WO2012108504A1 - Oxide sintered body, and sputtering target - Google Patents

Oxide sintered body, and sputtering target Download PDF

Info

Publication number
WO2012108504A1
WO2012108504A1 PCT/JP2012/052976 JP2012052976W WO2012108504A1 WO 2012108504 A1 WO2012108504 A1 WO 2012108504A1 JP 2012052976 W JP2012052976 W JP 2012052976W WO 2012108504 A1 WO2012108504 A1 WO 2012108504A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide
oxide sintered
sputtering target
xrd peak
Prior art date
Application number
PCT/JP2012/052976
Other languages
French (fr)
Japanese (ja)
Inventor
守賀 金丸
祐紀 岩崎
實 松井
後藤 裕史
旭 南部
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Publication of WO2012108504A1 publication Critical patent/WO2012108504A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to an oxide sintered body and a sputtering target used when an oxide semiconductor thin film of a thin film transistor (TFT) used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method.
  • TFT thin film transistor
  • Amorphous (amorphous) oxide semiconductors used for TFTs have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be deposited at low temperatures. It is expected to be applied to next-generation displays that require high resolution and high-speed driving, and resin substrates with low heat resistance.
  • a sputtering method is preferably used in which a sputtering target made of the same material as the film is sputtered. In-plane uniformity of component composition and film thickness in the film surface direction (in the film surface) is smaller in the thin film formed by sputtering compared to thin films formed by ion plating, vacuum evaporation, and electron beam evaporation. This is because it has the advantage that a thin film having the same composition as the sputtering target can be formed.
  • the sputtering target is usually formed by mixing and sintering oxide powder and machining.
  • an In-containing amorphous oxide semiconductor [In—Ga—Zn—O, In—Zn—O, In—Sn—O (ITO), etc.]
  • In is used as a rare metal, there is a concern about an increase in material cost in a mass production process. Therefore, a ZTO-based oxide semiconductor that has been made amorphous by adding Sn to Zn has been proposed as an oxide semiconductor that does not contain expensive In and can reduce material costs and is suitable for mass production.
  • No. 4 discloses a sputtering target useful for producing the ZTO-based oxide semiconductor film.
  • Patent Document 1 proposes a method of suppressing the occurrence of abnormal discharge and cracking during sputtering by performing long-time baking and controlling the structure so as not to contain a tin oxide phase.
  • Patent Document 2 also suppresses abnormal discharge during sputtering by increasing the density of the ZTO-based sintered body by performing a two-step process of a low-temperature calcined powder manufacturing process at 900 to 1300 ° C. and a main baking process.
  • a method has been proposed.
  • Patent Document 3 proposes a method of improving the conductivity and increasing the density by including a spinel-type AB 2 O 4 compound.
  • Patent Document 4 proposes a method of obtaining a dense ZTO-based sintered body by performing two steps of a low-temperature calcined powder manufacturing process at 900 to 1100 ° C. and a main baking process.
  • Patent Document 5 proposes a low In content ZTO-based sputtering target as a sputtering target for forming a transparent conductive film having a low specific resistance and a high relative density even if the amount of In in ITO is reduced.
  • the bixbite structure compound represented by In 2 O 3 and Zn 2 SnO 4 are used.
  • a sputtering target used for manufacturing an oxide semiconductor film for a display device and an oxide sintered body that is a material thereof have excellent conductivity and a high relative density.
  • An oxide semiconductor film obtained using the above sputtering target is desired to have high carrier mobility.
  • the present invention has been made in view of the above circumstances, and an object thereof is an oxide sintered body and a sputtering target that are suitably used for manufacturing an oxide semiconductor film for a display device, and have high conductivity and relative density.
  • the object is to provide an oxide sintered body and a sputtering target that can form an oxide semiconductor film having high carrier mobility.
  • the oxide sintered body of the present invention that has solved the above problems is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and indium oxide powders,
  • the oxide sintered body has a relative density of 90% or more and a specific resistance of 1 ⁇ ⁇ cm or less.
  • the sputtering target of the present invention that has solved the above problems is a sputtering target obtained using the oxide sintered body according to any one of the above, and has a relative density of 90% or more and a specific resistance. Has a gist where it is 1 ⁇ ⁇ cm or less.
  • the oxide sintered body and the sputtering target having a low specific resistance and a high relative density can be obtained even if the amount of In in the rare metal is reduced, the raw material cost can be greatly reduced.
  • a sputtering target having excellent direct current discharge stability, excellent in-plane uniformity and film quality stability can be obtained.
  • an oxide semiconductor film with high carrier mobility can be stably and inexpensively formed by a direct current sputtering method that facilitates high-speed film formation, so that productivity is improved.
  • FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention.
  • FIG. 2 is a diagram showing the X-ray diffraction result of the oxide sintered body of the present invention in FIG.
  • the inventors of the present invention are oxide sintered bodies obtained by mixing and sintering zinc oxide, tin oxide, and indium oxide powders, and have high conductivity (low specific resistance) and high relative strength.
  • I came.
  • the controlled object that satisfies the relationship of the above formula (1) achieves the intended purpose. I found it. Then, in order to obtain an oxide sintered body having such a structure, it has been found that predetermined sintering conditions (preferably sintering at a temperature of 900 to 1650 ° C. for 1 hour or more) may be performed. Completed the invention.
  • the composition of the oxide sintered body sputtering target
  • a predetermined amount of In 2 O 3 is added to the ZTO-based oxide semiconductor oxide sintered body using ZnO and SnO 2 as raw materials.
  • the relative density of the oxide sintered body is improved and the specific resistance is lowered, and as a result, stable DC discharge can be continuously obtained.
  • a TFT having an oxide semiconductor thin film formed using the above sputtering target has very high characteristics such as a carrier density of 15 cm 2 / Vs or more.
  • the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [In], respectively, [Zn] + [Sn] + [In]
  • the [In] ratio is set higher than the above range, and the [Zn] ratio is set lower than the above range.
  • the preferred composition ratio is different from the present invention that provides an oxide sintered body and a sputtering target suitable for forming an oxide semiconductor thin film.
  • 2 ⁇ 34 ° “neighboring” generally means that the range includes 34 ° ⁇ 0.5 °. It is presumed that a crystal phase corresponding to Zn 4 Sn 2 InO 9.5 probably exists at the peak position.
  • the vicinity” of 2 ⁇ 31 ° generally includes a range of 31 ° ⁇ 1 °. It is presumed that a crystal phase corresponding to ZnSnIn x O 3 + 1.5X exists at the peak position.
  • 2 ⁇ 35 ° “neighboring” means that it generally includes a range of 35 ° ⁇ 0.4 °. It is presumed that a crystal phase corresponding to Zn Y In 2 O Y + 3 probably exists at the peak position.
  • “2 ⁇ 26.5 °“ near ”” generally includes a range of 26.5 ° ⁇ 1 °. It is presumed that a crystal phase corresponding to SnO 2 probably exists at the peak position.
  • the X-ray diffraction conditions in the present invention are as follows. Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions Target: Cu Monochromatic: Uses a monochrome mate (K ⁇ ) Target output: 40kV-200mA (Continuous measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm Monochromator light receiving slit: 0.6mm Scanning speed: 2 ° / min Sampling width: 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • the ratio of [In] to [Zn] + [Sn] + [In] is referred to as the [In] ratio
  • the ratio of [Zn] to [Zn] + [Sn] is referred to as the [Zn] ratio.
  • the [In] ratio is preferably in the range of 0.01 to 0.35.
  • the [In] ratio is less than 0.01, the relative density of the oxide sintered body cannot be improved and the specific resistance cannot be reduced, and the carrier mobility of the thin film after film formation becomes low.
  • the [In] ratio exceeds 0.35, the TFT switching characteristics when a thin film is formed deteriorate.
  • a more preferable [In] ratio is 0.10 to 0.30.
  • a more preferable upper limit of the [In] ratio is 0.25 or less.
  • [Zn] ratio is preferably 0.40 to 0.95.
  • the [Zn] ratio is less than 0.40, the fine workability of the thin film formed by the sputtering method is lowered, and etching residues are likely to occur.
  • a more preferable [Zn] ratio is 0.50 or more.
  • the [Zn] ratio exceeds 0.95, the chemical resistance of the thin film after film formation becomes poor, and the elution rate by acid becomes high during fine processing, so that high-precision processing cannot be performed.
  • a more preferable [Zn] ratio is 0.85 or less.
  • the oxide sintered body of the present invention satisfies a relative density of 90% or more and a specific resistance of 1 ⁇ ⁇ cm or less.
  • the oxide sintered body of the present invention has a very high relative density, preferably 90% or more, and more preferably 95% or more.
  • a high relative density not only can prevent the generation of cracks and nodules during sputtering, but also provides advantages such as maintaining a stable discharge continuously to the target life.
  • the oxide sintered body of the present invention has a small specific resistance, preferably 1 ⁇ ⁇ cm or less, more preferably 0.1 ⁇ ⁇ cm or less. Accordingly, film formation by a direct current sputtering method using plasma discharge using a direct current power source is possible, and physical vapor deposition (sputtering method) using a sputtering target can be efficiently performed on the production line of the display device.
  • the oxide sintered body of the present invention is obtained by mixing and sintering zinc oxide, tin oxide, and indium oxide powders, and the basic process from the raw material powder to the sputtering target is shown in FIG. .
  • oxide powder is mixed, pulverized, dried, granulated, molded (molded (not shown)), sintered oxide sintered body, processed, bonded, and sputtering target formed. It shows the basic process to get.
  • heat treatment may be performed as necessary after sintering.
  • the present invention is characterized in that the sintering conditions are appropriately controlled as will be described in detail below, and the other steps are not particularly limited, and usually used steps can be appropriately selected. .
  • this invention is not the meaning limited to this.
  • zinc oxide powder, tin oxide powder, and indium oxide powder are mixed in a predetermined ratio, mixed and pulverized.
  • the purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a trace amount of impurity elements may impair the semiconductor characteristics of the oxide semiconductor film.
  • the blending ratio of each raw material powder is preferably controlled so that the ratio of Zn, Sn, and In is within the above-described range.
  • Mixing and pulverization are preferably performed by using a pot mill and adding the raw material powder together with water.
  • the balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
  • the mixed powder obtained in the above step is dried and granulated, and then molded.
  • the powder after drying and granulation is filled in a metal mold of a predetermined size, pre-molded by a mold press, and then molded by CIP (cold isostatic pressing) or the like.
  • CIP cold isostatic pressing
  • sintering is preferably performed at a firing temperature: about 900 ° C. to 1650 ° C. and a holding time: about 1 hour or more.
  • a higher firing temperature is preferable because the relative density of the sintered body is likely to be improved and can be processed in a short time.
  • More preferable sintering conditions are sintering temperature: about 1000 ° C. to 1600 ° C., holding time: about 2 hours or more.
  • pressure may be applied simultaneously with sintering using a press or the like, and the pressurizing pressure is preferably controlled to about 0.2 tonf / cm 2 or more.
  • the specific resistance is reduced from, for example, about 100 ⁇ ⁇ cm (before the sintering process) to 0.1 ⁇ ⁇ cm (after the sintering).
  • the sputtering target of the present invention can be obtained by processing and bonding according to a conventional method.
  • the relative density and specific resistance of the sputtering target thus obtained are also very good, like the oxide sintered body, the preferred relative density is approximately 90% or more, and the preferred specific resistance is approximately 1 ⁇ ⁇ cm or less.
  • Zinc oxide powder having a purity of 99.99%, tin oxide powder having a purity of 99.99%, and indium oxide powder having a purity of 99.99% are blended in various ratios as shown in Table 1, and mixed in a nylon ball mill for 20 hours. did.
  • the mixed powder obtained in the above step is dried and granulated, pre-molded with a mold press at a molding pressure of 0.5 tonf / cm 2 , and then subjected to main molding with a molding pressure of 3 tonf / cm 2 by CIP. went.
  • the molded body thus obtained was sintered at 1600 ° C.
  • the various oxide sintered bodies thus obtained are subjected to X-ray diffraction under the above-mentioned conditions, and the XRD peak intensities A to D are measured to construct the formula (1) [A / (A + B + C + D) ] ⁇ 100 ratio was calculated. Further, the relative density of the oxide sintered body was measured by the Archimedes method, and the specific resistance was measured by the four-terminal method.
  • the oxide sintered body was processed into a shape of ⁇ 4 inch ⁇ 5 mmt and bonded to a backing plate to obtain a sputtering target.
  • the sputtering target thus obtained was attached to a sputtering apparatus, and an oxide semiconductor film was formed on a glass substrate (size: 100 mm ⁇ 100 mm ⁇ 0.50 mm) by a DC (direct current) magnetron sputtering method.
  • the sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr.
  • a thin film transistor having a channel length of 10 ⁇ m and a channel width of 100 ⁇ m was manufactured, and carrier mobility was measured.
  • No. 1 in Table 1 was used.
  • 1, 4, 5, and 8 to 11 are examples of the present invention in which the ratio of [A / (A + B + C + D)] ⁇ 100 is 10 or more and less than 70, and satisfies the relationship of the formula (1) defined in the present invention.
  • the relative density of the sputtering target was 90% or more
  • the specific resistance was 1 ⁇ ⁇ cm or less
  • the film had good characteristics.
  • the carrier mobility of the thin films formed using these sputtering targets was as high as 15 cm 2 / Vs or more.
  • No. 1 in Table 1 No. 1 in Table 1. 2, 3, 6, and 7 are examples in which the ratio of [A / (A + B + C + D)] ⁇ 100 described above is more than 70 and does not satisfy the relationship of the formula (1) defined in the present invention.
  • the relative density of the sputtering target was less than 90%, and the specific resistance was higher than 1 ⁇ ⁇ cm. Therefore, when used as a sputtering target, the discharge was not stable and film formation was not possible. Also, the carrier mobility could not be measured (indicated by “ ⁇ ” in Table 1).
  • the sputtering target obtained by using the oxide sintered body that satisfies the requirements specified in the present invention and the composition ratio of the metal constituting the oxide sintered body also satisfies the preferable requirements of the present invention is It has been found to have very good properties, having a high relative density and low specific resistance. Moreover, since the thin film obtained using the said sputtering target has high carrier mobility, it turned out that it is very useful as an oxide semiconductor thin film.

