JP2015166305A - Sintered oxide and sputtering target - Google Patents

Sintered oxide and sputtering target Download PDF

Info

Publication number
JP2015166305A
JP2015166305A JP2014266399A JP2014266399A JP2015166305A JP 2015166305 A JP2015166305 A JP 2015166305A JP 2014266399 A JP2014266399 A JP 2014266399A JP 2014266399 A JP2014266399 A JP 2014266399A JP 2015166305 A JP2015166305 A JP 2015166305A
Authority
JP
Japan
Prior art keywords
sintered body
phase
oxide
oxide sintered
insn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266399A
Other languages
Japanese (ja)
Other versions
JP5952891B2 (en
Inventor
幸樹 田尾
Koki Tao
幸樹 田尾
英雄 畠
Hideo Hatake
英雄 畠
研太 廣瀬
Kenta Hirose
研太 廣瀬
範洋 慈幸
Norihiro Jiko
範洋 慈幸
元隆 越智
Mototaka Ochi
元隆 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP2014266399A priority Critical patent/JP5952891B2/en
Publication of JP2015166305A publication Critical patent/JP2015166305A/en
Application granted granted Critical
Publication of JP5952891B2 publication Critical patent/JP5952891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered oxide in which the occurrence of crack during a bonding process can be suppressed, and a sputtering target using the sintered oxide.SOLUTION: There is provided the sintered oxide obtained by sintering: indium oxide; gallium oxide; and tin oxide, having a relative density of 90% or more, having an average crystal grain diameter of 3 μm or less of GaInSnOphase and having a ratio of less than 10% of course crystal grains having an average crystal grain diameter of 10 μm or more. When [In], [Ga], [Sn] denote the content ratio (atom %) of indium, gallium, tin per sum of the metal element contained in the sintered oxide, respectively, the sintered oxide satisfies 35 atom%≤[In]≤50 atom%, 20 atom%≤[Ga]≤35 atom%, and 20 atom%<[Sn]≤40 atom%, and the GaInSnOphase satisfies 0.02≤[GaInSnO]≤0.2.

Description

本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT:Thin Film Transistor)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体、およびスパッタリングターゲットに関する。   The present invention relates to an oxide sintered body used when forming an oxide semiconductor thin film of a thin film transistor (TFT) used for a display device such as a liquid crystal display or an organic EL display by a sputtering method, and a sputtering target. About.

TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a−Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できる。そのため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。これらの用途に好適な酸化物半導体の組成として、In含有の非晶質酸化物半導体が提案されている。例えば、In−Ga−Zn系酸化物半導体、In−Ga−Zn−Sn系酸化物半導体、In−Ga−Sn系酸化物半導体などが注目されている。   An amorphous (amorphous) oxide semiconductor used for a TFT has higher carrier mobility than a general-purpose amorphous silicon (a-Si), has a large optical band gap, and can be formed at a low temperature. Therefore, it is expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance. As an oxide semiconductor composition suitable for these applications, an In-containing amorphous oxide semiconductor has been proposed. For example, an In—Ga—Zn-based oxide semiconductor, an In—Ga—Zn—Sn-based oxide semiconductor, an In—Ga—Sn-based oxide semiconductor, and the like have attracted attention.

上記酸化物半導体薄膜の形成に当たっては、当該薄膜と同じ材料のスパッタリングターゲット(以下、「ターゲット材」ということがある)をスパッタリングするスパッタリング法が好適に用いられている。スパッタリングターゲットは酸化物焼結体をバッキングプレートにボンディングされた状態で使用されているが、酸化物焼結体をバッキングプレートにボンディングする工程において、酸化物焼結体が割れてしまうことがあった。   In forming the oxide semiconductor thin film, a sputtering method is preferably used in which a sputtering target made of the same material as the thin film (hereinafter also referred to as “target material”) is sputtered. The sputtering target is used in a state where the oxide sintered body is bonded to the backing plate, but the oxide sintered body may break in the process of bonding the oxide sintered body to the backing plate. .

例えば特許文献1には、半導体素子の作製の際のパターニング工程に適した酸化物半導体膜、及び前記半導体膜を成膜できる酸化物焼結体として、インジウム元素(In)、ガリウム元素(Ga)及び錫元素(Sn)を、0.10≦In/(In+Ga+Sn)≦0.60、0.10≦Ga/(In+Ga+Sn)≦0.55、0.0001<Sn/(In+Ga+Sn)≦0.60の原子比で、Ga3−xIn5+xSn16を含む酸化物焼結体が開示されている。 For example, Patent Document 1 discloses indium element (In) and gallium element (Ga) as oxide semiconductor films suitable for a patterning process in manufacturing a semiconductor element, and oxide sintered bodies that can form the semiconductor films. And tin element (Sn) of 0.10 ≦ In / (In + Ga + Sn) ≦ 0.60, 0.10 ≦ Ga / (In + Ga + Sn) ≦ 0.55, 0.0001 <Sn / (In + Ga + Sn) ≦ 0.60 An oxide sintered body containing Ga 3−x In 5 + x Sn 2 O 16 in an atomic ratio is disclosed.

特許文献2には、スパッタリング時の異常放電を低減する技術として、インジウム元素(In)、ガリウム元素(Ga)、亜鉛元素(Zn)および錫元素(Sn)を含み、Ga2In6Sn216又は(Ga、In)23で表される化合物を含み、比抵抗値が200m
Ω・cmの酸化物焼結体が開示されている。
Patent Document 2 includes, as a technique for reducing abnormal discharge during sputtering, indium element (In), gallium element (Ga), zinc element (Zn), and tin element (Sn), and Ga 2 In 6 Sn 2 O. 16 or a compound represented by (Ga, In) 2 O 3 and having a specific resistance of 200 m
An oxide sintered body of Ω · cm is disclosed.

また特許文献3には、スパッタレートの増大、ノジュールの発生防止、割れの防止等のスパッタ操作性に優れ、且つ低温基板において特に低抵抗な透明導電膜を形成可能なスパッタリングターゲット及びターゲット材料に用いられるITO焼結体として、焼結密度90%以上100%以下、焼結粒径1μm以上20μm以下である高密度ITO焼結体が開示されている。   Further, Patent Document 3 uses a sputtering target and a target material that are excellent in sputtering operability such as an increase in sputtering rate, prevention of nodules, prevention of cracking, etc., and can form a transparent conductive film having a particularly low resistance on a low-temperature substrate. As the ITO sintered body to be obtained, a high density ITO sintered body having a sintered density of 90% to 100% and a sintered particle diameter of 1 μm to 20 μm is disclosed.

特開2011−174134号公報JP 2011-174134 A 特開2008−280216号公報JP 2008-280216 A 特開平05−311428号公報Japanese Patent Laid-Open No. 05-311428

近年の表示装置の高性能化に伴って、酸化物半導体薄膜の特性の向上や特性の安定化が要求されていると共に、表示装置の生産を一層効率化することが求められている。また生産性や製造コストなどを考慮すると、表示装置用の酸化物半導体薄膜の製造に用いられるスパッタリングターゲットおよびその素材である酸化物焼結体には、スパッタリング工程でのスパッタリングターゲットの割れを抑制することはもちろん、ボンディング工程での酸化物焼結体の割れを抑制することがより一層要求されている。   Along with the recent improvement in performance of display devices, there is a demand for improvement and stabilization of characteristics of oxide semiconductor thin films, and there is a demand for more efficient production of display devices. In consideration of productivity and manufacturing cost, the sputtering target used for manufacturing an oxide semiconductor thin film for a display device and the oxide sintered body that is a material of the sputtering target suppress cracking of the sputtering target in the sputtering process. Needless to say, it is further required to suppress cracking of the oxide sintered body in the bonding process.

本発明は上記事情に鑑みてなされたものであり、その目的は、ボンディング時の割れの発生を抑制できる酸化物焼結体、および該酸化物焼結体を用いたスパッタリングターゲットを提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the oxide target which can suppress generation | occurrence | production of the crack at the time of bonding, and a sputtering target using this oxide target. is there.

上記課題を解決し得た本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化錫とを焼結して得られる酸化物焼結体であって、前記酸化物焼結体の相対密度が90%以上、前記酸化物焼結体のGa2In6Sn216相の平均結晶粒径が3μm以下、前記
酸化物焼結体の結晶粒径が10μm以上の粗大結晶粒の割合が10%未満であり、前記酸化物焼結体に含まれる酸素を除く全金属元素に対する、インジウム、ガリウム、錫の含有量の割合(原子%)を夫々、[In]、[Ga]、[Sn]としたとき、下記式(1)〜(3)を満足すると共に、前記酸化物焼結体をX線回折したとき、Ga3InSn516相は下記式(4)を満足するところに要旨を有する。
35原子%≦[In]≦50原子%・・・(1)
20原子%≦[Ga]≦35原子%・・・(2)
20原子%<[Sn]≦40原子%・・・(3)
0.02≦[Ga3InSn516]≦0.2・・・(4)
但し、[Ga3InSn516]=I(Ga3InSn516)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2))
式中、I(Ga3InSn516)、I(Ga2In6Sn216)、およびI(SnO2)はそれぞれ、X線回折で特定されたGa3InSn516相、Ga2In6Sn216相、およびSnO2相の回折ピーク強度である。
The oxide sintered body of the present invention that has solved the above problems is an oxide sintered body obtained by sintering indium oxide, gallium oxide, and tin oxide, and the oxide sintered body. Coarse crystal grains having a relative density of 90% or more, an average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase of the oxide sintered body of 3 μm or less, and a crystal grain size of the oxide sintered body of 10 μm or more The ratio of indium, gallium and tin content (atomic%) with respect to all metal elements excluding oxygen contained in the oxide sintered body is less than 10%, respectively [In], [Ga] When [Sn] is satisfied, the following formulas (1) to (3) are satisfied, and when the oxide sintered body is X-ray diffracted, the Ga 3 InSn 5 O 16 phase satisfies the following formula (4): There is a summary.
35 atomic% ≦ [In] ≦ 50 atomic% (1)
20 atomic% ≦ [Ga] ≦ 35 atomic% (2)
20 atomic% <[Sn] ≦ 40 atomic% (3)
0.02 ≦ [Ga 3 InSn 5 O 16 ] ≦ 0.2 (4)
However, [Ga 3 InSn 5 O 16 ] = I (Ga 3 InSn 5 O 16) / (I (Ga 3 InSn 5 O 16) + I (Ga 2 In 6 Sn 2 O 16) + I (SnO 2))
In the formula, I (Ga 3 InSn 5 O 16 ), I (Ga 2 In 6 Sn 2 O 16 ), and I (SnO 2 ) are respectively Ga 3 InSn 5 O 16 phase and Ga specified by X-ray diffraction. It is the diffraction peak intensity of 2 In 6 Sn 2 O 16 phase and SnO 2 phase.

