-PA, 및 CS-g-(PA-PEG) (본원의 일 실시예) 수용액(6.0 중량%)의 점성 변화(a), 및 pH 3.0, 6.5 및 9.0에서 온도에 따른 CS-g-(PA-PEG) 수용액(6.0 중량%)의 계수 변화(b)를 나타낸 그래프이다 (데이터는 0.5℃/min의 가열속도 및 1.0 rad./s의 빈도 하에서 수득되었음).
도 5는 키토산 및 본원의 일 실시예에 따른 CS-g-(PA-PEG) 수용액(1.2 중량%)의 온도에 따른 pH 변화를 나타낸 그래프이다.
도 6는 본원의 일 실시예에 따른 CS-g-(PA-PEG) 수용액(6.0 중량%)의 FTIR 스펙트럼(a) 및 13C-NMR 스펙트럼 (b)을 나타낸 것이다.
도 7a 내지 도 7d는 30℃에서 본원의 일 실시예에 따른 CS-g-(PA-PEG) 수용액의 CS의 이온화 정도의 pH 의존도(a), FTIR(b), CD(circular dichroism)(a) 및 13C-NMR 스펙트럼(b)을 나타낸 그래프이다 (폴리머 농도는 CD 스펙트럼(0.05 중량%)을 제외하고는 6.0 중량% 임).
도 8은 pH 3.0 및 9.0의 수용액에서 형성된 본원의 일 실시예에 따른 CS-g-(PA-PEG)의 투과 전자 현미경 이미지를 나타낸 것이다 (폴리머 수용액(0.05 중량%)은 20℃에서 공기 건조시켰음).
도 9는 pH 3.0(a) 및 pH 9.0(b)에서 온도에 따른 본원의 일 실시예의 CS-g-(PA-PEG) 조립체의 외형 크기를 나타낸 그래프이다.
도 10은 pH 3.0 및 9.0에서 본원의 일 실시예에 따른 CS-g-(PP-PEG) 수화겔의 구조를 도시한 것이다.
도 11은 본원의 일 실시예에 따른 0.5 mL의 CS-g-(PP-PEG) 수용액 (6.0 중량%)을 쥐의 피하 (subcutaneous layer)에 주사한 후 1일, 10일 및 14일 후의 수화겔의 생성 및 분해 거동을 나타낸 것이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~ 의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원의 일 측면은, 폴리(에틸렌 글리콜) 블록과 키토산 사이에 결합된 소수성 폴리펩타이드 블록을 포함하는, 키토산-폴리머 복합체를 제공한다.
일 구현예에 있어서, 상기 키토산-폴리머 복합체는 폴리(에틸렌 글리콜) (PEG) 및 소수성 폴리펩타이드 (PP) 블록을 포함하는 공중합체와 키토산 (CS)을 반응시켜 상기 키토산이 상기 소수성 폴리펩타이드 (PP) 블록에 그래프트시킴으로써 제조될 수 있다. 일 구현예에 있어서, 상기 키토산 1 개에 그래프트된 PP-PEG의 수는 약 1 개 이상 약 100 개 이하의 범위일 수 있으나 (즉, 키토산 1분자에 PP-PEG가 약 1 개 내지 약 100 개가 그래프트됨) 이에 제한되는 것은 아니다. 이하, 필요한 경우, 이러한 본원의 일 구현예에 따른 키토산-폴리머 복합체를 "CS-g-(PP-PEG)"로써 나타낼 수 있다.
일 구현예에 있어서, 상기 CS-g-(PP-PEG)는 N-히드록시 숙신 이미드(N-hydroxy succinic imide)와 EDC (1-ethyl-3-(3-dimethylaminopropyl) carboimide hydrochloride)를 촉매로 사용하여 키토산의 아민기와 PEG-PP의 말단의 카르복시산기 사이의 축합반응으로 합성될 수 있다.
일 구현예에 있어서, 상기 폴리(에틸렌 글리콜)의 분자량은 약 300 내지 약 5,000 달톤이고 상기 폴리펩타이드의 분자량은 약 300 내지 약 10,000 달톤이고, 상기 키토산의 분자량은 약 1,000 내지 약 1,000,000 달톤이며, 상기 키토산-폴리머 복합체의 분자량은 약 8,000 내지 약 2,000,000 달톤일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 폴리펩타이드-폴리(에틸렌 글리콜) 블록 공중합체의 분자량 범위가 약 1,000 내지 약 50,000인 경우에 소수성과 친수성의 균형 및 물에 대한 용해도 조절이 용이하고, 분자량이 약 10,000 이상인 폴리(에틸렌 글리콜)은 주사 후에 체외로 배출되는 데에 한계가 있을 수 있다. 이에, 상기 폴리(에틸렌 글리콜), 상기 폴리펩타이드의 분자량, 상기 키토산, 및 상기 키토산-폴리머 복합체의 분자량을 상기한 범위 내에서 조절하는 것이 바람직하다.
일 구현예에 있어서, 상기 소수성 폴리펩타이드 블록은 글라이신, 알라닌, 아르기닌, 아스파라긴, 아스팔산, 시스틴, 글루타민, 글루탐산, 글리신, 히스티딘, 이소류신, 류신, 라이신, 메티오닌, 페닐알라닌, 프롤린, 세린, 트레오닌, 트립토판, 티로신, 및 발린으로 구성된 군에서 선택되는 1종 이상을 포함하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 소수성 폴리펩타이드는 DL-형 아미노산, D-형 아미노산, 및 L-형 아미노산에서 선택되는 1종 이상을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 소수성 폴리펩타이드가 α-헬릭스 또는 β-시트(sheet) 구조를 가지는 것 일 수 있으나, 이에 제한되는 것은 아니다. 상기 상기 소수성 폴리펩타이드가 α-헬릭스 구조 또는 β-시트(sheet) 구조와 같은 폴리펩타이드 2차 구조를 갖는 경우 우수한 모듈러스(modulus) 또는 기계적 강도를 달성할 수 있다.