Abstract

Provided is an oxide sintered body suitably used for producing an oxide semiconductor film for a display device, the oxide sintered body capable of forming an oxide semiconductor film exerting excellent conductivity, having high relative density, and exhibiting high carrier mobility. This oxide sintered body is obtained by combining and sintering a zinc oxide powder, a tin oxide powder, and an indium oxide powder. The oxide sintered body satisfies the following equation (1) when the oxide sintered body is subjected to X-ray diffraction. Equation (1): 70>[A/(A+B+C+D)]×100≥10. In equation (1), A represents the XRD peak intensity in the vicinity of 2θ=34°, B represents the XRD peak intensity in the vicinity of 2θ=31°, C represents the XRD peak intensity in the vicinity of 2θ=35°, and D represents the XRD peak intensity in the vicinity of 2θ=26.5°.

Description

酸化物焼結体およびスパッタリングターゲットOxide sintered body and sputtering target
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体およびスパッタリングターゲットに関するものである。 The present invention relates to an oxide sintered body and a sputtering target used when an oxide semiconductor thin film of a thin film transistor (TFT) used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method.
 TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。上記酸化物半導体(膜)の形成に当たっては、当該膜と同じ材料のスパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。スパッタリング法で形成された薄膜は、イオンプレーティング法や真空蒸着法、電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成や膜厚などの面内均一性に優れており、スパッタリングターゲットと同じ成分組成の薄膜を形成できるという長所を有しているからである。スパッタリングターゲットは、通常、酸化物粉末を混合、焼結し、機械加工を経て形成されている。 Amorphous (amorphous) oxide semiconductors used for TFTs have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be deposited at low temperatures. It is expected to be applied to next-generation displays that require high resolution and high-speed driving, and resin substrates with low heat resistance. In forming the oxide semiconductor (film), a sputtering method is preferably used in which a sputtering target made of the same material as the film is sputtered. In-plane uniformity of component composition and film thickness in the film surface direction (in the film surface) is smaller in the thin film formed by sputtering compared to thin films formed by ion plating, vacuum evaporation, and electron beam evaporation. This is because it has the advantage that a thin film having the same composition as the sputtering target can be formed. The sputtering target is usually formed by mixing and sintering oxide powder and machining.
 表示装置に用いられる酸化物半導体の組成として、例えばIn含有の非晶質酸化物半導体[In-Ga-Zn-O、In-Zn-O、In-Sn-O(ITO)など]が挙げられるが、希少金属であるInを使用しており、大量生産プロセスでは材料コストの上昇が懸念される。そこで、高価なInを含まず材料コストを低減でき、大量生産に適した酸化物半導体として、ZnにSnを添加してアモルファス化したZTO系の酸化物半導体が提案されており、特許文献1~4には、当該ZTO系酸化物半導体膜の製造に有用なスパッタリングターゲットが開示されている。 As a composition of an oxide semiconductor used for a display device, for example, an In-containing amorphous oxide semiconductor [In—Ga—Zn—O, In—Zn—O, In—Sn—O (ITO), etc.] can be given. However, since In is used as a rare metal, there is a concern about an increase in material cost in a mass production process. Therefore, a ZTO-based oxide semiconductor that has been made amorphous by adding Sn to Zn has been proposed as an oxide semiconductor that does not contain expensive In and can reduce material costs and is suitable for mass production. No. 4 discloses a sputtering target useful for producing the ZTO-based oxide semiconductor film.
 このうち特許文献1には、長時間の焼成を行なって酸化スズ相を含有しないように組織を制御することにより、スパッタリング中の異常放電や割れの発生を抑制する方法が提案されている。また特許文献2には、900~1300℃の低温の仮焼粉末製造工程と本焼成工程の2段階工程を行なってZTO系焼結体を高密度化することにより、スパッタリング中の異常放電を抑制する方法が提案されている。特許文献3は、スピネル型のAB24化合物を含有させることによって導電性を向上させ、かつ高密度化する方法が提案されている。また、特許文献4には、900~1100℃の低温の仮焼粉末製造工程と本焼成工程の2段階の工程を行なって緻密なZTO系焼結体を得る方法が提案されている。 Among these, Patent Document 1 proposes a method of suppressing the occurrence of abnormal discharge and cracking during sputtering by performing long-time baking and controlling the structure so as not to contain a tin oxide phase. Patent Document 2 also suppresses abnormal discharge during sputtering by increasing the density of the ZTO-based sintered body by performing a two-step process of a low-temperature calcined powder manufacturing process at 900 to 1300 ° C. and a main baking process. A method has been proposed. Patent Document 3 proposes a method of improving the conductivity and increasing the density by including a spinel-type AB 2 O 4 compound. Patent Document 4 proposes a method of obtaining a dense ZTO-based sintered body by performing two steps of a low-temperature calcined powder manufacturing process at 900 to 1100 ° C. and a main baking process.
 また特許文献5には、ITO中のIn量を低減しても比抵抗が低く相対密度が高い透明導電膜形成用スパッタリングターゲットとして、低In含有ZTO系のスパッタリングターゲットが提案されている。一般にITO中のInを低減すると、スパッタリングターゲットの相対密度が低くなり、バルクの比抵抗が上昇するが、上記特許文献5では、In23で表わされるビックスバイト構造化合物とZn2SnO4で表わされるスピネル構造化合物を共存させることにより、高密度で比抵抗が小さく、スパッタリング時の異常放電も抑制可能なスパッタリングターゲットを実現している。 Patent Document 5 proposes a low In content ZTO-based sputtering target as a sputtering target for forming a transparent conductive film having a low specific resistance and a high relative density even if the amount of In in ITO is reduced. In general, when In in ITO is reduced, the relative density of the sputtering target is lowered and the specific resistance of the bulk is increased. However, in Patent Document 5, the bixbite structure compound represented by In 2 O 3 and Zn 2 SnO 4 are used. By allowing the represented spinel structure compound to coexist, a sputtering target that has a high density, a small specific resistance, and can suppress abnormal discharge during sputtering is realized.
特開2007-277075号公報JP 2007-277075 A 特開2008-63214号公報JP 2008-63214 A 特開2010-18457号公報JP 2010-18457 A 特開2010-37161号公報JP 2010-37161 A 特開2007-63649号公報JP 2007-63649 A
 表示装置用酸化物半導体膜の製造に用いられるスパッタリングターゲットおよびその素材である酸化物焼結体は、導電性に優れ、且つ高い相対密度を有することが望まれている。また上記スパッタリングターゲットを用いて得られる酸化物半導体膜は、高いキャリア移動度を有することが望まれている。 It is desired that a sputtering target used for manufacturing an oxide semiconductor film for a display device and an oxide sintered body that is a material thereof have excellent conductivity and a high relative density. An oxide semiconductor film obtained using the above sputtering target is desired to have high carrier mobility.