本発明の好ましい実施形態において、前記酸化物焼結体をX線回折したとき、Ga2
6Sn216相は下記式(5)を満足するものである。
0.8≦[Ga2In6Sn216]≦0.98・・・(5)
但し、[Ga2In6Sn216]=I(Ga2In6Sn216)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2)))
式中、I(Ga2In6Sn216)、I(Ga3InSn516)、およびI(SnO2)はそれぞれ、X線回折で特定されたGa3InSn516相、Ga2In6Sn216相、およびSnO2相の回折ピーク強度である。
In a preferred embodiment of the present invention, when the oxide sintered body is subjected to X-ray diffraction, Ga 2 I
The n 6 Sn 2 O 16 phase satisfies the following formula (5).
0.8 ≦ [Ga 2 In 6 Sn 2 O 16 ] ≦ 0.98 (5)
However, [Ga 2 In 6 Sn 2 O 16] = I (Ga 2 In 6 Sn 2 O 16) / (I (Ga 3 InSn 5 O 16) + I (Ga 2 In 6 Sn 2 O 16) + I (SnO 2 )))
In the formula, I (Ga 2 In 6 Sn 2 O 16 ), I (Ga 3 InSn 5 O 16 ), and I (SnO 2 ) are respectively a Ga 3 InSn 5 O 16 phase and a Ga specified by X-ray diffraction. It is the diffraction peak intensity of 2 In 6 Sn 2 O 16 phase and SnO 2 phase.

また、上記課題を解決し得た本発明のスパッタリングターゲットは、上記いずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が1Ω・cm以下である。   Moreover, the sputtering target of the present invention that has solved the above-mentioned problems is a sputtering target obtained using any of the oxide sintered bodies described above, and has a specific resistance of 1 Ω · cm or less.

本発明によれば、ボンディング時の割れの発生を抑制できる酸化物焼結体、および該酸化物焼結体を用いたスパッタリングターゲットを提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the oxide sintered compact which can suppress generation | occurrence | production of the crack at the time of bonding, and the sputtering target using this oxide sintered compact.

図1は、実施例2のNo.1とNo.2における、黒色堆積物の有無を示す写真である。FIG. 1 and No. 2 is a photograph showing the presence or absence of a black deposit in FIG.

本発明者らは、従来のIn−Ga−Zn系酸化物半導体薄膜(IGZO)と比べて、キャリア移動度が高いことによって評価されるTFTの移動度に優れた酸化物半導体薄膜として、後記する特定の比率の金属元素を有するIn−Ga−Sn系酸化物半導体薄膜(IGTO)を発明し、出願をした。   The inventors of the present invention will be described later as an oxide semiconductor thin film excellent in TFT mobility evaluated by high carrier mobility as compared with a conventional In—Ga—Zn-based oxide semiconductor thin film (IGZO). Invented and filed an In—Ga—Sn-based oxide semiconductor thin film (IGTO) having a specific ratio of metal elements.

もっとも、In−Ga−Sn系酸化物半導体薄膜(IGTO)の製造に用いられるスパッタリングターゲットの素材である酸化物焼結体は、生産性や製造コストなどを考慮すると、ボンディング工程での酸化物焼結体の割れをより一層抑制することも重要であり、そのためには酸化物焼結体の改善が必要となる。   Of course, an oxide sintered body, which is a material of a sputtering target used for manufacturing an In—Ga—Sn-based oxide semiconductor thin film (IGTO), is subjected to oxide sintering in a bonding process in consideration of productivity and manufacturing cost. It is also important to further suppress the cracking of the bonded body, and for that purpose, it is necessary to improve the oxide sintered body.

そこで本発明者らは上記酸化物半導体薄膜を成膜するのに適したIn−Ga−Sn系スパッタリングターゲットの素材である酸化物焼結体について、ボンディング時の割れを抑制すべく、検討を重ねてきた。   Accordingly, the present inventors have repeatedly studied to suppress cracking during bonding of an oxide sintered body that is a material of an In—Ga—Sn-based sputtering target suitable for forming the oxide semiconductor thin film. I came.

その結果、後記式(1)〜(3)を満足する特定の金属元素の割合を有する酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体であって、(ア)酸化物焼結体をX線回折したとき、Ga3InSn516相、好ましくは更にGa2
In6Sn216相の割合を制御することによって、ボンディング時の酸化物焼結体の割れを抑制する効果があること、(イ)酸化物焼結体の相対密度を高めること、Ga2In6Sn216相の平均結晶粒径を微細化すること、粗大結晶粒の割合を抑制することによって
、酸化物焼結体の割れの抑制効果をより一層向上できること、を突き止め、本発明に至った。
As a result, an oxide sintered body obtained by mixing and sintering indium oxide having a ratio of a specific metal element satisfying the following formulas (1) to (3); gallium oxide; (A) When the oxide sintered body is subjected to X-ray diffraction, a Ga 3 InSn 5 O 16 phase, preferably Ga 2
By controlling the proportion of the In 6 Sn 2 O 16 phase, there is an effect of suppressing cracking of the oxide sintered body during bonding, (b) increasing the relative density of the oxide sintered body, Ga 2 Ascertaining that the effect of suppressing cracking of the oxide sintered body can be further improved by reducing the average crystal grain size of the In 6 Sn 2 O 16 phase and suppressing the ratio of coarse crystal grains. It came to.

まず、本発明に係る酸化物焼結体の構成について、詳しく説明する。   First, the structure of the oxide sintered body according to the present invention will be described in detail.

TFT特性に優れた効果を有する酸化物半導体薄膜を形成するためには、酸化物焼結体に含まれる金属元素の含有量を夫々適切に制御する必要がある。   In order to form an oxide semiconductor thin film having an excellent effect on TFT characteristics, it is necessary to appropriately control the contents of metal elements contained in the oxide sintered body.

具体的には酸化物焼結体に含まれる酸素を除く全金属元素に対する各金属元素(インジウム、ガリウム、錫)の含有量(原子%)の割合をそれぞれ、[In]、[Ga]、[Sn]としたとき、下記式(1)〜(3)を満足するように制御する。
35原子%≦[In]≦50原子%・・・(1)
20原子%≦[Ga]≦35原子%・・・(2)
20原子%<[Sn]≦40原子%・・・(3)
Specifically, the ratio of the content (atomic%) of each metal element (indium, gallium, tin) to the total metal elements excluding oxygen contained in the oxide sintered body is [In], [Ga], [ When Sn is set, control is performed so as to satisfy the following formulas (1) to (3).
35 atomic% ≦ [In] ≦ 50 atomic% (1)
20 atomic% ≦ [Ga] ≦ 35 atomic% (2)
20 atomic% <[Sn] ≦ 40 atomic% (3)

上記式(1)は、全金属元素中のIn比([In]=In/(In+Ga+Sn))を規定したものである。[In]が低すぎると酸化物焼結体の相対密度向上効果やスパッタリングターゲットの比抵抗の低減を達成できず、また成膜後の酸化物半導体薄膜のキャリア移動度も低くなる。一方、[In]が高すぎると、キャリアが多くなりすぎて導体化するほか、ストレスに対する安定性が低下する。したがって[In]は、35原子%以上、好ましくは37原子%以上、より好ましくは40原子%以上であって、50原子%以下、好ましくは47原子%以下、より好ましくは45原子%以下である。   The above formula (1) defines the In ratio ([In] = In / (In + Ga + Sn)) in all metal elements. If [In] is too low, the effect of improving the relative density of the oxide sintered body and the reduction of the specific resistance of the sputtering target cannot be achieved, and the carrier mobility of the oxide semiconductor thin film after film formation also decreases. On the other hand, if [In] is too high, the number of carriers becomes too large to become a conductor, and the stability against stress decreases. Accordingly, [In] is 35 atomic% or more, preferably 37 atomic% or more, more preferably 40 atomic% or more, and 50 atomic% or less, preferably 47 atomic% or less, more preferably 45 atomic% or less. .

上記式(2)は全金属元素中のGa比([Ga]=Ga/(In+Ga+Sn))を規定したものである。[Ga]は、酸素欠損を低減し、酸化物半導体薄膜のアモルファス構造を安定化させるほか、ストレス耐性、特に光+負バイアスストレスに対する耐性を向上させる作用を有する。一方、[Ga]が高すぎると、移動度が低下する。したがって[Ga]は、20原子%以上、好ましくは22原子%以上、より好ましくは24原子%以上であって、35原子%以下、好ましくは32原子%以下、より好ましくは29原子%以下である。   The above formula (2) defines the Ga ratio ([Ga] = Ga / (In + Ga + Sn)) in all metal elements. [Ga] not only reduces oxygen deficiency and stabilizes the amorphous structure of the oxide semiconductor thin film, but also has an effect of improving stress resistance, particularly resistance to light + negative bias stress. On the other hand, when [Ga] is too high, mobility decreases. Accordingly, [Ga] is 20 atom% or more, preferably 22 atom% or more, more preferably 24 atom% or more, and 35 atom% or less, preferably 32 atom% or less, more preferably 29 atom% or less. .

上記式(3)は全金属元素中のSn比([Sn]=Sn/(In+Ga+Sn))を規定したものである。[Sn]は、ウェットエッチング性など、酸化物半導体薄膜の薬液耐性を向上させる作用を有する。但し、薬液耐性の向上に伴いエッチングレートは遅くなるので、[Sn]が高すぎると、エッチング加工性が低下する。したがって[Sn]は、20原子%超、好ましくは23原子%以上、より好ましくは25原子%以上であって、40原子%以下、好ましくは35原子%以下、より好ましくは31原子%以下である。   The above formula (3) defines the Sn ratio ([Sn] = Sn / (In + Ga + Sn)) in all metal elements. [Sn] has an effect of improving chemical resistance of the oxide semiconductor thin film such as wet etching. However, since the etching rate becomes slower as the chemical resistance is improved, if [Sn] is too high, the etching processability is lowered. Accordingly, [Sn] is more than 20 atomic%, preferably 23 atomic% or more, more preferably 25 atomic% or more, and 40 atomic% or less, preferably 35 atomic% or less, more preferably 31 atomic% or less. .