일 구현예에 있어서, 상기 키토산-폴리머 복합체는 수성 매질 내에서 pH 및 온도 민감성 졸-겔 전이 특성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 폴리펩타이드의 함량은 약 10 중량% 내지 약 60 중량%, 상기 폴리(에틸렌 글리콜)의 함량은 약 10 중량% 내지 약 60 중량%, 상기 키토산의 함량은 약 20 중량% 내지 약 80 중량%일 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 상기 CS-g-(PP-PEG)가 상기한 바와 같은 조성을 갖는 경우에 소수성과 친수성의 균형으로 수성 매질에서 졸-겔 전이가 가능하게 된다. 상기 폴리(에틸렌 글리콜)의 함량이 너무 크면 물에 잘 용해되지만 졸-겔 전이가 관찰되지 않으며, 상기 폴리펩타이드의 조성이 너무 크면 물에 용해되지 않는다. 또한 상기 키토산의 조성이 너무 크면 졸-겔 전이가 일어나지 않고, 상기 키토산의 조성이 너무 작으면 pH 민감성을 가질 수 없고 본래 키토산의 특성을 잃게 된다. 또한, 상기 소수성 폴리펩타이드는 겔 강도유지에 중요한 역할을 하여, 상기 소수성 폴리펩타이드를 키토산과 폴리(에틸렌 글리콜) 사이에 삽입함으로써 상기 소수성 폴리펩타이드는 수화겔의 함수율, 분해 속도, 겔 강도 등을 조절할 수 있게 하여 결국 약물 전달 시의 약물방출속도를 조절할 수 있고, 조직공학 재료로 쓰일 때 겔의 지속성 및 세포와의 상호작용을 조절할 수 있다. 수화겔의 강도는 조직공학에서 세포성장과 분화에 직접적으로 영향을 미치므로 적당한 겔 강도의 유지는 중요하다. 예를 들어, 겔 강도가 증가함에 따라 줄기세포가 신경세포, 근육세포, 뼈 등으로 분화하게 된다. 한편, 효소에 특이적으로 분해되는 서열을 갖는 폴리펩타이드와 그렇지 않은 폴리펩타이드는 분해속도에서 차이가 나게 되며, 또한, 효소와의 접근성을 위해서 지나치게 소수성인 폴리펩타이드는 함수율을 떨어뜨리므로 상기 폴리펩타이드의 소수성을 적절히 조절하는 것이 바람직하다.
본원의 일 구현예에 따른 CS-g-(PP-PEG)를 포함하는 수용액은 일정 농도 이상에서, 체온 (37℃) 이하의 온도에서는 수용액으로 존재하지만, 약 37℃ 이상의 온도에서는 수화겔로 전이가 일어나는 것을 특징으로 한다. 따라서 본원의 일 구현예에 따른 CS-g-(PP-PEG)는 약물전달체, 소수성 의약의 가용화제로 사용될 수 있으며, 세포 배양, 조직 공학 등 다양한 용도로서 의학적으로 응용될 가능성이 있다. 키토산의 특성 상, 음이온을 띄는 의약은 이온결합에 의해 초기과량방출을 막을 수 있게 되어 등전하점 (isoelectric point)이 약 6 이하인 의약품에 유망하나, 이러한 응용들에만 제한되는 것은 아니다.
따라서, 상기 CS-g-(PP-PEG)는 콘드로사이트, 배아 줄기 세포, 중간엽 줄기 세포, 간세포, 심장 줄기 세포, 심근 세포, 내피 세포 또는 섬유 아세포를 이용한 치료에 사용될 수도 있다.
즉, 상기 본원의 일 구현예에 따른 키토산-폴리머 복합체 및 수성 매질을 포함하는 수용액은 pH 및 온도 민감성 졸-겔 전이 특성을 가질 수 있다. 특히, 상기 키토산-폴리머 복합체 및 수성 매질을 포함하는 수용액은 체온 이상의 온도에서 수화겔로 전이가 일어나는 특성을 가지며, 이러한 특성을 이용하여 키토산-폴리머 복합체는 약물전달체, 및 조직공학용 지지체로서 사용될 수 있다.
일 구현예에 있어서, 상기 키토산-폴리머 복합체는 그에 혼입된 약물을 추가 포함하여 약물전달체로서 사용될 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 상기 약물은 항암제, 호르몬, 항생제, 진통제, 항감염제, 단백질 또는 펩티드 의약, 핵산, 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 항암제는 탁솔, 아드리아마이신, 블레오마이신, 시스플라틴, 카보플라틴, 독소루비신, 5-플로로우라실, 메톡트렉세이트 또는 안티노마이신 D 를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 단백질 또는 펩티드 의약은, 옥시토신, 바소프레신, 루테나이징 호르몬 방출 호르몬, 성장 호르몬, 인슐린, 글루카곤, 인터루킨, 인터페론, 가스트린, 칼시토닌, 에리쓰로포이어틴, 칼씨토닌, 엔돌핀, 앤지오탠신, 암 고사 인자 (TNF), 신경 성장 인자 (NGF), 뼈형성 폴리펩타이드 (BMP), 혈관형성 성장인자 (VEGF), 그래뉼로사이트 콜로니 자극 인자 (GCSF), 레닌 또는 항체를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 핵산은 DNA, 플라즈미드 DNA, RNA, RNAi, 또는 siRNA 를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 키토산-폴리머 복합체는 조직공학용 지지체로서 사용되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 본원의 일 구현예에 따른 키토산-폴리머 복합체 및 수성 매질을 포함하는 수용액은 체온 이상의 온도에서 수화겔로 전이가 일어나고 체내에서 안정하게 유지되는 특성을 가지며, 이러한 특성을 이용하여 상기 키토산-폴리머 복합체를 조직공학용 지지체로서 유용하게 사용될 수 있다. 예를 들어, 상기 본원의 일 구현예에 따른 상기 키토산-폴리머 복합체가 조직공학용 지지체로서 사용되는 경우, 상기 키토산-폴리머 복합체 내에 혼입된, 콘드로사이트, 배아 줄기 세포, 중간엽 줄기 세포, 간세포, 심장 줄기 세포, 심근 세포, 내피 세포, 및 섬유아세포로 이루어진 군으로부터 선택된 1종 이상의 살아있는 세포를 더 포함할 수 있으나, 이에 제한되는 것은 아니다.
특히, 키토산이 연골조직의 재생에 관여함이 알려진 바 이를 주사형 조직공학 재료로 응용하여, 마이크로드릴링과 CS-g-(PP-PEG) 수용액의 졸-겔 전이를 이용하여 연골 상처 부위에 주사를 함으로써 연골 재생능력을 극대화할 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
사용물질들
α-메톡시-아미노 폴리(에틸렌 글리콜) (PEG) (Mn = 2,000 달톤)은 ID Bio 사 (Korea)에서, L-알라닌의 N-카르복시 무수물은 M & H Laboratory(Korea)에서, 키토산 (M.W. ~ 7,500 달톤, 5,000 및 10,000 달톤의 컷-오프 분자량을 갖는 투석막으로 정제함)은 Kitto Life 사 (Korea)에서 입수하였다. 무수 숙신산, 숙신산, N-히드록시 숙신이미드(NHS), 1-에틸-3-(3-디메틸아미노프로필) 카르보이미드 염산(EDC), 무수 N,N-디메틸 포름아미드 및 무수 디메틸은 Sigma-Aldrich에서 입수하였다. 톨루엔 및 클로로포름은 사용 전에 건조시켰다.