 本発明は上記事情に鑑みてなされたものであり、その目的は、表示装置用酸化物半導体膜の製造に好適に用いられる酸化物焼結体およびスパッタリングターゲットであって、高い導電性と相対密度を兼ね備えており、高いキャリア移動度を有する酸化物半導体膜を成膜可能な酸化物焼結体およびスパッタリングターゲットを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is an oxide sintered body and a sputtering target that are suitably used for manufacturing an oxide semiconductor film for a display device, and have high conductivity and relative density. The object is to provide an oxide sintered body and a sputtering target that can form an oxide semiconductor film having high carrier mobility.
 上記課題を解決し得た本発明の酸化物焼結体は、酸化亜鉛と、酸化スズと、酸化インジウムの各粉末と、を混合および焼結して得られる酸化物焼結体であって、前記酸化物焼結体をX線回折し、2θ=34°近傍のXRDピークの強度をA、2θ=31°近傍のXRDピークの強度をB、2θ=35°近傍のXRDピークの強度をC、2θ=26.5°近傍のXRDピークの強度をDで表したとき、下記式(1)を満足するところに要旨を有するものである。
  70>[A/(A+B+C+D)]×100≧10 ・・・ (1)
The oxide sintered body of the present invention that has solved the above problems is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and indium oxide powders, The oxide sintered body is subjected to X-ray diffraction, the intensity of the XRD peak near 2θ = 34 ° is A, the intensity of the XRD peak near 2θ = 31 ° is B, and the intensity of the XRD peak near 2θ = 35 ° is C When the intensity of the XRD peak in the vicinity of 2θ = 26.5 ° is represented by D, it has a gist that satisfies the following formula (1).
70> [A / (A + B + C + D)] × 100 ≧ 10 (1)
 本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[In]としたとき、下記式(2)を満足するものである。
  7[In]-7[Zn]+3[Sn]≦0 ・・・ (2)
In preferable embodiment of this invention, when content (atomic%) of the metal element contained in the said oxide sinter is [Zn], [Sn], and [In], respectively, following formula (2) Satisfied.
7 [In] -7 [Zn] +3 [Sn] ≦ 0 (2)
 本発明の好ましい実施形態において、前記酸化物焼結体の相対密度は90%以上であり、比抵抗は1Ω・cm以下である。 In a preferred embodiment of the present invention, the oxide sintered body has a relative density of 90% or more and a specific resistance of 1 Ω · cm or less.
 また、上記課題を解決し得た本発明のスパッタリングターゲットは、上記のいずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、相対密度は90%以上であり、比抵抗は1Ω・cm以下であるところに要旨を有するものである。 Moreover, the sputtering target of the present invention that has solved the above problems is a sputtering target obtained using the oxide sintered body according to any one of the above, and has a relative density of 90% or more and a specific resistance. Has a gist where it is 1 Ω · cm or less.
 本発明によれば、低い比抵抗と、高い相対密度を有する酸化物焼結体およびスパッタリングターゲットを、希少金属のIn量を低減しても得られるため、原料コストを大幅に削減できる。また、本発明によれば、直流放電安定性に優れ、面内の均質性および膜質安定性に優れたスパッタリングターゲットが得られる。本発明のスパッタリングターゲットを用いれば、キャリア移動度の高い酸化物半導体膜を、高速成膜が容易な直流スパッタリング法により、安価に且つ安定して成膜できるため、生産性が向上する。 According to the present invention, since the oxide sintered body and the sputtering target having a low specific resistance and a high relative density can be obtained even if the amount of In in the rare metal is reduced, the raw material cost can be greatly reduced. Further, according to the present invention, a sputtering target having excellent direct current discharge stability, excellent in-plane uniformity and film quality stability can be obtained. With the use of the sputtering target of the present invention, an oxide semiconductor film with high carrier mobility can be stably and inexpensively formed by a direct current sputtering method that facilitates high-speed film formation, so that productivity is improved.
図1は、本発明の酸化物焼結体およびスパッタリングターゲットを製造するための基本的な工程を示す図である。FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention. 図2は、表1のNo.1における本発明の酸化物焼結体のX線回折結果を示す図である。FIG. 2 is a diagram showing the X-ray diffraction result of the oxide sintered body of the present invention in FIG.
 本発明者らは、酸化亜鉛と;酸化スズと;酸化インジウムの各粉末と、を混合および焼結して得られる酸化物焼結体であって、高い導電性(低い比抵抗)と高い相対密度を有しており、直流スパッタリング法を適用可能であり、しかもキャリア移動度が高い酸化物半導体薄膜を成膜するのに適したスパッタリングターゲット用酸化物焼結体を提供するため、検討を重ねてきた。その結果、上記酸化物焼結体をX線回折し、2θ=34°近傍のXRDピークの強度をA、2θ=31°近傍のXRDピークの強度をB、2θ=35°近傍のXRDピークの強度をC、2θ=26.5°近傍のXRDピークの強度をDで表したとき、上記式(1)の関係を満足するように制御されたものは所期の目的が達成されることを見出した。そして、このような組織を有する酸化物焼結体を得るためには、所定の焼結条件(好ましくは900~1650℃の温度で1時間以上焼結する)を行なえば良いことを見出し、本発明を完成した。 The inventors of the present invention are oxide sintered bodies obtained by mixing and sintering zinc oxide, tin oxide, and indium oxide powders, and have high conductivity (low specific resistance) and high relative strength. In order to provide an oxide sintered body for a sputtering target suitable for forming an oxide semiconductor thin film having a high density and capable of applying a direct current sputtering method and having a high carrier mobility I came. As a result, the oxide sintered body was subjected to X-ray diffraction, the intensity of the XRD peak near 2θ = 34 ° was A, the intensity of the XRD peak near 2θ = 31 ° was B, and the XRD peak near 2θ = 35 ° When the intensity is expressed as C, and the intensity of the XRD peak near 2θ = 26.5 ° is expressed as D, the controlled object that satisfies the relationship of the above formula (1) achieves the intended purpose. I found it. Then, in order to obtain an oxide sintered body having such a structure, it has been found that predetermined sintering conditions (preferably sintering at a temperature of 900 to 1650 ° C. for 1 hour or more) may be performed. Completed the invention.
 また、上記酸化物焼結体(スパッタリングターゲット)の組成に関して言えば、ZnOとSnO2を原料として用いたZTO系の酸化物半導体用酸化物焼結体に、In23を所定量加えることにより、酸化物焼結体の相対密度が向上し、且つ、比抵抗が低下するようになり、その結果、安定した直流放電が継続して得られることが判明した。更に、上記スパッタリングターゲットを用いて成膜された酸化物半導体薄膜を有するTFTは、キャリア密度が15cm2/Vs以上と、非常に高い特性が得られることも分かった。 Further, regarding the composition of the oxide sintered body (sputtering target), a predetermined amount of In 2 O 3 is added to the ZTO-based oxide semiconductor oxide sintered body using ZnO and SnO 2 as raw materials. As a result, it was found that the relative density of the oxide sintered body is improved and the specific resistance is lowered, and as a result, stable DC discharge can be continuously obtained. Further, it has been found that a TFT having an oxide semiconductor thin film formed using the above sputtering target has very high characteristics such as a carrier density of 15 cm 2 / Vs or more.