本発明の酸化物焼結体では、金属元素が上記比率のInとGaとSnから構成され、Znを含まない。後記する実施例に示すように、InとGaとZnを含む従来のIGZOターゲットを用いて薄膜を成膜すると、IGZOターゲットとIGZO膜との間で組成ずれが大きくなると共に、IGZOターゲットの表面に、ZnとOからなる黒色の堆積物が生成することが判明したからである。上記黒色堆積物は、スパッタ中にターゲット表面から剥離してパーティクルとなり、アーキングの原因となるなど、成膜上、大きな問題を招く。   In the oxide sintered body of the present invention, the metal element is composed of the above-mentioned ratios of In, Ga, and Sn, and does not contain Zn. As shown in the examples to be described later, when a thin film is formed using a conventional IGZO target containing In, Ga, and Zn, the compositional deviation between the IGZO target and the IGZO film increases, and the surface of the IGZO target This is because it has been found that a black deposit composed of Zn and O is produced. The black deposit peels off from the target surface during sputtering and becomes particles, which causes arcing and causes a serious problem in film formation.

ここで、IGZOのターゲットを用いたときに上記の問題が生じる主な理由は、Znの蒸気圧が、GaおよびInに比べて高いことに起因すると考えられる。例えばターゲットを用いて薄膜を成膜する場合、コストを考慮すると、酸素を含まずアルゴンなどの不活性ガスのみでプリスパッタした後、所定分圧の酸素含有不活性雰囲気でスパッタすることが推奨される。しかし、上記プリスパッタ中にZnが還元されると、Znの蒸気圧が高いために蒸発しやすくなってターゲット表面に付着し、黒色堆積物が生成される。その結果、ターゲットと膜の組成ずれを招き、ターゲットに比べて膜中のZnの原子比が大幅に低下する。   Here, it is considered that the main reason why the above problem occurs when an IGZO target is used is that the vapor pressure of Zn is higher than that of Ga and In. For example, when forming a thin film using a target, it is recommended to perform sputtering in an oxygen-containing inert atmosphere at a predetermined partial pressure after pre-sputtering only with an inert gas such as argon without oxygen, considering the cost. The However, when Zn is reduced during the pre-sputtering, the vapor pressure of Zn is high, so that it easily evaporates and adheres to the target surface, producing a black deposit. As a result, compositional deviation between the target and the film is caused, and the atomic ratio of Zn in the film is greatly reduced as compared with the target.

本発明の酸化物焼結体は、好ましくは上記所定の金属元素含有量を満足する酸化インジウムと;酸化ガリウムと;酸化錫で構成されており、残部は、製造上不可避的に生成される酸化物などの不純物である。   The oxide sintered body of the present invention is preferably composed of indium oxide satisfying the above-mentioned predetermined metal element content; gallium oxide; and tin oxide, and the remainder is an oxide that is inevitably produced in production. Impurities such as objects.

次に上記酸化物焼結体をX線回折したときに検出されるGa3InSn516相について説明する。Ga3InSn516相は、本発明の酸化物焼結体を構成するIn、Ga、Snが結合して形成される酸化物である。Ga3InSn516相は、本発明の酸化物焼結体において、Ga2In6Sn216の粒成長を抑制し、ボンディング時の応力による割れを抑
制する効果を有する。
Next, the Ga 3 InSn 5 O 16 phase detected when the oxide sintered body is X-ray diffracted will be described. The Ga 3 InSn 5 O 16 phase is an oxide formed by combining In, Ga, and Sn constituting the oxide sintered body of the present invention. The Ga 3 InSn 5 O 16 phase has the effect of suppressing grain growth of Ga 2 In 6 Sn 2 O 16 and suppressing cracking due to stress during bonding in the oxide sintered body of the present invention.

このような効果を有する酸化物焼結体とするためには、X線回折で特定したGa3InSn516相のピーク強度が下記式(4)を満足する必要がある。
0.02≦[Ga3InSn516]≦0.2・・・(4)
但し、[Ga3InSn516]=I(Ga3InSn516)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2))
式中、I(Ga3InSn516)、I(Ga2In6Sn216)、およびI(SnO2)はそれぞれ、X線回折で特定されたGa3InSn516相、Ga2In6Sn216相、およびSnO2相の回折ピーク強度である。なお、「I」はX線回折強度の測定値であることを意味する。
In order to obtain an oxide sintered body having such an effect, the peak intensity of the Ga 3 InSn 5 O 16 phase specified by X-ray diffraction needs to satisfy the following formula (4).
0.02 ≦ [Ga 3 InSn 5 O 16 ] ≦ 0.2 (4)
However, [Ga 3 InSn 5 O 16 ] = I (Ga 3 InSn 5 O 16) / (I (Ga 3 InSn 5 O 16) + I (Ga 2 In 6 Sn 2 O 16) + I (SnO 2))
In the formula, I (Ga 3 InSn 5 O 16 ), I (Ga 2 In 6 Sn 2 O 16 ), and I (SnO 2 ) are respectively Ga 3 InSn 5 O 16 phase and Ga specified by X-ray diffraction. It is the diffraction peak intensity of 2 In 6 Sn 2 O 16 phase and SnO 2 phase. “I” means a measured value of X-ray diffraction intensity.

これらの化合物相は、酸化物焼結体をX線回折して得られた回折ピークについて、ICDD(International Center for Diffraction Data)カードの51−0214、89−7011、41−1445に記載されている結晶構造(それぞれ、Ga3InSn516相、Ga2In6Sn216相、SnO2相に対応)を有するものである。 These compound phases are described in ICDD (International Center for Diffraction Data) cards 51-0214, 89-7011, and 41-1445 with respect to diffraction peaks obtained by X-ray diffraction of the oxide sintered body. They have crystal structures (corresponding to Ga 3 InSn 5 O 16 phase, Ga 2 In 6 Sn 2 O 16 phase and SnO 2 phase, respectively).

本発明は上記酸化物焼結体をX線回折したとき、Ga3InSn516相を所定の割合で含むところに特徴がある。Ga3InSn516相のピーク強度比([Ga3InSn516])が小さくなると、Ga2In6Sn216相の粒成長抑制効果が弱くなるため、0.02以上とする必要がある。好ましくは0.05以上、より好ましくは0.08以上、更に好ましくは0.1以上である。一方、上限については特に限定されないが、ピン止め効果が飽和してコストが割高になるため、0.2以下、好ましくは0.18以下、より好ましくは0.16以下である。 The present invention is characterized in that when the oxide sintered body is subjected to X-ray diffraction, a Ga 3 InSn 5 O 16 phase is contained at a predetermined ratio. When the peak intensity ratio of the Ga 3 InSn 5 O 16 phase ([Ga 3 InSn 5 O 16 ]) is decreased, the effect of suppressing the grain growth of the Ga 2 In 6 Sn 2 O 16 phase is weakened. There is a need. Preferably it is 0.05 or more, More preferably, it is 0.08 or more, More preferably, it is 0.1 or more. On the other hand, the upper limit is not particularly limited, but is 0.2 or less, preferably 0.18 or less, more preferably 0.16 or less, because the pinning effect is saturated and the cost is high.

更に本願発明では、酸化物焼結体をX線回折したとき、Ga2In6Sn216相は下記式(5)を満足するものであることが好ましい。
0.8≦[Ga2In6Sn216]≦0.98・・・(5)
但し、[Ga2In6Sn216]=I(Ga2In6Sn216)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2)))
式中、I(Ga2In6Sn216)、I(Ga3InSn516)、およびI(SnO2)はそれぞれ、X線回折で特定されたGa3InSn516相、Ga2In6Sn216相、およびSnO2相の回折ピーク強度である。
Furthermore, in the present invention, when the oxide sintered body is X-ray diffracted, the Ga 2 In 6 Sn 2 O 16 phase preferably satisfies the following formula (5).
0.8 ≦ [Ga 2 In 6 Sn 2 O 16 ] ≦ 0.98 (5)
However, [Ga 2 In 6 Sn 2 O 16] = I (Ga 2 In 6 Sn 2 O 16) / (I (Ga 3 InSn 5 O 16) + I (Ga 2 In 6 Sn 2 O 16) + I (SnO 2 )))
In the formula, I (Ga 2 In 6 Sn 2 O 16 ), I (Ga 3 InSn 5 O 16 ), and I (SnO 2 ) are respectively a Ga 3 InSn 5 O 16 phase and a Ga specified by X-ray diffraction. It is the diffraction peak intensity of 2 In 6 Sn 2 O 16 phase and SnO 2 phase.

Ga2In6Sn216相のピーク強度比([Ga2In6Sn216])が小さくなるとボンディング時の酸化物焼結体の割れが生じやすくなるため、好ましくは0.8以上、より好ましくは0.82以上、更に好ましくは0.84以上である。一方、上限については、上記観点からは高いほどよいが、Ga3InSn516による上記ピン止め効果を考慮すると、好ましくは0.98以下、より好ましくは0.95以下、更に好ましくは0.92以下、より更に好ましくは0.9以下である。 When the peak intensity ratio of the Ga 2 In 6 Sn 2 O 16 phase ([Ga 2 In 6 Sn 2 O 16 ]) is reduced, the oxide sintered body is liable to crack during bonding. More preferably, it is 0.82 or more, More preferably, it is 0.84 or more. On the other hand, the upper limit is preferably as high as possible from the above viewpoint, but in consideration of the pinning effect by Ga 3 InSn 5 O 16 , it is preferably 0.98 or less, more preferably 0.95 or less, and still more preferably 0.8. 92 or less, more preferably 0.9 or less.

本発明の酸化物焼結体の相対密度は90%以上である。酸化物焼結体の相対密度を高めることによってボンディング時の割れ抑制効果を一層向上できる。このような効果を得るために本発明の酸化物焼結体は相対密度を少なくとも90%以上とする必要があり、好ましくは95%以上であり、より好ましくは98%以上である。上限は特に限定されず100%であってもよいが、製造コストを考慮し、99%が好ましい。   The relative density of the oxide sintered body of the present invention is 90% or more. By increasing the relative density of the oxide sintered body, the effect of suppressing cracking during bonding can be further improved. In order to obtain such an effect, the oxide sintered body of the present invention needs to have a relative density of at least 90% or more, preferably 95% or more, and more preferably 98% or more. The upper limit is not particularly limited and may be 100%, but 99% is preferable in consideration of manufacturing costs.

また、ボンディング時の割れ抑制効果をより一層高めるためには、酸化物焼結体のGa2In6Sn216相の平均結晶粒径を微細化する必要がある。具体的には酸化物焼結体の破断面、すなわち、酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置において走査型電子顕微鏡(SEM:Scanning Electron Microscope)により観察されるGa2In6Sn216相の平均結晶粒径を3μm以下とすることによって、酸化物焼結体の割れをより一層抑制することができる。好ましい平均結晶粒径は2.8μm以下、より好ましくは2.5μm以下である。一方、平均結晶粒径の下限は特に限定されないが、平均結晶粒径の微細化と製造コストのバランスから、平均結晶粒径の好ましい下限は0.1μm程度である。 Further, in order to further enhance the effect of suppressing cracking during bonding, it is necessary to refine the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase of the oxide sintered body. Specifically, the fracture surface of the oxide sintered body, that is, the oxide sintered body is cut in the thickness direction at an arbitrary position, and a scanning electron microscope (SEM: Scanning Electron Microscope) is formed at an arbitrary position on the surface of the cut surface. The cracks of the oxide sintered body can be further suppressed by setting the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase to be 3 μm or less. A preferable average crystal grain size is 2.8 μm or less, more preferably 2.5 μm or less. On the other hand, the lower limit of the average crystal grain size is not particularly limited, but the preferable lower limit of the average crystal grain size is about 0.1 μm from the balance between refinement of the average crystal grain size and production cost.