실시예 1: CS-g-(PA-PEG) 키토산-폴리머 복합체
(1) 폴리(에틸렌 글리콜)-폴리알라닌 (PEG-PA) 2원 블록 공중합체의 합성
CS-g-(PA-PEG)는 도 1에 나타낸 바와 같은 스킴에 따라 PEG 존재 하에서 알라닌의 N-카르복시 무수물의 개환중합반응에 의하여 제조되었다. 즉, 플라스크 내에서 PEG (10.0 g, 5.0 mmol)를 건조된 톨루엔 (200 mL)에 녹였다. 톨루엔(190 mL)을 증류 제거하여 잔류물을 제거하였다. 그 후, 상기 반응 혼합물을 40℃로 온도를 냉각한 후 L-알라닌의 N-카르복시 무수물 (5.0 g, 49.5 mmol)을 무수 클로로포름/무수 N,N-디메틸포름이미드(3/1 v/v) 공용매(40 mL)에 녹인 후 상기 플라스크에 첨가하고, 40℃에서 19 시간 동안 중합반응을 진행하였다. 상기 반응 생성물을 디에틸에테르 내에서 침전하여 고분자를 분리한 후 잔존 용매를 진공펌프로 제거하였다. 그 다음, PEG-PA의 아민그룹을 무수숙신산과 반응시켜 카르복시산으로 말단을 변화시켰다. 즉, PEG-PA (5.7 g; 2.1 mmol)을 무수클로로포름 (40 mL)에 녹인 후 24 시간 동안 무수숙신산(0.43 g; 4.3 mmol)과 반응시켰다. 반응물을 디에틸에테르에 침전하여 고분자를 분리한 후 용매를 진공펌프로 제거하였다. 이 최종 물질을 투석막 (컷-오프 분자량=1,000 달톤)을 이용하여 정제하였다.
(2) CS-g-(PA-PEG)의 합성
N-히드록시 숙신이미드 (0.081 g, 0.7 mmol)를 카르복시산 말단을 갖는 PEG-PA (1.0 g, 0.4 mmol) 수용액 (50 mL)에 첨가하고 0℃에서 15 분간 교반하면서 반응시킨 후, 1-에틸-3-(3-디메틸아미노프로필) 카보이미드 염산 (EDC) (0.14 g, 0.7 mmol)과 0℃에서 4 시간 동안 교반하면서 반응시켰다. 그 다음, 키토산 (0.56 g)을 증류수 10 mL에 용해시키고 0℃에서 한 시간 동안 실시예 1에서와 같이 제조한 폴리(에틸렌 글리콜)-폴리알라닌 (PEG-PA) 블록 공중합체에 적하시켰다. 상기 반응 혼합물을 실온(20℃)에서 72 시간 동안 교반하면서 반응시킨 후 반응물을 맴브레인 (컷-오프 분자량 = 8,000 달톤)으로 투석하고 동결건조하여 분말로 만들어 키토산-폴리머 복합체를 수득하였다.
(3) CS-g-(PA-PEG)의 특성 분석
1 H- 및 13 C-NMR 분석
상기 제조된 키토산-폴리머 복합체의 조성을 결정하기 위해 CF3COOD 에서 1H-NMR 스펙트럼(500 MHz NMR spectrometer; Varian 사용)을 측정하여 도 2에 나타내었다. CS-g-(PA-PEG) 수용액(6.0 중량% in D2O)의 13C-NMR 스펙트럼의 변화를 pH 및 온도에 따라 조사하였다. 각 시료들을 각 온도와 pH에서 20분간 평형화시켰다.
겔 침투 크로마토그래피 분석
굴절률 검출기(refractive index detector)를 구비한 겔 침투 크로마토그래피 시스템 (Waters 515, Waters)으로 상기 제조된 키토산-폴리머 복합체의 분자량 및 분자량 분포를 조사하였다. 물/아세토니트릴 (80/20 v/v)을 용출 용매로서 사용하고 UltrahydrogelTM 120 (Waters)을 컬럼으로 사용하였다. 분자량이 400 내지 150,000 달톤인 PEG를 분자량 표준으로서 사용하였다.
열분석
CS-g-(PA-PEG)에 대한 시차 주사 분석(differential scanning analysis; TA instrument DSC Q10)을 질소 대기 하에서 실행하였다. 4.5 mg의 폴리머를 10℃/min의 가열 및 냉각 속도로 0℃로부터 200℃까지 가열한 후 0℃까지 냉각시켰다. 열 중력 분석(thermal gravitation analysis) (TA instrument TGA Q50)에서, 10.0 mg의 폴리머를 질소 대기 하에서 10℃/min의 가열 속도로 가열하고 질량 변화를 측정하였다.
(4) CS-g-(PA-PEG)의 졸-겔 전이 특성 분석
동역학 분석(Dynamic mechanical Analysis)
상기 제조된 키토산-폴리머 복합체를 포함하는 수용액의 졸-겔 전이 특성을 동역학 분석을 통하여 분석하였다.
CS-g-(PA-PEG) 수용액(6.0 중량%)의 계수를 pH 및 온도에 따라 동역학 유동측정기(dynamic rheometry)(Rheometer RS 1; Thermo Haake)로 조사하였다. 상기 수용액의 pH는 1.0 M 염산 또는 1.0 M 수산화나트륨 수용액으로 조절하였다. 폴리머 수용액을 25 mm 지름 및 0.5 mm 간격의 평행 평판(parallel plate) 사이에 위치시켰다. 동역학 분석 동안에, 시료를 물을 함유한 솜을 갖는 챔버 내부에 위치시켜 물 증발을 최소화시켰다. 제어된 스트레스 조건(4.0 dyne/cm2) 및 1.0 rad./s의 빈도 하에서 데이터를 수집하였다. 가열속도는 0.5 ℃/min이었다.
(5) CS-g-(PA-PEG)의 온도 및 pH에 따른 졸-겔 전이 특성 분석
CS-g-(PA-PEG)의 겉보기 pK a 및 이온화 정도
키토산 및 CS-g-(PA-PEG) 수용액(1.2 중량%)의 pH 변화를 온도에 따라 조사하였다. 키토산 및 CS-g-(PA-PEG)의 이온화 정도 또한 pH의 기능으로서 키토산 수용액 (1.2 중량%)에 대하여 조사하였다.
FTIR 분석
CS-g-(PA-PEG)의 폴리알라닌의 이차 구조 정보를 얻기 위해 폴리머 수용액(6.0 중량% in D2O)의 IR 스펙트럼(FTIR spectrophotometer FTS-800; Varian)을 pH 및 온도의 기능으로서 조사하였다.