 また、酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[In]としたとき、[Zn]+[Sn]+[In]に対する[In]の比([In]比)は、[In]比=0.01~0.35であることが好ましく、[Zn]+[Sn]に対する[Zn]の比([Zn]比)は、[Zn]比=0.40~0.95であることが好ましい。より好ましくは、[In]比=0.10~0.30、[Zn]比=0.50~0.85である。前述した特許文献5では、透明導電膜の成膜に適したスパッタリングターゲットの組成とするため、[In]比を上記範囲よりも多く、[Zn]比を上記範囲よりも低く設定しており、酸化物半導体薄膜の成膜に適した酸化物焼結体およびスパッタリングターゲットを提供する本発明とは、好ましい組成比が相違している。 Further, when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [In], respectively, [Zn] + [Sn] + [In] The ratio of [In] ([In] ratio) is preferably [In] ratio = 0.01 to 0.35, and the ratio of [Zn] to [Zn] + [Sn] ([Zn] ratio) is The [Zn] ratio is preferably 0.40 to 0.95. More preferably, the [In] ratio = 0.10 to 0.30, and the [Zn] ratio = 0.50 to 0.85. In Patent Document 5 described above, in order to obtain a composition of a sputtering target suitable for film formation of a transparent conductive film, the [In] ratio is set higher than the above range, and the [Zn] ratio is set lower than the above range. The preferred composition ratio is different from the present invention that provides an oxide sintered body and a sputtering target suitable for forming an oxide semiconductor thin film.
 上記の通り、本発明の酸化物焼結体は、後記する条件でX線回折を行ない、2θ=34°近傍のXRDピークの強度をA、2θ=31°近傍のXRDピークの強度をB、2θ=35°近傍のXRDピークの強度をC、2θ=26.5°近傍のXRDピークの強度をDで表したときに、下記式(1)を満足するところに特徴がある。
  70>[A/(A+B+C+D)]×100≧10 ・・・ (1)
As described above, the oxide sintered body of the present invention performs X-ray diffraction under the conditions described later, the intensity of the XRD peak near 2θ = 34 ° is A, the intensity of the XRD peak near 2θ = 31 ° is B, When the intensity of the XRD peak in the vicinity of 2θ = 35 ° is represented by C and the intensity of the XRD peak in the vicinity of 2θ = 26.5 ° is represented by D, there is a feature that satisfies the following formula (1).
70> [A / (A + B + C + D)] × 100 ≧ 10 (1)
 ここで、2θ=34°「近傍」とは、おおむね、34°±0.5°の範囲を含む趣旨である。上記ピーク位置には、おそらく、Zn4Sn2InO9.5に相当する結晶相が存在すると推察される。 Here, 2θ = 34 ° “neighboring” generally means that the range includes 34 ° ± 0.5 °. It is presumed that a crystal phase corresponding to Zn 4 Sn 2 InO 9.5 probably exists at the peak position.
 また、2θ=31°「近傍」とは、おおむね、31°±1°の範囲を含む趣旨である。上記ピーク位置には、おそらく、ZnSnInX3+1.5Xに相当する結晶相が存在すると推察される。 Further, “the vicinity” of 2θ = 31 ° generally includes a range of 31 ° ± 1 °. It is presumed that a crystal phase corresponding to ZnSnIn x O 3 + 1.5X exists at the peak position.
 また、2θ=35°「近傍」とは、おおむね、35°±0.4°の範囲を含む趣旨である。上記ピーク位置には、おそらく、ZnYIn2Y+3に相当する結晶相が存在すると推察される。 Moreover, 2θ = 35 ° “neighboring” means that it generally includes a range of 35 ° ± 0.4 °. It is presumed that a crystal phase corresponding to Zn Y In 2 O Y + 3 probably exists at the peak position.
 また、2θ=26.5°「近傍」とは、おおむね、26.5°±1°の範囲を含む趣旨である。上記ピーク位置には、おそらく、SnO2に相当する結晶相が存在すると推察される。 Further, “2θ = 26.5 °“ near ”” generally includes a range of 26.5 ° ± 1 °. It is presumed that a crystal phase corresponding to SnO 2 probably exists at the peak position.
 本発明におけるX線回折条件は、以下のとおりである。
  分析装置:理学電機製「X線回折装置RINT-1500」
  分析条件
   ターゲット:Cu
   単色化:モノクロメートを使用(Kα)
   ターゲット出力:40kV-200mA
   (連続測定)θ/2θ走査
   スリット:発散1/2°、散乱1/2°、受光0.15mm
   モノクロメータ受光スリット:0.6mm
   走査速度:2°/min
   サンプリング幅:0.02°
   測定角度(2θ):5~90°
The X-ray diffraction conditions in the present invention are as follows.
Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation
Analysis conditions Target: Cu
Monochromatic: Uses a monochrome mate (Kα)
Target output: 40kV-200mA
(Continuous measurement) θ / 2θ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
Monochromator light receiving slit: 0.6mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 to 90 °
 そして本発明の特徴部分は、前述したように、上記式(1)の関係を満足するところにある。ここで、上記式(1)の関係を満足する(70>[A/(A+B+C+D)]×100≧10)ことは、おそらく、Zn4Sn2InO9.5に相当する結晶相がある一定量存在することを意味しているものと推察される。 And the characteristic part of this invention exists in the place which satisfies the relationship of said Formula (1) as mentioned above. Here, satisfying the relationship of the above formula (1) (70> [A / (A + B + C + D)] × 100 ≧ 10) probably has a certain amount of crystal phase corresponding to Zn 4 Sn 2 InO 9.5. It is guessed that it means.
 上記式(1)において、[A/(A+B+C+D)]×100の比が70以上になると、焼結性が低下し、密度が上がらない。具体的には、通常の焼結方法では、900~1650℃の範囲のどの温度で焼結しても、90%以上の高密度が得られない。これは、Aのピークに相当する結晶相の融点が高く、この結晶相を多く含む領域では、焼結性が劣化するためと考えられる。このため、得られる酸化物焼結体をスパッタリングターゲットとして用いても、安定した放電ができない。一方、[A/(A+B+C+D)]×100の比が10未満になると、成膜される薄膜の半導体特性が劣化する。 In the above formula (1), when the ratio of [A / (A + B + C + D)] × 100 is 70 or more, the sinterability is lowered and the density is not increased. Specifically, in a normal sintering method, a high density of 90% or more cannot be obtained at any temperature in the range of 900 to 1650 ° C. This is presumably because the melting point of the crystal phase corresponding to the peak of A is high, and the sinterability deteriorates in a region containing a large amount of this crystal phase. For this reason, even if it uses the obtained oxide sintered compact as a sputtering target, stable discharge cannot be performed. On the other hand, when the ratio of [A / (A + B + C + D)] × 100 is less than 10, the semiconductor characteristics of the thin film to be formed deteriorate.
 次に、本発明に係る酸化物焼結体を構成する金属元素の好ましい組成比(原子比)について説明する。以下では、上述した通り[Zn]+[Sn]+[In]に対する[In]の比を[In]比、[Zn]+[Sn]に対する[Zn]の比を[Zn]比と呼ぶ。 Next, a preferable composition ratio (atomic ratio) of the metal elements constituting the oxide sintered body according to the present invention will be described. Hereinafter, as described above, the ratio of [In] to [Zn] + [Sn] + [In] is referred to as the [In] ratio, and the ratio of [Zn] to [Zn] + [Sn] is referred to as the [Zn] ratio.
 まず、[In]比は0.01~0.35の範囲内であることが好ましい。[In]比が0.01未満の場合、酸化物焼結体の相対密度向上および比抵抗の低減を達成できず、成膜後の薄膜のキャリア移動度も低くなる。一方、[In]比が0.35を超えると、薄膜としたときのTFTスイッチング特性が劣化する。より好ましい[In]比は、0.10~0.30である。更に好ましい[In]比の上限は0.25以下である。 First, the [In] ratio is preferably in the range of 0.01 to 0.35. When the [In] ratio is less than 0.01, the relative density of the oxide sintered body cannot be improved and the specific resistance cannot be reduced, and the carrier mobility of the thin film after film formation becomes low. On the other hand, if the [In] ratio exceeds 0.35, the TFT switching characteristics when a thin film is formed deteriorate. A more preferable [In] ratio is 0.10 to 0.30. A more preferable upper limit of the [In] ratio is 0.25 or less.