また、本発明では更に粒度分布を適切に制御する必要がある。具体的には結晶粒径が10μm以上の粗大結晶粒は、ボンディング時の酸化物焼結体の割れの原因となるため、できるだけ少ない方がよく、粗大結晶粒は10%未満、より好ましくは8%以下、さらに好ましくは6%以下、よりさらに好ましくは4%以下、最も好ましくは0%である。   In the present invention, it is further necessary to appropriately control the particle size distribution. Specifically, coarse crystal grains having a crystal grain size of 10 μm or more cause cracking of the oxide sintered body at the time of bonding. Therefore, it is better that the coarse crystal grains are as small as possible, and the coarse crystal grains are less than 10%, more preferably 8 % Or less, more preferably 6% or less, even more preferably 4% or less, and most preferably 0%.

次に、本発明の酸化物焼結体の好適な製造方法について説明する。   Next, the suitable manufacturing method of the oxide sintered compact of this invention is demonstrated.

本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られるものである。また本発明のスパッタリングターゲットは上記酸化物焼結体を加工することにより製造できる。基本的には、酸化物の粉末を(a)混合・粉砕→(b)乾燥・造粒→(c)予備成形→(d)脱脂→(e)大気焼結して得られた酸化物焼結体を、(f)加工→(g)ボンディグしてスパッタリングターゲットを得ることができる。上記工程のうち本発明では、以下に詳述するように(e)焼結条件を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。   The oxide sintered body of the present invention is obtained by mixing and sintering indium oxide, gallium oxide, and tin oxide. Moreover, the sputtering target of this invention can be manufactured by processing the said oxide sintered compact. Basically, oxide powder obtained by (a) mixing and grinding → (b) drying and granulation → (c) preforming → (d) degreasing → (e) atmospheric sintering A sputter target can be obtained by bonding (f) processing → (g) the bonded body. Among the above steps, the present invention is characterized in that (e) sintering conditions are appropriately controlled as will be described in detail below, and other steps are not particularly limited, and a commonly used step is appropriately selected. be able to. Hereinafter, although each process is demonstrated, this invention is not the meaning limited to this.

まず、酸化インジウム粉末と;酸化ガリウム粉末と;酸化錫粉末;を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体薄膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、上記範囲内となるように制御することが好ましい。   First, indium oxide powder; gallium oxide powder; and tin oxide powder are mixed in a predetermined ratio, mixed and pulverized. The purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a small amount of an impurity element may impair the semiconductor characteristics of the oxide semiconductor thin film. It is preferable to control the blending ratio of each raw material powder to be within the above range.

(a)混合・粉砕は、ボールミルまたはビーズミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。この際、均一に混合する目的で分散剤や、後の成形工程の容易性を確保するためにバインダーを混合してもよい。混合時間は2時間以上とすることが好ましく、より好ましくは10時間以上であり、更に好ましくは20時間以上である。   (A) The mixing / pulverization is preferably performed by using a ball mill or a bead mill and adding the raw material powder together with water. The balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like. At this time, a dispersant or a binder may be mixed in order to ensure the ease of the subsequent molding process for the purpose of uniform mixing. The mixing time is preferably 2 hours or more, more preferably 10 hours or more, and further preferably 20 hours or more.

次に、上記工程で得られた混合粉末について例えばスプレードライヤなどで(b)乾燥・造粒を行うことが好ましい。   Next, it is preferable to perform (b) drying and granulation of the mixed powder obtained in the above step using, for example, a spray dryer.

乾燥・造粒後、(c)予備成形をする。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形する。この予備成形は、ハンドリング性を向上させる目的で行われるため、49〜98MPa程度の加圧力を加えて成形体とすればよい。得られた予備成形体は冷間静水圧加圧処理(CIP:Cold Isostatic Pressing)で本成形を行う。焼結体の相対密度を上昇させるためには、本成形時の圧力は98〜490MPaに制御することが好ましい。   After drying and granulation, (c) preforming is performed. In the molding, the powder after drying and granulation is filled in a mold having a predetermined size, and preformed by a mold press. Since this preforming is performed for the purpose of improving the handleability, a compact may be formed by applying a pressing force of about 49 to 98 MPa. The obtained preform is subjected to main molding by cold isostatic pressing (CIP). In order to increase the relative density of the sintered body, the pressure during the main forming is preferably controlled to 98 to 490 MPa.

なお、混合粉末に分散剤やバインダーを添加した場合には、分散剤やバインダーを除去するために成形体を加熱して(d)脱脂を行うことが望ましい。加熱条件は脱脂目的が達成できれば特に限定されないが、例えば大気中、おおむね500℃程度で、5時間程度保持すればよい。   In addition, when a dispersing agent and a binder are added to mixed powder, in order to remove a dispersing agent and a binder, it is desirable to heat a molded object and to perform (d) degreasing | defatting. The heating conditions are not particularly limited as long as the purpose of degreasing can be achieved. For example, the heating conditions may be maintained at about 500 ° C. in the atmosphere for about 5 hours.

脱脂後、所望の形状が得られるように成形型に成形体をセットして(e)大気焼結にて焼結を行う。本発明では成形体を焼結温度:1400〜1550℃まで昇温した後、該温度での保持時間:1〜50時間で焼結を行う。これらの温度範囲および保持時間で焼結することにより、上記式(1)〜(3)を満足する化合物相が得られると共に、上記式(4)を満足するGa3InSn516相、好ましくは上記式(5)を満足するGa2In6Sn216相の比率と、適切な粒径を有する焼結体が得られる。焼結温度が低いと、上記式(4)を満足するGa3InSn516相、更には上記式(5)を満足するGa2In6Sn216相を生成できない。また酸化物焼結体を十分に緻密化することができず、所望の相対密度を達成できない。一方、焼結温度が高くなりすぎると、Ga2In6Sn216相の平均結晶粒径や、酸化物焼結体の結晶粒が粗大化してしまい、Ga2In6Sn216相の平均結晶粒径や酸化物焼結体の結晶粒の平均結晶粒径を所定の範囲に制御できなくなる。したがって焼結温度は好ましくは1400℃以上、より好ましくは1425℃以上、更に好ましくは1450℃以上であって、好ましくは1550℃以下、より好ましくは1525℃以下とする。 After degreasing, the molded body is set in a mold so as to obtain a desired shape, and (e) sintering is performed by atmospheric sintering. In the present invention, the molded body is heated to a sintering temperature of 1400 to 1550 ° C., and then sintered at a holding time of the temperature: 1 to 50 hours. By sintering in these temperature ranges and holding times, a compound phase that satisfies the above formulas (1) to (3) is obtained, and a Ga 3 InSn 5 O 16 phase that satisfies the above formula (4), preferably Can obtain a sintered body having a ratio of Ga 2 In 6 Sn 2 O 16 phase satisfying the above formula (5) and an appropriate particle size. When the sintering temperature is low, a Ga 3 InSn 5 O 16 phase that satisfies the above formula (4) and a Ga 2 In 6 Sn 2 O 16 phase that satisfies the above formula (5) cannot be generated. Further, the oxide sintered body cannot be sufficiently densified, and a desired relative density cannot be achieved. On the other hand, if the sintering temperature becomes too high, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase and the crystal grains of the oxide sintered body become coarse, and the Ga 2 In 6 Sn 2 O 16 phase. It becomes impossible to control the average crystal grain size and the average crystal grain size of the crystal grains of the oxide sintered body within a predetermined range. Accordingly, the sintering temperature is preferably 1400 ° C. or higher, more preferably 1425 ° C. or higher, further preferably 1450 ° C. or higher, preferably 1550 ° C. or lower, more preferably 1525 ° C. or lower.

また、上記焼結温度での保持時間が長くなりすぎると結晶粒が成長して粗大化するため、結晶粒の平均結晶粒径を所定の範囲に制御できなくなる。一方、保持時間が短すぎると上記Ga3InSn516相、好ましくは上記Ga2In6Sn216相を前記割合以上形成することができず、また十分に緻密化することができなくなる。したがって保持時間は好ましくは0.1時間以上、より好ましくは0.5時間以上であって、好ましくは5時間以下とすることが望ましい。 Further, if the holding time at the sintering temperature is too long, the crystal grains grow and become coarse, so that the average crystal grain size of the crystal grains cannot be controlled within a predetermined range. On the other hand, if the holding time is too short, the above Ga 3 InSn 5 O 16 phase, preferably the above Ga 2 In 6 Sn 2 O 16 phase, cannot be formed in the above proportion or more and cannot be sufficiently densified. . Therefore, the holding time is preferably 0.1 hour or longer, more preferably 0.5 hour or longer, and preferably 5 hours or shorter.

また、本発明では成形後、上記焼結温度までの平均昇温速度を100℃/時間以下とすることが好ましい。平均昇温速度が100℃/時間を超えると、結晶粒の異常成長が起こり、粗大結晶粒の割合が高くなる。また相対密度を十分に高めることができない。より好ましい平均昇温速度は75℃/時間以下、更に好ましくは50℃/時間以下である。一方、平均昇温速度の下限は特に限定されないが、生産性の観点からは10℃/時間以上とすることが好ましく、より好ましくは20℃/時間以上である。   Moreover, in this invention, it is preferable that the average temperature increase rate to the said sintering temperature shall be 100 degrees C / hour or less after shaping | molding. When the average heating rate exceeds 100 ° C./hour, abnormal growth of crystal grains occurs, and the ratio of coarse crystal grains increases. Also, the relative density cannot be increased sufficiently. A more preferable average heating rate is 75 ° C./hour or less, and further preferably 50 ° C./hour or less. On the other hand, the lower limit of the average heating rate is not particularly limited, but is preferably 10 ° C./hour or more, more preferably 20 ° C./hour or more from the viewpoint of productivity.