CD(Circular Dichroism) 분석
pH 및 온도에 따라 CS-g-(PA-PEG) 수용액(0.05 중량%)의 타원율을 원평광이색성 (circular dichroism) 장치 (J-810; JASCO) 를 사용하여 조사하였다. 평균 잔기 타원율 [Θ] (degcm2dmol-1)을 다음 식에 따라 계산하였다: [Θ] = [Θ]obs MRW/(10lc). MRW는 펩티드의 평균 잔기 분자량, 즉 아미노산의 수에 의해 나누어진 펩티드 분자량이다. 폴리알라닌에 있어서, 이는 단순히 71개의 알라닌 반복 유닛의 분자량이다. l 은 세포의 광로 길이 (1.0 cm) 이며 c 는 폴리머의 폴리펩타이드 함수와 폴리머 농도의 곱에 의해 보정된 폴리펩타이드 농도(mg/ml)이다.
투과 전자 현미경(Transmission Electron Microscopy) 분석
pH 3.0 및 9.0에서의 CS-g-(PA-PEG) 수용액 (0.05 중량%, 10 μL)을 카본 그리드에 위치시키고 초과된 용액을 필터 페이퍼로 블롯팅하였다. 그리드를 24 시간 동안 실온에서 공기건조시켰다. 200 kV 가속 전압의 JEM-2100F (JEOL)로 현미경 이미지를 산출하였다.
동적 광 산란법(Dynamic Light Scattering)
물(1.2 중량%)에서의 CS-g-(PA-PEG) 응집체의 외형 크기(apparent size)를, pH 3.0 및 pH 9.0에서 온도의 기능으로서 동적 광 산란 기구(ALV 5000-60x0)로 측정하였다. 532 nm에서 작동하는 YAG DPSS-200 레이저 (Langen, Germany)를 광원으로서 사용하였다. 산란된 광의 측정은 입사빔(incident beam)에 대하여 90 °의 각도로 이루어졌다. 동적 광 산란법의 결과를 정규화된 CONTIN 방법으로 분석하였다. 감쇠율(decay rate) 분포를 명백한 확산계수로 전환시켰다. 확산계수로부터, 폴리머 응집체의 명확한 유체역학적 크기를 Stokes-Einstein 방정식을 사용하여 수득할 수 있다.
<분석결과>
PEG-PA(PEG-PA-NH2)의 아미노 말단기가 숙신산 무수물과 반응하여 카르복시산 말단을 갖는 PEG-PA가 생성되었으며, 이것이 키토산의 아민기와 결합하여 CS-g-(PA-PEG)가 형성되었다. EDC 및 NHS가 결합 반응에서 촉매로서 사용되었다(도 1의 스킴 참조). 물/아세토니트릴 공용매에 용해된 PEG-PA 및 CS-g-(PA-PEG)의 겔 침투 크로마토그래피 결과는 분자량의 단봉 분포(unimodal distribution)를 나타낸다. PEG-PA와 비교했을 때, PEG-PA와 키토산 사이에 결합작용이 일어난 후 CS-g-(PA-PEG)의 체류시간이 24분에서 22.5분으로 감소되었다. PEG-PA 및 CS-g-(PA-PEG)의 구조는 CF3COOD에서 1H-NMR에 의해 분석하였다 (도 2). 1.4 ppm 내지 1.9 ppm (PA의 CH3CONH-), 3.6 ppm 내지 3.7 ppm (PEG 말단 그룹의 -OCH3), 및 3.8 ppm 내지 4.1 ppm (PEG의 -OCH2CH2)에서의 피크에 의해 계산된 PEG-PA의 각 블록의 분자량은 2,000 달톤 내지 800 달톤이었다. C1 위치에서의 메틴 프로톤(5.3 내지 5.6 ppm) 및 아세틸기(2.3 ppm 내지 2.5 ppm)에 의해 계산된 키토산의 탈아세틸화 정도(도 1의 m/(n+m))는 84.5%이었다. 도 1에 있어서 y/(x+y+n)에 의해 규정되는 그래프트 비율을 키토산의 C1 위치에서의 메틴 프로톤(5.3 ppm 내지 5.6 ppm) 및 폴리알라닌(PA)과 키토산 사이에 결합된 숙신산에테르의 에틸렌 양성자(2.7 ppm 내지 2.9 ppm)에 의해 계산하였다. 상기 그래프트 비율은 49.6%이었다. 상기 분석 결과를 근거로 한, 도 1의 CS-g-(PA-PEG)의 각 블록 비율(x/y/n)은 34.9/49.6/15.5이었다. 키토산의 분자량 7,500 달톤을 기초로, CS-g-(PA-PEG)의 구조에 대하여 x=16, y=22 및 n=7로 계산하였다.
질소 대기 하에서의 시차 주사 열량계 및 열 중력 분석으로, CS-g(PA-PEG)가 48℃의 용융점 및 415℃의 분해온도를 갖는 것을 확인하였다(도 3 참조).
PEG-PA 및 CS-g-(PA-PEG) 의 수용액은 양자 모두 온도 증가에 따라 졸-겔 전이를 나타내었다. PEG-PA 및 CS-g-(PA-PEG) 수용액 (6.0 중량%)의 점성은 10℃ (졸 상태)에서 37℃ (겔 상태)로 증가함에 따라 0.01 Pas 내지 0.1 Pas에서 20 Pas로 증가하였으며, 16℃ 내지 22℃ 및 25℃ 내지 32℃에서 점성이 200배 이상 증가하는 것은 각각 PEG-PA 및 CS-g-(PA-PEG)의 수용액의 졸-겔 전이를 나타내는 것이다 (도 4a). 변이되지 않은 키토산 수용액은 같은 온도 범위에서 유의성있는 점성의 변화가 없었다. 이전의 온도민감성 CS-g-PEG는 겔 상태에서 6 Pas의 점성을 나타낸다고 보고되었다. 겔 점성 또는 계수의 조절은 약물 수송 및 조직공학 적용에 중요하다. 제니핀(genipin)으로 CS-g-PEG을 화학적 가교결합시킨 후, 우혈청 알부민(BSA)이 40일 동안 소량의 초기 버스트(burst) 방출(< 20 %)을 수반하는 서방성 방출을 보였으며, 변이되지 않은 CS-PEG은 첫째 날에 약 50% 내지 70%의 유의성있는 초기 버스트 BSA 방출을 나타냈다. 수화겔의 단단함 역시 3D 생체외 배지에서 연골세포의 증식 및 분화에 영향을 미친다. 수화겔을 통한 산소 및 영양소의 투과성 이외에, 성장 세포에 대한 기계적 자극 및 스트레스에서의 차이가 이러한 작용에 원인이 된다.