 また、[Zn]比は0.40~0.95であることが好ましい。[Zn]比が0.40未満の場合、スパッタリング法によって形成した薄膜の微細加工性が低下し、エッチング残渣が生じ易い。より好ましい[Zn]比は0.50以上である。一方、[Zn]比が0.95を超えると、成膜後の薄膜の薬液耐性に劣るものとなり、微細加工の際に酸による溶出速度が速くなって高精度の加工を行なうことができない。より好ましい[Zn]比は、0.85以下である。尚、[Zn]比がおおよそ0.60~0.82の範囲は、製造条件にもよるが、[A/(A+B+C+D)]×100の値が70以上になる傾向にあり好ましくないので、[Zn]比の上記0.60~0.82の範囲を避けることが好ましい。 [Zn] ratio is preferably 0.40 to 0.95. When the [Zn] ratio is less than 0.40, the fine workability of the thin film formed by the sputtering method is lowered, and etching residues are likely to occur. A more preferable [Zn] ratio is 0.50 or more. On the other hand, when the [Zn] ratio exceeds 0.95, the chemical resistance of the thin film after film formation becomes poor, and the elution rate by acid becomes high during fine processing, so that high-precision processing cannot be performed. A more preferable [Zn] ratio is 0.85 or less. Note that the range of [Zn] ratio of approximately 0.60 to 0.82 is not preferable because the value of [A / (A + B + C + D)] × 100 tends to be 70 or more although it depends on the manufacturing conditions. It is preferable to avoid the above Zn0 ratio range of 0.60 to 0.82.
 尚、酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[In]としたとき、下記式(2)を満足することが好ましい。下記式(2)を満足することによって、比抵抗がより低下するので好ましい。
  7[In]-7[Zn]+3[Sn]≦0 ・・・ (2)
In addition, when content (atom%) of the metal element contained in oxide sinter is [Zn], [Sn], and [In], respectively, it is preferable to satisfy the following formula (2). By satisfying the following formula (2), the specific resistance is further reduced, which is preferable.
7 [In] -7 [Zn] +3 [Sn] ≦ 0 (2)
 本発明の酸化物焼結体は、相対密度90%以上、比抵抗1Ω・cm以下を満足するものである。 The oxide sintered body of the present invention satisfies a relative density of 90% or more and a specific resistance of 1 Ω · cm or less.
 (相対密度90%以上)
 本発明の酸化物焼結体は、相対密度が非常に高く、好ましくは90%以上であり、より好ましくは95%以上である。高い相対密度は、スパッタリング中での割れやノジュールの発生を防止し得るだけでなく、安定した放電をターゲットライフまで連続して維持するなどの利点をもたらす。
(Relative density 90% or more)
The oxide sintered body of the present invention has a very high relative density, preferably 90% or more, and more preferably 95% or more. A high relative density not only can prevent the generation of cracks and nodules during sputtering, but also provides advantages such as maintaining a stable discharge continuously to the target life.
 (比抵抗1Ω・cm以下)
 本発明の酸化物焼結体は、比抵抗が小さく、1Ω・cm以下であることが好ましく、より好ましくは0.1Ω・cm以下である。これにより、直流電源を用いたプラズマ放電などによる直流スパッタリング法による成膜が可能となり、スパッタリングターゲットを用いた物理蒸着(スパッタリング法)を表示装置の生産ラインで効率よく行うことができる。
(Specific resistance 1Ω · cm or less)
The oxide sintered body of the present invention has a small specific resistance, preferably 1 Ω · cm or less, more preferably 0.1 Ω · cm or less. Accordingly, film formation by a direct current sputtering method using plasma discharge using a direct current power source is possible, and physical vapor deposition (sputtering method) using a sputtering target can be efficiently performed on the production line of the display device.
 次に、本発明の酸化物焼結体を製造する方法について説明する。 Next, a method for producing the oxide sintered body of the present invention will be described.
 本発明の酸化物焼結体は、酸化亜鉛と、酸化スズと、酸化インジウムの各粉末を混合および焼結して得られるものであり、原料粉末からスパッタリングターゲットまでの基本工程を図1に示す。図1には、酸化物の粉末を混合・粉砕→乾燥・造粒→成形(成形は図示せず)→焼結して得られた酸化物焼結体を、加工→ボンディングしてスパッタリングターゲットを得るまでの基本工程を示している。図1には示していないが、焼結後、必要に応じて熱処理を施しても良い。上記工程のうち本発明では、以下に詳述するように焼結条件を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。 The oxide sintered body of the present invention is obtained by mixing and sintering zinc oxide, tin oxide, and indium oxide powders, and the basic process from the raw material powder to the sputtering target is shown in FIG. . In FIG. 1, oxide powder is mixed, pulverized, dried, granulated, molded (molded (not shown)), sintered oxide sintered body, processed, bonded, and sputtering target formed. It shows the basic process to get. Although not shown in FIG. 1, heat treatment may be performed as necessary after sintering. Among the above steps, the present invention is characterized in that the sintering conditions are appropriately controlled as will be described in detail below, and the other steps are not particularly limited, and usually used steps can be appropriately selected. . Hereinafter, although each process is demonstrated, this invention is not the meaning limited to this.
 まず、酸化亜鉛粉末、酸化スズ粉末、および酸化インジウム粉末を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、Zn、Sn、およびInの比率が上述した範囲内となるように制御することが好ましい。 First, zinc oxide powder, tin oxide powder, and indium oxide powder are mixed in a predetermined ratio, mixed and pulverized. The purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a trace amount of impurity elements may impair the semiconductor characteristics of the oxide semiconductor film. The blending ratio of each raw material powder is preferably controlled so that the ratio of Zn, Sn, and In is within the above-described range.
 混合および粉砕はポットミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。 Mixing and pulverization are preferably performed by using a pot mill and adding the raw material powder together with water. The balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
 次に、上記工程で得られた混合粉末を乾燥し造粒した後、成形する。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形した後、CIP(冷間静水圧プレス)などによって成形することが好ましい。焼結体の相対密度を上昇させるためには、予備成形の成形圧力を約0.2tonf/cm2以上に制御することが好ましく、成形時の圧力は約1.2tonf/cm2以上に制御することが好ましい。 Next, the mixed powder obtained in the above step is dried and granulated, and then molded. In the molding, it is preferable that the powder after drying and granulation is filled in a metal mold of a predetermined size, pre-molded by a mold press, and then molded by CIP (cold isostatic pressing) or the like. In order to increase the relative density of the sintered body, it is preferable to control the molding pressure for preforming to about 0.2 tonf / cm 2 or more, and the pressure at the time of molding to about 1.2 tonf / cm 2 or more. It is preferable.