更に本発明では、上記平均昇温速度で上記焼結温度まで昇温する過程で、一時保持することが推奨される。具体的には1100℃以上、1300℃以下の温度域で1時間以上、10時間以下保持することが好ましい。該温度域で所定時間保持することで、上記Ga3InSn516相の生成を促進して前記割合以上形成することができる。また一時保持することで、Ga2In6Sn216相の結晶粒の成長を抑制することができる。一時保持するときの温度(予備焼結温度)の下限は、より好ましくは1120℃以上、更に好ましくは1140℃以上である。また、上記温度の上限は、より好ましくは1270℃以下、更に好ましくは1250℃以下、更により好ましくは1200℃以下である。 Furthermore, in the present invention, it is recommended that the temperature is temporarily maintained in the process of raising the temperature to the sintering temperature at the average temperature raising rate. Specifically, it is preferable to hold in a temperature range of 1100 ° C. or higher and 1300 ° C. or lower for 1 hour or more and 10 hours or less. By maintaining the temperature in the temperature range for a predetermined time, the formation of the Ga 3 InSn 5 O 16 phase can be promoted to form the above ratio or more. Further, by temporarily holding, growth of crystal grains of the Ga 2 In 6 Sn 2 O 16 phase can be suppressed. The lower limit of the temperature (preliminary sintering temperature) when temporarily held is more preferably 1120 ° C. or higher, and further preferably 1140 ° C. or higher. The upper limit of the temperature is more preferably 1270 ° C. or less, still more preferably 1250 ° C. or less, and still more preferably 1200 ° C. or less.

焼結工程では、焼結雰囲気を例えば大気雰囲気などの酸素ガス雰囲気、酸素ガス加圧下雰囲気とすることが好ましい。また雰囲気ガスの圧力は、蒸気圧の高い酸化亜鉛の蒸発を抑制するために大気圧とすることが望ましい。上記のようにして得られた酸化物焼結体は相対密度が90%以上である。   In the sintering step, the sintering atmosphere is preferably an oxygen gas atmosphere such as an air atmosphere or an atmosphere under an oxygen gas pressure. The pressure of the atmospheric gas is preferably atmospheric pressure in order to suppress evaporation of zinc oxide having a high vapor pressure. The oxide sintered body obtained as described above has a relative density of 90% or more.

上記のようにして酸化物焼結体を得た後、常法により、(f)加工→(g)ボンディングを行なうと本発明のスパッタリングターゲットが得られる。酸化物焼結体の加工方法は特に限定されず、公知の方法によって各種用途に応じた形状に加工すればよい。   After obtaining the oxide sintered body as described above, the sputtering target of the present invention is obtained by performing (f) processing → (g) bonding by a conventional method. The processing method of oxide sinter is not specifically limited, What is necessary is just to process to the shape according to various uses by a well-known method.

加工した酸化物焼結体をバッキングプレートにボンディング材によって接合することでスパッタリングターゲットを製造できる。バッキングプレートの素材の種類は特に限定されないが、熱伝導性優れた純銅または銅合金が好ましい。ボンディング材の種類も特に限定されず、導電性を有する各種公知のボンディング材を使用することができ、例えばIn系はんだ材、Sn系はんだ材などが例示される。接合方法も特に限定されず、例えば酸化物焼結体およびバッキングプレートをボンディング材が溶解する温度、例えば140〜220℃程度に加熱して溶解させ、バッキングプレートのボンディング面に溶解したボンディング材を塗布し、それぞれのボンディング面を貼り合わせて両者を圧着した後、冷却すればよい。   A sputtering target can be manufactured by joining the processed oxide sintered body to a backing plate with a bonding material. Although the kind of material of the backing plate is not particularly limited, pure copper or copper alloy having excellent thermal conductivity is preferable. The type of the bonding material is not particularly limited, and various known bonding materials having electrical conductivity can be used. Examples thereof include an In-based solder material and an Sn-based solder material. The bonding method is not particularly limited. For example, the oxide sintered body and the backing plate are heated and melted at a temperature at which the bonding material dissolves, for example, about 140 to 220 ° C., and the dissolved bonding material is applied to the bonding surface of the backing plate. And after bonding each bonding surface and crimping | bonding both, it should just cool.

本発明の酸化物焼結体を用いて得られるスパッタリングターゲットは、ボンディング作業時の衝撃や熱履歴などで発生した応力などによる割れがなく、また比抵抗も、非常に良好なものであり、好ましくは1Ω・cm以下、より好ましくは10-1Ω・cm以下、さらに好ましくは10-2Ω・cm以下である。本発明のスパッタリングターゲットを用いれば、スパッタリング中での異常放電、およびスパッタリングターゲット材の割れを一層抑制した成膜が可能となり、スパッタリングターゲットを用いた物理蒸着を表示装置の生産ラインで効率よく行うことができる。また得られた酸化物半導体薄膜も良好なTFT特性を示す。 The sputtering target obtained by using the oxide sintered body of the present invention is free from cracking due to stress generated by impact or thermal history during bonding work, and has a very good specific resistance. Is 1 Ω · cm or less, more preferably 10 −1 Ω · cm or less, and further preferably 10 −2 Ω · cm or less. If the sputtering target of the present invention is used, it becomes possible to form a film that further suppresses abnormal discharge during sputtering and cracking of the sputtering target material, and physical vapor deposition using the sputtering target can be efficiently performed on the production line of the display device. Can do. The obtained oxide semiconductor thin film also shows good TFT characteristics.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all possible and are within the scope of the present invention.

実施例1
(スパッタリングターゲットの作製)
純度99.99%の酸化インジウム粉末(InO1.5)、純度99.99%の酸化ガリウム粉末(GaO1.5)、純度99.99%の酸化錫粉末(SnO2)を表1に示す質量比率および原子比率で配合し、水と分散剤(ポリカルボン酸アンモニウム)を加えてナイロンボールミルで24時間混合した。次に、上記工程で得られた混合粉末を乾燥して造粒を行った。
Example 1
(Preparation of sputtering target)
Mass ratios and atoms shown in Table 1 for indium oxide powder (InO 1.5 ) with a purity of 99.99%, gallium oxide powder (GaO 1.5 ) with a purity of 99.99%, and tin oxide powder (SnO 2 ) with a purity of 99.99% Blended in a ratio, water and a dispersant (ammonium polycarboxylate) were added and mixed for 24 hours in a nylon ball mill. Next, the mixed powder obtained in the above step was dried and granulated.

このようにして得られた粉末を金型プレスにて下記条件で予備成形した後、CIPにて成形圧力294MPaで本成形を行った。
(予備成形の条件)
成形圧力:98MPa
厚みをtとしたとき、成形体サイズ:φ110mm×t13mm
The powder thus obtained was preformed with a mold press under the following conditions, and then subjected to main molding with CIP at a molding pressure of 294 MPa.
(Preform conditions)
Molding pressure: 98 MPa
When the thickness is t, the compact size: φ110mm x t13mm

このようにして得られた成形体を焼結炉にセットし、表2に示す条件で焼結を行った。得られた酸化物焼結体を機械加工してφ100mm×t5mmに仕上げた。該酸化物焼結体と、Cu製バッキングプレートを20分かけて180℃まで昇温させた後、酸化物焼結体をバッキングプレートにボンディング材(インジウム)を用いてボンディングし、スパッタリングターゲットを製作した。   The molded body thus obtained was set in a sintering furnace and sintered under the conditions shown in Table 2. The obtained oxide sintered body was machined to finish φ100 mm × t5 mm. The oxide sintered body and the Cu backing plate are heated to 180 ° C. over 20 minutes, and then the oxide sintered body is bonded to the backing plate using a bonding material (indium) to produce a sputtering target. did.

(相対密度の測定)
相対密度は酸化物焼結体の破断面、すなわち、酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置を鏡面研削し、走査型電子顕微鏡(SEM)を用いて気孔率を測定して求めた。1000倍で写真撮影し50μm角の領域で気孔の占める面積率を測定し、気孔率とした。20枚の平均を当該試料の平均気孔率とし、[100−平均気孔率]を平均相対密度とした。相対密度は90%以上を合格と評価した。結果を表4の「相対密度(%)」欄に記載した。
(Measurement of relative density)
The relative density is a fracture surface of the oxide sintered body, that is, the oxide sintered body is cut in the thickness direction at an arbitrary position, and an arbitrary position on the surface of the cut surface is mirror-polished, and a scanning electron microscope (SEM) The porosity was measured using The photograph was taken at 1000 times, and the area ratio occupied by the pores in a 50 μm square region was measured to obtain the porosity. The average of 20 sheets was defined as the average porosity of the sample, and [100−average porosity] was defined as the average relative density. A relative density of 90% or more was evaluated as acceptable. The results are shown in the “Relative density (%)” column of Table 4.

(Ga2In6Sn216相の平均結晶粒径)
Ga2In6Sn216相の平均結晶粒径は、酸化物焼結体の破断面を鏡面研削し、その組織を走査型電子顕微鏡(SEM)倍率400倍で写真撮影し、任意の方向で100μmの長さの直線を引き、この直線内に含まれるGa2In6Sn216相の結晶粒の長さの総和(L)、数(N)を求め、[L/N]から算出される値を当該「直線上でのGa2In6Sn216相の平均結晶粒径」とした。同様に粗大結晶粒が重複しない間隔(少なくとも20μm以上の間隔)で直線を20本作成して各直線上での平均粒径を算出し、更に[各直線上での平均結晶粒径の合計/20]から算出される値を「Ga2In6Sn216相の平均結晶粒径」とした。Ga2In6Sn216相は、エネルギー分散型X線分析(EDS:Energy dispersive X−ray spectrometry)によって構成元素比とX線回折のデータに基づいて同定し、Ga2In6Sn216相の平均結晶粒径を求めた。本実施例ではGa2In6Sn216相の平均結晶粒径が3μm以下を合格と評価した。結果を表4の「Ga2In6Sn216平均粒径(μm)」欄に記載した。
(Average crystal grain size of Ga 2 In 6 Sn 2 O 16 phase)
The average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase is determined by mirror-grinding the fracture surface of the oxide sintered body, photographing the structure at a scanning electron microscope (SEM) magnification of 400 times, and in any direction Then, a straight line having a length of 100 μm is drawn, and the total length (L) and number (N) of the lengths of the crystal grains of the Ga 2 In 6 Sn 2 O 16 phase contained in the straight line are obtained. The calculated value was defined as the “average crystal grain size of Ga 2 In 6 Sn 2 O 16 phase on a straight line”. Similarly, 20 straight lines are created at intervals (at least 20 μm or more) at which coarse crystal grains do not overlap, and the average grain size on each straight line is calculated. Furthermore, [the sum of the average grain sizes on each straight line / 20] was determined as “average crystal grain size of Ga 2 In 6 Sn 2 O 16 phase”. The Ga 2 In 6 Sn 2 O 16 phase is identified based on constituent element ratio and X-ray diffraction data by energy dispersive X-ray spectroscopy (EDS), and Ga 2 In 6 Sn 2 O The average crystal grain size of 16 phases was determined. In this example, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase was evaluated to be 3 μm or less as acceptable. The results are shown in the “Ga 2 In 6 Sn 2 O 16 average particle diameter (μm)” column of Table 4.