계수에서의 변화를 온도뿐만 아니라 pH에 따라 조사하였다. 키토산은 6.5의 pKa 값을 갖는 아민 그룹을 갖는다. pH 3.0에서, 키토산의 아민 그룹은 양자화되어 암모늄 그룹을 형성하며, pH 9에서 키토산의 아민 그룹 대부분이 중성 아민 그룹으로서 존재한다. pH=pKa=6.5에서, 아민 그룹과 암모늄 그룹은 동일 비율로 존재한다. 졸-겔 전이 온도는 저장 탄성률(storage modulus)(G')이 손상 탄성률(loss modulus)(G")을 넘는 교차점에 의해 결정될 수 있다. G' 및 G"는 복소 탄성률(complex modulus) (G*)의 점성 성분 및 탄성 성분을 측정한 값이다. G'가 G"보다 더 큰 경우 탄성 겔 형성을 나타낸다. pH가 6.5에서 3.0으로 감소함에 따라 졸-겔 전이 온도는 27℃에서 17℃로 감소하였으며, pH가 9.0으로 증가함에 따라 졸-겔 전이 온도는 32℃로 증가하였다 (도 4의 b). 겔 모듈러스로부터, 교차결합 사이의 분자량, 교차결합 분자량 (Mc)을 하기 식에 의해 계산할 수 있다:
Mc = ρrRT/G' (1)
상기 식에서, ρ는 폴리머 농도(g/m3)이고, R은 기체 상수이며, T는 절대 온도이다. 본 실시예에 비해, 6.0 중량% 폴리머 용액에 대한 ρ는 6.0 x 104 (g/m3) 이었다. 37℃ 온도 하에서, pH 3.0, 6.5 및 9.0에서의 겔 모듈러스는 각각 396 Pa, 241 Pa, 및 43 Pa이므로, 상응하는 Mc는 각각 391 KD, 642 KD, 및 3596 KD이다. 이러한 계산식은 pH가 증가함에 따라 온도민감성 겔의 메쉬 사이즈가 증가함을 제시한다. 2-(디이소프로필아미노)에틸 메타크릴레이트 공중합체와 같은 통상적인 수화겔은, pH의 변화에 따라 폴리머의 충전된 종이 증가함에 따라 팽창하였다. 따라서, 수화겔 감소의 전하 및 모듈러스 사이의 정전기적 반발에 기인하여 충전된 형태에서 메쉬 사이즈가 증가하게 된다. 본원의 폴리머는, 충전된 형태를 갖는 낮은 pH에서 겔의 모듈러스가 증가한다는 점에서 모순되는 것이다.
졸-겔 전이 거동 및 겔 모둘러스의 이러한 변화를 이해하기 위해서, pH 및 온도의 기능으로서 하기 사항에 초점을 맞추어 상기 CS-g-(PA-PEG) 수용액을 분석하였다: 1) 키토산의 양자화 정도, 2) 폴리알라닌의 이차 구조, 및 3) PEG의 탈수화 범위.
Figure PCTKR2011007516-appb-I000001
(2)
ΔpKa = pKa (T) - pKa (Tref) = pH(T) - pH(Tref) (3)
10℃에서 50℃로 온도가 증가함에 따라, CS-g-(PA-PEG) 수용액 (1.2 중량%)의 pH는 6.2에서 5.0으로 감소되었으며, 이는 식 (2)에서 평형상태가 우측으로 변동되었음을 나타낸다 (도 5). ΔpKa/ΔT로서 규정된 온도에 대한 pKa 의 민감도는 CS-g-(PA-PEG) 및 키토산에 대하여 각각 -0.022 및 -0.026 pKa unit/℃이었다. 민감도 (ΔpKa/ΔT)는 553 KD의 분자량 및 0.72의 탈아세틸화 정도를 갖는 키토산 (-0.00232 pKa unit/℃) 및 글루코사민 (-0.0027 pKa unit/℃)과 유사한 범위이다. 키토산, 글루코사민 및 CS-g-(PA-PEG) 사이의 유사한 양상은 온도에 대한 CS-g-(PA-PEG)의 pH 민감도가 키토산의 암모늄/아민 그룹의 탈양자화로부터 기인한 것임을 나타내는 것이다.
저온에서는 G"이 크나, 전이 온도에서는 G'=G"이 되고, G'이 G"보다 클 경우, 겔로 정의할 수 있다. 즉, G'이 G"보다 크면 겔, 작으면 졸로 정의할 수 있다.
주사 가능한 생체 재료로 이용하기 위해서는 체온 근처 (32℃ 내지 42℃)에서 겔 상태로 존재하여야 한다 (도 4의 b). 따라서, 본원에 따른 CS-g-(PP-PEG)는 의약 전달 시스템 및 조직 공학에 응용될 수 있을 것이다.
CS-g-(PA-PEG) (6.0 중량% in D2O)의 FTIR 스펙트럼 및 13C-NMR 스펙트럼을 pH 9의 고정 pH 하에서 온도에 따라 조사하였다. 도 6a 및 도 6b는 본 실시예에 따른 CS-g-(PA-PEG) 수용액(6.0 중량%)의 FTIR 스펙트럼(a) 및 13C-NMR 스펙트럼 (b)을 나타낸 것이다. 도 6a를 참조하면, 1630 cm-1 내지 1640 cm-1 (랜덤 코일(random coil)) 또는 1620 cm-1 내지 1630 cm-1 (β-시트)에 대한 1650 내지 1660 cm-1 (α-헬릭스)에서 피크 높이에 의해 이차구조 비율을 평가할 수 있었다. 온도가 10℃에서 50℃로 증가함에 따라, 1650 cm-1 내지 1660 cm-1 에서의 피크도 증가하였으며, 이는 PA의 α-헬릭스 구조의 비율이 증가한다는 것을 나타내는 것이다 (도 6a). 온도가 증가함에 따른 이차구조의 보강은 폴리알라닌-폴록사머-폴리알라닌, HOOC-GKLKLKLKQQDLELDLEG-NH2와 같은 β-스트랜드 양친매성 펩타이드 및 엘라스틴-기저 폴리머에 대한 보고에서 β-시트 구조가 온도 증가에 따라 보강된다고 이미 보고된 것이다.
1CS-g-(PA-PEG) (6.0 중량% in D2O)의 13C-NMR은 72.3 ppm 내지 72.5 ppm(확대된 스펙트럼)에서 PEG의 에틸렌옥사이드기, 폴리아닐린 및(PA-CH3; 17 ppm 내지 19 ppm) 및 키토산의 메틸기(CS-CH3; 23 ppm 내지 25 ppm)의 피크 톺이가 졸-겔 전이 온도 바로 아래에서 최대임을 보여준다 (도 6b). 이러한 관찰은, 폴리(락티드-코-글리코리드)/폴리(에틸렌글리콜)(PLGA/PEG), 및 폴리포스파젠/PEG의 경우에서와 같이, 온도가 상기 졸-겔 전이 온도로 증가하는 것과 같이 PEG의 분자 이동이 감소되었음을 시사하는 것이다.