 次に、このようにして得られた成形体に対して焼成を行う。本発明では、所望の組織を得るためには、焼成温度:約900℃~1650℃、保持時間:約1時間以上で焼結を行なうことが好ましい。焼成温度が高いほど焼結体の相対密度が向上し易く、且つ、短時間で処理できるため好ましいが、温度が高くなり過ぎると焼結体が分解し易くなるため、相対密度が低下する。より好ましい焼結条件は、焼結温度:約1000℃~1600℃、保持時間:約2時間以上である。また、焼結と同時にプレスなどを用いて圧力を負荷してもよく、加圧圧力は、約0.2tonf/cm2以上に制御することが好ましい。上記焼結処理により、比抵抗は、例えば約100Ω・cm(焼結処理前)から0.1Ω・cm(焼結後)まで低下するようになる。 Next, the molded body thus obtained is fired. In the present invention, in order to obtain a desired structure, sintering is preferably performed at a firing temperature: about 900 ° C. to 1650 ° C. and a holding time: about 1 hour or more. A higher firing temperature is preferable because the relative density of the sintered body is likely to be improved and can be processed in a short time. However, if the temperature is too high, the sintered body is easily decomposed and the relative density is lowered. More preferable sintering conditions are sintering temperature: about 1000 ° C. to 1600 ° C., holding time: about 2 hours or more. Further, pressure may be applied simultaneously with sintering using a press or the like, and the pressurizing pressure is preferably controlled to about 0.2 tonf / cm 2 or more. By the sintering process, the specific resistance is reduced from, for example, about 100 Ω · cm (before the sintering process) to 0.1 Ω · cm (after the sintering).
 上記のようにして酸化物焼結体を得た後、常法により、加工→ボンディングを行なうと本発明のスパッタリングターゲットが得られる。このようにして得られるスパッタリングターゲットの相対密度および比抵抗も、酸化物焼結体と同様、非常に良好なものであり、好ましい相対密度はおおむね90%以上であり、好ましい比抵抗はおおむね1Ω・cm以下である。 After obtaining the oxide sintered body as described above, the sputtering target of the present invention can be obtained by processing and bonding according to a conventional method. The relative density and specific resistance of the sputtering target thus obtained are also very good, like the oxide sintered body, the preferred relative density is approximately 90% or more, and the preferred specific resistance is approximately 1Ω · cm or less.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all possible and are within the scope of the present invention.
 純度99.99%の酸化亜鉛粉末、純度99.99%の酸化スズ粉末、および純度99.99%の酸化インジウム粉末を、表1に記載の種々の比率で配合し、ナイロンボールミルで20時間混合した。次に、上記工程で得られた混合粉末を乾燥、造粒し、金型プレスにて成形圧力0.5tonf/cm2で予備成形した後、CIPにて成形圧力3tonf/cm2で本成形を行った。このようにして得られた成形体を1600℃で焼結した。 Zinc oxide powder having a purity of 99.99%, tin oxide powder having a purity of 99.99%, and indium oxide powder having a purity of 99.99% are blended in various ratios as shown in Table 1, and mixed in a nylon ball mill for 20 hours. did. Next, the mixed powder obtained in the above step is dried and granulated, pre-molded with a mold press at a molding pressure of 0.5 tonf / cm 2 , and then subjected to main molding with a molding pressure of 3 tonf / cm 2 by CIP. went. The molded body thus obtained was sintered at 1600 ° C.
 このようにして得られた種々の酸化物焼結体について、前述した条件でX線回折を行ない、XRDピークの強度A~Dを測定し、式(1)を構成する[A/(A+B+C+D)]×100の比を算出した。更に、上記酸化物焼結体の相対密度をアルキメデス法で測定すると共に、比抵抗を四端子法によって測定した。 The various oxide sintered bodies thus obtained are subjected to X-ray diffraction under the above-mentioned conditions, and the XRD peak intensities A to D are measured to construct the formula (1) [A / (A + B + C + D) ] × 100 ratio was calculated. Further, the relative density of the oxide sintered body was measured by the Archimedes method, and the specific resistance was measured by the four-terminal method.
 次に、上記の酸化物焼結体をφ4インチ×5mmtの形状に加工し、バッキングプレートにボンディングしてスパッタリングターゲットを得た。このようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリング法で、ガラス基板(サイズ:100mm×100mm×0.50mm)上に、酸化物半導体膜を形成した。スパッタリング条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとした。 Next, the oxide sintered body was processed into a shape of φ4 inch × 5 mmt and bonded to a backing plate to obtain a sputtering target. The sputtering target thus obtained was attached to a sputtering apparatus, and an oxide semiconductor film was formed on a glass substrate (size: 100 mm × 100 mm × 0.50 mm) by a DC (direct current) magnetron sputtering method. The sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr.
 上記のスパッタリング条件で成膜した薄膜を用い、チャネル長10μm、チャネル幅100μmの薄膜トランジスタを作製してキャリア移動度を測定した。 Using a thin film formed under the above sputtering conditions, a thin film transistor having a channel length of 10 μm and a channel width of 100 μm was manufactured, and carrier mobility was measured.
 これらの結果を表1にまとめて示す。また、表1のNo.1について、X線回折の結果を図2に示す。 These results are summarized in Table 1. In Table 1, No. The X-ray diffraction results for 1 are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、以下のように考察することができる。 From Table 1, it can be considered as follows.
 まず、表1のNo.1、4、5、8~11は、前述した[A/(A+B+C+D)]×100の比が10以上70未満であり、本発明で規定する式(1)の関係を満足する本発明例であり、いずれも、スパッタリングターゲットの相対密度90%以上、比抵抗1Ω・cm以下であり、良好な特性を有していた。また、これらのスパッタリングターゲットを用いて成膜された薄膜のキャリア移動度はいずれも、15cm2/Vs以上と、高かった。 First, No. 1 in Table 1 was used. 1, 4, 5, and 8 to 11 are examples of the present invention in which the ratio of [A / (A + B + C + D)] × 100 is 10 or more and less than 70, and satisfies the relationship of the formula (1) defined in the present invention. In all cases, the relative density of the sputtering target was 90% or more, the specific resistance was 1 Ω · cm or less, and the film had good characteristics. In addition, the carrier mobility of the thin films formed using these sputtering targets was as high as 15 cm 2 / Vs or more.
 これに対し、表1のNo.2、3、6、7は、前述した[A/(A+B+C+D)]×100の比が70超であり、本発明で規定する式(1)の関係を満足しない例であって、いずれも、スパッタリングターゲットの相対密度が90%未満であり、比抵抗も1Ω・cmを超えて高くなった。そのため、スパッタリングターゲットとして使用した場合、放電が安定せず、成膜ができなかった。また、キャリア移動度の測定もできなかった(表1中、「-」で表わす)。 In contrast, No. 1 in Table 1. 2, 3, 6, and 7 are examples in which the ratio of [A / (A + B + C + D)] × 100 described above is more than 70 and does not satisfy the relationship of the formula (1) defined in the present invention. The relative density of the sputtering target was less than 90%, and the specific resistance was higher than 1 Ω · cm. Therefore, when used as a sputtering target, the discharge was not stable and film formation was not possible. Also, the carrier mobility could not be measured (indicated by “−” in Table 1).
 以上の実験結果より、本発明で規定する要件を満足し、酸化物焼結体を構成する金属の組成比も本発明の好ましい要件を満足する酸化物焼結体を用いて得られるスパッタリングターゲットは、高い相対密度および低い比抵抗を有しており、極めて良好な特性を有することが分かった。また上記スパッタリングターゲットを用いて得られる薄膜は、高いキャリア移動度を有するため、酸化物半導体薄膜として極めて有用であることが分かった。 From the above experimental results, the sputtering target obtained by using the oxide sintered body that satisfies the requirements specified in the present invention and the composition ratio of the metal constituting the oxide sintered body also satisfies the preferable requirements of the present invention is It has been found to have very good properties, having a high relative density and low specific resistance. Moreover, since the thin film obtained using the said sputtering target has high carrier mobility, it turned out that it is very useful as an oxide semiconductor thin film.