(粗大結晶粒の割合)
粗大結晶粒の割合は、上記Ga2In6Sn216相の平均結晶粒径と同様、酸化物焼結体の破断面をSEM観察して、任意の方向に100μmの長さの直線を引き、この直線上で切り取られる長さが10μm以上となる結晶粒を粗大な結晶粒とした。この粗大な結晶粒が直線上で占める長さL(複数ある場合はその総和:μm)を求め、[L/100]から算出される値を当該「直線上での粗大結晶粒の割合」(%)とした。更に粗大結晶粒が重複しない間隔(少なくとも20μm以上の間隔)で直線を20本作成して各直線上での粗大結晶粒の割合を算出すると共に、[各直線上での粗大結晶粒の割合の合計/20]から算出される値を「酸化物焼結体の粗大結晶粒の割合」(%)とした。酸化物焼結体の粗大結晶粒の割合が10%未満を合格と評価した。結果を表4の「粗大結晶粒の割合(%)」欄に記載した。
(Ratio of coarse crystal grains)
Similar to the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase, the ratio of coarse crystal grains is determined by observing the fracture surface of the oxide sintered body with an SEM and forming a straight line having a length of 100 μm in an arbitrary direction. The crystal grains having a length of 10 μm or more cut off on this straight line were defined as coarse crystal grains. The length L (sum of a plurality of the crystal grains occupied by the coarse crystal grains on the straight line) is obtained, and the value calculated from [L / 100] is calculated as the “ratio of coarse crystal grains on the straight line” ( %). Furthermore, 20 straight lines are created at intervals (at least 20 μm or more) at which coarse crystal grains do not overlap, and the ratio of coarse crystal grains on each straight line is calculated, and [the ratio of coarse crystal grains on each straight line is calculated. The value calculated from “total / 20] was defined as“ ratio of coarse crystal grains of oxide sintered body ”(%). When the ratio of coarse crystal grains of the oxide sintered body was less than 10%, it was evaluated as acceptable. The results are shown in the column “Ratio of coarse crystal grains (%)” in Table 4.

(Ga3InSn516相、およびGa2In6Sn216相の比率)
結晶相の比率は、スパッタリング後、スパッタリングターゲットをバッキングプレートから取り外して10mm角の試験片を切出し、X線回折で回折線の強度(回折ピーク)を下記条件で測定して求めた。
分析装置:理学電機社製「X線回折装置RINT−1500」
分析条件:
ターゲット:Cu
単色化:モノクロメートを使用(Kα)
ターゲット出力:40kV−200mA
(連続焼測定)θ/2θ走査
スリット:発散1/2°、散乱1/2°、受光0.15mm
モノクロメータ受光スリット:0.6mm
走査速度:2°/min
サンプリング幅:0.02°
測定角度(2θ):5〜90°
(Ga 3 InSn 5 O 16 phase and Ga 2 In 6 Sn 2 O 16 phase ratio)
The ratio of the crystal phase was determined by removing the sputtering target from the backing plate after sputtering, cutting out a 10 mm square test piece, and measuring the intensity (diffraction peak) of the diffraction line by X-ray diffraction under the following conditions.
Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation
Analysis conditions:
Target: Cu
Monochromatic: Uses a monochrome mate (Kα)
Target output: 40kV-200mA
(Continuous firing measurement) θ / 2θ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
Monochromator light receiving slit: 0.6mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 to 90 °

この測定で得られた回折ピークについて、ICDDカードに基づいて各結晶相のピークを同定し、回折ピークの高さを測定した。これらのピークは、当該結晶相で回折強度が十分に高く、他の結晶相のピークとの重複がなるべく少ないピークを選択した。各結晶相の指定ピークでのピーク高さの測定値を夫々、I(Ga3InSn516)、I(Ga2In6Sn216)、I(SnO2)とし(「I」はX線回折強度の測定値であることを意味する)、下式によって[Ga3InSn516]、および[Ga2In6Sn216]のピーク強度比率を求めた。
[Ga3InSn516]=I(Ga3InSn516)/((I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2))
[Ga2In6Sn216]=I(Ga2In6Sn216)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2))
About the diffraction peak obtained by this measurement, the peak of each crystal phase was identified based on the ICDD card, and the height of the diffraction peak was measured. These peaks were selected so that the diffraction intensity of the crystal phase was sufficiently high and the overlap with the peaks of other crystal phases was as small as possible. The measured values of the peak height at the designated peak of each crystal phase are I (Ga 3 InSn 5 O 16 ), I (Ga 2 In 6 Sn 2 O 16 ), and I (SnO 2 ), respectively (“I” is The peak intensity ratio of [Ga 3 InSn 5 O 16 ] and [Ga 2 In 6 Sn 2 O 16 ] was determined by the following formula.
[Ga 3 InSn 5 O 16 ] = I (Ga 3 InSn 5 O 16 ) / ((I (Ga 3 InSn 5 O 16 ) + I (Ga 2 In 6 Sn 2 O 16 ) + I (SnO 2 ))
[Ga 2 In 6 Sn 2 O 16 ] = I (Ga 2 In 6 Sn 2 O 16 ) / (I (Ga 3 InSn 5 O 16 ) + I (Ga 2 In 6 Sn 2 O 16 ) + I (SnO 2 ))

[Ga3InSn516]は0.02以上、0.2以下を合格と評価した。また[Ga2In6Sn216]は0.8以上、0.98以下を合格と評価した。結果を表4中、「Ga3InSn516強度比」欄、及び「Ga2In6Sn216強度比」欄に記載した。 [Ga 3 InSn 5 O 16 ] evaluated 0.02 or more and 0.2 or less as a pass. In addition, [Ga 2 In 6 Sn 2 O 16 ] was evaluated as pass from 0.8 to 0.98. The results are shown in “Ga 3 InSn 5 O 16 intensity ratio” column and “Ga 2 In 6 Sn 2 O 16 intensity ratio” column in Table 4.

(ボンディング時の割れ)
上記機械加工した酸化物焼結体を加熱し、バッキングプレートにボンディングした後、酸化物焼結体表面に割れが生じていないか目視で確認した。酸化物焼結体表面で1mmを超えるクラックが確認できた場合を「割れ」があると判断した。ボンディング作業を10回行い、1回でも割れがある場合を不合格(「有」)、1回も割れがない場合を合格(「無」)と評価した。結果を表4中、「ボンディング時の割れ」欄に記載した。
(Breaking during bonding)
The machined oxide sintered body was heated and bonded to a backing plate, and then it was visually confirmed whether or not cracks had occurred on the surface of the oxide sintered body. When cracks exceeding 1 mm were confirmed on the surface of the oxide sintered body, it was judged that there was a “crack”. The bonding operation was performed 10 times, and a case where there was a crack even once was rejected (“Yes”), and a case where there was no crack was evaluated as “pass” (“No”). The results are shown in the “cracking during bonding” column in Table 4.

(比抵抗)
比抵抗値は、機械加工後のφ100mm×t5mmを用いて抵抗率計ロレスタGP(三菱ケミカルコーポレーション社製MCP−T610型)による四探針法で測定した。比抵抗は1Ω・cm以下を合格とした。結果を表4中、「比抵抗値(Ω・cm)」欄に記載した。
(Resistivity)
The specific resistance value was measured by a four-probe method using a resistivity meter Loresta GP (MCP-T610 type manufactured by Mitsubishi Chemical Corporation) using φ100 mm × t5 mm after machining. The specific resistance was determined to be 1 Ω · cm or less. The results are shown in the “specific resistance (Ω · cm)” column in Table 4.

これらの結果を表4に併記する。表4の最右欄には総合評価の欄を設け、上記評価項目のうち全てが合格のものをOK、いずれか一つが不合格のものにNGを付した。   These results are also shown in Table 4. In the rightmost column of Table 4, a comprehensive evaluation column is provided, and all of the above evaluation items are OK when all are acceptable, and NG is assigned when any one is unacceptable.

本発明の好ましい組成、および製造条件を満足する試料No.1〜7は、スパッタリング時はもちろんのこと、ボンディング時のターゲットに割れが生じることがなかった。またこのようにして得られたスパッタリングターゲットの相対密度および比抵抗も良好な結果が得られた。   Sample No. satisfying the preferred composition and production conditions of the present invention. In Nos. 1 to 7, cracks were not generated in the target during bonding as well as during sputtering. Moreover, the relative density and specific resistance of the sputtering target thus obtained were also good.

一方、本発明の組成を満足しない試料No.8〜10、および製造条件を満足しない試料No.11〜13は、ボンディング時にスパッタリングターゲットに割れが発生した。
そこで、これらの例では、スパッタリングターゲットに割れが生じないようなボンディング条件でボンディングして割れが発生しなかったスパッタリングターゲットを使用して、比抵抗を測定した。
On the other hand, Sample No. which does not satisfy the composition of the present invention. 8 to 10 and sample Nos. That do not satisfy the production conditions. In Nos. 11 to 13, cracks occurred in the sputtering target during bonding.
Therefore, in these examples, the specific resistance was measured using a sputtering target that was bonded under bonding conditions such that no cracking occurred in the sputtering target and cracks did not occur.

試料No.8は、酸化物焼結体の組成について、[In]が低く、[Ga]が高くて本発明の規定を満たさない表1の鋼種eを用いた例である。その結果、この例ではGa2In6Sn216相の平均結晶粒径が大きく、また粗大結晶粒の割合が高く、更にGa3InSn516相が生成していなかった。この例ではボンディング時に酸化物焼結体に割れが発生した。 Sample No. 8 is an example using the steel type e of Table 1 that has a low [In] and a high [Ga] and does not satisfy the provisions of the present invention regarding the composition of the oxide sintered body. As a result, in this example, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase was large, the ratio of coarse crystal grains was high, and the Ga 3 InSn 5 O 16 phase was not generated. In this example, a crack occurred in the oxide sintered body during bonding.

試料No.9は、酸化物焼結体の組成について、[Sn]が低くて本発明の規定を満たさない表1の鋼種fを用いた例である。その結果、この例では相対密度が低く、Ga2In6Sn216相の平均結晶粒径が大きく、また粗大結晶粒の割合が高く、更にGa3InSn516相が生成していなかった。この例ではボンディング時に酸化物焼結体に割れが発生した。また比抵抗も高かった。 Sample No. No. 9 is an example using the steel type f of Table 1 which has a low [Sn] and does not satisfy the provisions of the present invention regarding the composition of the oxide sintered body. As a result, in this example, the relative density is low, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase is large, the proportion of coarse crystal grains is high, and the Ga 3 InSn 5 O 16 phase is not generated. It was. In this example, a crack occurred in the oxide sintered body during bonding. The specific resistance was also high.