또한, pH의 기능으로서 상기 변이를 연구하였다. 키토산 및 CS-g-(PA-PEG)의 아민기의 이온화 정도를 pH의 기능으로서 조사하였다(도 7a). 예상된 바와 같이, 이온화 정도는 pH의 증가에 따라 감소되었다. 50%의 이온화 정도가 나타난 pH가 폴리머의 pKa 이다. 키토산 및 CS-g-(PA-PEG)의 pKa는 각각 6.5 및 6.0으로 관찰되었다.
FTIR 스펙트럼은 pH 증가에 따라 상대적인 α-헬릭스 구조가 감소함을 시사한다. CS-g-(PA-PEG) 수용액(0.05 중량%)의 CD 스펙트럼은 폴리펩타이드의 통상적인 α-헬릭스 구조 및 α-헬릭스 밴드 또한 3의 산성 pH에서 가장 우세하고 pH가 증가함에 따라 감소함을 보여준다 (도 7c). CS-g-(PA-PEG) 수용액 (6.0 중량% in D2O)의 13C-NMR 스펙트럼은 30℃의 고정 온도 하에서 pH의 기능으로서 수득된 것이다(도 7d). 30℃에서, pH 3.0 및 6.5에서 겔 상태를 나타낸다. 그러므로, 72.3 ppm 내지 72.5 ppm (확대된 스펙트럼)에서의 PEG의 에틸렌옥사이드 그룹, 23 ppm 내지 25 ppm에서의 키토산의 메틸 그룹 (CS-CH3) 및 17 ppm 내지 19 ppm에서의 폴리알라닌의 메틸 그룹(PA-CH3; 17 내지 19 ppm)의 피크 높이가 pH 9.0 (졸 상태)에서보다는 pH 3.0에서 좀더 낮다. 졸-겔 전이 온도 바로 아래에서 pH 9보다 pH 3에서 CS-g-(PA-PEG)의 더 큰 G" 이외에(도 4b), pH 3.0에서의 PEG 피크의 업필드 시프트(upfield shift)는 PEG와 키토산 사이의 수소결합이 산성 pH와 관련된 것임을 나타내는 것이다. 산성 pH에서 PEG 산소의 단순 탈양자화는 PEG 단일 분자를 좀더 유체역학적으로 만들 수 있다. 그러나, PEG 피크가 pH 9.0에서보다 pH 3.0에서 상당히 낮다는 사실은 PEG와 키토산의 암모늄 그룹 사이의 사슬간 수소결합을 통해 PEG의 분자이동이 제한됨을 나타내는 것이다.
폴리머의 나노구조는 겔 구조가 이들의 나노조립 패턴으로부터 유래된 것이기 때문에 중요하다. 키토산이 pH 3.0에서 양자 형태로서 상당히 소수성인 반면 pH 9.0에서는 중성 형태로 소수성이 덜하기 때문에 CS-g-(PA-PEG)의 나노구조는 pH에 의해 영향을 받을 수 있다. 수용액 내에서의 CS-g-(PA-PEG)의 자가-조립도를 pH 3.0 및 pH 9.0에서 비교하였다 (도 8). pH 3.0에서, 폴리머는 특정 나노조립 구조를 형성하지 않는 반면, pH 9.0에서 폴리머는 응집된 마이셀 구조를 나타냈다.
물(1.2 중량%)에서의 폴리머 조립체의 외형 크기를 온도의 기능으로서 동적 광 산란법으로 조사하였다 (도 9). pH 3.0에서, 온도가 15℃로부터 20℃ 및 25℃까지 증가됨에 따라 폴리머 조립체의 외형 크기의 상당한 증가가, 80 nm로부터 300 nm 및 1500 nm까지에서 관찰되었으며, 이는 졸-겔 전이 온도와 일치하는 결과이다. 관찰 결과는 pH 3.0에서 폴리머 사이의 광범위한 분자간 상호작용을 시사한다. pH 9.0에서, 37 nm의 피크 평균 크기를 갖는 폴리머 조립체의 외형 크기는 30℃ 이상에서 증가하기 시작하였다. 그러나, pH 9에서의 폴리머 조립체의 크기 증가는 pH 3.0에서만큼 크지 않았으며, 이는 pH 9.0에서 50℃ 이하에서 마이셀 구조가 보존되는 것으로 보여짐을 시사하는 것이다.
상기 결론에 기초하여, 수화겔 구조를 도 10에 도시하였다. pH 3.0에서 키토산의 아민 그룹은 우세하게 양자화된 아민 그룹으로서 존재하여 CS-g-(PA-PEG)의 키토산을 친수성으로 만든다. 소수성 폴리알라닌 그룹이 PEGs 및 키토산의 친수성 블록 중에서 분리되어, 폴리머는 특정 나노구조로 조립될 수 없다. 대신에, 폴리머는 PEG의 산소와 암모늄 이온 사이의 대규모 수소결합으로 무작위로 응집될 수 있다. 키토산과 PEG 사이의 분자간 수소결합 및 대규모의 무작위 응집에 의해 저온에서 졸-겔 전이가 나타난다. 또한, 큰 계수를 갖는 겔이 온도 증가에 따라 형성된다.
pH 9.0에서, 키토산은 중성 아민 형태로서 존재해 키토산이 소수성을 덜 나타내도록 한다. 그러므로, CS-g-(PA-PEG)의 소수성 PA 및 키토산이 마이셀의 소수성 코어로서 작용하고 PEG가 마이셀의 친수성 셀로서 작용한다. 따라서, 폴리머 수용액은 적은 점성을 나타내고 졸-겔 전이 온도는 3.0 또는 6.5의 낮은 pH에 비해 9.0의 높은 pH 하에서는 고온이다. 졸-겔 전이는 마이셀 응집 및 결합에 의해 유도된다.
그러므로 pH 9.0에서 중성 형태인 것보다 pH 3.0에서 전하를 띤 형태가 온도민감성 겔의 명백히 더 작은 메쉬 크기를 갖는데 이는 나노조립성, PEG 및 키토산 사이의 사슬내 교차결합 α-헬릭스에서 풍부한 폴리알라닌의 이차구조에서의 차이에 의한 것이다.
상기한 바와 같이, 본원의 일 실시예의 CS-g-(PA-PEG)는 신규한 pH/온도 민감성 키토산-폴리머 복합체이다. 졸-겔 전이 온도, 키토산의 양자화/또는 이온화 정도, 폴리아닐린의 이차 구조, 및 PEG의 분자 이동을 pH 및 온도의 기능에 따라 상기와 같이 조사한 결과, 온도가 증가함에 따라, 키토산은 탈양자화되고, 폴리아닐린의 α-헬릭스 이차 구조가 강화되며, PEG의 분자 이동이 감소하여, 열겔화가 발생하였다. 반면에, pH가 증가함에 따라, 키토산의 암모늄기가 탈양자화되고 폴리아닐린의 α-헬릭스 함량이 감소하며, PEG가 광범위한 사슬간 수소결합으로부터 해방되어 높은 pH에서 졸-겔 전이 온도 및 겔 계수가 증가되도록 한다.