Claims (4)

  1.  酸化亜鉛と、酸化スズと、酸化インジウムの各粉末と、を混合および焼結して得られる酸化物焼結体であって、
     前記酸化物焼結体をX線回折し、
     2θ=34°近傍のXRDピークの強度をA、
     2θ=31°近傍のXRDピークの強度をB、
     2θ=35°近傍のXRDピークの強度をC、
     2θ=26.5°近傍のXRDピークの強度をD
    で表したとき、下記式(1)を満足することを特徴とする酸化物焼結体。
      70>[A/(A+B+C+D)]×100≧10 ・・・ (1)
    An oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and each powder of indium oxide,
    X-ray diffraction of the oxide sintered body,
    The intensity of the XRD peak near 2θ = 34 ° is A,
    The intensity of the XRD peak near 2θ = 31 ° is B,
    The intensity of the XRD peak near 2θ = 35 ° is C,
    The intensity of the XRD peak near 2θ = 26.5 ° is D
    An oxide sintered body characterized by satisfying the following formula (1):
    70> [A / (A + B + C + D)] × 100 ≧ 10 (1)
  2.  前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[In]としたとき、下記式(2)を満足するものである請求項1に記載の酸化物焼結体。
      7[In]-7[Zn]+3[Sn]≦0 ・・・ (2)
    2. The following formula (2) is satisfied when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [In], respectively. The oxide sintered body according to 1.
    7 [In] -7 [Zn] +3 [Sn] ≦ 0 (2)
  3.  相対密度90%以上、比抵抗1Ω・cm以下である請求項1または2に記載の酸化物焼結体。 The oxide sintered body according to claim 1 or 2, wherein the relative density is 90% or more and the specific resistance is 1 Ω · cm or less.
  4.  請求項1~3のいずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、相対密度90%以上、比抵抗1Ω・cm以下であることを特徴とするスパッタリングターゲット。 A sputtering target obtained by using the oxide sintered body according to any one of claims 1 to 3, wherein the relative density is 90% or more and the specific resistance is 1 Ω · cm or less.
PCT/JP2012/052976 2011-02-10 2012-02-09 Oxide sintered body, and sputtering target WO2012108504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011027794 2011-02-10
JP2011-027794 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108504A1 true WO2012108504A1 (en) 2012-08-16