試料No.10は、酸化物焼結体の組成について、[In]が低くて本発明の規定を満たさない表1の鋼種gを用いた例である。その結果、この例ではGa2In6Sn216相の平均結晶粒径が大きく、また粗大結晶粒の割合が高く、更にGa3InSn516相のピーク強度比が高すぎた。この例ではボンディング時に酸化物焼結体に割れが発生した。また比抵抗も高かった。 Sample No. No. 10 is an example using the steel type g of Table 1 that has a low [In] and does not satisfy the provisions of the present invention regarding the composition of the oxide sintered body. As a result, in this example, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase was large, the ratio of coarse crystal grains was high, and the peak intensity ratio of the Ga 3 InSn 5 O 16 phase was too high. In this example, a crack occurred in the oxide sintered body during bonding. The specific resistance was also high.

試料No.11は、酸化物焼結体の組成は本発明の規定を満たす表1の鋼種aを用いたが、焼結時の保持温度が高かった例である。この例ではGa2In6Sn216相の平均結晶粒径が大きかった。この例では、ボンディング時に酸化物焼結体に割れが発生した。 Sample No. No. 11 is an example in which the composition of the oxide sintered body used the steel type a in Table 1 that satisfies the provisions of the present invention, but the holding temperature during sintering was high. In this example, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase was large. In this example, a crack occurred in the oxide sintered body during bonding.

試料No.12は、酸化物焼結体の組成は本発明の規定を満たす表1の鋼種aを用いたが、焼結時の保持温度が低くかった例である。この例では相対密度が低く、Ga2In6Sn216相の平均結晶粒径が大きく、また粗大結晶粒の割合が高かった。この例ではボンディング時に酸化物焼結体に割れが発生した。また比抵抗も高かった。 Sample No. No. 12 is an example in which the composition of the oxide sintered body used the steel type a in Table 1 that satisfies the provisions of the present invention, but the holding temperature during sintering was low. In this example, the relative density was low, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase was large, and the proportion of coarse crystal grains was high. In this example, a crack occurred in the oxide sintered body during bonding. The specific resistance was also high.

試料No.13は、酸化物焼結体の組成は本発明の規定を満たす表1の鋼種aを用いたが、一時保持することなく焼結温度までの昇温した例である。この例ではGa2In6Sn216相の平均結晶粒径が大きく、また粗大結晶粒の割合が高く、更にGa3InSn516相のピーク強度比が低すぎた。この例ではボンディング時に酸化物焼結体に割れが発生した。 Sample No. No. 13 is an example in which the composition of the oxide sintered body used the steel type a in Table 1 that satisfies the provisions of the present invention, but the temperature was raised to the sintering temperature without temporarily holding it. In this example, the average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase was large, the proportion of coarse crystal grains was high, and the peak intensity ratio of the Ga 3 InSn 5 O 16 phase was too low. In this example, a crack occurred in the oxide sintered body during bonding.

実施例2
本実施例では、従来のIn−Ga−Zn酸化物焼結体(IGZO)に比べて、本発明で規定するIn−Ga−Sn酸化物焼結体(IGTO)の有用性を実証するため、以下の実験を行った。
Example 2
In this example, compared to a conventional In-Ga-Zn oxide sintered body (IGZO), in order to demonstrate the usefulness of the In-Ga-Sn oxide sintered body (IGTO) defined in the present invention, The following experiment was conducted.

まず、前述した実施例1の表4のNo.1のターゲットを用い、以下の条件で、本成膜前のプリスパッタおよび本成膜であるスパッタを行って、ガラス基板上に酸化物半導体薄膜を成膜した。参考のため、表5のNo.1に、上記表4のNo.1のターゲットの組成(表1の成分No.aと同じ)を併記する。
スパッタリング装置:株式会社アルバック製「CS−200」
DC(直流)マグネトロンスパッタリング法
基板温度:室温
(1)プリスパッタ
ガス圧:1mTorr
酸素分圧:100×O2/(Ar+O2)=0体積%
成膜パワー密度:2.5W/cm2
プリスパッタ時間:10分
(2)本成膜
ガス圧:1mTorr
酸素分圧:100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.5W/cm2
膜厚:40nm
First, No. 1 in Table 4 of Example 1 described above. An oxide semiconductor thin film was formed on a glass substrate by performing pre-sputtering before the main film formation and sputtering which is the main film formation under the following conditions using one target. For reference, no. No. 1 in Table 4 above. The composition of target No. 1 (same as component No. a in Table 1) is also shown.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
DC (direct current) magnetron sputtering substrate temperature: room temperature (1) pre-sputtering gas pressure: 1 mTorr
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 0% by volume
Deposition power density: 2.5 W / cm 2
Pre-sputtering time: 10 minutes (2) Main film forming gas pressure: 1 mTorr
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.5 W / cm 2
Film thickness: 40nm

比較のため、表5のNo.2に記載のIGZOターゲットを用い、上記と同じ条件で酸化物半導体薄膜を成膜した。上記No.2のターゲットにおけるInとGaとZnの原子比は1:1:1である。上記IGZOターゲットの作製方法は以下のとおりである。   For comparison, No. in Table 5 Using the IGZO target described in 2, an oxide semiconductor thin film was formed under the same conditions as described above. No. above. The atomic ratio of In, Ga, and Zn in the target 2 is 1: 1: 1. The manufacturing method of the IGZO target is as follows.

(IGZOスパッタリングターゲットの作製)
純度99.99%の酸化インジウム粉末(In23)、純度99.99%の酸化ガリウム粉末(Ga23)、純度99.99%の酸化亜鉛粉末(ZnO2)を表1に示す質量比
率および原子比率で配合し、水と分散剤(ポリカルボン酸アンモニウム)とバインダーを加えてボールミルで20時間混合した。次に、上記工程で得られた混合粉末を乾燥して造粒を行った。
(Preparation of IGZO sputtering target)
Table 1 shows indium oxide powder (In 2 O 3 ) having a purity of 99.99%, gallium oxide powder (Ga 2 O 3 ) having a purity of 99.99%, and zinc oxide powder (ZnO 2 ) having a purity of 99.99%. It mix | blended by the mass ratio and the atomic ratio, water, the dispersing agent (polycarboxylic acid ammonium), and the binder were added, and it mixed for 20 hours with the ball mill. Next, the mixed powder obtained in the above step was dried and granulated.

このようにして得られた粉末を金型プレスにて下記条件で予備成形した後、常圧にて大気雰囲気下で500℃に昇温し、該温度で5時間保持して脱脂した。
(予備成形の条件)
成形圧力:1.0ton/cm2
厚みをtとしたとき、成形体サイズ:φ110mm×t13mm
The powder thus obtained was preformed with a die press under the following conditions, then heated to 500 ° C. under atmospheric pressure at atmospheric pressure, and held at that temperature for 5 hours for degreasing.
(Preform conditions)
Molding pressure: 1.0 ton / cm 2
When the thickness is t, the compact size: φ110mm x t13mm

得られた成形体を黒鉛型にセットし、表2に示す条件Gでホットプレスを行った。この際、ホットプレス炉内にはN2ガスを導入し、N2雰囲気下で焼結した。 The obtained molded body was set in a graphite mold and hot pressed under the condition G shown in Table 2. At this time, N 2 gas was introduced into the hot press furnace and sintered in an N 2 atmosphere.

得られた酸化物焼結体を機械加工してφ100mm×t5mmに仕上げた。該酸化物焼結体と、Cu製バッキングプレートを10分かけて180℃まで昇温させた後、酸化物焼結体をバッキングプレートにボンディング材(インジウム)を用いてボンディングし、スパッタリングターゲットを製作した。   The obtained oxide sintered body was machined to finish φ100 mm × t5 mm. After heating the oxide sintered body and the Cu backing plate to 180 ° C. over 10 minutes, the oxide sintered body is bonded to the backing plate using a bonding material (indium) to produce a sputtering target. did.

このようにして得られた各酸化物半導体薄膜について、各薄膜中の各金属元素の比率(原子%)を高周波誘導結合プラズマ(Inductively Coupled Plasma、ICP)法で測定した。表6にこれらの結果を記載する。   About each oxide semiconductor thin film obtained in this way, the ratio (atomic%) of each metal element in each thin film was measured by a high frequency inductively coupled plasma (ICP) method. Table 6 lists these results.

表5に示すターゲットの組成(原子%)と表6に示す膜の組成原子(%)を対比すると、本発明の組成を満足するNo.1のIGTOターゲットでは、ターゲットと膜の間の組成ずれは全く見られなかった。   When the composition (atomic%) of the target shown in Table 5 and the composition atom (%) of the film shown in Table 6 are compared, No. 1 satisfying the composition of the present invention is obtained. In IGTO target No. 1, no composition deviation was observed between the target and the film.

これに対し、本発明の組成を満足せずSnでなくZnを含むNo.2のIGZOターゲットでは、ターゲットと膜の間の組成ずれが大きくなった。詳細にはNo.2では、ターゲット中のZn比=33.3原子%から、膜中のZn比=26.5原子%と、6.8原子%も減少した。   On the other hand, the composition of the present invention was not satisfied and no. In the IGZO target No. 2, the composition deviation between the target and the film became large. For details, see “No. 2, the Zn ratio in the target = 33.3 atomic%, the Zn ratio in the film = 26.5 atomic%, and 6.8 atomic% decreased.

よって、本発明のターゲットを用いれば、ターゲットの組成と組成ずれのない膜を成膜できることが実証された。   Therefore, it was proved that a film having no composition deviation from the composition of the target can be formed by using the target of the present invention.

更に、上記の各ターゲットを用いて各膜を成膜した後の、各ターゲットの表面状態を目視で観察し、黒色堆積物の有無を評価した。参考のため、これらの写真を図1に示す。   Furthermore, after forming each film using each of the above targets, the surface state of each target was visually observed to evaluate the presence or absence of black deposits. For reference, these photographs are shown in FIG.