실시예 2: CS-g-(PP-PEG) 수용액의 동물 내 졸-겔 전이 특성
0.5 mL의 CS-g-(PP-PEG) 수용액 (6.0 중량%)을 쥐의 피하 (subcutaneous layer)에 주사하여 수화겔의 생성 및 분해 거동을 관찰하였다. 주사 후에 1, 10, 14 일 후에 수술하여 주사 후 10일 이상의 기간 동안 체내에서 겔 상태로 존재하는 것을 볼 수 있다 (도 11 참조). 따라서, 본원에 따른 CS-g-(PP-PEG)를 이용하는 경우, 단순한 주사를 통하여 임플란트를 만들 수 있다는 것이 검증되었다.
상기에서는 본원의 바람직한 구현예 및 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본원의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (16)

  1. 폴리(에틸렌 글리콜) 블록과 키토산 사이에 결합된 소수성 폴리펩타이드 블록을 포함하는, 키토산-폴리머 복합체.
  2. 제1항에 있어서,
    상기 폴리(에틸렌 글리콜)의 분자량은 300 내지 5,000 달톤이고, 상기 소수성 폴리펩타이드의 분자량은 300 내지 10,000 달톤이고, 상기 키토산의 분자량은 1,000 내지 1,000,000 달톤이며, 상기 키토산-폴리머 복합체의 분자량은 8,000 내지 2,000,000 달톤인, 키토산-폴리머 복합체.
  3. 제1항에 있어서,
    상기 소수성 폴리펩타이드 블록은, 글라이신, 알라닌, 아르기닌, 아스파라긴, 아스팔산, 시스틴, 글루타민, 글루탐산, 글리신, 히스티딘, 이소류신, 류신, 라이신, 메티오닌, 페닐알라닌, 프롤린, 세린, 트레오닌, 트립토판, 티로신 발린, 및 이들의 조합들로 이루어진 군에서 선택되는 아미노산을 포함하여 형성된 것인, 키토산-폴리머 복합체.
  4. 제1항에 있어서,
    상기 소수성 폴리펩타이드는 DL-형 아미노산, D-형 아미노산, L-형 아미노산, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것인, 키토산-폴리머 복합체.
  5. 제1항에 있어서,
    상기 소수성 폴리펩타이드의 함량은 10 중량% 내지 60 중량%이고, 상기 폴리(에틸렌 글리콜)의 함량은 10 중량% 내지 60 중량%이고, 상기 키토산의 함량은 20 중량% 내지 80 중량%인, 키토산-폴리머 복합체.
  6. 제1항에 있어서,
    상기 소수성 폴리펩타이드가 α-헬릭스 또는 β-시트(sheet) 구조를 가지는 것인, 키토산-폴리머 복합체.
  7. 제1항에 있어서,
    수성 매질 내에서 pH 및 온도 민감성 졸-겔 전이특성을 가지는 것인, 키토산-폴리머 복합체.
  8. 제1항에 있어서,
    수성 매질을 추가 포함하는, 키토산-폴리머 복합체.
  9. 제1항에 있어서,
    상기 키토산-폴리머 복합체 내에 혼입된 약물을 추가 포함하여 약물전달체로서 사용되는 것인, 키토산-폴리머 복합체.
  10. 제9항에 있어서,
    상기 약물은 항암제, 호르몬, 항생제, 진통제, 항감염제, 단백질 또는 펩티드 의약, 핵산, 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 키토산-폴리머 복합체.
  11. 제10항에 있어서,
    상기 항암제는 탁솔, 아드리아마이신, 블레오마이신, 시스플라틴, 카보플라틴, 독소루비신, 5-플로로우라실, 메톡트렉세이트 또는 안티노마이신 D 를 포함하는 것인, 키토산-폴리머 복합체.
  12. 제10항에 있어서,
    상기 단백질 또는 펩티드 의약은 옥시토신, 바소프레신, 루테나이징 호르몬 방출 호르몬, 성장 호르몬, 인슐린, 글루카곤, 인터루킨, 인터페론, 가스트린, 칼시토닌, 에리쓰로포이어틴, 칼씨토닌, 엔돌핀, 앤지오탠신, 암 고사 인자 (TNF), 신경 성장 인자 (NGF), 뼈형성 폴리펩타이드 (BMP), 혈관형성 성장인자 (VEGF), 그래뉼로사이트 콜로니 자극 인자 (GCSF), 레닌 또는 항체를 포함하는 것인, 키토산-폴리머 복합체.
  13. 제10항에 있어서,
    상기 핵산은 DNA, 플라즈미드 DNA, RNA, RNAi, 또는 siRNA 를 포함하는 것인, 키토산-폴리머 복합체.
  14. 제1항에 있어서,
    조직공학용 지지체로서 사용되는 것인, 키토산-폴리머 복합체.
  15. 제14항에 있어서,
    상기 키토산-폴리머 복합체 내에 혼입된, 콘드로사이트, 배아 줄기 세포, 중간엽 줄기 세포, 간세포, 심장 줄기 세포, 심근 세포, 내피 세포, 섬유아세포, 및 이들의 조합으로 이루어진 군으로부터 선택된 세포를 추가 포함하는 것인, 키토산-폴리머 복합체.
  16. 제14항에 있어서,
    마이크로드릴링을 통한 연골조직 재생 시 조직공학용 지지체로서 사용되는 것인, 키토산-폴리머 복합체.