Family

ID=46638716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052976 WO2012108504A1 (en) 2011-02-10 2012-02-09 Oxide sintered body, and sputtering target

Country Status (3)

Country Link
JP (1) JP5750064B2 (en)
TW (1) TW201245475A (en)
WO (1) WO2012108504A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477206A (en) * 2016-07-11 2019-03-15 株式会社半导体能源研究所 The manufacturing method of sputtering target material and the sputtering target material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117810A1 (en) * 2007-03-26 2008-10-02 Idemitsu Kosan Co., Ltd. Noncrystalline oxide semiconductor thin film, process for producing the noncrystalline oxide semiconductor thin film, process for producing thin-film transistor, field-effect transistor, light emitting device, display device, and sputtering target
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
WO2010067571A1 (en) * 2008-12-12 2010-06-17 出光興産株式会社 Composite oxide sintered body and sputtering target comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560149B2 (en) * 1999-03-05 2010-10-13 出光興産株式会社 Transparent conductive material, transparent conductive glass and transparent conductive film
JP4933756B2 (en) * 2005-09-01 2012-05-16 出光興産株式会社 Sputtering target
CN101268211B (en) * 2005-09-20 2011-04-13 出光兴产株式会社 Sputtering target, transparent conductive film, and transparent electrode
WO2007037191A1 (en) * 2005-09-27 2007-04-05 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP2010070410A (en) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd Method for producing oxide sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117810A1 (en) * 2007-03-26 2008-10-02 Idemitsu Kosan Co., Ltd. Noncrystalline oxide semiconductor thin film, process for producing the noncrystalline oxide semiconductor thin film, process for producing thin-film transistor, field-effect transistor, light emitting device, display device, and sputtering target
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
WO2010067571A1 (en) * 2008-12-12 2010-06-17 出光興産株式会社 Composite oxide sintered body and sputtering target comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477206A (en) * 2016-07-11 2019-03-15 株式会社半导体能源研究所 The manufacturing method of sputtering target material and the sputtering target material
US11081326B2 (en) 2016-07-11 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11735403B2 (en) 2016-07-11 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same

Also Published As

Publication number Publication date
TW201245475A (en) 2012-11-16
JP2012180264A (en) 2012-09-20
JP5750064B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5651095B2 (en) Oxide sintered body and sputtering target
JP5750065B2 (en) Oxide sintered body and sputtering target
TWI476287B (en) Oxide sintered body and sputtering target
WO2012118156A1 (en) Sintered oxide and sputtering target
JP5750063B2 (en) Oxide sintered body and sputtering target
WO2012039351A1 (en) Oxide sintered compact and sputtering target
WO2015080271A1 (en) Sintered oxide and sputtering target, and method for producing same
JP2014058415A (en) Oxide sintered product, sputtering target and method for manufacturing the same
WO2012096267A1 (en) Oxide sintered compact and sputtering target
US10128108B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
JP2015166305A (en) Sintered oxide and sputtering target
JP2019038735A (en) Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film
TWI557246B (en) An oxide sintered body, a sputtering target, and an oxide semiconductor thin film obtained
WO2012096343A1 (en) Oxide sintered body and sputtering target
US9670577B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
TWI591195B (en) Oxide sintered body, target for sputtering, and oxide semiconductor film obtained using the same
JP5750064B2 (en) Oxide sintered body and sputtering target
KR20180117631A (en) The oxide-sintered body and the sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744379

Country of ref document: EP

Kind code of ref document: A1