その結果、本発明例のNo.1のIGTOターゲットを用いたときは、図1の左図に示すように成膜後のターゲット表面に黒色の堆積物は観察されなかったのに対し、従来例のNo.2のIGZOターゲットを用いたときは、図1の右図に示すように成膜後のターゲット表面に黒色の堆積物が観察された。このようにターゲットの表面に黒色堆積物が存在すると、スパッタ中にターゲット表面から剥離してパーティクルとなって、アーキングを招く虞がある。よって、本発明のターゲットを用いれば、組成ずれのない膜を成膜できるのみならず、スパッタリングの際のアーキングを防止できるなど、非常に有用であることが実証された。   As a result, no. When the IGTO target No. 1 was used, no black deposit was observed on the target surface after film formation as shown in the left diagram of FIG. When the IGZO target No. 2 was used, black deposits were observed on the target surface after film formation as shown in the right diagram of FIG. When black deposits are present on the surface of the target in this way, there is a risk of peeling from the surface of the target during sputtering to form particles, leading to arcing. Therefore, it was proved that the use of the target of the present invention is very useful in that not only a film having no composition deviation can be formed, but also arcing during sputtering can be prevented.

Claims (3)

酸化インジウムと;酸化ガリウムと;酸化錫とを焼結して得られる酸化物焼結体であって、
前記酸化物焼結体の相対密度が90%以上、
前記酸化物焼結体のGa2In6Sn216相の平均結晶粒径が3μm以下、
前記酸化物焼結体の結晶粒径が10μm以上の粗大結晶粒の割合が10%未満であり、
前記酸化物焼結体に含まれる酸素を除く全金属元素に対する、インジウム、ガリウム、錫の含有量の割合(原子%)を夫々、[In]、[Ga]、[Sn]としたとき、下記式(1)〜(3)を満足すると共に、
前記酸化物焼結体をX線回折したとき、Ga3InSn516相は下記式(4)を満足するものであることを特徴とする酸化物焼結体。
35原子%≦[In]≦50原子%・・・(1)
20原子%≦[Ga]≦35原子%・・・(2)
20原子%<[Sn]≦40原子%・・・(3)
0.02≦[Ga3InSn516]≦0.2・・・(4)
但し、[Ga3InSn516]=I(Ga3InSn516)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2))
式中、I(Ga3InSn516)、I(Ga2In6Sn216)、およびI(SnO2)はそれぞれ、X線回折で特定されたGa3InSn516相、Ga2In6Sn216相、およびSnO2相の回折ピーク強度である。
An oxide sintered body obtained by sintering indium oxide; gallium oxide; and tin oxide,
The relative density of the oxide sintered body is 90% or more,
The average crystal grain size of the Ga 2 In 6 Sn 2 O 16 phase of the oxide sintered body is 3 μm or less,
The proportion of coarse crystal grains having a crystal grain size of 10 μm or more of the oxide sintered body is less than 10%,
When the ratio (atomic%) of indium, gallium, and tin to all metal elements excluding oxygen contained in the oxide sintered body is [In], [Ga], and [Sn], respectively, While satisfying the formulas (1) to (3),
When the oxide sintered body is subjected to X-ray diffraction, the Ga 3 InSn 5 O 16 phase satisfies the following formula (4).
35 atomic% ≦ [In] ≦ 50 atomic% (1)
20 atomic% ≦ [Ga] ≦ 35 atomic% (2)
20 atomic% <[Sn] ≦ 40 atomic% (3)
0.02 ≦ [Ga 3 InSn 5 O 16 ] ≦ 0.2 (4)
However, [Ga 3 InSn 5 O 16 ] = I (Ga 3 InSn 5 O 16) / (I (Ga 3 InSn 5 O 16) + I (Ga 2 In 6 Sn 2 O 16) + I (SnO 2))
In the formula, I (Ga 3 InSn 5 O 16 ), I (Ga 2 In 6 Sn 2 O 16 ), and I (SnO 2 ) are respectively Ga 3 InSn 5 O 16 phase and Ga specified by X-ray diffraction. It is the diffraction peak intensity of 2 In 6 Sn 2 O 16 phase and SnO 2 phase.
前記酸化物焼結体をX線回折したとき、Ga2In6Sn216相は下記式(5)を満足するものである請求項1に記載の酸化物焼結体。
0.8≦[Ga2In6Sn216]≦0.98・・・(5)
但し、[Ga2In6Sn216]=I(Ga2In6Sn216)/(I(Ga3InSn516)+I(Ga2In6Sn216)+I(SnO2)))
式中、I(Ga2In6Sn216)、I(Ga3InSn516)、およびI(SnO2)はそれぞれ、X線回折で特定されたGa3InSn516相、Ga2In6Sn216相、およびSnO2相の回折ピーク強度である。
2. The oxide sintered body according to claim 1, wherein when the oxide sintered body is subjected to X-ray diffraction, the Ga 2 In 6 Sn 2 O 16 phase satisfies the following formula (5).
0.8 ≦ [Ga 2 In 6 Sn 2 O 16 ] ≦ 0.98 (5)
However, [Ga 2 In 6 Sn 2 O 16] = I (Ga 2 In 6 Sn 2 O 16) / (I (Ga 3 InSn 5 O 16) + I (Ga 2 In 6 Sn 2 O 16) + I (SnO 2 )))
In the formula, I (Ga 2 In 6 Sn 2 O 16 ), I (Ga 3 InSn 5 O 16 ), and I (SnO 2 ) are respectively a Ga 3 InSn 5 O 16 phase and a Ga specified by X-ray diffraction. It is the diffraction peak intensity of 2 In 6 Sn 2 O 16 phase and SnO 2 phase.
請求項1または2に記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が1Ω・cm以下であることを特徴とするスパッタリングターゲット。   A sputtering target obtained by using the oxide sintered body according to claim 1, wherein the specific resistance is 1 Ω · cm or less.
JP2014266399A 2014-02-14 2014-12-26 Oxide sintered body and method for producing sputtering target Active JP5952891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266399A JP5952891B2 (en) 2014-02-14 2014-12-26 Oxide sintered body and method for producing sputtering target

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014026835 2014-02-14
JP2014026835 2014-02-14
JP2014266399A JP5952891B2 (en) 2014-02-14 2014-12-26 Oxide sintered body and method for producing sputtering target

Publications (2)

Publication Number Publication Date
JP2015166305A true JP2015166305A (en) 2015-09-24
JP5952891B2 JP5952891B2 (en) 2016-07-13

Family

ID=53800160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266399A Active JP5952891B2 (en) 2014-02-14 2014-12-26 Oxide sintered body and method for producing sputtering target

Country Status (3)

Country Link
JP (1) JP5952891B2 (en)
TW (1) TWI565679B (en)
WO (1) WO2015122417A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143005A1 (en) * 2017-02-01 2018-08-09 出光興産株式会社 Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
KR20180121641A (en) 2016-04-19 2018-11-07 가부시키가이샤 코베루코 카겐 Oxide sintered body and sputtering target, and method of manufacturing them
WO2019097959A1 (en) * 2017-11-15 2019-05-23 三井金属鉱業株式会社 Oxide sintered body and sputtering target

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364561B1 (en) * 2017-05-18 2018-07-25 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP6724057B2 (en) * 2018-03-30 2020-07-15 Jx金属株式会社 Sputtering target material
USD908645S1 (en) 2019-08-26 2021-01-26 Applied Materials, Inc. Sputtering target for a physical vapor deposition chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243036A (en) * 1994-03-07 1995-09-19 Japan Energy Corp Ito sputtering target
WO2009128424A1 (en) * 2008-04-16 2009-10-22 住友金属鉱山株式会社 Thin film transistor type substrate, thin film transistor type liquid crystal display device and method for manufacturing thin film transistor type substrate
JP2010037161A (en) * 2008-08-06 2010-02-18 Hitachi Metals Ltd Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP2010150093A (en) * 2008-12-25 2010-07-08 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2011174134A (en) * 2010-02-24 2011-09-08 Idemitsu Kosan Co Ltd In-Ga-Sn-BASED OXIDE SINTERED COMPACT, TARGET, OXIDE SEMICONDUCTOR FILM AND SEMICONDUCTOR ELEMENT
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522889B2 (en) * 2007-05-11 2014-06-18 出光興産株式会社 In-Ga-Zn-Sn-based oxide sintered body and target for physical film formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243036A (en) * 1994-03-07 1995-09-19 Japan Energy Corp Ito sputtering target
WO2009128424A1 (en) * 2008-04-16 2009-10-22 住友金属鉱山株式会社 Thin film transistor type substrate, thin film transistor type liquid crystal display device and method for manufacturing thin film transistor type substrate
JP2010037161A (en) * 2008-08-06 2010-02-18 Hitachi Metals Ltd Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP2010150093A (en) * 2008-12-25 2010-07-08 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2011174134A (en) * 2010-02-24 2011-09-08 Idemitsu Kosan Co Ltd In-Ga-Sn-BASED OXIDE SINTERED COMPACT, TARGET, OXIDE SEMICONDUCTOR FILM AND SEMICONDUCTOR ELEMENT
US20120313057A1 (en) * 2010-02-24 2012-12-13 Idemitsu Kosan Co., Ltd. In-Ga-Sn OXIDE SINTER, TARGET, OXIDE SEMICONDUCTOR FILM, AND SEMICONDUCTOR ELEMENT
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180121641A (en) 2016-04-19 2018-11-07 가부시키가이샤 코베루코 카겐 Oxide sintered body and sputtering target, and method of manufacturing them
WO2018143005A1 (en) * 2017-02-01 2018-08-09 出光興産株式会社 Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
KR20190113857A (en) * 2017-02-01 2019-10-08 이데미쓰 고산 가부시키가이샤 Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
KR102382130B1 (en) 2017-02-01 2022-04-01 이데미쓰 고산 가부시키가이샤 Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
US11728390B2 (en) 2017-02-01 2023-08-15 Idemitsu Kosan Co., Ltd. Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
WO2019097959A1 (en) * 2017-11-15 2019-05-23 三井金属鉱業株式会社 Oxide sintered body and sputtering target

Also Published As

Publication number Publication date
WO2015122417A1 (en) 2015-08-20
TWI565679B (en) 2017-01-11
TW201546018A (en) 2015-12-16
JP5952891B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5796812B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP5952891B2 (en) Oxide sintered body and method for producing sputtering target
JP5883367B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP5883368B2 (en) Oxide sintered body and sputtering target
WO2012118156A1 (en) Sintered oxide and sputtering target
JP2012066968A (en) Oxide sintered compact and sputtering target
WO2016084636A1 (en) Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same
TWI669283B (en) Oxide sintered body and sputtering target material and their manufacturing method
JP6364561B1 (en) Oxide sintered body and sputtering target
JP2017154910A (en) Oxide sintered body and sputtering target
JP6364562B1 (en) Oxide sintered body and sputtering target
WO2013065785A1 (en) Oxide sintered body, sputtering target, and method for producing same
JP5750064B2 (en) Oxide sintered body and sputtering target
JP2017019668A (en) Oxide sintered body and sputtering target and manufacturing method therefor
JP2013193945A (en) SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250