PCT/KR2011/007516 2011-02-08 2011-10-11 졸-겔 전이 키토산-폴리머 복합체 및 그의 용도 WO2012108606A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0010969 2011-02-08
KR20110010969 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012108606A1 true WO2012108606A1 (ko) 2012-08-16

Family

ID=46638798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007516 WO2012108606A1 (ko) 2011-02-08 2011-10-11 졸-겔 전이 키토산-폴리머 복합체 및 그의 용도

Country Status (2)

Country Link
KR (1) KR101335624B1 (ko)
WO (1) WO2012108606A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826132A (zh) * 2015-04-20 2015-08-12 南通大学 一种仿生siRNA胶束纳米复合物及应用
CN114225098A (zh) * 2021-11-24 2022-03-25 中国科学院理化技术研究所 一种具有抗菌和促进伤口愈合的医用敷料
CN115364236A (zh) * 2022-08-24 2022-11-22 安徽工业大学 一种细胞膜锚定的ros响应壳聚糖凝胶前药体系、制备方法及其应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502579B1 (ko) * 2012-10-31 2015-03-16 충남대학교산학협력단 소수성 치환기를 갖는 글리콜 키토산 유도체, 이의 제조방법 및 용도
KR101454363B1 (ko) * 2012-12-20 2014-11-03 한남대학교 산학협력단 관절염 치료 제제 및 이의 제조방법
KR101666792B1 (ko) 2016-02-05 2016-10-17 주식회사 파마리서치프로덕트 핵산 및 키토산을 포함하는 온도감응성 하이드로겔 조성물
CN111484568B (zh) * 2019-01-25 2021-12-14 中国科学院理化技术研究所 一种壳聚糖-抗菌性多肽接枝聚合物及其制备方法和应用
KR102590243B1 (ko) * 2023-03-13 2023-10-20 주식회사 에코월드팜 수면장애 개선을 위한 l-트립토판 및 키토산을 포함하는 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010393A (ko) * 1999-07-20 2001-02-05 김윤 소수성 고분자와 친수성 고분자의 생분해성 블록 공중합체 및이를 포함하는 약물 전달체 조성물
KR20010063314A (ko) * 1999-12-22 2001-07-09 김윤 약물전달체용 생분해성 블록 공중합체의 액체 조성물 및이의 제조방법
KR20080017850A (ko) * 2006-08-22 2008-02-27 이화여자대학교 산학협력단 온도 민감성 졸-젤 전이 폴리에틸렌글리콜/폴리펩티드 블록공중합체, 이의 제조 방법 및 이의 의학적 응용
KR20080110472A (ko) * 2007-06-14 2008-12-18 한국과학기술연구원 약물전달용 폴리포스파젠계 하이드로젤, 그의 제조방법 및그의 용도
KR20090049328A (ko) * 2007-11-13 2009-05-18 이화여자대학교 산학협력단 온도 민감성 졸-젤 전이 pp-plx-pp 블록 공중합체및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663686B2 (en) 2005-05-09 2014-03-04 University Of Washington Biodegradable chitosan-PEG compositions and methods of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010393A (ko) * 1999-07-20 2001-02-05 김윤 소수성 고분자와 친수성 고분자의 생분해성 블록 공중합체 및이를 포함하는 약물 전달체 조성물
KR20010063314A (ko) * 1999-12-22 2001-07-09 김윤 약물전달체용 생분해성 블록 공중합체의 액체 조성물 및이의 제조방법
KR20080017850A (ko) * 2006-08-22 2008-02-27 이화여자대학교 산학협력단 온도 민감성 졸-젤 전이 폴리에틸렌글리콜/폴리펩티드 블록공중합체, 이의 제조 방법 및 이의 의학적 응용
KR20080110472A (ko) * 2007-06-14 2008-12-18 한국과학기술연구원 약물전달용 폴리포스파젠계 하이드로젤, 그의 제조방법 및그의 용도
KR20090049328A (ko) * 2007-11-13 2009-05-18 이화여자대학교 산학협력단 온도 민감성 졸-젤 전이 pp-plx-pp 블록 공중합체및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEGGY CHAN ET AL., BIOMATERIALS, vol. 28, 25 September 2006 (2006-09-25), pages 540 - 549 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826132A (zh) * 2015-04-20 2015-08-12 南通大学 一种仿生siRNA胶束纳米复合物及应用
CN114225098A (zh) * 2021-11-24 2022-03-25 中国科学院理化技术研究所 一种具有抗菌和促进伤口愈合的医用敷料
CN115364236A (zh) * 2022-08-24 2022-11-22 安徽工业大学 一种细胞膜锚定的ros响应壳聚糖凝胶前药体系、制备方法及其应用
CN115364236B (zh) * 2022-08-24 2024-05-03 安徽工业大学 一种细胞膜锚定的ros响应壳聚糖凝胶前药体系、制备方法及其应用

Also Published As

Publication number Publication date
KR20120090746A (ko) 2012-08-17
KR101335624B1 (ko) 2013-12-02

Similar Documents

Publication Publication Date Title
WO2012108606A1 (ko) 졸-겔 전이 키토산-폴리머 복합체 및 그의 용도
US12053561B2 (en) Click-crosslinked hydrogels and methods of use
Zhang et al. Injectable peptide decorated functional nanofibrous hollow microspheres to direct stem cell differentiation and tissue regeneration
Yeo et al. Photocrosslinkable hydrogel for myocyte cell culture and injection
Gan et al. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration
CN1313873A (zh) 作为可溶性,生物可降解基因送递载体的聚-l-赖氨酸的聚酯类似物
US11166907B2 (en) Non-covalently assembled conductive hydrogel
Bahmanpour et al. Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin
JP2016509610A (ja) 鎖延長されたポロキサマー、生物材料を含むそれから形成された熱可逆性ハイドロゲルおよびその医学的適用
CN108553650B (zh) 一种仿生纳米红细胞基因载体及其制备方法与应用
EP3573624A1 (en) Zwitterionically modified polymers and hydrogels
KR20080017850A (ko) 온도 민감성 졸-젤 전이 폴리에틸렌글리콜/폴리펩티드 블록공중합체, 이의 제조 방법 및 이의 의학적 응용
Ma et al. DNA hydrogels as functional materials and their biomedical applications
Petersen et al. Lipocalin-2-loaded amphiphilic polyanhydride microparticles accelerate cell migration
CN112175204B (zh) 水凝胶材料和药物递送系统
KR101512759B1 (ko) 이온성 작용기가 곁사슬 또는 말단에 도입된 온도감응성 폴리에틸렌글리콜/폴리에스터 블록 공중합체 및 이의 제조방법
EP2907876B1 (en) Reduction stimuli-responsive gene vector system and preparation and use thereof
Lin et al. Biodegradable micelles from a hyaluronan-poly (ε-caprolactone) graft copolymer as nanocarriers for fibroblast growth factor 1
Xu et al. Preparation and cytocompatibility of polyaniline/PLCL conductive nanofibers
CN106512020A (zh) 一种靶向缺血心肌的纳米化microRNA 精准诊疗系统
CN111655758A (zh) 核酸投递用聚合物
CN116459217B (zh) 一种用于蛋白质递送的多级响应型聚合物囊泡的制备方法
KR20190032799A (ko) 주사 가능한 폴리감마글루탐산 기반의 수화겔 및 이의 제조 방법
KR101938691B1 (ko) 이온성 생체활성인자와 정전기적인 인력을 형성하는 이온성 폴리에스테르계 공중합체를 포함하는 하이드로겔 및 이의 제조방법
WO2017011454A1 (en) Electroactive scaffolds, methods of making electroactive scaffolds, and methods of using electroactive scaffolds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858223

Country of ref document: EP

Kind code of ref document: A1